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 Eastern hemlock (Tsuga canadensis (L.) Carr.) is an ecologically 

important species that is threatened across its range by the non-native hemlock 

woolly adelgid (HWA, Adelges tsugae (Annand) (Hemiptera: Adelgidae)). In order 

to understand potential impacts of HWA in southern Maine, we conducted a tree-

ring study of 36 sites in southern Maine (York and Cumberland counties) to 

evaluate how stress events affected eastern hemlock increments, especially after 

the 1999-2002 drought.  

 The primary objectives were to: 1) create a master chronology and identify 

reduced growth events 2) model abiotic factors associated with differences in 

drought response among plots and 3) evaluate the impact of the 1999-2002 

drought on growth trends across the southern Maine hemlock population. 



  

 Reduced growth events coincided with records of drought and defoliation 

by hemlock looper (Lambdina fiscellaria (GUEN.) and gypsy moth Lymantria 

dispar (L.). Hemlock growth for the master chronology was also associated with  

1) previous year’s June and July temperatures, 2) both previous and current 

summer precipitation, and 3) both maximum and minimum February 

temperatures.  

 A predictive model for the 2003 drought year showed that plots with higher 

expressed population signals (and adjustment of interseries correlation for 

sample size), shallower O soil horizons, lower average February maximum 

temperatures, higher B soil horizon aluminum saturation, and greater stand 

densities had the largest decreases in mean growth, as expressed by the percent 

growth change of increments over a 3 year period. The plots with the most 

negative percent growth change in 2003 had the most positive percent growth 

change in 2005. The 2005 recovery was positively related to average plot age 

and calcium in the B soil horizon. 

 The low number of trees (59 of 503) experiencing decreased growth in 

2005 supports the observation from the master chronology that hemlock trees in 

this study are typically healthy and able to quickly recover following drought 

stress. These findings support the consideration of management strategies that 

increase hemlock vigor leading to greater growth potential and enhanced ability 

of trees to recover from stress.
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DEDICATION 

 
 
 

In loving memory of my grandmother 
Sarah F. Tomaino 

(who never really approved of coring trees)  
 
 
 
 

 
                 Forest 
 
The forest floor in glittering laurel 
Is mushroom black 
Roofed by a tent of tilting light 
Beyond these thresholds of night 
It is noon in the clearings 
 
I sit by the swamp walk 
I am swamp myself 
Probed and sipped by mosquitoes 
Full of unvirginal fluids 
 
I like it here. My place 
Mud-foot, frog-haunch, fern-skin 
Tonight I’ll be back 
Let me in, let me in. 
 
 
       Sarah F. Tomaino  
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Chapter 1 

INTRODUCTION 

Background 

 Eastern hemlock (Tsuga canadensis (L.) Carr.) is a species of ecological 

importance that is threatened across its range by the non-native hemlock woolly 

adelgid (HWA, Adelges tsugae (Annand) (Hemiptera: Adelgidae)). HWA currently 

exists across one-half of eastern hemlock’s native range, but its spread is much 

slower in northern New England (Evans and Gregoire 2007) where cold winter 

temperatures periodically decrease populations and limit the spread of the insect 

(Paradis et al. 2007). HWA began to infest natural stands along the southern 

border of Maine in 2003 (Maine Forest Service 2007). It has been suggested that 

the slower spread in this region will give forest managers more time to take 

advantage of management options for limiting the spread and severity of HWA 

infestations (Fajvan 2007). 

 Other stresses affecting hemlock in southern Maine include drought and 

defoliation. There are published records of several droughts in the region since 

1940 (Lombard 2004). Drought has been shown to cause hemlock mortality on 

its own (Balio et al. 2004) and in combination with insect activity (Maine Forest 

Service 2002, Mayer et al. 2002). There are also records of defoliating insects 

known to affect hemlock in this region, primarily hemlock looper and gypsy moth 

(Trial 1994, Trial and Devine 1994, Bradbury, 1990, Bradbury, 1991, Bradbury, 

1992, Bradbury 1993, Bradbury 1994). 
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 In order to manage eastern hemlock effectively in the presence of HWA, 

drought, defoliators, and other stresses, we must understand how hemlock has 

been affected by past stress events. This thesis uses tree-ring analysis of 

hemlock in southern Maine to evaluate the species’ past response to stresses 

and its current growth trends prior to HWA infestation. 

 

Ecology and Importance 

 Eastern hemlock grows from the Great Lakes region to Nova Scotia as 

well as through New England, along the Appalachian Mountains to northern 

Georgia and Alabama and in other outlying populations (Godman and Lancaster 

1990) (Figure 1). In Maine there are about 161,000 acres of the white 

pine/hemlock forest type and 625,000 acres of the hemlock forest type 

(McWilliams et al. 2005). Based on recent Forest Inventory and Analysis data, 

hemlock accounts for approximately 17,000 million cubic feet of volume in Maine 

forests. The highest basal area of hemlock occurs in a band just inland and 

parallel to the coast (McWilliams et al. 2005) (Figure 1). 

 Hemlock grows in a wide range of site conditions across its range 

(Godman and Lancaster 1990). In New Hampshire, eastern hemlock basal area 

was highest on poorly drained soils, rock, outwash and wet compact tills (Leak 

1978).  

 Stable microclimates develop under dense hemlock crowns (Godman and 

Lancaster 1990), characterized by cool damp conditions, slow rates of nitrogen 

cycling, and low soil nutrient status (Jenkins et al. 1999). Eastern hemlock is the 
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only shade tolerant conifer in many parts of its range (Beaty 1984) and influences 

structure of mixed stands through vertical and horizontal stratification, which 

enhance wildlife habitat (Kelty 1989, Yamasaki et. al. 2000). The milder 

conditions, shade, and forest structure facilitated by hemlock are favored by 

wildlife throughout the year (Reay 2000, Yamasaki et al. 2000, Tingley et al. 

2002).  

 The shade produced by hemlock forests also influences soil moisture and 

stream temperatures, thus supporting a number of amphibians, fish, and 

freshwater invertebrates (Allison et al. 2005, Ross 2003, Snyder 2005) and 

impacting streamflows and runoff (Ford and Vose 2007)



  

 

 

Figure 1. Eastern hemlock distribution in the eastern U.S. and Maine. 
Measured in basal area per acre. Image created by the Northern Research Station Forest Inventory and Analysis 
(http://www.nrs.fs.fed.us/fia/). 

4 
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Dendrochronology 

 Dendrochronology is the study of annual tree ring growth (Stokes and 

Smiley 1996). Yearly ring growth is related to both external resources and 

conditions in the tree. External factors include water, temperature, light, carbon 

dioxide, oxygen and soil minerals, which affect temperature, water availability, 

and carbon building materials within trees (Fritts 1976). Therefore the availability 

of resources for growth depends on climate, site, and stand conditions as well as 

genetics. One aspect of dendrochronology, dendroclimatology, relates 

differences in yearly growth to climatic factors in order to improve understanding 

of the past, present, and future relationship between climate and tree growth 

(Fritts et al. 1965, Cook and Cole 1991, Oberhuber et al. 1998, Linderholm 

2001). 

 Because shading and competition were thought to be the major factors 

limiting tree growth in the northeast, dendrochronology developed later in this 

region (Fritts 1976). Eastern hemlock was one of the first species in the northeast 

to be used for climate-tree ring studies (Cook 1990). Hemlocks were first cross-

dated by Douglas in 1919 (Cook 1919). Lyon (1935) related tree growth to April-

August rainfall and suggested the use of small ring widths to extend and improve 

records of physiological drought. Cook and Jacoby (1977) also related tree ring 

growth to water availability with Palmer Drought Severity Index values for May of 

the previous year to August of the current year. They also suggested that ring 

growth could be used to reconstruct past droughts. Cook and Cole (1991) found 
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associations between average monthly temperatures and ring widths that 

appeared to be independent of site conditions. They reported that precipitation 

growth responses, however, were dependent on site hydrology. 

 Dendroecology, another application of dendrochronology for 

understanding ecosystem processes, has been used to document the 

disturbance history and succession of hemlock in relation to other tree species 

(Abrams and Orwig 1996, McLachlan et al. 2000). Dendroecology also was used 

to compare heavily and lightly HWA infested trees in an old growth stand in 

Pennsylvania. The trees that were growing at lower rates prior to infestation 

became more severely infested by HWA (Davis et al. 2007). A study at the 

Delaware Water Gap National Recreation Area showed that HWA infestation 

level and crown variables including live crown ratio, crown density, foliar 

transparency, and branch dieback were most closely associated with growth 

decline as measured by three consecutive years of declining growth (Rentch et 

al. In Review).  

 Both dendroclimatology and dendroecology are important for 

understanding the factors historically affecting a tree population, as well as the 

current growth status of that population. This study uses both dendroclimatology 

and dendroecology to investigate stress history and current status of southern 

Maine’s hemlock population. 
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Objectives 

 This study had three primary objectives. The first objective was to identify 

reduced growth events for hemlock in southern Maine and identify their causes 

from historical records. 

 The second objective was to identify abiotic factors associated with 

increment growth response following the 1999-2002 drought, including variations 

in site, climate, and/or average tree characteristics. 

 The third objective of this study was to evaluate the effect of the 1999-

2002 drought on growth trends occurring in the southern Maine hemlock 

population. 
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Chapter 2 

METHODS 

Plot Locations 

 Polygons were selected at random from maps of conservation lands in 

York and Cumberland counties by soil series (Maine Geographic Information 

System 2007) where aerial photos indicated the presence of conifers. A forest 

stand within a polygon was sampled if hemlocks dominated (dominant or 

codominant >12.5 cm DBH, >8 m2/ha in hemlock). This resulted in 36 sample 

plots of 0.081 ha each. 

 Most of the sites are on conservation lands owned or managed by the 

state of Maine and federal governments (Figure 2). Some of the lands are in 

public parks with limited cutting, while others are under conservation easements 

where logging activities continue to occur. Climate throughout the region is 

characterized by warm summers and cold winters with precipitation spread 

evenly throughout the year. Plots have diverse land-use and disturbance 

histories. Though this was not explicitly studied, evidence of past farming and fire 

were indicated by the presence of rock walls and charcoal at some sites. 

Defoliation by gypsy moth and hemlock looper was also variable across this 

region (Trial 1994, Trial and Devine 1994, Bradbury 1990-1994). 
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Figure 2. Plot locations in southern Maine 
 

Plot and Tree Measurements 

 At each site we recorded primary aspect along with slope (%) in each of 

the four cardinal directions using a Suunto clinometer. Species, crown class, and 

diameter at breast height (1.4 meters above the ground) were recorded for all 

trees greater than 12.5 cm DBH within each 0.081 ha plot. Height and lowest live 

branch were also measured for all dominant and codominant hemlocks using a 

sonic hypsometer. Live crown ratio (LCR) was calculated from these 

measurements: LCR = (height - height to lowest live branch) / height * 100). 
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Percent dieback and other indicators of tree health including presence of logging 

damage, frost cracks, fire scars, and fungus were recorded. 

 

Soil Measurements 

 A soil pit was dug in the center of each plot to below the maximum rooting 

depth or restrictive layer. All horizons were described for depth, texture, and 

percent course fragments. Samples of the upper O, B, and C horizons were 

collected, dried, shattered, and sieved through 4 mm (organic horizons) and 2 

mm (mineral horizons) sieves. Soil samples were analyzed for pH, percent loss 

on ignition (% LOI), percent nitrogen (N), percent carbon (C), exchangeable 

acidity, and cations calcium (Ca), potassium (K), phosphorus (P), aluminum (Al), 

iron (Fe), manganese (Mn), sodium (Na), and zinc (Zn) using the Forest Soils 

Protocol (Roberge and Fernandez 1986).  

 Calculations of additional soil parameters relevant to plant growth included 

cation exchange capacity (CEC), percent base saturation (%Base), percent 

aluminum saturation (%Al), carbon to nitrogen ratio (C/N), and the ratio of 

calcium to aluminum (Ca/Al) based on concentrations (meq/100g). 

 

Tree Cores 

 One core was extracted from each dominant and codominant hemlock in 

plots using a 4mm increment borer. Trees were cored at breast height 

perpendicular to the slope to avoid compression wood. Then the clearest surface 
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of the trunk was cored to reduce branch interference and ring-shake. If less than 

twelve dominant and co-dominant hemlocks were available within the plot, 

overstory hemlocks on the perimeter of the plot were included. Cores were dried, 

mounted, and sanded up to 800 grit. Tree rings were then marked and visually 

crossdated using WinDendro (Guay et al. 1992) and statistically cross-dated 

using COFECHA (Holmes 1983). Age at breast height was estimated for each 

plot based on cores that either contained pith or where a pith locator could be 

used (Applequist 1958). 

 Basal area increment (BAI) has been used as a measure of tree growth in 

dendrochronological studies to account for total accumulation of wood during a 

given year (Phipps 1984, LeBlanc 1990, Duchesne et al. 2002). To calculate 

basal area increment (BAI) an estimate of the breast height radius was obtained 

by subtracting the bark width from half of the DBH to obtain the radius of the 

wood. Bark measurements were estimated using a linear regression of known 

hemlock bark thicknesses from central Maine: Y = 2.08135+(0.50616 * X) 

where X is DBH in centimeters and Y is bark thickness in millimeters (adjusted r2 

= 0.79, 88 degrees of freedom) (unpublished data from Laura Kenefic, U.S. 

Forest Service, Northern Research Station, Orono, ME).  

 The radius of the wood (rw) was estimated as DBH / 2 – Y. Total BA at the 

breast height cross-section was calculated as π * (rw) 2. Using radial increments 

(r) for each calendar year (n), BAI for a calendar year was calculated:  

BAIn = Total BA - π * (rw - (rn + rn+1...r2005))2 - (BAIn+1 + BAIn+2…BAI2005) 
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Climate Data 

 Palmer Drought Severity Index values were obtained from the National 

Climatic Data Center (NOAA Satellite and Information Service 2008 

http://www7.ncdc.noaa.gov/CDO/CDODivisionalSelect.jsp). Yearly values were 

averaged for Maine climate zones 2 and 3 covering the inland and coastal 

sections of southern Maine.  

 Estimates for monthly precipitation, average maximum temperature, and 

average minimum temperature were obtained for each plot using the PRISM 

database (Spatial Climate Analysis Service 2008 http://prism.oregonstate.edu/). 

The continuous climate data provided by PRISM has 4 km resolution and is 

derived from climate station values, a digital elevation model, incorporation of 

coastal affects, and other climactic influences (Daly et al. 2004). 

 

Chronology Development 

 Ring-widths were standardized using a 30 year smoothing spline in the 

program ARSTAN (Holmes et al. 1986). Cook (1985) introduced cubic smoothing 

splines to better fit actual growth trends and to minimize ring trends related to 

age-size, local, and stand-wide disturbances (Cook, 1987) without eliminating 

short-term year to year variation. A thirty-year period was used because that was 

the minimum age of any core. Flexibility was set at a 50% cutoff wavelength 

(Holmes et al. 1986). 

 A residual chronology (RES) was also calculated in ARSTAN, using 

autoregressive modeling of residuals from the standard chronology, which 
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removes persistent trends and shows the common yearly growth relationships by 

chronology (Cook and Holmes 1986). Residuals indicate how far an increment 

varies from the average, so negative residuals indicate abnormally low growth in 

a corresponding year which can be compared to historical drought and insect 

reports. Published drought records were only available after 1940 (Lombard 

2004, Maloney and Bartlett 1991); therefore, most of the discussion was limited 

to that time period. 

 ARSTAN was used to modify the RES chronology to reincorporate the 

autocorrelation in yearly growth presumably due to climate (Cook and Holmes 

1986). The modified chronology (ARSTAN) was used in the climate analysis. 

 

Climate Analysis 

 DendroClim 2002 (Biondi and Waikul 2004) was used to identify climatic 

variables associated with year to year variations in tree growth. This program 

uses principle components regression, where eigenvectors derived from climate 

variables are predictors used in stepwise linear regression (Biondi and Waikul 

2004). Confidence intervals for climatic correlation and response variable 

coefficients were then bootstrapped to estimate coefficients (Biondi and Waikul 

2004). 

 To evaluate growth trends against climate values, a master chronology of 

all 503 cores was created and standardized in ARSTAN. The climate values for 

the study area were the averages of all the plot PRISM values for each year 

since 1895. Two separate models were estimated using DendroClim 2002 where 
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the dependent variable in each model was the ARSTAN chronology and the 

independent variables were: 1) Monthly minimum temperatures and monthly 

precipitation and 2) maximum monthly temperatures and monthly precipitation. 

Initial analyses for each growth increment in the master chronology included 18 

months of temperature averages from April of the previous year to September of 

the current year, and the corresponding 18 months of monthly precipitation.  

 Bootstrapping (1000 times, samples of 300 cores) in DendroClim 2002 

was used to create confidence intervals for each correlation and response 

coefficient. This is an advantage over other climate analysis programs such as 

PRECON, which only bootstraps response functions (Biondi and Waikul, 2004). 

Monthly correlation values were used to confirm response coefficients as 

suggested by Blasing et al (1984). Only monthly climatic variables with significant 

correlation and response coefficients were reported in the results and used in 

plot-based models.  

 To examine consistencies in growth trends through time in the master 

chronology, ARSTAN growth was also analyzed in progressive 60 year intervals 

from the beginning of the PRISM climate record in 1895. This interval was 

chosen because 60 years was the shortest interval that could be analyzed for the 

significant months of June of the previous year to August of the current year. 

 Plot chronologies were created using the same standardization techniques 

and Dendroclim 2002 was also run independently at each plot with 

corresponding PRISM data to determine whether plots had similar significant 

climate response coefficients throughout the study region. 
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Plot-level Models  

 We calculated percent growth change (PGC) in basal area increments to 

compare growth trends among plots following the 1999-2002 drought. This has 

been done in studies measuring canopy disturbance (Moesswilde 1995, Nowacki 

and Abrams 1997) and tree declines for fir (Abies balsamea) (Kanoti 2006) and 

American beech (Fagus grandifolia) (Kasson 2007).  

 Prior studies measured percent growth change in a given year using 10 

year increment averages (Moesswilde 1995, Nowacki and Abrams 1997).  

To evaluate how trees in a plot responded to drought, the PGC was modified to 

emphasize short-term growth trends following a stress event (Kanoti 2006, 

Kasson 2007), such that the current year’s value (n) was compared to the 

average of the previous 2 years: 

PGC = (BAIn - (Average (BAI(n-1) + BAI(n-2))) / Average (BAI(n-1) + BAI(n-2)) * 100. 

 The impact of drought on tree growth was estimated using the PGC in 

2003 (PGC03) the year following the most severe drought conditions in southern 

Maine (Lombard 2004). Because 2003 was a low growth year for most trees, 

using the PGC in 2003 for all cores minimized the chance of using a response 

variable associated with other tree or plot-level stresses. PGC in 2005 (PGC05) 

was used to measure how well trees recovered increment growth after the 

drought stress because 2005 was a year with a high PDSI following the drought 

and most trees showed increased growth. Four plots located at Mt. Agamenticus 

in York County were excluded because reported infestation by hemlock looper 
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(Dearborn and Granger 2002) appeared to be affecting measurements of drought 

response in this area (Figure A.1). 

 A decline model was calculated using PGC03 as the response variable, 

and a recovery model was calculated using PGC05 as a response variable. 

Models were developed using JMP IN 5.1 statistical software (SAS Institute, 

Cary, North Carolina) unless otherwise noted. 

 Independent variables used in the stepwise regression model included 

variables found to be significant in our climate-growth analysis or previous 

studies, as well as plot measurements considered influential to growth. Climate 

variables included: minimum and maximum February temperature, July 

precipitation of the current year, previous June and July maximum temperatures 

and average June-August precipitation in the previous and current years of 

growth. Distance from the coast and elevation were also included for their 

possible effects on temperature and tree growth. The following soil chemistry 

data for both the O and upper B horizons included: Ca, %N, pH, % loss on 

ignition, CEC, % base, % Al, C/N ratio and Ca/Al ratio. Soil variables were log10 

transformed when needed to fit the assumptions of normal distribution and equal 

variance. Site variables included for their possible affect on water availability 

were: degrees from the southern aspect, slope of the aspect, distance from 

surface water (obtained from a GPS and GIS map), rooting depth, and 

categorical measures of soil texture and landscape position. To account for 

affects of competition the following variables were included: stand density, stand 



 17

basal area, %hardwood basal area, and %hemlock basal area. Plot average 

measurements for cored trees were also included: age, height, DBH and %LCR.  

 Basic chronology statistics were also included in the 2003 and 2005 

stepwise regressions to understand how past growth patterns influenced the 

drought and recovery models. These included mean sensitivity (MS) and 

expressed population signal (EPS). Mean sensitivity is a measure of the year to 

year variation in ring widths within a plot (Fritts et al. 1965). Because sensitivity 

tends to increase near the limits of tree growth (Fritts et al. 1965) mean 

sensitivity may represent the relative environmental stress among plots 

(Oberhuber et al. 1998). EPS was included in the stepwise regression as a 

measure of the common growth signal expressed among trees within each plot, 

described as the “potential climate signal” (Wigley et al. 1984): 

EPS = n * r / (n * r + (1 - r)) where n is the sample size and r is the interseries 

correlation (the measure of correlation in growth response among trees). PGC03 

was also included in the PGC05 model as a measure of recent growth response 

among trees in a plot to the regional drought event. 

 Regression models for drought (PGC03) and recovery (PGC05) were 

developed using a mixed stepwise regression analysis with values to enter and 

leave at 0.15 and 0.05 respectively. Robustness of the chosen variables was 

tested using bootstrap analysis in Systat (1000 runs, 25 samples) (SYSTAT 12, 

SYSTAT Software Inc., San Jose, CA). When variables were not found to be 

robust using bootstrap analysis (95% confidence intervals of coefficients included 
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0), they were removed from the stepwise regression and the process was 

repeated. 

 Significant variables for the PGC2003 model were included in stepwise 

regression analysis of PGC at episodes of decreased growth following 1970: 

1976, 1979, 1980, 1991 and 1994 to examine which variables were significant in 

other years of decreased growth. 

 

Identifying Recent Growth Trends 

 Basal area increments can be used to infer health status of individual 

trees. In a study of white oak (Quercus alba) and red spruce, LeBlanc (1990) and 

Duchesne et al. (2002) used negative slopes in growth as an indicator of decline. 

Similar to Duchesne et al. (2002), we used negative PGC in 2005 in addition to 

significantly low BAI to identify declining trees. Means and standard deviations 

were calculated for BAI05 to identify trees and plots most at risk for decline. 

Trees with both decreasing growth in 2005 (negative PGC) and BAI05 below 1 

standard deviation were considered to be in the poorest health. 
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Chapter 3 

RESULTS  

Plot Characteristics 

 Average plot basal area was 39.5 m2/ha (Table 1) and ranged from 18.93 

m2/ha to 67.39 m2/ha. Southern Maine hemlocks were similar DBH to average 

size of same-aged eastern hemlocks in Michigan and New York (Godman and 

Lancaster (1990). Stand density ranged from 333.59 trees/ha to 852.51 trees/ha. 

Proportion of basal area in hemlock ranged from 18.93% to 87.65%. The stands 

with the highest stocking had the highest proportion of basal area in hemlock 

were correlated with taller, larger DBH, and older trees (Table 2). Average age of 

dominant and codominant hemlocks ranged from 63.08 to 133.09 years. Percent 

hardwood was negatively correlated with height and DBH of dominant and 

codominant hemlocks (Table 2). 

 Sites were located 10 to 54 km from the coast (Figure 3). Lowest February 

temperature and highest summer precipitation were in the western portion of the 

study area (Table 3). February minimum temperature ranged from -12.680C to -

7.820C across the plots and summer precipitation ranged from 7.77 cm to 9.83 

cm. Coastal and southern sites tended to have milder February temperatures 

and inland sites had warmer July temperatures. Maximum July temperature 

varied from 25.750C to 26.140C. Northern sites had the coolest maximum July 

temperatures. 

 Elevation ranged from sea level to 78 m in the southern portion of the 

study area. The majority of plots had western aspects (N=15); there were 7 plots 
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each with north, east and south aspects. Seventeen plots were flat, and 18 were 

on plots with slopes greater than 10% (Only 3 plots were located on slopes 

steeper than 15%). One plot was located in a gully.. There were no discernable 

regional patterns to slope or aspect. 

 
Table 1. Averages of plot characteristics 
 Mean ± se 
Stand density (stems/ha) 562 ± 21.17 
Plot basal area (m2/ha) 39.5 ± 1.92 
Hemlock basal area (m2/ha) 24.09 ± 1.57 
Hardwood basal area (m2/ha)  9.48 ± 0.78 
Mean DBH (cm) 27.64 ± 0.69 
Elevation (m)  43.82 ± 2.62 
Distance from surface water (m) 265.31± 34.76 
Percent slope (%) 7.42 ± 1.40 
Rooting depth (cm) 59.5 ± 2.87 
Minimum February temperature (1996-2005 average, 0C) -10.19 ± 0.050 
Maximum July T (1996-2005 average, 0C) 26.31 ± 0.013 
Summer precipitation (1996-2005 average, cm) 8.99 ± 0.013 
Distance from the coast (m) 24,400 ± 2,766 



 

Table 2 Pearson’s correlations for response variables, plot variables, and chronology statistics across plots.  
PGC03 and PGC05 are the percent growth changes from the previous two years in 2003 and 2005. BA is the plot basal 
area, hardwood BA is the basal area of hardwood, hemlock BA is the basal area of hemlock. Age is average tree age at 
breast height, DBH is average diameter at breast height, and HT is average tree height. IC is the interseries correlation. 
EPS is the expressed population signal. Correlations above 0.3 are indicated in bold. 

  PGC03 PGC05 Plot BA 
hemlock 
BA 

hardwood 
BA Age PLCR DBH HT IC EPS 

PGC03 1            
PGC05 -0.3 1           
Plot BA -0.21 0.34 1          
hemlock 
BA -0.39 0.33 0.77 1         
hardwood 
BA 0.23 -0 0.09 -0.25 1        
Age -0.03 0.55 0.35 0.44 -0.06 1       
PLCR 0.12 0.2 -0.2 -0.27 0.41 -0.07 1      
DBH -0.23 0.67 0.54 0.6 -0.03 0.67 0.15 1     
HT -0.21 0.51 0.6 0.62 -0.3 0.62 -0.27 0.69 1    
IC -0.16 0.39 0.3 0.24 0.04 0.04 -0.08 0.21 0.14 1   
EPS -0.24 0.28 0.35 0.4 -0.16 0.04 -0.32 0.11 0.18 0.89 1

21
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Figure 3. Numbered plot locations in York and Cumberland Counties, 
Maine. 
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Table 3. Measurements by plot. 

Plot 

Stand 
Density 
(trees/ha) 

Average 
DBH ± se 
(cm) 

Plot 
basal 
area 
(m2/ha) 

Hemlock 
basal 
area (%) 

Hardwood 
basal 
area (%) 

Age ± 
se 
(years) 

Slope 
of 
aspect 
(%) 

1 655 24.6 ± 1.09 47.27 58.98 31.1 119 ± 4 1
2 507 26.06 ± 3.00 23.16 56.3 40.31 119 ± 5  10
3 642 27.78 ± 1.30 42.16 39.24 53.36 66 ± 9 10
4 815 25.56 ± 1.74 34.85 24.93 52.76 84 ± 7 6
5 482 25.23 ± 1.42 29.53 33.29 48.9 118 ± 6 12
6 334 26.22 ± 1.69 41.82 55.1 18.67 100 ± 2 0
7 593 39.42 ± 1.53 67.39 46.65 3.18 124 ± 3 6
8 383 21.71 ± 2.53 36.36 40.49 34.45 78 ± 4 2
9 432 28.4 ± 1.69 32.87 81.59 18.41 124 ± 9 29

10 531 29.53 ± 1.84 33.23 75.28 5.29 74 ± 5 2
11 840 22.17 ± 1.41 34.12 65.62 34.38 99 ± 4 2
12 494 30.03 ± 2.44 50.72 46.84 19 89 ± 4 34
13 457 27.95 ± 2.36 50.5 53.78 18.49 98 ± 7 10
14 507 23.04 ± 2.39 27.42 69.31 19.64 79 ± 7 9
15 593 27.08 ± 1.91 22.61 75.48 24.52 98 ± 1 9
16 741 25.62 ± 2.07 28.81 84.64 15.36 97 ± 4 9
17 469 23.86 ±1.80 24.33 65.27 34.73 129 ± 8 6
18 704 23.22 ± 1.62 27.66 53.32 44.11 77 ± 5 2
19 395 25.34 ± 1.32 35.38 69.94 30.06 93 ± 8 1
20 593 22.3 ± 1.49 30.56 30.4 38.52 63 ± 4 1
21 729 27.14 ± 1.41 41.4 57.92 27.99 110 ± 7 1
22 494 21.95 ± 0.89 24.38 56.03 18.25 93 ± 2 1
23 469 32.68 ± 2.24 42.95 77.16 19.87 117 ± 8 2
24 593 27.29 ± 1.48 39.54 59.15 35.09 124 ± 3 15
25 432 33.19 ± 1.08 47.84 87.65 6.28 112 ± 8 30
26 630 28.88 ± 1.21 56.74 65.48 27.06 104 ± 4 0
27 655 32.64 ± 1.27 44.28 77.97 10.94 99 ± 2 0
28 482 30.1 ± 1.11 49.63 66.93 21.64 122 ± 8 5
29 593 34.24 ± 2.85 55.52 68.23 25.6 126 ± 11 8
30 556 33.86 ± 0.80 45.38 58.48 9.05 86 ± 7 10
31 507 22.43 ± 1.77 18.94 66.72 33.28 70 ± 3 3
32 482 28.8 ± 1.56 40.14 79.55 15.4 125 ± 7 4
33 593 26.65 ± 1.3 31.93 40.46 36.15 116 ± 11 11
34 395 29.24 ± 1.27 56.66 70.46 24.67 112 ± 10 1
35 853 33.54 ± 2.12 52.66 52.41 18.03 133 ± 5 3
36 605 30.67 ± 1.87 52.89 78.15 7.97 104 ± 8 12
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Soils 

 Soils were primarily coarse textured sands and loams (27 out of 36 plots). 

Silty clays and clay loams were found at the remaining sites. Most plots were well 

or somewhat excessively drained, with glacial till or outwash parent material 

(n=33). Rooting depths ranged from 22 to 92 cm (59.5±17.49 cm). Only 4 sites 

had rooting depths of 30 cm or less due to compact till, bedrock or water levels.  

Six soil pits contained standing water at the time of excavation. 

 B Horizon Ca averaged 54.9 ± 57.8 mg/kg (Table 4) with one plot below 

10 mg/kg (7.7 mg/kg) and one plot above 100 mg/kg ( 301 mg/kg). B horizon Ca 

had a high positive correlation with other B horizon values including Ca/Al ratio, 

percent base saturation, CEC, N, and %LOI (Table 5). B horizon Ca was 

negatively correlated with %Al.  
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Table 4. Soil chemistry, O and B soil horizons. 
%LOI is percent loss on ignition. CEC is the cation exchange capacity. C/N ratio 
is the ratio of carbon to nitrogen. %Al and %Base saturation are the percent of 
total ions in aluminum and base cations respectively. Ca/Al ratio is the ratio of 
exchangeable calcium to aluminum. Means are given ± se. 
 O Horizon B Horizon 
pH 3.6 ± 0.01 4.9 ± 0.03
Acidity (meq/100g) 11.1 ± 0.11 2.7 ± 0.28
%LOI (5500C) 82.7 ± 0.34 8.2 ± 0.72
C (% at 13500C) 43.81 ± 0.18 3.38 ± 0.38
N (% at 13500C) 1.37 ± 0.01 0.15 ± 0.02
Ca (mg/kg) 1722 ± 32.31 54.90 ± 9.63
K (mg/kg) 585.5 ± 3.75 29.2 ± 4.67
Mg (mg/kg) 374.5 ± 4.56 11.1 ± 3.5
Na (mg/kg) 114.4 ± 2.43 24.2 ± 3.00
P (mg/kg) 86 ± 0.82 1.2 ± 0.17
Al (mg/kg) 351.6 ± 7.31 195.0 ± 23.38
Fe (mg/kg) 43.81 ± 0.18 3.38 ± 0.38
Mn (mg/kg) 49.03 ± 0.58 13.13 ± 1.78
Na (mg/kg) 114.36 ± 2.44 24.18 ± 3.00
Zn (mg/kg) 29.28 ± 0.42 1.31 ± 0.25
CEC (meq/100g) 24.9 ± 0.13 3.2 ± 0.33
C/N ratio 32.1 ± 0.10 23.4 ± 0.47
%Al saturation 16.2 ± 0.32 66.6 ± 2.2
%Base saturation 53.7 ± 0.48 16.7 ± 1.62
Ca/Al ratio 4.06 ± 0.17 0.15 ± 0.03

 

Table 5. Pearson’s correlations for soil parameters, B soil horizon 
%LOI is percent loss on ignition. CEC is the cation exchange capacity. C/N is the 
ratio of carbon to nitrogen. %Al and %Base are the percent of total cations in 
aluminum and base cations respectively. Ca/Al is the ratio of exchangeable 
calcium to aluminum. Correlation values at or above 0.30 are indicated in bold. 
 Ca N C/N PH %LOI CEC Ca/Al %Al %Base 
Ca 1         
N 0.42 1        
C/N -0.15 -0.24 1       
PH 0.17 -0.12 -0.07 1      
%LOI 0.39 0.93 -0.06 -0.01 1     
CEC 0.61 0.71 -0.03 -0.39 0.65 1    
Ca/Al 0.80 0.03 -0.25 0.42 0 0.08 1   
%Al -0.39 0.03 0.27 -0.48 0.01 0.14 -0.66 1 0.6 
%Base 0.78 0.10 -0.27 0.51 0.09 0.06 0.95 -0.60 1 
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Plot Chronology Statistics 

 The chronology had an interseries correlation of 0.436 with a mean 

sensitivity of 0.223 (Table 6). COFECHA results showed intercorrelations within 

sites between 0.343 and 0.790 with an average plot intercorrelation of 0.55 ± 

0.09. Only two plots had values below 0.40 but still above the 99% critical value 

(0.328). Average mean sensitivity at the plot level was 0.22 ± 0.02 Most of the 

mean sensitivity values were in the mid-range, though four plots had mean 

sensitivities just below the 0.20 threshold, indicating low sensitivity (Grissino-

Mayer 2001). Interseries correlation was positively correlated with PGC05, plot 

basal area, average height, and DBH. It was negatively correlated with PGC03 

(Table 2).  

 
Table 6. Master chronology statistics 
Master length is the length of the oldest core in the chronology. Mean length is 
the average length of core segments. Mean length underestimates age because 
many cores did not contain pith and ages were estimated (Applequist 1958). 
Means are given ± standard error. 
N 503 
Interseries correlation 0.44 
Expressed population signal (EPS) 0.997 
Mean sensitivity 0.223 
Master length 199 
Mean length 86.7 
DBH (cm, n=503) 37.4 ± 0.4 
Age (years, n=428) 102.5 ± 1.3 
Height (m, n=502) 21.6 ± 0.2 
Percent live crown (n=502) 69.7 ± 0.8 
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Tree Ring Chronologies and Reduced Growth Events 

 The master chronology showed that since 1940, 12 years have had 

chronology growth patterns at or below -1 standard deviation (Figure 4). These 

included: 1941, 1948, 1950, 1956, 1964, 1966, 1968, 1976, 1979,1980, 1991, 

1994 and 2003. Most of these growth reductions corresponded with drought 

events. The master chronology was related to the average PDSI (Pearson’s r = 

0.38) (Figure 5). Corresponding low flow intervals occurred in 1938-43, 1947-

1950, 1955-59, 1963-69, 1978, and 1999-2003 (Lombard 2004). The only low-

flow interval recorded for this area of the state that is not apparent in the tree ring 

chronologies is the 1995 drought. In fact, growth trends appeared to be slightly 

above average in 1995 and 1996 (Figure 4). 
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Figure 4. Master chronology standardized growth index (RESID) and basal 
area increment (BAI), 1940-2005. 
The standardized chronology is the residuals from a 30-year smoothing spline 
with the autocorrelation removed (RESID). The horizontal dashed line in the 
RESID graph indicates the mean. Solid horizontal lines represent 1 and 2 
standard deviations above and below the mean. Vertical dashed and dotted drop 
lines represent low growth events corresponding with drought and defoliation 
events. Dashed and dotted lines below the RESID graph indicate periods of 
drought and defoliation. Vertical gray lines mark decades. 

----Drought 
….Defoliation 
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Figure 5. Standardized growth index and Palmer Drought Severity Index 
(PDSI), 1940-2005. 
Growth index was calculated for the chronology using a 30 year smoothing 
spline. PDSI is the yearly average for PDSI zones 2 (inland) and 3 (coastal). 
Vertical grey lines mark decades. 
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 In addition to the growth reductions corresponding with drought intervals, 

growth reductions occured in 1976, 1980, 1991 and1994 (Figure 4). The most 

recent events correspond with a major hemlock looper outbreak in northern New 

England from 1989 through the early 1990s (Trial and Devine 1994). These 

dates also correspond with a gypsy moth outbreak recorded in Maine Forest 

Service condition reports from 1989-1994 (Bradbury 1990-1994). An earlier 

gypsy moth outbreak occurred from 1979-82 (Bradbury 1992), overlapping with 

effects from the 1978 drought and corresponding with the 1979 and 1980 growth 

reductions. There is no record of a drought or defoliation event occurring in 1975 

or 1976.  Published records of defoliation events prior to 1980 are lacking, but 

there was a gypsy moth defoliation around 1950 (Dave Struble, Maine Forest 

Service, personal communication). Therefore, the growth reductions in 1948 

and/or 1950 were likely exacerbated by defoliation. 

 Growth reductions seen in the master chronology did not occur at all plots 

(Figure 6). In addition to expressing the most severe reduction in growth, the 

1947-1950 drought was the most widespread, affecting growth at 32 out of 36 

plots. The 1956, 1966, 1979, 1980, and 2003 growth reductions that were 

apparent in the master chronology occured across more than 11 plots. Growth 

decreases in 1956, 1966, 1979 and 1980, which were among the least severe of 

the decreases were observable at 7 or 8 plots (Figure 6). 
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Figure 6. Number of plots with growth below 1 standard deviation, 1940-
2005. 
Vertical dashed and dotted lines drop lines indicate periods of drought and 
defoliation. Horizontal dashed and dotted lines below the graph indicate periods 
of drought and defoliation. The horizontal dashed line indicates the mean number 
of plots with standardized growth below 1 standard deviation, 1940-2005. Vertical 
gray lines mark decades. 
 

Climate Analysis 

 Significant climatic response coefficients were found at the population 

level using DendroClim 2002 (Biondi and Waikul 2004). When average 

precipitation and maximum temperature were run with ARSTSTAN values for the 

master chronology, climatic variables with significant coefficients at the .05 level 

were maximum temperatures in the June (-0.18), July (-0.16), and February 

(0.19) prior to increment growth. Precipitation in the current July was also 

significant (0.15). 

----Drought 
….Defoliation 
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 Relationships between climate and the master chronology were also seen 

through time using forward evolutionary intervals. Moving intervals showed that 

higher February temperatures have been related to better growth since 1955. 

Positive coefficients occured for November and March from 1955 to 1996. There 

were positive relationships with July and August precipitation, but only until the 

early 1970s. Coefficients for June and July temperatures were significant from 

the early 1980s and 1990s respectively to 2005 (Table 7). 
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Table 7. Significant climate coefficients for 60-year moving intervals with 
maximum temperature and precipitation. 
Year indicated is the final year included in interval. Capital letters indicate 
temperature (T) and precipitation (P) for monthly climate variables from the 
previous year. Lowercase letters indicate current year climate variables. 
Year JUN T JUL T NOV T feb t mar t JUL P AUG P jul p aug p 
1955   0.214 0.224 0.193 0.181 0.185  0.198
1956   0.209 0.228   0.199  0.195
1957   0.213 0.238 0.194  0.189  0.19
1958   0.226 0.237 0.189  0.189  0.196
1959   0.224 0.24 0.192 0.18 0.183  0.198
1960   0.228 0.237 0.201 0.183 0.189  0.216
1961   0.254 0.265 0.205 0.189   0.191
1962   0.254 0.26 0.205 0.193   0.188
1963   0.256 0.241 0.212 0.194 0.165  0.187
1964   0.245 0.232 0.205 0.192   0.198
1965   0.243 0.24 0.208 0.187   0.198
1966   0.243 0.229 0.208 0.198   0.198
1967   0.257 0.222 0.202 0.185 0.169  0.186
1968   0.265 0.227 0.199 0.173 0.153 0.157 0.2
1969   0.252 0.228 0.195 0.165  0.166 0.195
1970   0.247 0.224 0.195   0.165 0.191
1971   0.252 0.23 0.198  0.156 0.172 0.196
1972   0.248 0.228 0.197 0.172 0.156 0.173 0.194
1973   0.233 0.231 0.205 0.17  0.175 0.191
1974   0.234 0.234 0.211 0.174  0.168 0.194
1975   0.233 0.237 0.206   0.178 0.206
1976   0.186 0.204 0.202    0.179
1977   0.19 0.201 0.181   0.16 0.18
1978   0.197 0.201 0.178    0.176
1979   0.191 0.201 0.179    0.172
1980   0 0.211     0.17
1981   0.174 0.178     0.178
1982   0.17 0.186     0.167
1983 -0.159  0.175 0.188 0.171    0.173
1984 -0.166  0.179 0.192 0.174    0.174
1985 -0.164  0.18 0.196 0.175    0.179
1986 -0.174  0.179 0.186 0.179    0.185
1987 -0.173  0.176 0.193 0.177    0.175
1988 -0.169  0.171 0.191 0.175    0.176
1989 -0.173 -0.141 0.162 0.192 0.178    0.164
1990 -0.175  0.173 0.18 0.166    0.168
1991 -0.175  0.165 0.169 0.173     
1992 -0.172  0.168 0.167      
1993 -0.167 -0.138 0.158 0.17      
1994 -0.174 -0.139 0.157 0.176 0.168     
1995 -0.167  0.157 0.185 0.166     
1996 -0.16   0.182      
1997 -0.164 -0.137  0.201      
1998 -0.168 -0.144  0.19    0.153  
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Year JUN T JUL T NOV T feb t mar t JUL P AUG P jul p aug p 
1999 -0.167 -0.146  0.198    0.155  
2000 -0.172 -0.148  0.192      
2001 -0.175 -0.153  0.198      
2002 -0.185 -0.141  0.189      
2003 -0.175 -0.141  0.196    0.152  
2004 -0.17 -0.148  0.198  0.163  0.157  
2005 -0.164 -0.16  0.193  0.154    

 
 When average minimum monthly temperatures and precipitation were 

analyzed with the master chronology, coefficients for minimum temperatures in 

the previous July (-0.23), and current-year February (0.18), were significant as 

well as precipitation for previous July (0.22) and August (0.16) and current July 

(0.17). 

 Analysis using moving intervals showed that increment growth was 

consistently associated with higher February temperatures, higher March 

temperatures prior to 1996, higher previous July precipitation, and higher current 

June, July, or August precipitation. Lower minimum July temperature was also 

associated with higher increment growth from 1963 to 2005 (Table 8). 

Table 7 continued 
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Table 8. Significant climate coefficients for 60-year moving intervals with 
minimum temperature and precipitation. 
Year indicated is the final year included in the interval. Capital letters indicate 
temperature (T) and precipitation (P) for monthly climate variables from the 
previous year. Lowercase letters indicate current year climate variables. 
Year JUL T NOV T feb t mar t JUL P AUG P jun p jul p aug p 
1955   0.182 0.254 0.219  0.213  0.237
1956   0.19 0.244 0.213 0.188 0.21  0.236
1957   0.2 0.25 0.219  0.222  0.23
1958   0.203 0.243 0.21 0.189 0.221  0.235
1959   0.2 0.251 0.216  0.225  0.233
1960   0.202 0.269 0.228 0.192 0.221  0.259
1961  0.166 0.217 0.251 0.232    0.232
1962   0.215 0.255 0.241    0.229
1963 -0.176  0.197 0.258 0.245    0.242
1964 -0.194  0.188 0.258 0.245    0.239
1965 -0.203  0.191 0.249 0.236    0.246
1966 -0.183  0.182 0.242 0.247   0.175 0.236
1967 -0.187  0.171 0.245 0.24   0.174 0.223
1968 -0.195  0.177 0.233 0.233   0.195 0.237
1969 -0.192  0.185 0.235 0.232   0.2 0.233
1970 -0.197 0.155 0.178 0.231 0.226   0.209 0.234
1971 -0.204  0.179 0.233 0.233   0.215 0.234
1972 -0.193  0.176 0.228 0.235   0.209 0.23
1973 -0.19  0.181 0.237 0.236   0.209 0.23
1974 -0.177  0.181 0.247 0.235   0.208 0.229
1975 -0.18  0.184 0.242 0.227  0.184 0.214 0.234
1976 -0.21  0.158 0.235 0.207  0.19 0.182 0.206
1977 -0.199  0.168 0.223 0.184   0.2 0.197
1978 -0.204  0.16 0.213 0.185  0.186 0.198 0.194
1979 -0.202  0.168 0.203 0.181  0.196 0.183 0.181
1980 -0.218  0.174 0.202    0.185 0.179
1981 -0.23   0.192   0.189 0.171 0.186
1982 -0.237  0.159 0.187   0.189 0.182 0.186
1983 -0.236  0.152 0.189     0.184
1984 -0.235   0.2     0.192
1985 -0.233  0.154 0.198     0.203
1986 -0.225  0.152 0.192 0.166  0.182 0.167 0.201
1987 -0.229  0.153 0.2 0.165  0.195  0.195
1988 -0.235  0.155 0.199 0.181  0.19  0.19
1989 -0.239  0.156 0.199   0.189  0.186
1990 -0.239  0.149 0.202 0.166  0.191  0.186
1991 -0.243   0.184 0.16  0.193   
1992 -0.249  0.147 0.18 0.153  0.201   
1993 -0.247  0.15 0.176 0.157 0.174 0.201   
1994 -0.249  0.169 0.168 0.162 0.161 0.214   
1995 -0.246  0.174 0.159  0.165 0.211   
1996 -0.222  0.182  0.162  0.199 0.172  
1997 -0.212  0.201  0.188  0.199 0.172  
1998 -0.218  0.188  0.186  0.169 0.179  
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Year JUL T NOV T feb t mar t JUL P AUG P jun p jul p aug p 
1999 -0.217  0.196  0.193  0.164 0.173  
2000 -0.227  0.185  0.19   0.165  
2001 -0.244  0.19  0.212  0.16 0.174  
2002 -0.235  0.183  0.216   0.182  
2003 -0.232  0.181  0.234   0.193  
2004 -0.24  0.186  0.236  0.159 0.199  
2005 -0.233  0.176  0.225 0.163  0.185  

 

 Significant response coefficients for climatic variables varied across plots. 

Coefficients ranged from ± 0.14 to 0.3, values comparable to the regional 

analysis (Table A.1). For runs with both minimum and maximum temperature, 14 

plots showed responses to previous summer temperature, 12 to winter 

temperature, 14 to previous summer precipitation, and 9 to current summer 

precipitation (Table 9). Higher previous summer temperature was associated with 

a negative growth response, while higher previous summer precipitation, winter 

temperature, and current summer precipitation were associated with positive 

growth responses. 

 Based on consistent relationships between growth and climate variables 

through time and across plots, the following climatic variables (monthly averages) 

were included in plot models: Current minimum and maximum February 

temperatures, previous maximum June and July temperatures, current July 

precipitation and average June-August precipitation of the current and previous 

years. 

 

Table 8 continued 
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Table 9. Climatic response across plots.  
Capital headings indicate temperature (T) and precipitation (P) for monthly 
climate variables from the previous year. Lowercase headings indicate current 
year climate variables. The nature of the response is indicated as positive (+) or 
negative (-), or mixed. 

Variable 
No. Plots 
Responding Correlation

JUNE T 13 - 
JULY T 19 - 
AUGST T 3 - 
november t 2 + 
december t 3 + 
february t 17 + 
mar. t 5 mixed 
may t 3 - 
june t 2 - 
september t 2 + 
JULY P 11 + 
AUGUST P 9 + 
december p 4 + 
march p 4 mixed 
june p 10 + 
jul p 11 + 

 

Plot-level Models 

 The stepwise model for decline following the drought, PGC03, returned 

the following variables: expressed population signal (EPS), depth of the organic 

soil horizon, maximum February temperature of the current year, % Al saturation 

in the B soil horizon, and stand density (Figure 7): 

PGC03 = 168.34 - (278.40 * EPS) + (1.80 * O horizon depth) + (3.26 * maximum 

February T) - (0.25 * B % Al saturation) - (0.024 * stand density) (Table 10).  

All variables were robust in the bootstrap analysis. 
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Figure 7. PGC03 predictive model 
PGC03 is the percent growth change in 2003 relative to the previous two years. 
Independent variables include: expressed population signal (EPS), depth of the 
O soil horizon, maximum average February temperature, % aluminum saturation 
in the B soil horizon, and stand density. The horizontal line indicates the mean. 
Curved lines are 95% confidence intervals. 
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Table 10. Model statistics, PGC03 
PGC03 is the percent growth change in 2003 relative to the previous two years. 
Independent variables include: expressed population signal, depth of the O soil 
horizon, current maximum February temperature, % aluminum saturation in the B 
soil horizon, and stand density. CI is the confidence interval. VIF is the variance 
inflation factor. 
 
Summary of Fit  

r2 0.78  
r2 Adj 0.73  
Root Mean Square Error 6.17  
Mean of Response -16.54  
N 32  

Analysis of Variance  

Source DF Sum of 
Squares

Mean Square F Ratio

Model 4 3425.33 685.066 17.98

Error 26 990.54 38.098 Prob > F

Total 31 4415.87 0 <.0001

Press Statistic 1431.86 Press RMSE 6.69

Parameter Estimates  

Term Estimate Std Error t Ratio Prob>|t| VIF
Intercept 168.34 57.62 2.92 0.007  
Expressed population 
signal -278.4 50.46 -5.52 

<.0001 1.1

Depth of the O soil horizon 1.8 0.38 4.68 <.0001 1.38
Current February maximum 
T 3.26 1.06 3.06 

0.0051 1.18

B soil horizon % Al 
saturation  -0.25 0.09 -2.75 

0.011 1.24

Stand density 
(stems/hectare) -0.024 0.01 -2.45 

0.021 1.22

Bootstrap Estimates Estimate Std Error Lower 95% CI Upper 95% CI
Expressed population 
signal 

165.5 69.729 51.102 345.375

Depth of the O soil horizon -276.404 63.383 -424.603 -168.074
Current February maximum 
T 

1.816 0.458 0.759 2.602

B soil horizon % Al 
saturation  

3.342 1.275 0.522 5.604

Stand density 
(stems/hectare) 

-0.269 0.107 -0.466 -0.046

Expressed population 
signal 

-0.024 0.012 -0.048 -0.001
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 The stepwise model for PGC05 included variables: Percent growth 

change in 2003, summer precipitation in 2004, age, height, distance from the 

coast and log10 of B horizon Ca (Figure 8). After bootstrap analysis summer 

precipitation, height and distance from the coast dropped out and the final model 

was:  

PGC05 = -55.850 - (0.784 * PGC03) + (0.410 * Age) +(21.98 * Log10 B Ca) 

(Table 11). 
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Figure 8. PGC05 predictive model 
PGC05 is the percent growth change in 2005 relative to the previous two years. 
Independent variables include: percent growth change in 2003 (PGC03), average 
age, and B soil horizon calcium (B Ca) (log10 transformed). The horizontal line 
indicates the mean. Curved lines are 95% confidence intervals. 
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Table 11. Model statistics, PGC05 
PGC05 is the percent growth change in 2005 relative to the previous two years. 
Independent variables include: percent growth change in 2003 (PGC03), average 
Age, and transformed B soil horizon calcium (B Ca log10). CI is the confidence 
interval. VIF is the variance inflation factor. 
 
Summary of Fit 
r2 0.74

r2 Adj 0.71

Root Mean Square Error 10.02

Mean of Response 34.11

N 32

Analysis of Variance 
Source DF Sum of 

Squares
Mean Square F Ratio

Model 3 8055.31 2685.1 26.76

Error 28 2809.22 100.33 Prob > F

Total 31 10864.53 <.0001

Press Statistic 3578.02 Press 
RMSE

10.57

Parameter Estimates 
Term Estimate Std Error t Ratio Prob>|t| VIF
Intercept -55.84 11.98 -4.66 <.0001
PGC03 -0.77 0.15 -5.03 <.0001 1.03
Age 0.41 0.1 4.29 0.0002 1.03
B Ca (log10) 22.15 4.96 4.47 0.0001 1.02
Bootstrap Estimates 

 Estimate Std Error Lower 95% CI Upper 95% CI
Intercept -55.850 12.599 -80.213 -31.661
PGC03 -0.784 0.193 -1.173 -0.392
Age 0.410 0.091 0.227 0.587
B Ca (log10) 21.979 4.993 12.33 32.913
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 The PGC03 model variables were not useful for predicting the three recent 

low growth years associated with insect outbreaks (1994, 1991, 1980). 

Significant models with EPS occurred in 1976 and 1979, no other variables came 

into the models: 

PGC1976 = 185.74 - 204.99 EPS (r2 = 0.16, p < 0.0089) 

PGC1979 = 174.87 - 203.82 EPS (r2 = 0.16, p < 0.0083) 

 

Tree Recovery and Decline Following the Recent Drought 

 Relatively few trees show declining growth from 2003-2005 as indicated 

by negative PGC05 (N=59), and only 19 trees had both negative PCG05 values 

and BAI below 1 standard deviation (Table 12). These trees were spread among 

11 plots. Seven of the 18 trees in Ferry Beach State Park in Saco met these 

criteria, and that was the only plot with a negative average percent growth 

change in 2005.  

 

Table 12. Tree contingency table, PGC05 
PGC05 is the percent growth change in 2005 relative to the previous two years. 
BAI05 is the basal area increment in 2005. SD is the standard deviation. 

 
BAI05<1SD 
(580.79 mm2) Mid BAI05 

BAI05>1SD 
(2527.91 mm2) Total 

PGC05<0 19 36 4 59 
PGC05>0 35 342 67 444 
Total 54 378 71 503 
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Chapter 4 

DISCUSSION 

Reduced Growth Events 

 Major causes of reduced growth for hemlock in southern Maine appear to 

be climate, particularly drought, and defoliation; 11 out of 12 identified events 

were associated with these stresses. Several studies show that increment growth 

of eastern hemlock is sensitive to drought conditions (Lyon 1936, Cook and 

Jacoby 1977, Cook and Cole 1991 and others) This sensitivity has even been 

used to extend drought records (Cook and Jacoby 1977). In our study, 

decreased growth in the master chronology consistently occured during or 

directly following drought events (Figure 4).  

 The only published drought event since 1940 affecting this area that did 

not result in decreased radial growth was the 1995 drought. The 1995 drought 

had a recurrence interval of 10 to 25 years in our study area, compared to the 

35-year drought from 1999-2002 (Lombard 2004). However, white pine (Pinus 

strobus) decline in this region has been attributed to the 1995 drought in stands 

where agricultural land abandonment led to dense stands of white pine growing 

on sites with restricted rooting depths (Fries 2002, Granger 2005). There were 

signs of past agricultural use, such as rock walls, at a few of our hemlock sites 

but rooting depths did not appear to be restricted at these sites.  

 The 1995 drought occurred after a growth minimum in 1994 that coincided 

with heavy defoliation in 1993 involving gypsy moth and hemlock looper 

(Bradbury 1994, Trial 1994). Hemlock that became dominant and co-dominant in 
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the stands were capable of recovering from a defoliation event followed by a 

drought event in 1993-1996 as can be seen in average basal area increment 

growth (Figure 4). A similar response was seen at Mt. Agamenticus in 2002-

2003. 

 Other studies have also showed reduced hemlock growth corresponding 

with gypsy moth (Nowacki and Abrams 1997) and eastern hemlock looper (Trial 

1994, Trail and Devine 1994). Decreased growth of hemlock in our study 

corresponded with a hemlock looper outbreak from 1989-1993 and gypsy moth 

outbreaks in 1950, 1979-1982 and 1989-1994. When trees are defoliated late in 

the season and energy is put into refoliation, energy reserves are decreased by 

30-50% and the tree is more susceptible to secondary stresses (McManus et al. 

1992). Though not the preferred host for gypsy moth, hemlock is more likely to 

be killed than hardwoods and complete defoliation will kill 90% of hemlock trees 

(McManus et al. 1992).  

 The trees in our study appeared to have experienced energy and growth 

reductions due to defoliation, but not at levels that caused trees to permanently 

decline. Low growth associated with defoliation was usually more severe than 

that associated with drought and occurred for multiple years at some sites 

(Figure A.1). Therefore, the association of looper and gypsy moth outbreaks with 

the 1994 increment decrease being the most severe event in the chronologies in 

the last 50 years is consistent with observations from other studies. The declines 

in 1948 and 1950 also coincided with gypsy moth defoliation in addition to 

drought (Figure 4).  
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Climate Variables 

 The climate models for eastern hemlock indicated low summer 

precipitation and high summer temperature were associated with decreased 

increment growth. Both factors are associated with water stress (Fritts 1976). 

High summer temperatures are expected to exacerbate water stress in trees due 

to increased evapotranspiration (Cook and Cole 1991). This agrees with the 

negative relationship in our climate models between maximum June and July 

temperatures and increment growth.  

 In addition to climatic factors associated with water availability, both higher 

minimum and maximum February temperatures were associated with higher 

growth in our study. There is no clear explanation for this phenomenon, though 

other studies in New York, Ontario, and Pennsylvania have shown similar results 

(D’Arrigo 2001, Tardif 2001, Gove and Fairweather 1978). Two possible 

explanations are a decrease in winter injury caused by low winter temperatures 

(DeHayes et al. 2001), and/or photosynthesis that can occur with warmer winter 

temperatures (Hadley 2000). Winter injury has been noted in red spruce 

(DeHayes et al. 2001) which can lose some cold tolerance by March. However 

hemlock has been shown to maintain cold tolerance to -610C (Sakai and Weiser 

1973) and is probably less vulnerable to the same winter stresses. A 2003 report 

(Maine Forest Service 2003) noted slight to moderate browning of hemlock on 

knolls and shallow soils, which they attributed to drought and/or winter injury. 

 Another explanation for the relationship between low growth and low 

February temperatures is that cold conditions reduced carbon stores. Studies 
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have shown that hemlock can fix carbon at temperatures above -50C (Hadley 

and Schedlbauer 2002) and 10-30% of carbon is accumulated in winter months 

(Hadley 2000) in central Massachusetts. Therefore the positive association with 

higher February temperatures could be related to less winter injury or more 

photosynthesis during winter months. These possibilities should be further 

investigated. 

 As seen in New York (D’Arrigo 2001) March conditions do appear 

important in some sites in this study (Table A.1) and during some time periods 

(Table 7, Table 8) . The positive association between March temperatures and 

growth has been explained by warm winter temperatures speeding snowmelt and 

increasing photosynthesis (D’Arrigo 2001).  

 

Plot-level Models 

 Similar to the climate analysis, plots with higher maximum February 

temperatures declined less in the 2003 drought model. Again, the mechanism for 

greater growth in plots with higher Februaries is not well understood, but 

maximum rather than minimum February temperature entered into the model 

supporting the increased photosynthesis with warmer winter temperatures 

hypothesis.  

 Neither summer precipitation or temperature, both of which were found to 

be important in the climate analysis presumably because of their influence on 

water availability, entered into the plot-level models. Cook and Cole (1991) found 

that correlations between precipitation and growth were inconsistent across plots 
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and depended on site hydrology. They found that chronologies from well-drained 

sites were most closely correlated with precipitation. Most of our plots were well-

drained, however water-availability at our sites may have been limited by other 

factors, including stand density and depth of the organic soil horizon, which also 

came into the drought model. 

 The negative association between stand density and growth change 

during drought fits with explanations of resource availability and competition. For 

example, stand density was positively associated with white pine decline in 

southern Maine (Fries 2002). A study is currently underway to evaluate 

silvicultural thinning of fully stocked hemlock stands prior to hemlock woolly 

adelgid infestation (Fajvan 2007). Decreasing stand density by thinning increases 

availability of resources such as sunlight, water, and nutrients to remaining trees, 

potentially increasing individual tree and stand vigor (Gottschalk 1993). An early 

study showed that hemlock on thinned stands were better able to survive drought 

than unthinned stands (Stickel 1933). 

 Percent aluminum saturation in the B soil horizon was also found to be a 

significant predictor of PGC03. Plots with higher Al saturation declined more 

during the drought. The greater amount of Al absorbed by roots, the greater the 

possibility of Al causing toxicity and stress to tree roots (Cronan and Grigal 

1995). Percent Al in our study had a high negative correlation with the calcium to 

aluminum ratio (Pearson’s r = -0.66) (Table 5), which has been used as a 

measure of aluminum toxicity in fine roots (Vanguelova et al. 2007). In addition, 

Al can displace other cations at exchange sites, including calcium and 
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magnesium which are essential for tree growth (Cronan and Grigal 1995). 

Percent aluminum saturation in our study was negatively correlated with calcium 

(Pearson’s r = -0.39) (Table 5).  

 The PGC03 model also showed less decline at sites with thicker organic 

horizons. Al has been found to be less soluble and mobile in hemlock stands 

than other forest types, attributed to thick, carbon-rich organic soil layers that 

develop under eastern hemlock forests (Dijkstra and Fitzhugh 2003). Complexes 

of Al with organic compounds reduce dissolved Al, causing less displacement of 

Ca and other divalent cations and less uptake of Al by tree roots (Dijkstra and 

Fitzhugh 2003). Depth of the organic soil horizon may also contribute to 

availability of water and nutrients for growth, as surface organic matter is 

important for erosion control, water infiltration, and conservation of nutrients 

(Franzluebbers 2002). 

 The factor with the largest effect on the model was the expressed 

population signal (Table 10). Because this measure is based on interseries 

correlation, a measure of the similarity of growth response among trees, plots 

where growth is limited by climate would be expected to have high expressed 

population signals as in the arid southwestern United States where crossdating 

was developed (Fritts 1976). The 0.46 interseries correlation for the 503 trees 

across plots indicates that growth is being largely affected by regional climate 

patterns. However, climate may be more limiting at some sites than others. The 

average maximum June and July temperatures in recent years (1996-2005) were 

climatic factors most positively correlated with EPS (0.25), suggesting the 
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possibility that maximum summer temperatures may be limiting hemlock growth 

in this region, especially at warmer plots; this association could be further 

explored.  

 Within-site factors also appear to be affecting growth at some sites more 

than others, resulting in lower expressed population signals. These factors could 

include microsite differences affecting rooting and availability of light, nutrients, 

and water that would cause larger variation in increment growth among trees. 

Another factor possibly influencing EPS is past defoliation. Defoliation stress can 

occur unevenly across some plots causing increased variation in tree growth due 

to some trees being more defoliated than others and making more resources 

available for less affected trees. The expressed population signal is positively 

correlated with hemlock basal area (Table 2). Since hemlock modifies its local 

environment (Godman and Lancaster 1990), within-plot conditions would be 

expected to be less variable in stands with high hemlock basal area.  

 The association between EPS and decreased growth during drought in the 

PGC03 drought model fits with the premise of dendroclimatology; trees that are 

strongly affected by regional climate factors will show a strong common growth 

signal (Fritts 1976). Differences in regional signal strength would be emphasized 

in a drought year like 2003, which may also help explain why PGC03 is predictive 

of PGC2003. 

 A look at the last 5 low growth events in our chronology showed that EPS 

alone was a significant predictor of variation in PGC among plots for years 

following droughts (2003, 1979) but not for years associated with defoliation 
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(1994, 1991, 1980). Low growth in 1976 was significantly predicted by EPS, 

suggesting that the growth decrease in 1976 was related to climatic conditions. 

Although 1976 was not indicated as a drought year, there was a large drop in 

PDSI in 1995 (Figure 5). It seems logical that the “potential climate signal” would 

be a good predictor of decline after drought, but not defoliation. This variable 

could be tested in other studies, both where hemlock stands have and have not 

experienced defoliation. 

 The recovery model also supports the observation that plots that are 

strongly affected by climate will show a strong common signal; PGC in 2003 is 

the most powerful predictor for PGC05. Plots having the most negative response 

in 2003 after drought had the most favorable response in 2005 when conditions 

were favorable for eastern hemlock growth (Figure 9). 
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Figure 9. Relationship Between PGC03 and PGC05 plot means. 
 
 The recovery model also included soil Ca in the B horizon, which could be 

positively related to PGC05 for several reasons. Ca is needed for growth and 

stress response in plants (McLaughlin and Wimmer 1999), controlling protein 

synthesis, cell division, membrane and stomatal function and plant metabolism 

(McLaughlin and Wimmer 1999, DeHayes et al. 1999). Exchangeable Ca in soil 

is the most plant-available form of the nutrient (Szillery 1998). Possitive 

correlations between Ca and other soil nutrients and negative correlations 

between Ca and Al (Table 5) also might help account for its presence in the 

model. The one declining plot, at Ferry Beach State Park, had the lowest levels 

of Ca (7.7 mg/kg) and a highest Ca/Al ratio (0.025); possibly Al toxicity 
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(Vanguelova et al. 2007) or Ca limitations are detrimental to growth or stress 

response at this site. 

 Age is the final variable in the PGC05 model, with older trees showing 

higher rates of recovery (PGC05). This could be due to larger root systems and a 

greater competitive advantage of older trees, as age is highly correlated with 

height and diameter for the dominant and codominant hemlocks in our study 

(Table 2). Another explanation is that the greatest variation in ring widths occurs 

near the base of the tree (Larson 1963), so basal area increment does not 

necessarily estimate volume production. During unfavorable conditions, BAI is 

likely to underestimate volume production, especially for trees with much of their 

growth above breast height (Bouriaud et al. 2005), therefore the percent growth 

change measurement in 2005 is likely to overestimate recovery for older/larger 

trees. There were no indications that trees are over mature or that older trees 

should be harvested. This is consistent with the long lifespans of eastern 

hemlock on good sites (Godman and Lancaster 1990). 

 In summary, growth changes for plot models are best predicted by 

measures of regional growth signal. The mechanisms behind this variable are not 

well understood, but EPS appears to be influenced by factors affecting in-plot 

variability, particularly hemlock basal area; higher concentrations of hemlock may 

create more similar plot conditions, leading to higher EPS. Limiting climatic 

conditions, such as maximum July temperature, may also contribute to EPS. 

 Differences in plot characteristics that affect water availability and nutrient 

status also came into plot-level models. Stand density, organic matter, and 
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percent aluminum appeared more important than differences in precipitation for 

explaining water-availability. This was consistent with Cook and Cole’s (1991) 

finding that site conditions influenced precipitation response. The only 

temperature variable that came into the models was February temperature in the 

drought model. 

Study Implications 

 A major influence on the PGC models in this study was attributed to 

regional growth response as expressed by EPS and PGC03 in the PGC05 

model. Including these measures in our models helped us to explore other 

variables associated with PGC growth response for hemlock stands in southern 

Maine. It will be worthwhile to test whether these variables can be used for 

modeling growth decline and recovery in hemlock stands in other regions, 

including stands infested with HWA. 

 There were few visual signs of decline when stands were visited in the 

summer of 2006, which did not allow us to evaluate factors related to hemlock 

decline at our sites as in other studies (Davis et. al 2007, Rentch et al. In review) 

Even a method for characterizing declining trees based on increment growth 

yielded too few declining trees for a useful comparison of declining versus 

healthy plots. Tree rings are currently being analyzed from Pontius’ New England 

stands. Comparing how tree growth responded to past stresses and HWA 

infestation using both tree rings and visual signs of decline should help us better 

understand the usefulness of BAI models and how hemlock in southern Maine 

will respond to impending HWA infestation.  
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 Other factors associated with vulnerability could also be compared among 

locations to understand susceptibility. For example, a preliminary comparison of 

soil chemistry in southern Maine and New England shows that Maine sites have 

higher Ca and lower N than Pontius’ sites. Studies have shown that Ca is toxic to 

aphids and limits population levels, making trees better able to tolerate 

infestation (Harada et al. 1996, Verma 1985). Calcium in the upper B horizon 

was higher and more variable in our study (54.9 ± 9.64, n=36) than in a study of 

infested and uninfested hemlock stands throughout New England (21.97 ± 5.12, 

n = 51) (Pontius 2008 Unpublished Data). Forty-two of Pontius’ 51 plots with soil 

data had Ca values lower than the median value at our plots (35.10 mg/kg. In 

addition, Ca/Al ratios in the B soil horizon were higher in southern Maine than at 

the New England sites (0.15 ± 0.03 v. 0.022 ± 0.0056), potentially indicating a 

lower probability of rootlet mortality due to Al toxicity (Vanguelova et al. 2007). 

 Lower foliar N is a factor associated with lower hemlock vulnerability to 

HWA infestations (Pontius 2006). Aphids are more successful on high N foliage 

(Carrow and Betts 1973, McClure 1980) and N fertilization increased HWA 

populations (McClure 1991) and made hemlocks more susceptible to HWA 

(McClure 1992). Nitrogen concentrations in the upper B horizon were much lower 

and less variable at our plots (0.15 ± 0.018%, n=36) than Pontius’ New England 

sites (3.93 ± 1.25% n=51). Thirty-three of Pontius’ 51 sites had N values above 

the median value (0.12%) at our site. Foliar concentrations of Ca and N in Maine 

hemlock stands need to be evaluated. If higher Ca and lower N in soils are also 
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expressed in the foliage, hemlock in Maine would likely be less vulnerable to 

HWA than regions to the south. 

 The low proportion of declining trees in 2005 indicates that the population 

of hemlock trees in southern Maine is relatively healthy and able to recover from 

stress on the scale of recent drought and defoliation events. Plots where trees 

declined the most in 2003 recovered the most in 2005 (). The study suggests that 

hemlock in this area are not predisposed to decline and have adjusted to drought 

and defoliation events as experienced over the last 60 years.  

 The effects of climate change on hemlock vigor and stressors are complex 

and could have a large range of impacts on HWA populations and resulting 

damage in Maine. Currently we see that a major future stress for Maine’s 

hemlock, HWA, has spread slower (Evans and Gregoire 2007) and been more 

limited by cold winter temperatures in the northern part of its range (Paradis et al. 

2007) compared to regions farther south. In addition, hemlocks in southern 

Maine are able to recover from periods of reduced growth due to drought and 

defoliation, and soil factors could favor reduced tree vulnerability to HWA 

compared to other regions. 

 Management that takes into account hemlock ecology, silviculture and 

local stand conditions could be used to further improve the ability of southern 

Maine hemlocks to resist decline from HWA. Silvicultural thinning is being 

investigated as a preemptive management strategy to increase hemlock vigor 

and resistance to HWA-induced decline (Favjan 2007). Thinning will reduce 

basal area in fully stocked hemlock stands and should increase crown conditions 
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and growth rates, both of which have been shown to decrease damage due to 

HWA (Davis et. al 2007, Rentch et al. In Review).  

 In addition practices that have been shown to negatively impact individual 

hemlocks and hemlock ecosystems, such as overthinning (more than 30% of the 

stand) (Godman and Lancaster 1990), root damage (Godman and Lancaster 

1990) and presalvage and salvage harvests (Kizlinski et al. 2002, Orwig and 

Kizlinski 2002) should be avoided. 

 Hemlocks in southern Maine will likely respond in a similar manner to 

infested hemlocks in adjacent regions where stands have shown resistance to 

HWA infestation but have been highly influenced by the level of infestation 

(Pontius 2006). Therefore continued regulatory measures and improvement of 

biological controls are also important for maintaining southern Maine’s 

ecologically important hemlock population.  
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Chapter 5 

CONCLUSION 

 Hemlock increment growth in this study was sensitive to climatic variation 

and insect defoliation. Low growth years were related to published drought and 

defoliation events (hemlock looper, gypsy moth). Climatic factors associated with 

higher growth throughout the chronology included higher previous and current 

summer precipitation, especially during the month of July, lower previous June 

and July maximum temperatures, and higher February temperatures. 

 Increment decline and recovery after the 1999-2002 drought were related 

to local plot conditions including climate, soil, and tree factors. The strongest 

relationship with growth decrease and recovery after drought were measures of 

previous growth response. In 2003 expressed population signal, a measure of 

common growth signal within a plot, was associated with more a negative 

percent growth change. Negative percent growth change in 2003 was associated 

with positive percent growth change in 2005. Expressed population signal was 

the only predictor of percent growth change in the decline period following other 

climatic stress events. 

 Additional factors which were associated with smaller decreases in growth 

during the decline year were depth of the organic soil layer, maximum February 

temperature, percent aluminum saturation in the B soil horizon and stand density. 

For the recovery model, age and soil calcium in the B horizon were associated 

with larger growth increases. 
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 Overall, hemlock in this region recovered quickly from drought and 

defoliation events over the past 60 years. The population’s ability to respond 

positively to favorable growth conditions indicates that if management techniques 

are successful in increasing tree vigor (Fajvan 2007), such strategies could be 

used in Maine to increase the ability of hemlock to tolerate HWA infestation. 

Such management could help maintain this ecologically important species in 

areas where the insect is not yet established. 
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Figure A.1. Standardized growth index (RESID) and basal area increment 
(BAI) by plot. The standardized chronology is the residuals from a 30-year 
smoothing spline with the autocorrelation removed. The dashed line indicates the 
mean. Solid horizontal lines show 1 and 2 standard deviations above and below 
the mean. Vertical gray lines mark decades. Plot number is in the upper right 
corner. Bottom plot shows the number of trees represented, with a minimum of 7. 
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Figure A.1 continued. 



 71

Year

1960 1970 1980 1990 2000

N
o.

 o
f t

re
e 

co
re

s

7.5
8.0
8.5
9.0
9.5

10.0
10.5

B
as

al
 A

re
a 

In
cr

em
en

t (
m

m
2 )

200

400

600

800

1000

1200

1400

1600

1800

2000

1960 1970 1980 1990 2000

G
ro

w
th

 In
de

x

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

3

 
Figure A.1 continued. 
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Figure A.1 continued. 



 76

Year

1940 1950 1960 1970 1980 1990 2000

N
o.

 o
f t

re
e 

co
re

s

6
8

10
12
14
16
18

8
B

as
al

 A
re

a 
In

cr
em

en
t (

m
m

2 )

0

200

400

600

800

1000

1200

1400

1940 1950 1960 1970 1980 1990 2000

G
ro

w
th

 In
de

x

0.4

0.6

0.8

1.0

1.2

1.4

1.6

 

8

 
Figure A.1 continued. 



 77

Year

1940 1950 1960 1970 1980 1990 2000N
o.

 o
f t

re
e 

co
re

s

7.5
8.0
8.5
9.0
9.5

10.0
10.5
11.0
11.5

9
Ba

sa
l A

re
a 

In
cr

em
en

t (
m

m
2 )

500

1000

1500

2000

2500

3000

G
ro

w
th

 In
de

x

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

9

 
Figure A.1 continued. 



 78

Year

1950 1960 1970 1980 1990 2000

N
o.

 o
f t

re
e 

co
re

s

6
8

10
12
14
16
18

Year

B
as

al
 A

re
a 

In
cr

em
en

t (
m

m
2 )

0

500

1000

1500

2000

2500

3000

1950 1960 1970 1980 1990 2000

G
ro

w
th

 In
de

x

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

10

 
Figure A.1 continued. 



 79

Year

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

N
o.

 o
f t

re
e 

co
re

s

6
8

10
12
14
16
18
20

B
as

al
 A

re
a 

In
cr

em
en

t (
m

m
2 )

0

200

400

600

800

1000

1200

1400

1600

1800

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

G
ro

w
th

 In
de

x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

11

 
Figure A.1 continued. 



 80

Year

1930 1940 1950 1960 1970 1980 1990 2000

N
o.

 o
f t

re
e 

co
re

s

6
7
8
9

10
11
12
13

1930 1940 1950 1960 1970 1980 1990 2000

G
ro

w
th

 In
de

x

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4
Ba

sa
l A

re
a 

In
cr

em
en

t (
m

m
2 )

400

600

800

1000

1200

1400

1600

1800

2000

12

 
Figure A.1 continued. 



 81

Year

1930 1940 1950 1960 1970 1980 1990 2000

N
o.

 o
f t

re
e 

co
re

s

6
7
8
9

10
11
12
13

Ba
sa

l A
re

a 
In

cr
em

en
t (

m
m

2 )

200

400

600

800

1000

1200

1400

1600

1800

2000

1930 1940 1950 1960 1970 1980 1990 2000
G

ro
w

th
 In

de
x

0.6

0.8

1.0

1.2

1.4

1.6

13

 
Figure A.1 continued. 



 82

Year

1950 1960 1970 1980 1990 2000

N
o.

 o
f t

re
e 

co
re

s

6
7
8
9

10
11
12
13
14

Ba
sa

l A
re

a 
In

cr
em

en
t (

m
m

2 )

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

1950 1960 1970 1980 1990 2000

G
ro

w
th

 In
de

x

0.4

0.6

0.8

1.0

1.2

1.4

1.6

14

 
Figure A.1 continued. 



 83

Year

1940 1950 1960 1970 1980 1990 2000

N
o.

 o
f t

re
e 

co
re

s

6
7
8
9

10
11
12
13

B
as

al
 A

re
a 

In
cr

em
en

t (
m

m
2 )

0

500

1000

1500

2000

2500

3000

3500

1940 1950 1960 1970 1980 1990 2000

G
ro

w
th

 In
de

x

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

15

 
Figure A.1 continued. 



 84

Year

1920 1930 1940 1950 1960 1970 1980 1990 2000

N
o.

 o
f t

re
e 

co
re

s

6
8

10
12
14
16
18
20

1920 1930 1940 1950 1960 1970 1980 1990 2000

G
ro

w
th

 In
de

x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2
Ba

sa
l A

re
a 

In
cr

em
en

t (
m

m
2 )

0

200

400

600

800

1000

1200

1400

1600

1800

2000

16

 
Figure A.1 continued. 



 85

Year

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

N
o.

 o
f t

re
e 

co
re

s

6
7
8
9

10
11
12
13

B
as

al
 A

re
a 

In
cr

em
en

t (
m

m
2 )

0

500

1000

1500

2000

2500

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

G
ro

w
th

 In
de

x

0.4

0.6

0.8

1.0

1.2

1.4

1.6

17

 
Figure A.1 continued. 



 86

Year

1950 1960 1970 1980 1990 2000

N
o.

 o
f t

re
e 

co
re

s

6
7
8
9

10
11
12
13

B
as

al
 A

re
a 

In
cr

em
en

t (
m

m
2 )

0

200

400

600

800

1000

1200

1400

1600

1800

1950 1960 1970 1980 1990 2000

G
ro

w
th

 In
de

x

0.4

0.6

0.8

1.0

1.2

1.4

1.6

18

 
Figure A.1 continued. 



 87

Year

1930 1940 1950 1960 1970 1980 1990 2000

N
o.

 o
f t

re
e 

co
re

s

6
8

10
12
14
16
18
20

Ba
sa

l A
re

a 
In

cr
em

en
t (

m
m

2 )

0

200

400

600

800

1000

1200

1400

1600

1800

1930 1940 1950 1960 1970 1980 1990 2000

G
ro

w
th

 In
de

x

0.4

0.6

0.8

1.0

1.2

1.4

1.6

19

 
Figure A.1 continued. 



 88

Year

1960 1970 1980 1990 2000

N
o.

 o
f t

re
e 

co
re

s

6
7
8
9

10
11
12
13

B
as

al
 A

re
a 

In
cr

em
en

t (
m

m
2 )

400

600

800

1000

1200

1400

1600

1800

1960 1970 1980 1990 2000

G
ro

w
th

 In
de

x

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

20

 
Figure A.1 continued. 



 89

Year

1920 1930 1940 1950 1960 1970 1980 1990 2000

N
o.

 o
f t

re
e 

co
re

s

6
7
8
9

10
11
12
13

B
as

al
 A

re
a 

In
cr

em
en

t (
m

m
2 )

0

500

1000

1500

2000

2500

3000

3500

1920 1930 1940 1950 1960 1970 1980 1990 2000

0.4

0.6

0.8

1.0

1.2

1.4

1.6

21

 
Figure A.1 continued. 



 90

Year

1940 1950 1960 1970 1980 1990 2000

N
o.

 o
f t

re
e 

co
re

s

6
7
8
9

10
11
12
13

B
as

al
 A

re
a 

In
cr

em
en

t (
m

m
2 )

0

500

1000

1500

2000

2500

1940 1950 1960 1970 1980 1990 2000

G
ro

w
th

 In
de

x

0.4

0.6

0.8

1.0

1.2

1.4

1.6

22

 
Figure A.1 continued. 



 91

Year

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

N
o.

 o
f t

re
e 

co
re

s

6
8

10
12
14
16
18

Ba
sa

l A
re

a 
In

cr
em

en
t (

m
m

2 )

0

500

1000

1500

2000

2500

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

G
ro

w
th

 In
de

x

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

23

 
Figure A.1 continued. 



 92

Year

1910 1920 1930 1940 1950 1960 1970 1980 1990 2000N
o.

 o
f t

re
e 

co
re

s

6
7
8
9

10
11
12
13
14

B
as

al
 A

re
a 

In
cr

em
en

t (
m

m
2 )

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1910 1920 1930 1940 1950 1960 1970 1980 1990 2000

G
ro

w
th

 In
de

x

0.4

0.6

0.8

1.0

1.2

1.4

1.6

24

 
Figure A.1 continued. 



 93

Year

1910 1920 1930 1940 1950 1960 1970 1980 1990 2000N
o.

 o
f t

re
e 

co
re

s

6
8

10
12
14
16
18
20
22

B
as

al
 A

re
a 

In
cr

em
en

t (
m

m
2 )

200

400

600

800

1000

1200

1400

1600

1800

1910 1920 1930 1940 1950 1960 1970 1980 1990 2000

G
ro

w
th

 In
de

x

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

25

 
Figure A.1 continued. 



 94

Year

1920 1930 1940 1950 1960 1970 1980 1990 2000

N
o.

 o
f t

re
e 

co
re

s

6
7
8
9

10
11
12
13

B
as

al
 A

re
a 

In
cr

em
en

t (
m

m
2 )

0

500

1000

1500

2000

2500

3000

3500

4000

1920 1930 1940 1950 1960 1970 1980 1990 2000

G
ro

w
th

 In
de

x

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

26

 
Figure A.1 continued. 



 95

Year

1920 1930 1940 1950 1960 1970 1980 1990 2000

N
o.

 o
f t

re
e 

co
re

s

6
8

10
12
14
16
18
20

B
as

al
 A

re
a 

In
cr

em
en

t (
m

m
2 )

200

400

600

800

1000

1200

1400

1600

1800

1920 1930 1940 1950 1960 1970 1980 1990 2000

G
ro

w
th

 In
de

x

0.6

0.8

1.0

1.2

1.4

1.6

27

 
Figure A.1 continued. 



 96

Year

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

N
o.

 o
f t

re
e 

co
re

s

7
8
9

10
11
12
13
14
15

B
as

al
 A

re
a 

In
cr

em
en

t (
m

m
2 )

0

200

400

600

800

1000

1200

1400

1600

1800

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

G
ro

w
th

 In
de

x

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

28

 
Figure A.1 continued. 



 97

Year

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010N
o.

 o
f t

re
e 

co
re

s

7
8
9

10
11
12

B
AI

 (m
m

2 )

0

500

1000

1500

2000

2500

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

G
ro

w
th

 In
de

x

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

29

 
Figure A.1 continued. 



 98

Year

1940 1950 1960 1970 1980 1990 2000

N
o.

 o
f t

re
e 

co
re

s

6
7
8
9

10
11
12
13

B
as

al
 A

re
a 

In
cr

em
en

t (
m

m
2 )

0

500

1000

1500

2000

2500

3000

3500

4000

1940 1950 1960 1970 1980 1990 2000

G
ro

w
th

 In
de

x

0.4

0.6

0.8

1.0

1.2

1.4

1.6

30

 
Figure A.1 continued. 



 99

Year

1960 1970 1980 1990 2000

N
o.

 o
f t

re
e 

co
re

s

6
7
8
9

10
11
12
13

B
as

al
 A

re
a 

In
cr

em
en

t (
m

m
2 )

0

500

1000

1500

2000

2500

1960 1970 1980 1990 2000

G
ro

w
th

 In
de

x

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

31

 
Figure A.1 continued. 



 100

Year

1910 1920 1930 1940 1950 1960 1970 1980 1990 2000

N
o.

 o
f t

re
e 

co
re

s

6

8

10

12

14

16

B
as

al
 A

re
a 

In
cr

em
en

t (
m

m
2 )

0

500

1000

1500

2000

2500

3000

1910 1920 1930 1940 1950 1960 1970 1980 1990 2000

G
ro

w
th

 In
de

x

0.4

0.6

0.8

1.0

1.2

1.4

1.6

32

 
Figure A.1 continued. 



 101

Year

1910 1920 1930 1940 1950 1960 1970 1980 1990 2000

N
o.

 o
f t

re
e 

co
re

s

6
7
8
9

10
11
12
13

33

B
as

al
 A

re
a 

In
cr

em
en

t (
m

m
2 )

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1910 1920 1930 1940 1950 1960 1970 1980 1990 2000

G
ro

w
th

 In
de

x

0.6

0.8

1.0

1.2

1.4

1.6

33

 
Figure A.1 continued. 



 102

Year

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

N
o.

 o
f t

re
e 

co
re

s

6
8

10
12
14
16
18
20

B
as

al
 A

re
a 

In
cr

em
en

t (
m

m
2 )

200

400

600

800

1000

1200

1400

1600

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

G
ro

w
th

 In
de

x

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

34

 Figure A.1 continued. 



 103

Year

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

N
o.

 o
f t

re
e 

co
re

s

9.5
10.0
10.5
11.0
11.5
12.0
12.5

B
as

al
 A

re
a 

In
cr

em
en

t (
m

m
2 )

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

G
ro

w
th

 In
de

x

0.4

0.6

0.8

1.0

1.2

1.4

1.6

35

 
Figure A.1 continued. 



 104

Year

1910 1920 1930 1940 1950 1960 1970 1980 1990 2000

N
o.

 o
f t

re
e 

co
re

s

6
8

10
12
14
16
18
20

B
as

al
 A

re
a 

In
cr

em
en

t (
m

m
2 )

0

500

1000

1500

2000

2500

1910 1920 1930 1940 1950 1960 1970 1980 1990 2000

G
ro

w
th

 In
de

x

0.4

0.6

0.8

1.0

1.2

1.4

1.6

36

 
Figure A.1 continued. 
.



 

 

Table A.1. Significant climate response coefficients by plot. Capital letters indicate temperature (T) and precipitation 
(P) for monthly climate variables from the previous year. Lowercase letters indicate current year climate variables. 

Plot 
JUN 

T 
JUL 

T 
AUG 

T 
NOV 

T 
DEC 

T feb t mar t 
may 

t jun t 
sept 

t 
JUL 

P 
AUG 

P 
DEC 

P 
mar 

p jun p jul p 
1 M -0.14 -0.15    0.15     0.16    0.17 0.18
1 m      0.17    0.21 0.19    0.27 0.19
2 m -0.23 -0.18        0.19      0.18
3 M      0.3            
3 m      0.28            
4 M -0.2              0.13   
4 m               0.18 0.2
6 M -0.16       -0.17 -0.18         
6 m -0.19 -0.14      -0.17 -0.18   0.15      
7 M  -0.18                
7 m  -0.17           0.22     
8 M                  
12 M              -0.19    
12 m              -0.2    
13 M  -0.19    0.22            
13 m  -0.22    0.19            
15 M    0.16   0.19     0.18      
17 M      0.17            
17 m      0.14            
18 m      0.15         0.16   
19 M        -0.21          
19 m           0.2       
20 M       -0.26           
21 M -0.27 -0.15  0.16  0.18      0.17      
21 m -0.17    0.15 0.17     0.17 0.18      
22 M -0.21                 
23 M       0.25           
23 m  -0.17     0.24           
24 m       0.14           
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Plot 
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p jun p jul p 
25 M  -0.2 -0.21   0.17     0.22       
25 m  -0.27         0.28       
26 M -0.21  -0.21               
26 m -0.19 -0.14 -0.22            0.18   
27 M               0.21 0.18
27 m             0.18  0.27 0.19
28 M  -0.25          0.16      
28 m  -0.19    0.15      0.17    0.16
29 m           0.2       
30 M -0.27 -0.21                
31 m     0.22             
32 M -0.15             0.21    
32 m  -0.23   0.15 0.14        0.16    
33 M             0.15  0.3   
33 m      0.16     0.25  0.16  0.27   
34 M            0.15      
34 m  -0.17          0.18      
35 M           0.21     0.19
35 m           0.23     0.19
Master M -0.18 -0.16       0.19                   0.15
Master m  -0.23       0.18         0.22 0.16       0.17
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