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Throughout southern Maine there was a noticeable decline and mortality of white 

pine (Pinus sfrobus) from 1997 through 2000 in dense pole-size stands. The decline was 

widespread, scattered, and happened simultaneously indicating that it was incited by an 

abiotic stress. Because only isolated stands showed decline and mortality, site factors 

likely predisposed trees to injury. 

Site factors are likely related to the widespread field abandonment that took place 

throughout southern and central Maine, and led to establishment of pure white pine 

stands in many areas. Although white pine can regenerate on many sites, some locations 



will have soil limitations, such as plow plans and lithological discontinuities that cause 

white pine roots to spread more horizontally. A shallow root system would result in less 

water being available to a tree during a drought. 

The first hypothesis is that soil rooting restrictions predisposed the white pine to 

water stress inciting decline and mortality. The second hypothesis follows that the 

drought event occurred prior to 1997-2000, the period of white pine mortality. 

Paired sites, consisting of one high and one low mortality site, were evaluated in 

nine locations in Maine south of 45" N latitude in the towns of Wells, Lebanon, Hollis, 

Limington, Casco, Nobleboro, Massabesic, New Gloucester and Oxford. Tree species, 

crown class, crown condition, and diameter at breast height (DBH) were recorded at each 

stand. Two cores were removed from each dominant and codominant white pine, 

including dead trees, for dendrochronological analysis. Crossdating of cores was used to 

calculate the percentage of dead trees with the last growth ring in a given calendar year. 

Average annual increments between dead and surviving trees were compared on each 

high mortality site using mean ring widths. Potential rooting depth was measured in each 

site. 

Stream flow, precipitation, temperature, and Palmer Drought Severity Index 

(PDSI) were used with the program PRECON to look at long tern relationships between 

climate and growth. 



Paired t-tests were used to evaluate differences in basal area, stemsha, and 

potential rooting depth on high and low mortality sites. Standard t-tests were calculated 

by location for differences in DBH, age, and number of years of decline of white pine 

between high and low mortality sites and between dead and surviving white pine on high 

mortality sites. 

High mortality sites had restrictive soil layers (ranging from 19.0 cm to 26.5 cm) 

that were significantly shallower than low mortality (ranging from 39 cm to >50 cm) sites 

at all nine locations. White pines on high mortality sites were significantly younger (49 

yr) than those on low mortality sites (78 yr). High mortality sites also had significantly 

higher density of white pine (495 stemslha) than low mortality sites (273 stemsha). 

Trees that died had smaller DBH (20.8 cm) than those that survived (26.5 cm). I 

conclude that shallow rooting depth and high stem density predisposed trees to mortality 

induced by drought stress. Climate data suggest that a drought in 1995 was the inciting 

factor for the decline. Most predisposed trees died from 1995 to 1998 with peak 

mortalities in 1996 (30 %) and 1997 (34 %). 
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CHAPTER 1: INTRODUCTION 

Throughout southern Maine there was a noticeable decline and mortality of white 

pine (Pinus strobus) from 1997-2000 in dense pole-size stands. The symptoms included 

crown thinning, yellowing of needles, and mortality of dominant and codominant trees. 

The decline and mortality were scattered, widespread, and happened simultaneously, 

indicating that the inciting stress occurred simultaneously across the region. 

Declines typically involve multiple factors, not just the inciting stress (Sinclair 

1965, Manion 199 1 ). Manion (1 99 1 ) describes forest decline as a disease complex 

consisting of predisposing, inciting, and contributing factors. Predisposition to decline is 

hypothesized to arise gradually due to an adverse microenvironment, increasing 

competition from neighboring trees, or as one or more growth shocks due to physical 

damage (McClenahen 199.9, all of which can impede a tree's ability to endure stress. 

Pedersen (1998), in investigating oak (Quercus spp. L.) overstory mortality, described 

predisposing factors as the long-term stresses that predisposed oak to injury by short 

term, inciting factors. 

Inciting factors are those that can substantially reduce tree vigor by impeding 

physiological processes (McClenahen 1995). In some cases severe predisposing andor 

inciting factors can lead to a tree's inability to regain full vigor, or even mortality. 

However, if a tree does not recover from an inciting stress, mortality is often a result of 

contributing factors such as weak pathogens (Manion 199 1 ). 

This study investigated likely predisposing and inciting factors causing mortality 

of white pine decline in southern Maine. Because forest decline can often be traced to 



historical land use patterns (Christensen 1989), it was imperative to understand how 

historical land use in and around the study areas could influence long-term sites 

characteristics as predisposing factors to decline. One key site factor known to adversely 

affect white pine growth is rooting depth (Wendel and Smith 1990, Steve Howell, 

personal communication 2001). White pine is especially sensitive to physical problems 

in the soil such as poor drainage, hardpans, and high plasticity (Balmer and Williston 

1983) because these changes in soil physical structure can impose rooting restrictions 

(Stevens 193 1, Lutz et al. 1937, Horton 1960). 

Historical Land-Use 

Much of the current widespread distribution of white pine is due to abandonment 

of agricultural fields. The number of farms in Maine peaked in 1880, covering more than 

6.5 million acres (Ahn et al. 2002), yet by 1940 the total number of farms in Maine had 

declined by 80% (Moore and Witham 1996). The abandonment of farnis was especially 

pronounced in southern and central Maine. In York and Curnberland counties, which 

encompass seven of the nine study sites, the amount of land in farms decreased by 60% 

from 1850 to 1944 ( A h  et al. 2002). This extreme decline in farms was due to a 

combination of factors. The early Maine farmers faced many challenges including stony 

land that often took many generations to clear, and unpredictable weather. These 

hardships, along with the economic hardships, and the promise of fertile land were 

enough to entice many farmers to abandoned their land and move west (Hart 1968, 

Whitney and Davis 1986, Foster et al. 1992, Moore and Witham 1996). In addition, the 



industrial revolution allowed for non-farm sources of income, which led some farmers to 

abandon farming altogether (Ahn et al. 2002). As farmers left, the.surrounding forests 

quickly reclaimed the abandoned land. Because of the cold weather and rocky landscape 

of New England, much of the farmland was pasture and hayfields rather than tilled land. 

The abandonment of these pasture and hayfields resulted in fields of sod, grass, and litter, 

all of which offer suitable seedbeds for white pine establishment (Glitzenstein et al. 1990, 

Wendel and Smith1 990, Foster 1992, Whitney 1994, Foster 1995). In addition, the 

grazing of animals assisted white pine establishment if it reduced hardwood competition 

(Foster 1995). The fields and pasturelands were often surrounded by woodlots or 

fencerows with many white pine seed trees (Foster 1995), which provided white pine 

with abundant and reliable seed sources. White pine seeds are wind dispersed and can 

travel up to 700 feet in the open, easily reaching surrounding fields. The ability of white 

pine to take advantage of the changed landscape allowed for the establishment of pure . 

white pine stands in many areas. 

The proliferation of pure white pine stands exemplified the changes in New 

England's forest following land abandonment. Prior to European settlement white pine 

was a well distributed, but relatively small component of the New England forests 
I 

(Whitney 1994, Abrams 2001, Cogbill 2000). White pine is disturbance dependent and 

often recognized as a pioneer species, although it can be a climax species on the drier, 

sandier soils or a long-lived successional species (Wendel and Smith 1990, Foster 1995, 

Abrams 2001). It generally becomes established after large-scale disturbances such as 

fire and blow downs or after smaller, gap creating, disturbances (Abrams 2001). White 

pine was sparse in the presettlement forests of New England (Cogbill 2000), especially in 



the north. Compositional percentages ranged from a low of 0-1% in western and 

northeastern Maine to a maximum of 22% in north-central Massachusetts (Cogbill 2000, 

Whitney 1994). The low compositional percentages suggest that the frequency of fire in 

New England during presettlement times was relatively low, but increased from north to 

south. New England's presettlement white pine usually occurred as a scattered emergent 

in old growth stands and not in the pure even aged stands that can be found today. This 

suggests that gaps created by individual tree death andlor windstorms were the primary 

natural generators of suitable habitats for white pine during this time. Foster (1992) 

noted that modern forests have been strongly controlled by land use at the landscape 

level. However, at the regional level. post and presettlement forests are similar except for 

structural changes and the loss of a few species. It is important to recognize, however, 

that changes in stand structure and compositional can be significant to a forest ecosystem. 

This is typified by changes in root competition that can take place when a stand is 

transformed from mixed species, such as those prior to European settlement, to a single 

species stand, such as white pine stands on old fields. In single-species stands, roots tend 

to occupy the same layer of soil and develop at the same rate, increasing severity of root 

competition, which directly affects tree health, rate of growth, and size of individuals 

(Stevens 193 1). Balmer and Williston (1983), however, suggest that pure stands of white 

pine seldom stagnate because of inherent variations in vigor. However, they emphasize 

that variation in vigor is more pronounced on better sites where there is likely to be more 

available rooting area in addition to ample water and nutrients (Balmer and Williston 

1983). 



Agricultural land use can have detrimental long-tenn impacts on forest soils in 

terms of structure, nutrient composition, and function. The use of plows and grazing of 

animals can result in long lasting changes in soil properties (Foster 1995), including plow 

pans and soil compaction. The trampling of pastured animals can change soil structure in 

a way that often results in an increase of resistance to soil penetration (Bryant et al. 1972, 

Bezkorowajnyj et al. 1993), while the use of plows can create dense zones immediately 

below the plowed layer forming plow pan (Brady and Weil 1999). These changes in soil 

structure reduce soil moisture or oxygen and increase mechanical impedance to root 

penetration (Phillips and Kirkham 1962, Bennie 199 1, Nambiar and Sands 1992). Water 

stress can be inflicted on plant growth in two opposing ways due to soil compaction. 

First, the hard layers can impede deeper root penetration making soil water less available. 

Second, compaction can reduce infiltration of water to deeper parts of the soil leaving 

deeper soils dry and/or roots sitting in water, both of which can impede plant growth 

(Barnes et al. 1971). 

I hypothesize that any species of the New England forest growing in a setting that 

has changed so dramatically from its original habitat is likely to be more predisposed to 

stresses during its lifetime. As the following section demonstrates, white pine's rooting 

system makes this species especially sensitive on sites that have shallow rooting 

restrictions. 



Rooting 

White pine lacks a tap-root and instead utilizes central and lateral sinkers. The 

lateral roots and fine roots are generally only a few cenimeters below ground surface in 

the A and B horizon (Horton 1960). Smaller vertical roots and sinkers extend from the 

lateral roots and can penetrate the soil to a depth of 4.6 meters (Horton 1960, Brown and 

Lacate 196 1). Although white pine is considered a shallow rooted species (Wendel and 

Smith 1990), the depth of these vertical roots enables white pine to compete well with 

hardwoods, especially on dry sites. Root grafting begins early in white pine stand 

development, yet competition between individuals is still more important. Substances in 

the phloem are easily shared between trees because they can move laterally from tree to 

tree. Xylem, however, and the water and minerals it transports, tends to follow the grain 

of the wood and therefore will not be diverted from one healthy tree to another (Bormann 

1966). Therefore, in times of water stress there can be pronounced competition between 

individuals for the resource. 

Changes in soil structure can be disadvantageous to white pine. The vertical roots 

of white pine are not able to penetrate or go around soil compaction, high water table, 

bedrock, plow pan, or lithological discontinuity (defined here as fine textured material 

over a layer of coarse textured materials) and instead spread out laterally forming a plate- 

like rooting system (Figure 1) (Horton 1960, Brown and Lacate 1961). Other species, 

such as red pine, are able to avoid obstacles by circumventing rocks or breaking through 



tough soil with a taproot (Horton 1960). Rooting restrictions reduce white pine 

productivity (Horton 1960) and may predispose it to other stresses, such as water stress 

(Stevens 193 1, Lutz et al. 1937, Bennie 199 1, Nambiar and Sands 1992). 

Figure 1. White pine roots growing on soil with shallow rooting depth potential due 

to shallow bedrock. 

(Photo by Howell, SH. 2001) 



Water Stress 

Water is imperative for normal tree functions involving high water content and 

turgor, such as cell expansion (Kramer and Kozlowski 1979)- The first visible effects of 

water stress are closure of stomata, wilting of leaves and young stems, and cessation of 

growth. These responses are followed by premature senescence and shedding of leaves, 

suppressed shoot growth, restricted bud formation and elongation, and leaf expansion 

(Kramer and Kozlowski 1979). 

Water stress also influences the cambium, indirectly by inhibiting synthesis and 

downward translocation of growth regulators and directly because low turgor pressure 

inhibits cell expansion (Kramer and Kozlowski 1979). Zahner and Domelly (1967) 

concluded that 68% of variation in ring widths of young red pine (Pinus resinosa) in 

Michigan was associated with moisture conditions of the current season. Fritts (1 974), 

working with conifers in western North America, found that increases in water stress 

were followed by reduced net photosynthesis and low accumulation of food reserves, 

resulting in reduced rates of cambial activity and ultimately the formation of narrow 

growth rings. 

In the southwestern United States, changes in the width of tree rings represent the 

net effect of climatic factors on processes that influence growth. In essence, wide and 

narrow rings can be interpreted as favorable and unfavorable climate variations 

throughout the tree's life (Glock 1955, Fritts 1976). The climatic variations that form a 

ring in one year influence the tree's response to climate in following years. For example, 

Zahner (1968) notes that drought one year may result in reduced food storage for 



utilization in growth the following year. This "lag effect" is well recognized and can be 

measured (Fritts 1966). However, in northeastern North America, where climate is 

believed to be less limiting to growth, radial growth of trees has been reported to be less 

sensitive to climate changes (Fritts 1976; Phipps 1982; Tardif et al. 2001). For example, 

in the Great Lakes region Graumlich (1 993) concluded that influences of climate on tree 

growth are not mediated through changes in mean climate conditions, but through the 

influence of a small number of years of extreme climate. 

A number of studies have used tree ring data to reconstruct past rainfall and 

drought (Cook and Jacoby 1977, Stahle et al. 1985, Cook et al. 1999), but few have 

looked specifically at the effects of drought on white pine growth. The conclusions of 

those who have (e.g., Vose and Swank 1993, Clinton et al. 1997) find evidence 

supportive of Graumlich7s (1993) argument that climate [drought stress] can result in a 

decrease in white pine increment growth, but consistencies with white pine growth 

increments and nonnal variations in climate are often not detected. For example, Vose 

and Swank (1993) studied the effect of precipitation deficits on the basal area growth of 

33-year-old white pine in North Carolina. Although they could observe differences in 

tree growth with extreme climate variations, between a growing season with precipitation 

that was 54% below average and one with precipitation that was 63% above average, 

they found it hard to discern relationships between growth rate patterns and the 

precipitation. Similarly, Clinton et al. (1997) found that on relatively xeric sites drought 

limited radial growth, but once precipitation returned to nonnal or average levels, radial 

growth patterns suggested that resources other than precipitation were more limiting. 



Hypothesis 

The forests of today consist of species found in presettlement forests. However, 

due to agricultural land use and abandonment, white pine stands became established and 

are developing under conditions different from those to which they are adapted. It is 

possible that the abandoned fields over large areas of central and southern Maine have 

allowed for establishment of white pine on sites with rooting restrictions. Therefore, the 

first hypothesis states that soil restrictions associated with shallow rooting depth of white 

pine predisposed the species to water stress, and that only white pine on these drought 

sensitive sites suffered mortality. The second hypothesis follows that the inciting factor 

was drought which preceded mortality of the white pine during 1997-2000. 



CHAPTER 2: METHODS 

Site Data 

The study areas are located in southern Maine. Because of the localized nature of 

the decline, sample sites were placed in areas of known high mortality. For each high 

mortality site, a low mortality site was established nearby in a mature stand exhibiting 

little or no dead trees. The paired sites were evaluated in nine locations, all south of 45" 

N latitude. The site locations encompass four counties including York with sites in 

Wells, Lebanon, Hollis, Limington, and Waterboro; Cumberland with sites in Casco and 

New Gloucester; Lincoln with sites in Nobleboro; and Oxford with sites in the town of 

Oxford (Figure 2). The stands are dominantly white pine, except for the high mortality 

site at Wells, which is predominantly red maple (Acer rubrum) and red oak (Quercus 

rubra) (Table 1). The sites in Hollis, Massabesic, and Nobleboro also had noticeable 

amounts of these species. 

A modified Forest Health Monitoring site design consisting of four adjacent 

circles, each 14.6 m in diameter was used (Anonymous 2001). This design created sites 

with 4 sub-plots with a total area of .07 ha. 



Figure 2. Locations of paired sites, stream gauge stations, and weather stations. 

Stream Gauge Stations: St. John (I), Mattawamkeag (2), Narraguagus (3), Saco 

(4), Carrabassett (5), Sandy (6), Little Androscoggin (7), Sheepscot (8), Oyster (9). 

Weather Stations: Caribou (1 0)' Millinocket (1 I), Corinna (1  2), Middle Dam (I 3), 

Farmington (14). Acadia Nat'l Park (15), Waterville (16), N. Conway (1 7). Augusta (18), 

Lewiston ( 1  9). Portland (20)' Buxton (2 I), Sanford (22). Durham (23). 
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Table 1. Percentage of total basal area in each site comprised of white pine 

Low mortality plots are represented by "L" and high mortality plots are 

represented by "H". 

Total basal White pine basal % of total basal area 
Location Stand areaha (m2/ha) area(rn2/ha) in white pine 

Wells L 41.2 40.3 98% 
H 29.0 6.2 2 1 % 

Lebanon L 26.7 23.4 88% 
H 30.2 25.6 85% 

Hollis L 36.3 28.1 77% 
H 20.4 14.3 70% - 

Limington L 29.3 24.1 82% 
H 39.3 34.8 89% - 

Casco L 22.9 21.9 96% 
H 24.4 24.4 100% 

Nobleboro L 39.3 26.8 70% 
H 27.4 18.7 68% 

Massabesic L 58.0 50.0 86% 
H 48.3 33.6 70% 

New Gloucester L 30.9 26.0 84% 
H 34.5 29.1 84% 

- 

Oxford L 41 -4 37.6 91% 
H 38.0 31.7 83% 

Stand nleasurements for trees included species, crown class (Oliver and Larson 

1996), diameter at breast height (DBH), and crown condition (live, red needles, few 

needles, no needles) for all trees >2.5 cm DBH. Some of the dead trees had been cut out 

of the Wells high mortality site and in both of the Oxford sites. Each stump's narrowest 

and widest diameters were measured and then averaged. DBH was estimated by 



subtracting 2.5 cm from the average. Four pits were dug at each site and averaged to 

obtain soil depth. Depth was measured to the restrictive layer of plow pan, bedrock, 

water table, or lithological discontinuity. If no restriction was encountered the soil was 

measured to a maximum depth of 50 cm. Soils were characterized in terms of historical 

use and/or restrictive layer. 

Core Data 

Along with stand measurements, two cores were removed from each codominant 

and dominant tree at 90" angles. This included dead trees. If there were not twelve 

dominant or codominant white pine within the site, the nearest white pine starting to the 

north of the site was chosen. This was done for 11 white pine on the high mortality site 

in Wells and for one tree on the low mortality site in Oxford. The preparation of 

increment cores was based on the methods described by Stokes and Smiley (1996). 

Cores were placed in labeled paper straws and allowed to dry at ambient temperature. 

Once dry, the cores were mounted on grooved wooden boards so that the trachieds were 

longitudinal. Cores were then sanded with 100,250, 350,400, and 600 grit sandpaper to 

facilitate the counting of rings and measurement of ring-widths. 

Crossdating is used to identify the year in which each ring was formed and then to 

assign a calendar date to the rings (Fritts 1976). The outermost ring indicates either the 

year the sample was taken, or the last year of the tree's growth. Rings were measured, 

and cores were initially crossdated visually using pointer years to identify false or 

missing rings using Windendro (Regent Instruments, Inc., Quebec, QC, Canada). Dating 



and homogeneity of the cores were checked with COFECHA (Richard L. Holmes, 

Laboratory of Tree-Ring Research, University cf Arizona, Tucson, Arizona, USA), 

which calculates cross correlations between individual series and an average chronology 

(Holmes 1983). The flagging of a problem area was followed by visual inspection of the 

core. These processes allowed for the aging of all cores, and determination of year of last 

growth on the dead trees. The stand chronology was based on both live and dead white 

pine cores (refer to analyses). 

Climate Data 

Drought is a plausible mechanism for the decline, but consistencies need to be 

established between decline symptoms and the abiotic stress over the region and time 

(Johnson et al. 1992). In order to determine if there were consistencies between high 

mortality of white pine and drought we looked at a number of climate parameters 

including stream flow and precipitation. 

Stream flow data from US Geological Survey were used as indicators of water 

status in the watersheds (Stewart et al. 2000, Coakley et al. 2001). Stream flow is 

effective because it is affected by all inputs (rain, snow, melt) and outputs (evaporation, 

transpiration). Monitoring of stations was kept to rivers that are not regulated by dams. 

These included St. John, Mattawamkeag, Narraguagus, Saco, Carrabassett, Sandy, Little 

Androscoggin, Sheepscot, and Oyster Rivers (Figure 2). To identify years of extremely 

low stream flows, stream flows were log transformed to nonnalize the data, and standard 

deviations from the daily means for the period of record of stream flows were calculated 

16 



for 1990-2000. Values were used from the three closest stations to the study area: Little 

Androscoggin, Oyster, and Sheepscot. The minimum value of each month was used as 

an indicator of severity of drought stress. Additional watersheds were then evaluated to 

see if dry conditions for that year extended beyond the region of white pine decline. 

The National Climate Data Center (NCDC) (National Climatic Data Center 

Federal Building, 1 5 1 Patton Avenue, Asheville, NC 28801 -500) provided precipitation 

and temperature data from weather stations throughout Maine and the New Hampshire 

border including Caribou, Millinocket, Corinna, Middle Dam, Farmington, Acadia 

National Park, Waterville, North Conway, Augusta, Lewiston, Portland, Buxton, Sanford, 

and Durham (Figure 2). Precipitation amounts during the growing season (May to 

October) were obtained for Lewiston, Portland, and Sanford for 1990 to 2001 to identify 

the driest year. Additional stations were then evaluated to see if dry conditions for that 

year extended beyond the region of white pine decline. To identify years of extremely 

low precipitation, the number of standard deviations that observed values differed from 

the monthly mean for the period of record were calculated. 

Analyses 

Relating long-term trends in tree growth with climate requires statistical removal 

of changes due to tree age, crown position, and mean growth (Fritts et al. 1965). By 

using the computer program ARSTAN, chronologies from tree-ring measurement series 

were standardized to remove effects of endogenous stand disturbances (Dr. Edward R. 

Cook (1985), Tree-Ring Laboratory, Lamont-Doherty Earth Observatory of Columbia 



University in Palisades, New York). The ring-width series measured for each core was 

standardized using "double detrending", meaning that the time series was fit first to either 

a negative exponential curve or a linear regression line, according to best fit. The 

resulting series was smoothed using a cubic smoothing spline with 50% frequency 

response of 32 years. Finally, each series was autoregressively modeled, and then all 

series were averaged together, using a biweight robust mean (Cook 1985) to obtain a 

mean site chronology. 

Ring width and climate correlations can show great changes from one month to 

the next, which is expressed as the response function (Fritts 1976). The standardized 

ARSTAN data were used in PRECON for response function analysis (Garfinkel and 

Brubaker 1980). PRECON can be used to define the correlation between radial growth 

and weather. A bootstrapped method was included to estimate the standard error of the 

response function weight (Fritts et al. 1991), which tests the significance and stability of 

the regression coefficients. To find how climate variations relate to long-term radial 

growth variations in the white pine climatic parameters including temperature and 

precipitation (to account for evapotranspiration) from the Portland station, Palmer 

Drought Severity Index (PDSI) for region two in Maine, and stream flow data were also 

used in PRECON. The PDSI takes into account precipitation, temperature, and available 

water content to provide measurements of moisture conditions. This system separates 

Maine into three regions, of which region two was used because it encompasses the most 

study sites. 



The two raw core chronologies from each tree were averaged by tree, and the 

averaged increments were used in additional analyses. The longest chronolggy from a 

tree was used for assigning tree age at DBH. Years of decline were calculated by 

counting the number of years after 1995 in which the current year's increment was less 

than the previous year's increment. Paired t-test were used to compare the depth of soil 

restrictions between high and low mortality sites. Some sites had no soil restrictions 

found to a depth of 50 cm, therefore, 50 cm was used to calculate a minimum average for 

each site. Paired t-tests were also calculated to compare basal area and number of stems 

between high and low mortality sites for all species and for dominant and codominant 

white pine. For parameters having a variance within a site (DBH, age, years of decline), 

paired t-test calculations were followed with calculations of standard t-tests, by location, 

to compare differences between high and low mortality sites. Comparisons of age and 

DBH for dead and surviving white pine were based on estimated values for 1995. For 

DBH this involved subtraction of the mean annual increments of 1996 to the last year of 

growth (dead trees), or year of coring (surviving trees) from the DBH measurement. 

The site chronologies for dead and living trees on high mortality sites were 

compared by subtracting the increment of dead trees from that of living trees for each 

calendar year. Number of years in which the average increment for dead trees was lower 

than that of the surviving trees was summed over 1970-1 995, a period that avoids the 

juvenile growth phase in trees. Number of years in which the difference exceeded two 

standard errors from each mean was also calculated. The comparisons were performed on 

eight of the nine sites, because there were no standing dead trees at the Wells site. 



CHAPTER 3: RESULTS AND DISCUSSION 

Comparison of High and Low Mortality Sites 

The high mortality sites had shallow soil restrictions (< 30 cm) at all nine 

locations. The paired t-test indicated that the rooting depth potential of the high mortality 

sites (ranging from 19.0 to 26.5 cm, mean = 24.6) was significantly less than those of the 

low mortality sites (ranging from 39.0 to >50 cm, mean = 44.8, P<0.01) (Table 2). The 

causes of the rooting restrictions on the high mortality sites are associated with plow 

layers from earlier agricultural use (two locations), high water table (one locations), 

shallow bedrock (one location), or lithological discontinuities (five locations). Because 

the study sites, both high and low mortality, consisted of dominant white pine it was 

assumed that the land had been cleared for agricultural use such as blueberry fields, 

grazing, or cultivation within the last 100 years (Table 2). The implications of these 

historical activities mean that white pine stands were sometimes established in areas to 

which it is not well adapted to the soil restrictions (high mortality sites). In other cases, 

although the agricultural use allowed for establishment of white pine, it was not on areas 

of soil restrictions and therefore trees were not predisposed to drought stress (low 

mortality sites). The low mortality sites also had evidence of soil change due to 

agriculture use within the last 100 years (four locations), but all these sites had rooting 

restrictions that were deeper than 30 cm (four locations) or not evident (five locations) 

(Table 2). 



Table 2. Stand data for all tree classes and species in high mortality (H) and low 

mortality(L) sites. 

Standing dead trees are included in the calculations. Mortality is percent of basal area. 

Standard errors for pooled data are under the headings. Paired t-tests were calculated for 

all parameters. *P<=0.05 
-- 

Basal % of Potential 
areaha Basal area Density rooting depth 
(mVha) Mortality* Sternsfha (crn)* 

Location Coordinates Stand ( 0.3) ( 5.1) (194) ( 2.2) Soil Characterstics 
N432 1 ' Plow layer, no pan 

Wells W70°40' L 41.2 0 529 >50.0 
N432 1 '  High water table 
W70°40' H 29.0 13 1 186 23.8 
NKF22' No agr~cultural ewdence 

Lebanon W70°53' L 26.7 0 1171 >50.0 
N4322' Lithological 
W70°53' H 30.2 18 1057 32.3 discontinuity 
N43638' Poss~ble 1820's plow~ng 

Hollis W70°38' L 36.3 5 77 1 >50.0 
Lithological 

N43'38' discontinuity, very old 
W70°38' H 20.4 34 1243 23.0 plow layer 
N43'47' Extra 9" from flood 

Lirnington W70°42' L 29.3 0 1914 39.0 deposit 
N43'47' Plow pan and 
W70°42' H 39.3 5 7 1271 23.8 lithological discontinuity 

T44"02' Old plow layer, no pan 
Casco W70.30' L 22.9 2 443 39.0 

Plow layer, no pan, high 
N44'02' water table, hard pan, 
W70.30' H 24.4 32 543 26.5 old blueberry field 

-- 
N44'07' Grazmg, no pan 

Nobleboro W6927' L 38.3 0 1329 39.8 
N44'07' Bedrock and grazing 
W6927' H 27.4 35 1400 26.3 
N43'3C No ev~dence of plowmg 

Massabesic W70. "38' L 58.0 6 1657 42.3 or agriculture 
Lithological 

N4j034' discontinuity and very 
W70. "38' H 48.3 22 2957 24.0 old plow layer 
N4T59' 

-- 
New No ev~dence of plowmg 

Gloucester W70°18' L 30.9 6 929 >50 or agriculture 
N43'59' Lithological 

-- 
W70°18' H 34.5 18 1014 19.0 discontinuity 

007' No ev~dence of plow~ng 
Oxford W7027' L 4 1.4 2 57 1 43.3 or agriculture 

N44 "07' Plow pan and 
W7027' H 38.0 47 1471 23.3 lithological discontinuity 



Depth of soil restrictions and mortality were the only parameters that significantly 

differed between high and low mortality sites (Table 2). Although dead white pine stems 

were found on low mortality stands the numbers were significantly less than the number 

of dead white pine found on high mortality sites (P<0.01) (Table 3). This evidence 

supports the hypothesis that shallow rooting depth, to which white pine is sensitive 

(Horton 1960, Brown and Lacate 1961), predisposed the species to other stresses. 

Differences between the high and low mortality stands became more apparent in 

statistical tests conducted exclusively on dominant and codominant white pine. The basal 

area per hectare for dominant and codominant white pine was not significantly different 

between the two types of stands; however, the low mortality stands had significantly 

fewer dominant and codominant stems per hectare (P<0.01) with significantly larger 

diameters (P<0.01) (Table 3). 

There are a number of explanations for these structural differences in the white 

pine of the high and low mortality stands. Primarily, the age of the high mortality sites 

was significantly younger (P<0.01) than that of low mortality sites (Table 3). The age 

difference, and lack of evidence of there being second growth stands, may mean that the 

high mortality stands are growing on more recently abandoned farmland which could 

imply that the land was farmed longer, leaving a longer legacy of use resulting in more 

soil compaction or plow pans. Another implication of the difference in ages may be that 

the older stands have already gone through a process of natural thinning as indicated by 

their lower number of stems per hectare. 



Table 3. Dominant and codominant White pine data for low (L) and high 

mortality(H) sites. 

Standing dead trees are included in calculating basal area, DBH, stem density and age. 

Age and DBH are based on estimated values for 1995, based on increment cores. Wells 

sites were not included because cores were not available due to cut trees. Numbers of 

living and dead stems represent the number of stems found within the sampling site. The 

numbers in parenthesis in the "cores" columns indicate number of trees cored outside the 

sample site, and these measurements are only included in the calculations for years of 

declining growth only. The last column represents the number of years of declining 

growth between 1995 and 2000 for surviving white pine on low and high mortality sites. 

Standard errors for pooled data (basal area, density) are under the headings and for 

standard t-tests (DBH, age, years of decline) are in parenthesis next to the mean values. 

rears or 
~ k a l  declining 

arealha Density growth 
Location Stand (mVha) DBH Stemsha* Living # of Dead #of ( 1995- 

(0.32) (cm) (60) stems cores stems cores Age 2000) 
Wells L 20 0 1.3* 

40.3 286 20 0 (0.2) 
H 6.2 86 2 l(11) 4 0 - 2.8, (0.3) 

Lebanon L 23.4 32.5' (j. j) 243 17 17 0 0 7 /*  (2) 2.i (0 2) 
H 25.6 22.7* (6.6) 543 27 22 1 1  8 5l*(1) 2.5(0.31 

Holl~s L 28.1 4 1 .o* (8.0) 200 13 13 1 0 96' (2) '.O' (0 2) -. 
H 14.3 21.7* (4.1) 343 15 13 9 7 47* ( 1 )  2-5* (0.2) 

Limington L 24.1 29.9' (8.2) 286 20 20 0 0 48 ( 1 )  2.3 (0.1) 
H 34.8 25.4* (5.2) 629 I5 13 29 29 46(1) 2.5(0.4) 

Casco L 21.9 35.3' (5.2) 200 14 14 0 0 6F(1) 2.7 (0.2) 
H 24.4 22.1* (4.7) 543 22 17 16 14 46*(1) 3.2(0.2) 

Nobleboro L 39.4* 13 (I 64' (2) 2.2' (0.2) 
26.8 ( 1  1.6) 186 13 0 

H 18.7 23.'7* (8.2) 371 19 18 7 6 51* (2) 3-3* (0.2) 
Massabes~c L 26 3 114* 2.7 (0.2) 

50.0 36.9* (5.7) 443 2 8 3 
' H 33.6 20.7* (4.6) 843 46 31 13 

( 1 )  

.- 8 43* (0) 2.7 (0.1)- 
New L 12 0 g p  ( 1 ) 34 (0.2) 

Gloucester 26.0 41.4* (7.4) 186 I3 0 
H 29.1 27.8* (7.4) 429 22 22 8 8 61* ( 1 )  3-z(0.1) 
L 

-- 
0 

-- 
Oxford 35.3* (5.6) 429 30 12(1) 0 76' (2) 2.4 (0.1 ) 

H 31.7 22.8* (6.0) 671 
- 

21 20 26 --- 8 46* ( I )  2.8 (0.2) 



In contrast, ihe high mortality sites are younger and have not yet gone through a 

natural thinning process, as indicated by their higher number of stems per hectare. The 

intense competition for soil resources in the high mortality sites is made more acute due 

to rooting depth restrictions. The high number of stems, along with the restricted rooting 

depth, predispose the stands to decline and mortality. Decline and mortality may have 

hastened the natural thinning process of these stands. Having less con~petition, these 

stands could be less susceptible to future stresses. 

It is important to note here that chronologies are not available for all of the trees 

(Table 3). Missing chronologies are due to cut trees (4 in Wells (low mortality), 16 in 

Oxford (high mortality), 18 in Oxford (low mortality)), decay, and unreadable cores. Cut 

trees were dead in the high mortality sites but were living at the time of harvest in the low 

mortality sites. The Oxford site, which had the most missing chronologies, was logged 

in the winter of 2001. This was done in response to high mortality that was observed 

from 1997-2001 as in the other sites. Due to the high number of trees at Massabesic 

(high mortality), a subsample of 3 1 trees was randomly selected from the 46 trees in the 

sample site. Despite the missing chronologies in three sites (Wells (low mortality), 

Oxford (low mortality), and Oxford(high mortality)), the data derived from them were 

consistent with data on the other sites. 

Densities of the stands were compared with New England white pine stocking 

guides (Philbrook et al. 1979). The A curve represents 80 percent stocking, and stands 

above it are considered overstocked. The B curve represents minimum stocking for full 



site utilization, and stands that fall below are considered understocked. Stands between 

the A and B curves are considered adequately stocked. Where a particular stand might 

fall in the guide is based on basal area per acre, number of trees per acre, and mean DBH 

for trees in the main canopy. Plotting the study sites onto the stocking guide indicated 

that after mortality, four of the eight high mortality stands were understocked (Figure 3). 

In addition, after mortality densities on high mortality sites were similar to densities 

found on low mortality sites. This suggests that density may be an additional 

predisposing factor. 

Differences between high and low mortality sites were inconsistent in that the 

number of years of declining growth on surviving trees, between 1995 and 2000, were 

not significantly different on six of the nine sites (Table 3). This suggests that the 

surviving trees on both high and low mortality sites responded to climate similarly in this 

period. 



TREES PER ACRE 

High mortality prior to mortality 
0 High mortality after mortality 

Low mortality 

Figure 3. Stocking of study sites compared with New England white pine stocking 

guide (Philbrook et al1979). 

Wells (Site 1) is not included because of the high component of species other than white 

pine at these sites. 



Comparison of Surviving and Dead White Pine on High Mortality Sites 

That the number of years of declining growth in surviving trees on high mortality 

sites did not significantly differ from surviving trees on low mortality sites indicates a 

need to investigate possible growth differences between dead and surviving trees. The 

data showed that on all but one high mortality sites the DBH of dead trees was 

significantly less than the surviving trees (P<0.01) (Table 4). Plotting of the annual 

increment widths suggested a significant difference in mean annual growth (Figure 4). 

The mean difference in increment widths between dead and surviving white pine 

indicated that in seven of the eight high mortality sites there was a period of 24 years or 

more growth separation between dead and surviving trees (Table 4). The more 

conservative test using differences greater than two standard errors resulted in three sites 

having more than ten years of significant growth separation, four sites having between 

two and five years significant growth separation, and one site having none. It is clear that 

the mean average growth of the dead trees at each site was less than that of the surviving 

trees. The ages of the dead and surviving trees was not significantly different indicating 

that killed trees were not younger, but growing slower. 



Table 4. Data for dominant and codominant white pine on high mortality sites. 

Age and DBH are based on estimated values for prior to and including 1995 based on increment cores. The Wells sites were not 

included because cores were not available due to cut trees. The first column for the period of growth separation indicates number of 

years from 1970 to 1995 that the mean increments for white pine that died were smaller than the trees that survived. The second 

column shows the number of years that differed more than 2 standard errors from each mean. Standard t-tests were calculated for age 

and DBH data by location. Standard errors for age and DBH are shown in parentheses. *P<=0.05 

Number of stems that died 
Mean 1995 

Mean 1995 1995 DBH 
Location Surviving Dead 1995 age age DBH Live dead '90- 

Pd. of Pd. of 
growth growth 

Post separation separation 
stems stems surviving dead (cm) (cm) '95 '95 '96 '97 '98 '98 (mean) (>2SE) 

Lebanon 2 7 11 48 ( I )  43 24.5* 17.9* 2 3 3  2 5 2 

h) 
00 Hollis 

Limington 

Casco 

Nobleboro 

Massabesic 

New 
Gloucester 

Oxford 



Legend 

e- Surviving Trees (29) 

o- Dead Trees (1 3) 

1 - Standard Error 

1940 1950 1960 1970 1.980 1990 2000 201 0 

Year 
Figure 4. Average annual increment of surviving versus dead trees for the 

Limington high mortality site. 



The data are consistent with natural thinning processes in which trees that have 

been able to acquire adequate rooting space and/or intercept adequate amounts of light 

can put more energy toward growth and compete better with the trees that are limited by 

available space (Long and Smith 1984). The increased competition often leads to 

accelerated size differentiation. This is because subordinate trees manufacture less gross 

photosynthate than more vigorous trees and put less toward growth, therefore, declining 

in growth (Oliver and Larson 1996). During this stem exclusion stage, the trees of pure 

stands compete fiercely with each other mainly because they all have crowns in the same 

stratum (Smith et al. 1997). 

Comparison of Mortality, Growth, and Drought 

Drought stress can lead to growth decline, dieback and mortality in white pine 

(Vose and Swank 1994), leading to the second hypothesis that drought incited the decline 

of white pine in southern Maine. Emphasis was put on drought during the growing 

season of white pine, which is approximately May to October. 

The timing of a drought is important because as temperatures increase, 

evapotranspiration losses increase making available water even more limiting to radial 

tree growth (Fritts 1956, Clinton et al. 1977). Stream flow data collected from 1990- 

200 1 on the Little Androscoggin, Oyster, and Sheepscot Rivers, which most closely 

surround the study area, show that consecutive and extremely low stream flows in August 

and September were unique to 1995, relative to the ten-year period (Table 5). In 

addition,,the Little Androscoggin showed three years (1949, 1978, and 1995) of low 



stream flow (<2se below normal) of which 1995 was the most extreme case of low 

stream flow (Figure 5). The data indicate that for the entire period of record, stream 

flows of 1995 in the Little Androscoggin from mid-August to mid-September were 

indicative of unprecedented drought conditions. 

Table 5. Minim'um standard deviations from the daily mean for the period of 

record (see Table 6) of stream flows for August and September in years 1990-2001 

for Little Androscoggin River, ME, Oyster River, NH, and Sheepscot River, ME. 

Values shown are the minimum value for the month. Values greater than 2 standard 

deviations from the mean are highlighted. 

Year Little Androscoggin Oyster River S heepscot 
August September August September August September 



Standardized Stream Flows for Little 
And roscogin 

May June July Aug. Sept. Oct. 

Month 

Figure 5. Standard deviations from the daily mean stream flow of Little 

Androscoggin River for growing seasons in 1949,1978, and 1995. 



Stream flows throughout Maine and New Hampshire in 1995 were analyzed to 

see if the drought was localized or apparent throughout the region. The stream flow data 

indicated that only one river in northern Maine, the Mattawamkeag River, and two in 

southern Maine, the Little Androscoggin and Sheepscot Rivers, had stream flows that 

were greater than two standard deviations below normal in both August and September of 

1995 (Table 6). Closer inspection of the stream flow data shows that both the Little 

Androscoggin and the Sheepscot rivers had low stream flows earlier in the season (May) 

indicating the available water in these areas may have been low before August (Table 6), 

i.e. low snow melt or earlier snow melt, which would have imposed greater water stress 

on the surrounding trees. Although the Mattawamkeag River showed similar drought 

conditions, the absence of white pine decline in the area is likely due to differences in 

historical land use. There were no reports of northern Maine having as extensive field 

abandonment and establishment of white pine was the case in southern and central Maine 

(Hart 1968, Moore and Withan1 1996, Ahn et al. 2002). 



Table 6. Minimum standard deviations from the daily mean stream flow for the 

period of record for each river throughout region during the 1995 growing season. 

Values shown are the minimum value for the month. Values greater than 2 standard 

deviations from the mean are highlighted. 

Station Period of record (yrs) -- May June July August September October 
St. John 76 -0.8 -1.7 -1.9 -1.6 - -1.7 

Mattawamkeag 
Narraguagus 

Saco 
Carrabassett 

Sandy 
Little Androscoggin 

S heepscot 
Ovster 

Precipitation data did not show as clear a pattern for drought as stream flows. 

Total growing season precipitation was looked at for Lewiston, Portland, and Sanford. 

The precipitation was inconsistent, but clearly 1995 was one of the driest growing 

seasons from 1990-2001 (Table 7). The precipitation data throughout the region in the 

1995 growing season was particularly inconsistent (Table 8). This suggests that although 

the summer was dry, some'areas were receiving more rain than others within the region 

of white pine decline. Therefore, it is possible that not all susceptible stands with shallow 

rooting depth potentials were affected by drought. 



Table 7. Total precipitation in cm and standardized values for growing season 

(May-October) for years 1990-2001 at weather stations in Lewiston, Portland and 

Sanford. 

Standardized values represent number of standard deviations of that year's value from the 

overall mean calculated for the station's period of record. 

Total Precipitation (cm) 
Year Lewiston Portland Sanford 
1990 54.4 44.7 46.0 
1991 58.7 71.9 66.8 
1992 34.5 37.8 42.7 
1993 29.5 30.7 32.5 
1994 46.0 34.0 57.7 
1995 33.0 30.2 36.3 
1996 47.2 40.1 44.2 
1997 38.9 30.5 45.0 
1998 48.8 57.9 64.8 
1999 59.4 45.5 59.7 
2000 39.1 34.0 48.5 
2001 29.3 35.5 40.6 

Standardized Values 
Lewiston Portland Sanford 

1.2 0.4 0.0 
1.6 2.9 1.9 

-0.8 -0.2 -0.3 
-1.2 -0.9 -1.3 
0.4 -0.6 1.1 
-0.9 -0.9 -0.9 
0.5 0.0 -0.2 
-0.3 -0.9 -0.1 
0.6 1.6 1.7 
1.7 0.5 1.2 

-0.3 -0.6 0.2 
-1.3 -0.4 -0.5 



Table 8. Total monthly precipitation in cm and standardized values of precipitation during the 1995 growing season. 

Standardized values represent number of standard deviations of that year's value from the overall mean calculated for the station's 

period of record. 

Station May June June July Aug. Sept. Oct. Total 
Caribou 6.2 3.0 3.0 3.8 7.5 4.8 13.0 38.3 

Standardized Values 
May June July Aug. Sept. Oct. Total 
-0.5 -1.6 -1.7 -0.5 -0.9 1.3 -2.1 

Millinocket 
Corinna 

Middle Dam 
Farmington 
Acadia NP 
Waterville 

W 
North Conway 

O\ Augusta 
Lewiston 
Portland 
Buxton 
Sanford 
Durham 



In accordance with the drought period, crossdating of the tree rings show a high 

mortality of white pine from 1995- 1998 with peak mortality in 1996-97 (Table 9). This 

is substantial evidence that the inciting stress was the drought of 1995. The drought 

happened late in the 1995 growing season, which would result in reduced growth or 

mortality appearing in 1996 and 1997 because of a lag effect. In other words, climatic 

events during one year can physiologically precondition a tree's potential for growth the 

next year (Lyon 1936, Fritts 1974). In fact, Fritts et al. (1965) suggests that unusually dry 

and wann conditions in the year prior to growth could affect the following season's 

growth. The sequence of events in white pine decline were drought in 1995, last year of 

growth primarily in 1996 and 1997, and reported appearance of visible symptoms 

(thinning crowns, red needles) beginning in 1997. 

The clear relationship between year of last growth following the year of drought 

supports the hypothesis that drought incited white pine decline. That a clear growth 

decline could not be identified in surviving trees was indicative that they were not 

predisposed to drought injury as previously discussed (Table 3). 



Table 9. Percentage of dead trees with last tree ring in a given year on high and low 

mortality sites. 

Data were pooled for all locations. 

% dead trees %dead trees 
high mortality low mortality 

Year of last ring n=88 n=3 
1990 1% 0% 

A response function analysis was performed on all 18 sites with PRECON for the 

master stand chronologies that were standardized with ARSTAN. In addition, dead trees 

and surviving trees on high mortality sites were analyzed separately because their growth 

parameters differed (Table 4). Response function analyses are interpreted as expressing 

the way in which climate parameters (precipitation and temperature, PDSI, stream flows) 

during and preceding the current growing season are related to long-term variations in 

radial growth (Cooke and Jacoby 1977). There were no consistent significant responses 

between climate and increment variation between master chronologies (results not 

shown). Apparently, it is difficult to detect climate's influence on long-term limiting 



increment growth in white pine in southern Maine in contrast to other studies that select 

sites for precipitation sensitivity at the forest-desert border in semiarid southwestern 

regions (Fritts 1976). Bartholomay et al. (1997), in Acadian National Park, also were not 

able to detect strong associations between climate and tree rings in white pine. They 

found that ozone levels and site factors, such as shallow bedrock, had more influence on 

tree-ring indices than climate. In temperate regions like the northeastern United States, 

climate can be less limiting than site factors (Fritts 1974, 1976, Phipps, 1982, Graumlich 

1993). PRECON looks for linear relationships in climate and annual increments. That 

these relationships are hard to find in the northeast may indicate that the climate/growth 

increment relationship are not linear and therefore the response function technique may 

be inadequate for modeling the relationship between growth and climate. 

Other Considerations 

Investigations of 88 dead trees on the sites revealed 63.6% had Cerambycidae, 

60.2% had Ips spp., and 56.8% had Armillaria spp (W.H. Livingston, personal 

communication 200 1). The lack of a single pest occurring on most dead and dying trees 

suggests that these pests were secondary organisms. 

Along with changes in soil structure, land use can often lead to changes in the 

nutrient composition of the soil (Paoletti et al. 1993). Studies of the soil nutrient 

concentration in high and low mortality sites between the sites in terms of soil nutrient 

concentration were inconclusive (W.H. Livingston, personal communication 200 1). 

Winter thaw-freeze fluctuations have been associated with decline of forests in 



the past. In the winter of 1935-1936 a series of thaw-freeze events has been proposed as 

an inciting stress with decline ("pole blight") in western white pine (Pinu mon!icola) in 

British Columbia and the Pacific Northwest (Auclair et al. 1992). The shallow rooting 

depth of the white pine in our sites suggests an opportunity for root damage during thaw- 

freeze events. There is limited literature of the actual temperatures of white pine freezing 

tolerance, but it has been shown that at least the needles and stems have a minimum cold 

tolerance of -6°C to -8°C in the spring and a maximum of approximately -40°C to -80°C 

in winter (Bigras et al. 2001). There is no actual literature on root hardiness of white 

pine. However, extensive studies of root hardiness in seedlings of Norway spruce (Picea 

abies (L.) Karst.) and Scots pine (Pinus sylvestris L.) indicate that root growth capacity 

declined at temperatures of -6°C to - 1 1 "C, but there was no cessation of potential growth 

until soil temperatures reached at least -1 5°C to - 16°C (Lindstrom and Stattin 1994). 

Climate data from the NCDC indicates that during the winter of 1995 the lowest air 

temperatures of -24°C to -25°C happened in January and February when conifers are 

most cold hardy and were accompanied by at least 23 cm snow cover that insulated soils 

from the cold. In February 1996 Durham had a minimum temperature of -28"C, which 

was accompanied by 15 cm of snow, conversely Sanford had a minimum recorded 

temperature of -27°C that was not accompanied by any snow and therefore potential 

rooting damage could have occurred. However, the mean temperature for the month of 

February in Sanford was -4°C and it  is therefore unlikely that soil temperatures were cold 



enough to induce root damage. This was a localized event that suggests it would not 

have influenced the tree growth of white pine throughout the study area. In addition, the 

data do not indicate any occurrence of a thaw-freeze event. 

Although the stands were predominantly white pine, there were other species 

present that did not show decline. The most represented species included red maple and 

red oak that were found in nine of the 18 sites. The representative numbers of red maple 

and red oak were quite small in all sites except Wells where red maple, especially, was 

well represented. There was no visual evidence of decline in the crowns of either 

species. Red maple is able to stop growing under dry conditions and can produce a 

second growth flush when conditions improve (Walters and Yawney 1990). This allows 

red maple to deal better with drought conditions. Red oak is typically a deep rooted 

species compared to white pine and should be less susceptible to drought where white 

pine rooting depth is restricted (Harlow and Harrar, 1968). 



CHAPTER 4: CONCLUSION 

Historical agricultural use and subsequent land abandonment has resulted in the 

establishment of pure white pine stands in southern Maine. Some of these white pine 

stands are growing on sites where soils structure can impede rooting depth. The evidence 

found in this study supports the hypothesis that shallow rooting depth predisposed white 

pine to other stresses. The data showed that density could be an additional predisposing 

factor. The high incidence of white pine mortality in 1996-1 997 correlated well with a 

1995 drought in the surrounding area and is likely the inciting stress of the decline. 
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