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 Lady beetles (Coleoptera: Coccinellidae), as a group, are considered benefi cial 

because they prey on plant pests.  A number of studies suggest that non-native species 

introduced for biological control have replaced native species in agriculture.  Agricultural 

and non-agricultural habitats were thus surveyed in Maine to determine if native species 

were still dominant in some areas.  In 2004 and 2005, 3,487 and 2,903 beetles were col-

lected, respectively, with non-native species dominant in all but one habitat (coniferous 

forest).  Native species were found in very low numbers in all habitats surveyed. 

 Comparisons between species were then conducted to determine if differences 

exist that might provide an advantage to some species over others.  Consumption 

of four aphid species by one native (Coccinella trifasciata) and three non-native 

(Coccinella septempunctata, Harmonia axyridis, Propylea quatuordecimpunctata) 

species were compared.  Harmonia axyridis generally consumed the most aphids; P. 

quatuordecimpunctata consumed the fewest. Coccinella trifasciata, however, consumed 

the most of one aphid species, Macrosiphum albifrons.  Direct competition for prey 



was compared between native (C. trifasciata, Coleomegilla maculata, Hippodamia 

convergens) and non-native (C. septempunctata, H. axyridis, Hippodamia variegata, P. 

quatuordecimpunctata) species.  Harmonia axyridis had the highest aphid consumption, 

shortest prey discovery time, and generally exhibited the most aggression towards other 

species.  Consumption by C. trifasciata and C. maculata varied depending on with 

which species they were paired.  Interactions between native and non-native species 

(same species as above) and the European fi re ant (Myrmica rubra) tending aphid prey 

were compared.  Harmonia axyridis consumed more aphids than all other species but C. 

septempunctata.  Hippodamia variegata and C. septempunctata were effected the most 

by ant stings.  These differences may explain, in part, the successful establishment of 

some non-native coccinellids in new habitats and suggest that asymmetric interactions 

between species may affect their ability to co-exist.

 Studies evaluating relationships between newly sympatric coccinellids, tending 

ants, and plant-feeding insects were summarized.  Research has been driven by concerns 

about the effects of invasive ants (primarily Pheidole megacephala,  Solenopsis invicta, 

and Linephithema humile) on the effectiveness of pest control by coccinellids (primar-

ily Cryptolaemus montrouzieri and C. septempunctata).  Ants interfered with coccinellid 

predation in 56 of 77 studies. 
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Chapter 1

INTRODUCTION

Process of Biological Invasion

 Introduced species are species that are not native to the location where they are 

released or found (Williamson 1996).  Introduced species are often considered “invasive” 

when they cause detrimental effects in the location where they have been introduced.  

The control of introduced, or alien, species has been recognized as fundamental to the 

preservation of biodiversity (Williamson 1996, Perrings et al. 2000).  The Convention 

on Biological Diversity was signed by over 150 countries at the 1992 Earth Summit in 

Rio de Janeiro, adopted as international law in 1993, and ratifi ed by 176 countries in 

1999.  As part of an initiative to preserve biodiversity, one aim of this agreement was 

to “prevent the introduction of, control or eradicate those alien species which threaten 

ecosystems, habitats or species” (Glowka et al. 1994, Perrings et al. 2000).  

 By wind, water, and transport via animals, populations can be founded far from 

their native ranges.  Although movements of populations into new habitats are natural 

occurrences, the frequency of non-native species introductions into habitats previously 

unoccupied by these species has increased with increases in the human population and 

with advances in human transportation and commerce (Williamson 1996, Mack et al. 

1999, Perrings et al. 2000).  Propagules ranging from gametes, seeds, and spores to 

groups of full-grown organisms are transported in ships’ ballast water and cargo, via air 

travel and ground transportation in automobiles and trains, in containers and packing 
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material.  Between the years of 1980 and 1993, 38 of 47 harmful species known to have 

been introduced into the United States arrived via trade (Schmitz and Simberloff 1997).  

An estimated 50% of weeds and 39% of agricultural pests in the United States are non-

native (USOTA 1993).  Twenty-fi ve percent of Florida’s plant and animal species have 

been introduced by humans over the last 300 years (Schmitz and Simberloff 1997).  

 Biological invasions often occur as a result of the production and consumption 

of non-native species, the alteration or fragmentation of habitat, and the transport of 

people and goods (Mack et al. 1999).  While some introductions occur inadvertently, 

others are deliberate.  Species are intentionally introduced into new habitats for a variety 

of reasons.  Humans carry seeds, plants, and animals with them when colonizing new 

lands.  Plant and animal foods and the stock to produce these foods are exchanged from 

one region of the world to another as new and more successful varieties are developed.  

Game animals are specifi cally bred and introduced to native and non-native habitats in 

order to fortify recreational experiences such as hunting and fi shing.  For sentimental 

and aesthetic reasons, humans carry pets and plants with them when they move and 

grow ornamental gardens.  Ground covers are introduced for erosion control (Schmitz 

and Simberloff 1997).  Pollinators are often intentionally introduced to aid in fruit or 

vegetable production.  Pests of agricultural crops are often controlled by the intentional 

introduction of their non-native natural enemies (Caltagirone and Doutt 1989, McEvoy 

and Cox 1991, Radcliffe and Flanders 1998).  

 Most introductions do not result in the establishment of self-sustaining 

populations (Williamson 1996).  The exact mechanisms by which non-native species 

become invasive are largely unknown (Schmitz and Simberloff 1997).  However, 
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a number of variables are thought to infl uence the success of non-native species in 

establishing and maintaining populations, some credited to the inherent strength of the 

non-native species and some credited to the vulnerability of the habitat in question.  The 

practical use of such characteristics is not yet possible.  While there are some qualities 

that have shown to be common in successful invaders (relatedness to invaders, generalist 

habitat requirements and feeding strategies, propagation of many offspring), no general 

trend in characteristics has been determined enabling the prediction of invasive potential 

(Mack et al 1999).  Assessments that might be conducted determining the invasion 

potential of a given habitat by a given invader are very site-specifi c.  Systems with 

high natural diversity have been shown to be generally resistant to invasion (Drake et 

al. 1989).  The same appears to be true for dry systems, arctic systems, and pelagic 

marine systems (Heywood 1995).  Other systems with low diversity (Drake et al. 

1989), such as agricultural systems (Perrings et al. 2002), and lakes, rivers, estuaries, 

and islands (Heywood 1995) are generally more susceptible to invasion.  Other factors 

infl uencing the susceptibility of a system to invasion include proximity to human activity, 

level of disturbance, land-use, market and trade agreements and activity, and habitat 

fragmentation (Williamson 1996).  Compared with its native habitat, an introduced 

species may need to overcome differences in climate, predators, prey, competition, and 

other biotic and abiotic factors, to establish a viable population (Perring et al. 2000).  

Additionally, when an introduced population is founded by very few individuals, the 

resulting population, even if quite large in number, may not contain the genotypic 

plasticity to deal with variables or changes in its new environment (Williamson 1996).
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 Some of these introduced species cause profound negative economic and 

ecological effects in the habitats in which they are introduced (Howarth 1991, 

Simberloff and Stiling 1996, Perrings et al. 2000, Louda et al. 2003).  The proliferation 

of plant and animal invaders has completely altered some ecosystems, often resulting 

in changes in community structure, and changes and losses in biodiversity.  Most 

terrestrial, freshwater, and marine ecosystems have been impacted by non-native species 

(Williamson 1996, Parker et al. 1999).  In natural or unmanaged systems, non-native 

species cause direct damage by consuming natural resources, and possibly changing 

ecosystem structure and dynamics.  Also, they may cause indirect damage by habitat 

destruction, disease transmission, and competition with indigenous species for natural 

resources, such as nutrition and nest sites.  Direct and indirect effects are similar 

in agricultural or other managed systems, although the affected species may not be 

indigenous.  Non-native species also cause damage by hybridizing with native species; 

introducing new alleles into a population can change gene frequency, change the gene 

pool, and effectively result in the extinction of both the native and non-native founders 

by the “melting” together of native and non-native populations (Williamson 1996).

 The effects of non-native species are second only to habitat destruction in the 

world-wide endangerment of species (Glowka et al 1994, Perrings et al. 2000).  In the 

United States, non-native species have been linked to 3 of 24 known extinctions and a 

decline in 42% of endangered and threatened species (Schmitz and Simberloff 1997).  

 The economic impacts of non-native species are diffi cult to estimate and must 

take into account direct and indirect resource loss and the costs associated with control of 

non-native species, such as pesticide use and manpower hours dedicated to all methods 
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of management.  In the United States, the annual economic impact of non-native species 

has been estimated from 1.2 (USOTA 1993) to 137 billion dollars (Pimentel et al. 1999).  

Costs associated with losses due to non-native plants constitute over one fourth of the 

United States’ agricultural gross national product (Schmitz and Simberloff 1997).  On 

many occasions, biological invasions have promoted the extensive use of and dependence 

on pesticides.

 Although biological invasions will likely never be completely predictable 

(Perrings et al. 2000), broad-scale assessments might provide useful tools such as general 

models and bioindicators that can be more broadly applied.  An understanding of pre-

invasion system dynamics combined with knowledge regarding any small-scale, subtle 

changes that non-indigenous species produce when introduced into a new system before 

they become invasive is necessary.  The prioritization of management efforts requires 

distinguishing small-scale from large-scale invasion effects, determining if traditional 

methods used to determine the impacts of non-indigenous species, such as measures of 

species richness, are adequate, or if more attention should be focused on the specifi cs of 

the ecosystem in question and its functioning (Parker et al. 1999).  

Introduction and Establishment of Non-native Lady Beetle Species in North 

America

 Lady beetles (Coleoptera: Coccinellidae) are small, oval-shaped insects often 

known for their bright red, orange, or yellow color and black dots.  Approximately 4500 

species of lady beetles exist worldwide, with approximately 475 species in 57 genera 

found in North America north of Mexico (Gordon 1985).  Lady beetles are considered 
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benefi cial insects because, in temperate regions, they generally feed on the pests of 

plants.  Their prey can include aphids; scale insects; thrips; mites; immature stages of 

Coleoptera, Lepidoptera, and Hymenoptera; fungal hyphae; fungal spores; and pollen 

(Hodek 1973, Gordon 1985).  Some lady beetles do, however, feed on economically 

important plant species, particularly in tropical regions (Gordon 1985).

 Lady beetles are often categorized based on their primary dietary preference(s).  

Some species are specialists; some species are generalists; while some species fall 

somewhere between.  Some lady beetle species are exclusively predaceous; some 

are exclusively phytophagous; while others have a diverse diet depending on prey 

availability, habitat type, seasonality, and other variables (Hodek 1973).  When a primary 

dietary preference is scarce, many lady beetles switch to a variety of secondary prey 

items (Gordon 1985, Koch 2003).    

 Lady beetles have been intentionally introduced into new habitats throughout the 

world for the control of pest species, such as aphids, in agricultural crops (Gordon 1985, 

Koch 2003).  Lady beetles are highly mobile and do not always remain in the location 

of their original introduction, sometimes moving into adjacent habitats and establishing 

populations in areas where native lady beetles may or may not occur.  Unintentional 

introductions have also occurred via transport as stowaways in plant exports and other 

cargo.  

 The fi rst deliberate introduction of non-native lady beetles to North America 

took place in 1888 (Gordon 1985).  After the cottony cushion scale insect had become a 

serious pest in California citrus groves, Rodolia cardinalis (Mulsant), an Australian lady 

beetle, was introduced among a number of other lady beetle species, and proved to be 
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a huge success in the biological control of that pest.  Between 1891 and 1892, 46 lady 

beetle species were introduced to North America from Australia, few of which became 

established (Gordon 1985).  A period of inactivity in the introduction of lady beetle 

species took place as interest heightened in the use of parasitic Hymenoptera and in the 

development and implementation of pesticides as a widespread means of pest control.  

However, since the 1960’s, there has been a renewed interest in using lady beetles 

for biological control, and a number of lady beetle introductions have proven useful 

in the control of pest species.  Of the 179 known non-indigenous lady beetle species 

intentionally introduced in North America, approximately 16 species currently maintain 

viable populations.  Eight lady beetle species have been established from unintentional 

introductions, with 5 of those a result of intentional introductions that established viable 

populations beyond the range of their intended habitats (Gordon 1985).

 Non-native lady beetle species often establish populations in geographical ranges 

already inhabited by native or non-native lady beetle species.  Introductions of non-

native species have been corelated with decreases in numbers of native lady beetles 

(Elliot et al. 1996, Brown and Miller 1998, Colunga-Garcia and Gage 1998, Michaud 

2002, Turnock et al. 2003) and in other non-native lady beetles (Brown 2003).  In 

addition to outcompeting other lady beetles for food items (Michaud 2002), non-native 

species may also prey upon other aphidophagous insects (Dixon 2000). 

 The multicolored Asian lady beetle, Harmonia axyridis (Pallas), is probably the 

most well known example of an introduced biological control agent arguably “gone bad.” 

This species has been intentionally released in North America on a number of occasions 

(Hodek and Honek 1996).  Harmonia axyridis is native to Asia, with its distribution 
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being delineated in the east by the Pacifi c Coast, in the west by the Altai Mountains, in 

the north by southern Siberia, and in the south by southern China (Korschefsky 1932, 

Dobzhansky 1933, Chapin 1965, Kuznetsov 1997).  Individuals from Japan and/or 

Russia were released in California (1916, 1964, 1965), Washington (1978 to 1982), Nova 

Scotia (1981), and in Connecticut, Delaware, Georgia, Louisiana, Maine, Maryland, 

Mississippi, Ohio, Pennsylvania, and Washington D.C. (1978 to 1981) (Gordon 1985).  

There was no known record of temporary or permanent population establishment until 

1988, when the fi rst established population of H. axyridis was documented (Chapin and 

Brou 1991, Tedders and Schaefer 1994).  Despite numerous intentional releases, it has 

been suggested that the current North American H. axyridis population originated from 

an unintentional introduction, likely at a seaport (Day et al. 1994), and radiated from one 

source population (Krafsur et al. 1997). Whatever its true origin was, H. axyridis quickly 

spread across North America and now occurs throughout much of the continental United 

States (Koch 2003).  

 Harmonia axyridis has proven to be successful in the control of pest species, such 

as aphids, on red pines, pecan, apple, citrus, soybean, sweet corn, cotton, tobacco, and 

winter wheat (Koch 2003).  Cultures are relatively easy to rear in captivity (Matsuka and 

Niijima 1985); and until recently, H. axyridis could be easily obtained from commercial 

rearing facilities (Heimpel and Lundgren 2000).  However, as concerns mount that 

H. axyridis may be becoming a signifi cant pest species to non-target organisms, their 

availability has decreased (Koch 2003).  

 Introductions of H. axyridis have caused the displacement of indigenous lady 

beetles (Elliot et al. 1996, Brown and Miller 1998, Colunga-Garcia and Gage 1998, 
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Michaud 2002, Turnock et al. 2003) and a decrease in other non-native lady beetles 

(Brown 2003).  In addition to outcompeting other lady beetles for food items (Michaud 

2002), H. axyridis may also prey upon other aphidophagous insects (Dixon 2000).  

Harmonia axyridis has also been shown to have a higher fecundity and fertility than other 

lady beetle species (Michaud 2002).  Harmonia axyridis appears to be a true generalist, 

consuming a variety of insect species (Nakata 1995, Takizawa et al. 2000), plant matter 

such as pollen and fruit (Ratcliffe 2002, Ejbich 2003), and resorting to cannibalism in 

times of need (Osawa 1989, Snyder et al. 2000, Osawa 2002).

 Harmonia axyridis has become a pest to humans.  Similar to most species of 

lady beetles, H. axyridis overwinters in sheltered sites.  Human dwellings serve well as 

their overwintering sites (Huelsman et al. 2002).  The odor that lady beetles emit and the 

yellowish droplets that they excrete on windowsills irritate humans.  Some humans have 

developed a form of rhinoconjunctivitis when exposed to H. axyridis.  Documentation of 

the biting of humans by H. axyridis has also been recorded (Huelsman et al. 2002).

 Harmonia axyridis is not the only alien species documented with negative 

effects where it has become established.  A Palearctic species, the seven-spotted lady 

beetle, Coccinella septempunctata L., has been established in North America since 1973 

(Angalet and Jacques 1975) and in the eastern United States since 1979 (Angalet 1979).  

Current populations were likely established by stowaways arriving to seaports or through 

intentional introductions for the control of pests in agriculture (Schaefer et al. 1987, 

Krasfur 1992); however, their exact origin is not certain (Obrycki and Kring 1998).  

 Coccinella septempunctata populations threaten native lady beetle species 

through intraguild predation and by competing for aphid prey (Ormord 1994).  The 
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decline of the native lady beetle, Coccinella novemnotata Herbst, in North America is 

correlated with the arrival of C. septempunctata (Wheeler and Hoebeke 1995).  In South 

Dakota, populations of two native lady beetles (Adalia bipunctata (L.) and Coccinella 

transversoguttata Brown) declined with the arrival of C. septempunctata (Elliot et al. 

1996).  Coccinella septempunctata has also been documented to consume larvae of the 

endangered Karner blue butterfl y (Lycaeides melissa samuelis Nabokov) (Schellhorn et 

al. 2005).

 Also a Paleartic species, Propylea quatuordecimpunctata (L.) was released in 

North America to control greenbugs (Rogers et al. 1972); however, these releases are not 

believed to have led to its establishment in North America (Day et al. 1994).  Propylea 

quatuordecimpunctata is thought to have become established in North America via ship 

traffi c on the St. Lawrence Seaway (Chantal 1972).  The fi rst established population 

was found in Quebec in 1968 (Wheeler 1990), before intentional releases for the control 

of pests in agriculture were conducted.  As a generalist predator of aphids, this species 

threatens native species through competition for prey (Gordon 1985).

Non-Native Lady Beetles in Maine: Current Status and Historical Record

 Of the 51 lady beetle species currently documented to occur in Maine (Gordon 

1985, Bourque et al. 2005), eight are non-native:  Coccinella hieroglyphica kirbyi 

Crotch, Stethorus punctum (LeConte), Stethorus punctillum (Weise), Epilachna 

varivestis Mulsant, Hippodamia variegata (Goeze), H. axyridis, C. septempunctata and 

P. quatuordecimpunctata (Gordon 1985).  Propylea quatuordecimpunctata was fi rst 

documented in Maine in 1988 in Kennebec, Penobscot, and Aroostook Counties, where 
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it is believed to have expanded its range from existing populations in Quebec (Wheeler 

1990).  Despite releases of over 80,000 C. septempunctata in Maine potato between 1964 

and 1969 (Shands et al. 1972), it is unclear if current Maine populations are a result of 

these releases or by natural movement of accidental populations (Schaefer 1987).

 Whether to determine the effectiveness of biological control or out of 

conservation concerns, it is important to understand the possible effects that alien 

introductions may be having on non-target, native species.  Alyokhin and Sewell 

(2004) evaluated lady beetle populations on potato plots on the Aroostook Research 

Farm in northern Maine from 1971 to 2001.  Until 1980, the dominant lady beetles 

species were Hippodamia tredecimpunctata (Say) and Coccinella transversoguttata 

Brown.  Once C. septempunctata became established in 1980, its numbers increased 

until it became the dominant species.  With the appearance of H. axyridis (1995) and 

P. quatuordecimpunctata (1996), the relative abundances of H. tredecimpunctata 

and C. transversoguttata continued to decrease.  Harmonia axyridis and P. 

quatuordecimpunctata populations increased until 2001 (the last year of the study), 

perhaps signifying a shift in dominance as the two, newly established alien species 

increased in number.  Dominance was then shared by the three alien species, with the 

two native species making up less than 15% of the lady beetle community.  Although 

Alyokhin and Sewell (2004) provided some initial insight into interactions between native 

and non-native lady beetles, their study was rather limited in scope.  Little is known about 

the effects that introduced lady beetles might be having on native lady beetle populations, 

prey populations, community structure, and ecosystem dynamics in the habitats where 

they are introduced.  
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 Evans (2004) documented abundances of a non-native lady beetle species (C. 

septempunctata), several native lady beetle species, and their aphid prey in alfalfa in 

Utah in 1992-1994 and 1997-2001.  Throughout the course of the study, aphid and 

native lady beetle abundance decreased as C. septempunctata abundance increased.  

Evans (2004) suggested that the reduction in prey density caused by the non-native lady 

beetle led to a concurrent reduction in native lady beetle abundance.  Evans (2004) then 

artifi cially enhanced natural populations of aphids in an alfalfa fi eld where a reduction 

in native species had previously coincided with an increase in non-native lady beetles.  

Native lady beetle abundance increased with increased aphid density.  Based on this 

evidence, Evans (2004) suggested that native species have retreated from alfalfa fi elds to 

other habitats in response to the depletion of their food resources by C. septempunctata, 

but returned when prey species became more abundant.  Therefore, in some cases, native 

species may still dominate in non-agricultural habitats while being replaced by non-

native lady beetle species in agricultural ecosystems.  This model of resource partitioning 

and optimal feeding is known as the “compression hypothesis” (MacArthur and Pianka 

1966, MacArthur and Wilson 1967).  To test this hypothesis, a survey of lady beetles was 

conducted in 2004 and 2005 in different habitats in Maine to determine if non-native 

lady beetle species have replaced native species in a variety of habitats.  

 Little is known about the factors that allow non-native lady beetle species to 

establish populations beside already existing native populations. To address these 

questions, an additional group of studies was conducted. 
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Chapter 2

ABUNDANCE OF NATIVE AND NON-NATIVE LADY BEETLES 

IN DIFFERENT HABITATS IN MAINE

Chapter Abstract 

 A number of studies suggest that non-native lady beetles may have replaced native 

lady beetles in some agricultural habitats.  There is relatively little information, however, 

about lady beetle species composition outside of agricultural habitats.  Evans (2004) 

suggested that native species have retreated to non-agricultural habitats in response 

to the arrival of non-native lady beetles (habitat compression hypothesis).  To test this 

hypothesis, a survey of lady beetles was conducted in 2004 and 2005 in different habitats 

in Maine.  From May to October, lady beetles were sampled in a variety of agricultural 

and non-agricultural habitats.  A total of 3,487 and 2,903 lady beetles were collected in 

2004 and 2005, respectively.  Non-native lady beetles were found in a variety of habitats, 

including the ones that would have likely served as a refuge for native species if the 

habitat compression hypothesis applied to the surveyed areas.  Native species were found 

in a higher proportion in agricultural habitats when compared to non-agricultural habitats 

and in very low numbers in all of the habitats surveyed.  Hippodamia tredecimpunctata 

tibialis and Coccinella transversoguttata, the two native species that were once dominant 

here, made up only 1.09% and 0.07% of the total lady beetles collected, respectively.  In 

this survey, evidence was detected showing that native lady beetles have retreated to non-

agricultural habitats in response to the arrival of non-native lady beetles.  
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Introduction

  Lady beetles are generally considered benefi cial insects because they feed on 

the pests of crops including aphids, scale insects, thrips, mites, immature stages of 

Coleoptera, Lepidoptera, and Hymenoptera, fungi, and weed pollen (Hodek 1973, 

Gordon 1985).  As a result, lady beetles have been intentionally introduced into new 

habitats throughout the world for the control of agricultural crop pests (Gordon 1985, 

Koch 2003, Koch and Galvan 2008).  Unintentional introductions have also occurred via 

transport as stowaways in plant exports and other cargo (Chantal 1972, Schaefer et al. 

1987, Day et al. 1994).  With the increasing concern about the effects of invasive species 

on native ecosystems, non-native lady beetles (i.e., adventive, introduced, or exotic), 

which often establish populations in geographical ranges already inhabited by one or 

more native (i.e., indigenous) or non-native lady beetle species, have been receiving 

increased scrutiny.  In addition to out-competing other lady beetles for food items 

(Michaud 2002), non-native species may also prey upon other lady beetle species (Dixon 

2000, Yasuda et al. 2004).  As a result, introductions of non-native lady beetles have been 

correlated with reductions in numbers of native lady beetles (Elliot et al. 1996, Brown 

and Miller 1998, Colunga-Garcia and Gage 1998, Michaud 2002, Brown 2003, Turnock 

et al. 2003, Alyokhin and Sewell 2004).   

 Of the 51 lady beetle species currently documented to occur in Maine (Gordon 

1985, Bourque et al. 2005), the following eight are non-native:  Coccinella hieroglyphica 

kirbyi Crotch, Stethorus punctum (LeConte), Stethorus punctillum (Weise), Epilachna 

varivestis Mulsant (Mexican bean beetle, an herbivorous pest species), Hippodamia 

variegata (Goeze), Harmonia axyridis (Pallas), Coccinella septempunctata L., and 

14



Propylea quatuordecimpuncata L. (Gordon 1985).  Relatively little is known about 

their impact on native lady beetles.  Alyokhin and Sewell (2004) evaluated lady beetle 

populations in potato plots on the Aroostook Research Farm in northern Maine from 1971 

to 2001.  They reported that until 1980, the dominant lady beetles were the two native 

species Hippodamia tredecimpunctata tibialis (Say) and Coccinella transversoguttata 

Brown, but after C. septempunctata became established in 1980, it rapidly became the 

dominant species and densities of the two native species decreased signifi cantly.  With 

the appearance of H. axyridis (1995) and P. quatuordecimpuncata (1996), the relative 

abundances of H. tredecimpunctata and C. transversoguttata continued to decrease.  

Harmonia axyridis and P. quatuordecimpunctata populations increased until 2001 

(the last year of the study), perhaps signifying a shift in dominance as the two, newly 

established non-native species increased in number.  Dominance was then shared by the 

three non-native species, with the two native species making up less than 15% of the lady 

beetle community.  Similarly, a 1998 survey in Cape Breton, Nova Scotia, found native 

lady beetle species, Coccinella trifasciata perplexa Mulsant and Adalia bipunctata (L.), 

greatly outnumbered by non-native species, C. septempunctata, P. quatuordecimpunctata, 

and H. variegata (Cormier et al. 2000).

 Evans (2004) documented abundances of a non-native lady beetle species 

(C. septempunctata), several native lady beetle species, and their prey (pea aphids, 

Acyrthosiphum pisum [Harris]) in alfalfa in Utah in 1992-1994 and 1997-2001.  

Throughout the course of the study, pea aphid and native lady beetle abundance decreased 

as C. septempunctata abundance increased.  Evans (2004) suggested that the reduction in 

prey density caused by the non-native lady beetle led to a concurrent reduction in native 
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lady beetle abundance.  Evans (2004) then artifi cially enhanced natural populations of 

pea aphids in an alfalfa fi eld where a reduction in native species had previously coincided 

with an increase in non-native lady beetles.  Native lady beetle abundance increased with 

increased pea aphid density.  Based on this evidence, Evans (2004) suggested that native 

species have retreated from alfalfa fi elds to other habitats in response to the depletion 

of their food resources by C. septempunctata, but returned when prey species became 

more abundant.  Therefore, in some cases, native species may still dominate in non-

agricultural habitats while being replaced by non-native lady beetle species in agricultural 

ecosystems.  This model of resource partitioning and optimal feeding is known as the 

“compression hypothesis” (MacArthur and Pianka 1966, MacArthur and Wilson 1967).  

To test this hypothesis, a survey of lady beetles was conducted in 2004 and 2005 in 

different habitats in Maine to determine if non-native lady beetle species have replaced 

native species in a variety of habitats.  

 When examining lady beetle populations in alfalfa micro-landscapes representing 

habitat loss, fragmentation, and isolation, Zaviezo et al. (2006) did not fi nd differences 

in where native and non-native lady beetles were found.  However, a mounting number 

of studies document greater abundances of non-native lady beetles compared to native 

lady beetles in a variety of geographic areas (Wheeler and Hoebeke 1995, Elliott et 

al. 1996, Brown and Miller 1998, Colunga-Garcia and Gage 1998, Michaud 2002, 

Turnock et al. 2003, Brown 2003, Alyokhin and Sewell 2004, Evans 2004), their focus 

almost exclusively on agricultural habitats.  Little is known about lady beetle species 

composition in other habitats.
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Materials and Methods

Study Area  

 Lady beetles were sampled in a variety of habitats (Table 2.1) at six locations 

across the state of Maine:  commercial potato farm, Fryeburg, Maine (FR) (44.0560˚N, 

70.9801˚W); Orono Land Trust Land, Orono, Maine (LT) (44.8974˚N, 68.6873˚W); 

the University of Maine’s Rogers Farm, Orono, Maine (RF) (44.9311˚N, 68.6937˚W); 

commercial potato farm currently enrolled in the Conservation Reserve Program, 

Monticello, Maine (CR) (46.2743˚N, 67.8693˚W); on rural residential property, Presque 

Isle, Maine (PI) (46.5889˚N, 68.0704˚W), and the University of Maine’s Aroostook 

Research Farm, Presque Isle, Maine (AF) (46.6528˚N, 68.0109˚W).  Habitats at each 

location were situated within close proximity to each other.  For logistical reasons, not all 

habitats were sampled during both years of the study.

Sampling Protocol  

 Determination of the best sampling method was based on information in the 

literature and validated by comparisons.  In a comparison of the success of different 

methods in sampling coccinellids in alfalfa, Stephens and Losey (2004) found that when 

yellow sticky cards were deployed for over 10 days, they exceeded visual observation 

and sweep net sampling in the number of coccinellids collected per minute effort.  In a 

two year, continuous study by Parajulee and Slosser (2003), yellow sticky cards were 

more effi cient and effective in capturing coccinellids in cotton compared to a two-cycle 

vacuum sampler.  Mensah (1997) found that of a variety of differently colored sticky 

cards, Coccinella transversalis (F.) and A. bipunctata in cotton were attracted the most 
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Habitat Locations Dominant Vegetation 

 FR LT RF CR PI AF 

Apple      Malus sp., Elytrigia repens, Taraxacum sp.

Coniferous forest     Picea sp., Pinus sp., Abies sp.

Deciduous forest      Acer sp., Betula sp.

Field  Phleum pratense, Trifolium sp., Cirsium sp.,
Vicia sp., Fragaria sp.

Grain      Hordeum sp., Avena sp.   

Mixed forest Acer sp., Abies sp., Thuja sp., Picea sp.,
Betula sp., Fagus sp.

Mixed organic crops       Solanum lycopersicon, Allium sp., Brassica
sp., Pisum sp., Phaseolus sp.

Potato    Solanum tuberosum 

Riparian  Alnus sp., Onoclea sensibilis, Cornus 
sericea, Impatiens capensis, Mentha sp.

Shrub Solidago sp., Rubus sp., Prunus sp., Rosa
sp., Cornus sericea, Alnus sp.

Table 2.1.  Locations and habitats of sampling where 5 yellow sticky cards were deployed 
throughout each sampling season for 2-week periods. 

Sampling season:  In 2004 (horizontal lines), cards were collected and replaced during 
the weeks of: 17 May, 31 May, 14 June, 28 June, 12 July, 26 July, 9 Aug., 23 Aug., 6 
Sept., 20 Sept, 4 Oct., and 18 Oct.  In 2005 (vertical lines), cards were collected and 
replaced during the weeks of:  30 May, 13 June, 27 June, 11 July, 25 July, 8 Aug., 22 Aug, 
and 5 Sept.  Boxes with horizontal and vertical lines represent habitats where 5 traps were 
deployed in both 2004 and 2005.
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to those that were yellow, suggesting that yellow light in the range of 500 nm to 580 

nm attracted these species the most because this is the range refl ected the most by green 

foliage, where prey is typically found.  Preliminary investigations determined that yellow 

sticky traps did not bias lady beetle samples compared to net sweeps, beating sheets, and 

visual observations, but were dramatically more productive and labor-effi cient (Appendix 

A).  Based on previous studies, preliminary data, and the ability to place cards at many 

locations over long periods of time, the study was limited to coccinellids collected by 

yellow sticky cards.  Cards were situated both in close proximity to the ground and to 

vegetation, as the objective was to determine which coccinellid species were associated 

with different habitat types.  Additionally, previous studies have shown that traps located 

closer to the ground are more effective in capturing coccinellids (Mensah 1997, Parajulee 

and Slosser 2003).

 Samples were collected continuously from 17 May to 18 October 2004 and 30 

May to 5 September 2005.  Five, 15.24 cm x 30.48 cm yellow sticky strips TM (Olson 

Products, Medina, Ohio) with adhesive on both sides were deployed in each habitat in 

each location.  Trap locations were determined randomly and spaced at least 50 meters 

apart within approximately 1-2 hectare (agricultural) and >2 hectare (non-agricultural) 

habitats.  The cards were hung on stakes or directly from vegetation as close to foliage as 

possible without sticking to it; thus, the height of cards varied depending on vegetation 

structure.  Cards were deployed in the same location unless changes in vegetation (i.e., 

growth, senescence) necessitated their vertical movement.  Cards were replaced every 

two weeks at approximately the same time each day, with each location visited one 

day every two weeks (ex., Rogers Farm on Tuesday, 14 June; then Tuesday, 28 June, 
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etc.).  Cards were then brought to the laboratory and stored in the refrigerator.  Captured 

lady beetles were removed from the traps and identifi ed to species (Gordon 1985).  

Identifi cations were later confi rmed by Donald Chandler (University of New Hampshire). 

Voucher specimens of each species were deposited in the Maine Forest Service Insect 

Collection in Augusta, Maine.   

Statistical Analyses  

 The main focus of this study was based upon the assumption that non-native 

species establishment affects native populations.  Therefore, analyses were limited to 

the lady beetle species with overlapping primary prey items (aphids) and three lady 

beetle species have been excluded from the analyses:  Psyllobora vigintimaculata (Say) 

(a mildew-feeder), E. varivestis (a plant-feeder), and Scymnus sp. (feeding primarily on 

scale insects).   

 The data collected throughout the season were pooled for each trap position.  For 

example, data were pooled from the 12 traps deployed throughout the 2004 season at the 

LT location in fi eld habitat in position one.  Similarly, data from the 12 traps deployed in 

fi eld habitat at the LT location in position two were pooled; and so on, for locations three, 

four, and fi ve.  Thus, there were fi ve trap positions in each habitat in each location where 

data were collected throughout each season.  

 Data normality was tested using the Wilk-Shapiro test (PROC UNIVARIATE, 

SAS Institute 2002).  Count data that were not normally distributed were transformed 

using √X+0.001 transformations (Zar 1999).  Means and standard errors reported in this 

paper were calculated from the untransformed data.  To compare abundance of native 
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and non-native lady beetles in different habitats, two-way ANOVA (PROC GLM, SAS 

Institute 2002) was used.  Analyses were conducted separately for each location during 

each year of the study.  Lady beetle origin (native or non-native) and habitat were used as 

the main effects.  Different lady beetle species were pooled together.  When an interaction 

between beetle origin and habitat was statistically signifi cant, additional paired t-tests 

(PROC TTEST, SAS Institute 2002) were conducted comparing mean numbers of native 

beetles with non-native beetles within each habitat at that location.  To determine if 

native and non-native species had similar habitat preferences, correlation analysis (PROC 

CORR, SAS Institute 2002) were used to compare their abundances in different habitats, 

where the same habitat types in different locations were considered separately.  

Results 

 A total of 3,487 lady beetles were collected in 2004 and a total of 2,903 lady 

beetles were collected in 2005.  Mean numbers of each species captured in each habitat 

in each location are provided in Appendix B.  Propylea quatuordecimpuncata, H. 

axyridis, and C. septempunctata were the most numerous non-native species.  Three 

other non-native species were also collected, but in very small numbers: Coccinella 

hieroglyphica kirbyi, E. varivestis, and H. variegata.  Lady beetles collected that were 

native to the region were P. vigintimaculata, Coleomegilla maculata lengi Timberlake, 

C. trifasciata, Hyperaspis sp., Hippodamia parenthesis (Say), H. tredecimpunctata, 

Mulsantina sp., Scymnus sp., Chilocorus sp., A. bipunctata, Anisosticta bitriangularis 

(Say), C. transversoguttata, Hippodamia convergens Guérin-Méneville, Calvia 

quatuordecimguttata (L.), and Anatis quindecimpunctata (Olivier).  
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 In both 2004 and 2005, P. quatuordecimpuncata was the most abundant species 

in fi eld, potato, and mixed organic habitats; the mildew-feeding P.  vigintimaculata in 

coniferous forest, deciduous forest, and mixed forest; and H. axyridis in apple.  In grain, 

P. quatuordecimpuncata was the most abundant in Presque Isle, but C. maculata was the 

most abundant at the more southern, Orono location.  Two habitats (riparian and shrub) 

differed in 2004 to 2005.  In both of them, P. vigintimaculata was the most abundant in 

2004, but P. quatuordecimpuncata was the most abundant in 2005.

 When the data set was limited to aphidophagous species only, the totals became 

2,338 in 2004 and 2,053 in 2005.  In 2004, 66.19 ± 4.91% (mean ± standard error) of 

all aphidophagous lady beetles captured by yellow sticky traps were non-native species.  

Similarly in 2005, 67.24 ± 4.26% were non-native.  Among non-native aphidophagous 

species, P. quatuordecimpuncata was by far the most numerous lady beetle collected 

(54.75% and 57.67% of the total number of aphidophagous lady beetles collected in 

2004 and 2005, respectively), followed by H. axyridis (6.97% and 11.98%) and C. 

septempunctata (4.28% and 3.07%).  The two most abundant native aphidophagous 

lady beetles were C. maculata (22.28% in 2004 and 14.95% in 2005) and C. trifasciata 

(3.21% in 2004 and 2.68% in 2005).  

 During both years of the study, there was considerable variation in the capture 

of aphidophagous lady beetles among sampled habitats at each location (Table 2.2).  In 

2004, mixed organic crops yielded the greatest number of lady beetles (native and non-

native species combined), followed by grain and potato.  Similarly, grain and potato 

yielded the highest numbers of beetles in 2005.  In both 2004 and 2005, the fewest 

lady beetles were collected in coniferous forest, mixed forest, and deciduous forest.   
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Table 2.2.  Mean (± standard error) number of aphidophagous lady beetles collected 
by yellow sticky cards (N = 5) throughout the sampling season in each habitat at each 
location in 2004 and 2005.  

2004         Native   Non-Native        Total       
Location     Habitat  Mean    SE  Mean    SE  Mean       SE       
CR coniferous forest 1.20 0.8000  0.00 0.0000  1.20 0.8000 
 field   2.20 1.1136  2.40 1.9391  4.60 2.9933 
 mixed forest  0.60 0.2449  1.00 1.0000  1.60 1.1225 
 riparian  1.80 1.1136  6.80 2.8879  8.60 3.0100 
 shrub   2.20 1.2410  4.20 1.2806  6.40 1.6613 
LT coniferous forest 0.20 0.2000  0.00 0.0000  0.20 0.2000 
 deciduous forest 0.40 0.2449  0.60 0.4000  1.00 0.4472 
 field   11.00 0.4472  35.80 3.3377  46.80 3.0067 
 mixed forest  0.40 0.4000  0.40 0.2449  0.80 0.3742 
 riparian  0.40 0.4000  5.00 2.5495  5.40 2.9428 
 shrub   4.80 1.1136  14.20 6.6963  19.00 6.8920 
AF deciduous forest 1.20 0.4899  9.00 4.0620  10.20 4.1881 
 field   1.00 0.0000  11.00 1.0000  12.00 1.0000 
 grain   3.80 0.8602  16.60 3.1241  20.40 3.6959 
 mixed forest  0.40 0.4000  2.60 1.4000  3.00 1.4142 
 potato   2.20 0.7348  20.00 4.6043  22.20 5.0339 
 riparian  2.20 0.6633  8.60 2.5020  10.80 2.8178 
 shrub   0.00 0.0000  9.20 1.8276  9.20 1.8276 
RF apple   3.80 1.4967  11.80 0.9695  15.60 1.9131 
 field   11.80 2.5179  17.60 2.9428  29.40 2.2935 
 grain   31.80 7.6118  40.20 13.1583 72.00 20.7340 
 mixed forest  6.40 1.7205  9.00 3.9370  15.40 5.0060 
 mixed organic crops 27.80 5.4900  48.60 13.5300 76.40 16.7946 
 potato   22.60 4.4788  41.60 11.1203 64.20 15.3668 
 riparian  0.40 0.2449  4.60 1.7205  5.00 1.7607  
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Table 2.2 (Continued).  Mean (± standard error) number of aphidophagous lady beetles 
collected by yellow sticky cards (N = 5) throughout the sampling season in each habitat 
at each location in 2004 and 2005.  

2005        Native   Non-Native        Total 
Location   Habitat  Mean   SE  Mean    SE  Mean    SE 
FR mixed forest  1.60 0.6000  4.40 1.8601  6.00 2.1679 
 potato   2.80 0.9165  11.40 1.8055  14.20 1.9339 
 shrub   1.60 0.4000  6.60 2.4617  8.20 2.2226 
LT coniferous forest 0.60 0.2449  0.40 0.2449  1.00 0.4472 
 deciduous forest 0.00 0.0000  0.20 0.2000  0.20 0.2000 
 field   4.20 0.8602  21.20 5.7393  25.40 5.5642 
 mixed forest  1.00 0.6324  0.20 0.2000  1.20 0.5831 
 riparian  1.20 0.2000  7.00 1.8974  8.20 1.8276 
 shrub   4.80 3.1528  11.60 3.1241  16.40 2.2935 
AF deciduous forest 0.80 0.2000  16.40 5.1730  17.20 5.2288 
 field   3.20 0.9165  10.20 2.0833  13.40 2.2494 
 grain   4.20 0.7348  15.60 3.9699  19.80 4.5541 
 mixed forest  0.40 0.2449  0.60 0.6000  1.00 0.5477 
 potato   2.00 0.8367  18.60 2.8740  20.60 2.7857 
 riparian  3.60 1.1662  2.60 1.2083  6.20 1.9339 
 shrub   2.40 1.6613  33.40 15.7658 35.80 15.3375 
PI field   1.00 0.3162  1.80 0.6633  2.80 0.7348 
 mixed forest  0.40 0.2449  1.40 0.6782  1.80 0.4899 
RF apple   3.40 0.7483  5.20 1.4967  8.60 2.1354 
 grain   40.00 11.9541 48.80 7.9272  88.80 14.5959 
 mixed forest  1.80 0.5831  13.00 2.7019  14.80 2.3108 
 potato   27.20 7.0951  60.60 15.2302 87.80 21.3762 
 riparian  2.00 0.8944  9.20 2.6533  11.20 2.5377 
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Statistically, the differences among the habitats were signifi cant on the farm enrolled 

in the Conservation Reserve Program in Monticello in 2004 (ANOVA, DF = 4, 40, F = 

2.89, p = 0.0342) and on the commercial potato farm in Fryeburg in 2005 (ANOVA, DF 

= 2, 24, F = 3.82, p = 0.0363).  In all other cases, the difference was highly signifi cant 

(ANOVA, p < 0.0001).  The only exception was the rural residential property in Presque 

Isle sampled in 2005, where the difference between the two sampled habitats (fi eld and 

mixed forest) was not signifi cant (ANOVA, DF = 1, 16, F = 1.51, p = 0.2375).

 Non-native lady beetles were generally more abundant during both years at each 

location (Figure 2.1, Table 2.3) with the exception of two locations where there was no 

Figure 2.1  Abundance per trap (all collection dates pooled) of non-native and native lady 
beetles at different locations.
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difference (the farm enrolled in the Conservation Reserve Program in Monticello in 2004 

and on the rural residential property in Presque Isle in 2005).  There were signifi cant 

interactions between lady beetle origin and the habitat where they were captured at Orono 

Land Trust both in 2004 (ANOVA, DF = 5, 48, F = 3.95, p = 0.0044) and in 2005 

(ANOVA, DF = 5, 48, F = 4.86, p = 0.0011) and at the Aroostook Research Farm in 2005 

(ANOVA, DF = 6, 56, F = 5.33, p = 0.0002).  Non-native lady beetles were more 

abundant in some of the habitats at these locations, and there was no signifi cant 

difference between native and non-native species in the other habitats (Table 2.4).  Never 

were the native species statistically more abundant than non-native species (Table 2.4).   

In the other locations sampled during the two years of the study, non-native species were 

more abundant than native species regardless of habitat, as evidenced by statistically 

Table 2.3.  Results of ANOVA comparing mean number of native and non-native 
aphidophagous lady beetles captured at the surveyed Maine locations.  

Year Location   DF     F       p 

2004 LT   1, 48  15.45  0.0003  

2004 RF  1, 56  5.04  0.0287  

2004 CR  1, 40  0.31  0.5820  

2004 AF  1, 56  106.48  <0.0001 

2005 FR  1, 24  14.98  0.0007  

2005 LT  1, 48  16.00  0.0002  

2005 RF  1, 40  15.01  0.0004  

2005 PI  1, 16  0.12  0.7388  

2005 AF  1, 56  45.44  <0.0001 
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Table 2.4.  Mean (± standard error) number of native and non-native aphidophagous lady 
beetles captured in different habitats at locations where the interaction between beetle 
origin and habitat was signifi cant.  t- and p-values are for the follow-up paired t-tests.  

27

Location       Habitat     Origin   Mean     SE     t     p 
LT (2004) coniferous forest native  0.20  0.2000  1.00 0.3739 
     non-native 0.00  0.0000  
  deciduous forest native   0.40  0.2449  0.22 0.8362 
     non-native 0.60  0.4000  
  field   native  11.00  0.4472  8.01 0.0013 
     non-native 35.80  3.3377  
  mixed forest  native  0.40  0.4000  0.26 0.8099 
     non-native 0.40  0.2449  
  riparian  native  0.40  0.4000  6.70 0.0026 
     non-native 5.00  2.5495  
  shrub   native  4.80  1.1136  0.99 0.3770 
     non-native 14.20  6.6963  
LT (2005) coniferous forest native  0.60  0.2449  1.00 0.3739 
     non-native 0.40  0.2449  
  deciduous forest native  0.00  0.0000  1.00 0.3739 
     non-native 0.20  0.2000  
  field   native  4.20  0.8602  3.67 0.0214 
     non-native 21.20  5.7393  
  mixed forest  native  1.00  0.6324  0.86 0.4388 
     non-native 0.20  0.2000  
  riparian  native  1.20  0.2000  3.95 0.0168 
     non-native 7.00  1.8974  
  shrub   native  4.80  3.1528  1.37 0.2417 
     non-native 11.60  3.1241  
AF (2005) field   native  3.20  0.9165  3.24 0.0315 
     non-native 10.20  2.0833  
  deciduous forest native  0.80  0.2000  4.40 0.0117 
     non-native 16.40  5.1730  
  grain   native   4.20  0.7348  3.30 0.0301 
     non-native 15.60  3.9699  
  mixed forest  native  0.40  0.2449  0.10 0.9273 
     non-native 0.60  0.6000  
  potato   native  2.00  0.8367  5.32 0.0060 
     non-native 18.60  2.8740  
  riparian  native   3.60  1.1662  1.01 0.3688 
     non-native 2.60  1.2083  
  shrub   native  2.40  1.6613  2.65 0.0571 
     non-native 33.40  15.7658 



insignifi cant interaction terms (ANOVA, p > 0.05).  There was a strong positive 

correlation between the abundance of non-native and native lady beetles (Figure 2.2) in 

2004 (r = 0.7113, p < 0.0001) and 2005 (r = 0.5953, p < 0.0001); where non-native 

abundance was high, so was native abundance.

Discussion

 Following their establishment in North America, non-native lady beetles now 

comprise a considerable proportion of the total lady beetle community in agricultural 

habitats (Wheeler and Hoebeke 1995, Elliott et al. 1996, Brown and Miller 1998, 

Colunga-Garcia and Gage 1998, Michaud 2002, Turnock et al. 2003, Brown 2003, 

Alyokhin and Sewell 2004).  This survey indicates that a similar situation exists in other 

types of habitats as well, at least in the examined areas of Maine.  Despite considerable 

variation in the number of lady beetles belonging to different species and collected in 

different habitats and locations, all surveyed communities of aphidophagous lady beetles 

had a large proportion of non-native species.  

 Based on the results of the correlation analyses, both native and non-native 

species appeared to prefer living in the same areas, suggesting that their abundances are 

strongly infl uenced by prey abundance (Kajita et al. 2000).  This is likely to intensify 

competition for food and other resources, as well as intraguild predation.  Competitive 

interactions between native and non-native species are asymmetric for some species, with 

the former at a competitive disadvantage compared to the latter (Michaud 2002, Yasuda et 

al. 2004).   Therefore, competitive displacement of native lady beetles is a likely outcome 

of the establishment of non-native lady beetles in an area.   Indeed, a number of studies 
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Figure 2.2.  Abundance per trap (all collection dates pooled) of non-native and native 
lady beetles in 2004 and 2005.  
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2005  (r = 0.5953, p < 0.0001)
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that analyzed multi-year time series data on relative abundance of native and non-native 

lady beetles generally confi rmed a decrease in the proportion of native beetles following 

the arrival of non-native species (Elliott et al. 1996, Brown and Miller 1998, Turnock et 

al. 2003, Evans 2000, 2004, Alyokhin and Sewell 2004).

 Lady beetle densities were generally lower in non-agricultural habitats surveyed 

compared to agricultural habitats (Table 2.2).  Furthermore, there was some indication 

that their abundance in non-agricultural habitats was in some cases infl uenced by 

proximity to agricultural habitats.  For example, lady beetle mean abundance (Table 2.2) 

in mixed forest was 0.80 (2004) and 1.2 (2005) at Orono Land Trust, where there was no 

agriculture, but 15.40 (2004) and 14.80 (2005) at Rogers Farm.  

 There was no evidence that native lady beetles have retreated to and remain 

dominant in non-agricultural habitats in response to the arrival of non-native lady 

beetles in agricultural habitats.  Native lady beetle captures were never greater than 

non-native lady beetle captures in any habitat, regardless of the location or proximity 

to agriculture.  This is inconsistent with fi ndings by Evans (2000, 2004), who observed 

that although native lady beetles declined dramatically in Utah alfalfa fi elds following 

the establishment of C. septempunctata, they still dominated in the native habitats.  For 

example, on native riparian vegetation and adjacent sagebrush, C. septempunctata 

accounted for only 3% of adult lady beetles (Evans 2000).  It is possible that differences 

in landscape and habitat structure made non-agricultural habitats in Maine more prone 

to invasion than non-agricultural habitats in Utah.  Alternatively, it is possible that P. 

quatuordecimpuncata and H. axyridis, which were the dominant species in this survey, 

but absent in the study by Evans (2000, 2004), are more invasive than C. septempunctata.  
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Indeed, Brown and Miller (1998) and Alyokhin and Sewell (2004) reported replacement 

of C. septempunctata by the more recently arrived H. axyridis.  Also, biological invasion 

is a dynamic and long-term process (Williamson 1996), so that non-native lady beetles in 

Utah might not have yet spread to more marginal habitats at the time of surveys (Evans 

2000, Evans 2004).

 The considerable presence of non-native lady beetles in non-agricultural habitats 

may be of substantial conservation concern.  Non-native lady beetles may replace native 

species, thus decreasing diversity and altering system dynamics.  The replacement of 

native species with non-native species may alter predator-prey interactions, as non-native 

species may or may not exhibit the same prey preferences.  Additionally, non-native lady 

beetles may prey on species of ecological concern.  For example, C. septempunctata has 

been documented to consume larvae of the endangered Karner blue butterfl y (Lycaeides 

melissa samuelis Nabokov) (Schellhorn et al. 2005).

 The exact ecological ramifi cations of the establishment of non-native lady beetles 

still remain to be determined.  Many studies to-date, including this study, focus primarily 

on comparisons of numbers.  This provides valuable, but somewhat limited, information.  

For example, the ecological role of an individual H. axyridis may not equal that of an 

individual H. convergens.  Therefore, comparisons of numbers alone are not suffi cient in 

fully assessing the effects of non-native species introductions on native communities.

There was no evidence to support the “compression hypothesis” (MacArthur and Pianka 

1966, MacArthur and Wilson 1967), which in this case, would have predicted that 

native lady beetles have retreated to and remain dominant in non-agricultural habitats 

in response to the arrival of non-native lady beetles in agricultural habitats.  This survey 
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indicates that non-native lady beetles now comprise a considerable proportion of the total 

lady beetle community in both agricultural and non-agricultural habitats in the examined 

areas of Maine.  Because naturally occurring, native lady beetles are an important 

component of biological control programs (Obrycki and Kring 1998), it is essential to 

understand their interactions with potential biological control organisms, native or non-

native to the area of release.
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Chapter 3

DIFFERENTIAL CONSUMPTION OF FOUR APHID SPECIES 

BY FOUR LADY BEETLE SPECIES

Chapter Abstract 

 Consumption by one native (Coccinella trifasciata) and three non-native 

(Coccinella septempunctata, Harmonia axyridis, Propylea quatuordecimpunctata) 

lady beetle species were compared when paired with four different aphid species 

(Macrosiphum albifrons, Macrosiphum euphorbiae, Macrosiphum pseudorosae, and 

Myzus persicae) in the laboratory.  In the fi eld, the same lady beetle species were 

documented with and without aphids on host vegetation, Lupinus polyphyllus, Solanum 

tuberosum, and Rosa multifl ora. In the laboratory, H. axyridis generally consumed the 

most aphid nymphs and adults, while P. quatuordecimpunctata consumed the fewest.  

The exception to this was P. quatuordecimpunctata, which consumed a greater number 

of M. albifrons nymphs, and C. trifasciata, which consumed a greater number of M. 

albifrons nymphs and adults, compared to the other two beetle species.  Lady beetles 

generally consumed fewer M. albifrons compared with the other three aphid species.  In 

the fi eld, P. quatuordecimpunctata was the most abundant lady beetle found on lupine 

and potatoes.
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Introduction

 Lady beetles are known to be voracious predators of plant pests, such as aphids 

(Hodek 1973, Gordon 1985).  It is often assumed that aphidophagous lady beetles are 

highly polyphagous, consuming most (if not all) aphid species that they encounter 

(Pedigo and Rice 2006).  However, there is evidence that not every aphid species is 

equally suitable for every lady beetle species (Obrycki and Orr 1990, Phoofolo and 

Obrycki 1997, Kalushkov 1998, Michaud 2000, Kalushkov and Hodek 2004, Mignault 

et al. 2006).  For example, Michaud (2000) conducted choice tests with seven lady beetle 

species and two aphid species, Toxoptera citricida (Kirkaldy) and Aphis spiraecola Patch.   

Although all lady beetles tested consumed both aphid species, four species (Coccinella 

septempunctata L., Coleomegilla maculata fuscilabris (Mulsant), Coelophora inaequalis 

F., and Olla v-nigrum Mulsant) were not able to complete their developmental cycle 

with either aphid species.  Depending on the aphid species consumed and the addition of 

supplements (pollen) to the diet, the other three species (Hippodamia convergens Guerin, 

Cycloneda sanguinea (L.), and Harmonia axyridis Pallas), varied considerably in the 

number of eggs laid, egg viability, larval development time, and adult weight.   

 Lady beetles are commonly released to combat a diverse range of pests (Gordon 

1985, Koch 2003), despite the fact that little is known about specifi c prey preferences of 

different species.  A better understanding of prey range for aphidophagous lady beetles 

is important for two reasons.  First, the replacement of native lady beetle species by 

non-native species with different prey preferences may favor some aphid species over 

others, thus leading to changes in the aphid community.  Secondly, populations of lady 

beetles are intentionally increased in farms and home gardens to battle aphid infestations.  
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The success of such pest control measures depends upon the willingness of the lured 

or released lady beetles to consume the aphid pest in question.   Despite sharing the 

same habitats, lady beetle species may differ in their consumption of aphid prey.  In the 

laboratory, one native and three non-native lady beetle species were provided aphid prey 

of four different species and consumption recorded.  To determine if potential differences 

documented in the laboratory were refl ected in the fi eld, lady beetle species were also 

documented with and without aphids in the fi eld.

Materials and Methods

Study Species 

 The four lady beetle species chosen for this study are aphidophagous (Gordon 

1985) and abundant in Maine.  The native lady beetle species used was Coccinella 

trifasciata perplexa Mulsant, which is native from Labrador south to New Jersey and 

west to California and Alaska (Gordon 1985).  The non-native lady beetle species used 

were C. septempunctata, H. axyridis, and Propylea quatuordecimpunctata (L.).  These 

three species are Palearctic in origin and were both intentionally and inadvertently 

introduced in North America.   Coccinella septempunctata has been established in 

North America since 1973 (Angalet and Jacques 1975), H. axyridis since 1988 (Chapin 

and Brou 1991, Tedders and Schaefer 1994), and P. quatuordecimpuncata since 1968 

(Wheeler 1990).  

 Four aphid species were chosen to serve as the prey for the lady beetle species.  

The potato aphid, Macrosiphum euphorbiae (Thomas), feeds on over 200 plant species 

(Blackman and Eastop 1984).  The green peach aphid, Myzus persicae (Sulzer), feeds on 
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over 40 different plant families (Blackman and Eastop 1984).  Hosts of the rose aphid, 

Macrosiphum pseudorosae (Patch), include the genus Rosa and a variety of herbaceous 

plants (Foottit and Maw 1997).  The lupine aphid, Macrosiphum albifrons Essig, is a 

specialist, feeding only on plants in the genus Lupinus (Blackman and Eastop 1984).  

While M. persicae is believed to be Palearctic in origin (Blackman and Eastop 1984); the 

other three aphid species are Nearctic (Stroyan 1981, Blackman and Eastop 1984).

Laboratory Trials  

 Lady beetles were collected from the fi eld 48-72 hours before test initiation and 

provided with water, but no food, for 48 hours before test initiation.  Lady beetles were 

collected from a variety of locations in Orono, Maine (44.8835° N, 68.6721° W), that 

included mixed shrub (Solidago sp., Rubus sp., Prunus sp., Rosa sp., Cornus sericea, 

Alnus sp.), apple (Malus sp.), grain (Hordeum sp., Avena sp.), mixed organic crops 

(Solanum lycopersicon, Allium sp., Brassica sp., Pisum sp., Phaseolus sp.) and fi eld 

(Phleum pratense, Trifolium sp., Cirsium sp., Vicia sp., Fragaria sp.).  

 Potato aphids and green peach aphids were obtained from colonies maintained in 

the laboratory.  The colonies were originally founded by aphids collected from potato, 

Solanum tuberosum (Family: Solanaceae), in Presque Isle, Maine, and then maintained 

for at least 20 generations on excised potato foliage in the laboratory.  Rose and lupine 

aphids were collected in the fi eld from host vegetation (multi-fl ora rose, Rosa multifl ora 

(Family: Rosaceae), and lupine, Lupinus polyphyllus (Family: Fabaceae), respectively), 

and then maintained in the laboratory on excised host vegetation for up to three days 

before use in trials.    
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 In the beginning of each experiment, ten aphids belonging to the same species 

were placed using a paintbrush on an excised leafl et held within a 100 x 15 mm 

polystyrene Petri dish.  Leaves used in trials were of the host plants from which aphids 

were collected in the fi eld (see above).  In each 24-hour trial, a single lady beetle 

previously housed in a separate Petri dish was added to the Petri dish containing the 

aphids by quickly exchanging lids between the two Petri dishes when the lady beetle was 

on the lid.  After 24 hours, the number of aphids surviving was recorded.  The experiment 

was conducted separately with adult wingless aphids and with 1st-2nd instar aphid 

nymphs.  Sixty trials were conducted with each lady beetle species/aphid species pairing:  

30 replicates with adult aphids and 30 replicates with the nymphs.  

 Lady beetles, aphid colonies, and test dishes were housed in Percival I-33VL 

Intellus environmental chambers at 16 (light):8 (dark) hour photoperiod and 20°C.  

Trials with potato and lupine aphids were conducted in 2005, from June 16 to August 

12 and from June 2 to August 12, respectively.  Trials with green peach and rose aphids 

were conducted in 2006, from 24 May to 16 August and from 10 August to 24 August, 

respectively.  

Field Observations

 In the fi eld, lupine, potato, and multi-fl ora rose were observed for 30 minutes 

in various locations in Orono, ME (44.8974˚N, 68.6873˚W).  The number of lady 

beetles on host vegetation or in contact with lupine, potato, or rose aphids was recorded.  

Observations were made between 10:00 am and 2:00 pm in areas approximately 0.1 

hectare in size where the vegetation of interest was dominant (≥ 50%).  Forty observation 
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trials were conducted for each of the three species.  Green peach aphids were not found 

in the fi eld in numbers suffi cient to conduct observations.  Lupine aphid colonies were 

observed from 2 June to 12 July 2005, potato aphid colonies were observed from 17 June  

to 30 July 2005, and multi-fl ora rose aphid colonies were observed for rose aphid from 20 

June to 24 August 2006.  

Statistical Analyses

 Normality of laboratory-generated data was tested using the Wilk-Shapiro test 

(PROC UNIVARIATE, SAS Institute Inc. 2002).  The data were transformed using rank 

transformations (Conover and Iman 1989).   Means and standard errors reported in this 

paper were calculated from the untransformed data.  Differences between lady beetle 

species were analyzed separately for each aphid species using one-way ANOVA followed 

by Tukey’s multiple comparison tests (PROC GLM, SAS Institute Inc. 2002).  Analyses 

were conducted separately for aphid nymphs and adults.  

 Poisson regression (PROC GENMOD, SAS Institute Inc. 2002, SAS Institute Inc. 

2005) was used to analyze lady beetle count data generated during fi eld observations.  

Each plant species observed was analyzed separately, with the number of lady beetles as 

the response variable and lady beetle species and aphid presence/absence as the predictor 

variables.  Overdispersion for lupine and rose aphid was corrected using a multiplicative 

overdispersion factor (Pearson chi-square divided by degrees of freedom) (Cox 1983, 

Allison 1999, SAS Institute Inc. 2005).
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Results

Laboratory Trials 

  There were always signifi cant differences in the numbers of aphids consumed by 

different lady beetle species (Table 3.1).  Harmonia axyridis consumed the most nymphs 

and adults of the green peach aphid, the potato aphid, and the rose aphid compared with 

the other three beetle species, while P. quatuordecimpunctata consumed the fewest adults 

of these three aphid species and the fewest nymphs of the green peach aphid and the 

potato aphid.  Coccinella septempunctata consumed the lowest numbers of rose aphid 

nymphs compared with the other three beetle species.  

 Lady beetles generally consumed fewer lupine aphids (Table 3.1) compared 

with the other three aphid species.  Coccinella trifasciata and P. quatuordecimpunctata 

consumed a greater number of lupine aphid nymphs compared with the other two beetle 

species; C. trifasciata also consumed the greatest number of lupine aphid adults.  

Field Observations  

 All four lady beetle species were found on potatoes, while only H. axyridis 

and P. quatuordecimpunctata were found on roses and only C. trifasciata and P. 

quatuordecimpunctata were found on lupines.  There were signifi cant differences 

in mean numbers of lady beetle species (Table 3.2) documented in two of the 

three vegetation types observed.  The most abundant species in potatoes was P. 

quatuordecimpunctata, followed by C. septempunctata (X2= 18.17, p < 0.0001), H. 

axyridis (X2 = 22.02, p < 0.0001), and C. trifasciata (X2 = 18.84, p < 0.0001).  On lupines, 

P. quatuordecimpunctata was more abundant than C. trifasciata (X2 = 5.52, p = 0.0188).  

39



Ta
bl

e 
3.

1.
  M

ea
n 

(±
 s

ta
nd

ar
d 

er
ro

r)
 a

ph
id

 c
on

su
m

pt
io

n 
by

 n
ym

ph
s 

an
d 

ad
ul

ts
 o

f 
la

dy
 b

ee
tle

s 
(N

 =
 3

0)
.  

W
ith

in
 e

ac
h 

co
lu

m
n,

 m
ea

ns
 

w
ith

 th
e 

sa
m

e 
le

tte
r 

ar
e 

no
t s

ig
ni
fi c

an
tly

 d
if

fe
re

nt
.

La
dy

 B
ee

tle
 S

pe
ci

es
M

ea
n

8.
70

b
8.

90
b

7.
13

b
7.

57
b

7.
33

b
7.

97
b

0.
90

a
0.

33
a

SE
0.

26
33

0.
27

69
0.

37
37

0.
33

80
0.

22
66

0.
23

72
0.

19
39

0.
09

98
M

ea
n

8.
47

b
8.

73
b

6.
97

b
7.

60
b

6.
37

c
6.

77
b

0.
00

b
0.

00
b

SE
0.

18
40

0.
19

14
0.

42
75

0.
35

75
0.

25
59

0.
23

33
0.

00
00

0.
00

00
M

ea
n

9.
73

a
9.

93
a

9.
67

a
9.

17
a

9.
53

a
9.

63
a

0.
10

b
0.

03
b

SE
0.

20
30

0.
04

63
0.

11
07

0.
20

39
0.

12
44

0.
10

15
0.

05
57

0.
03

33
M

ea
n

8.
47

b
6.

73
c

8.
00

b
5.

33
c

8.
13

b
6.

03
b

0.
63

a
0.

10
b

SE
0.

22
35

0.
24

88
0.

34
91

0.
42

71
0.

27
43

0.
24

20
0.

16
94

0.
05

57
F 3

,1
16

6.
27

37
.3

7
11

.9
8

20
.6

7
32

.5
9

48
.4

7
11

.8
6

6.
46

p-
va

lu
e

<0
.0

00
6

<0
.0

00
1

<0
.0

00
1

<0
.0

00
1

<0
.0

00
1

<0
.0

00
1

<0
.0

00
4

<0
.0

00
6

A
ph

id
 S

pe
ci

es
gr

ee
n 

pe
ac

h
po

ta
to

ro
se

lu
pi

ne
ad

ul
ts

ny
m

ph
s

ad
ul

ts
ny

m
ph

s
ad

ul
ts

ny
m

ph
s

ad
ul

ts
ny

m
ph

s

C
. t

ri
fa

sc
ia

ta

C
. s

ep
te

m
pu

nc
ta

ta

H
. a

xy
ri

di
s

P.
 q

ua
tu

or
de

ci
m

pu
nc

ta
ta

40



Ta
bl

e 
3.

2.
  M

ea
n 

(±
 s

ta
nd

ar
d 

er
ro

r)
 n

um
be

r 
of

 la
dy

 b
ee

tle
s 

do
cu

m
en

te
d 

du
ri

ng
 fi 

el
d 

ob
se

rv
at

io
ns

 o
f 

ho
st

 v
eg

et
at

io
n.

  F
or

 e
ac

h 
pl

an
t/

ap
hi

d 
sp

ec
ie

s,
 m

ea
n 

be
et

le
s 

do
cu

m
en

te
d 

w
he

re
 a

ph
id

s 
w

er
e 

pr
es

en
t o

n 
ve

ge
ta

tio
n 

ar
e 

pr
es

en
te

d 
al

on
gs

id
e 

m
ea

n 
be

et
le

s 
th

at
 w

er
e 

do
cu

m
en

te
d 

w
he

re
 a

ph
id

s 
w

er
e 

ab
se

nt
.  

N
 =

 th
e 

nu
m

be
r 

of
 o

bs
er

va
tio

ns
, o

ut
 o

f 
40

, w
he

re
 a

ph
id

s 
w

er
e 

ei
th

er
 p

re
se

nt
 o

r 
ab

se
nt

.

 

La
dy

 B
ee

tle
 S

pe
ci

es
pr

es
en

t
ab

se
nt

pr
es

en
t

ab
se

nt
pr

es
en

t
ab

se
nt

N
22

18
26

14
36

4
M

ea
n

0.
05

0.
06

0
0

0.
39

0
SE

0.
04

55
0.

05
56

 
 

0.
15

05
M

ea
n

0.
36

0.
17

0
0

0
0

SE
0.

10
50

0.
09

04
 

 
M

ea
n

0.
14

0.
17

0.
81

0.
14

0
0

SE
0.

07
49

0.
09

04
0.

23
55

0.
09

71
M

ea
n

1.
36

0.
89

0.
46

0.
36

1.
25

0.
50

SE
0.

24
21

0.
19

62
0.

14
91

0.
16

93
0.

37
66

0.
28

87

Pl
an

t/A
ph

id
 S

pe
ci

es

C
. t

ri
fa

sc
ia

ta

C
. s

ep
te

m
pu

nc
ta

ta

P.
 q

ua
tu

or
de

ci
m

pu
nc

ta
ta

po
ta

to
ro

se
lu

pi
ne

H
. a

xy
ri

di
s

41



However, there was no difference in the abundance of the two species documented on 

rose (P. quatuordecimpunctata and H. axyridis).  Although mean lady beetle numbers 

were higher in six out of the eight occasions where aphids were present compared to 

absent (Table 3.2), these differences were not signifi cant.  

Discussion

 For all aphid species tested, consumption rates were different among the four 

lady beetle species.  With the exception of the lupine aphid, H. axyridis was the most 

voracious predator, while P. quatuordecimpuncata removed the least prey.  There may be 

a number of reasons for these differences.  First, consumption rate may be affected by the 

size of the beetles or the size of the prey.  P. quatuordecimpuncata is the smallest of the 

four beetle species, and may be satiated with fewer aphids compared with the other beetle 

species.  The lupine aphid is larger than the other aphid species; fewer lupine aphids 

may satiate beetles compared with other aphid species.  Consumption rate may also be 

affected by differences in handling (Pervez and Omkar 2005), nutritional suitability 

of prey (Houck 1991, Roger et al. 2001, Gagné et al. 2002), or chemical deterrence 

(Pasteels et al. 1983, Nishida and Fukami 1989). 

 Field observations generally supported laboratory trials.  Harmonia axyridis 

consumed the most rose aphids in laboratory trials and was one of two species found in 

the fi eld with rose aphids.  Coccinella trifasciata consumed the most lupine aphids in 

laboratory trials and was one of two species found in the fi eld with lupine aphids.  The 

other beetle species found with rose and lupine aphids was P. quatuordecimpunctata.   

Of the beetle species compared in the laboratory, P. quatuordecimpunctata consumed 
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the second largest number of rose and lupine aphids, although this difference was 

only statistically signifi cant for lupine nymphs.  It is also not surprising to fi nd P. 

quatuordecimpunctata in all observations because this species is probably the most 

abundant lady beetle in Maine.

 Three of the species tested in this study, H. axyridis, C. septempunctata, and P. 

quatuordecimpunctata, are not native to Maine (Gordon 1985).  Because lady beetle 

species differ in their prey consumption, the replacement of native lady beetles by non-

native lady beetles that has been reported in a number of studies (Elliot et al. 1996, 

Brown and Miller 1998, Colunga-Garcia and Gage 1998, Michaud 2002, Brown 2003, 

Turnock et al. 2003, Alyokhin and Sewell 2004) may favor some aphid species over 

others.  As a result, the composition of aphid communities in the affected area will be 

altered, which may have important ecological and economic consequences.  

 Differences between lady beetle species may put some lady beetle species at a 

competitive advantage over others by contributing to successes or failures of non-native 

species in new habitats.  For example, when compared with other coccinellid species, H. 

axyridis has been shown to have superior competitive abilities regarding its feeding rate 

(Michaud 2002), intraguild predation (Hironori and Katsuhiro 1997, Yasuda et al. 2001, 

Yasuda et al. 2004), and interactions with natural enemies (Dutcher et al. 1999, Saito 

and Bjørnson 2006).  This species has been a highly successful invader, with populations 

established worldwide outside of its native range.

 It is also interesting and important to consider the native ranges and relationships 

of species brought together from different geographic locations.  In this study, H. axyridis 

and C. septempunctata consumed the lowest numbers of lupine aphid.  Coccinella 
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trifasciata, which is native to the area, consumed the most lupine adults.  Lupine aphid 

is native to the area (Stroyan 1981).  It is known to obtain toxic compounds from its host 

plant that have been shown to cause a “narcotizing effect” on C. septempuctata (Gruppe 

and Roemer 1988).  Perhaps C. trifasciata has, over time, evolved the ability to feed in 

the presence of these compounds, while the relatively recent introduction of non-native 

lady beetles has not yet resulted in the same ability.  
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Chapter 4

COMPETITION FOR APHID PREY BETWEEN DIFFERENT LADY BEETLE 

SPECIES IN A LABORATORY ARENA

Chapter Abstract

 Direct competition for aphid prey (Homoptera: Aphididae) was evaluated between 

and among several lady beetle species (Coleoptera: Coccinellidae). The behavior of three 

native (Coccinella trifasciata, Coleomegilla maculata, Hippodamia convergens) and 

four non-native (Coccinella septempunctata, Harmonia axyridis, Hippodamia variegata, 

Propylea quatuordecimpunctata) lady beetles was observed in laboratory arenas.  The 

beetles were kept alone, paired with conspecifi cs, or paired with heterospecifi cs, and 

presented with potato aphids (Macrosiphum euphorbiae).  Harmonia axyridis had 

the highest aphid consumption, shortest prey discovery time, and generally exhibited 

the most aggression towards other species. Prey consumption by C. trifasciata and 

C. maculata depended on with which species they were paired.  There was generally 

a strong negative correlation between aphid consumption and prey discovery time, 

although for several species it was affected by interference from a heterospecifi c 

competitor.  These results suggest that asymmetric interactions between lady beetle 

species may affect their ability to co-exist in the same habitat. 
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Introduction

 Competition is often assumed when predatory species consuming the same 

prey species are found in the same area (Hairston et al. 1960).  Persistent species that 

share prey and an evolutionary history together are often considered to have achieved a 

compromise over time, allowing them to co-exist by differentially exploiting the same 

prey species (MacArthur and Levin 1964, MacArthur and Levin 1967), for example, by 

foraging at different times (Pianka 1978).  When species consuming the same prey are 

newly brought together, the ability of each to acquire the same necessary resources may 

allow their co-existence (Losey and Denno 1998, Hsu et al. 2001).  Sharing prey items, 

however, does not mean that a suffi cient share goes to each predator (Michaud 2002, 

Yasuda et al. 2004, Nunes and Hartz 2006, Blaustein and Chase 2007).  Consumption by 

a more effi cient predator may eventually result in the competitive exclusion of the less 

effi cient predator (Hsu et al. 2001, Gakkhar et al. 2007).  

 Prey preferences (generalist or specialist) are often the primary consideration 

when evaluating the potential effects of introduced organisms on species of conservation 

concern and, in case of intentionally introduced natural enemies, on target pests 

(Symondson et al. 2002).  However, it is also important to understand the allocation of 

prey going to each of the predators when considering their introduction alongside native 

or non-native competitors.  If introduced species share prey with existing species, they 

may coexist.  In this case, pest organisms would be controlled by a variety of predators, 

a favorable scenario that may result in a more comprehensive pest control program.  

Otherwise, if only one predator is responsible for controlling pest populations, they may 

reach damaging densities during periods of predator inactivity or low abundance.  When 
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considering species of conservation concern, the sharing of prey between non-native and 

native competitors may mean that non-native species introductions will not necessarily 

result in the extirpation of native species.  On the other hand, non-native species that 

monopolize prey necessary to native species may require special consideration before 

their introduction, necessitate management after their introduction, or result in a decision 

not to introduce them.

 Declines in native lady beetle abundances often coincide with the establishment 

of non-native lady beetle species (Elliot et al. 1996, Brown and Miller 1998, Colunga-

Garcia and Gage 1998, Michaud 2002, Brown 2003, Turnock et al. 2003, Alyokhin and 

Sewell 2004), both as a result of intentional (Gordon 1985, Dreistadt and Flint 1996, 

Koch 2003) and unintentional introductions (Chantal 1972, Shaefer et al. 1987, Day 

et al. 1994).  Because both native and non-native species are considered important for 

pest control (Hodek 1973, Gordon 1985), it is important to understand competitive 

interactions between co-existing species, and thus their effectiveness in controlling 

pests when found together.  To evaluate direct competition and prey sharing between 

and among lady beetle species, beetles were presented with a limited food source in 

laboratory trials and their behavior documented.  

Materials and Methods

Study Species

 Aphidophagous lady beetle species abundant in Maine were chosen for the 

present study.  Three species are native: the three-banded lady beetle Coccinella 

trifasciata perplexa Mulsant, the twelve-spotted lady beetle Coleomegilla maculata lengi 

47



Timberlake, and the convergent lady beetle Hippodamia convergens Guérin-Méneville.  

The native range of C. trifasciata is north from New Jersey to Labrador and west to 

California and Alaska (Gordon 1985).  C. maculata is native to eastern North America 

from Georgia to Ontario, and west to Texas and Minnesota (Gordon 1985).  The range 

of H. convergens extends from British Columbia and Ontario south to South and Central 

America and the Antilles (Gordon 1985).  

 The non-native lady beetles used in the present study were the seven-spotted 

lady beetle Coccinella septempunctata L., the multicolored Asian lady beetle Harmonia 

axyridis (Pallas), the variegated lady beetle Hippodamia variegata (Goeze), and the 

fourteen-spotted lady beetle Propylea quatuordecimpunctata (L.).  All four species are 

of Palearctic origin and were both inadvertently and intentionally introduced in North 

America.  Coccinella septempunctata has been established in the eastern United States 

since 1979 (Angalet 1979).  Harmonia axyridis was fi rst documented as established in 

North America in 1988 (Chapin and Brou 1991, Tedders and Schaefer 1994), and now 

occurs throughout much of the continental United States (Koch 2003).  Hippodamia 

variegata is widespread throughout northeastern North America (Gordon and Vandenberg 

1991, Wheeler 1993, Wheeler and Stoops 1996, Hoebeke and Wheeler 1996, Ellis et al. 

1999, Cormier et al. 2000).  In Maine, P. quatuordecimpunctata was fi rst documented 

in 1988 in Aroostook, Penobscot, and Kennebec Counties, where it is believed to have 

expanded its range from populations in Quebec dating to1968 (Wheeler 1990).

 The potato aphid, Macrosiphum euphorbiae (Thomas), served as the prey.  M. 

euphorbiae is common in Maine and native throughout North America (Blackman and 

Eastop 1984).  It is known to feed on over 200 plant species including potato, apple, aster, 
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and rose (Blackman and Eastop 1984) and is a common prey item for many lady beetle 

species (Shands et al. 1972, Gordon 1985, Hodek and Honěk 1996). 

Insect Origins and Maintenance

 Lady beetles were collected 48-72 hours before the initiation of each trial and 

provided with water, but no food, for 48 hours before trials began.  Beetles were collected 

in Orono, Maine (44.8835° N, 68.6721° W), from a variety of habitats:  mixed shrub 

(Solidago sp., Rubus sp., Prunus sp., Rosa sp., Cornus sericea, Alnus sp.), apple (Malus 

sp.), grain (Hordeum sp., Avena sp.), mixed organic crops (Solanum lycopersicon, 

Allium sp., Brassica sp., Pisum sp., Phaseolus sp.) and fi eld (Phleum pratense, Trifolium 

sp., Cirsium sp., Vicia sp., Fragaria sp.)  Potato aphids were obtained from a colony 

maintained in the laboratory.  The colony was originally founded by aphids collected in 

Presque Isle, Maine (46.6528˚N, 68.0109˚W), from potato (Solanum tuberosum, Family: 

Solanaceae) fi elds and then maintained on excised potato foliage in the laboratory.  Until 

used in trials, lady beetles and aphid colonies were housed separately in ventilated, 

0.95 L Ball® glass jars (Jarden Home Brands, Inc., Daleville, Indiana) held within 

Percival I-33VL Intellus environmental chambers (Percival Scientifi c, Inc., Perry, Iowa) 

at 16 (light) : 8 (dark) hour photoperiod.  The temperature was maintained at 20±1°C 

both during the photophase and scotophase.  Trials were conducted from 16 May to 8 

September 2006.
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Competition Trials with Paired Lady Beetles   

 Each trial took place in an observation arena under a clear, ventilated plastic 

container (8.9-cm diameter and 9.5-cm height), turned upside-down and placed inside 

the bottom of a Petri dish.  A cut potato leaf was placed in a small plastic vial with 

water.  Using a paintbrush, 4 adult wingless aphids were placed on the upper surface of 

the leaf.  The vial containing the vegetation and aphids was then placed in an upright 

position inside the observation arena.  Adult lady beetle(s) were transferred to a different 

observation arena by allowing each lady beetle to crawl on to the tip of a paintbrush and 

then on to the interior of the arena.  After a 10-minute period of adjustment, the cover 

holding the lady beetle(s) was switched with the cover under which the vial holding the 

leaf and aphids was housed, simultaneously exposing the lady beetle(s) to the aphids.  

Trials were conducted for 45 minutes.  Time to prey discovery (of the fi rst aphid), number 

of prey consumed by each beetle (documented to 0.25 aphid when the entire aphid was 

not consumed), and behavior (as a count of aggression delivered and received by each 

beetle in each trial) were recorded.  The following behaviors were considered aggressive:  

chasing, grasping, biting, climbing upon, and attempting to or successfully stealing prey.  

Ten trials were conducted in random order with individuals of each species and with pairs 

of all combinations of each species, including conspecifi c pairings.  

Prey Consumption and Discovery Time by Single Lady Beetles

 To serve as a comparison with the paired trials described above, aphid 

consumption and time to prey discovery was also documented in trials with single lady 

beetles. These trials were conducted following the same protocol as described above, but 
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with one individual introduced in each arena.  Ten trials were conducted with each of the 

seven lady beetle species.

Measurements of Lady Beetle Weight and Size

 Because differences in predator size have been used in some studies to explain 

differences in competition (Obrycki et al. 1998, Michaud 2002, Sato et al. 2003, Yasuda 

et al. 2004), the weight and volume of 20 lady beetles of each species were documented.  

The weight of each beetle was determined to the 0.0001 gram using an electronic Ohaus 

Adventurer Balance AR2140 (Ohaus Corp., Pine Brook, NJ).  Width, length, and height 

were measured using a ruler mounted in the eyepiece of a Stereoscopic Zoom Microscope 

SMZ800 (Nikon Instruments Inc., Melville, NY) at 10x magnifi cation.  Volume was 

estimated by multiplying width (across the pronotum, dorsal side), length (from the frons 

of the head to the end of the elytra, dorsal side), and height (the greatest height below the 

elytra, laterally).  

Statistical Analyses

 The Wilk-Shapiro test (PROC UNIVARIATE, SAS Institute, Inc. 2002) was used 

to test data normality.  Data were transformed using rank transformations (Conover and 

Iman 1981).  Untransformed data were used to calculate the means and standard errors 

reported in this paper.  

 Behavioral data were analyzed using one-way ANOVAs followed by Tukey 

mean separation tests (PROC GLM, SAS Institute, Inc. 2002).  Lady beetle species were 

used as an independent variable for each ANOVA.  Aphid consumption, prey discovery 
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time, aggression received, and aggression delivered were used as dependent variables.  

First, data were pooled from all trials conducted with a given species.  This allowed 

the determination of which species consumed the overall largest number of aphids, was 

the quickest to discover its prey, etc. Analyses were conducted separately for beetles 

held alone, beetles paired with conspecifi cs, and beetles paired with heterospecifi cs (all 

species other than the species of interest pooled together) (Table 4.1).  Secondly, the 

same dependent variables were evaluated separately for trials in which a given species 

was paired with each of the other species used in the study.  This allowed pair-wise 

comparisons between all the tested species (Table 4.2). 

 Correlation analysis (PROC CORR, SAS Institute Inc. 2002) was used to test 

pair-wise comparisons for relationships between all possible combinations of the 

following:  aphid consumption, prey discovery time, aggression delivered, and aggression 

received.  In a given pair-wise comparison, the analyses were conducted for different 

variables within each species (e.g., correlation between aphid consumption and prey 

discovery time for H. axyridis) and for all combinations of variables between the two 

paired species (e.g., correlation between aphid consumption by H. axyridis and C. 

septempunctata) or the two individuals of the same species in conspecifi c trials.  Most 

correlations between aphid consumption and prey discovery time were statistically 

signifi cant.  Therefore, for the ease of interpretation their results are reported separately 

(Table 4.3) from statistically signifi cant comparisons between all other combinations 

of variables (Table 4.4).  When considering aggression in a given set of pair-wise 

comparisons, aggression delivered by one species is equal to the aggression received by 

the other species.  Thus, the same coeffi cient is produced when correlating Species One’s 
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aphid consumption with Species One’s aggression delivered as when correlating Species 

One’s aphid consumption with Species Two’s aggression received.

 Weights and volumes of different lady beetle species were compared using one-

way ANOVA (PROC GLM, SAS Institute, Inc. 2002).  Means were separated by Tukey 

tests.  

Results

 When all trials for each species were pooled (Table 4.1), there were differences 

between species in aphid consumption, prey discovery time, and aggression delivered.  

When beetles of the same species were paired together, H. axyridis consumed a 

signifi cantly greater number of aphids than P. quatuordecimpunctata, but there were 

no statistically signifi cant differences among other species.  When paired with other 

species, H. axyridis consumed a signifi cantly greater number of aphids than H. variegata, 

P. quatuordecimpunctata, H, convergens, and C. maculata.  In single-beetle trials, 

H. axyridis consumed a signifi cantly greater number of aphids than H. variegata, P. 

quatuordecimpunctata, H. convergens, and C. trifasciata.  

 There were no differences in prey discovery time between the different species 

in trials where the beetles were kept alone (Table 4.1).  However, there were signifi cant 

differences when the beetles were paired with conspecifi cs or with other species.  When 

considering trials with conspecifi c pairings, H. axyridis had a signifi cantly shorter prey 

discovery time compared to all other species but C. septempunctata.  Similarly, H. 

axyridis had the shortest prey discovery time in pairings with other species.  However, 

this was only signifi cant in comparison with H. convergens.  With the exception of H. 
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axyridis, that exhibited a higher incidence of aggression to other species compared to the 

other species tested, there were no signifi cant differences when considering aggression.  

 When paired with different species (Table 4.2), some lady beetle species 

differed in their aphid consumption, aggression delivered, and aggression received.  

Coccinella trifasciata consumed more aphids when paired with C. maculata and H. 

convergens; and C. maculata consumed more with H. variegata and C. septempunctata. 

Harmonia axyridis delivered the most aggression towards C. trifasciata, while H. 

variegata delivered the most aggression towards H. axyridis.  Several species delivered 

a signifi cantly different amount of aggression to some species compared to others:  H. 

axyridis delivered the most aggression to C. trifasciata, C. maculata, H. convergens, and 

P. quatuordecimpunctata; while H. axyridis and P. quatuordecimpunctata delivered the 

most aggression to H. variegata. 

 In most pair-wise comparisons, there was a negative correlation between aphid 

consumption and prey discovery time (Table 4.3).  However, there were also eight pair-

wise comparisons where this relationship was either relatively weak (r < 0.6500) or not 

detected (Table 4.3):  C. maculata with C. septempunctata and H. axyridis; C. trifasciata 

with C. maculata; H. axyridis with C. trifasciata and P. quatuordecimpunctata; H. 

convergens with H. axyridis; and P. quatuordecimpunctata with C. maculata and H. 

axyridis.  

 In addition, correlation analyses revealed a number of strong relationships 

between other measured parameters (Table 4.4).  In six pair-wise comparisons, aphid 

consumption by one species was negatively correlated with aphid consumption by the 

other species confi ned in the same arena.  In fi ve comparisons aphid consumption by 
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Table 4.3.  Correlations between aphid consumption and prey discovery time for single 
and paired lady beetles in trials (N = 10).  Each row represents the relationship between 
aphid consumption and prey discovery time for the species in the left column when it was 
alone or paired with the species in the fi rst row of the table.

           
 Species   alone Ct Cm Hc Cs Ha Hv Pq 

Ct r -0.8698 -0.7745 -0.3644 -0.8675 -0.8541 -0.7642 -0.9107 -0.7571 

  p-value 0.0011 <0.0001 0.3005 0.0011 0.0017 0.0101 0.0002 0.0112 
Cm r -0.9524 -0.7942 -0.8559 -0.9011 -0.6469 -0.6235 -0.8016 -0.7745 

  p-value <0.0001 0.0061 <0.0001 0.0004 0.0432 0.0541 0.0053 0.0085 
Hc r -0.7994 -0.8708 -0.8199 -0.9091 -0.9039 -0.5518 -0.9431 -0.9184 

na
tiv

e 

  p-value 0.0055 0.0010 0.0037 <0.0001 0.0003 0.0982 <0.0001 0.0002 
Cs r -0.8420 -0.8009 -0.8193 -0.8701 -0.8735 -0.9240 -0.9066 -0.8609 

  p-value 0.0022 0.0054 0.0037 0.0011 <0.0001 0.0001 0.0003 0.0014 
Ha r -0.9389 -0.6010 -0.7980 -0.8140 -0.6836 -0.7743 -0.9708 -0.2439 

  p-value <0.0001 0.0661 0.0057 0.0042 0.0293 <0.0001 <0.0001 0.4970 
Hv r -0.9447 -0.7891 -0.8894 -0.9322 -0.7487 -0.8316 -0.8647 -0.8033 

  p-value <0.0001 0.0067 0.0006 <0.0001 0.0127 0.0029 <0.0001 0.0051 
Pq r -0.8818 -0.8734 -0.6182 -0.7900 -0.8852 -0.6361 -0.8284 -0.7502 

no
n-

na
tiv

e 

  p-value 0.0011 0.0010 0.0568 0.0065 0.0007 0.0480 0.0031 0.0001 
           
Ct = Coccinella trifasciata         

Cm = Coleomegilla maculata         

Hc = Hippodamia convergens         

Cs = Coccinella septempunctata         

Ha = Harmonia axyridis         

Hv = Hippodamia variegata         

Pq = Propylea quatuordecimpunctata 
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Table 4.4.  Additional signifi cant correlations between aphid consumption, prey discovery 
time, aggression delivered, and aggression received by lady beetles in trials (N = 10).  
Numbers (1 or 2) after species names differentiate paired beetles in pairings with the 
same species.

Correlation Between: And:     
Aphid Consumption Aphid Consumption   r p-value 
C. septempunctata C. trifasciata --- -0.9049 0.0002 
C. trifasciata H. convergens --- -0.7356 0.0127 
C. maculata H. axyridis --- -0.7098 0.0112 
C. septempunctata H. convergens --- -0.8195 0.0053 
H. axyridis H. convergens --- -0.9133 0.0003 
H. axyridis P. quatuordecimpunctata --- -0.8497 0.0020 

Aphid Consumption Prey Discovery Time   r p-value 
C. trifasciata C. septempunctata --- 0.8350 0.0017 
C. septempunctata H. convergens --- 0.7069 0.0002 
C. septempunctata C. trifasciata --- 0.7665 0.0112 
H. convergens C. septempunctata --- 0.8344 0.0022 
P. quatuordecimpunctata H. variegata --- 0.7107 0.0088 

Prey Discovery Time Prey Discovery Time   r p-value 
C. septempunctata C. trifasciata --- -0.7653 0.0085 
C. septempunctata H. convergens --- -0.8138 0.0030 
H. convergens P. quatuordecimpunctata --- -0.7001 0.0143 

Aphid Consumption Aggression Delivered by or Aggression Received by r p-value 
C. maculata C. maculata C. trifasciata 0.7994 0.0063 
H. convergens H. convergens H. axyridis 0.7327 0.0029 
C. septempunctata P. quatuordecimpunctata C. septempunctata -0.7812 0.0080 

Prey Discovery Time Aggression Delivered by or Aggression Received by r p-value 
C. maculata C. maculata C. septempunctata 0.9225 <0.0001 
C. maculata C. septempunctata C. maculata 0.8511 0.0017 
H. convergens C. maculata H. convergens 0.8370 0.0002 
C. septempunctata P. quatuordecimpunctata C. septempunctata 0.8392 0.0028 

Aggression Received Aggression Delivered by or Aggression Received by r p-value 
C. trifasciata 1 C. trifasciata 1 C. trifasciata 2 0.7003 0.0004 
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one species was positively correlated with prey discovery time by the other species.  

Also, aggressive behaviors were positively correlated with the prey discovery time 

in four of the comparisons.  In three comparisons, prey discovery time of one species 

was negatively correlated with prey discovery time of the other species. There was a 

positive correlation between aphid consumption and aggression delivered/received 

(two comparisons), between prey discovery time and aggression delivered/received 

(four comparisons), and between aggression received and aggression received/

delivered (one comparison).  In one comparison, between C. septempunctata and P. 

quatuordecimpunctata, there was a negative correlation between aphid consumption and 

aggression delivered/received.

 Coccinella septempunctata was the largest of the species tested (Table 4.5).  

Weights of other species were 74.76% (H. axyridis), 46.03% (C. trifasciata), 40.25% (C. 

Table 4.5. Mean weight and volume (± standard error)  of lady beetle species (N = 20) 
used in laboratory trials.  Means in each column with the same letter are not signifi cantly 
different.

  Measurements 
  Weight Volume 
  Mean  SE Mean  SE 

C. trifasciata 0.0104 C 0.0007 20.41 D 1.2005 
C. maculata 0.0091 C 0.0008 15.10 DE 0.8356 

na
tiv

e 

H. convergens 0.0087 C 0.0009 32.43 C 1.8409 
C. septempunctata 0.0225 A 0.0017 78.87 A 2.6835 
H. axyridis 0.0168 B 0.0015 66.30 B 2.4081 
H. variegata 0.0040 D 0.0004 8.64 E 0.5435 

no
n-

na
tiv

e 

P. quatuordecimpunctata 0.0063 DC 0.0005 12.87 E 0.8090 
 p-value <0.0001   <0.0001   
 F 38.63   280.85   
 DF 6, 133   6, 133   
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maculata), 38.65% (H. convergens), 28.02% (P. quatuordecimpunctata), and 17.83% 

(H. variegata) that of C. septempunctata.  Volumes of other species were 84.06% (H. 

axyridis), 41.12% (H. convergens), 25.87% (C. trifasciata), 19.15% (C. maculata), 

16.32% (P. quatuordecimpunctata), and 10.95% (H. variegata) that of C. septempunctata.

Discussion

 Harmonia axyridis, a non-native species, had the highest aphid consumption 

when considering trials with single individuals, conspecifi cs, and other species; the 

shortest prey discovery time in trials with conspecifi cs and with other species (Table 

4.1); and generally exhibited the most aggression towards other species (Table 4.2).  A 

superior competitive ability of invasive species to utilize resources over native species 

has been documented in numerous studies (Melgoza et al. 1990, Petren and Case 1996, 

Kupfergberg 1997, Holway 1999, Byers 2000).  These observations are also consistent 

with a number of studies that have documented the superior competitive abilities of H. 

axyridis among coccinellid species (Hironori and Katsuhiro 1997, Yasuda and Shinya 

1997, Yasuda and Ohnuma 1999, Kajita et al. 2000, Yasuda et al. 2001, Michaud 2002, 

Snyder et al. 2004, Yasuda et al. 2004).  

 Coccinella septempunctata, C. trifasciata, and C. maculata generally followed 

H. axyridis in aphid consumption.  Coccinella septempunctata and H. axyridis were also 

the heaviest and largest species among the seven species tested (Table 4.5).  Despite C. 

septempunctata’s large size and being among the species consuming the most aphids, C. 

septempunctata generally did not deliver or receive more aggression than other species.  

Larger lady beetle species have been shown to be competitively favored over smaller 
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ones (Obrycki et al. 1998, Michaud 2002, Sato et al. 2003, Yasuda et al. 2004), possibly 

because they are able to consume more because they are larger or because their size 

is intimidating to competitors. Coccinella septempunctata has also been documented 

to deter aggression by ants chemically (Tursch et al. 1971, Bhatkar 1982); chemical 

communication may, perhaps, be used by C. septempunctata to prevent aggression with 

other coccinellids.

 It is worth noting that H. axyridis, C. septempunctata, H. convergens, H. 

variegata, and P. quatuordecimpunctata showed no difference in aphid consumption and 

prey discovery time whether they were kept alone or paired with any other species tested 

in the study, including conspecifi cs (Table 4.2).  Perhaps if a given species is an effi cient 

predator that can fi nd and consume aphids quickly, its ability to acquire prey may not 

be signifi cantly hindered by the presence of other lady beetles.  Prey consumption by C. 

trifasciata and C. maculata, on the other hand, differed depending on with which species 

they were paired.

 In addition to differences that were documented in aphid consumption, prey 

discovery time, and aggression, correlations between these variables provide insight into 

competitive interactions among and between different lady beetle species.  There was 

generally a strong negative correlation between aphid consumption and prey discovery 

time, indicating that the shorter the amount of time it took to discover the fi rst aphid, 

the more aphids were consumed.  This seems intuitive; however, satiation or distraction 

by the other beetle may prevent continued prey consumption.  This relationship was 

consistent with beetles in trials alone, in trials where beetles were paired with individuals 

of their own species, and in most (34 of 42) of the trials where beetles were paired with 
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other species. In eight pairings with other species, the correlation was not documented 

or was very weak (Table 4.3), perhaps because the presence of the other beetle 

disrupted prey discovery and/or aphid consumption.  Interestingly, six of these eight 

pair-wise comparisons showed signifi cant correlations when comparing combinations 

of variables other than aphid consumption and prey discovery time (Table 4.4).  For 

example, there was no correlation between aphid consumption and prey discovery time 

when considering C. trifasciata paired with C. maculata (Table 4.3, r = -0.3644, p = 

0.3005).  However, there was a positive correlation between aphid consumption by C. 

maculata and aggression delivered by that species towards C. trifasciata (Table 4.4).  It 

is possible that these other documented correlations explain the lack of a relationship 

when considering aphid consumption and prey discovery time.  In this case, aggression 

between these two species may disrupt prey discovery behavior.

 It also is interesting to note discrepancies in the strength of the correlation 

between aphid consumption and prey discovery time when comparing lady beetles in 

trials when they were kept alone, paired with conspecifi cs, and paired with other species.  

For example, H. variegata showed a very strong correlation (Table 4.3) when alone (r 

= -0.9447, p < 0.0001), a strong correlation when paired with conspecifi cs (r = -0.8647, 

p < 0.0001), but a relatively weak correlation when paired with C. septempunctata (r = 

-0.7487, p < 0.0001).  Such a difference may indicate interference from the heterospecifi c 

competitor.  The infl uence, however, of other species did not always resulted in a 

decrease in the strength of this relationship.  For example, the relationship for C. 

septempunctata alone (r = -0.8420, p = 0.0022) or with conspecifi cs  (r = -0.8735, p < 

0.0001) was not as strong as that when it was paired with H. axyridis (r = -0.9240, p = 
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0.0001).  Similarly, the presence of conspecifi cs may stimulate prey searching; for H. 

convergens, the relationship between aphid consumption and prey discovery time was 

stronger when paired with conspecifi cs (r = -0.9091, p < 0.0001) compared to when it 

was alone (r = -0.7994, p = 0.0055).

 Additionally, in six pair-wise comparisons (Table 4.4), more aphid consumption 

by one species was correlated with less aphid consumption by the other species.  

Similarly, in three comparisons, a short prey discovery time by one species was correlated 

with a long prey discovery time by the other species.  These results imply that as prey 

are discovered and removed by a more effi cient predator, foraging time can increase, 

and expectedly, aphid consumption can decrease for its competitor.  In fi ve pairings, a 

longer prey discovery time by one species was positively correlated with greater aphid 

consumption in the other species (and vice versa).  This is also intuitive, as when an 

individual’s competitor takes a long time to fi nd prey, that leaves more prey and a greater 

likelihood of fi nding prey for that individual.  On the other hand, if an individual’s 

competitor fi nds prey quickly, there is less remaining for that individual.

 Increased aggression delivered by C. maculata and H. convergens (Table 4.4) 

was correlated with increased aphid consumption by those species in trials with C. 

trifasciata and H. axyridis, respectively.  Similarly, increased aggression delivered 

by P. quatuordecimpunctata was correlated with decreased consumption by C. 

septempunctata.  In these cases, aggression may help deter other species from consuming 

prey.  Expending time and energy on aggression may also distract the aggressor 

from foraging, thus decreasing prey consumption; however, this relationship was not 

documented in this study when considering consumption.  On the other hand, species 
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receiving aggression did show decreases in aphid consumption with increases in the 

aggression that they received.  Interestingly, in one pair-wise comparison (C. maculata 

and C. septempunctata), increased aggression by C. maculata was correlated with its own 

increased prey discovery time, suggesting that it was distracted from foraging.  On the 

other hand, in three other comparisons increases in aggression delivered were correlated 

with longer prey discovery times for the aggressor’s competitor.  In a conspecifi c 

pairing of C. trifasciata, aggression received by one conspecifi c was correlated with the 

aggression it delivered, meaning that aggressive interactions were not one-sided, but 

equally met by the other conspecifi c.

 In conclusion, interactions between different lady beetle species result in 

differential prey sharing that favors some lady beetle species over others.  Many of the 

correlations discussed above are intuitive.  However, it is important to note that they 

are not consistently strong among and within all species. This information paired with 

differences in prey consumption, prey discovery time, and aggression, demonstrate 

that there are differences between species that are important when considering the co-

existence of these species in the same location.  There was not, however, a discreet 

separation between native and non-native species.  Evidence also suggests that every 

aphid species is not equally suitable as prey for every lady beetle species (Obrycki and 

Orr 1990, Phoofolo and Obrycki 1997, Kalushkov 1998, Michaud 2000, Kalushkov 

and Hodek 2004, Mignault et al. 2006).  Thus, while these results show that there are 

differences in different lady beetle species, these differences may not be consistent when 

considering different prey species.
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 The native lady beetle species used in this study, C. maculata, C. trifasciata, 

and H. convergens, are currently numerous in Maine.  Native species, Coccinella 

transversoguttata Brown and Hippodamia tredecimpunctata tibialis (Say), that have 

experienced declines in abundance since non-native lady beetle introductions (Alyokhin 

and Sewell 2004), were excluded because they were not easily found in numbers 

suffi cient for testing.  It would be interesting and valuable to pair native species once 

numerous in Maine with both the non-native species now common and the native species 

that persist.  The persistence of native species where several non-native species are now 

common may signify that these native species possess competitive abilities better suiting 

their persistence with the non-native lady beetles used in this study and now common 

in Maine, H. axyridis, C. septempunctata, P. quatuordecimpunctata, and H. variegata.  

Finally, this study was conducted in a relatively simple setting of a laboratory arena; 

increased environmental complexity may modify competitive abilities of certain species. 
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Chapter 5

BEHAVIORAL INTERACTIONS OF NATIVE AND NON-NATIVE LADY 

BEETLES WITH APHID-TENDING ANTS IN LABORATORY ARENAS

Chapter Abstract

 Interactions between lady beetles and the European fi re ant (Myrmica rubra) 

tending potato aphids (Macrosiphum euphorbiae) were compared in the laboratory.  

Lady beetle species native to North America (Coccinella trifasciata, Coleomegilla 

maculata lengi, Hippodamia convergens) and non-native species of Palearctic origin 

(Coccinella septempunctata, Harmonia axyridis, Hippodamia variegata, Propylea 

quatuordecimpunctata) were evaluated.  Harmonia axyridis consumed a signifi cantly 

greater number of aphids compared with all other species but C. septempunctata.  Ant 

stings affected H. variegata and C. septempunctata to a greater extent than other species.  

Ants displayed a signifi cantly greater amount of aggression towards H. convergens and 

H. variegata compared with P. quatuordecimpunctata.  Propylea quatuordecimpunctata, 

C. trifasciata, and H. axyridis reacted signifi cantly less to ants compared with H. 

variegata, H. convergens, C. maculata, and C. septempunctata.  Differences in 

interactions with natural enemies may explain, in part, the successful establishment of 

some non-native coccinellids in new habitats.
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Introduction

 Some ant species tend plant-feeding insects, such as aphids, mealybugs, and 

scale insects, to exploit their sugary excrement known as “honeydew” as a food source 

(Auclair 1963, Way 1963, Buckley 1987, Völkl et al. 1999).  Tending ants may move 

aphids to shelter them from unfavorable environmental conditions and clean them of 

debris such as their own sticky excrement, accumulations of which can promote fungal 

growth (Holdobler and Wilson 1990, Gonzalez Hernandez et al. 1999a).  Ants may also 

provide protection to aphids from predators and parasites (Bartlett 1961, Way 1963, 

Buckley 1987, Vinson and Scarborough 1989, Charles 1993, Reimer et al. 1993, Jahn and 

Beardsley 1994, Gonzalez Hernandez et al. 1999a).  

  Generally considered benefi cial because they feed on plant pests (Hodek 

1973, Gordon 1985), lady beetles have been intentionally introduced to new locations 

worldwide for biological control in agricultural crops (Gordon 1985, Dreistadt and Flint 

1996, Koch 2003).  They have also been unintentionally introduced through plant exports 

and other cargo (Chantal 1972, Schaefer et al. 1987, Day et al. 1994).  Reductions in 

native lady beetle numbers have been correlated with introductions of non-native lady 

beetles (Elliot et al. 1996, Brown and Miller 1998, Colunga-Garcia and Gage 1998, 

Michaud 2002, Brown 2003, Turnock et al. 2003, Alyokhin and Sewell 2004).  It is 

believed that some non-native lady beetle species may outcompete native species for 

food (Michaud 2002).  Because many lady beetle species feed primarily on plant-feeding 

insects, such as aphids, at least during part of their life cycle (Gordon 1985, Hodek and 

Honěk 1996), their competitive abilities may be in part determined by their interactions 

with tending ant species (Bartlett 1961, Vinson and Scarborough 1989, Hanks and Sadof 
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1990, Jahn and Beardsley 1994, Sloggett et al. 1998, Sloggett and Majerus 2000).  

 Many assessments of the relationships between lady beetle species have been 

made by measuring relative abundances (Elliot et al. 1996, Brown and Miller 1998, 

Colunga-Garcia and Gage 1998, Michaud 2002, Brown 2003, Turnock et al. 2003, 

Alyokhin and Sewell 2004), intraguild predation (Takahashi 1989, Elliot et al. 1996, 

Hough-Goldstein et al. 1996, Hironori and Katsuhiro 1997, Cottrell and Yeargan 1998, 

Yasuda and Ohnuma 1999, Dixon 2000, Kajita et al. 2000, Sakuratani et al. 2000, Lynch 

et al. 2001, Yasuda et al. 2001, Michaud 2002, Brown 2003, De Clerq et al. 2003, Yasuda 

et al. 2004), and direct competition (Dixon 2000, Michaud 2002, Yasuda et al. 2004) 

between lady beetle species.  There has been little examination of indirect interactions 

that may infl uence lady beetle populations.  Although a number of studies have 

documented differences in numbers of lady beetles and/or their prey in environments with 

and without ants (Chapin 1966, Bradley 1973, Bhatkar 1982, Jiggins et al. 1993, Sloggett 

et al. 1998, Dutcher et al. 1999, Corbara et al. 1999, Sloggett et al. 1999, Sloggett and 

Majerus 2000, Kaplan and Eubanks 2002), few studies have assessed differences between 

lady beetle species in their interactions with ants that might favor the survival of one 

species over another.  Laboratory investigations were conducted with three native and 

four non-native lady beetle species presented with aphid prey that were protected by ants.  

Prey consumption and interactions with ants were evaluated to determine if different 

interactions with natural enemies may differentially affect the survival of different lady 

beetle species.
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Materials and Methods

Study Species

 Seven aphidophagous lady beetles species that are abundant in Maine were 

chosen for the present study.  Three of those are native to the state: the three-banded 

lady beetle Coccinella trifasciata perplexa Mulsant, the twelve-spotted lady beetle 

Coleomegilla maculata lengi Timberlake, and the convergent lady beetle Hippodamia 

convergens Guérin-Méneville.  Coccinella trifasciata is native from Labrador south to 

New Jersey and west to California and Alaska (Gordon 1985).  The native range of C. 

maculata is restricted to eastern North America from Ontario to Georgia, and west to 

Texas and Minnesota (Gordon 1985).  Hippodamia convergens is a widespread species, 

with its native range from British Columbia and Ontario south to South and Central 

America and the Antilles (Gordon 1985).  

 Four non-native lady beetles used in the study were the seven-spotted lady beetle 

Coccinella septempunctata L., the multicolored Asian lady beetle Harmonia axyridis 

(Pallas), the variegated lady beetle Hippodamia variegata (Goeze), and fourteen-spotted 

lady beetle Propylea quatuordecimpunctata (L.).  All four species are Palearctic in origin 

and were both intentionally and inadvertently introduced in North America.  Coccinella 

septempunctata has been established in North America since 1973 (Angalet and Jacques 

1975) and in the eastern United States since 1979 (Angalet et al. 1979).  The fi rst 

established population of H. axyridis in North America was documented 1988 (Chapin 

and Brou 1991, Tedders and Schaefer 1994) and now this species occurs throughout 

much of the continental United States (Koch 2003).  Hippodamia variegata is currently 

widespread throughout northeastern North America (Gordon and Vandenberg 1991, 
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Wheeler 1993, Wheeler and Stoops 1996, Hoebeke and Wheeler 1996, Ellis et al. 1999, 

Cormier et al. 2000).  The fi rst established population of P. quatuordecimpunctata was 

found in Quebec in 1968 (Wheeler 1990).  In Maine, it was fi rst documented in 1988 in 

Kennebec, Penobscot, and Aroostook Counties, where it is believed to have expanded its 

range from existing populations in Quebec (Wheeler 1990). 

 The European red ant, Myrmica rubra (L.) is a Palearctic species native 

to Europe and northern Asia (Elmes 1975, Collingwood 1979, Elmes et al. 1999, 

Czechowski et al. 2000).  It was fi rst documented in the United States in 1908 in Forest 

Hills, Massachusetts (Wheeler 1908) and has since been observed in the United States 

in Maine, New Hampshire, Massachusetts, Rhode Island, New York, New Jersey, 

Pennsylvania, and Washington D.C., and in Canada, in Nova Scotia, New Brunswick, 

Québec, and Ontario (Groden et al. 2005).  Myrmica rubra is known to commonly tend 

aphid colonies in its native range (Seifert 1996) and in Maine (Garnas 2005).  In Maine, 

it is highly aggressive and known to have a profound impact on insect communities, 

including decreases in native ants and increases in plant-feeding insects (Garnas 2005).  

Therefore, M. rubra was used as a model species to test the comparative ability of 

different lady beetle species to secure aphid prey in the presence of tending ants.

 The potato aphid, Macrosiphum euphorbiae (Thomas), served as the ant-tended 

prey.  Macrosiphum euphorbiae is native to North America and common in Maine 

(Blackman and Eastop 1984).  It is known to feed on over 200 varieties of plants 

including potato (Solanum sp.) (Blackman and Eastop 1984).  It is also known to be 

tended by M. rubra (Finlayson personal observation) and is a common prey item for 

many lady beetle species (Shands et al. 1972, Gordon 1985, Hodek and Honěk 1996). 
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Insect Origins and Maintenance

 Adult lady beetles were collected 48-72 hours before test initiation in Orono, 

Maine, from a variety of habitats:  mixed shrub (Solidago sp., Rubus sp., Prunus sp., 

Rosa sp., Cornus sericea, Alnus sp.), apple (Malus sp.), grain (Hordeum sp., Avena 

sp.), mixed organic crops (Solanum lycopersicon, Allium sp., Brassica sp., Pisum sp., 

Phaseolus sp.) and fi eld (Phleum pratense, Trifolium sp., Cirsium sp., Vicia sp., Fragaria 

sp.).  Captured beetles were housed in Percival I-33VL Intellus environmental chambers 

(Percival Scientifi c, Inc., Perry, Iowa) at 20°C and 16 (light) : 8 (dark) hour photoperiod 

and provided with water, but no food, for 48 hours before test initiation.  

 Ten ant nests, each containing a queen and from 300 to 500 workers, were 

collected from an area of known infestation in suburban Bar Harbor, Maine (latitude: 

44.385904, longitude: -68.209514), on 14 June 2006.  Ants were housed in the laboratory 

in plastic containers (125-cm long, 67-cm wide, 15-in cm tall).  To prevent ants from 

escaping, container walls were coated with Fluon® (ACG Chemicals Americas, Inc., 

Bayonne, New Jersey).  For shelter, each nest was provided with a potato plant (15-cm 

diameter pot) and an inverted peat pot (10-cm diameter), under which a moist sponge 

supplied a constant supply of water.  Twice a week, each nest was provided with six 

Drosophila larvae, 0.5 grams of granulated sugar, and 2.0 grams of chopped, boiled eggs.

Potato aphids were obtained from a colony maintained in the laboratory.  The colony 

was originally founded by aphids collected from potato (Solanum tuberosum, Family: 

Solanaceae) fi elds in Presque Isle, Maine, and then maintained for at least 20 generations 

on excised potato foliage in the laboratory.   The colony was housed in Percival I-33VL 

Intellus environmental chambers at 20°C and 16 (light): 8 (dark) hour photoperiod.  
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Lady Beetle Consumption of Potato Aphids

 Feeding trials were conducted to assure that the different beetle species used in 

these experiments would indeed feed on the species of aphid provided.  In each trial, a 

single lady beetle was placed in a 100 x 15 mm polystyrene Petri dish with an excised 

leaf infested with ten late-instar aphid nymphs.  Housed in a separate Petri dish, the 

lady beetle was added to the Petri dish containing the aphids by quickly exchanging lids 

between the two Petri dishes when the lady beetle was on the lid.  After 24 hours, the 

number of surviving aphids was recorded.  Five trials were conducted with each lady 

beetle species.

Ant-Aphid-Lady Beetle Interactions in Laboratory Arenas

 Twenty trials for each lady beetle species were conducted from 15 June to 6 

July 2006.  Before trials, ten adult aphids were transferred to the main stem of potato 

plants using a soft-bristled paintbrush (these plants were different than plants used for 

nesting that were already in enclosures).  Aphid numbers were counted every other 

day until reproduction was documented by the presence of nymphs.  After one week, 

aphid numbers reached at least 20 individuals per plant, and plants were introduced to 

ant enclosures in an area opposite the plant used for nesting.  Once ants were observed 

tending aphids (in contact with aphids, sometimes moving aphids, but not consuming 

aphids), a single lady beetle was introduced.  Each of the ten ant nests was used in 

random order twice with an individual of each lady beetle species.  Each trial contained 

only one beetle and individual beetles were not reused.  The lady beetle was transferred 

from the Petri dish in which it was held by allowing it to crawl upon the end of a 
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paintbrush.  It was placed on the potato plant fi ve to ten centimeters above the aphid 

colony.  Behavior of ants and lady beetles, including aphid consumption, was then 

observed and documented for 20 minutes. 

 Based on preliminary observations, interactions between lady beetles and ants 

were divided into separate aggressive and reactive behavioral elements.  The number of 

times (f, frequency)  each element occurred during each trial was recorded and used to 

calculate modifi ed aggression and reactions scores where elements were weighted based 

on energetic investment (Carlin and Holldobler 1986, Holway et al. 1998, Suarez et al. 

1999, Garnas et al. 2007).  The aggression score was used to compare differences in ant 

aggression towards different lady beetle species and calculated according to the following 

formula:  

 Aggression Score = -1*fa + 1* fb + 2* fc + 3* fd + 4* fe + 5* ff 

Where, f refers to the frequency at which a particular behavioral element was observed in 

a trial and subscript letters refer to the following behavioral elements:

  a  avoiding

  b prolonged antennation

  c opening mandibles

  d chasing

  e grasping/biting

  f stinging
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Similarly, the reaction score was used to compare lady beetle response to ant aggression 

and calculated according to the following formula:

 Reaction Score = -1*fA + 1* fB + 2* fC + 3* fD + 4* fE + 5* fF + 6* fG

Where, f refers to the number of times a particular behavioral element was observed in 

trials, and subscript letters refer to the following behavioral elements:

   A continuing behavior previous to contact

  B changing movement (behavior altered from previous activity)

  C pulling in legs/antennae

  D preening

  E turning on back/fl ailing legs/fl uttering wings 

  F backing away/running away

  G fl ying away

Lady Beetle Tolerance of Ant Stings

 Different species of beetles appeared to exhibit different reactions to stings 

by M. rubra during the trials described above.  Therefore, they were also subjected 

to intentional sting trials with agitated ants to compare the effects of ant stings.  As 

described above with behavioral trials, a lady beetle was transferred from the Petri dish 

in which it was held by allowing it to crawl upon the end of a paintbrush.  It was then 

transferred to a location near the ant nest and in the immediate proximity (within 1.5 cm) 

of patrolling ants by allowing it to crawl from the paintbrush into the observation arena.  

Twenty individuals of each species were tested, with one beetle per trial, and each of the 

ten ant nests used in random order twice with different individuals of each lady beetle 
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species. The number of stings was recorded and lady beetles were removed after having 

been stung, on average, 14 times (range: 10-20).  Because the ability to control stings was 

limited (the ants clung and continued stinging when lady beetles were removed), a higher 

level of precision in obtaining stings was not possible.  Twenty additional individuals 

of each species were held throughout the course of this study under identical conditions 

with the exception that they were not introduced to ants and thus were not stung.  These 

beetles served as controls.  All beetles were held for 72 hours of observation following 

exposure to ant stings, or not stung, in the case of control beetles, and their behavior was 

documented.  Beetles were provided with moisture and held in individual Petri dishes in 

Percival I-33VL Intellus environmental chambers at 20°C and 16 (light): 8 (dark) hour 

photoperiod. 

 Each beetle was assigned a response score based on its activity during the 

72-hour observation period.  The value of the response score increased as the effects 

observed increased in intensity from no effect, to a behavioral effect, a physical effect, 

and death, where, 0 = active or active when prodded; 1 = inactive or slow when prodded; 

2 = impaired ambulatory locomotion, wings stretched out, or fl ips on back; or 3 = dead.  

When several effects of varying intensity were documented for a given beetle, the score 

assigned refl ected only the observation with the highest value during the 72-hour period.  

Statistical Analyses

 Data normality was tested using the Wilk-Shapiro test (PROC UNIVARIATE, 

SAS Institute, Inc. 2002).  Frequency data that were not normally distributed were 

transformed using √X+0.001 transformations (Zar 1999).  Data from the aphid feeding 
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trials, consumption during behavioral trials, and ant sting trials were transformed using 

rank transformations (Conover and Iman 1981).  Means and standard errors reported in 

this paper were calculated from the untransformed data.  

 Mean numbers of potato aphids consumed by different lady beetle species were 

compared by one-way ANOVA (PROC GLM, SAS Institute, Inc. 2002).  A split-plot 

ANOVA (PROC MIXED, SAS Institute Inc. 2002) was used, with beetle species as the 

plots and behaviors as the subplots, to compare behaviors among different lady beetle 

species, conducting a separate test for all ant behaviors and for all beetle behaviors.  

When interactions between beetle species and behavior were statistically signifi cant 

additional one-way ANOVAs followed by Tukey mean separation tests (PROC GLM, 

SAS Institute, Inc. 2002) were conduced comparing the frequencies with which different 

lady beetle species displayed each behavior.  

 Aggression and reaction scores were compared among the tested lady beetle spe-

cies using one-way ANOVAs followed by Tukey mean separation tests (PROC GLM, 

SAS Institute, Inc. 2002).  To determine if there was a relationship between aggression 

and reaction scores or between aphid consumption during trials and aggression/reaction 

scores, correlation analysis (PROC CORR, SAS Institute Inc. 2002) were used.  

 The number of stings received by different lady beetle species was compared 

using one-way ANOVA (PROC GLM, SAS Institute Inc. 2002).  To determine if different 

lady beetles responded differently to being stung by ants, a split plot ANOVA (PROC 

MIXED, SAS Institute Inc. 2002) was used with lady beetle species as the plots and 

exposure status to ant stings (stung experimental beetles and not stung control beetles) as 

the subplots.  When interactions between beetle species and sting status were statistically 
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signifi cant, additional one-way ANOVAs were conducted followed by Tukey mean 

separation tests (PROC GLM, SAS Institute, Inc. 2002) comparing differences among 

the species separately for stung beetles, and control beetles.  To determine if being stung 

made a difference for each species, the mean scores for the stung beetles were also 

compared with the mean scores for the control beetles (PROC TTEST, SAS Institute Inc. 

2002).  

Results 

Verifi cation of Lady Beetle Consumption of Potato Aphids

 Lady beetles consumed, on average, 8.46 ± 0.34 (mean ± standard error) potato 

aphids during the 24-hour trial period (Table 5.1).  There was no difference among the 

different species (ANOVA, DF = 6, 28, F = 1.17, p = 0.3478).

Ant-Aphid-Lady Beetle Interactions in a Laboratory Arena

 Different lady beetle species were found to interact differently with ants.  When 

considering ant behaviors, the main effect of species (ANOVA, DF = 6, 114, F = 43.14, 

Table 5.1.  Mean number (± standard error) of aphids (Macrosiphum euphorbiae) 
consumed (out of 10) after 24-hours with one each of seven lady beetle species (N = 5).

Lady Beetle Species Consumption 
C. trifasciata 7.00 ± 0.6999 
C. maculata 9.20 ± 0.5107 

na
tiv

e 

H. convergens 8.60 ± 0.4775 
C. septempunctata 7.60 ± 0.8199 
H. axyridis 9.60 ± 0.4229 
H. variegata 9.20 ± 0.4091 

no
n-

na
tiv

e 

P. quatuordecimpunctata 8.00 ± 0.6849 
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p < 0.0001) and ant behavior (ANOVA, DF = 6, 798, F = 134.20, p < 0.0001) were both 

signifi cant, as were interactions between species and ant behavior (ANOVA, DF = 36, 

798, F = 14.34, p < 0.0001).  Thus, one-way ANOVAs were conducted comparing the 

different lady beetle species for each ant behavior (Table 5.2). There were differences 

between beetle species in four ant behaviors:  prolonged antennation, biting, grasping, 

and stinging.  Coccinella trifasciata received a signifi cantly higher frequency of 

prolonged antennation from ants compared with H. axyridis; however, there were no 

differences among the other beetle species.  Hippodamia convergens, H. variegata, 

and C. maculata received signifi cantly higher frequencies of ant biting, grasping, and 

stinging, compared with C. trifasciata and P. quatuordecimpunctata.   

 One-way ANOVAs were conducted comparing the different lady beetle 

species for each lady beetle behavior (Table 5.3) because the interaction between 

lady beetle species and lady beetle behavior was highly signifi cant (ANOVA, DF = 

48, 1064, F = 11.74, p < 0.0001).  There were differences between beetle species in 

fi ve behaviors:  continuing behavior previous to contact, pulling in legs/antennae, 

turning on back, fl ailing legs, and running away.  When confronted with ants, C. 

septempunctata continued its behavior previous to contact to a signifi cantly greater extent 

compared with H. convergens, H. variegata, and C. maculata.  Hippodamia variegata 

pulled in its legs and antenna signifi cantly more frequently than H. axyridis and P. 

quatuordecimpuncata.  Similarly, H. variegata, C. maculata, and H. convergens turned 

on their backs signifi cantly more frequently than did H. axyridis, C. trifasciata, and P. 

quatuordecimpuntata, and fl ailed their legs signifi cantly more frequently compared with 

C. trifasciata and P. quatuordecimpuntata.  Hippodamia convergens, C. septempunctata, 
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and C. maculata ran away signifi cantly more frequently compared with C. trifasciata 

and P. quatuordecimpunctata.   The following lady beetle behaviors did not differ 

between beetle species:  changing movement, preening, fl uttering wings, and fl ying away.  

Although lady beetles did back away from ants during preliminary observations, that 

behavior was not observed during trials, thus it was not included in the split-plot ANOVA 

comparing lady beetle species and lady beetle behaviors described above.  

 Aggression scores were signifi cantly different among the tested lady beetle 

species (ANOVA, DF = 6, 133, F = 9.68, p < 0.0001) (Table 5.4).  Hippodamia 

convergens and H. variegata were exposed to signifi cantly more ant aggression than all 

other species except C. maculata.  Propylea quatuordecimpuntata, on the other hand, 

provoked the least amount of aggression.  Similarly, there was signifi cant variation in 

reaction scores among the tested lady beetle species (Table 5.4).  Reaction scores for H. 

variegata, H. convergens, C. maculata, and C. septempunctata were signifi cantly higher 

(ANOVA, DF = 6, 133, F = 10.18, p < 0.0001) than those for the other three species.  

There was also a strong positive correlation between aggression and reaction scores (r = 

0.6196, p < 0.0001).

Table 5.4.  Aggression and reaction scores (mean ± standard error) from behavioral trials 
with different lady beetle species and Myrmica rubra (N = 20).  Letters associated with 
each mean are results of Tukey mean separation tests comparing beetle species for each 
score.  For each score, means with the same letter are not signifi cantly different.

 Lady Beetle Species Aggression Score   Reaction Score 
C. trifasciata 17.35 bc ± 4.89  8.45 b ± 2.01 
C. maculata 90.20 ab ± 19.94  29.05 a ± 3.65 

na
tiv

e 

H. convergens 140.40 a ± 29.97   34.60 a ± 3.54 
C. septempunctata 26.70 bc ± 6.62  27.90 a ± 5.36 
H. axyridis 39.85 bc ± 20.54  9.60 b ± 2.92 
H. variegata 130.75 a ± 20.20  34.85 a ± 7.22 

no
n-

na
tiv

e 

P. quatuordecimpunctata 8.10 c ± 2.55   3.80 b ± 1.46 
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 Aphid consumption during behavioral trials differed between the different lady 

beetle species (Table 5.5) (ANOVA, DF = 6, 133, F = 6.15, p < 0.0001).  Harmonia 

axyridis consumed a signifi cantly greater number of aphids compared with all other 

species but C. septempunctata.  When considering all species, there was a signifi cant 

negative correlation between aphid consumption and aggression score (r = -0.3251, p < 

0.0001) and between aphid consumption and reaction score (r = -0.1882, p = 0.0260).  

Lady Beetle Tolerance of Ant Stings

 Although there were no signifi cant differences (DF = 6, 133, F = 2.18, p = 0.9912) 

in the number of stings received by each beetle species (mean = 14.40 stings, standard 

error = 0.2422),  the main effect of species (ANOVA, DF = 6, 114, F = 10.94, p < 0.0001) 

and sting status (ANOVA, DF = 1, 133, F = 119.10, p < 0.0001) were both signifi cant, as 

were interactions between species and sting status (ANOVA, DF = 6, 133, F = 14.98, p 

< 0.0001).  For the lady beetles exposed to ant stings, response scores were signifi cantly 

different among the species (DF = 6, 133, F = 6.45, p < 0.0001) (Table 5.6), with H. 

Table 5.5.  Consumption (mean ± standard error) of aphids by different beetle species 
during behavioral trials with Myrmica rubra (N = 20).  Letters associated with each mean 
are results of Tukey mean separation tests comparing aphid consumption for each beetle 
species.  Means with the same letter are not signifi cantly different.

 Lady Beetle Species Consumption 
C. trifasciata 0.45 bc ± 0.2112 
C. maculata 0.02 c ± 0.1094 

na
tiv

e 

H. convergens 0.35 bc ± 0.1500 
C. septempunctata 1.50 ab ± 0.5104 
H. axyridis 2.00 a ± 0.6407 
H. variegata 0.35 c ± 0.2209 

no
n-

na
tiv

e 

P. quatuordecimpunctata 0.40 bc ± 0.1522 
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variegata and C. septempuncata having signifi cantly higher scores than H. axyridis, H. 

convergens, and C. maculata.  Control lady beetles not exposed to ants displayed similar 

response scores (mean score = 0.2643, standard error = 0.039) (DF = 6, 133, F = 1.14, 

p = 0.3444).  When comparing beetles exposed to ant stings to the unexposed beetles 

of the same species, the former showed signifi cantly higher response scores in fi ve 

beetle species:  C. septempunctata, C. trifasciata, H. convergens, H. variegata, and P. 

quatuordecimpunctata.  There were no differences when comparing beetles stung to those 

not stung in the remaining two species, C. maculata and H. axyridis.  

 From the greatest to the least effects, these fi ve species were H. variegata, C. 

septempunctata, C. trifasciata, P. quatuordecimpunctata, and H. convergens.  The 

dominant condition (observed in 10 out of 20 trials) in experimental trials for H. 

variegata was “impaired ambulatory locomotion,” i.e., legs appearing to be non-

functional and dragging behind the beetles.  This condition was also observed seven times 

with P. quatuordecimpunctata, three times each with C. maculata and C. trifasciata, two 

times with C. septempunctata, in one trial with H. convergens, but in no trials with H. 

axyridis.  This condition was not observed in control trials with any of the seven species.  

Table 5.6.  Mean scores (± standard error) for observations of different beetle species 
after having been stung by ants (N = 20).  Letters associated with experimental means 
are results of Tukey mean separation tests comparing beetle species for experimental 
results.  Means with the same letter are not signifi cantly different.  T and p-values refer to 
comparisons between experimental treatments and controls for each species.

 Lady Beetle Species Experimental   Control   t p 
C. trifasciata 1.00 ab ± 0.1622  0.15 ± 0.0819  -6.40 <0.0001 
C. maculata 0.45 bc ± 0.1846  0.40 ± 0.1124  0.66 0.5181 

na
tiv

e 

H. convergens 0.40 bc ± 0.1338   0.10 ± 0.0688   -2.75 0.0128 
C. septempunctata 1.10 a ± 0.1433  0.25 ± 0.0993  -8.06 <0.0001 
H. axyridis 0.25 c ± 0.0993  0.35 ± 0.1094  1.45 0.1625 
H. variegata 1.40 a ± 0.2224  0.30 ± 0.1277  -5.79 <0.0001 

no
n-

na
tiv

e 

P. quatuordecimpunctata 1.00 abc ± 0.2176   0.30 ± 0.1051   -3.75 0.0014 
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Discussion

 The three most aggressive ant behaviors documented (biting, grasping, and 

stinging) (Table 5.2) occurred most frequently with three lady beetle species:  H. 

convergens, H. variegata, and C. maculata.  C. trifasciata, P. quatuordecimpunctata, 

and C. septempunctata were generally documented to receive these behaviors the least.  

Harmonia axyridis was generally intermediate between these two groups.  As expected, 

these patterns are refl ected in aggression scores (Table 5.4).

 Lady beetle behaviors in response to ant aggression (Table 5.3) followed a similar 

pattern to the groupings observed with ant behaviors.  When there were differences 

between lady beetle species for a given behavior, H. convergens, H. variegata, C. 

maculata, and/or C. septempunctata generally had a higher frequency of reactive 

behaviors compared with C. trifasciata and/or P. quatuordecimpunctata.  Harmonia 

axyridis was generally intermediate between these two groups.  Again, these general 

groupings based on differences in lady beetle species considering individual behaviors 

were refl ected in overall reaction scores (Table 5.4).  Reaction scores for H. variegata, H. 

convergens, C. maculata, and C. septempunctata were signifi cantly greater than those for 

H. axyridis, C. trifasciata, and P. quatuordecimpunctata.

 It seems intuitive that high frequencies of aggression from ants would result in 

higher frequencies of reactive behaviors from lady beetles.  It is interesting to note that 

despite the fact that H. convergens and H. variegata had the highest aggression scores, 

C. septempunctata had the highest reaction score relative to its aggression score.  When 

interpreting these results, how the reaction by lady beetles might affect aggression by 

the ants must be considered.  The most frequent reaction by C. septempunctata to ant 
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aggression was to run away.  Two possible explanations of why ant aggression does not 

escalate in this species are that running away is an effective method of avoidance, or 

that ants stop perceiving the retreating lady beetle as a threat.  However, H. convergens 

ran away as much as C. septempunctata, yet ants were much more aggressive towards 

it.  Coccinella septempunctata has been shown to deter attacks by ants chemically.  

Coccinella septempunctata was shown to use refl ex bleeding to deter attacks by Formica 

polyctena when it used the ants’ odor trails to locate aphid prey (Bhatkar 1982).  Also, 

Tursch et al. (1971) found that M. rubra would not drink from water to which a defensive 

alkaloid produced by C. septempunctata had been added.  It is possible that in this study 

behavioral activity documented for C. septempunctata in reaction scores coincided with 

chemical production that deterred further aggression by ants.  Refl ex bleeding was noted 

in three trials with C. septempunctata.

 In the presence of ants, H. axyridis consumed more aphids than all other species 

except C. septempunctata (Table 5.5).  There were no differences among lady beetle 

species in feeding trials conducted in Petri dishes in the absence of ants.  Harmonia 

axyridis received a moderate level of aggression from ants, but had a relatively low 

reaction score compared to the other lady beetle species.  This might refl ect a better 

relative ability of H. axyridis to forage successfully on ant-protected aphids.  Similarly, 

Dutcher et al. (1999) found that H. axyridis withstood fi re ant (Solenopsis invicta Buren) 

aggression more successfully than H. convergens.  While H. convergens was forced from 

plants housing its aphid prey and S. invicta, H. axyridis was able to remain.  Alternatively, 

H. axyridis might have been a better forager in the relatively complex environment of 

the laboratory arenas, while that advantage disappeared in a simpler environment of Petri 
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dishes.  Harmonia axyridis is also a more voracious predator compared to Cycloneda 

sanguinea (L.) (Michaud 2002).  Furthermore, in this study, H axyridis appeared to be 

highly tolerant of ant venom (Table 5.6).  The ability of some species to tolerate M. rubra 

venom may have developed over time, as the ranges of the four non-native species tested 

overlap that of M. rubra.

 The negative correlations between aphid consumption and aggression/reaction 

scores are also not surprising.  One function of aphid-tending ants is to protect aphids 

from predators (Bartlett 1961, Way 1963, Buckley 1987, Vinson and Scarborough 1989, 

Jahn and Beardsley 1994).  Aggression from ants should thwart predators from taking 

aphids.  Time spent reacting to ant aggression would reduce time available for foraging 

and feeding.

 Mean scores for ant sting trials for fi ve of the seven lady beetle species tested 

were greater than each of these species’ associated control trials.  In two species, H. 

axyridis and C. maculata, venom was not documented to have any effects. Exocrine 

glands in ants are known to contain a variety of compounds that are used externally 

(Cavill and Robertson 1965).  Although many of the constituents of M. rubra’s venom, 

Dufour, and mandibular gland excretions have been identifi ed (Cammaerts-Tricot et al. 

1976, Morgan et al. 1977, Evershed et al. 1981, Cammaerts et al. 1981a, Cammaerts 

et al. 1981b, Evershed et al. 1982, Attygale et al. 1983b, Cammaerts 1984, Cammaerts 

1992), little is known about the effects of M. rubra envenomization on insects.  

Determinations of the effects of these compounds have been limited primarily to uses 

for communication with conspecifi cs such as in trail and foraging area delineation 

(Cammaerts-Tricot et al. 1976, Cammaerts et al. 1981a, Cammaerts et al. 1981b, 
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Attygale et al. 1983a, Cammaerts 1984, Cammaerts 1992) and worker recruitment to 

foraging sites (Cammaerts-Tricot et al. 1976, Cammaerts 1978, Cammaerts et al. 1981a, 

Cammaerts et al. 1981b, Attygale et al. 1983a).  

 Aggression scores were higher in species that appear to have more exposed parts 

on which ants could grasp.  When H. convergens, H. variegata, and C. maculata were 

observed to pull in their legs, their concealment was incomplete and ants could still bite 

them.  On the other hand, when H. axyridis, C. septempunctata, C. trifasciata, and P. 

quatuordecimpunctata pulled in their legs, their appendages appeared to be completely 

retracted and ant aggression subsided.  So, while interactions between ants and lady 

beetles may be behavioral and/or chemical, there may also be a physical component, 

ants acting as opportunists, grabbing what is available, causing aggression to escalate, or 

walking away when all parts are concealed.  

 Differences documented between lady beetle species may put some of them at 

a competitive advantage over others.  In a number of earlier studies, H. axyridis has 

been found to be a superior competitor when compared to other lady beetle species due 

to intraguild predation (Hironori and Katsuhiro 1997, Yasuda et al. 2001, Yasuda et al. 

2004), prey utilization (Michaud 2002), and tolerance of pathogenic microorganisms 

(Saito and Bjørnson 2006).  It appears that it also performs better in the presence of 

an aggressive aphid-tending ant, M. rubra.  While this study did not provide evidence 

that successful non-native species invariably have a competitive advantage over native 

species when dealing with an aggressive enemy, the differences between species provide 

further evidence that different lady beetle species have very different competitive abilities 

that may contribute to their successes or failures in new habitats.    
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Chapter 6

ECOLOGICAL INTERACTIONS BETWEEN COCCINELLIDS AND ANTS IN 

NEWLY SYMPATRIC SPECIES ASSEMBLAGES

Chapter Abstract

 Research evaluating relationships between newly sympatric coccinellids, ants, 

and plant-feeding insects is summarized.  Studies are limited to plant-feeding insects that 

serve as prey to coccinellids and sources of nutrition from their honeydew to ants.  Three 

invasive ants, Pheidole megacephala (F.), Solenopsis invicta Buren, and Linepithema 

humile (Mayr), have driven the majority of these studies, as have coccinellid biological 

control organisms, Cryptolaemus montrouzieri Mulsant, Coccinella septempunctata L., 

and Harmonia axyridis (Pallas).  Recent studies evaluate species-specifi c interactions, 

while older studies often consider coccinellids as a group.  Many studies document 

increases in herbivore numbers due to ant attendance.  Of 77 pairings between different 

ant and coccinellid species, ants interfered with coccinellid predation in 73%, exhibited 

no interference in 17%, and showed mixed effects in 10% of pairings.  Several studies 

found an upper limit to care by ants, where as herbivore numbers increased relative to 

ant numbers, effective protection by ants decreased.  On Midway Atoll, where the ant, 

P. megacephala, tends the treehopper, Vanduzeea segmentata Green, which is preyed 

upon by the coccinellid, Coelophorus inaequalis (F.), coccinellid numbers increased with 

increasing treehopper numbers, but decreased with increasing ant numbers.  Coccinellid 

numbers with ants and treehoppers were greater when the ratio of ants to treehoppers 
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was less than two, compared to when it was greater than or equal to two.  Suggestions for 

future work include evaluations of species-specifi c interactions and relative population 

densities, comparisons of species in native and non-native ranges, and assessments of the 

impacts of ant suppression in agricultural and non-agricultural systems. 
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Introduction

 The relationship between coccinellids and phloem-feeding insects such as 

aphids, scales, and mealybugs and other insect pests, has been extensively documented 

(Biddinger et al. 2009, Evans 2009, Hodek and Honěk 2009; Obrycki et al. 2009).  

Many coccinellid species are predators of, and important control agents of, these pests 

in agriculture (Hodek 1973, Gordon 1985).  The relationship between ants and phloem-

feeding insects has also been extensively documented (Carroll and Janzen 1973, Buckley 

1987, Lundgren 2009).  Many ant species feed on the excrement (honeydew) of phloem-

feeding insects.  These ants receive sugars (and possibly some vitamins and amino acids) 

from the honeydew they consume (Auclair 1963, Way 1963, Carroll and Janzen 1973, 

Hölldobler and Wilson 1990, Völkl et al. 1999).  Ants protect these insects by removing 

honeydew accumulations that can promote fungal growth (Hölldobler and Wilson 1990, 

Gonzalez Hernandez et al. 1999a).  Through direct aggression or by providing refuge, 

ants also interfere with the activity of their predators, parasites, and parasitoids (Bartlett 

1961, Way 1963, Buckley 1987, Vinson and Scarborough 1989, Charles 1993, Reimer 

et al. 1993, Jahn and Beardsley 1994, Gonzalez Hernandez et al. 1999a).  In some 

cases, this “tending” by ants has been shown to support the persistence of, or contribute 

to increases in, tended insect populations (Addicott 1979, Bristow 1984, Mahdi and 
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Whittaker 1993, Sloggett and Majerus 2000).  It is important to note, however, that 

some ant species are predators of, and thus valuable in the control of, the same kinds of 

insects described above as protected by ants, and other important agricultural pests such 

as caterpillars and herbivorous beetle larvae.  The fi rst documented case of management 

using biological control agents was that of the ant, Oecophylla smaragdina F. in China, 

where in the 4th century A.D., colonies were intentionally introduced to control leaf-

feeding insects in citrus (van den Bosch and Messenger 1973).

 When coccinellids and ants are present in the same system, coccinellid predation 

on ant-protected insects may be affected by tending ants.  On the other hand, the 

ability of ants to obtain resources from tended insects may be hindered by coccinellids.  

Coccinellid predation on ant-tended insects diminishes resources available to ants, and 

may alter the behavior of the sternorrhynchans in ways that reduce their suitability for the 

ants.  Ants must also expend energy to prevent predation by coccinellids, either through 

direct aggressive interactions with coccinellids or by having to shelter aphids, activities 

that distract ants from resource acquisition.  Additionally, tended insects may not need to 

dedicate energy towards predator detection, defense, and avoidance, compared to their 

untended counterparts.  

 A number of studies have described relationships between coccinellids and ants 

that share the same insect resource.  Takizawa and Yasuda (2006) reported that fewer 

Coccinella septempunctata L. remained on plants with Aphis craccivora Koch tended 

by the ant Lasius japonicus Santschi, compared to untended aphid colonies.  Oliver et al. 

(2008) showed that Adalia bipunctata (L.) move away from and avoid laying their eggs 

near Lasius niger (L.).  In the same study, however, the coccinellid, Propylea japonica 
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(Thunberg), remained for the same amount of time on plants tended and untended 

by ants.  Associations between a myrmecophilous coccinellid, Coccinella magnifi ca 

Redtenbacher, and wood ants (Formica rufa L., group) tending Cinara sp. aphids were 

compared with non-myrmecophilous coccinellids (C. septempunctata in Sloggett et al., 

1998; Myrrha octodecimguttata (Linnaeus), Harmonia quadripunctata (Pontoppidan), 

Anatis ocelata (Linnaeus), Myzia (=Neomysia) oblongoguttata (Linnaeus), and C. 

septempunctata, in Sloggett and Majerus, 2000).  In these studies, different coccinellid 

species varied in their associations with ant-tended aphids, the different species handling 

aggression from the ants differently.  These differences presumably resulted in differential 

effects on the ant-tended insects involved.

 Extrapolation of information from these relationships to agricultural systems 

allows some speculation about the effects of similar species on pest populations and 

associated crop damage.  While each of the species assemblages described above involve 

historically sympatric species, similar assemblages considered in agriculture often 

include at least one species that is not native to the location in question.  Coccinellids 

have been introduced to new locations for the biological control of plant-feeding pests 

(Gordon 1985, Dreistadt and Flint 1996, Koch 2003, Biddinger et al. 2009) and all three 

guilds (coccinellids, ants, and plant pests) have been introduced unintentionally via plant 

exports and other cargo (Chantal 1972, Schaefer et al. 1987, Day et al. 1994).  Introduced 

coccinellid species persist in some intended locations and disperse to other locations, 

where they may provide benefi cial pest control or displace native coccinellids (Elliot et 

al. 1996, Brown and Miller 1998, Colunga-Garcia and Gage 1998, Michaud 2002, Brown 

2003, Turnock et al. 2003, Alyokhin and Sewell 2004, Finlayson et al. 2008).  Because 
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a species can differ greatly in its introduced and native ranges (Tsutsui et al. 2000), a 

summary of studies evaluating interactions between newly sympatric coccinellids and 

tending ants is important to evaluate the effects of these new species assemblages.  Many 

lady beetle species feed primarily on plant-feeding insects at least during part of their life 

cycle (Evans 2009, Hodek and Honěk 2009, Obrycki et al. 2009); thus, their survival and 

effect on target pest populations may, in part, be determined by their interactions with 

tending ants (Bartlett 1961, Vinson and Scarborough 1989, Hanks and Sadof 1990, Jahn 

and Beardsley 1994, Sloggett et al. 1998, Sloggett and Majerus 2000).  

 Here, I summarize studies investigating assemblages of newly sympatric 

coccinellids, ants, and the insects that they tend (and which coccinellids prey upon).  I 

also present an evaluation of newly sympatric populations of Coelophora inaequalis (F.) 

(Coleoptera, Coccinellidae), Vanduzeea segmentata Green (Hemiptera, Membracidae), 

and Pheidole megacephala (F.) (Hymenoptera, Formicidae) on Eastern Island, Midway 

Atoll.  Finally, based on research to date and current needs, I discuss directions for future 

research. 

Materials and Methods

Literature Survey

 Studies evaluated (n = 321) document the presence of coccinellids, ants, and 

plant-feeding insects in the same system.  Studies included in the survey (n = 105) are 

limited to those evaluating newly sympatric assemblages where at least two of the three 

species have separate historical ranges, but now overlap.  Plant-feeding insects are limited 

to phloem-feeders in the suborders Auchenorrhyncha and Sternorrhyncha, which serve as 
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prey for coccinellids and are tended by ants.  Surveys that document the utilization of the 

same herbivore without any information about the effects that ants have on coccinellid 

predation are included, but those that only document the presence of coccinellids and ants 

in the same location without evidence that they utilized the same phloem-feeding species 

have been omitted.  Herbivores may obtain defensive chemicals from the plants on which 

they feed, and this may affect consumption by coccinellids (Auclair 1963, Buckley 1987, 

Bristow 1991, Hodek and Honěk 2009), but for simplicity, the infl uence of host plant was 

not considered.  With so much attention on phloem-feeding pests in agriculture, where 

crop plants are often non-native, host plant origin could also be considered as part of a 

newly sympatric system.  However, again, for the sake of simplicity, host plant origin was 

not considered.

 Studies were categorized based on the relationships between coccinellids and 

ants.  Research studies were categorized as “interference” when ant aggression disrupted 

coccinellid predation or when the presence of tending ants corresponded with lower 

coccinellid abundance or prey consumption compared to the same system where ants 

were absent.  Studies in which ants showed no aggression towards coccinellids or 

where coccinellid abundance or predation was not different with and without ants are 

termed “no interference.”  Several studies with inconclusive results and evidence only of 

resource sharing are also included.  Studies were also evaluated for trends, for example, 

in focus, species, and geographic distribution.  When a study identifi ed and associated 

results to one or more “dominant” species among a larger group of coccinellid, herbivore, 

and/or ant species, only the dominant species were included.  For example, Michaud 

(1999) found that among 13 coccinellid species, Cycloneda sanguinea limbifer Casey, 
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C. inaequalis, and Harmonia axyridis (Pallas) were the most abundant and the primary 

coccinellid predators of Toxoptera citricida (Kirkaldy); thus, only these three coccinellid 

species were included in the survey.

Midway Atoll Survey

 The coccinellid-prey-ant community was evaluated on an invasive plant, 

Verbesina encelioides (Cavanilles) Bentham & Hooker ex Gray (Asteraceae), on Eastern 

Island (longitude: 28.2617, latitude: -177.383), Midway Atoll, a low coral atoll in the 

Northwestern Hawaiian Islands chain.  Two surveys were conducted, one between 10 and 

24 September 2007 and the other from 25 February to 17 March 2008.  In each survey 

year, the entire 135-ha island was surveyed by walking transects spaced approximately 

10 m apart.  Survey points along the transects occurred at approximately 10-m intervals.  

At each survey point, the fi rst V. encelioides stem encountered was evaluated.  If a stem 

could not be located within a 2-m radius of the survey point, that point was bypassed.  

On each stem, coccinellids, ants, and plant-feeding insects tended by ants were counted 

and identifi ed to species, with particular emphasis on a group of species previously noted 

as dominant on the island: the coccinellid (C. inaequalis), the ant (P. megacephala), 

and the treehopper (V. segmentata).  In previous observations, C. inaequalis had 

been documented feeding on, and P. megacephala had been documented tending, V. 

segmentata.  All other arthropod taxa were counted and identifi ed when possible; this 

information, however, will be presented in a different manuscript.  

 Data were tested for normality using the Wilk-Shapiro test and transformed 

using log (n + 1) transformations (Sokal and Rohlf 1995).  To quantify the relationship 
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between coccinellids, treehoppers, and ants, the number of coccinellids on numbers of 

ants and treehoppers were regressed independently for each year.  Correlation analyses 

were conducted to compare relationships among all combinations of P. megacephala, 

V. segmentata, and C. inaequalis.  Mean numbers of C. inaequalis found with P. 

megacephala and V. segmentata were also evaluated.  For each stem observed, a ratio 

was calculated by dividing the number of P. megacephala documented on that stem by 

the number of V. segmentata found on the same stem.  Two-sample, independent t-tests 

were then conducted to compare mean numbers of C. inaequalis when the ratio was < 2 

compared to when it was ≥ 2.  All statistical analyses were conducted separately for 2007 

and 2008 using SAS statistical software, version 9 (SAS Institute Inc. 2002).  Means and 

standard errors reported in this paper were calculated from the untransformed data, as 

were the ratios of P. megacephala to V. segmentata.  

Results and Discussion

Literature Survey

 105 of the 321 studies reviewed present information about newly sympatric 

species assemblages.  An evaluation of the body of research reveals several trends 

discussed below:  

 •  When considering the 321 studies (Figure 6.1), only Africa and North America 

are proportionally represented, i.e. the percent of studies in Africa (20%) and North 

America (16%) are comparable to the percent land area represented by each of those 

continents, 21.3% and 17.2%, respectively.  Asia and South America are underrepresented 

based on geographic area, while mainland Australia is overrepresented in total 



Figure 6.1.  Ratio (log) of percent studies and percent land area for each continent.  
Ratios (log) greater than 1 indicate an overrepresentation of studies conducted in the 
continent relative to land area.
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studies.  Studies focusing on newly sympatric species assemblages are proportionally 

the most numerous on islands, in North America, and in Europe.  Islands are often 

considered vulnerable to non-native species invasions, especially considering ants, as 

these ecosystems often have few or no native ant species.  Studies largely represent 

locations where invasive ants are of concern because they tend pest populations, either 

affecting agricultural products or plants of conservation concern.  For example, 41% 

of the 34 studies of newly sympatric species in North America involve the fairly recent 

introduction of the red imported fi re ant, Solenopsis invicta Buren. This is not surprising, 

however, because if ants are concerned a hinderance, for example, to biocontrol, they will 

more likely be studied.

 •  The majority of studies evaluating newly sympatric assemblages took place 

in subtropical (20 – 35 degrees north and south latitude) locations (60 studies), with 23 

in temperate (35 - 66.6 north and south latitude) and 22 in tropical (between 20 degrees 
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north and 20 degrees south latitude) locations.  Historically sympatric assemblages were 

studied more in temperate locations (17), with eight studies conducted in tropical and 

eight in subtropical locations.  This may not stem from a greater proportion of non-native 

species in subtropical regions; these statistics are likely infl uenced by the location of 

research institutions with interest in these systems.  These areas also have a moderate 

climate and are productive agriculturally, and many studies of newly sympatric species 

address concerns regarding agricultural loss due to pests tended by ants.  

 •  The majority of studies (89% of 105 studies) involved pest populations 

on an agricultural commodity.  The remainder of studies (11%) regarded species of 

conservation concern or ornamental interest.

 •  Coinciding with growing concerns about invasive species is the recognition that 

native species have value in biological control, where non-native species have often been 

introduced.  Recent studies refl ect this concern by evaluating different coccinellid species 

separately, comparing native and non-native species, where older studies often lump 

coccinellids into one group.  Of the 105 studies evaluated, 30% examined coccinellids at 

the family level, while the remainder examined individual coccinellids (43% of studies) 

or conducted separate examinations for each of several species (27%). 

 •  Several taxa have received a disproportionate amount of attention.  Coccinellids 

introduced as biological control agents, Cryptolaemus montrouzieri Mulsant, and 

Coccinella septempunctata, have been evaluated in a number of systems with a variety 

of pests.  So have the invasive ants Pheidole megacephala, Solenopsis invicta, and 

Linepithema humile (Mayr). The majority (70%) of studies evaluate recently introduced 

ant species that are considered aggressive and potentially disruptive to existing natural 
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enemy/pest interactions, often with concern regarding effects on economically important 

crops or on unique fauna and fl ora. 

 Table 6.1 summarizes the results of studies that evaluated ant interference of 

predation by coccinellid species. Of the 77 coccinellid-ant pairings evaluated, the 

majority (73%) showed inference of coccinellid predation by ants.  In only 17% did the 

ant not interfere with coccinellid predation.  In the remaining 10% of pairings (eight 

pairings), evidence was mixed, with some studies documenting interference and others a 

lack of interference.

 Based on the studies reviewed, coccinellids do not successfully control prey 

populations when they are tended by P. megacephala (Table 6.2). Six studies document 

the utilization of the same herbivore without any information about the effects that ants 

have on coccinellid predation (Catling 1971, Weaving 1980, Kfi r et al. 1985, Carver et 

al. 1987, De Barro 1990, Handler et al. 2007).  In its native range of Africa (Wheeler 

1922), P. megacephala tends non-native prey (Catling 1971, Weaving 1980, Kfi r et 

al. 1985) and interferes with coccinellid predation of non-native prey (Anneke 1959, 

Cudjoe et al. 1993) in agroecosystems.  Outside of its native range, P. megacephala has 

interfered with coccinellid consumption of pests of pineapple (Illingworth 1931, Jahn 

1992, Gonzalez-Hernandez et al. 1999a, Gonzalez-Hernandez et al. 1999b) and coffee 

(Reimer et al. 1993) in Hawaii, and of custard apples (Murray 1982) in Queensland, 

Australia.  Successful control of pests tended by P. megacephala has been accomplished 

by controlling ant populations with insecticides (Reimer et al. 1990).  When ant 

populations are reduced, coccinellids and other natural enemies can successfully control 

pests (Jahn 1992).  On Palmyra Atoll in the Pacifi c Ocean, P. megacephala tends a non-
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native scale insect that is destroying stands of Pisonia grandis R. Br., an important native 

tree; coccinellids present on the atoll have not been able to control the pest (Handler et 

al. 2007).  On Coconut Island, Hawaii, P. megacephala removed all coccinellid larvae 

from plants where they tended the green scale, Coccus viridis (Green) (Bach 1991).  

However, because the plant, Pluchea indica (L.), is not native to Hawaii (Stone 1970), 

encouragement of prey populations by ants may be considered favorable, where damage 

to the plant is desirable. 

 All of the studies assessing relationships between coccinellids and S. invicta 

(Table 6.3) have been focused in agriculture in the southeastern United States, where 

the ant was introduced in the 1930s (Buren et al. 1974, Lofgren 1986).  These studies 

report mixed fi ndings.  In the laboratory, coccinellid adults and larvae reduced prey in 

the absence of ants.  But when ants were present, predation by coccinellids was reduced 

because ants killed the coccinellids (Vinson and Scarborough 1989).  In pecan orchards, 

lady beetles were more abundant where ants were excluded, but only on certain sample 

dates (Dutcher et al. 1999).  In cotton, ants reduced the numbers of C. septempunctata 

and H. convergens adults and larvae (Eubanks et al. 2002, Kaplan and Eubanks 2002, 

Kaplan and Eubanks 2005).  Eubanks (2001) found that ant abundance was negatively 

correlated with numbers of coccinellids, aphids, leafhoppers, and treehoppers.  Several 

other studies, however, failed to document interference by S. invicta.  Sterling et al. 

(1979) documented early season control of Aphis gossypii Glover in cotton by Scymnus 

loewii Mulsant larvae regardless of whether ants were present undisturbed or reduced 

signifi cantly by an insecticide (mirex).  Clark and DeBarr (1996), found no differences 

in the numbers of prey or coccinellid with and without S. invicta.  Although pests were 
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more abundant in association with ants, either coccinellid abundance was unaffected 

by the presence of ants (Diaz Galarraga 2003) or results were inconclusive due to low 

coccinellid densities (Reilly and Sterling 1983, Coppler et al. 2007).  

 Of the 27 evaluations of L. humile (Table 6.4), 14 documented interference with 

coccinellid predation and 9 documented a lack of interference.  Linepithema humile 

attacked C. montrouzieri and Hippodamia sp., killing them or causing them to fl ee 

(Smith and Armitage 1931).  In a different study, C. montrouzieri was more numerous 

with higher prey numbers, even in the presence of ants.  Daane et al. (2007) concluded 

that adaptations in the coccinellids that mimicked prey facilitated predation, even in the 

presence of tending ants.  Reproduction by R. cardinalis on prey tended and not tended 

by ants was the same, but it took longer for coccinellids to eliminate prey colonies 

that were tended by ants (Quezada and DeBach 1973).  Several studies documented 

differences in coccinellid species preying on insects tended by L. humile.  DeBach et 

al. (1951) reported that Chilocorus sp. Leach, numbers were fi ve times greater on trees 

without ants compared to trees with ants.  However, in the same system, R. lophanthae 

populations were twice as large on trees with ants.  Bartlett (1961) reported that L. humile 

attacked all nine coccinellid species studied except Scymnus sordidus Horn.  

 Coccinellids commonly utilized as biological control agents were evaluated 

in 68% or 71 studies.  For example, C. montrouzieri (Table 6.5) is often studied when 

its prey, often Planococcus citri (Risso), is tended by the Argentine ant, L. humile.  

Sometimes, L. humile interferes with pest management by C. montrouzieri (Bennett 

and Hughes 1959, Panis and Brun 1971, Raciti et al. 1997), but not always (Panis 1981, 

Danne et al. 2007).  Many studies focus on the pests of a particular crop plant, such as 
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citrus, which is the focus of 25 of the 105 studies (Table 6.6).

 Studies on islands (Table 6.7) document different assemblages compared with 

the continental studies, in which three invasive ant species dominate the literature (with 

the exception of P. megacephala in Hawaii and Palmyra Atoll (Table 6.2), S. invicta in 

Puerto Rico (Table 6.3), and L. humile in Bermuda and Sicily (Table 6.4)).  The effects 

of the non-native L. niger on pests of citrus, peaches, and beans have been documented 

for Japan, where only Scymnus posticalis Sicard can consume ant-tended pests (Kaneko 

2002, Kaneko 2004). The ants interfere with predation by the native C. septempunctata 

(Katayama and Suzuki 2003), H. axyridis (Kaneko 2002, Kaneko 2004) and other 

coccinellids (Shiga 1975, Itioka and Inoue 1996).  In the Seychelles, Technomyrmex sp. 

interfered with scale predation by R. cardinalis and Rodolia chermesina Mulsant when 

these predators acted alone, but together they controlled the ant-tended pest (Vesey-

Fitzgerald 1953).  Pisonia grandis Robert Brown (Nyctaginaceae) is a forest tree native 

to the Coringa Herald Group in the Coral Sea, where it provides valuable habitat to 

seabirds; the exotic scale Pulvinaria urbicola Cockerell threatened the population of 

P. grandis on the Coringa Herald Group in the Coral Sea until C. montrouzieri was 

introduced (Smith et al. 2004). 

 Ant attendance increased prey populations in 22% of studies (Illingworth 1931, 

DeBach et al. 1951, Anneke 1959, Hamid et al. 1977, Collins and Scott 1982, Murray 

1982, Samways 1983, Kreiter and Iperti 1986, Rü et al. 1990, Cudjoe et al. 1993, Reimer 

et al. 1993, Itioka and Inoue 1996, Stechmann et al. 1996, Verghese and Ramachander 

1998, Chai 1999, Kaneko 2002, Kaplan and Eubanks 2002, Diaz Galarraga 2003, Kaneko 

2004, Smith et al. 2004, Altfeld and Stiling 2006, Coppler et al. 2007, Daane et al. 2007).  
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Coccinellids were more abundant, more successful preying on herbivores, or met with 

less aggression from ants when the ratio of ants to prey decreased (DeBach et al. 1951, 

Itioka and Inoue 1996, Altfl eld and Stiling 2006, 2008, Daane et al. 2007, Harmon and 

Andow 2007).  Harmon and Andow (2007) showed that L. niger was better at deterring 

coccinellids from Aphis fabae Scopoli when the ratio of ants to aphids was high.  With 

a greater relative number of ants, more ants moved to the perimeter of the colony where 

they detected intruders and protected the aphids more effectively.  As the ratio decreased, 

a greater percentage of ants accompanied the colony compared to the perimeter, allowing 

predators to approach met with less aggression, and have greater foraging success.  An 

exception to this was documented by Philpott (1997), where aggression of ants towards 

coccinellids was greater amidst more prey.  

 In 12% of studies, comparisons were made among several non-native coccinellids 

or among native and non-native coccinellids (Bennett and Hughes 1959, Bartlett 1961, 

Bugg and Ellis 1990, Reimer et al. 1993, Philpott 1997, Dutcher et al. 1999, Gonzalez-

Hernandez et al. 1999b, Michaud 1999, Michaud and Browning 1999, Eubanks 

2001, Wimp and Whitham 2001, Harmon and Andow 2007, Burgio et al. 2008).  In 

Italy, Burgio et al. (2008) found that eggs of A. bipunctata (native) were consumed, 

presumably by ants, more than eggs of H. axyridis (non-native).  Dutcher et al. (1999) 

found that H. axyridis (non-native) was less affected by fi re ant (S. invicta) aggression 

than H. convergens (native).  Ants bit and stung both species equally, ignoring some H. 

convergens individuals, but never H. axyridis. Harmonia axyridis remained on plants 

to a greater extent than H. convergens by biting ants, refl ex bleeding, and exhibiting 

thanatosis.  Philpott (1997) found that among native and non-native coccinellids, C. 
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septempunctata (non-native) fed the most and H. axyridis (non-native) the least with 

the ant, Formica obscuripes Forel, compared with the native species, Coccinella 

novemnotata Herbst, Coccinella transversoguttata Falderman, Cycloneda polita 

Casey, and H. convergens.  However, while C. septempunctata received the second 

highest amount of aggression from ants, H. axyridis received the least.  In Utah, C. 

septempunctata (non-native) was common on trees with and without ants and prey; 

however, A. bipunctata (native) was only found on trees devoid of ants and prey 

(Wimp and Whitman 2001).  In cotton, Eubanks (2001) found that numbers of native 

(C. maculata and H. convergens) and non-native (C. septempunctata and H. axyridis) 

coccinellids were negatively correlated with ants.

Midway Atoll Survey

 Out of 1,062 stems examined in 2007 (Table 6.8), the ant P. megacephala was 

observed on 348 stems (mean ± SEM (throughout) = 35.00 ± 1.31 individuals per stem), 

the treehopper V. segmentata on 353 stems (19.97 ± 0.62 per stem), and the coccinellid 

C. inaequalis on 56 stems (1.14 ± 0.05 per stem).  Of the 1,116 stems examined in 2008, 

P. megacephala was documented on 316 stems (35.00 ± 1.14 per stem), V. segmentata on 

320 stems (18.96 ± 0.52 per stem), and C. inaequalis on 72 stems (1.11 ± 0.04 per stem). 

Pheidole megacephala and V. segmentata were found together on 334 stems (2007) and 

308 stems (2008).  There was a strong positive correlation (Figure 6.2) between numbers 

of P. megacephala and V. segmentata in 2007 (r2 = 0.9872, P < 0.0001) and in 2008 

(r2 = 0.8649, P < 0.0001).  There were no positive or negative correlations found of C. 

inaequalis numbers per stem with P. megacephala or with V. segmentata in 2007 or 2008.



Table 6.8.  Total number of stems examined; number of stems on which P. megacephala, 
V. segmentata, and C. inaequalis were documented; number of stems on which 
combinations of these three species were documented together; mean (± standard error) 
number of individuals per stem; and correlations between pairs of species.   

P. megacephala V. segmentata C. inaequalis Correlation 

# 
st

em
s 

Mean SE Mean SE Mean SE r p-value 
         

2007 - Total Number of Stems Examined = 1062 
348 35.00 1.3102
353 19.97 0.6233
56 1.14 0.0472
334 36.34 1.3142 20.99 0.6129 0.8662 <0.0001
46 42.37 3.8166 1.13 0.0502 0.1885 0.5862
45 29.53 1.9953 1.13 0.0512 0.2707 0.3171
45 43.29 3.7875 29.53 1.9953 1.13 0.0512

         

2008 - Total Number of Stems Examined = 1116 
316 35.00 1.1414
320 18.96 0.5222
72 1.11 0.0373
308 35.77 1.1360 19.65 0.5034 0.8823 <0.0001
66 38.21 2.5315 1.11 0.0382 0.2689 0.4208
66 23.32 1.3022 1.11 0.0382 0.3505 0.3902
66 38.21 2.5315 23.32 1.3022 1.11 0.0382
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Figure 6.2.  Number of V. segmentata found on V. encelioides stems with 
P. megacephala on Eastern Island, Midway Atoll, in 2007 and 2008.
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Table 6.9.  Mean (± standard error) number of C. inaequalis documented on V. 
encelioides stems with P. megacephala and V. segmentata in 2007 and 2008.  C. 
inaequalis means are presented for two groups, those documented when the ratio between 
P. megacephala and V. segmentata was less than two and when it was greater than or 
equal to two.

 2007  2008 
 Ratio of P. megacephala to V. segmentata

C. inaequalis <2 2   <2 2
Mean 0.19 0.04  0.30 0.06 
SE 0.0285 0.0206  0.0345 0.0264 
N 251 83  228 80 
p < 0.0001  < 0.0001 
t-value 4.41  5.60 
DF 1, 332  1, 306 
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 Multiple regressions showed that there was a positive relationship between 

coccinellid numbers and treehopper abundance in 2007 (slope = 0.38, r2 = 0.13, df = 

333, P < 0.0001) and in 2008 (slope = 0.55, r2 = 0.11, df = 307, P < 0.0001).  So, with 

ant numbers held constant, the number of coccinellids increased by 0.38 (2007) and 0.55 

(2008) with each additional treehopper.  There was, however, a negative relationship 

between coccinellid numbers and ant abundance in 2007 (slope = -0.27, r2 = 0.13, df = 

333, P <0.0001) and in 2008 (slope =  -0.40, r2 = 0.11, df = 308, P < 0.0001).  In this case, 

with each additional ant, coccinellid numbers decreased by 0.27 (2007) and 0.40 (2008).

 The mean ± SEM ratio of P. megacephala to V. segmentata was 1.73 ± 0.027 in 

2007 (n = 334) and 1.80 ± 0.024 in 2008 (n = 308).  There was a statistically signifi cant 

difference in mean number of C. inaequalis when this ratio was < 2 compared to when 

it was ≥ 2 (Table 6.9).  The number of C. inaequalis found with P. megacephala and V. 

segmentata was greater by a factor of 4.75 and 5.00 when the ant:treehopper ratio was < 

2, in 2007 and 2008, respectively, compared to when it was ≥ 2.  Coccinellids were found 

more often in colonies where the ants became outnumbered by the insects they tended.
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 What may be interpreted as a limit to protection by ants on Midway Atoll is 

supported by numerous published studies (Banks 1962, Banks and Macauley 1967, 

Addicott 1979, Cushman and Whitman 1991, Breton and Addicott 1992, Sakata 1994, 

1995). Often, the benefi ts experienced by ant-tended insects are inversely density-

dependent.  Several studies with membracids also documented inverse density 

dependence (Morales 2000a, 2000b).  However, Morales (2000a) found that density 

dependence between membracids and ants was not associated with predators.  Positive 

density-dependence has, however, also been documented for ants and some membracids, 

Publilia modesta Uhler (Cushman and Whitman 1989), Publilia concava Say (McEvoy 

1979), and Enchenopa binotata Say (Wood 1982).  

 These data support studies by Sloggett and Majerus (2000) and Altfeld and Stiling 

(2006, 2008) where coccinellid abundance was greater with ant-tended prey, presumably 

because untended prey was scarce.  Only 19 (5.38%) and 12 (3.75%) stems were 

found with V. segmentata without P. megacephala on Midway Atoll in 2007 and 2008, 

respectively.  These previous studies also suggest that non-myrmecophilous coccinellids 

will only feed on ant-tended prey when untended prey become scarce because, when 

given the choice, coccinellids would rather avoid ant aggression. On Midway Atoll, 

coccinellids were found more often with prey that became numerous with ants.  Prey 

were seldom found untended.  However, when prey numbers exceed half the number 

of tending ants, prey is functionally untended since they cannot be effectively protected 

from predators.  If ant population numbers are limited by (thus rely on) nutrients supplied 

by the insects they tend, ant numbers may correspond with and thus grow in concert with 

tended populations.  However, if ant populations are limited by another resource (such as 
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appropriate nesting substrate), increases in tended insect numbers may provide resources 

beyond what ants require, becoming too much for ants to maintain.  In this case, ants may 

be forced to tolerate the presence of coccinellids, at least until prey numbers fall below 

the untendable threshold.  

Conclusions

 The majority (73%) of studies documented ant interference in coccinellid 

predation on ant-tended herbivores.  An examination of the species assemblage on 

Midway Atoll documented that coccinellids were fi ve times more abundant on plants with 

ratios of ants to membracids of < 2, suggesting that there is a threshold for the ability of 

ants to protect tended herbivores against predation.  Successful predation by coccinellids 

on ant-tended prey may also be due to physical or behavioral adaptations that allow them 

to feed in the presence of ants.  These abilities may be specifi c to the coccinellid species, 

associated with the prey species, and/or their acceptance variable depending on the 

ant species. Additional studies evaluating the same species in its native and introduced 

locations will help discern the broad applicability and fl exibility of existing adaptations 

and the speed at which new adaptations develop.  Additional comparisons between 

different species in the same systems will provide information to evaluate the general 

versus specifi c nature of adaptations. 

 There is evidence supporting both density dependence and inverse density 

dependence between ants and the herbivores that they tend.  The direction of density 

dependence is likely dynamic even within a species assemblage, changing with the 

shifting relative densities of each constituent. Thus, longer-term studies that evaluate 
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population densities (instead of only presence or absence) as well as associated 

behaviors under a variety of conditions may help identify the circumstances under which 

these density relationships change.  Understanding these dynamics will better enable 

stakeholders to better manage natural and agricultural habitats to improve their ecological 

and economic value.



Chapter 7

SUMMARY AND CONCLUSIONS

Summary

 In Table 7.1, the results of chapters two, three, four, and fi ve of this dissertation 

are summarized and presented side-by-side for comparison.  From left to right, seven 

species are ordered from what would generally be considered the most to the least 

favorable result.  For example, the most abundant species is listed on the left and the 

least abundant species is listed on the right.  Similarly, the heaviest (weight) and largest 

(volume) species are listed on the left.  The species that consumed the most aphids is 

listed on the left and the least on the right.  When considering aggressive interactions 

with ants, receiving the least aggression and reacting the least are considered the more 

favorable conditions.

Conclusions

 When considering the evidence from the four chapters collectively, several trends 

are evident.  Harmonia axyridis consumed the most aphids, regardless of the company 

(alone, with conspecifi cs, with other lady beetle species, or with ants) or the aphid 

species, with the exception of the lupine aphid.  When paired with other lady beetle 

species, Harmonia axyridis also had the shortest prey discovery time and generally 

exhibited the most aggression towards other species.  Overall, P. quatuordecimpunctata 

consumed the fewest aphids, but was the most numerous in the survey, suggesting that a 
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lower consumption rate might support greater populations and actually be the favorable 

characteristic (compared with high prey consumption).  Propylea quatuordecimpunctata 

was also among the smallest of the lady beetle species evaluated, suggesting that its 

nutritional needs may be less than the larger species.  The other small species, H. 

variegata, also had low prey consumption, but was the least abundant.  Ant stings 

affected H. variegata and C. septempunctata to a greater extent than other species.  Ants 

displayed a signifi cantly greater amount of aggression towards H. convergens and H. 

variegata compared with P. quatuordecimpunctata.  Propylea quatuordecimpunctata, C. 

trifasciata, and H. axyridis reacted signifi cantly less to ants compared with H. variegata, 

H. convergens, C. maculata, and C. septempunctata.  

 The fi rst two species discussed, H. axyridis and P. quatuordecimpunctata, 

are examples of non-native species that appear to have become well established.  

Hippodamia variegata, another non-native species, did not fare as well in our 

evaluations.  While H. axyridis and P. quatuordecimpunctata did well compared with 

native species, there was not a clear divide between native and non-native species.  

 Studies evaluating relationships between newly sympatric coccinellids, tending 

ants, and plant-feeding insects were summarized in the sixth chapter.  Research has been 

driven by concerns about the effects of invasive ants (primarily Pheidole megacephala,  

Solenopsis invicta, and Linephithema humile) on the effectiveness of pest control by 

coccinellids (primarily Cryptolaemus montrouzieri and C. septempunctata).  Several 

studies found an upper limit to care by ants, where as herbivore numbers increased 

relative to ant numbers, effective protection by ants decreased.  Many studies document 

increases in herbivore numbers due to ant attendance.  Ants interfered with coccinellid 
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predation in 56 of 77 studies.  Results, however, varied depending on the species 

participating in the ant:coccinellid pairings, with the ant, P. megacephala, the most 

effective at preventing predation of herbivores by coccinellids.    

 This research documents the importance of evaluating individual species for their 

invasive potential.  Suggestions for future work include additional evaluations of species-

specifi c interactions and relative population densities, comparisons of species in native 

and non-native ranges, and assessments of the impacts of ant suppression in agricultural 

and non-agricultural systems. 
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Appendix A.  Comparison of four methods used to sample coccinellids.

 Four methods commonly used to sample invertebrate populations were compared 

in the fi eld from June 14 to September 20, 2004, and from July 11 to August 8, 2005:

 Yellow Sticky Traps:  Five, 6 x 12” yellow sticky strips TM (Olson Products, 

Medina, Ohio) with adhesive on both sides were deployed in each habitat in each 

location.  Traps were hung on stakes or directly from the vegetation as close to foliage as 

possible without sticking to it.  Traps were deployed for two weeks in the same location 

unless changes in vegetation necessitated their vertical movement.

 Visual Observation:  Visual observations were conducted at the same sites and 

on the same dates when sticky traps were deployed.  Plants throughout the site were 

carefully inspected for 15 minutes by one fi eld technician, and the number of observed 

coccinellids was recorded.  The observations were made immediately after yellow sticky 

traps were removed and replaced.

 Beating Sheet:  Vegetation from throughout the habitat was shaken and beaten 

with a 24-inch, 1-inch diameter wooden stick for 10 minutes over a 28-in square canvas 

sheet supported by a 37-in wooden frame (BioQuip Products, Inc., Rancho Dominguez, 

California).  Coccinellids that fell onto the canvas sheet were collected.  The sampling 

was conducted immediately after visual observations were completed.  

 Sweep net:  One hundred sweeps of the vegetation were made using a 15-in 

diameter sailcloth net with a 2-ft wooden handle (BioQuip Products, Inc., Rancho 

Dominguez, California).  Samples were collected by sweep net following the collection 

of samples by beating sheet.  Care was taken to intentionally avoid  vegetation that was 

just sampled by beating sheet.  



 The number of individuals collected by each method is listed below by species, 

fi rst by totals for all  habitats combined, then separately for each habitat:
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Psyllobora vigintimaculata 1170 1151 7 9 3 Propylea quatuordecimpunctata 519 509 3 4 3
Propylea quatuordecimpunctata 1149 1115 10 14 8 Coleomegilla maculata 228 226 0 0 2
Coleomegilla maculata 274 271 0 0 3 Psyllobora vigintimaculata 198 189 3 4 2
Coccinella septempunctata 156 99 1 2 44 Harmonia axyridis 44 41 0 1 2
Harmonia axyridis 115 112 0 0 3 Coccinella trifasciata 25 21 1 3 0
Coccinella trifasciata 74 67 0 7 0 Coccinella septempunctata 21 16 0 0 5
Hippodamia parenthesis 56 55 1 0 0 Hippodamia parenthesis 10 9 1 0 0
Hippodamia tredecimpunctata 21 19 0 1 1 Hippodamia tredecimpunctata 5 4 0 0 1
Hippodamia variegata 7 7 0 0 0 Chilocorus sp. 3 3 0 0 0
Mulsantina sp. 7 7 0 0 0 Hyperaspis sp. 2 2 0 0 0
Chilocorus sp. 6 6 0 0 0
Anisosticta bitriangularis 3 3 0 0 0
Hyperaspis sp. 3 3 0 0 0
Coccinella hieroglypyhica 2 2 0 0 0
Epilachna varivestis 2 2 0 0 0
Adalia bipunctata 1 1 0 0 0
Anatis quindecimpunctata 1 0 0 0 1
Calvia quatuordecimguttata 1 1 0 0 0
Coccinella transversoguttata 1 1 0 0 0
Totals 3049 2922 19 33 63 Totals 1055 1020 8 12 15

2004 2005
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Appendix A (Continued).  Comparison of four methods used to sample coccinellids.
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Field
Propylea quatuordecimpunctata 243 224 9 10 0 Propylea quatuordecimpunctata 104 101 1 1 1
Coleomegilla maculata 74 71 0 0 3 Coleomegilla maculata 36 34 0 0 2
Coccinella trifasciata 53 46 0 7 0 Coccinella trifasciata 16 12 1 3 0
Coccinella septempunctata 48 29 1 2 6 Coccinella septempunctata 5 4 0 0 1
Hippodamia parenthesis 19 18 1 0 0 Hippodamia parenthesis 5 4 1 0 0
Hippodamia tredecimpunctata 9 8 0 1 0 Hippodamia tredecimpunctata 2 2 0 0 0
Psyllobora vigintimaculata 4 4 0 0 0 Hyperaspis sp. 2 2 0 0 0
Hyperaspis sp. 3 3 0 0 0 Chilocorus sp. 1 1 0 0 0
Chilocorus sp. 1 1 0 0 0
Calvia quatuordecimguttata 1 1 0 0 0
Coccinella hieroglypyhica 1 1 0 0 0
Coccinella transversoguttata 1 1 0 0 0
Hippodamia variegata 1 1 0 0 0

Grain
Propylea quatuordecimpunctata 235 233 0 0 2 Propylea quatuordecimpunctata 122 119 0 2 1
Coleomegilla maculata 93 93 0 0 0 Coleomegilla maculata 89 89 0 0 0
Coccinella septempunctata 71 33 0 0 38 Coccinella septempunctata 9 7 0 0 2
Harmonia axyridis 21 20 0 0 1 Harmonia axyridis 9 7 0 1 1
Hippodamia parenthesis 18 18 0 0 0 Hippodamia parenthesis 2 2 0 0 0
Psyllobora vigintimaculata 16 16 0 0 0 Psyllobora vigintimaculata 2 2 0 0 0
Hippodamia tredecimpunctata 9 8 0 0 1 Hippodamia tredecimpunctata 3 2 0 0 1
Coccinella trifasciata 8 8 0 0 0 Coccinella trifasciata 3 3 0 0 0
Hippodamia variegata 3 3 0 0 0

Riparian
Psyllobora vigintimaculata 303 295 3 2 3 Psyllobora vigintimaculata 56 54 0 1 1
Propylea quatuordecimpunctata 126 121 0 1 4 Propylea quatuordecimpunctata 47 45 2 0 0
Harmonia axyridis 5 4 0 0 1 Harmonia axyridis 2 2 0 0 0
Anisosticta bitriangularis 3 3 0 0 0
Hippodamia tredecimpunctata 2 2 0 0 0
Adalia bipunctata 1 1 0 0 0
Coccinella septempunctata 1 1 0 0 0
Mulsantina sp. 1 1 0 0 0

Potato
Propylea quatuordecimpunctata 246 242 0 0 2 Propylea quatuordecimpunctata 113 113 0 0 0
Coleomegilla maculata 90 90 0 0 0 Coleomegilla maculata 98 98 0 0 0
Coccinella septempunctata 35 35 0 0 0 Coccinella septempunctata 7 5 0 0 2
Harmonia axyridis 28 27 0 0 1 Harmonia axyridis 6 5 0 0 1
Hippodamia parenthesis 18 18 0 0 0 Hippodamia parenthesis 3 3 0 0 0
Psyllobora vigintimaculata 18 18 0 0 0 Psyllobora vigintimaculata 5 4 0 1 0
Coccinella trifasciata 6 6 0 0 0 Coccinella trifasciata 2 2 0 0 0
Hippodamia variegata 3 3 0 0 0
Hippodamia tredecimpunctata 1 1 0 0 0

2004 2005
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Mixed Forest
Psyllobora vigintimaculata 372 369 1 2 0 Psyllobora vigintimaculata 48 47 1 0 0
Propylea quatuordecimpunctata 41 41 0 0 0 Propylea quatuordecimpunctata 33 33 0 0 0
Coleomegilla maculata 16 16 0 0 0 Coleomegilla maculata 5 5 0 0 0
Epilachna varivestis 2 2 0 0 0
Harmonia axyridis 2 2 0 0 0
Coccinella septempunctata 1 1 0 0 0

Deciduous Forest
Psyllobora vigintimaculata 125 125 0 0 0 Psyllobora vigintimaculata 32 30 1 1 0
Propylea quatuordecimpunctata 74 74 0 0 0 Propylea quatuordecimpunctata 30 30 0 0 0
Coccinella trifasciata 3 3 0 0 0 Coccinella trifasciata 3 3 0 0 0
Anatis quindecimpunctata 1 0 0 0 1
Chilocorus sp. 1 1 0 0 0
Harmonia axyridis 1 1 0 0 0

Coniferous Forest
Psyllobora vigintimaculata 23 23 0 0 0 Psyllobora vigintimaculata 5 5 0 0 0
Mulsantina sp. 6 6 0 0 0
Chilocorus sp. 1 1 0 0 0

Apple
Harmonia axyridis 57 57 0 0 0 Harmonia axyridis 27 27 0 0 0
Psyllobora vigintimaculata 18 18 0 0 0 Psyllobora vigintimaculata 7 7 0 0 0
Propylea quatuordecimpunctata 4 4 0 0 0
Coleomegilla maculata 1 1 0 0 0

Shrub
Psyllobora vigintimaculata 291 283 3 5 0 Psyllobora vigintimaculata 43 40 1 1 1
Propylea quatuordecimpunctata 180 176 1 3 0 Propylea quatuordecimpunctata 70 68 0 1 1
Coccinella trifasciata 4 4 0 0 0 Coccinella trifasciata 1 1 0 0 0
Chilocorus sp. 3 3 0 0 0 Chilocorus sp. 2 2 0 0 0
Coccinella hieroglypyhica 1 1 0 0 0
Harmonia axyridis 1 1 0 0 0
Hippodamia parenthesis 1 1 0 0 0

2004 2005

Appendix A (Continued).  Comparison of four methods used to sample coccinellids.

 Yellow sticky traps collected the greatest numbers of individuals and the greatest 

numbers of species, compared with the other sampling techniques.  Overall, yellow 

sticky traps collected 10 species in 2004 and two species in 2005 that were not collected 

by the other collection methods.  With only one exception, all species collected by 

beating sheet, sweep net, and visual observation were also collected by yellow sticky 
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traps, but in much greater numbers.  Yellow sticky traps collected 22.82 (n = 37, SE = 

5.14) times more beetles than all other methods combined.  The exception, one individual 

of Anatis quindecimpunctata, was collected by visual observation from the stake holding 

the yellow sticky trap, approximately one inch below the yellow surface of the trap.  

Yellow sticky traps were only outperformed regarding the number of individuals of 

a given species collected in one instance.  In 2004, 38 C. septempunctata individuals 

were documented during one observation period in grain, from what appeared to be the 

emergence of an overwintering group of adults.
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