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Managing uneven-aged, mixed-species stands requires balancing the need for high 

leaf area allocation in the overstory where it is most efficient versus the need to allow for 

sufficient growth of younger cohorts in the understory. To help forest managers make 

informed decisions to maintain this balance, the understory growth dynamics of northern 

conifer species in stands managed under uneven-aged silvicultural systems were studied. 

Sapling height growth of Picea rubens Sarg., Abies balsamea (L.) Mill, and Tsuga 

canadensis (L.) Carr. were modeled as a function of overstory canopy openness (gap 

fraction) using regression analysis. Research was conducted in four uneven-aged 

northern conifer stands on the Penobscot Experimental Forest in eastern Maine; two 

replicates each of selection cutting on five- and ten-year cycles. Gap fraction estimates 

were obtained directly above 167 sample trees between 0.5-6.0 m in height, using a LI- 

COR LAI-2000 plant canopy analyzer. These estimates were tested in several model 

forms along with initial tree height to predict sapling height growth. The effect of 



different vertical distributions of foliage on sapling height growth was also explored 

using analysis of covariance. Using cluster analysis, plots were grouped into one of three 

categories based on similar vertical leaf area structure. Species-specific height growth 

was then compared between groups of similar vertical structure using initial tree height as 

a covariate. 

An innovative method employing vertical point sampling was used to obtain leaf 

area estimates to quantify plot-level vertical leaf area structure. To validate the use of 

vertical point sampling, plot-level leaf area index (LAI) and basal area (BA) estimates 

based on vertical point sampling were compared with conventional horizontal point 

sampling using a 2 m2/ha basal area factor (BAF) prism. Tree-level LA1 estimates were 

replaced with specieslspecific constants based on projected leaf area (PLA)-height 

squared and PLA-DBH' linear regression coefficients in an effort to develop a quick and 

accurate method to estimate LA1 in the field using both vertical point sampling and prism 

sampling. Leaf area index measurements, BA, and tree tallies from vertical point 

sampling were also related to gap fraction measurements to determine if an efficient 

method for in-the-field gap fraction estimation could also be developed. 

Regression modeling demonstrated that sapling height growth of all three species 

followed a monotonically increasing pattern with respect to decreasing canopy closure. 

Abies balsamea appeared to be the most aggressive competitor demonstrating the greatest 

response to changes in gap fraction while Tsuga canadensis appeared to be the least 

responsive to changes in gap fraction. Although total plot-level LA1 was not significant in 

predicting height growth in these complex stands, the vertical distribution of leaf area 

was. While height growth of Abies balsamea and Tsuga canadensis were not significantly 



different between vertical leaf area structures, height growth of Picea rubens was 

significantly higher in plots with well-developed understories with high LAI, regardless 

of overstory LAI. 

Vertical point sampling showed strong promise in providing LA1 estimates, and in 

particular facilitating in-the-field LA1 estimation with the use of species-specific tree- 

level LA1 constants that remove the need for individual tree measurements. More field- 

testing of this technique needs to be done. Simple vertical point sample measures were 

not successful in accurately predicting gap fraction. 



ACKNOWLEDGMENTS 

First of all I would like to thank my advisor Bob Seymour for all his work and 

dedication to this project. I feel very fortunate to have had the privilege to work with him 

over the last two years. His knowledge, enthusiasm, and wisdom have helped me along 

tremendously and contributed to my progression as a scientist. I would like to thank my 

committee member Laura Kenefic. Her help and dedication has been instrumental in 

helping this project come together. It has been a true privilege to work with her and share 

our friendship. I would like to thank committee members Michael Day and Jeremy 

Wilson for their support, invaluable input, willingness to help me along with this project. 

I would like to thank my field assistants, Ted Chernesky and Justin DeRose for all their 

help and good company in the field, including getting up at three in the morning to take 

light measurements. I would like to thank my field assistant Leah Phillips for putting up 

with 10" F weather in December to help me get my data collected in one season, and for 

an excellent friendship over the last two years. Thanks to Dr. Bill Halteman for his advice 

and help with my statistics, thanks to Mike Saunders for all his help and instruction with 

the LICOR LAI-2000, and thanks to all my professors for their contribution to my 

education here. 

I would like to thank all the other graduate students here for their support and 

friendship making my time here at University of Maine memorable. They include Mandy 

Farrar, Erin Small, Andy Reinmann, Isaac Annis, Maggie Ward, Micah Pace, Darci 

Schofield, Justin DeRose, Bob Grabowski, Ryan Weatherbee, and Jesse Muhlin. Finally I 

would like to thank my family and all my other friends for their support and 

encouragement over the past two years. 



TABLE OF CONTENTS 

. . 
................................................................................................... ACKNOWLEDGMENTS 11 

. . ............................................................................................................. LIST OF TABLES vii 

............................................................................................................ LIST OF FIGURES ix 

Chapter 

1 . OVERSTORY INFLUENCE ON UNDERSTORY GROWTH 

DYNAMICS OF SHADE TOLERANT NORTHERN CONIFERS IN 

UNEVEN.AGED. MIXED-SPECIES STANDS .................................................... 1 

Introduction .................................................................................................. 1 

........................................................................................................ Methods 6 

Study Site ......................................................................................... 6 

............................................................................. Sampling Scheme 7 

.............................................................................. Data Collection 10 

Gap Fraction Measurements .............................................. 10 

Height Growth Measurements ........................................... 12 

..................................................... Vertical Point Sampling 12 

................................................................................. Data Analysis 14 

................................................... Height Growth Modeling 14 

............................................................... LA1 Calculations -16 

............................................................... LA1 Stratification 19 

............................................... Vertical Structural Analysis 20 



iv 

........................................................................................................ Results 21 

...................................................... Annual Height Growth Models 21 

.................................................................. Abies balsamea 23 

...................................................................... Picea rubens -23 

.............................................................. Tsuga canadensis -23 

Vertical Structural Analysis ........................................................... 29 

Plot-level LA1 .................................................................... 29 

................... Vertical Leaf Area Structure Cluster Analysis 29 

...................................................... Analysis of Covariance 30 

.................................................................................................. Discussion 38 

Abies balsamea .............................................................................. 38 

................................................................................... Picea rubens 39 

.......................................................................... Tsuga canadensis -42 

Species Comparisons ..................................................................... 45 

......................................................... Sources of Model Variability 46 

........................................... Effects of Diffuse versus Direct Light 51 

LA1 Height Growth Predictions ..................................................... 52 

Vertical Structural Analysis ........................................................... 53 

Conclusions and Silvicultural Implications ............................................... 55 



2 . THE USE OF VERTICAL POINT SAMPLING AS A TOOL TO 

................................ ESTIMATE LEAF AREA INDEX AND GAP FRACTION 57 

............................................................................................... Lntroduction -57 

..................................................................................................... Methods -60 

Study Site ....................................................................................... 60 

........................................................................... Sampling Scheme 61 

Data Collection .............................................................................. 62 

Gap Fraction Measurements .............................................. 62 

Vertical Point Sampling ..................................................... 64 

Data Analysis ................................................................................. 65 

Basal Area Estimation ........................................................ 65 

Stand LA1 Calculations ...................................................... 65 

Vertical Point Sample LA1 Calculations ................ 66 

Prism Sample LA1 Calculations ............................. 67 

LA1 Estimates Based on Height Squared 

Regression Coefficients ......................................... 69 

LA1 Estimates Based on DBH Squared 

Regression Coefficients ......................................... 69 

Comparison of LA1 Estimates ............................................ 70 

Gap Fraction Predictions Based on Vertical Point 

........................................................................... Sampling -70 

............................................................ In-tree LA I.. 72 



vi 

............................................................ In-cone LA1 72 

Results ........................................................................................................ 73 

.................................................................... Basal Area Estimation 73 

............................................................................... LA1 Estimation 73 

Projected Leaf Area Versus Height Squared 

......................................................... Regression Estimates 74 

Projected Leaf Area Versus DBH Squared 

Regression Estimates ......................................................... 74 

Vertical Point Sampling Versus Prism Sampling .............. 75 

Vertical Points Sampling - Height Squared 

Regression Comparison ..................................................... 75 

Prism Sampling - DBH Squared Regression 

..................................................................... Comparison -75 

Height Squared Regression Estimates Versus DBH 

Squared Regression Estimates ........................................... 76 

........ Gap Fraction Predictions Based on Vertical Point Sampling 78 

.................................................................................................. Discussion 84 

Conclusions and Silvicultural Implications ............................................... 89 

............................................................................................................. BIBLIOGRAPHY -90 

APPENDIX . Projected Leaf Area Versus Height Squared and DBH 

Squared Scatter Plots By Species ............................................................... 99 

.................................................................................. BIOGRAPHY OF THE AUTHOR 105 



vii 

LIST OF TABLES 

Table 1.1 Linear and nonlinear regression models tested to predict 

Abies balsamea, Picea rubens, and Tsuga canadensis height 

growth from initial height and gap fraction ............................................... 16 

Table 1.2 Projected leaf area equations used with coefficients and citations ............ 17 

Table 1.3 Specific leaf area (SLA) for all species tallied in the in vertical 

. . 
point samples with citations ....................................................................... 18 

Table 1.4 Adjusted R2 values, Furnival's Index of Fit and p-values for 

parameter estimates by species for all linear height growth 

models tested.. ............................................................................................ 22 

Table 1.5 Corrected R2 values and Furnival's Index of Fit for all weighted 

and unweighted models tested to predict Abies balsamea height 

growth ........................................................................................................ 24 

Table 1.6 Corrected R2 values and Furnival's Index of Fit for all transformed 

models tested to predict Picea rubens height growth ................................ 25 

Table 1.7 Corrected R2 values and Furnival's Index of Fit for all weighted 

and unweighted models tested to predict Tsuga canadensis height 

growth.. ..................................................................................................... -26 

Table 1.8 Comparison of non linear power function models by species to 

predict height growth, with and without plot-level LA1 as a 

predictor variable ....................................................................................... 3 1 



Table 1.9 

Table 1.10 

Table 1.1 1 

Table 1.12 

Table 1.13 

Table 2.1 

Table 2.2 

Table 2.3 

Table 2.4 

Table 2.5 

Table 2.6 

... 
V l l l  

Number of plots and mean LA1 characteristics for vertical LA 

structures ................................................................................................ 3 1 

Analysis of covariance table describing AAHINC as a function of 

................ species, vertical LA structure, and initial height of sample tree 34 

Adjusted Least Squares Mean AAHINC (m) by species and 

...................................................................................................... structure 35 

Bonferroni painvise comparisons between structures for each 

species with 95% and 90% family confidence intervals ............................ 36 

Bonferroni painvise comparisons between species within each 

......................................... structure with 95% family confidence intervals 37 

PLA equations with coefficients and citations ........................................... 67 

Specific leaf area (SLA) for all species included in vertical point 

sample tallies with citations ....................................................................... 68 

Mean plot-level LA1 estimates based on the four different 

estimation methods .................................................................................... 76 

......... Tree-level LA1 constants based on P L A - H ~ ~  regression coefficients 77 

Tree-level LA1 constants based on PLA-DBH2 regression 

coefficients.. .............................................................................................. -78 

Adjusted R2 values, mean square error (MSE), and p-values of 

parameter estimates for all predictive models of gap fraction that 

were tested ................................................................................................. 82 



LIST OF FIGURES 

Figure 1.1 Gap fraction distribution of all grid points that were somewhat 

poorly drained or better on both the five-year selection and 

.............................................................................. ten-year selection stands 9 

Figure 1.2 Scatter plot of Abies balsamea average annual height increment 

(AAHINC) and gap fraction, with best-fit model height curves 

for initial Abtes balsamea heights of 0.72 m, 1.86 m, and 3.86 m ............ 27 

Figure 1.3 Scatter plot of Picea rubens average annual height increment 

(AAHINC) and gap fraction, with best-fit model height curves for 

initial Picea rubens heights of 0.63 m, 2.13 m, and 3.83 m ...................... 27 

Figure 1.4 Scatter plot of Tsuga canadensis average annual height increment 

(AAHINC) and gap fraction, with best-fit model height curves for 

initial Tsuga canadensis heights of 0.73 m, 2.28 m, and 4.16 m ............... 28 

Figure 1.5 Hierarchical clustering diagram of subsample plots based on 

. . .  
vertical leaf area distribution ...................................................................... 32 

Figure 1.6 Average plot-level vertical LA1 distributions for each structure ............... 33 

Figure 1.7 Understory height-age curves for Picea rubens saplings growing 

under gap fraction values of 0.10, 0.40, and 0.70, and 1.0 ........................ 41 

Figure 1.8 Height growth curves for Abies balsamea, Picea rubens, and 

Tsuga canadensis based on best fit models for each species, at an 

............................................................................... initial height of 2.18 m 47 



Figure 1.9 Understory height-age curves for Abies balsamea, Picea rubens, 

and Tsuga canadensis growing under average levels of canopy 

..................................................................... closure in the stands sampled 48 

Figure 2.1 Scatter plot of plot-level basal area estimates (BA) using vertical 

point sampling and prism sampling with a one-one line for 

comparison ................................................................................................ .74 

Figure 2.2 Scatter plot of plot-level LA1 estimates using vertical point 

sampling and prism sampling with a one-one line for comparison ........... 79  

Figure 2.3 Scatter plot of vertical point sample plot-level LA1 estimates based 

tree-level LA1 calculations and regression coefficient based 

tree-level LA1 estimates with a one-one line for comparison .................... 79 

Figure 2.4 Scatter plot of prism sample plot-level LA1 estimates based on 

tree-level LA1 calculations and regression coefficient based 

tree-level LA1 estimates with a one-one line for comparison .................... 80 

Figure 2.5 Scatter plot of vertical point sample plot-level LA1 estimates based 

on Ht2 regression coefficients for tree-level LA1 and prism sample 

plot-level LA1 estimates based on DBH2 regression coefficients for 

tree-level LA1 estimates with a one-one line for comparison .................... 8 0  

Figure 2.6 Scatter plot of plot-level LA1 and gap fraction fit with a negative 

exponential curve demonstrating the lack of a relationship between 

........................................................................................ the two measures 83  



Figure 2.7 Scatter plot of in-cone LA1 and gap fraction fit with a negative 

exponential curve demonstrating the relationship between the two 

measures.. .................................................................................................. -83 

Figure A. 1 Scatter plot of individual tree projected leaf area (PLA) versus 

height squared for Abies balsamea ............................................................ 99 

Figure A.2 Scatter plot of individual tree projected leaf area (PLA) versus 

.............................................................. DBH squared for Abies balsamea 99 

Figure A.3 Scatter plot of individual tree projected leaf area (PLA) versus 

height squared for Picea rubens ............................................................... 100 

Figure A.4 Scatter plot of individual tree projected leaf area (PLA) versus 

................................................................ DBH squared for Picea rubens 100 

Figure A.5 Scatter plot of individual tree projected leaf area (PLA) versus 

height squared for Tsuga canadensis ....................................................... 101 

Figure A.6 Scatter plot of individual tree projected leaf area (PLA) versus 

......................................................... DBH squared for Tsuga canadensis 101 

Figure A.7 Scatter plot of individual tree projected leaf area (PLA) versus 

.............................................................. height squared for Pinus strobus 102 

Figure A.8 Scatter plot of individual tree projected leaf area (PLA) versus 

............................................................... DBH squared for Pinus strobus 102 

Figure A.9 Scatter plot of individual tree projected leaf area (PLA) versus 

height squared for Thuja occidentalis ...................................................... 103 



xii 

Figure A. 10 Scatter plot of individual tree projected leaf area (PLA) versus 

DBH squared for Thuja occidentalis ....................................................... 103 

Figure A. 1 1 Scatter plot of individual tree projected leaf area (PLA) versus 

height squared for all hardwood species .................................................. 104 

Figure A. 12 Scatter plot of individual tree projected leaf area (PLA) versus 

DBH squared for all hardwood species .................................................... 104 



CHAPTER 1. 

OVERSTORY INFLUENCE ON UNDERSTORY GROWTH 
DYNAMICS OF SHADE TOLERANT NORTHERN CONIFERS IN 

UNEVEN-AGED, MIXED-SPECIES STANDS 

INTRODUCTION 

There is an increased interest in maintaining complex mixed-species, uneven-aged 

stands in forestry today. These stands meet many non-timber objectives and maintain 

non-timber values by conserving important ecological characteristics of the forest. 

Maintaining these types of stands is especially applicable in Maine where the natural 

disturbance regime is dominated by small partial disturbances resulting in a naturally 

uneven-aged, mixed-species forest structure (Seymour et al. 2002). The growth dynamics 

of these stands are very complicated and poorly understood and thus present a challenge 

to foresters trying to manage complex stands through uneven-aged silviculture. This often 

results in mismanagement or conversion to simpler, better understood even-aged 

silvicultural systems. 

While maintaining complex stands helps meet many non-timber objectives, 

maintaining high productivity is also key to meeting timber supply objectives. Stand-level 

stemwood volume increment is highly correlated to leaf area index (LAI), which is 

defined as leaf area per unit area of ground (Kenefic 2000; 0'Hara et al. 2001). 

Maintaining high productivity requires maintaining high stand-level leaf area. Although 



each stand has a maximum potential leaf area (Long and Smith 1984), additional 

productivity can be achieved by maximizing the growth efficiency. Stemwood growth 

efficiency (GE) is defined as stemwood volume increment per unit of foliage (Seymour 

and Kenefic 2002). 

Tree-level GE in complex northern conifer stands has been shown to exhibit a 

peaking pattern with respect to tree-level projected leaf area (PLA) (Seymour and Kenefic 

2002). Growth efficiency initially increases with increasing PLA as a tree rises through 

the canopy and achieves improved light conditions. Maximum GE occurs once the tree 

reaches the main canopy and experiences full light conditions. From that point, GE was 

found to decline with'continued crown expansion, holding age constant (Seymour and 

Kenefic 2002). Maximum tree-level GE therefore occurs for small crowned trees in the 

upper strata. At a stand level, O'Hara et al. (2001) found that overall stand-level volume 

increment decreased in Picea abies (L.) Karst. (Norway spruce) and Pinus sylvestris L. 

(Scots pine) stands as the portion of stand-level LA1 occupied by the understory increased 

relative to that in the overstory. 

Age becomes a confounding factor in the GE-PLA relationship. While older trees 

tend to have larger, less efficient crowns, reductions in growth efficiency are also the 

result of advanced age, independent of crown size or canopy stratum (Seymour and 

Kenefic 2002). Evidence of past suppression has also been shown to be correlated with 

decreases in growth efficiency for Picea rubens Sarg. (red spruce) (Maguire et al. 1998). 

This introduces a trade-off in managing complex northern conifer stands for maximum 

GE. Maximizing current GE would require maintaining a large portion of the stand. leaf 
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area in the upper stratum where trees are most efficient. By allocating too much leaf area 

to the upper stratum however, one may risk suppressing understory trees. The negative 

relationship between age, past suppression and GE suggests that potential GE may be 

compromised by suppressing the understory for extended periods of time. Timely 

advancement of seedlings and saplings through the understory and into higher strata is 

therefore necessary for maintaining productive and efficient multi-storied stands. 

In order to balance a well-stocked upper stratum of growth efficient trees with 

adequate understory height growth, one must quantify the relationship between overstory 

density and understory height growth. Overstory density affects sapling height growth 

through a variety of mechanisms including air and soil temperature, relative humidity, 

soil moisture and nutrient availability (Norman and Campbell 1989; Bazzaz and Wayne 

1994; Man and Lieffers 1997; Palik et al. 1997; Jennings et al. 1999). The effect that 

-'overstory competition has on understory light levels is of primary importance. Particularly 

in conditions of high overstory density, light is the limiting resource to sapling growth 

(Carter and Klinka 1992; Klinka ef  al. 1992; Parent and Messier 1995; Finzi and 

Canham 2000; Duchesneau et al. 200 1). 

The conifer species that dominate the stands in this study, Abies balsamea (L.) 

Mill.(balsam fir), Picea rubens, and Tsuga canadensis (L.) Can. (eastern hemlock), are 

shade tolerant and capable of responding to release after prolonged periods of suppression 

in the understory (Blum 1990; Frank 1990; Godman and Lancaster 1990; Seymour 1992). 

Previous studies looking at seedling and sapling growth of these three species have found 

either a peaking trend in growth with respect to increasing light conditions ( Logan 1969; 
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McConville 1998), or a monotonically increasing pattern of height growth with respect to 

increasing light (Parent and Messier 1995; Finzi and Canham 2000; Duchesneau et al. 

2001). 

Complex uneven-aged stands exhibit very irregular canopies with diverse vertical 

arrangements of leaf area (Seymour and Kenefic 1998). The quantity and quality of light 

reaching the understory is dependent on both the amount of overstory foliage, and its 

vertical distribution (Jarvis and Leverenz 1983; Sampson and Smith 1993; Baldocchi and 

Collineau 1994; Lieffers et a1. 1999). 

Light in canopies comes in the form of direct light from the solar disc and diffuse 

light from atmospheric scattering (which comes from all parts of the sky). Vertical leaf 

area distribution affects the proportion of direct to diffuse light in the understory, and thus 

influences the type of shade cast on vegetation (Baldocchi and Collineau 1994; Oliver 

and Larson 1996; Drever and Lertzman 2003). Conditions of high shade occur when there 

is large vertical distance from the shading foliage. This creates conditions of low-intensity 

uniform diffuse light conditions (Oliver and Larson 1996). These moderate shading 

conditions have been shown to promote greater seedling growth than lower light levels 

that are augmented periodically throughout the day by direct radiation in the form of 

sunflecks, even when the total amount of light is the same for the two conditions (Lieffers 

et al. 1999). 

The purpose of this study was to explore the growth dynamics of understory trees 

in uneven-aged, mixed-species northern conifer stands dominated by Abies balsamea, 

Picea rubens, and Tsuga canadensis. The objectives were to 1) model sapling height 



growth of these three species as a function of overstory density; 2) explore the influence 

of heterogenous vertical canopy structure on understory growth; and 3) use these 

relationships to determine maximum overstory densities and vertical distributions of 

foliage that facilitate adequate understory height growth. 

The hypotheses tested regarding sapling height growth with respect to overstory 

density and canopy structure in mixed-species, uneven-aged northen conifer stands are as 

follows: 

(1) (H,): Sapling height growth is equivalent across overstory densities that exist in 
mixed-species, uneven-aged northen conifer stands. 

(H,): Sapling height growth increases in a linear pattern with respect to decreasing 
overstory density. 

(H,): Sapling height growth peaks under conditions of moderate overstory density 
and decreases as overstory density approaches high values or low values. 

(H,): Sapling height growth follows a monotonically increasing pattern with 
respect to decreasing overstory density. 

(2) (H,): Sapling height growth is equivalent across varying canopy structures that 
exist in mixed-species, uneven-aged northen conifer stands. 

(H,): Sapling height growth responds differently to different arrangements of 
vertical foliage distribution. 



METHODS 

Study Site 

Four mixed-species, uneven-aged stands located on the 1540-ha Penobscot 

Experimental Forest (PEF) in Bradley, Maine were used in this study. This experimental 

forest, owned by the University of Maine, is located at approximately 44O52' N and 

6S038'W. It is the site of a long-term silvicultural research project established by the 

USDA Forest Service in the 1950s and includes both even-aged and uneven-aged 

silvicultural treatments (Seymour and Kenefic 1998).Two of the stands included in this 

study, C9 and C16, are replicates of selection cutting on a five-year cycle, while the other 

two, C12 and C20, are replicates of selection cutting on a ten-year cutting cycle. The 

structural goal for these stands is defined by the BDq method (Guldin 1991). The two 

replicates of the five-year selection cutting have a q-factor of 1.96 on 5-cm diameter 

classes, a target residual basal area of 26 m2/ha, and a maximum residual diameter goal of 

48 cm. The two replicates of the ten-year selection cutting also have a q factor of 1.96, a 

target residual basal area of 23 m2/ha, and a maximum residual diameter goal of 46 cm 

(Brissette and Kenefic 1999). 

The PEF lies within the Acadian Forest Region, a transitional forest between the 

broadleaf forest to the south and the boreal forest to the north. The natural disturbance 

regime is dominated by sporadic partial disturbances such as insect epidemics and 

windstorms. Species composition is mixed and highly variable due to differences in soil 

drainage and stand structural condition. Dominant conifers on the PEF include Picea 
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rubens, Picea glauca (Moench) Voss (white spruce), Abies balsamea, Thuja occidentalis 

L. (northern white cedar), Pinus strobus L. (eastern white pine), and Tsuga canadensis. 

The more common hardwoods in this area are Acer rubrum L. (red maple), Betula 

papyrifera Marsh. (paper birch), Betula populifolia Marsh. (gray birch), Betula 

alleghaniensis Britt. (yellow birch), Populus tremuloides Michx.(quaking aspen), and 

Populus grandidentata Michx. (bigtooth aspen). Glacial till is the principal soil parent 

material with soil types ranging from well-drained loams and sandy loams on low-profile 

ridges to poorly drained and very poorly drained loarns and silt loams in flat areas 

between the ridges (Brissette et al. 1999; Brissette and Kenefic 1999). 

Sampling Scheme 

A 25-m systematic grid was established on these stands in 1995 (Kenefic 2000), 

with soil drainage class being recorded for each grid point. Only grid points with well 

drained, moderately well drained, or somewhat poorly drained soils were considered for 

this study. T o  ensure that the light environment in 2002 was representative of the light 

environment during the five years prior to 2002, a grid point was excluded if there was 

evidence of cutting within a 5.7 m radius of the grid point over the last five years. This 

was determined by searching for recent stumps in conjunction with knowledge of 

previous harvest dates. Grid points where there was a large hardwood influence in the 

overstory (defined as having at least one hardwood tree greater than 10 cm DBH within a 

5.7 m radius of the grid point) were also excluded. If the grid point was acceptable, then 

all Abies balsamea, Picea rubens, and Tsuga canadensis saplings greater than 50 cm in 
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height were tallied within a 1/200-ha circular plot (4-m radius) centered at the grid point. 

Saplings were divided into one of three height classes: 0.5-2 m, 2-4 m, and 4-6m. In July 

2002, all grid points that were somewhat poorly drained of better were re-visited and their 

light environment was characterized by measuring a gap fraction value (a measure of 

canopy openness) 1.6 m directly above the grid point. Gap fraction was measured at 171 

grid points over the four stands using a LI-COR LAI-2000 Plant Canopy Analyzer (LAI- 

2000). This provided an overall gap fraction distribution for both the five-year selection 

stands and the ten-year selection stands (Figure 1.1). 

The target sample included 180 sample trees consisting of 20 trees per species per 

height class distributed over the acceptable grid points. For each species and height class, 

20 grid points were chosen as the site of a sample tree according to the following 

priorities: 1) to evenly span the range of available light conditions so that open conditions 

were represented on an equal basis to more closed conditions (as much as stand light 

conditions permitted); and 2) to choose points where the species and height class in 

question was most abundant. Each chosen grid point was revisited and a sapling of the 

appropriate height class and species was randomly chosen within a 4-m radius of the grid 

point. No more than one tree per species was sampled at each grid point. 



OFive Year Selection 
Stands 

T e n  Year Selection 
Stands 

Gap Fraction Class 

Figure 1.1 Gap fraction distribution of all grid points that were somewhat poorly drained 
or better on both the five-year selection and ten-year selection stands. The five-year 
selection stands contained 113 plots with an average gap fraction value of 0.21. The ten- 
year selection stands contained 59 plots with an average gap fraction value of 0.16. 



Data Collection 

Gap Fraction Measurements 

Canopy closure, which is directly related to the understory light regime, was 

measured by taking gap fraction readings using the LA1 2000. Readings were taken from 

mid-August to mid-September in 2002. The LAI-2000, which measures diffuse non- 

intercepted light, is composed of two sensors, each connected to its own control unit to 

record measurements. One is set up in the open (the base sensor), while the other sensor 

takes readings below the canopy. Each sensor has a 150" field-of-view lens positioned 

above five concentric light detecting silicon rings that allow it to receive and measure 

light from five different zenith angles (0- 13", 16-28", 32-43", 47-58", and 61 -74") 

simultaneously. Gap fraction or canopy transmittance represents the probability of 

unimpeded light penetration through the canopy. It is calculated by using the relationship 

between below-canopy intensity of diffuse non-intercepted light with a simultaneous 

measurement taken by a base sensor located above the canopy, usually at a nearby open 

site (Chanson et al. 1991; LI-COR 1992; Lieffers et al. 1999). 

To avoid bias from direct beam sunlight, readings were taken within an hour of 

sunrise and sunset or on uniformly overcast days. The base sensor was set up on a tripod 

in the middle of an open field that was, depending on the stand, 1 km to 2.2 km from the 

sample sites. Distance between the base sensor and sample sites varied between 

approximately It was synchronized with the below-canopy sensor, and automatically 

logged readings every 15 seconds. 



1 1  

The below-canopy sensor was mounted to a PVC height pole, and raised to the 

leader of each sample tree, where four readings were taken. The pole was rotated 90" 

between readings. Depending on the height class of the tree, the below-canopy sensor was 

then raised directly above the sample tree to successive fixed heights. For trees between 

0.5-2 m, the sensor was raised to 2.9 m, 5.5 m, 8.4 m, and 11.5 m. The readings at 2.9 m 

were skipped for trees in the 2-4 m height class, and both the 2.9 m readings and 5.5 m 

readings were skipped for trees in the 4-6 m height class. At each height, four readings 

were taken with the height pole being rotated 90" between readings. A carpenter's level 

was clamped to the base of the height pole, and the base of the height pole was leveled 

before each reading was taken. Due to the flexibility in the height pole however, it was 

impossible to level the sensor. Rotating the height pole between each reading at a 

particular height was an attempt to make sure the entire sky was sampled evenly. The four 

readings were averaged to give one gap fraction reading at each height. No lens cap was 

used for either sensor due to the inability to control the orientation of the below-canopy 

sensor higher in the canopy. Extreme care was taken to ensure that workers were not 

visible to the lens. 

Gap fraction estimates were based on readings from the two innermost rings. This 

corresponds to a zenith angle of 28.6". Extending the field of view of the LAX-2000 to the 

widest angles integrates canopy conditions over a larger area. This results in a 

homogenizing of conditions which decreases the range and variance of the estimates 

(Bunnell and Vales 1989). While the inner three rings (corresponding to a zenith angle of 

47") could have been used, we planned to estimate stand characteristics (including leaf 
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area index) using vertical point sampling and equate these to the gap fraction readings. 

Time limitations therefore forced us to use as few of the inner LAI-2000 rings as possible, 

thereby restricting the field of view and keeping the number of trees tallied in the vertical 

point sampling down to a manageable number. Other scientists (Biging and Dobbertin 

1992; Puettmann and D'Amato 2002) have found that extending an angle of view beyond 

a zenith angle of 30" to select competitors does not improve height and diameter growth 

models. 

Height Growth Measurements 

Height growth measurements were taken between mid-August and late September 

in 2002. The distance from the base to the top of the tree, and the distance from the base 

to the first five nodes were measured for each sample tree using a PVC height pole or a 

measuring tape. Diameter at 5 cm above the trunk base of each tree was measured. For 

trees taller than 1.3 m, diameter at breast height was measured. 

For some Tsuga canadensis trees, or Picea rubens and Abies balsamea trees 

which were severely suppressed, not all five nodes could be positively identified. In those 

cases, the height of each node was measured only down to the lowest positively identified 

node. 

Vertical Point Sampling 

In an effort to explore the effect of canopy structure on height growth, vertical 

point sampling was employed to develop detailed canopy architecture descriptions for a 
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subsample of the original saplings. This is a relatively unknown and unprecedented 

sampling method to detail canopy architecture. It was chosen over prism sampling and 

fixed radius plots for several reasons, including the uniqueness of the methodology. 

Projecting an inverted cone vertically through the canopy best simulates what the LAI- 

2000 is sensing, and vertical point sampling also has the advantage of quantifying 

vegetation of different strata into a single measure (Puettmann and D' Amato 2002). 

The original sample of Picea rubens trees was divided into gap fraction classes of 

10%. Within each 10% gap fraction class, Picea rubens trees were sorted into the top 

quartile, the middle 50%, and the lowest quartile of height growth. One tree was selected 

from each of the three groups so that for each approximate light environment, a relatively 

fast growing tree, a average growing tree, and a slow growing tree were included in the 

subsample. In total, twenty three Picea rubens trees were chosen (not all gap fraction 

classes contained three trees). All Abies balsamea, and Tsuga canadensis trees located at 

the same grid point as a chosen Picea rubens tree were included in the subsample. A total 

of twenty four Abies balsamea and twenty two Tsuga canadensis trees were included in 

the subsample. Each subsample tree became its own plot center. 

An inverted cone was projected from 1 m above the ground at each sample tree at 

a zenith angle of 28.6" using a clinometer. This angle was chosen to simulate the field of 

view of the first two rings of the LAI-2000. Each tree that intersected the inverted cone 

was marked, and its species, stratum, height, height to live crown (defined as lowest live 

branch for Picea rubens, Tsuga canadensis, and Pinus strobus, Thuja occidentalis, and 

defined as lowest live whorl for Abies balsamea), DBH, and horizontal distance to the 
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sample tree was recorded. Borderline trees whose inclusion in the vertical point sample 

was questionable were tallied, and excluded later in the analysis if necessary by 

calculating the limiting distance of inclusion for that tree (which was proportional to the 

height of the tree). 

Data Analysis 

Height Growth Modeling 

Average annual height increment (AAHINC) was calculated by summing the 

internodal distances measured and dividing by the number of nodes. Several linear and 

non-linear models (Table 1.1) were fit to predict AAHINC for each species using initial 

height (M)  and gap fraction reading at the tree leader (DIFN1) as predictor variables. The 

following alternative hypotheses of height growth response with respect to increases in 

gap fraction were tested: 1) a linear increase, 2) a curvilinear monotonic increase, and 3) a 

peaking pattern at intermediate gap fraction values. For 2"* order polynomial models, the 

gap fraction reading was replaced with its deviation from the mean gap fraction reading 

(difnli = DIFN l i  - DIFN 1 ,,,,) to deal with the problem of multicollinearity (Neter et al. 

1996). 

The models were fit using SYSTAT v. 10.2. Residual plots for both predictor 

variables were examined to check for constancy of error variance, and Lilliefor's test was 

conducted to ensure normal error variance. Abies balsamea and Tsuga canadensis height 

growth models were weighted by (M)-' and (El)-' to correct for increasing error variance 
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with respect to increasing initial height, and natural log transformations were applied to 

AAHINC for all Picea rubens models to address non-normal error distributions (Neter et 

al. 1996). Generalized R' values (Kvalseth 1985) were calculated for all weighted and. 

transformed models. Furnival's index of fit (FI, Furnival 1961) was calculated for all 

weighted, transformed, and unweighted models. Furnival's index permits simultaneous 

comparison of root mean square error, normality, and homoskedasticity among model 

forms. The lower the FI value, the better the fit based on these criteria (Kenefic 2000). 

The best fitting model was then chosen by comparing the FI for each model within each 

species. If the difference in FI values for competing models was less than lo%, the R2- 

value was used to determine the most appropriate model. 

Additional predictor variables were created using gap fraction readings taken 

higher in the canopy to determine if differences in canopy structure explained additional 

variability in the height growth models. The new predictor variables defined were HS 1 

and HS2 where HSl = (1-DIFN4)/(1-DIFN1) and HS2 = (1-DIFNS)/(l-DIFNl), where 

DIFN4 and DIFN5 were the gap fraction readings taken at 8.4 m and 11.5 m respectively. 

The two variables HS1 and HS2 were ratios of canopy closure at 8.4 m and 11.5 m to 

canopy closure at tree level and were an effort to quantify the proportion of high-shading 

foliage. Values close to one would indicate a large proportion of high-shading foliage 

while values close to zero would indicate a larger proportion of low-shading foliage. The 

ratios were created based on DIFN4 and DIFN5 since readings at these two heights were 

taken for all sample trees. These two predictor variables were added to the first-order 

linear models to test if these terms were significant. Adjusted R2 values and mean square 



Table 1.1 Linear and nonlinear regression models tested to predict Abies balsamea, 
Picea rubens, and Tsuga canadensis height growth from initial height and gap fraction. 
The height growth hypothesis that each model tested is described above and corresponds 
to the hypothesis number in the text. 

I Hypothesis I Model 

I 1 I AAHINC = bo+ b, DIFN 1 + b, IH 

l 2  I AAHINC = bo * DIFNlb' * ((Mb' 

AAHINC = average annual height increment (m); DIFN 1 = gap fraction reading at tree 
height; difn 1 = deviation of DIFN 1 from mean DIFN 1 ; IH = initial height of tree (tree 
height at beginning of measurement period). 

3 

error were compared between these first-order linear models and the original first-order 

AAHINC = bo+ b,difn 1 + b'difn 1' + b, M 

linear models without these terms to determine if they improved the predictive capacity of 

the model. 

L A I  Calculations 

One-sided projected leaf area index (LAI) was calculated for the subsarnple plot 

centered at each sample tree based on trees tallied in the vertical point sample. Estimates 

for one-sided tree-level projected leaf area (PLA) for Abies balsamea, Picea rubens, 

Tsuga canadensis, and Pinus strobus were determined using non-sapwood based 

equations based on the model proposed by Valentine et al. (1994) and used by Gilmore et 

al. (1996), Maguire et al. (1998), Kenefic and Seymour (1999), and Seymour 

(unpublished) (Table 1.2). For trees with modified live crown ratios greater than one, or 

trees whose DBH were outside the range in which Valentine's equations were fitted to, 
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Table 1.2 Projected leaf area equations used with coefficients and citations. 

Species 

Abies balsamea 

Picea rubens 

Tsuga canadensis 

Pinus strobus 

PLA Model 

PLA = bo(BA * ~ L C R ) ~ '  
b, = 0.4763 and b, = 0.902 1 

PLA = bo B A ~ '  * mLCRb2 
b, = 0.5553, b, = 0.8532, and b, = 
0.4925 

PLA = b, + b,(BA * mLCR) 
b, = 8.9221 and b, = 0.1789 

PLA = bo(B A * ULCR)~' 
b, = 0.3050 and b, = 0.9470 

Citation 

Seymour (unpublished), 
from Gilmore et al. 
(1996) data set. 

Kenefic (2000), from 
Maguire et al. data set. 

Kenefic and Seymour 
(1 999) 

Seymour (unpublished) 

PLA = projected leaf area (m2); BA = basal area (cm2); CL = crown length (m); mLCR = 
modified live crown ratio, (CUtree height - 1.3) (Valentine et al. 1994). 

biomass equations were used (Young et al. 1980). Specific leaf area (Table 1.3) values 

were used to convert leaf mass predicted by these equations to leaf area. 

Young's et al. (1980) biomass equations were used to estimate PLA for most 

hardwood species and Thuja occidentalis. Leaf area was predicted for Quercus rubra 

L.(red oak) using biomass equations published by Tritton and Hornbeck (1982). Young's 

et al. (1980) biomass equation for Acer rubrum L. was used for leaf area estimation of 

both Acer pensylvanicum L. (stripped maple) and Fraxinus americana L. (white ash). 

For species with no known published specific leaf area, specific leaf areas were 

calculated using leaf samples collected in September 2002 (Table1.3). The leaves were 

scanned using Winfolia @ software to calculate one sided leaf area. Each sample that was 

scanned was then put into an oven to dry for four days (until dry mass remained constant 
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Table 1.3 Specific leaf area (SLA) for all species tallied in the vertical point samples 
with citations. 

Tsuga canadensis 

Picea rubens 

Abies balsamea 

Pinus strobus 

Thuja occidentalis 

Acer rubrum 

Betula papyrifera 

Betula alleghaniensis 

Fraxinus americana 

Acer pensylvanicum 
-- - - ~ ~ - ~ p  

Quercus rubra 

Specific Leaf Area (cm2/g) 

Kenefic and Seymour 
( 1999) 

Maguire et al. (1 998) 

Gilmore et al. (1 995) 

Seymour (unpublished) 

McConville (1998) 

Leathers ( 1996) 

Moores (unpublished data) 

Moores (unpublished data) 

Moores (unpublished data) 
- -- 

Moores (unpublished data) 
- 

155 Moores (unpublished data) 
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between daily measurements), at which point the dry mass of the sample was recorded. 

Specific leaf area was then calculated by dividing the one-sided leaf area by the dry mass. 

This was done for three samples of each tree species. 

The contribution to stand-level LA1 was calculated for each tree by dividing its 

PLA by its respective plot size, LA1 = PLA 1 XR~,~,~,~,,, where Rllmi,l,, was the limiting 

radius for inclusion in the tally, defined by HT 1 tan 61.4", HT being the height of the tree 

(Husch et al. 1972). Plot-level LA1 was estimated by summing up the LA1 contribution of 

each "in" tree. 

LAI Stratification 

To quantify canopy architecture, plot-level LA1 was stratified into approximate 3- 

m strata. The strata designations were: c 2.9 m, 2.9-5.5 m, 5.5-8.4 m, 8.4-1 1.5 m, 11.5- 

14.5 m, 14.5-17.5 m, 17.5-20.5 m, and >20.5 m. The lower four LA1 strata were chosen 

to be equivalent to the heights at which gap fraction readings were taken. Cumulative leaf 

distribution functions were used to distribute tree-level leaf area (LA) into these 

respective strata. For conifers, cumulative leaf area distributions of the form LA,ITOTLA 

= 1 - exp(-b, * R D ~ ~ ~ ) ,  where LA, is the leaf area above height I, TOTLA is the total leaf 

area of the tree and RD, is the relative depth into the crown at height I (defining 1 as the 

base of the crown and 0 as the top of the crown) (Gilmore and Seymour 1997), were used. 

Parameter estimates of b, = 2.748, and b, = 3.027 from Gilmore and Seymour (1997) 

were used for Abies balsamea, and Picea rubens. The above cumulative leaf area 

distribution function was fit to branch-level data provided by Kenefic (unpublished) for 



Tsuga canadensis, giving parameter estimates of b, = 2.933, and b, = 2.392. These 

parameter estimates were also used for Thuja accidentalis. A rectangular leaf area 

distribution was assumed for all hardwood species, giving the following LA distribution 

function: LA,/TOTLA = RD,. Stratified tree-level leaf area was summed for all trees over 

the entire plot to form a plot-level leaf area profile. 

The LA in each stratum was used to cluster the 69 subsample plots into groups of 

similar vertical leaf area distribution. Hierarchical clustering using Ward's minimum 

variance method was used to gauge the amount of the variation between plots, and choose 

an appropriate number of structures to define. K-means clustering was used to place each 

plot into an appropriate vertical leaf area structure using the LA1 estimates of each 3-m 

stratum as the sorting variables. 

Vertical Structural Analysis 

To determine if AAHINC could be expressed as a function of tree species, vertical 

foliage structure, and initial height, analysis of covariance was performed on AAHINC 

using species and structure as factors and initial height as a covariate. Constancy of slopes 

was evaluated by calculating an F statistic based on the full and reduced analysis of 

covariance models. Lilliefor's test was conducted to verify normal error distribution, and 

a modified Levene test was used to ensure homogenous error variance. Painvise 

Bonferroni comparisons were made between species and structure treatments at an alpha 

level of 0.05 and 0.10 to test for significant differences in height growth within species 

but between structures, and within structures but between species. 



RESULTS 

Annual Height Growth Models 

Initial height (IH) alone as a predictor variable in a first-order linear regression 

model explained between 13 and 25% of the variation in height growth depending on 

species (Model A, Table 1.4). By adding canopy openness (DIFN1) to the first-order 

linear model as an additional predictor variable, 3996,4896, and 66% of the variation was 

explained for Picea rubens, Tsuga canadensis, and Abies balsamea respectively (Model 

1, Table 1.4). 

Fitting height growth to 2"* order polynomial functions yielded an improvement 

for Picea rubens, but not Abies balsamea, or Tsuga canadensis (Table 1.4). Since the 

parameter estimate for difn12 was not significantly different from zero at a=0.05 for 

Model 3 for Abies balsamea, and Tsuga canadensis, these models were excluded from 

further analysis for these two species. 

Ratios of canopy closure at 8.4 m (HS I), and 1 1.5 m (HS2) to canopy closure at 

tree-level failed to improve the predictive capacity of first-order linear models that 

contained only DIFNl and M as predictor variables for all three species. This attempt to 

quantify the proportional amount of high-shading foliage had non-significant parameter 

estimates at a significance level of 0.05 (Model B, Tablel.4). 



Table 1.4 Adjusted R2 values, Fumival's Index of Fit and p-values for parameter 
estimates by species for all linear height growth models tested. Natural log 
transformations were applied to height growth (AAHINC) for all Picea rubens models. 
Abies balsamea and Tsuga canadensis models are untransformed and unweighted. An 
asterisk (*) denotes significant predictor variables at a = 0.05. 

Ref. 
Number 

Model 

AAHINC = 

f (M) 

AAHINC = 
f (IH, 
DIFN1) 

Abies balsamea 

R2 = 0.127 
FI = 0.0992 
IH: p= 0.003* 

R2 = 0.650 
FI = 0.0628 
IH: p=0.009* 
DIFN I :p< 0.001 * 

AAHINC = 
f (IH, difn 1, 
difn 1 2, IH: p= 0.013* 

difn 1 : p< 0.00 1 * 
difn 1 ': p= 0.5 1 1 

AAHINC = 

f (M,  
DIFNl, HSl, 
HS 2) 

R2 = 0.2 12 
FI = 0.0606 
IH: p< 0.001* 

Picea rubens 

IH: p= 0.008* 
DIFNl:p< 0.001* 
HS1: p= 0.465 
HS2: p= 0.953 ' 

R2 = 0.322 
FI = 0.0472 
IH: p< 0.001* 
DIFN 1 :p< 0.00 1 * 

Tsuga 
canadensis 

R2 = 0.246 
FI = 0.0616 
IH: p< 0.001 * 
R2 = 0.465 
FI = 0.05 18 
IH: p=0.007* 
DIFN 1 :p< 0.00 1 * 

R2 = 0.518 
FI = 0.0447 
IH: p< 0.001* 
difnl : p< 0.00 1 * 
difn 12: p= 0.0 l7* 

IH: p<0.001* 
DIFNl:p< 0.001* 
HSl: p= 0.430 
HS2: p= 0.878 

IH: p= 0.005* 
difn 1 : p< 0.00 1 * 
difn 1': p= 0.145 

M: p= 0.006* 
DIFN 1 :p< 0.00 1 * 
HSl: p= 0.431 
HS2: p= 0.327 

AAHINC = average annual height increment (m); DIFNl = gap fraction reading at tree 
height; difnl = deviation of DIFNI from mean DIF'N1; IH = initial height of tree (tree 
height at beginning of measurement period, 1998); HS 1 = ratio of canopy closure at 8.36 
m to canopy closure at tree height, [(l-DIFN4)/(1-DIFNl)]; HS2 = ratio of canopy 
closure at 1 1.5 1 m to canopy closure at tree height, [(l-DIFN5)/(1 -DIFNl)] . 



Abies balsamea 

The model yielding the best fit for Abies balsamea was a power function weighted 

by 1/(M) (Model 2b, Table 1.5). This model provided the following estimate for 

AAHINC: 

(Model 2b) AAHINC = 0.270 * (DIFN 1)' '07 * (M)' 

This model showed height increment following a monotonically increasing pattern 

with respect to increasing canopy openness. Height increment was also observed to be 

greater for saplings of greater height, independent of light availability (Figure 1.2). 

Picea rubens 

The model yielding the best fit for Picea rubens was a log transformed power 

function (Model 2d, Table 1.6). With a log bias correction factor of 1.289, this model 

provided the following estimate for AAHINC: 

(Model 2d) AAHINC = 1.289 * exp[- 1.822 * (DIFN 1)4.238 * (M)4.'73] 

This model also showed height increment following a monotonically increasing 

pattern with respect to increasing canopy openness. Height increment was also observed 

to be greater for saplings of greater height, independent of light availability (Figure 1.3). 

Tsuga canadensis 

The model yielding the best fit for height growth of Tsuga canadensis was a 

power function weighted by l/(M) (Model 2f, Table 1.7). This model was chosen over 

Model If [a first-order linear model weighted by l/(M)] since the FI values for these two 



Table 1.5 Corrected R2 values and Furnival's Index of Fit for all weighted and 
unweighted models tested to predict Abies balsarnea height growth. 

Model and Parameter Estimates 1 i t ~ b e r  1 

AAHINC = b, + b, DIFN 1 + b2 M 
bo = 0.006 b, = 0.323 bZ = 
0.023 

0.04 17 

AAHINC = b,+ b,DIET\Jl+ b2 M 
bo = 0.008 b, = 0.257 b2 = 0.033 

AAHINC = b,+ blDIFN1 + b2 IH 
b, = 0.014 b, = 0.358 bz = 
0.015 

AAHINC = b, * DIFN lb' * 
b, = 0.270 b, = 0.607 b, = 
0.344 

0.0833 

AAHINC = bo * DIFNlb' * 
b, = 0.244 b, = 0.535 b, = 
0.414 

AAHINC = bo * DIFN lb'  * 
bo=0.294 b, =0.626 b,= 
0.258 

Weight 

none 

none 

Furnival's 
Index of Fit 

AAHINC = average annual height increment (m); DIFN1 = gap fraction reading at tree 
height; M = initial height of tree (tree height at beginning of measurement period). 



Table 1.6 Corrected R2 values and Furnival's Index of Fit for all transformed models 
tested to predict Picea rubens height growth. 

log (AAHINC) = b,+ b,difnl + b2difn12 + b, 
IH 
b, = -3.139 b, = 3.690 b, = -3.602 b, = 
0.345 

Ref. 
Number 

1 d 

2d 

Furnival's 
Index of Fit 

Model and Parameter Estimates 

log (AAHINC) = b, + b, DEN1 + b2 IH 
b, = -4.138 bl = 2.480 b, = 0.362 

log (AAHINC) = b, * DIFN 1 b' * (El)b2 
b, = -1.822 bl = -0.238 b, = -0.173 

AAHINC = average annual height increment (m); DIFNl = gap fraction reading at tree 
height; difnl = deviation of DIFN1 from mean DIFN 1 ; IH = initial height of tree (tree 
height at beginning of measurement period). 

models differed by less than one percent; however, the R2 value for Model 2f was 

substantially higher than for Model l f  (0.502 versus 0.458 respectively). Model 2f 

provided the following estimate for AAHINC: 

(Model 2f) AAHINC = 0.174 * DIFN * 

Compared to Abies balsamea and Picea rubens, there was a much smaller 

predicted height growth response for Tsuga canadensis with respect to changes in canopy 

openness (Figure 1.4); however, a monotonically increasing pattern was still observed. 



Table 1.7 Corrected R2 values and Furnival's Index of Fit for all weighted and 
unweighted models tested to predict Tsuga canadensis height growth. 

Ref. 
Number 

Model and Parameter Estimates 

AAHINC = b,+ b,  DEN1 + b2 M 
b, = 0.056 b, = 0.152 b, = 
0.01 4 

AAHINC = b,+ b,  DEN1 + b, M 
b, = 0.039 b, = 0.177 b, = 
0.018 - 

-- 

AAHINC = b,+ b,  DEN1 + b, M 
b, = 0.032 b, = 0.184 b, = 
0.022 

AAHINC = b, * D I F N - ~ ~ '  * (M)b2 
b, = 0.172 b, = 0.269 b2 = 
0.226 

-- - 

AAHINC = b, * DIFNl b' * 
b,= 0.174 b, = 0.309 b, = 
0.2 75 

AAHINC = b, * DIFN lbl * 
b, = 0.184 b, = 0.346 b, = 
0.297 

Weight 

none 

none 

Furnival's 
Index of Fit 

AAHINC = average annual height increment (m); DIFN1 = gap fraction reading at tree 
height; M = initial height of tree (tree height at beginning of measurement period). 
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Figure 1.2 Scatter plot of Abies balsamea average annual height increment (AAHINC) 
and gap fraction, with best-fit model height curves for initial Abies balsamea heights of 
0.72 m, 1.86 m, and 3.86 m. 
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Figure 1.3 Scatter plot of Picea rubens average annual height increment (AAHINC) and 
gap fraction, with best-fit model height curves for initial Picea rubens heights of 0.63, 
2.13 m, and 3.83 m. 
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Figure 1.4 Scatter plot of Tsuga canadensis average annual height increment (AAHINC) 
and gap fraction, with best-fit model height curves for initial Tsuga canadensis heights of 
0.73 m, 2.28 m, and 4.16 m. 



Vertical Structural Analysis 

Plot-level LA1 

Height growth was predicted for subsample trees using the non linear power 

function, AAHINC = b,* Mb'* L A I ~ ~  to test for the significance of plot-level LA1 in 

predicting height growth. The parameter estimates for plot-level LA1 were not 

significantly different from zero for all three species. This indicates that plot-level LA1 is 

not significant in predicting sapling height growth in these complex, multi-cohort stands 

(Table 1.8). Compared to a power function model that contained only initial height as a 

predictor variable, adjusted R~ values showed either no improvement or only minimal 

improvement, and mean square error showed no improvement by adding plot-level LA1 to 

the model (Table 1.8). 

Vertical Leaf Area Structure Cluster Analysis 

Hierarchical clustering using Ward's minimum variance method suggested three 

to four distinct LA structures among the subsample (Figure 1.5). Three structures were 

chosen since the option of classifying plots into four structures would have produced one 

structure with only four plots, thereby complicating analysis due to the small sample size. 

Out of 69 plots, 30 were grouped into structure l , 2 2  were grouped into structure 2, and 

17 were grouped into structure 3 (Table 1.9). Structure 1 had the lowest mean LA1 of 

3.58, which was significantly lower than both structure 2 and structure 3 (a=0.05). The 

average vertical LA profile of the plots grouped into this structure was unimodal, peaking 
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between 10- 1 1 m in the canopy (Figure 1.6). Over half of the average total LA1 of 

structure 2 plots was concentrated in the understory, peaking at about 4 m (Table 1.9). 

The amount of LA1 below 8.36 m in structure 2 was significantly higher than in structure 

1 or structure 3, ( a  = 0.05). Structure 3 has the highest mean LA1 of 5.76. This is 

significantly higher than structure 1 or 2 ( a  = 0.05). The majority of LA1 in structure 3 

plots was concentrated in the overstory, peaking between 12-13 m.. The vertical 

distribution of LA1 in structure 3 plots most closely resembled an even-aged structure 

(Figure 1.6). 

Analysis of Covariance 

While total plot-level LA1 was not significant in predicting height growth (Table 

1.8), analysis of covariance showed that the vertical distribution of that foliage (plot-level 

vertical leaf area structure) was highly significant in predicting AAHINC. Species was 

not significant in determining height growth (a=0.05), nor were there any significant 

interaction effects between species and structure. Fifty percent of the variation in height 

growth was explained by the analysis of covariance (Table 1.10). 

While mean annual height increment estimates, adjusted to a standard initial 

height, varied between structures and species (Table 1.1 I), pairwise Bonferroni 

comparisons showed significant differences in height growth between structures only for 

Picea rubens (a=0.05) (Table 1.12). Picea rubens grew significantly better in structure 2 

than both structure 1 or structure 3; however, height growth was not significantly 

different between structure 1 and structure 3. There were no significant differences in 



Table 1.8 Comparison of non linear power function models by species to predict height 
growth, with and without plot-level LA1 as a predictor variable. P-values for parameter 
estimates (b,) are provided. An asterisk (*) denotes significant predictor variables at a = 
0.05. 

Picea rubens 

Species 

Abies balsamea 

R2 = 0.362 
MSE = 0.01 1 
IH: p = 0.01 8* 

AAHINC = b,* IHb' 

R' = 0.393 
MSE = 0.009 
M: p = 0.006* 

Tsuga canadensis R2 = 0.33 1 
MSE = 0.005 
M :  p = 0.012* 

AAHINC = b,* IHb'* LAIb' 

R2 = 0.4 17 
MSE = 0.009 
IH: p = 0.0 lo*  
LAI: p = 0.408 

R2 = 0.362 
MSE = 0.0 12 
IH: p = 0.020* 
LAI: p = 0.966 

R2 = 0.333 
MSE = 0.005 
M: p =0.014* 
LAI: p = 0.834 

Table 1.9 Number of plots and mean LA1 characteristics for vertical LA structures. 

Structure 

1 

2 

3 

Mean Understory 
(< 8.36 m) 
LAIk SE 

1.09k0.11 

2.74 k 0.13 

1.53 k 0.14 

Mean 
Overstory 
(> 8.36 m) 
LA1 & SE 

2.32 k 0.13 

2.01 k 0.15 

4.02 2 0.17 

Number of 
Plots 

30 

22 

17 

Mean LA1 k 

SE 

3.58 ? 0.18 

4.89 k 0.2 1 

5.76 k 0.24 
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Figure 1.5 Hierarchical clustering diagram of subsample plots based on vertical leaf area 
distribution. 



Height  ( m )  

Figure 1.6 Average plot-level vertical LA1 distributions for each structure. Curves are 
based on LA1 estimates for discrete 3-m vertical strata but are smoothed for illustration 
purposes. Vertical LA1 distribution for a fully stocked mature even-aged Tsuga 
canadensis stand is included for comparison purposes (Kenefic unpublished). 
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Table 1.10 Analysis of covariance table describing AAHINC as a function of species, 
vertical LA structure, and initial height of sample tree. An asterisk (*) denotes significant 
p-values at a = 0.05. 

height growth between the different structures for Abies balsamea and Tsuga canadensis 

at significance levels of either 0.05 or 0.10 (Table 1.12). 

Significant differences in height growth between species within each structure 

occurred only in structure 2 at an alpha level of 0.05. Picea rubens height growth was 

significantly higher in structure 2 than Tsuga canadensis height growth, while Abies 

balsamea height growth was not significantly different from Tsuga canadensis or Picea 

rubens height growth in structure 2 (Table 1.13). There were no significant differences in 

height growth between species in the other structures. 

Source 

Species 

Structure 

Species - 
Structure 

Interaction 

Initial 
Height 

Error 

Sum-of- 
Squares 

0.025 

0.104 

0.045 

0.214 

0.418 

d f 

2 

2 

4 

1 

5 9 

Mean 
Square 

0.0 13 

0.052 

0.01 1 

0.214 

0.007 

F-ratio 

1.78 

7.348 

1.592 

30.153 

p-value 

0.178 

0.001 * 

0.188 

< 0.001* 



Table 1.1 1 Adjusted Least Squares Mean AAHINC (m) by species and structure. 

Species Structure I 

Picea rubens I 1 

Abies balsamea 

Adjusted Least Squares Mean 
AAHINC +. SE (m) 

1 

Tsuga canadensis 

8 

1 

2 

11 

8 



Table 1.12 Bonferroni painvise comparisons between structures for each species with 
95% and 90% family confidence intervals. An asterisk (*) denotes significant differences 

Species Pairwise 
Comparison 

95 % Family Confidence 
Interval 

90% Family 
Confidence Interval 

A bies 
Balsamea 

Picea 
rubens 

Tsuga 
canadensis 



Table 1.13 Bonferroni painvise comparisons between species within each structure with 
95% family confidence intervals. An asterisk (*)denotes significant differences at a = 
0.05. 

Structure 

1 

2 

Pairwise Comparison 

PBFI - PRSI = 0 . ~ 0 0  

PRSI - PEHI = -0.007 

PBFI - PEHI = -0.007 

PBn - PRs2 = -0.04 1 

95% Family Confidence 
Interval 

(-0.096,0.096) 

(-0.095,0.08 1)  

(-0.103,0.089) 

(-0.153,0.07 1) 



DISCUSSION 

Based on the best fitting regression models describing height growth, all three 

species in this study showed a monotonically increasing trend. A positive response to 

increasing diffuse light conditions was observed from full canopy closure to full canopy 

openness but at a decreasing rate. 

Abies balsamea 

Height growth of Abies balsamea was best described with a power function 

(Model 2b). Although all terms were significant in the first-order linear models (Models 

la, lb, and lc), they did not provide as good a fit as the power function. The squared gap 

fraction term for the second-order polynomial regression model (Model 3) was non- 

significant, thereby showing no evidence of a peaking pattern of height growth with 

respect to gap fraction. 

Previous studies looking at Abies balsamea sapling height growth have shown 

different results. Studying height growth of Abies balsamea and Picea rubens in two- 

storied stands with a pure Pinus strobus overstory, McConville (1998) suggested that 

maximum height growth rates could be achieved for Abies balsamea at gap fraction 

values of approximately 0.65 on fair sites, and 0.80 on poor sites, and found a negative 

response to increases in gap fraction above these points. Logan (1969) grew seedlings of a 

variety of species in the open and under lath and fiberglass shelters. He found that greater 

Abies balsamea seedling height growth occurred in 45% full sunlight conditions 

compared to 13% and 25% full sunlight, but that height growth was not significantly 



3 9 

different to seedlings growing in 100% full sunlight. Similar to our study, both Parent and 

Messier (1995) and Duchesneau et al. (200 1) found monotonically increasing height 

growth patterns with respect to light for natural advance regeneration growing in 

managed and unmanaged stands in the boreal forest. While height growth continued to 

increase to the maximum light conditions measured in both of these studies (83% of 

photosynthetic photon flux density), response was much less sensitive to increased light 

conditions above 25% photosynthetic photon flux density (PPFD). While visual 

inspection of height growth curves from our study showed a decrease in height growth 

response at approximately 10% gap fraction (Figure 1.2), there was no evidence of the 

curves reaching an asymptote. In contrast, height growth curves were much more 

asymptotic for both Parent and Messier (1995) and Duchesneau et al. (2001). 

Picea rubens 

The best fitting model used to describe Picea rubens height growth was a natural 

log transformed power function (Model 2d). A natural log transformed quadratic 

regression model (Model 3d) demonstrated a peak in height growth at gap fraction values 

of approximately 0.80; however, this model did not provide as good a fit. A natural log 

transformed linear model (Model Id), which demonstrated an exponentially increasing 

height growth response gave a very poor fit, with an R2 value of only 0.322. Visual 

inspection of the height growth model (Figure 1.3) showed a gradual leveling off of 

height growth response; however, no sharp decline at any particular gap fraction value 

was observed. Height-age curves based on this model (Figure 1.7) demonstrated that the 
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time required to grow from a height of 0.5 m to 6.0 m decreased substantially as gap 

fraction values increased from 0.1 to 0.4; however, based on model predictions, a height 

of 6.0 m was reached only seven years earlier for a sapling growing under canopy 

openness levels of 0.7 compared to 0.4 (24 years versus 3 1 years), and a reduction in time 

of only three years was achieved for a sapling growing in fully open conditions compared 

to canopy openness levels of 0.7. 

There are very few studies specifically looking at height growth of Picea rubens. 

McConville (1998) found that Picea rubens grew best at gap fraction values of 

approximately 0.65 on fair sites but on poor sites did best in more open conditions. He 

also found that saplings growing in conditions of 30% canopy openness performed as 

well as trees growing in open conditions. With. the exception of McConville's results for 

trees growing on poor sites, the model in our study predicts very different results, 

showing no sign of a peak, and predicting a much higher growth rate for open grown trees 

than for trees growing at gap fraction values of 30%. 

Studies of Picea glauca and Picea mariana (Mill.) B.S.P. (black spruce) seedling 

development have also produced dissimilar results. While Logan (1969) found that Picea 

mariana, probably the least shade tolerant of the three Picea spp. (Viereck and Johnston 

1990), grew best in full light intensity, with significant increases in height growth for 

each increasing light intensity level (1 3%, 25%, 4596, and loo%), Picea glauca height 

growth did not change significantly between light intensities of 45% full light and 100% 

full light, suggesting asymptotic growth with respect to increasing light. Man and Lieffers 
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Figure 1.7 Understory height-age curves for Picea rubens saplings growing under gap 
fraction values of 0.10,0.40, and 0.70, and 1 .O. 
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(1997) found that Picea glauca height growth under an aspen overstory outpaced height 

growth in open conditions. 

Tsuga canadensis 

Tsuga canadensis followed a monotonically increasing pattern of height growth 

with respect to increasing canopy openness (Model 2f). This model provided better or 

equivalent FI values and better R2 values than the linear models tested (Models le, If, 

and lg). A second-order polynomial regression model (Model 3) contained a non- 

significant squared gap fraction term, thereby showing no evidence of a peaking pattern 

of height growth with respect to gap fraction. 

Visual inspection of the height growth curves showed a sharp decrease in height 

growth response above gap fraction values of 0.05. While no peak in AAHINC was 

observed, the height growth response of Tsuga canadensis to increases in gap fraction 

was the weakest of the three species tested in this study except at extremely high levels of 

canopy closure (Figure 1.8). This is evidenced by the low R2 value of the best fitting 

model, which only explained 50.2% of the variation in height growth. This finding is 

consistent with the extreme shade tolerance of Tsuga canadensis, and supports the idea 

that Tsuga canadensis is most shade tolerant of these three species (Baker 1949; Godman 

and Lancaster 1990). 

While the low R~ value for the Tsuga canadensis height growth model probably 

does indicate less responsiveness to changes in light, the different sapling crown 

morphology and the resulting methodology used to measure height growth for Tsuga 
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canadensis may also be reducing precision. Unlike Picea rubens and Abies balsamea, 

Tsuga canadensis has no well defined leader in low light conditions. All branches, 

including the future leader, grow laterally. This added uncertainty to the determination of 

the leader. Internodal distance down what was determined to be the terminal shoot was 

then a measure of stem growth as opposed to height growth since the terminal shoot was 

frequently growing out laterally resulting in no actual vertical difference between nodes. 

The resulting ambiguity over what was lateral and what was vertical growth could have 

resulted in higher AAHINC measurements for saplings in low light levels. 

Two studies looking at Tsuga canadensis growth in different light environments 

showed differing results. Logan (1969) found that Tsuga canadensis height growth was 

highest in 45% full light conditions. Of all four treatments in his study (13%, 25%, 45%, 

and 100% full sunlight), height growth was actually lowest in the completely open 

conditions. Finzi and Canham (2000) looked at radial growth, which is more sensitive to 

intra-cohort competition (Smith et al. 1997), for Tsuga canadensis saplings growing both 

in understory and gap conditions in mixed conifer-hardwood forests in southern New 

England. Light intensities in their study ranged from 0.3% up to 42.9% of full intensity. 

Radial growth began to level off as the higher light intensities were reached; however, of 

the six species they measured, Tsuga canadensis had the highest asymptotic growth rate. 

Compared to the other studies previously discussed, the saplings in this study 

spanned a larger range in size. The maximum sapling height for McConville (1998) was 

3.91 m. Logan's (1969) seedlings originated as nursery stock and reached maximum 

heights of only 1.35 m, 1.60 m, and 0.66 m for Abies balsamea, Picea glauca, and Tsuga 
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canadensis respectively by the end of the measurement period. Parent and Messier (1995) 

studied 14 year-old Abies balsamea saplings that ranged in height from 0.15 to 2.69 m, 

while Duchesneau et al. (2001) studied saplings from 0.5 - 2 m in height. The largest 

Tsuga canadensis sapling in the study done by Finzi and Canham (2000) had a DBH of 

4.0 cm. Saplings in our study ranged up to 6.0 m for all three species, with a maximum 

DBH of 10.7 cm for Tsuga canadensis. It was these larger saplings that formed the upper 

range of gap fraction values sampled (Figure 1.2, Figure 1.3, Figure 1.4). With the 

exception of one Tsuga canadensis sapling, all saplings under 2.0 m in height were 

growing in gap fraction conditions of less than 0.50. This most likely was due in part to 

the sampling scheme where grid points with evidence of cutting within the previous five 

years were avoided. Since open conditions sampled in this study had existed for more 

than five years, saplings would have had time to respond to the improved light conditions 

and would generally be taller. 

The fact this study included larger, more advanced saplings, with the smaller trees 

sampled being restricted to the lower levels of canopy openness, could explain why no 

signs of a peak or plateau at high levels of canopy openness were observed. For Picea 

rubens it is known that while germination and establishment proceeds best under cover, 

full light conditions are needed for optimal growth once trees reach larger sapling and 

pole sizes (Blum 1990). Klinka et al. (1992) also noted the same trend in light 

requirements for shade tolerant Abies anzabilis (Dougl. Ex Loud.) Forbes (Pacific silver 

fir) and Abies lasiocarpa (Hook.) Nutt.(subalpine fir). Since we were only sampling 
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larger trees at the higher levels of canopy openness, we would have missed a possible 

peaking pattern with the smaller saplings. 

Consistent with McConville (1998), initial height was found to be significant in 

predicting conifer height growth and therefore was used as an additional predictor 

variable. While most of the other studies mentioned above did not include initial height 

(although Duchesneau et al. (2001) used relative height growth), it was an appropriate 

predictor variable for this study since we were measuring saplings originating from 

natural advance regeneration that not only spanned a large height gradient, but a large age 

gradient encompassing differing past growing environments and histories. These factors 

would have determined tree condition, vigor, and height in 1998 (the beginning of the 

measurement period for the majority of the trees) which likely had a significant influence 

on height growth during the time period measured. Including initial height was one way 

to incorporate the effects of different past growth histories into these models. 

Species Comparisons 

Comparison of growth between the three species studied showed that Tsuga 

canadensis grew best in low light levels (gap fraction values < 0.20) (Figure 1.8); 

however, Picea rubens and Abies balsamea both surpassed Tsuga canadensis once gap 

fraction values of 0.20 or greater were reached. Above gap fraction values of 0.20, the 

models showed Abies balsamea to be the most aggressive competitor. Over all levels of 

canopy openness, Abies balsamea outpaced Picea rubens in terms of height growth. The 

larger slope of the Abies balsamea height growth model suggested that this species was 
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also the most responsive to increases in gap fraction. This is consistent with what we 

know about the sapling growth dynamics of these species, and their responsiveness to gap 

openings (Westveld 193 1 ; Blum 1990; Godman and Lancaster 1990; Davis 199 1 ; 

Seymour 1992). 

Based on the average gap fraction values measured in these stands for the three 

different height classes (0.5-2 m, 2-4 m, 4-6 m), Picea rubens took 42 years to grow from 

0.5 m to 6.0 m, while Abies balsamea took 37 years and Tsuga canadensis took 39 years 

(Figure 1.9). While Tsuga canadensis may be the slowest growing species above gap 

fraction values of 0.20, its predicted ability to grow faster as a small seedling in the low 

light environments deep in the understories of these complex stands permitted it to reach 

heights of 6.0 m in comparable time to the two other species. 

Sources of Model Variability 

Overall 68.1%,65.5%, and 50.2% of the variation in Abies balsamea, Picea 

rubens, and Tsuga canadensis height growth were explained by best fit models using 

initial height and gap fraction as predictor variables. Some studies have been able to 

achieve higher R~ values (Parent and Messier 1995; Finzi and Canharn 2000), while 

others produced comparable or slightly less predictive models (based on R' values) ( 

McConville 1998; Duchesneau et al. 2001). 

Sources of additional variability in these models could be due to site quality or 

soil drainage class. While poorly and very poorly drained sites were not sampled, sampled 

trees ranged between somewhat poorly drained, moderately drained and well drained 
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Figure 1.8 Height growth curves for Abies balsamea, Picea rubens, and Tsuga 
canadensis based on best fit models for each species, at an initial height of 2.18 m. 



Figure 1.9 Understory height-age curves for Abies balsamea, Picea rubens, and Tsuga 
canadensis growing under average levels of canopy closure in the stands sampled. Even- 
aged Picea rubens height growth is included for comparison purposes. 
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sites. While growth of Picea rubens responds little to drainage class, growth of Abies 

balsamea is significantly greater on well drained soils than poorly drained soils (Meng 

and Seymour 1992). Site index, or site index interaction terms were significanl in 

predicting sapling height growth for McConville (1998). 

Height growth is relatively insensitive to moderate levels of intra-cohort 

competition (Mitchell 1975; Smith et al. 1997; Wagner et al. 1999). Baskerville (1965) 

found that average height of even-aged Abies balsanlea stands differed only at extremely 

high densities (5000 stemslacre), and low densities (700 stemslacre), and Wampler 

(1993) found that understory tree density was not a significant parameter in predicting 

Pseudotsuga menziesii (Mirb.) Franco (Douglas fir) height growth. Duchesneau (2001) 

found however, that while there was no significant relationship between intra-cohort 

competition and relative height growth in conditions below 25% of full sunlight, a 

significant negative relationship did exist for Abies balsamea trees in light conditions 

above 25% of full sunlight. While a competition index describing intra-cohort 

competition may have provided a slight improvement to these models, with the exception 

of a few saplings located in dense sapling thickets, it is unlikely that the level of intra- 

cohort competition experienced by most saplings in these stands would have been 

sufficient to reduce height growth. 

Many studies of shade tolerant conifers have found that light is a limiting resource 

to sapling height growth below levels of 25-30% PPFD (Carter and Klinka 1992; Klinka 

et al. 1992; Parent and Messier 1995; Duchesneau et al. 2001). Above 25-30% full 

irradiance, other factors such as temperature, humidity, nutrient and water availability 
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become more limiting factors and growth-light relationships become more variable 

(Carter and Klinka 1992; Klinka et al. 1992; Parent and Messier 1995; Duchesneau et al. 

2001). Gap fraction values were greater than 0.30 for 60 of the 167 trees in this study. 

These trees likely had increased variability in growth due to factors other than light. The 

variability added to the height growth models by omitting measures to include these 

limiting factors on growth would be minimized because all of these factors are influenced 

by the amount of canopy cover (Norman and Campbell 1989; Carter and Klinka 1992; 

Alexander et al. 1995; Man and Lieffers 1997), and are therefore implicit in the models. 

While diffuse light measurements taken by the LAI-2000 are highly correlated 

with total growing season light transmission (Lieffers et al. 1999; Gendron et al. 1998), 

using gap fraction estimates based on instantaneous diffuse light measurements does 

have drawbacks that could add variability to the height growth-light relationships. The 

LAI-2000 filters out light above 490 nm, including beam enrichment. Beam enrichment is 

light transmitted through or scattered by the foliage, and can account for up to 40% of 

total light found beneath shade tolerant canopies (Gendron et al. 1998). The contribution 

of sunflecks is also missed by instantaneous measurements of the LAI-2000. While 

sunflecks are the main source of direct light beneath a canopy (Barnes et al. 1998; Drever 

and Lertzman 2003) and have been correlated with seedling growth rates (Klinka et al. 

1992), they exhibit great temporal variation and are therefore missed with instantaneous 

measurements (Parent and Messier 1996). 



Effects of Diffuse versus Direct Light 

The failure of gap fraction readings taken higher in the canopy to improve the 

predictive capacity of the height growth models points to two conclusions. The first 

conclusion is simply that the total quantity of light reaching the tree is of primary 

importance in determining sapling height growth, and any variability in height growth 

response due to variations in relative proportions of direct to diffuse light from vertical 

heterogeneity in forest structure is muted when added to total quantity of light. Lieffers et 

al. (1999) reported that total light quantity is much more influential on understory tree 

growth than light quality. While Jarvis and Leverenz (1983) list vertical distribution of 

foliage as the second most important canopy structural property in determining light 

interception, Sampson and Smith (1993) found that vertical distribution of foliage ranked 

last among the structural properties they tested. In addition, the first gap fraction reading 

taken at tree leader partly accounts for the distance between the sapling and the shading 

foliage. The further away the shading foliage, the smaller the portion of the inverted cone 

it will occupy, therefore the less influence on gap fraction it will have. This is opposite 

for foliage closer to the tree leader. This may further minimize the significance of gap 

fraction readings taken higher in the canopy compared to the original gap fraction 

reading. 

The second conclusion is that the method used in this study, determining the ratio 

of successive gap fraction readings at different vertical heights to the initial gap fraction 

reading at tree height, was unsuccessful at quantifying canopy structural differences as 

they relate height growth. Gower and Norman (199 1) describe a method for quantifying 



vertical LA1 distribution using the LAI-2000 in which they took 10 different 

measurements at each height to characterize the vertical distribution of foliage. One 

instantaneous reading at each height may not be sufficient to quantify structural changes 

as they relate to a sapling located several meters below. The ratio of gap fraction readings 

at the different height intervals may not properly account for foliage overlap between the 

different heights at which gap fraction readings were taken. To  make this more applicable 

a complex stands, more work exploring appropriate ratios to use between the vertically 

stratified readings may better quantify vertical LA distribution and produce more 

significant results relating it to understory height growth. 

LA1 Height Growth Predictions 

The failure of LA1 to be significant in predicting height growth of subsample trees 

does not necessarily indicate that LA1 is not correlated with sapling height growth. More 

likely, the problem was with the sampling. For most trees, the inverted cone for the 

vertical point sample was projected from a lower height than the inverted cone projected 

by the LAI-2000. As a result, many trees were included in the vertical point sample that 

would not have been seen by the LAI-2000. Some of the foliage included in these LA1 

estimates was therefore distributed outside the zone of influence of the sapling in 

question. This would include foliage on surrounding saplings of similar or shorter height 

to the sample tree that were included in the vertical point sample, and much of the foliage 

distributed lower in the crowns of larger trees that were located on the periphery of the 

variable-sized plots. This does suggest however that total plot-level LAI, as measured in 
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this study (including all strata), is less predictive of height growth in stands with irregular 

and highly variable structures than it is in simpler two-storied stands. 

Vertical Structural Analysis 

The analysis of covariance defining height growth in terms of species and canopy 

architecture revealed that only Picea rubens responded to different vertical arrangements 

of foliage. While one would expect increased height growth of Picea rubens in structure 2 

plots compared to structure 3 plots due to significantly less overstory leaf area in structure 

2 plots, Picea rubens also grew significantly better in structure 2 plots compared to 

structure 1 plots, despite similar overstory leaf area between these two structures. The 

primary difference between structure 1 and 2 was that structure 2 plots had greater leaf 

area, and this greater leaf area was concentrated in the understory. How does greater 

understory leaf area promote Picea rubens height growth? The question that arises from 

this is whether leaf area distribution of these plots was influencing height growth, or 

whether a confounding factor was influencing both understory height growth and also 

determining leaf area distribution. 

The understory was much more developed in structure 2 plots than structure 1 or 3 

plots. The saplings in structure 2 plots therefore had much more intra-cohort competition 

than saplings in structure 1 or 3. While density does not promote height growth, isolated 

trees can become stunted (Smith eta!. 1997). Many of the saplings that were classified 

into structure 1 plots in particular, were isolated within their cohort, with no near 
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neighbors. This isolation in the understory may be a cause for the reduced height growth 

of Picea rubens saplings in structure 1 plots. 

It makes intuitive sense that the cause of greater Picea rubens vigor in structure 2 

plots is also responsible for the more developed understory, in other words, the trees are 

growing better for a particular reason, therefore the understory is better developed. One 

would expect a more developed understory in structure 2 plots compared to structure 3 

plots due to significantly less overstory leaf area. A possible explanation for the more 

developed understory in structure 2 compared to structure 1 could be a greater time lapse 

since the creation of canopy openings in structure 2 plots. 

Compared to Abies balsamea, Picea rubens is not as aggressive at capturing 

vacant growing space and responding in height growth upon gap creation (Westveld 

193 1; Davis 199 1 ). While Picea rubens saplings may have been just beginning to respond 

to decreased overstory competition in structure 1 plots, they had already had time to adapt 

to increased light conditions in structure 2 plots and respond in height, therefore were 

growing significantly better. The initial aggressive height growth response for Abies 

balsamea upon release from overhead competition and its less persistent ability to 

maintain that height growth compared to Picea rubens (Messier et al. 1999; Doucet and 

Blais 2000; Westveld 1931) could explain why there were no significant differences for 

Abies balsamea between structure 1 and 2, while Tsuga canadensis is just less responsive 

in general, therefore did not show significant differences between structures. 
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CONCLUSIONS AND SILVICULTURAL IMPLICATIONS 

The findings of this research demonstrate that overstory canopy closure as defined 

as gap fraction significantly affects height growth of Abies balsamea, Picea rubens, and 

Tsuga canadensis saplings in uneven-aged, mixed-species northern conifer stands. For 

saplings up to 6.0 m, height growth continues to respond positively to decreases in 

overstory competition until conditions of full canopy openness are met. Average 

conditions of canopy closure in these stands significantly reduces the rate of height 

growth, and prolongs the time it takes for saplings to reach heights of 6.0 m compared to 

even-aged stands (Figure 1.9). Model predictions show that Abies balsamea, Picea 

rubens, and Tsuga canadensis can grow from heights of 0.5 m to 6.0 m in approximately 

35-45 years under average understory conditions in these stands. This is a delay of about 

15-20 years compared to a Picea rubens tree growing in an even-aged stand of site index 

50 (Carmean et al. 1989). 

While sapling height growth is reduced in these stands, they are still capable of 

advancing from seedlings and small saplings to larger saplings and pole-sized trees 

beneath well stocked, efficient overstories which are also simultaneously producing 

stemwood volume. This is an important benefit of uneven-aged management and this 

trade-off with reduced sapling height growth should be considered in any silvicultural 

decisions. Non-timber objectives are also important benefits of uneven-aged management 

that offset the reductions in sapling height growth. 
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The monotonically increasing nature of the best models for sapling height growth 

of all three species makes it difficult to suggest any particular goal for overstory density 

to balance the trade-off between efficient overstory leaf area allocation and sufficient 

sapling height growth. The monotonically increasing nature of the fits do show however 

that gains in the advancement of saplings through the understory are progressively 

reduced as higher and higher levels of canopy openness are obtained (Figure 1.7). 

While this study did find significant effects of vertical leaf area distribution on 

Picea rubens height growth, it did not investigate a causal relationship. The question of 

whether vertical LA distribution was the cause for significant differences in Picea rubens 

height growth, or whether a separate reason was responsible for both the different vertical 

structural arrangements and the significant differences in Picea rubens height growth 

remains unanswered. Despite being unable to answer this question, Picea rubens appears 

to benefit more from reductions in overstory leaf area over the long term. Picea rubens 

was much more competitive in plots with less overstory leaf area (LA1 > 8.4 m in height) 

and well developed understories than in plots with greater amounts of overstory leaf area, 

or plots with similar amounts of overstory leaf area but less developed understories. This 

suggests that Picea rubens benefits from gap creation which could be accomplished 

through group selection systems. The data also suggest that regardless of overstory 

conditions, Picea rubens is not initially competitive with Abies balsamea when small, but 

that as time progresses, it benefits more and more from gap creation as it grows in height. 

The effects of height and time since release appear to be less significant for Abies 

balsamea and Tsuga canadensis. 



CHAPTER 2. 

THE USE OF VERTICAL POINT SAMPLING AS A TOOL TO 
ESTIMATE LEAF AREA INDEX AND GAP FRACTION 

INTRODUCTION 

Canopy structure plays an important role in determining understory dynamics. 

Canopy structure influences air temperature, leaf temperature, atmospheric moisture, soil 

temperature, precipitation interception, leaf wetness duration, energy and nutrient cycling, 

and in particular, the understory light environment (Norman and Campbell 1989; 

Chanson et al. 1991; Baldocchi and Collineau 1994; Jennings et al. 1999; Radtke and 

Bolstad 2001). Of canopy structural attributes that affect light interception, leaf area index 

(LAI) is considered to be the most important (Jarvis and Leverenz 1983; Chanson et al. 

1991; Sampson and Smith 1993). Since plant growth and survival are highly dependent 

on their understory environment, in particular their light environment (Carter and Klinka 

1992; Klinka et al. 1992; Parent and Messier 1995; Walters and Reich 1996; Finzi and 

Canham 2000; Duchesneau et al. 2001), being able to quantify LA1 is an important tool in 

understanding how our manipulations of the forest affect understory plant growth and 

survival. 

Many different methods exist for estimating LAI. Direct methods include litterfall 

trap collection (Marshall and Waring 1986; Pace 2002), the stratified clip method and the 

dispersed individual plant method (Norman and Campbell 1989). These methods are very 



labor intensive and time consuming and thus impractical to use. Indirect methods use 

radiation measurements to estimate light interception and then predict LA1 based on Beer- 

Lambert's Law. Instruments to measure radiation include ceptometers (Pierce and 

Running 1988; Smith et al. 199 l), and the LI-COR LAI-2000 plant canopy analyzer 

(LAI-2000) (Chason et al. 199 1 ; Gower and Norman 199 1 ; Strachan and McCaughey 

1996; Pace 2002). These indirect methods are quicker; however, they involve expensive 

equipment, often require very specific environmental conditions, and require computers 

for data manipulation. Additionally, many studies have found that these indirect methods 

underestimate LA1 (Chanson et al. 1991 ; Gower and Norman 199 1 ; Smith et al. 199 1). 

A third method to estimate LA1 is to use allometric equations to predict one-sided 

tree-level projected leaf area (PLA). Leaf area index is then estimated by expanding each 

tree in a subsample to a trees per hectare basis (TPH) and multiplying its PLA by TPH. 

Most studies that employ this method use fixed-radius plots to estimate tree density 

(Gower and Norman 1991; Sampson and Smith et al. 199 1; Smith et al. 1991). Tree 

density can also be estimated using probability proportional to size (PPS) sampling, 

where the probability of sampling a tree is proportional to its size. The most common 

form of PPS sampling is horizontal point sampling, which is commonly used to 

determine basal area per hectare (BAha) (Husch et al. 2003). A lesser used form of PPS 

sampling is vertical point sampling where a vertical angle, 4, is projected from a point 

location. The probability of inclusion is proportional to the height squared (Ht2) of the 

tree (Husch et al. 2003). Although there is little available literature on vertical point 

sampling, Weise and Glover (1993) found vertical line sampling, where a vertical angle, 



59 

4, is projected perpendicular to a line instead of a point, to be accurate, efficient and 

objective in providing information on competing woody vegetation in Pinus taeda L. 

(loblolly pine) plantations. 

Canopy closure is another measure that directly influences the understory light 

regime, and is linked to understory tree growth and survival (Wampler 1993; McConville 

1998; Jennings et al. 1999). Canopy closure can be expressed as gap fraction, the 

percentage of sky that is not obscured by foliage. It is measured through hemispherical 

photography (Lieffers et al. 1999; Machado and Reich 1999; Drever and Lertzman 2000; 

Brandeis et al. 2001), visual estimation (Brandeis et al. 2001; Jennings et al. 1999), and 

photometrically (Gendron et al. 1998; McConville 1998; Machado and Reich 1999). The 

LAI-2000 provides a photometric method to estimate gap fraction by comparison of a 

below-canopy reading with an above- canopy reading of diffuse non-intercepted light (LI- 

COR Inc. 1992; Lieffers et al. 1999). While the LAI-2000 provides accurate measures of 

gap fraction, it suffers from a number of problems listed above that limit the practicality 

of its use for forest practitioners. 

Knowledge of LA1 and canopy closure would aid forest practitioners in making 

informed silvicultural decisions to promote desired species regeneration and growth. 

Developing easy and efficient ways to estimate these structural parameters in the field 

will help them achieve this goal. 

The primary purpose of this study was to test the use of vertical point sampling as 

a tool to estimate stand-level LA1 and gap fraction. The objectives were to: 1) validate the 

use of vertical point sampling as a method of sampling for LA1 estimation; 2) to test the 
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efficacy of replacing tree-level LA1 calculations with constants in both vertical point 

samples and horizontal point samples to further facilitate plot-level LA1 estimation; and 

3) to determine if a predictive model expressing gap fraction as a function of several 

different measures based on vertical point sampling could be developed. 

METHODS 

Study Site 

Four mixed-species, uneven-aged stands located on the 1540-ha Penobscot 

Experimental Forest (PEF) in Bradley, Maine were used in this study. This experimental 

forest, owned by the University of Maine, is located at approximately 44'52' N and 

68O38'W. It is the site of a long-term silvicultural research project established by the 

USDA Forest Service in the 1950s and includes both even-aged and uneven-aged 

silvicultural research (Seymour and Kenefic 1998).Two of the stands included in this 

study, C9 and C16, are replicates of selection cutting on a five-year cycle, while the other 

two, C12 and C20, are replicates of selection cutting on a ten-year cutting cycle. The 

structural goal for these stands is defined by the BDq method (Guldin 1991). The two 

replicates of the five-year selection cutting have a q-factor of 1.96 on 5-cm diameter 

classes, a target residual basal area of 26 m2/ha, and a maximum residual diameter goal of 

48 cm. The two replicates of the ten-year selection cutting also have a q-factor of 1.96, a 

target residual basal area of 23 m2/ha, and a maximum residual diameter goal of 46 cm 

(Brissette and Kenefic 1999). 
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The PEF lies within the Acadian Forest Region, a transitional forest between the 

broadleaf forest to the south and the boreal forest to the north. The natural disturbance 

regime is dominated by sporadic partial disturbances such as insect epidemics and 

windstorms. Species composition is mixed and highly variable due to differences in soil 

drainage and stand structural condition. Dominate conifers on the PEF include Picea 

rubens Sarg. (red spruce), Picea glauca (Moench) Voss (white spruce), Abies balsamea 

(L.) Mill. (balsam fir), Thuja occidentalis L. (northern white cedar), Pinus strobus L. 

(eastern white pine), and Tsuga canadensis (L.) Cam. (eastern hemlock). The more 

common hardwoods in this area are Acer rubrum L. (red maple), Betula papyrifera 

Marsh. (paper birch), Betula populifolia Marsh. (gray birch), Betula alleghaniensis Britt. 

(yellow birch), Populus tremuloides Michx.(quaking aspen), and Populus grandidentata 

Michx. (bigtooth aspen). Glacial till is the principal soil parent material with soil types 

ranging from well-drained loams and sandy loams on low-profile ridges to poorly drained 

and very poorly drained loams and silt loams in flat areas between the ridges (Brissette et 

al. 1999; Brissette and Kenefic 1999). 

Sampling Scheme 

To test the efficacy of vertical point sampling in estimating stand structural 

attributes, a subsample of 69 trees was chosen from the 167 saplings between 0.5 and 6.0 

m that were sampled to model height growth (Moores, Chapter 1). The original sample 

consisted of 60 Abies balsamea trees, 47 Picea rubens trees, and 60 Tsuga canadensis 

trees. The original sample of Picea rubens trees were divided into gap fraction classes of 



62 

10%. Within each 10% gap fraction class, Picea rubens trees were sorted into the top 

quartile of height growth, the middle 50% of height growth, and the lowest quartile of 

height growth. One tree was then selected from each of the three groups so that for each 

approximate light environment, a relatively fast growing tree, a average growing tree, and 

a slow growing tree were included in the subsample. In total twenty three Picea rubens 

trees were chosen since not all gap fraction classes contained three trees. All Abies 

balsamea and Tsuga canadensis trees located at the same site as a chosen Picea rubens 

tree were also included in the subsample. A total of twenty four Abies balsamea, and 

twenty two Tsuga canadensis trees were included in the subsample. Each subsample tree 

then became plot center. 

Data Collection 

Gap Fraction Measurements 

Canopy closure, which is directly related to the understory light regime was 

measured by taking gap fraction readings using the LI-COR LA1 2000 Plant Canopy 

Anaylzer (LAI-2000). Readings were taken from mid-August to mid-September, 2002. 

The LAI-2000 measures diffuse non-intercepted light. The instrument is comprised of 

two sensors, each connected to its own control unit to record measurements. One is set up 

in the open (the base sensor), while the other sensor takes readings below the canopy. 

Each sensor has a 150" field-of-view lens positioned above five concentric light detecting 

silicon rings that allow it to receive and measure light from five different zenith angles (O- 
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13", 16-28", 32-43", 47-58", and 61-74") simultaneously. Gap fraction or canopy 

transmittance represents the probability of unimpeded light penetration through the 

canopy. It is calculated by using the relationship between below-canopy intensity of 

diffuse non-intercepted light with a simultaneous measurement taken by a base sensor 

located above the canopy, usually at a nearby open site (Chanson et al. 199 1; LI-COR 

1992; Lieffers et al. 1999). 

To avoid bias from direct beam sunlight, readings were taken within an hour of 

sunrise and sunset or on uniformly overcast days. The base sensor was set up on a tripod 

in the middle of an open field bordering the PEF. Distance between the base sensor and 

sample sites varied between approximately 1 km to 2.2 km. It was synchronized with the 

below-canopy sensor, and automatically logged readings every 15 seconds. 

The below-canopy sensor was mounted to PVC height pole. It was then raised to 

the leader of each sample tree where four readings was taken. The height pole was rotated 

90" between readings, and the four readings were averaged to give one gap fraction 

reading at the tree leader. No lens cap was used for either sensor due to the inability to 

control the orientation of the below-canopy sensor for some of the higher saplings. 

Gap fraction estimates were based on readings from the two inner most rings. This 

corresponds to a zenith angle of 28.6". Extending the field of view of the LAI-2000 to the 

widest angles means integrating canopy conditions over a larger area. This results in a 

homogenizing of conditions, and decreases the range and variance of the estimates 

(Bunnell and Vales 1989). While the inner three rings (corresponding to a zenith angle of 

47") could have been used, we planned to estimate stand characteristics (including LAI) 
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using vertical point sampling and equate these to the gap fraction readings. Time 

limitations therefore forced us to use as few of the inner LAI-2000 rings as possible in 

order to restrict the field of view and keep the number of trees tallied in the vertical point 

sampling to a manageable number. Other scientists (Biging and Dobbertin 1992; 

Puettmann and D' Amato 2002) have found that extending an angle of view beyond a 

zenith angle of 30" to select competitors does not improve height and diameter growth 

models. 

Vertical Point Sampling 

An inverted cone was projected from each sample tree at a zenith angle of 28.6" 

using a clinometer. This angle was chosen to simulate the field of view of the first two 

rings of the LAI-2000. As mentioned earlier, this angle was chosen for time efficiency. 

The inverted cone was projected from 1 m above the ground. Each tree that intersected 

this inverted cone was sampled, and its species, stratum; height, height to live crown 

(defined as lowest live branch for Picea rubens, Tsuga canadensis, and Pinus strobus, 

Thuja occidentalis, and defined as lowest live whorl for Abies balsamea), DBH, and 

horizontal distance to the sample tree was recorded. 

After the vertical point tally was completed, a prism tally was conducted using a 

prism with a basal area factor (BAF) of 2 m2. Horizontal distance to the sample tree and 

DBH were recorded for any trees tallied by the prism but not included in the vertical point 

sample. A prism of BAF 2 m2 was chosen because the plot size of such a prism tally was 
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shown to correspond most closely with a vertical point sample plot projected at a zenith 

angle of 28.6" (Puettmann and D'Amato 2002). 

Data Analysis 

Basal Area Estimation 

Basal area per hectare (BA) was calculated for each tree tallied in the vertical 

point sample (VPS). Each tree was expanded to a TPH basis by the following formula 

TPH = 10000 m2 I xR~ ,~ , , , ~~~ , ,  where R,imi,in, is the limiting radius for inclusion in the tally 

and is defined by tree height I tan 61.4". Tree-level BA per hectare was obtained by 

multiplying the BA of each tree by the TPH that it represented. Plot-level BA was 

estimated by summing the BAha contribution of each individual tree over the entire plot. 

Basal area per hectare was also measured at each plot by means of a 2 m 2 B ~ F  prism. The 

estimate based on the vertical point sample calculation was compared to the estimate 

based on the prism sample by means of a paired T-test. 

Stand LA1 Calculations 

One-sided projected tree-level LA1 estimates were calculated based on one-sided 

tree-level PLA estimates. For Abies balsamea, Picea rubens, Tsuga canadensis, and 

Pinus strobus, PLA was determined by using non-sapwood based equations based on the 

model proposed by Valentine et al. (1994) and used by Gilmore et al. (1996), Maguire et 

al. (1998), Kenefic and Seymour (1999), and Seymour (unpublished) (Table 2.1). For 
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trees with modified live crown ratios greater than one, or trees whose DBH were outside 

the range in which Valentine's equations were fit, biomass equations were used (Young 

et al. 1980). Specific leaf area (Table 2.2) values were used to convert leaf mass, which is 

predicted by these equations, to leaf area. 

Young's et al. (1980) biomass equations were also used to estimate PLA for most 

hardwood species and Thuja occidentalis. Leaf area was predicted for Quercus rubra 

L.(red oak) using biomass equations published by Tritton and Hornbeck (1982). Young's 

et al. (1980) biomass equation for Acer rubrum L. was used for leaf area estimation of 

both Acer pensylvanicum L. (stripped maple) and Fraxinus americana L. (white ash). 

For species with no known published specific leaf area, specific leaf areas were 

calculated using leaf samples collected in September 2002 (Tablel.3). The leaves were 

scanned into a computer to calculate one sided leaf area. Each sample that was scanned 

was then put into an oven to dry for four days (until dry mass remained constant between 

daily measurements), at which point the dry mass of the sample was recorded. Specific 

leaf area was then calculated by dividing the one-sided leaf area by the dry mass. This 

was done for three samples of each tree species. 

Four different methods were used to calculate LA1 for every subsample plot. Each 

method is described below. 

Vertical Point Sample LA1 Calculations 

Leaf area index was calculated for each tree tallied in the vertical point sample by 

dividing its PLA by its respective plot size, LA1 = PLA I T C R ~ , ~ ~ , , , ~ ~ ,  where R,i,,,,ng is the 
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Table 2.1 PLA equations with coefficients and citations. 

Species 
- 

Abies balsamea 

Picea rubens 

Tsuga canadensis 

Pinus strobus 

I 
I PLA Model 1 Citation I 
PLA = bo(BA * mLCR)bl 
b, = 0.4763 and b, = 0.902 1 

Seymour (unpublished), 
from Gilmore et al. (1996) 
data set. 

PLA = projected leaf area (m2); BA = basal area (cm2); CL = crown length (m); rnLCR = 
modified live crown ratio, (CUtree height - 1.3) (Valentine et al. 1994). 

PLA = b, B A ~ '  * mLCRb2 
I b, = 0.5553, b, = 0.8532, and b2 
= 0.4925 

I 

I PLA = b, + b,(B A * rnLCR) 
b, = 8.9221 and b, = 0.1789 

PLA = b,(BA * mLCR)bl 
b, = 0.3050 and b, = 0.9470 

limiting radius for inclusion in the tally and is defined by HT / tan 61.4", HT being the 

height of the tree (Husch et al. 1972). Plot-level LA1 was estimated for each plot by then 

summing up the LA1 contribution of each tree in the vertical point sample. 

Kenefic (2000), from 
Maguire et al. dataset. 

Kenefic and Seymour 
(1 999) 

Seymour (unpublished) 

Prism Samvle LA1 Calculations 

Leaf area index was calculated for each tree tallied in the prism sample by 

dividing its specific PLA by its respective plot size, LA1 = PLA I x R ~ , ~ ~ ~ ~ ~ ~ ~ ,  where RZIimiting 

is the limiting radius for inclusion in the prism tally and is defined by DBH / 100 k, where 

DBH is expressed in cm, and k is a constant unique to the BAF of the prism (k=0.0283 

for a BAF prism of 2 m2) (Husch et al. 1972). Plot-level LA1 was estimated for each plot 

by summing up the LA1 contribution of each tree in the prism tally. 
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Table 2.2 Specific leaf area (SLA) for all species included in vertical point sample tallies 
with citations. 

Species I 
Tsuga canadensis 

Picea rubens 

Abies balsamea 

Pinus strobus 

Thuja occidentalis 
-- 

I Acer rubrum 

I Betula papyrifera 

I Betula alleghaniensis 

1 Fraxinus americana 

1 Acer pensylvanicum 

I Quercus rubra 

Specific Leaf Area 
(cm2/g) 1 Citation 

I E;; and Seymour 

I Maguire et al. (1 998) 
- -  - 

r ~ i l m o r e  et al. (1995) 

1 Seymour (uopublished) I 

167 I Leathers (1996) I 
138 I Moores (unpublished data) I 

I Moores (unpublished data) I 
315 

155 I Moores (unpublished data) I 

Moores (unpublished data) 

312 
r 

Moores (unpublished data) 



LA1 Estimates Based on Height Squared Regression Coefficients 

Linear regression was used to predict tree-level PLA from Ht2 in an effort to test 

the efficiency and accuracy of using vertical point sampling as method for quickly 

obtaining LA1 estimates in the field. The LA1 of each tree included in the vertical point 

sample is defined as: LA1 = PLA / n~~,,,,,,,,,. Substituting Htltan 61.4" for Rlimiting, this 

equation can be simplified to LA1 = k * PLA / ~ t ~ ,  where k = (tan 61 .4°)2/n. 

Trees were categorized by species and height class, with height classes of 0-7 m, 

7-15 m, and >15 m. Projected leaf area was regressed as a linear function of Ht2 for each 

species and height class with the intercept forced through the origin (see Appendix for 

data). Tree-level LA1 estimates were made for each species and height class by 

multiplying the regression coefficients by k (k=1.07). The LA1 estimates of every "in" 

tree based on these regression coefficients were summed over the entire plot to estimate 

plot-level LAI. 

LA1 Estimates Based on DBH Squared Regression Coefficients 

Linear regression was used to predict tree-level PLA from D B H ~  in an effort to 

test the efficiency and accuracy of using prism sampling as method for obtaining LA1 

estimates quickly in the field. The LA1 of each tree included in a prism sample is defined 

as: LA1 = PLA / nR2,imilin,. The limiting radius here is defined as R,imilin, = DBW2.83 (for 

a prism of BAF 2 m2). This equation can then be simplified to LA1 = k * PLA / DBH2, 

where k = 2.832/n. 
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Projected leaf area was regressed as a linear function of DBH? for each species, 

forcing the intercept through the origin (see Appendix for data). Tree-level LA1 estimates 

were made for each species by multiplying the regression coefficients by k (k=2.55). The 

LA1 estimates of every tree in the prism sample, based on the DBH2 regression 

coefficients, were summed over the entire plot to obtain a fourth estimate of plot-level 

LAI. 

Comparison of LAI Estimates 

Four comparisons were made between the different LA1 estimates. The two 

estimates based on vertical point sampling were compared to each other. The two 

estimates based on prism sampling were compared to each other. The two estimates based 

on tree-specific LA1 calculations were compared to each other (one method using vertical 

point sampling, the other method using prism sampling). Finally the two estimates based 

on PLA regression coefficients were compared to each other (one method using Ht2 

regression coefficients, the other method using DBH2 regression coefficients). Each 

comparison involved calculating the coefficient of correlation between the two estimates 

and conducting a paired T-test to determine if the means of the estimates differed 

significantly. 

Gap Fraction Predictions Based on Vertical Point Sampling 

Several measures based on vertical point sampling were tested in their efficacy at 

predicting gap fraction readings directly above a sample sapling. Gap fraction was 
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predicted as a linear model of the height at which the reading was taken (sample tree 

height in the summer of 2002). Height was retained as a predictor variable and seven 

different vertical point sampling measures described below were added individually as 

additional predictor variables to the first-order linear model. The predictive capacity of 

each measure was judged by testing for significance of the parameter value, and by 

comparing adjusted R' values and mean square error (MSE) among the gap fraction 

models. 

The first measure tested as a predictor variable of gap fraction was the number of 

trees tallied in the vertical point sample (VPS tree count). The second gap fraction 

prediction model divided this tree count into three categories: understory trees (0-7 m), 

midstory trees (7-15 m), and overstory trees (> 15 m). These three tree counts were 

simultaneously used with height to predict gap fraction. Basal area per hectare based on 

the prism sample, total plot-level LA1 based on the vertical point sample, in-tree LA1 

(ITLAI) and in-cone LA1 (INLAI), which are both described below, were also used as gap 

fraction predictor variables. 

Non-height dependent measures (total tree count, BAha, total plot-level LAI) 

were re-tested using the general linear model option of SYSTAT v.10.2. The vertical leaf 

area structure of the plot (Moores, Chapter 1) was added as a qualitative variable to aid in 

gap fraction prediction. Finally, inspection of a scatter-plot of gap fraction versus in-cone 

LA1 revealed a possible negative exponential relationship. The three different LA1 

measures were therefore re-tested using the non-linear model GF = b,*exp(-b,*X + 

b,*HT), where X represents the LA1 estimate being used. 



In-tree LA1 

An inverted cone was mathematically projected from the top of each sample tree 

at a zenith angle of 28.6" to more closely simulate the gap fraction readings taken by the 

LAI-2000 at each tree leader. Trees intersecting this cone were determined by the 

following formula: RlimlLing = (Ht - Htsamplr) 1 tan 61.4", where RIimi,,,, is the limiting radius 

of inclusion, Ht is the height of the competing tree in question and HtsamPle is the height of 

the sample tree. This produced a smaller limiting radius for each tree compared to the 

vertical point sample done at ground level. In-tree LA1 estimates were then formed by 

summing tree-level LA1 for all trees that intercepted this elevated inverted cone. 

In-cone LA1 

In-cone LA1 differed from in-tree LA1 in that only the leaf area above the 

intersection point of the elevated inverted cone and the subject tree were included in 

calculating in-cone LA1 (whereas the entire leaf area of all "in" trees was summed to 

estimate in-tree LAI). The height at which the elevated inverted cone intersected the 

subject tree is given by Htintersecting = dhon * tan 6 1.4" + Ht,,,,,,, where dho, is the horizontal 

distance between the sample tree and the subject tree. Relative depth into the crown was 

determined for the intersection point, and the proportion of leaf area above that 

intersection point (LA,/TOTLA) was calculated using cumulative leaf area distribution 

functions (Moores, Chapter 1). The total LA1 of the tree was multiplied by the proportion 

of LA1 above the intersection point to estimate tree-level in-cone LAI. Plot-level in-cone 
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LA1 was determined by summing tree-level in-cone LA1 for all trees that intercepted the 

elevated inverted cone. 

RESULTS 

Basal Area Estimation 

Calculations based on vertical point sampling provided a stand-level BA estimate 

of 25.1 m2/ha with a standard error of 0.828 m2/ha. Mean stand-level BA based on prism 

sampling was 28.1 m2/ha with a standard error of 0.966 m2/ha. Overall, prism sampling 

provided a higher BA estimate than vertical point sampling, as can be seen by the scatter 

of the two estimates around the one to one line (Figure 2.1). A paired T-test between the 

two estimates gave a mean difference of 2.91 m2/ha, ranging from 1.33 m2/ha to 4.49 

m2/ha within a 95% confidence interval (CT). This indicates that the two estimates are 

significantly different with a p-value of less than 0.001. 

LA1 Estimation 

Average plot-level LA1 estimates based on the four methods described above 

varied between 5.18 and 4.53 (Table 2.3). 



Figure 2.1 scatter plot of plot-level basal area estimates (BA) using vertical point 
sampling and prism sampling with a one-one line for comparison. 

Projected Leaf Area Versus Height Squared Regression Estimates 

First-order linear regression between tree-level PLA and height squared varied by 

species and height class. Tree-level LA1 estimates varied between 0.124 for sapling 

hardwoods to 0.540 for the tallest Pinus strobus trees (Table 2.4). 

Projected Leaf Area Versus DBH Squared Regression Estimates 

Tree-level LA1 estimates based on first-order linear regression coefficients 

between tree-level PLA and DBH2 ranges between 0.194 for Thuja occidentalis to 0.619 

for hardwoods (Table 2.5). 



Vertical Point Sarnpling Versus Prism Sarnpling 

The mean difference between average plot-level LA1 estimates based on vertical 

point sampling (VPS) and prism sampling was 0.648, ranging from 0.339 to 0.958 within 

a 95% CI. The paired t-test showed that the two estimates were significantly different 

with a p-value of less than 0.001. The correlation coefficient between the two estimates 

was 0.7 12. The prism sample generally provided a higher estimate of LA1 than the 

vertical point sample (Figure 2.2). 

Vertical Point Sampling - Height Squared Regression Comparison 

The two plot-level LA1 estimates based on VPS, where one LA1 estimate was 

calculated by approximating each tree with an LA1 constant (Table 2.4) provided fairly 

close estimates. Although there was some scatter about the 1-1 line, the scatter was 

equally distributed about this line (Figure 2.3). The mean difference between the two 

estimates was 0.056, ranging from 0.228 to -0.1 15 within a 95% CI. These means were 

not significantly different, with a p-value for the paired t-test of 0.5 14. The two estimates 

were also fairly highly correlated with a correlation coefficient of 0.900. 

Prism Sarnpling - DBH Squared Regression Comparison 

The two plot-level LA1 estimates based on prism sampling, where one LA1 

estimate was calculated by approximating each tree with an LA1 constant (Table 2.5), 

differed significantly. The mean difference between the two estimates was 0.627, ranging 

from 0.472 to 0.782 within a 95% CI. The p-value for the paired t-test was less than 



7 6 

Table 2.3 Mean plot-level LA1 estimates based on the four different estimation methods. 

0.001. Despite this, the two estimates were highly correlated with a correlation coefficient 

between the two estimates of 0.941. Approximating the LA1 of each tree by a constant 

consistently provided a lower plot-level LA1 estimate for 54 out of the 69 plots (Figure 

2.4). 

LA1 Estimation Method 

Vertical Point Sampling 

Prism Sampling 

Height Squared Regression Estimates (VPS) 

DBH Squared Regression Estimates (prism 
sampling) 

Height Squared Regression Estimates Versus DBH Squared Regression Estimates 

The two plot-level estimates based on tree-level LA1 constants provided very 

similar estimates despite different sampling techniques (VPS versus prism sampling). The 

mean difference between the two estimates was 0.035, ranging from -0.206 to 0.275 

within a 95% CI. The p-value for the paired t-test was 0.774, indicating these means were 

not significantly different. Despite the close averages, there was still scatter between the 

two plot-level estimations about the 1-1 line, with a coefficient of correlation of 0.801 

between the two estimates (Figure 2.5). 

Mean Plot-level LA1 Estimate & 

SE 

4.53 k 0.159 

5.18 5 0.221 

4.59 & 0.194 

4.56 5 0.188 



Table 2.4 Tree-level LA1 constants based on P L A - H ~ ~  regression coefficients. 

Species I Height Class I LAVtree " 

Abies balsamea 

I Tsuga canadensis I 0 - 7 m  I 0.3 1 1 

- -- -- 

Picea rubens 

> 15m 

0 - 7 m  

7 - 1 5 m  

> 15m 

Pinus strobus 

Thuja occidentalis 

" LA1 estimates are based on vertical point sampling at an angle of 61.4" from the 
horizontal. 

0.157 

0.229 

0.28 

0.378 

I 

> 1 5 m  

0 - 7 m  

7 - 1 5 m  

> 15m 

7 - 1 5 m  

> 15 m 

0.473 

0.32 1 

0.439 

0.54 

0.322 

0.278 

0.124 Hardwoods 0 - 7 m  
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Table 2.5 Tree-level LA1 constants based on PLA-DBH2 regression coefficients. 

- - -- 

Species 

Abies halsamea 

Picea rubens 

Thuja occidental is 1 0.194 

LAYtree " 

0.359 

0.306 

Tsuga canadensis 

Pinus strobus 

I Hardwoods 0.619 

I 

0.306 

0.267 

" LA1 estimates are based on horizontal point sampling with a 2 m2 BAF prism. 

Gap Fraction Predictions Based on Vertical Point Sampling 

Height alone explained 37% of the variation in LAI-2000 gap fraction readings 

(Model 1, Table 2.6). Addition of all predictor variables improved the R2 values, and all 

were significant a=0.05 except for the number of "in" trees in the understory (US) ( 

Model 3), while the number of trees in the rnidstory and overstory were significant in the 

Model 3. Adding plot-level LAI as a predictor variable provided the least amount of 

improvement (Model 51, and was actually less predictive than using the VPS tree count 

(Model 2), or the prism-based BA estimate (Model 4) as predictor variables. Vertical LA 

structure of the plot was highly significant in predicting gap fraction when added as a 

qualitative variable to all three height independent measures, BA (Model 9), LA1 (Model 

10) and VPS tree count (Model 8). 



0 2  4 6 8 10 1 2  

LA1 - Prism S a m p l e  

Figure 2.2 Scatter plot of plot-level LA1 estimates using vertical point sampling and 
prism sampling with a one-one line for comparison. 

LA1 - Vertical Point Sample 

Figure 2.3 Scatter plot of vertical point sample plot-level LA1 estimates based tree-level 
LA1 calculations and regression coefficient based tree-level LA1 estimates with a one-one 
line for comparison. 



0  2  4 6 8 1 0  1 2  

L A 1  - Prism S a m p l e  

Figure 2.4 Scatter plot of prism sample plot-level LA1 estimates based on tree-level LA1 
calculations and regression coefficient based tree-level LA1 estimates with a one-one line 
for comparison. 

0 2 4 6 8 10 1 2  

L A 1  - D B H A 2  R e g r e s s i o n  Coeff icients 

Figure 2.5 Scatter plot of vertical point sample plot-level LA1 estimates based on Ht2 
regression coefficients for tree-level LA1 and prism sample plot-level LA1 estimates 
based on DBH2 regression coefficients for tree-level LA1 estimates with a one-one line 
for comparison. 
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As expected, the more that LA1 calculations were restricted to what was actually 

in the LAI-2000 field of view, the better the gap fraction prediction. By limiting the LA1 

calculation to only what was above the intersection point of the "in" tree and the inverted 

cone projected from tree leader (INLAI), the significance of height vanished (Model 7), 

indicating that INLAI was successful in taking into account the various heights at which 

the gap fraction readings were taken. Nonlinear exponential models varied in terms of 

their effectiveness when compared to the corresponding linear model. There was no 

improvement by switching to an exponential model when using plot-level LA1 (Figure 

2.6). The exponential model was an improvement over the linear model when using in- 

tree LAI, and there was a substantial improvement when using in-cone LAI, suggesting 

that the relationship between LA1 seen by the LAI-2000 and gap fraction is a negative 

exponential relationship (Figure 2.7). This model performed the best with an R2 value of 

0.756 and gave the following equation for predicting gap fraction: 

(Model 13) DIFN = 1.189 * exp(- 1.272 INLAI - 0.059 Ht) 

where DIFN is gap fraction reading provided by the LAI-2000, INLAI is in-cone LAI, and 

Ht is height of the reading (which was tree height). 



Table 2.6 Adjusted R2 values, mean square error (MSE), and p-values of parameter 
estimates for all predictive models of gap fraction that were tested. An asterisk (*)denotes 
significant predictor variables at a = 0.05. 

Parameter Estimate 
p-value 

Ht: p<0.001* 

Ref. 
Number 

1 

2 

3 

4 

5 

6 

7 

8 

9 

! 

1 10 

I 
I 

I 11 

12 

13 

Ht: p<0.000* 
TC: p = 0.004* 

Ht: p < 0.001* 
0 s :  p < 0.001* 
MS: p =  0.033* 
US: p = 0.909 

Model 

DIFN = b,, + b, Ht 

DIFN = b,, + b, Ht + b, T C  

D I F N = b , + b , H t + b , O S + b , M S  
+ b, US 

DIFN = b,, + b,  Ht + b, BA,, 

DIFN= b,+ b, Ht + b,LAI 

DIFN = b, + dl Ht + b, ITLAI 

DIFN = b, + b, Ht + b, INLAI 

D I F N = b , + b , H t + b , T C + b , S t  

DIFN=b,+b,Ht+b,BA,, ,+b,  
St 

D I F N = b , + b , H t + b , L A I + b , S t  

DIFN = b, * exp(-b, LA1 + b, Ht) 

DIFN = b,, * exp(-b, ITLAI + b, Ht) 

DIFN = b, * exp(-b, INLAI + b, Ht) 

Ht: p < 0.001* 
BA,,,: p< 0.001 * 

Ht: p < 0.001* 
LAI: p = 0.01 8* 

Ht: p = 0.036* 
ITLAI: p < 0.001 * 

Ht: p = 0.428 
INLAI: p < 0.001 * 

Adjusted 
RZ 

0.37 

0.437 

0.498 

0.477 

0.4 13 

0.567 

0.607 

0.548 

0.556 

0.5 15 

0.407 

0.637 

0.756 

-- - 

Ht: p < 0.001* 
TC: p = 0.002* 
St: p = 0.002* 

MSE 

0.05 1 

0.046 

0.04 1 

0.043 

0.048 

0.035 

0.032 

0.039 

0.038 

0.042 

0.05 

0.03 

0.02 

Ht: p <  0.001* 
BA: p=0.001* 
St: p =0.013* 

Ht: p < 0.001* 
LAI: p = 0.025* 
St: p = 0.006* 

DIFN = gap fraction reading; Ht = height of gap fraction reading; TC = vertical point 
sample tree count; OS = overstory tree count (tree height > 15 m); MS = mid-story tree 
count (7 m c tree height c 15 m); US = understory tree count (tree height c 7 m); BA,,, 
= basal area estimate by prism tally; LA1 = plot-level LAI; ITLAI = in-tree LAI; ITLAI = 
in-cone LAI; St = vertical leaf area structure of plot (1, 2, or 3) (Moores Chapter 1). 



Plot-level LAI 

Figure 2.6 Scatter plot of plot-level LA1 taken 1 m above ground and gap fraction fit 
with a negative exponential curve demonstrating the lack of a relationship between the 
two measures. 

Figure 2.7 Scatter plot of in-cone LA1 above sample tree and gap fraction fit with a 
negative exponential curve demonstrating the relationship between the two measures. 



DISCUSSION 

Prism sampling provided significantly higher stand-level BA and LA1 estimates 

than vertical point sampling. It is not uncommon for horizontal point sampling to provide 

higher basal area estimates than fixed radius plot sampling (Oderwald and Gregoire 

1995). Oderwald and Gregoire (1995) attributed this to "pushing the point", meaning not 

holding the prism directly over plot center. While the prism was used to judge whether 

trees were in or not in our study, no tree was included in the prism tally without a distance 

from plot center and DBH measurement taken for that tree. Distance from plot center was 

measured, using an electronic distance measuring device (DME) that involved placing a 

transponder on the subject tree. While care was taken to hold the DME over plot center, 

the transponder was placed on the front of the subject tree. This could have mimicked the 

effect of slightly "pushing the point" as described by Oderwald and Gregoire (1995) and 

inflated our BA and LA1 estimates. 

Since there is no absolute standard LAI to compare the various estimates to, it is 

difficult to make judgements about the accuracy of LA1 estimates based on prism 

sampling or vertical point sampling. Kenefic (2000) measured plot-level BA and LA1 on 

the two stands being operated on five-year cutting cycles using fixed-radius plots. She 

reported a mean BA estimate of 21.78 m2/ha, and LA1 estimates ranging between 1.52 

and 5.96 with a mean LA1 estimate of 4.05. This is in closer agreement with estimates 

provided by the vertical point sample. It is also noteworthy that the mean LA1 estimate 

based on prism sampling using D B H ~  regression coefficients was significantly different 
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from the original LA1 estimate based on prism sampling, but it was not significantly 

different from the two LA1 estimates based on vertical point sampling. This makes it 

difficult to judge the accuracy of LA1 constants based on PLA-DBH2 regression 

coefficients. It also suggests that overestimation of LA1 from prism sampling is occurring 

due to tree-level LA1 calculations and not due to oversampling. 

Since the two estimates based on prism sampling included were formed from the 

same tally of trees, plots where these two LA1 estimates differed substantially were 

examined. Of the trees in the prism sample whose LA1 calculation was greater than its 

respective DBH' regression estimate by more than 0.1, 50.6% of them were Abies 

balsamea trees. Most of these Abies balsamea trees were less than 10 cm in DBH. This 

suggests that the PLA equation used for Abies balsamea (Seymour (unpublished), from 

Gilmore et al. (1996) data set) could be overestimating small diameter trees and this 

small difference became magnified due to the large number of TPH these small diameter 

trees represented. The same PLA equation was used for Abies balsamea trees tallied in 

the vertical point sample; however, these trees on the whole were weighted less heavily in 

the vertical point sample than they were in the prism sample. Trees for which the two 

prism estimates differed by more than 0.1 represented on average 854 TPH in the prism 

sample, while these same trees represented on average only 463 TPH when tallied in the 

vertical point sample. 

This provides preliminary evidence that vertical point sampling is a legitimate 

method to estimate plot-level or stand-level LAI. Despite closer agreement to LA1 data of 

Kenefic (2000) than prism sampling, the mean LA1 estimate based on vertical point 
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sampling was still 12% higher than that of Kenefic (2000). Although there are very few 

studies of vertical point sampling as a sampling method to measure stand structural 

characteristics, Biging and Dobbertin (1992) estimated crown volume and crown surface 

area of potential competitors using a similar method with a height angle gauge. 

Competition indices based on using the height angle gauge were superior in predicting 

height and diameter growth of several western conifer species to competition indices 

based on using a DBH angle gauge. Brown and Mugasha (1988) used vertical point 

sampling to generate a preliminary sample, which was then subsampled using a 

computational procedure to arrive at a horizontal point sample. This intermediate step 

could easily be eliminated and the vertical point sample used directly; however, further 

validation of vertical point sampling is needed. Direct comparisons between LA1 

estimation based on vertical point sampling and LA1 estimation based on conventional 

fixed-radius plots are needed to validate vertical point sampling as a tool for LA1 

estimation. 

Substituting tree-level LA1 calculations with estimates based on Ht2 regression 

coefficients also shows strong potential as a quick, efficient and accurate way to estimate 

stand-level LA1 using vertical point sampling. No statistical difference in the stand-level 

LA1 estimate resulted from substituting the actual LA1 calculations with constants based 

on the PLA-Ht2 regression coefficients. Through personal experience, it  was found that 

tree boles at breast height were often obscured by understory vegetation making prism 

sampling challenging in these complex stands. While tree crowns were also often 

obscured, they were generally more visible and easier to sight to than tree boles at breast 
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height. A vertical point sample could easily be done in such a complex stand in 5-10 

minutes. A simple tally of each "in" tree by species and approximate height could then 

provide an LA1 estimate without having to measure any structural attributes. This would 

need to be conducted over enough sample points to ensure statistically similar mean 

estimates. As mentioned earlier, further validation of vertical point sampling is needed 

before this quick technique of LA1 estimation can be employed. 

The second objective of this study was to predict gap fraction readings based on 

stand structural attributes easily measured in the field. Despite significant parameter 

estimates for all but one of the variables tested, results were not very successful in 

achieving this objective. It is encouraging that 75.6% of the variation in gap fraction was 

explained by estimating the amount of leaf area inside the inverted cone projected by the 

first two rings of the LAI-2000. This provides further confirmation that VPS accurately 

tallies trees within a saplings "zone of influence." This is not however a simple measure 

that would be practical for a practitioner to measure in the field. Calculation of INLAI 

involved intensive field data collection and elaborate data manipulation using 

spreadsheets. The second most predictive structural attribute, ITLAI, is also very 

impractical to calculate. While the whole LA1 of each "in" tree was summed to predict 

plot-level ITLAI (which could therefore eliminate tree measurements by simply using 

LA1 constants), it also involved intensive data collection and manipulation to determine if 

particular trees were still "in" once the inverted cone was shifted upward to the tree leader 

from ground-level. This does suggest that this measure may be more applicable if an 
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estimate of gap fraction was needed at eye-level height where no shifting would be 

needed. 

Other measures including LAI, BA, and number of "in" trees were much more 

predictive if plot leaf area structure was included in the models, but these models still 

explained less than 60% of the variation in gap fraction. The inclusion of trees in these 

estimates that were in the same stratum as the trees being measured decreased the 

predictive strength of LAI, BA, and VPS tree count. Trees in the same stratum would not 

have been providing overhead competition, and likely were not seen by the LAI-2000 at a 

zenith angle of 28.6", yet they were included in the estimates of LAI, BA, and VPS tree 

count. 

McConville (1998) was much more successful in predicting gap fraction readings 

from stand structural attributes. He achieved R2 values of 0.85-0.90 using BA, crown 

projection area, and projected leaf area as predictor variables. One of the probable reasons 

this study was not able to produce similar R2 values was due to the complexity and spatial 

heterogeneity (both vertical and horizontal) of these stands. The stands that McConville 

(1998) studied were fairly homogeneous in structure and species composition with only 

one overstory cohort of a single species, to which he restricted his structural 

measurements. There was no clear boundary between overstory, midstory, and understory 

in the multi-cohort stands used in the present study. Similar to McConville (1998) 

however, the relationship between gap fraction and leaf area was best described as a 

negative exponential relationship. This is also consistent with several other studies that 

have reported negative exponential relationships between LA1 and gap fraction or light 
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interception measures (Lang and Yueqin 1986; Gower and Norman 1991 ; Sampson and 

Smith 1993). 

CONCLUSIONS AND SILVICULTURAL IMPLICATIONS 

The use of vertical point sampling as a method of sampling for LA1 estimates 

shows strong promise. The success of replacing tree-level LA1 estimates with constants 

based on P L A - H ~ ~  regression coefficients suggests that vertical point sampling could 

provide foresters with a quick and accurate way to estimate plot or stand-level LA1 in the 

field. Further development and validation of these LA1 estimation methods should be 

undertaken. 

This study was unsuccessful at relating canopy openness to more easily 

measurable in-the-field measurements such as LAI, vertical point sample tree counts, or 

basal area. Providing forest managers with no easy way to estimate gap fraction values 

reduces the applicability of this study. Future research could examine how gap fraction 

varies with different sized gap openings, or how gap fraction varies with respect to the 

number of trees felled in group selection during a harvest entry. This could aid foresters 

in determining how many trees to take out in a group to produce desired height growth 

response. 
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APPENDIX. 

PROJECTED LEAF AREA VERSUS HEIGHT SQUARED AND DBH 
SQUARED SCATTER PLOTS BY SPECIES 

Figure A. 1 Scatter plot of individual tree projected leaf area (PLA) versus height 
squared for Abies balsamea. 

Figure A.2 Scatter plot of individual tree projected leaf area (PLA) versus DBH squared 
for Abies balsamea. 



Figure A.3 Scatter plot of individual tree projected leaf area (PLA) versus height 
squared for Picea rubens. 

Figure A.4 Scatter plot of individual tree projected leaf area (PLA) versus DBH squared 
for Picea rubens. 



Figure A S  Scatter plot of individual tree projected leaf area (PLA) versus height 
squared for Tsuga canadensis. 

Figure A.6 Scatter plot of individual tree projected leaf area (PLA) versus DBH squared 
for Tsuga canadensis. 



Figure A.7 
squared for 

Scatter plot of individual tree projected leaf area (PLA) versus height 
Pinus strobus. 

Figure A.8 Scatter plot of individual tree projected leaf area (PLA) versus DBH squared 
for Pinus strobus. 



Figure A.9 Scatter plot of individual tree projected leaf area (PLA) versus height 
squared for Thuja occidentalis. 

Figure A. 10 Scatter plot of individual tree projected leaf area (PLA) versus DBH 
squared for Thuja occidentalis. 



Heig htA2 (mA2) 

Figure A. 11 Scatter plot of individual tree projected leaf area (PLA) versus height 
squared for all hardwood species. 

Figure A. 12 Scatter plot of individual tree projected leaf area (PLA) versus DBH 
squared for all hardwood species. 
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