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Events in the world do not occur in neat chronological order, but may take place, for 

example, during or overlapping each other, or as simultaneous events. Efficient 

summaries of real-world events are important in many disciplines and require events to 

be modeled in a linear fashion. This thesis focuses on modeling events as intervals and 

using relations between the events to derive linear orders from more complex partially- 

ordered sets. A method is developed for mapping Allen's thirteen temporal relations to 

only two relations, before and equals, which allow a linear ordering of all events 

present in the set. This mapping requires additional constraints to preserve semantics of 

the original relations as the orders are generated. Depending on the relations present, 

several linear orders may be possible, and methods are discussed of filtering the 

possible orders so as to present only the most plausible orders to a user. The result is a 

methodology that allows plausible linear orders to be automatically generated from 

partially-ordered sets of events. 
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Chapter  1 

INTRODUCTION 

1.1 Motivation and background for research 

In every discipline, there is a need for access to infonnation. The basis for access to 

information is often abstractions from more detailed sources. News analysts and 

journalists, for example, are interested in summaries of news articles (Allan et al. 2001; 

Mani and Maybury 2001), and epidemiologists are interested in being notified of new 

outbreaks of infectious diseases (Grishman et al. 2002). Happenings in the world are 

dynamic; for example, events occur one after another, during other events, or 

overlapping each other. Studies of the dynamic nature of real-world events in a 

computational setting have focused on modeling events, that is, changes to an entity 

over time. Representing real-world happenings as events facilitates the processing and 

conveying of infonnation to a user (Zacks and Tversky 2001). 

In the context of databases, events are often modeled as being instantaneous, such as 

an update to a bank account or the transmission of an electronic message (Hinze and 

Voisard 2002). Events modeled in this way are essentially changes of state, and have 

no duration. Alternatively, events are modeled as having duration but in order to 

simplify processing, each event is associated with a specific point in time, usually the 

point in time at which the event finishes (Motakis and Zaniolo 1995; Galton and 



Augusto 2002). In cognitive psychology and linguistics, events are generally modeled 

as durative (Larson 1999; Pedersen and Wright 2002), and human perceptions of their 

durations are of interest to researchers in these fields. 

Automatic extraction of events, and temporal information about them, from texts 

such as news and journal articles, is also a topic of interest to researchers. Events 

extracted from text are used to build summaries, or they may be added to a databases 

(Allan et al. 2001; Grishman et al. 2002; Pustejovsky et al. 2003). 

Because all events have a temporal component, reasoning about events often 

involves arranging them in a sequence or order according to their temporal relations to 

each other (Alfonseca and Manandhar 2002). Though the relations between all events 

in a set may or may not be known (Pustejovsky et al. 2003), a user often requires a 

simple, linear order of events in which for any pair of events, A and B, either A is 

before B, B is before A, or both (in which case A and B are simultaneous) (Frank 1998). 

Allen (1983) developed a temporal logic involving an exhaustive set of thirteen 

possible relations between two temporal intervals (Figure 1.1). Events that are durative 

(i.e., take place over an interval of time), are referred to in this thesis as event intervals. 

Relations that hold between temporal intervals also hold between event intervals. In 

this thesis, scenarios of events are modeled using event intervals. The event intervals 

are related to each other by combinations of the thirteen interval relations. From these 

event intervals and relations between them, a method is presented that automatically 

generates linear orders. The semantics associated with the original scenario of events 



are retained as much as possible with the resulting orders, generating a set ofplausible 

linear orders. 

A B -- , 1-1 A before B 
B after A 

A meets B 
B met-by A 

---< 

H A overlaps B 
B overlapped-by A 

-- 
A stalls B * B sta~ted-by A 

A during B * B contains A 

M A finishes B 
B finished-by A - A equals B 

Figure 1.1 Thirteen temporal interval relations (after Allen, 1983). 

A method of automatically generating orders of events is necessary. This approach 

will be of use to researchers in areas such as natural language processing, event 

extraction, databases, and question answering, as well as professionals in fields where 

informative summaries are needed and time is limited. 

Given a description of a scenario of events, ordering the events begins with mapping 

the thirteen interval relations to either before or equals. This mapping process can also 

be referred to asflatterzing, as it essentially forces relations into one dimension. Once 

this flattening is performed, linear orders are generated. There may be many possible 

linear orders generated from a given set of events. It is important to ensure the 



plausibility of the orders which are presented to a user. That is, all of the orders should 

be consistent with the knowledge present in the original set of events and relations. 

Preserving the semantics attached to the original thirteen event interval relations, as 

well as checking for temporal and spatial consistency, are some ways of increasing the 

overall plausibility of the orders generated. 

1.2 Research questions 

The automatic generation of linear orders of events from event descriptions, and the 

implications of the ordering procedure, involve a number of open research questions: 

What criteria should be used to determine which event or pair of events begins 

an order? 

How are subsequent event intervals placed in the order? 

Do the orders generated retain the semantics of the original event scenario? 

When the relations in an event description are flattened to before and equals, the 

result is a simpler rendition of this event description. Orders will be generated using 

this simpler rendition. The results of the ordering process bring their own questions, for 

example: 

Are all orders equally plausible? Which orders should be presented to a user? 

Are there meaningful filters that could be applied, either to the event 

description or to the orders generated from it, that would render the results 

more meaningful to a user? 



1.3 Goal and hypothesis 

The goal of this thesis is to understand how partial orders of events can be used in 

generating plausible linear orders, for the purposes of simplification and summarization 

of a scenario of events. A mapping is developed based on reducing the thirteen event- 

interval relations to two relations, before and equals, and the result of the mapping is a 

revised (simpler) description of the scenario. This revised description serves as the 

foundation for a linear ordering of events. 

Numerous linear orders often result from partially ordered sets of events. Partial 

orders of events refer to sets where it is not known how every event relates to every 

other event. While in some cases a complete set of possible orders may be necessary, 

there is also a possibility that a user may be presented with more orders than can be 

easily understood and, therefore, more orders are generated than are really useful. For 

this reason, methods for filtering the orders must also be developed. These methods of 

filtering include the use of constraints based on the semantics of the original event 

interval relations, and spatial filtering in cases where locations of the events are 

available. 

The hypothesis of this thesis is: 

Constraints that enforce the original semantics of the event 

interval relations are necessary in the generation of plausible 

linear orders. 



1.4 Scope of thesis 

This thesis describes an approach for mapping the thirteen event interval relations to 

before and equals, the result of which is a revised description of the scenario of events. 

A systematic method of generating linear orders from this revised description is 

presented. The semantics of the original thirteen relations are preserved in the ordering 

process by assigning to each relation a constraint (or set of constraints) that prevents 

orderings that would be possible given only the information in the revised set, but are 

not plausible based on the original description of the scenario. Methods of filtering 

multiple orders are presented, based on the temporal and geographic information 

available about the events. 

The work in this thesis assumes a linear model of time. Cases of cyclic, branching, 

or other structures of time are not addressed. This thesis does not describe methods for 

extracting events from, for example, text. We assume an existing dataset, consisting of 

events and event interval relations, is available for the construction of orders. 

1.5 Thesis structure 

The remainder of this thesis is structured as follows: 

Chapter 2 provides an overview of previous work that has been done with event 

modeling and event ordering. It also provides an overview of a topological sorting 

algorithm, and its relevance to this research. Chapter 3 introduces a methodology for 

generating linear orders from complex scenarios of events, using the topological 

sorting algorithm. This results in a set of all possible orders of the events in the 



scenario. Chapter 4 discusses approaches to filtering these orders, using constraints 

developed based on the semantics of the thirteen temporal interval relations. For 

example, the semantics of the meets relation indicate that intermediate events should 

not come between two events in a linear order that are known to meet each other. In 

Chapter 5 ,  two filtering methods based on event locations are presented. One method 

evaluates the spatial relevance of events, and eliminates events that are not spatially 

relevant to other events in the set. The second method evaluates the set of event 

locations for evidence of a linear trend, and, if such a trend is found, highlights orders 

that correspond to this geographic linearity. Chapter 6 describes a procedure of 

evaluating the validity of the final set of orders. A reference order, provided by an 

external source, is compared to the orders in the final set of generated orders. High 

levels of similarity between the reference order and the orders in the set would indicate 

that the orders in the final set are plausible, and the ordering and filtering 

methodologies are producing good results. Chapter 7 presents the major results and 

conclusions derived from this research, and outlines future work in this area. 



C h a p t e r  2 

MODELING EVENTS IN INFORMATION SYSTEMS 

Modeling dynamic happenings or events has been an important area of study and the 

basis for new computing models in geographic information science (Frank 1998; Yuan 

2001; Grenon and Smith 2004), databases (Gehani et al. 1992; Chakravarthy and 

Mishra 1994; Galton and Augusto 2002), artificial intelligence (Allan et al. 2001; 

Alfonseca and Manandhar 2002; Knight and Marcu 2002), cognitive psychology 

(Larson 1999; Zacks and Tversky 2001; Pedersen and Wright 2002) and linguistics 

(Grishman et al. 2002; Pustejovsky et al. 2003). In 2002, a week-long international 

workshop, ACTOR, was held in Holden, Maine on action-oriented approaches in 

geographic information science (http://www.spatial.maine.edu/-actor20021). 

Participants at the conference discussed motivations for modeling the dynamic nature 

of events and processes that exist in the real world, as well as methods of building 

these models. A research agenda was established for using and developing these 

approaches in geographic information science. 

Grenon and Smith (2004) propose an ontology that is a combination of reasoning 

based on space and time as separate entities (states of the world at a particular place 

and time) with reasoning based on objects as inherently spatio-temporal (changes and 

transformations in the world). This is because the state of a spatial entity at a particular 

moment in time, and the changes that a spatial entity may undergo over time, are both 



important. Answering questions about one should not have to happen in a system 

designed for the other. In Grenon and Smith's ontology, entities are not said to exist 

within a specific geographic space, but in a specific spacetime. Thus, a geographic 

entity is part of both a specific place and a specific time. Changes to geographic entities 

are entities themselves, and are referred to as processes. Events are defined as 

boundaries of processes, or the boundaries of transitions within processes. 

Grenon and Smith's separation between processes and events is similar to Allen and 

Ferguson's (1994) work on actions and events. In their temporal logic, an action is 

something a person or robot might do, such as walking or running a program, whereas 

an event refers to some occurrence or change of state, such as arriving at a destination 

or accomplishing a task. Events are often the result of some action. 

In this thesis, the ideas of events and actions are treated as one, and an event is 

defined simply as a change to an entity over time. This can involve an action as defined 

by Allen and Ferguson, such as "the car crossed the bridge" or an occurrence that is the 

result of an action, such as "the car arrived on the other side of the bridge," which in 

the above models would be considered an event. 

Database approaches to event modeling often use active databases in a wide variety 

of applications, such as network management, engineering design, and air traffic 

control (Chakravarthy and Mishra 1994). Active databases have been used in research 

on detecting common or important sequences of events and returning a set of actions to 

take with little or no immediate human input (Gehani et al. 1992; Chakravarthy and 

Mishra 1994). Database researchers have treated two types of events: primitive events 



and composite events. Primitive events are those that are defined within the system, 

these are usually occurrences such as creation or deletion of an object in the database, 

or changes to a database object. Composite events are more complex, comprising 

several primitive events. A composite event occurs when the last of its component 

primitive events is complete (Gehani et al. 1992; Chakravarthy and Mishra 1994). 

In this work, events are modeled as primary events, and do not formally encompass 

other events. 

In the language processing field, there is significant interest in research on 

extracting events from text in order to gather important information from the text 

without requiring a whole article or series of articles to be read by one individual 

(Yang et al. 1999; Koen and Bender 2000; Alfonseca and Manandhar 2002; Grishman 

et al. 2002; Knight and Marcu 2002; Pustejovsky et al. 2003). Many early efforts in 

automatic text summarization involved extracting the most important sentences or 

clauses from a text (Knight and Marcu 2002). However, the results of this process have 

been shown to be less coherent than a person's summarization of the same article. 

Articles do not always present events in the order in which they happened. While 

extracted sentences may describe the events themselves effectively enough, they can 

leave out temporal clues that are important to a reader's comprehension of the article as 

a whole. Therefore, researchers have focused on using sentence compositions to create 

more effective summaries from texts (Alfonseca and Manandhar 2002). 

One method of generating summaries from text, for example, news articles, is to 

search a document for sentence parts (e.g., nouns, verbs, etc.), key words dealing with 



temporal relations between events (e.g., before, after, during, meanwhile), and key 

words that refer to the temporal relation between an event and the time that the 

document was written (e.g., yesterday, two weeks ago). Verbs and some nouns can 

then become events, and the temporal information is used to date the events 

(Pustejovsky et al. 2003). In TimeML, a specification language for event and temporal 

descriptions in text (Pustejovsky et al. 2003), temporal relations between objects are 

identified and mapped to one of the thirteen temporal relations identified by Allen. 

This has the potential to allow question-answering for such queries as those beginning 

with "Wholwhat is currently ..." or "When did ..." (Pustejovsky et al. 2003). 

The remainder of this chapter discusses event modeling with respect to representing 

events as intervals rather than instantaneous entities, and provides definitions and 

implications of partial and linear orders of events. A description of topological sorts 

and their relevance to this research concludes the chapter. 

2.1 Modeling events as intervals 

When performing reasoning based on temporal knowledge, treating all events as 

instantaneous leads to some conclusions that are counterintuitive (Allen 1983). For 

example, the assumption that the transition between a door being open and the door 

being closed has no duration, leads us to conclude that there was either a time at which 

the door was neither open nor closed, or that there was a time at which it was both open 

and closed. One solution to this difficulty is to model states (e.g., door is open, door is 

closed) as intervals that are closed on one end and open on the other. This effectively 



gives each state only one endpoint, however, which is unreasonably artificial (Allen, 

1983). If events are modeled as intervals rather than instantaneous entities, it becomes 

possible to allow a moment for the door to close and this problem is avoided. An added 

benefit of representing events as intervals rather than points is that temporal relations 

between events can be better preserved (Fujimoto 1999). Relations such as during and 

overlaps, which are not meaningful when applied to instantaneous events, can be 

applied to intervals (and thus, events modeled as intervals). This, in turn, enriches the 

potential knowledge base about events and how they relate to each other. 

In cognitive psychology and linguistics, events are generally modeled as durative 

(Larson 1999; Zacks and Tversky 2001; Pedersen and Wright 2002). The duration of a 

given event can be very relevant in such scenarios as a court case where a witness 

observed a suspect an estimated half hour after the crime was committed, and the 

suspect was captured 50 miles away exactly 40 minutes after the crime. Is the witness 

sure of the time? Is the witness sure that it was the suspect that she saw? Psychologists 

are interested in how a different description of an event may affect a person's 

perception and memory of the event, and also knowing how much exposure to an event 

is necessary to accurately remember events as they happened (Larson 1999; Pedersen 

and Wright 2002). 

In some military simulation algorithms, modeling events as instantaneous results in 

a processor having to handle all events in a scenario in a very precise sequence. When 

events are modeled as intervals, however, some overlapping of the events and slightly 

looser requirements for when they must be processed are possible (Fujimoto 1999). 



The uncertainty of when an event actually should take place is exploited to make 

processing more efficient. 

In this thesis, events are modeled as having duration. Each event has a start point 

and an end point, and while the start point and end point may be nearly at the same 

time, the start point and end point of a single event are never exactly simultaneous. The 

start point of the event always precedes the end point of the event. 

2.2 Ordering event intervals 

There are different types of orders, based on the amount of information available about 

the relations between elements in the order. The first type of order we discuss is a 

linear order, where all elements in the order are arranged sequentially. A more complex 

type of order is a partial order, in which some relation information about events is 

unknown. 

2.2.1 Linear and partial orders 

A linear order refers to a sequence in which the relations between all elements in the 

order are known. For any events A,  B in a linear order, it holds that either A + B, 

B + A ,  or A = B, read as A precedes B, B precedes A, or A is equal to B, respectively 

(Frank 1998). A linear order of event intervals (i.e., a set of events arranged 

sequentially, one after another) is a useful reasoning tool for many scenarios, such as 

Fujimoto's military simulation case (Fujimoto 1999). It is also a natural way of 

thinking of and explaining events (e.g., I ate lunch and then I went to the store) (Allen 



1991). A linear order of events is an effective tool for summarizing information. As an 

example, consider a timeline in a history book as such a summary (Figure 2.1). The 

timeline allows a reader to gain a basic understanding of a historical sequence of events 

at a glance, without reading all the details of an entire paragraph or chapter. 

King Edward VI dies; Jane 
Elizabeth l is Grey is declared queen. Nine 
born days later, Mary I is declared Queen Elizabeth I 

queen. 
I I 

dies 
\ 

/ 
King Henry Vlll dies; 

I 
Queen Mary I dies; 

Edward VI becomes king Elizabeth I becomes 
queen 

Figure 2.1 Timelines summarize the occurrence of events. 

A partial order is defined as any set of events on which there is a binary relation 

between events that is reflexive, antisymmetric, and transitive (Kainz et al., 1993). In 

contrast to a linear order, a partial order is one in which some relations between events 

may be missing and not known (Lamport 1978; Allen 1991; Provetti 1996). This 

occurs, for example, if the same events are observed by different witnesses (Frank 

1998). In this case, certain events are known to have happened, but their effects on, or 

relations to each other, are not necessarily known. Any orders generated from partial 

knowledge will essentially be orders that could happen (Larnport 1978). 

Reasoning is possible based on orders that are generated from only partial 

information, but care must be taken to avoid unwittingly assigning relations among 

events that were not present in the original knowledge base, potentially resulting in 

orders that could not have happened (Allen 1991). For example, assume that event e l  



took place between time t l  and t3, and event e2 took place between time t6 and t7. 

Given that events e3 and e4 both take place between e l  and e2, but without knowing 

their times, it would be possible to assume that both e3 and e4 took place between 

times t4 and t.5. When diagramming this scenario (Figure 2.2), the sequence e l ,  e3, e2 

is a partial ordering, as is the sequence e l ,  e4, e2. Separately, they are consistent with 

the knowledge given. However, when the two orders are compared it seems to show 

that e3 and e4 are simultaneous. While it is possible that e3 and e4 are simultaneous, it 

was not part of the original knowledge base and, therefore, should not be assumed. As 

more events are added and more uncertainties exist, additional situations like this will 

arise and care must be taken not to make unsound assumptions. 

Figure 2.2 Two partial orders (after Allen, 1991). 

Information about a scenario may in some cases be sufficient to allow the 

generation of a linear order, but often the available information is incomplete. It is 

important to be able to generate orders, even partial ones, which accurately represent 

the available information about a scenario. Partial orders are important to this research 

because they are a way of representing the kind of information that is usually available. 



2.2.2 Topological sorts 

A partial order can be visually represented in the form of a directed acyclic graph, or 

DAG (Allen 1983). A directed graph is one in which the links between the nodes (or 

vertices) of the graph have a direction. Thus any pair of nodes that are directly linked 

to each other may also be represented as an ordered pair, such as (a, b) if there is a link 

going from node n to node b in the graph. In this case, node a is called the origin of 

node b, and node b is called the destination of a. To say that a graph is acyclic means 

that it contains no cycles. This means that, beginning at a node a and following the 

links according to their direction, one must not be able to reconnect to node a .  

Examples of a cyclic and acyclic graph are shown in Figure 2.3. Notice that in Figure 

2.3a there is a cycle, a-d-c-b-a, whereas in Figure 2.3b there are no cycles present. 

( 4  (b) 

Figure 2.3 (a) A cyclic graph, and (b) an acyclic graph. 

When representing a scenario of events as a DAG, each event in the scenario maps 

to a node, and the links between the nodes are temporal relations. A DAG representing 

a scenario of events would in effect have thirteen types of links, one for each temporal 

relation. 

A topological sort is a method of arranging all of a DAG's nodes in an order such 

that for every ordered pair present in the graph, the origin node comes before the 



destination node (Lipschutz and Lipson 1997; Skiena 1998). Topological sorts are used 

in applications where efficient traversal of graphs is important, such as working with 

Bayesian networks (Charniak 1991), search algorithms (Knuth and Szwarcfiter 1974), 

or planningldecision-making algorithms (Allen 199 1 ; Skiena 1998). For the acyclic 

graph (Figure 2.2b), one topological sort would be the order a-d-6-c. Since in this case 

d and b have the same origin and destination and no other links, the order a-b-d-c is 

equally valid. 

Algorithms for generating a single valid topological sort are well documented 

(Lipschutz and Lipson 1997; Skiena 1998). In one algorithm, all nodes with no origin 

are put at the beginning of a list, then those nodes and all links attached to them are 

deleted from the graph. Some of the remaining nodes in the graph will then have no 

origin, and these nodes are added to the list and are deleted from the graph along with 

all links attached to them. These steps are repeated until all nodes in the original graph 

are in the list. The list is a topological sort of the original graph (Lipschutz and Lipson 

1997). 

There is often more than one possible topological sort of any given DAG, and the 

problem of computing all topological sorts is complex (Knuth and Szwarcfiter 1974; 

Varol and Rotem 1981; Skiena 1998). As Skiena (1998) notes, the problem is actually 

NP-hard, meaning that it has no predictable, exact solution. One type of algorithm to 

generate all topological sorts of a DAG is similar to the algorithm for a single 

topological sort, but involves backtracking to nodes that in the single sort algorithm 

would remain deleted. This type of program to generate all topological sorts generally 



involves recursion, which can be difficult for certain processing systems to manage 

(Knuth and Szwarcfiter 1974; Skiena 1998). Knuth developed an iterative solution to 

the problem in his structured program to generate all topological sorting arrangements 

(Knuth and Szwarcfiter 1974). 

Another type of iterative algorithm was introduced in 1981 by Varol and Rotem. 

This algorithm takes as input one valid topological sort of all the objects in the DAG, 

and all the known information about their relations to each other in the form of ordered 

pairs. The objects in the input topological sort are systematically transposed such that 

all possible arrangements of the objects that do not violate the known relations are 

eventually generated (Varol and Rotem 1981). In this thesis, a topological sorting 

algorithm developed by Ruskey (1995), based on the Varol and Rotem algorithm, is 

used to generate all possible orders of a set of events, given the available relations 

between events in the form of ordered pairs. As an illustration, consider four objects, a, 

b, c, d where there is a single known relationship, (a, b), meaning that in any valid sort, 

a must precede b. It is also known that a, b, c, d is a valid topological sort of the 

objects. The first step in generating all topological sorts is to transpose the last object in 

the order with all of its left-hand neighbors, until it has been in every valid position. 

This first cycle of transpositions results in four sorts: 



The next step is to transpose the next two objects to the left in the first sort of the 

previous cycle (which in this case is the original order, numbered I ) ,  and then repeat 

the process of transposing the last object into all valid positions. So, b and c in sort I 

are transposed, and the first sort of the second cycle becomes a, c, b, d. When d is 

transposed with all objects to its left, another four sorts result: 

Again, the next two objects to the left in the first sort of the last cycle, in this case sort 

5, are transposed, making the first sort of the third cycle c, a, b, d. The last object is 

transposed with its left-hand neighbors, resulting in four additional sorts: 

Since no new arrangements would result from any additional transpositions of sort 5, 

the next step would be to return to sort I and transpose objects a and h. However, since 

it is known that a must precede b in all valid sorts, it is not necessary to proceed with 

this step. All valid topological sorts of objects a, b, c, and d have been generated. 



The sorts generated by such an algorithm may also be referred to as partial orders. 

They represent arrangements of the objects which could happen, but where the 

relationships between some objects remain unknown. 

2.3 Summary 

In this thesis, events are modeled as a change to an entity over time. Events are always 

assumed to be durative, that is, the start point and end point of an event may not be 

simultaneous. Scenarios of events can be presented in the form of linear orclers. A 

linear order of events is possible in cases where all relations between events in the 

scenario are known. When some information about relations between events in the set 

is missing, partial orders are used to describe the scenario. A topological sorting 

algorithm is used to derive all possible linear orders of events, given a set of event pairs 

with relations between them, and one topological sort of the events in the scenario. 

The next chapter discusses the operations necessary for putting a set of events 

related by a possible thirteen different relations into the form of the ordered pairs 

described above. The results of running the Varol-Rotem algorithm on a set of events is 

also discussed. 



Chapter  3 

GENERATING LINEAR ORDERS OF EVENTS 

Chapter 2 reviewed the Varol-Rotem (1981) algorithm for generating all topological 

sorts given a set of ordered pairs. In this chapter, an ordering algorithm generates all 

possible orders of events, given a set of events related by temporal interval relations. 

As the ordering algorithm is based on the Varol-Rotem method, the input is similar and 

includes a set of ordered pairs. To allow a set of events related by temporal relations to 

take the form of a set of ordered pairs, this chapter also introduces a method for 

mapping each of the thirteen temporal interval relations to before. 

3.1 Mapping event interval relations to before 

When summarizing a series of events, it is common to express events that happened 

over a certain period of time as having happened one after the other. For example, a 

morning's activities might be summarized as, "I ate breakfast, read the paper, went 

shopping, and got a phone call from my friend," when in fact the person began reading 

the paper while eating, but finished after breakfast, and the phone call was received 

while the person was shopping. 

A scenario involving temporal relations between such events may be expressed as a 

series of statements referred to in this thesis as event-relation combinations. An event- 

relation combination is of the form A R By where A and B are two event intervals, and 



R is one of the thirteen temporal interval relations (Section 1.1). "FinishedBreakfast 

before ReadNewspaper" and "Phonecall during Shopping" are examples of event- 

relation combinations. 

When all known relations between events in a scenario are expressed as event- 

relation combinations, the result is a set of event-relation combinations that completely 

describe the scenario. In this thesis, we assume that relevant event-relation 

combinations for a given scenario are known and, therefore, do not treat their 

derivation. 

In a linear order of events, for any two events A and B, either A is before B or B is 

before A. For the relation before, the start point and end point of one event precede 

both the start point and end point of the second event. In a set of event-relation 

combinations describing a scenario in detail, however, events may be during or 

overlapping each other, or one event may start or end another. These relations are not 

strictly linear, because both the start point and end point of one event do not precede 

both the start and end point of the other. To place all events in a set of event-relation 

combinations into a linear order, we map each of the thirteen relations to before. Such a 

mapping transfonns the thirteen interval relations from one domain into the summary 

domain containing only three relations, before, after, and equals. To distinguish the 

relations from the two domains, those in the summary domain (i.e., the linear orders) 

are called 1-before, 1-after, and 1-equals. This mapping is done on the basis of start 

points, except where the start points of two events are simultaneous, which occurs in 

the relation starts. Ln this case, the mapping is based on the end points of the events. 



When both the start points and end points of two events are simultaneous, the events 

remain equal in a linear ordering. 

Given an event-relation combination involving two event intervals, A and B, if the 

relation between A and B is such that the start point of A is before or equal to the start 

point of B, and the end point of A is before the end point of B, then the relation maps 

to A 1-before B. This holds for A before B, A meets B, A overlaps B, and A starts B. 

A relation also maps to A 1-before B if the start point of A is before the start point 

of B, and the end point of B is before or equal to the end point of A. This applies in the 

cases of A contains B and A ended - by B. Figure 3.1 illustrates the six interval relations 

that map to A before B. 

A before B A 1-before B 
.- - + . - - . *  - 

A meets B A 1-before B 
.--. + - - - *  - 

A overlaps B 
.-.--.-.. 

A starts B 
w m - . .  

A contains B - 
---. -- - 

A endecl-by B - 
.-- . . -- . . -. , - 

Figure 3.1 Six cases where A R B maps to A 1-before B. 



For the case where the start point of A is after the start point of B, and the end point 

of A is before or equal to the end point of By event B will map to 1-before A. This 

holds for A ufter By A met-by B, A overlnppecl_by By A encls B, and A during B. 

A relation also maps to B 1-before A if the start point of B is before or equal to the 

start point of A, and the end point of B is before the end point of A, as in the relation A 

started-by B. The six cases that map to B I - before A are shown in Figure 3.2. 

A met-by B 

A overlapped-by B - 
. . . . . . . - 

A during B 
- - .. 

A encls B 

Figure 3.2 Cases where A R B maps to B I-before A. 

In the case of A equals B, both the start points and the end points of A and B are the 

same. For this case A and B will remain equal in a linear ordering, and the relation 

maps to A 1-equals B, as shown in Figure 3.3. 



A equals B A 1-equals B 
.--- --, + "* - 

Figure 3.3 A equals B maps to A equals B. 

Thus, an order of events captures simultaneous occurrences of events as well as 

events that come one before another in a linear fashion. 

When these mapping rules are applied to a set of event-relation combinations, the 

result is a revised set of event-relation combinations that now involve only the relations 

I-before or I-equals. As an example, consider a set of event-relation combinations 

involving weather events: 

LowPressureMoves equals Rain 

LowPressureMoves 'contains ColdFrontMoves 

ColdFrontMoves starts ScatteredShowers 

WestWinds ends LowPressureMoves 

NewLow afier WestWinds 

NewLow starts Showers 

In this set of event-relation combinations, there are n event intervals, and rn relations 

in the set, where m113 is the number of possible event interval relations. In this 

example, the six event-relation combinations describe relations between n=7 different 

events and m=5. 

Each event-relation combination in the set is mapped onto a relation involving only 

1-before or 1-equals. The result is a revised description of the scenario, in which n 

remains the same, and m is reduced to either 1 or 2, depending on whether both 



I-before and I-equals are involved. In the weather example, this mapping produces the 

following revised set of event-relation combinations where n=7 and m=2: 

LowPressureMoves 1-equals Rain 

LowPressureMoves I-before ColdFrontMoves 

ColdFrontMoves I-before ScatteredShowers 

LowPressureMoves 1-before WestWinds 

WestWinds I-before NewLow 

NewLow I - before Showers 

This set of event-relation combinations is a linear description of the weather events, 

in contrast to the original set of event-relation combinations in which non-linear 

relations such as contains, starts, and ends were present. In the case where a set of 

event-relation combinations involves only 1-before and 1-equal relations, no mapping 

step is necessary. 

Given a set of event-relation combinations involving only I-before and 1-equals 

relations, it is possible to use the set as input for a sorting algorithm such as the one 

described in section 2.2, in which the input is a set of ordered pairs. An ordering 

algorithm based on the topological sorting concept is introduced in the following 

section. The algorithm generates all possible orders of the events from a set of event- 

relation combinations containing only the relations before and equals. 



3.2 Ordering Events 

Given a set of event-relation combinations involving only before and equals, an order 

is developed in which the n events are arranged sequentially according to their relations 

to each other. This is accomplished using the Varol-Rotem algorithm (Section 2.2.2) 

for generating all topological sorts. The before and equals relations between events are 

used as input for the algorithm, and all orders generated are consistent with these 

relations. For example, in the weather scenario described above, the relationship 

"LowPressureMoves before ColdFrontMoves," as well as the other five relationships in 

the set of event-relation combinations, will be maintained for every one of the orders 

generated. That is, the algorithm will not generate any orders in which 

LowPressureMoves is not before ColdFrontMoves, or in which the relation in any 

other event-relation combination is not maintained. 

In addition to the before and equals relations between events, input for the sorting 

algorithm includes one initial topological sort of the n events in a set of event-relation 

combinations. The method for generating this valid topological sort is described in the 

following section. 

3.2.1 Generating an initial topological sort 

Algorithms for generating a topological sort of a directed, acyclic graph accomplish 

their task by searching for nodes of the graph that have no incoming vertices. By 

creating a matrix containing the relations present in the set of event-relation 



combinations, a similar method may be employed for generating an initial topological 

sort of a scenario of events. 

A square matrix E is created by combining the n events from the set of event- 

relation combinations painvise, such that each of the n events in the set of event- 

relation combinations is at the head of one row and one column. Thus the matrix has 

rows i and columns j, where i = l  ... n + l  and j=l ... n+l .  Cells in E are denoted as eij. The 

contents of the matrix are the m relations present in the set of event-relation 

combinations, as well as their converses. Given a set of event-relation combinations 

including A before B, for example, the relation before would be placed in the cell 

where the row for event A intersects the column for event B, and the relation after 

would be placed where the row for B intersects the column for A. Given A starts C, 

starts would be placed at the intersection of the row for A and the column for C, and 

started-by would be placed at the intersection of the row for C and the column for A. 

By including the converse relations in the matrix, a single row can be searched to find 

all available information about a given event. Cells that represent a combination for 

which no relation is known are populated with the '-' symbol. The matrix formed 

based on the event-relation con~binations in the weather scenario is shown in Figure 

3.4. 

To generate a topological sort of the events in the set of event-relation 

combinations, the matrix E generated from the set is searched for any rows in which 

there are no relations R that, given A R B, map to B before A. That is, E is searched for 

rows that do not contain any after, met-by, overlapped-by, started - by, during, or ends 



relations. Any relations present in such a row will map to A before B, and the event at 

the head of the row, when the mapping is performed, is only related to other events by 

before. For all rows found meeting this condition, the event at the head of the row is 

added to a list S, which becomes the initial topological sort. 

Figure 3.4 A matrix E generated from the relations present in the set of event- 
relation combinations fiom the example weather scenario, and their corresponding 
converse relations. The symbol - denotes the universal relation. 

The initial topological sort is used as input for the algorithm that generates all 
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possible orders of the events in a set of event-relation combinations. The rows and 
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columns for the events added to S are deleted from the matrix. This process is repeated 

NewLow 
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before 

- 

s~o~.~ed-h> .  

until E is empty, and all events in the set of event-relation combinations are included in 
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the list S. The result is a single valid topological sort containing all the events from the 
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set of event-relation combinations. Pseudocode for this process is below: 

ColdFrontMoves 

conmi~is 

- 

- 

s/ortell_by 

- 

- 

- 

Rain 

eqiinls 

- 
- 

- 

- 
- 
- 

LowPressureMoves 

Rain 

ColdFrontMoves 

Scattcl-edShowers 

Westwinds 

NewLow 

Showers 

LowPressureMoves 

- 

equrrls 

during 

- 

ends 

- 

- 



While E is not empty 

{ For all rows r=l . . . maxRows (E) 
I Does row r contain any after, met-by, overlapped-by, 

started-by, during, or ends relations? 

{ does r contain any equals relations? 

if no, add event at head of r to S 

if yes 

{ does the row(s) for the event(s) to which it 
is equal contain any after, met-by, 
overlapped-by, started-by, during, or ends 
relations? 

{ if no, add event at head of r to S 

1 

Delete from E rows and columns for events that have been added 
to S 

The first pass through the matrix E for the example scenario returns two rows that 

contain no after, met-by, overlapped - by, starteclby, during or ends relations. At the 

head of these rows are the events LowPressureMoves and Rain. Both rows contain an 

equals relation, but since they are equal to each other and neither row contains any 

after relations, they are both added to S. Thus after the first loop of searching the 

matrix for rows without after relations, S=(LowPressureMoves, Rain). The two events, 

LowPressureMoves and Rain, are removed from the matrix (Figure 3.5). When events 

that are equal to each other are added to S, they are enclosed in parentheses. 



Figure 3.5 The matrix E after removing LowPressureMoves and Rain 

The search is repeated on the smaller, revised matrix, and returns the rows headed 

Showers 

by ColdFrontMoves and WestWinds. These events are added to S, and their rows and 

NewLow 

columns are deleted. Now, S=(LowPressureMoves, Rain), ColdFrontMoves, 

West Winds. 

WestWinds ColdF~.ontMoves 

After another search through the matrix, S is updated to S=(LowPressureMoves, 

ScaneredShowers 

Rain), ColdFrontMoves, West Winds, ScattereclShowers, NewLow. At this point, 

Showers is the only event left in the matrix, and there are no after, met-by, 

overlappecl_by, started-by, during, or ends relations present in its row. Adding this last 

event to S, the matrix is emptied and the topological sort is complete. In this case, 

S=(LowPressureMoves, Rain), ColclFrontMoves, West Winds, ScattereclShowers, 

NewLow, Showers. 

The initial topological sort S is used as input for the ordering algorithm presented in 

the next section, which generates all  possible orders of the events. 



3.2.2 Performing a topological sort to generate all possible orders 

Using the initial valid topological sort, as well as the set of event-relation combinations 

containing only the 1-before and 1-equals relations between events in the scenario, the 

ordering algorithm systematically transposes events in the initial topological sort until 

all orders that conform to the known relations have been generated (Section 2.2.2). The 

result is a set 0, containing all possible orders of the n events in the set of event- 

relation combinations. 

A scenario containing n events may generate at most (n-l)! possible orders. For any 

set of n items, there are n! permutations of the items. However, in this work there are 

relations between the n events (items) which put some constraints on the number of 

orders (permutations) that are possible. In any consistent set of event-relation 

combinations, there will be at least one event with no after, met-by, overlapped - by, 

started-by, during, or ends relations in its row in the matrix E. This event, then, is first 

in the order. If the remaining (n-1) events have minimal constraints and are only 

related, for example, to the first event, there will be (n-I)! possible orders. 

The set of event-relation combinations for the weather example contained n=7 

events, therefore the maximum number of possible orders would be (7-1)!=720 orders. 

However, the events in the set of event-relation combinations in this case were related 

to each other such that the result of running the ordering algorithm on this example is a 

set 0 of only ten possible orders of the seven weather events. 



o= 

( I (Lo~vPressureMoves, Rain), ColdFrontMoves, WestWinds, ScatteredShowers, NewLow, Showers 

2 (LowPressureMoves, Rain) ColdFrontMoves, WestWinds, NewLow, ScatteredShowers, Showers 

3 (Lo~vPress~lreMoves, Rain) ColdFronlMoves, West Wlnds, NewLow, Showers, Sca~~ereclShowers 

4 (Lo~vPressureMoves, Rain) Co 1dFrontMoves. ScatleredShowers, West Winds, NewLow, Slowers 

5 (LowPressureMoves, Rain) West Winds, ColdFron~Moves, ScatleredSl~owers, NewLow, Showers 

6 (LowPressureMoves. Rain) West Winds, ColdFrontMoves, NewLow, ScatteredShowers, Showers 

7 (LowPressureMoves, Rain) West Winds, ColdFrontMoves, NewLow, Showers, ScatteredShowers 

8 (LowPressureMoves, Rain) West Winds, NewLow, ColdFrontMoves, ScatteredShowers, Showers 

9 (LowPressureMoves, Rain) WestWinds, NewLow. ColdFrontMoves, Showers, Sca~teredShowers 

10 (LowPressureMoves, Rain) WestWinds, NewLow, Showers, ColdFrontMoves, ScatteredSlzowers) 

The two events LowPressureMoves and Rain are enclosed in parentheses to show 

that they are 1-equal to each other. Note that in all of the orders, LowPressureMoves 

and Rain are at the beginning of the order, followed by either ColdFrontMoves or 

WestWinds. The last event in every order is either Showers or ScatteredShowers. 

These kinds of consistencies are the result of relations between events that effectively 

tie an event to a range of positions within an order. 

Differences between orders are the result of a comparative lack of information 

regarding the relations between a given event and other events. For example, NewLow 

is found in various positions in the orders, as is ColclFrontMoves. All orders in set 0, 

however, conform to the known before relations present in the revised set of event- 

relation combinations. 

For a given set 0 of possible orders generated from a set of event-relation 

combinations, though all known before relations between events are adhered to, it may 



be that not all of the generated orders are equally plausible. For example, in the set of 

event-relation combinations for the detailed weather example (prior to mapping the 

relations to I-before) it was known that ColdFrontMoves starts ScatteredShowers. One 

would expect an event that starts another to immediately precede it  in a linear order, 

with no intermediate events between the two. However, in six of the ten orders 

generated for the weather example (orders 1, 2, 3, 6, 7, and 9), there are one or more 

intermediate events between ColdFrontMoves and ScatteredShowers. The orders in 

which this is not the case are more plausible than the orders in which there are 

intermediate events, because they preserve the semantics of the relations between 

events. Using the semantics of the original relations can give insight on which of the 

orders are better and should be presented to a user. 

3.3 Summary 

This chapter discusses terminology and procedures necessary for collapsing the 

thirteen event interval relations to before and equals based on start and end points. It 

also introduces the steps involved in producing one initial topological sort based on the 

information given about a scenario. This initial topological sort is used as input for the 

algorithm that generates all possible orders of the events in the scenario. An example 

scenario is introduced as an illustration for the procedures discussed throughout the 

chapter. The end result, a set of several linear orders, is analyzed briefly and the 

necessity of further filtering is established. 



Chapter 4 presents constraints based on the semantics of each of the thirteen 

relations. These constraints, when applied to the full set of orders generated by the 

ordering algorithm, will improve the quality of a final set of orders to be presented to a 

user. An algorithm is also introduced, which tests the orders in a set 0 for compliance 

with the constraints. 



C h a p t e r  4 

REFINING ORDERS 

BASED ON RELATION SEMANTICS 

In the previous chapter, a methodology was developed for mapping all the relations in 

a set of event-relation combinations to /-before and 1-equals. The resulting set of 

event-relation combinations was used as input for an ordering algorithm, which 

generated the set of all possible orders of the events. Though all of these orders are 

possible given the known information about relationships between events, not all of the 

orders are plausible. For example, while it was known from the set of event-relation 

combinations that ColdFrontMoves starts ScatteredShowers, and one would expect 

ScatteredShowers to immediately follow ColdFrontMoves in a linear order, there were 

several orders in the set 0 in which there were one or more intermediate events 

between ColdFrontMoves and ScatteredShowers. This chapter introduces a set of 

constraints that use the semantics of the known relations between events to eliminate 

less meaninghl orders from the set 0, increasing the overall plausibility of the 

resulting set of orders. 



4.1 Relation semantics 

Each temporal interval relation has semantics associated with it. For example, given a 

set of event-relation combinations including the relation A meets B, the start point of B 

exactly coincides with the end point of A (Allen 1984). When A and B are placed in a 

linear order, therefore, A should immediately precede B. An order in which there is an 

intermediate event between A and B would not be plausible. An intermediate event 

between A and B may result, however, when both A meets B and A before C are 

present in a set of event-relation combinations. In this case, two orders are possible: A 

B C and A C B. In the second order, event C falls between A and B. Similarly, given A 

starts B, it is intuitive that in a linear order A should immediately precede B and there 

should be no intermediate events between them. However, if the set of event-relation 

combinations includes A starts B and C before B, one of the two orders that results, A 

C B, has an intermediate event between A and B. 

The remainder of this section discusses these types of semantics that are associated 

with each of the thirteen temporal interval relations. Semantics for each pair of 

converse relations are treated separately, beginning with before and ulfter. We show 

how the semantics of the relations can be used to eliminate some of the more unlikely 

orders, and thus increase the plausibility of the final set of orders that will be presented 

to a user. 



4.1.1 Semantics of before and afer 

The relation before is defined such that given A before B, both the start point and end 

point of A precede the start point and end point of B. This is consistent with the 

relationship between events in a linear order (Section 3.1). Given the relation A before 

B, in an order containing both A and B the start point and end point of A will precede 

the start point and end point of B, and the placement of other events within the order 

will not interfere with this relationship. That is, the before relation between A and B 

will hold in every order generated, regardless of whether there are intermediate events 

between A and B. Thus A before B +A+B, read A before B maps to A 1-before B. 

The same reasoning holds for the relation A after B, except that in this case the start 

point and end point of B precede both the start point and end point of A, and A after B 

+B+A. 

4.1 -2 Semantics of during and contains 

The relations during and contains capture cases where one event both starts and ends 

within the time that another event is occurring. That is, given A during B, the start 

point of B precedes the start point of A, and the end point of A precedes the end point 

of B. According to the mapping rules defined in Chapter 3, A during B maps to B 

1-before A in a linear order. Because event B takes place during the time that event A 

is happening, B should immediately follow A in a linear order. In order to preserve this 

semantics, and prevent intermediate events from coming between B and A, a constraint 

is applied stating that given A during B, no event may come between B and A in a 



linear order. Formally, A during B +B +A and 3 C I B + C + A, read A during B maps 

to B I-before A and there does not exist a C such that B 1-before C 1-before A. 

For cases where more than one event occurs during another event, for example, if A 

during B and C during B, then both A and C cannot immediately follow B in a linear 

order. If the relationship between A and C is known, then A and C will immediately 

follow B in the order in which they occur. That is, if it is known that A is 1-before C, 

then the order is B A C. If the relationship between A and C is unknown, however, 

then two orders are possible, B A C and B C A. 

In the case of nested during relations, such as A during B and C during A, the 

events may be put in order and the semantic preserved for all events involved, as B A 

The constraint for the contains relation is A contains B +A -I B and ?I C I A + C + B. 

In this thesis, the semantic of the duringlcontains relation is considered stronger 

than the semantics of other relations. Therefore, the constraint for the during relation 

takes precedence over constraints for other relations, that is, if the constraint for the 

during relation is in conflict with the constraint for another relation (Sections 4.1.3- 

4.1.7) the constraint for during will be upheld. The constraints for all relations except 

during and contains are considered to be of equal weight. 



4.1.3 Semantics of meets and met-by 

The relation meets is defined such that, given A meets B, the end point of A and the 

start point of B coincide. It is implausible that a third event would occur between A and 

B. Thus, a constraint is applied such that A meets B +A +B and 1 C I A < C + B. 

An exception to this constraint occurs when a third event occurs during A. The 

event-relation combination A meets B maps to A 1-before B according to the mapping 

rules described in Chapter 3 ,  and D during A maps to A 1-before D. Since the 

constraints for during take precedence over those for meets, in this case we say that if 

there exists an event or set of events D that occurs during event A, then D comes 

between A and B in a linear order. Formally, if 3 D I D during A, then A + D  +B. 

If A meets B and B occurs during an event E, and it is not known that event A is 

also during E, E is allowed to come between A and B in a linear order. Thus, if 3E  I B 

during E, and not A during E, then A + E + B. 

In the case of A met-by B, the constraints are as follows: A met - by B -+B +A and 

3C I B+C+A.  If A met-by B and 3 D  I D during B, then B-ID+A, and if 3 E  I A 

during E, and not B during E, then B +E+ A. 

4.1.4 Semantics of overlaps and overlapped-by 

When one event overlaps another, the duration of the overlap is often unknown. It is 

possible that the overlap is very slight, and the two events almost meet. It is also 

possible that the overlap is large and one event almost starts or ends the other. Or the 

two events may nearly coincide, making it similar to an equals relation. Because of the 



uncertainty of the nature of an overlaps relation, and because the semantics for each 

type of overlap are different, we say that for an overlaps relation, no additional 

constraints are applied. It is possible for intermediate events to come between two 

overlapping events in a plausible linear order. Thus A overlaps B -+A+B, and in the 

case of overlapped-by, A overlapped-by B +B +A.  

4.1.5 Semantics of starts and started-by 

When one event starts another, the start points of the two events are simultaneous and 

the end point of one is before the other. The relation A starts B maps to A I-before B 

according to the mapping rules defined in Chapter 3. It is implausible, however, that in 

a linear order there should be a third event between A and B. Thus a constraint is 

applied to prevent this, and A starts B +A+B and 3 C I A + C  <B. 

An exception to this constraint occurs when, given A starts B, there is an event 

during event A. Because the constraint for during takes precedence over that of starts, 

if there exists an event or set of events D such that D during A, D comes between A 

and B in a linear order. That is, if A starts B and 3D I D during A, then A + D  + B. 

In the case of started-by, A started - by B +B<A and 3 C  I B < C  < A. If A 

started - by B and 3D I D during B, then B + D + A. 

4.1.6 Semantics of ends and ended-by 

In an ends relationship, two events have simultaneous end points, and the start point of 

one event precedes the start point of the other event. According to the mapping rules 



defined in Chapter 3, the event-relation combination A ends B maps to B 1-before A. 

Another event cannot occur between B and A in a linear order, and a constraint is 

applied to keep this from happening. A ends B+B < A  and 1 C I B < C < A. 

However, given A ends B, in the case where a third event or a set of events occurs 

during event B, the during constraint takes precedence and the ends constraint is 

revised to allow the third event or set of events to come between B and A in a linear 

order. If A ends B and 3 D I D during A, then B <D <A. 

For the case of endecl_by, the constraint is A endeccby I3 +A+B and 3C I 

A < C + B .  If A ended-by B and 3 D  I D during B, then A<D<B.  

4.1.7 Semantics of equals 

The equals relation, in which the start points and end points of two events are 

simultaneous, is preserved in linear orderings. Since the two events are temporally 

identical, relations that apply to one also apply to the other. The two events are listed 

together in a linear order, and placed according to the known relations of both events. 

This applies only to events that are listed as equal in the set of event-relation 

combinations; events that are not listed as equal in the set of event-relation 

combinations will not be equal in the set of linear orders. That is, A equals B +A=B, 

and if not A equals C, then 3 C ( A=C. 

The constraints for each of the thirteen temporal interval relations are summarized 

in Table 4.1. 



Relation Maps to Constraints 
Relation 

A before B A 1-before B A before B +A+B 

A afier B B 1-before A A after B +B + A  

A during B Bl-beforeA A d u r i n g B + B + A a n d a C ( B + C < A  

A contains B Al-beforeB A c o n t a i n s B + A < B a n d d C I A < C < B  

A meets B Al-beforeB A m e e t s B + A + B a n d d C I A + C < B .  

If 3 D  I D during A, then A+D+B. 

If 3E I B during E, and not A during E, then 
A<E<B.  

A met-by B Bl-beforeA Amet-byB+B+Aand ~ C I B + C < A .  

If A met-by B and 3 D I D during B, then B + D + A. 

If 3 E  ( A during E, and not B during E, then 
B < E < A .  

A overlaps B A 1-before B A overlaps B +A < B 

A overlapped-by B B 1-before A A overlapped-by B +B + A 

A starts B Al-beforeB As t a r t sB+A+Band lCIA+C+B.  

If A starts B and 3 D  I D during A, then A+D+B.  

A started-by B B 1-before A A started-by B -+B <A and 1 C 1 B < C < A. 

If A started-by B and 3 D  I D during B, then 
B<D+A. 

A ends B Bl-beforeA A e n d s B + B + A a n d J C I B + C + A .  

If A ends B and 3 D  I D during A, then B+D+A. 

A ended-by B Al-bforeB Aended-byB+A<Band d c I A + C + B .  

If A ended-by B and 3D I D during B, then A + D 4 B 

A equals B A 1-equals B A equals B +A=B, and if not A equals C, then 2 C  I 
A=C. 

Table 4.1 Mappings of all thirteen temporal interval relations to I-before, and 

constraints based on the semantics of each relation. 



4.2 Ordering events with constraints 

The constraints described above outline characteristics that a plausible order should 

follow, based on the semantics of the relations. For example, if a set of event-relation 

combinations includes A meets B, then there should be no events between A and B in 

an order. 

Orders that comply with these constraints are consistent with the inherent semantics 

of the temporal interval relations. As such, orders that comply with the constraints are 

more plausible than those generated based only on the 1-before and 1-equals relations 

derived from the set of event-relation combinations. 

Ideally, orders should comply with the constraints for every relation. However, 

situations may arise when it is impossible for a set of possible orders to comply with all 

the constraints. This type of situation occurs when the constraint for one relation makes 

it impossible for another relation's constraint to apply. For example, given A meets B 

and A starts C, the constraint for meets requires that event B immediately follow A, 

and the constraint for starts requires that event C immediately follow A. A linear order 

cannot comply with both of these constraints. We say that no constraint takes 

precedence over another except for during, and as a result, multiple orders are possible 

given that one of the constraints remains unviolated and the others are complied with 

as closely as possible. Ji the example of A meets B and A starts C, two possible orders 

result, A B C and A C B (Figure 4.1). In A B C, the constraint for A meets B is met, 

and event C follows immediately after B. In the order A C B, the constraint fox A starts 

C is met, and B follows immediately after C. 



Figure 4.1 Given A meets B and A starts C, possible orders are A B C and A C B. 

When constraints dictate that two events A and B should immediately follow one 

another in a linear order, another constraint may allow an intermediate event or set of 

events C to come between them. However, another event or set of events may not come 

between A and B, even if there is already an intermediate event between them. For 

example, given A meets B and B during C, C is allowed to come between A and B, but 

other events are not. Event B should follow as closely after event A as possible. 

Due to the fact that the constraints cannot be tested one at a time, but depend on the 

other relations present in the set of event-relation combinations, orders are tested for 

compliance with the constraints once the ordering algorithm has generated the set 0 of 

all possible orders. The matrix E generated from the set of event-relation combinations 

is used to check the orders in 0 against the relation constraints. Beginning at the top 

left-hand comer of the matrix E, in cell el,,, the lower diagonal half of the matrix is 

parsed through to detect relations present in the set of event-relation combinations that 

have constraints that must apply in the set of plausible orders. Only the lower diagonal 

half of E needs to be searched, because the matrix is diagonally symmetrical. For every 

relation encountered, each order in the set 0 is checked to see that constraints for the 

relation are not violated. The entire matrix E is used in this checking process. 



There are two cases in which an order may contain a violation of a constraint and 

still be maintained in the set of plausible orders. The first case is when an exception to 

a constraint applies, for example, given the event-relation combination A meets B, A 

and B should not be separated from each other in a linear order unless there is an event 

or set of events during A (Figure 4.2a), or if B is during another event which does not 

contain A (Figure 4.2b). 

Figure 4.2 (a) Given A meets B, A and B may be separated in a linear order if another 
event occurs during event A, (b) given A meets B, A and B may be separated in a 
linear order if B is during another event which does not contain event A. 

The second case is where the combination of two relations with constraints does not 

allow both constraints to apply, such as the case of A meets B and A meets C .  In this 

case two orders are possible, A B C and A C B, both of which violate one constraint 

for the relation meets, but both of which are plausible. 

The algorithm for checking the orders in 0 against the relation constraints has two 

parts, reflecting the two types of constraint violations that are permitted. When an order 

is found in which a constraint is violated, the first part of the algorithm checks the 



matrix for exceptions to the constraint. For example, in the weather example introduced 

in Chapter 3, order 2 in the set 0 is (LowPressureMoves, Rain) ColdF~~ontlZloves, 

West Winds, NewLow, ScatteredShowers, Showers. One event-relation combination in 

the original set of event-relation combinations, however, was NewLow starts Showers. 

Therefore, according to the constraints for the starts relation, no intermediate events 

should come between NewLow and Showers unless the intermediate event is related to 

either NewLow or Showers by a relation stronger than that of the constraint for the 

starts relation. However, in order 2 shown above, the event ScatteredShowers is 

between NewLow and Showers. In this situation, checks are performed to determine 

whether ScatteredShowers was during NewLow, or whether ScatteredShowers 

contains NewLow and not Showers. Since the converse relations are present in the 

matrix, only one row or column needs to be searched for each of these checks. For 

example, in this scenario, the row for the event ScatteredShowers would be searched 

for a during relation in its intersection with NewLow's column, and for a contains 

relation in the intersection with Showers' column. If one of these exceptions applies, 

then the order is retained and the next order is checked for compliance with the 

constraint. If none of the constraint exceptions applies, the second part of the 

algorithm, a function called Equalweight, is called. 

The function EqualWeight checks other relations involving ScatteredShowers. First, 

a check is performed to determine whether event ScatteredShowers relates to either 

NewLow or Showers by a relation with a constraint that is equal to or takes precedence 

over the relation between NewLow and Showers, which would allow it to fall between 



NewLow and Showers in an order. If this is the case, then the order is retained in the 

set of plausible orders. Where this is not the case, however, the order is not 

immediately discarded. The row in the matrix E headed by event ScatteredShowers is 

searched for any relations that have constraints of equal or greater weight than the 

relation between events NewLow and Showers. If none are found, then the order is 

discarded. Othenvise, the events to which ScatteredShowers is related are checlted for 

relations to NewLow and Showers. This process is recursive, and is repeated until a 

dead end or a connection to NewLow or Showers is found. If a connection is found, the 

order is retained in the set of plausible orders. The order is discarded if a dead end is 

reached. 

Pseudocode for both parts of the algorithm is shown below 

For each relation r in left diagonal half of matrix, where el r e2: 

I If r = (meets, met-by, during, contains, starts, started-by, 
ends, ended-by) 

For each order in 0 

I Is there an intermediate event between el and e2? 

If yes, for each violating intermediate event 

I Does e qualify for an exception to the constraint? 

{ If no, run EqualWeight(e, el, e2, r) 

{ If Exception=False, discard order 



EqualWeight(events e, el, e2, relation r) 

Is there a relation rl in the row for e with a constraint equal to or 
stronger than that of r, where e  rl e3, and e3 has not been checked? 

{ If no, Exception=False, end 

If yes, for each rl in the row for e 

I Is the relation to either el or e2? 

I If yes, Exception=True, end 

If no, run Equalweight ( e 3 ,  e l ,  e2, r) 

1 
1 

The result of running this algorithm is a set 0, of all orders that preserve the 

semantics of each of the temporal interval relations present in the set of event-relation 

combinations. 

When all the constraints are applied to the weather example introduced in Chapter 3, 

the resulting set 0, contains two orders. These were orders numbered 1 and 4 in the set 

0 of all possible orders generated by the ordering algorithm: 

o,= 

{ l (Lo~PressureMoves, Rain), ColdFrontMoves, West Winds, ScattereclShowers, NewLow, Showers 

4 (LowPressureMoves, Rain), ColdFrontMoves, Sca/teretlShowers, West Winds. NewLow, Showers ) 

4.3 Summary 

In this chapter, implausible orders are eliminated from the set 0 based on semantics of 

the relations present in the set of event-relation combinations. Semantics of each of the 



thirteen temporal interval relations were examined, and constraints based on the 

semantics developed. For example, the relation A dziring B maps to B before A and 

there does not exist a C such that B before C before A. Orders inconsistent with the 

constraints are considered implausible. These orders are removed from the set of orders 

presented to a user. 

The method for applying the constraints to a set 0 of orders was presented, and 

pseudocode given and discussed. The constraints were applied to the set 0 of possible 

orders from the weather example introduced in Chapter 3, and to the burglary example. 

In both cases the resulting sets 0, were found to contain fewer orders than the sets 0, 

and consisted only of orders that were plausible based on the established semantics of 

the temporal relations between events. 

In Chapter 5, additional methods of filtering orders based on event locations will be 

discussed. 



Chapter  5 

USING EVENT LOCATION 

IN DETERMINING ORDERS OF EVENTS 

In previous chapters, we have discussed ordering scenarios of events in terms of the 

temporal relations between events. In Chapter 4, the semantics of temporal relations 

between events were used to refine the orders in the set 0, increasing the plausibility of 

the orders derived. However, it is also possible that in addition to the semantics 

associated with temporal relations, there is spatial information associated with events. 

Ln cases where spatial information about events is available, event locations may be 

used to further refine the orders in 0). This chapter explores two approaches for using 

event locations in order refinement. A strategy for dealing with mixed event location 

granularities is introduced, and the first filtering approach prunes out events such that 

only events within a certain area of spatial relevance are included in the orders. The 

second filtering approach tests for spatial patterns in the occurrence of event locations, 

and filters out less plausible orders from 0) based on these patterns. 

5.1 Event location granularities 

We extend the set of event-relation combinations to include the spatial location of 

events. For example, an event-relation combination describing the relationship between 



a car theft and an armed robbery that occurred in San Antonio, Texas would appear as 

"CarTheft [San Antonio, TX] after ArmedRobbery [San Antonio, TX]." 

An event's location may be captured at different levels of detail: for example, a 

country, a state, a city, or a street address. In this work, we assume that any event 

location belongs to one of five categories: street address, landmark, city, state, or 

country. A landmark is defined in this work as a location that is coarser than a street 

address, but is not a city or town. For example, a park, a city's downtown area, and a 

geographic feature such as a mountain would be considered landmarks. In location- 

based reasoning, locations at the street address, landmark, or city level are treated as 

point data, and locations at the state or country level are treated as area data. Event 

locations may also be unknown or missing, a topic which is discussed in further detail 

in Sections 5.2.2 and 5.3.3. Granularities of the five categories of known event 

locations vary from coarse to fine (Figure 5.1). 

coarser 

+ 
finer 

Figure 5.1 Hierarchy of event location granularities. 



In order to perform computations based on event locations, all locations in a set of 

event-relation combinations must be translated to the same granularity. All event 

locations can simply be translated to the coarsest level represented in the set, but this 

may result in significant information loss. For example, there may be a case in which 

there are events whose locations are known at the city granularity, and other events that 

are described only at the granularity of country. Translating all the city locations to 

country takes away considerable detail. In this work, all event location granularities are 

coarsened only to the most common location granularity in the set of event-relation 

combinations, that is, the modal granularity. 

The mode of a set of data is defined as the most frequently occurring value within 

the set. Every event location in a set falls into one of the five potential values of 

granularity level: s t r ee t  a d d r e s s ,  landmark, c i t y ,  s t a t e ,  and count ry .  

Each of these is assigned a variable: street-address, landmark, city, state, and country, 

respectively. The value of each of these variables is the number of occurrences of that 

granularity level within the set. To determine the values of street-address, lanclmurk, 

city, state, and country, for each of the n events in the set of event-relation 

combinations, the event location granularity is evaluated and the number of the 

appropriate granularity level variable is incremented. 



For each event  

If granularity = s t r e e t  address  

Then street-address++; 

I£ granularity = landmark 

Then landmark++; 

If granularity = city 

Then city++; 

I f  granularity = s t a t e  

Then state++; 

If granularity = country 

Then country++; 

At the end of the process, the granularity level whose variable has the highest value 

is the modal granularity. 

As an example, consider the following set of event-relation combinations, 

describing an afternoon's activities: 

PicnicLunch (Seal Harbor Village) meets TakePhoto (10 Lower Dunbar Road, Seal Harbor, ME) 

PicnicLunch (Seal Harbor Village) before HorseRental (Wildwood Stables) 

TakePhoto (10 Lower Dunbar Road, Seal Harbor, ME) before Homework (Fogler Library) 

HorseRental (Wildwood Stables) contains Rest (Jordan Pond) 

HorseRental (Wildwood Stables) contains MeetBikers (Eagle Lake) 

The orders generated from this set of event-relation combinations are: 

0,={ PicnicLunch TakePhoto HorseRental MeetBikers Rest Homework, 

PicnicLunch TakePhoto HorseRental Rest MeetBikers Homework, 

PicnicLunch TakePhoto Homework HorseRental MeetBikers Rest, 

PicnicLunch TakePhoto Homework HorseRental Rest MeetBikers ) 



In this example, there are n= 6 events and, therefore, there are also six event 

locations in the set. Five of these locations - Seal Harbor Village, Wildwood Stables, 

Fogler Library, Jordan Pond, and Eagle Lake - are at the landmark granularity level. 

One event location, 10 Lower Dunbar Road, Seal Harbor, ME, is at the s t r e e t  

address  level. Thus, the final variable values are landmark-5 and street-address=l. 

Variables city, state, and country are equal to zero since no locations in this set of 

event-relation combinations were at those granularity levels. The modal granularity in 

this set is is landmark, since landmark=5 > street-a&ess=l. The event location at 

the s t r e e t  address  granularity, 10 Lower Dunbar Road, Seal Harbor, ME, is 

coarsened to the landmark granularity, and becomes Seal Harbor Village. The set of 

event-relation combinations is revised to: 

PicnicLunch (Seal Harbor Village) meets TakePhoto (Seal Harbor Village) 

PicnicLunch (Seal Harbor Village) before HorseRental (Wildwood Stables) 

TakePhoto (Seal Harbor Village) before Homework (Fogler Library) 

HorseRental (Wildwood Stables) contains Rest (Jordan Pond) 

HorseRental (Wildwood Stables) contains MeetBikers (Eagle Lake) 

In this example, there were no event locations whose granularity is coarser than the 

modal granularity. In cases where there are locations at a coarser granularity than the 

modal granularity, however, these events are processed as though no location 

information is available, and are not included in location-based operations. In the case 

where there is more than one modal granularity (i.e., two levels of granularity are 

equally represented), event locations are translated to the coarsest granularity 

represented in the scenario. 



5.2 Determining spatial relevancy of events 

Given a set of event-relation combinations extended to include locations, we first 

determine whether all events are located such that they are spatially relevant to each 

other, or whether there are some events that are spatial outliers. In this work, a 

hierarchical clustering algorithm is applied to identify outlying event locations. This 

section describes the hierarchical clustering process as applied to event locations, and 

discusses the effect of its results on the resulting set of linear orders of events. 

5.2.1 Hierarchical clustering 

Hierarchical clustering is an agglomerative clustering technique. That is, each element 

is initially assigned its own cluster and sets of the two most similar clusters are merged 

until the appropriate number of clusters is reached. In the form of hierarchical 

clustering used in this work, single linkage clustering, the similarity between elements 

(event locations), is based on Euclidean distance between event locations (Johnson 

1967; Bailey and Gatrell 1995). For each pair of event locations el l  and e12, this 

Euclidean distance is referred to as d[ell,el2]. Two clusters a and b are considered 

most similar if the distance between them is the minimum distance between any two 

clusters, that is, 'd ell,e12 I ell# e12: d[(a),(b)] = min d[ell,el2]. Distances between 

clusters are stored in an n xn proximity matrix D, which shows the Euclidean distance 

between each pair of event locations. Since the matrix D is symmetrical, only the top 

diagonal half of the matrix is populated. For the example introduced in the previous 

section, the matrix D is shown in Figure 5.2, with distances between locations in miles. 



Figure 5.2 The (n+l) x(n+l) proximity matrix D, showing the Euclidean distance 
between each pair of event locations. 

To begin the clustering algorithm, each of the n event locations is initially assigned 

its own cluster. Thus, every row and column in D represents a cluster. A search is 

conducted in the matrix D for the two clusters with the minimum distance between 

them, and these two closest clusters are merged. D is then updated to show this new 

cluster configuration, by merging the rows and columns of the two clusters that have 

been merged. The distance d[old, new] between an old cluster old and a new cluster 

new, where new comprises old clusters a and b, is the smaller of the distances 

d[(a)(olcl)l and d[(b)(old)l. 
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A stopping rule is used to determine when the clustering process should be 

terminated. In this work, we use the stopping rule defined by Calinski and Harabasz 

(Milligan and Cooper 1985), referred to as the CH index. The CH index is the ratio of 

the distance between clusters and the distance between events within clusters, 

accounting for the total number of events and the number of events within each cluster. 

The stopping rule indicates that a clustering process should be terminated when the CH 

index is at its maximum value. The equation for determining this ratio is based on B, 
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the average distance between clusters; W, the average distance between events within 

clusters; n, the number of events; and k, the number of clusters (Equation 5.1). 

B(n - k )  
CH index = 

W ( k  - 1) 

At the end of the clustering process, the distribution of clusters is analyzed. If there 

is one single cluster, then all events are considered spatially relevant. If there is more 

than one cluster, however, the events in the largest cluster are considered spatially 

relevant, but events in other clusters are considered outlying events. Spatially relevant 

events are retained in the set 0, of linear orders, but outlying events are eliminated 

fi-om the orders in 0,. The outlying events are eliminated from the orders and not from 

the set of event-relation combinations because, though spatial information may make 

an event less relevant to the orders, temporal information about the event is no less 

valid. For this reason, the event is still important to the ordering process. 

When hierarchical clustering is performed on the current example, the result is that 

events taking place at Seal Harbor Village, Wildwood Stables, Jordan Pond, and Eagle 

Lalte are all part of one cluster. Remaining in its own cluster is the event taking place at 

Fogler Library, due to the large distance between this event and the other five events. 

Thus, the event that takes place at the Fogler Library, Homework, is eliminated from 

the orders. The removal of Homework results in two sets of orders becoming identical. 

The identical orders are collapsed, and the set OI is reduced to only two orders: 



0,={ PicnicLunch TakePhoto HorseRental MeetBikers Rest, 

PicnicLunch TakePhoto HorseRental Rest MeetBikers ) 

In the case where event locations are modeled as area data rather than point data, 

distances are measured between the boundaries of the event locations. Each event 

location is initially in its own cluster, and clusters are merged until the CH index 

reaches its maximum. Events contained in the largest cluster are retained in the orders, 

while others are eliminated. 

There may be cases where, instead of a single largest cluster, there are two or more 

clusters containing a similar number of event locations. In this case, unless additional 

information is available, these clusters are assumed to be of equal importance, and all 

events contained in these clusters are included in the orders. 

5.2.2 Cases where event locations are not specified 

It is possible that in a set of event-relation combinations, some locations of events are 

unknown. In the case where no locations are known for any of the events in a set of 

event-relation combinations, no filtering based on locations is performed. In other 

cases, there may be location information for some events, but not all. In these cases, 

events without locations are automatically included in the linear orders in the set 0,. 

The events with locations are used in filtering events based on location, as described 

above. 



5.3 Filtering orders based on event locations 

Once outlying events have been eliminated from the orders in 0/,  the orders 

themselves may be further refined. Given a set of event-relation combinations in which 

the locations of events are known, two cases are possible. The events may occur in 

locations such that no spatial order is apparent (Figure 5.3a), or the locations may be 

such that they exhibit a pattern showing a spatial order of locations (Figure 5.3b). A 

spatial order of locations may be linear, as in Figure 5.3b, or occur in some other 

pattern. Other patterns include, for example, events occurring along a nonlinear 

roadway, such as a loop road, or events occurring in a circular pattern. In this work, we 

examine the case where event locations show a linear distribution, and analysis of other 

possible patterns is considered as a topic for future work (Section 7.3.2). 

(a) (b) 

Figure 5.3 Arrangement of point locations in (a) nonlinear and (b) linear formations. 

5.3.1 Detecting a linear pattern in event location data 

The first step in filtering orders of events based on the spatial arrangement of event 

locations is to determine the degree to which the event locations exhibit a linear trend. 

Linear regression is used to evaluate the degree of linearity shown by the event 

locations. Linear regression is a statistical method that is applied to determine the 
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equation of a line of best fit, based on the x and y values of a given set of points. A 

correlation coefficient r is determined, which indicates the quality of the linear 

relationship between the x and y values. We apply least-squares regression, which 

minimizes the sum of the squares of the distance from each data point to the line in 

order to determine the equation of the line of best fit. The equation, in the form 

y=mx+b, gives the slope of the line m, and the y-intercept b, where x and y are in this 

case, the latitude and longitude of the locations. The value for m is determined using 

Equation 5.2, where n is the number of data points in the set, and Z is the average of 

all values of x present in the set. Equation 5.3 shows the fonnula for determining the 

value of the y-intercept, b, and Equation 5.4 the fonnula for the correlation coefficient 

r,  in which y is the average of all y values present in the set. 

The absolute value of r is always between 0 and 1, with values close to 1 indicating 

a very high linearity, and values close to 0 indicating that the linear relationship 

between the x and y values is very weak. In this work, linear regression is applied to 

each set of event locations, and if the absolute value of the correlation coefficient is 



greater than 0.7, then the linear trend exhibited by the locations is considered 

significant (Kiemele, Schmidt et al. 1997). 

As discussed in the previous section, locations associated with events will not 

always be in point form, as in the case of locations at the region or country granularity 

levels. When location information is at the region or country level, and thus in the form 

of area data as opposed to point data, the centroid of each location is computed, and 

linear regression is applied using these values (Bailey and Gatrell 1995). 

5.3.2 Evaluating orders for correspondence with a linear trend 

If, once linear regression has been applied on a set of points, the value of r is greater 

than 0.7, then we say that the set of event locations corresponds to a linear trend. The 

next step is to evaluate whether the linear trend apparent in the event locations 

corresponds to any of the temporal orders in the set O,, because correspondence 

between the linear trend and orders in 0, would be evidence of a spatio-temporal order 

of events. Two lists, I, and I,,, are formed by listing the events according to their 

location in positive and negative directions along the line of best fit. These lists show 

the two possibilities of spatial ordering exhibited by the event locations. It seldom 

happens, however, that all events fall exactly along a line of best fit (that is, that r = l ) .  

In cases where i-# 1, a method is needed to assign each location a position on the line 

before I, and 1, can be generated. A perpendicular line is drawn between each event 

location and the line of best fit. The place at which a location's perpendicular line 

meets the line of best fit is that location's assigned position on the line (Figure 5.4). 



Figure 5.4 Perpendicular lines from event locations to a line of best fit, showing each 
event's assigned position along the line. The lists formed from these locations are 1, = 

A,B,C,D,E,FandI ,=F,E,D,C,B,A.  

The lists I, and I, are then compared with orders in the set 0,. If an order matches 

either I, or I,, then a spatial and temporal order coincide, and this is evidence of a 

spatio-temporal sequence of events. If there are orders in 0, that correspond with the 

spatial order of events, these orders are retained in O,, but orders that do not 

correspond with the spatial order of events are eliminated from 0/.  If none of the 

orders in 0, correspond with the spatial order, then the spatial linearity of the events is 

assumed to be unrelated to the events' temporal relations to each other. Events may 

occur in a linear arrangement due to other causes. For example, a series of robberies 

may occur in a line because several convenience stores are along a single road, but the 

stores may not have been robbed in order. In these cases, all orders are retained in 0/.  

In the example of the afternoon's activities, when linear regression is run on the 

locations of the n events in the set of event-location combinations, r=0.7557. This is 

above the 0.7 significance threshold (Figure 5.5). The lists 1, and I,, then, are: 



l,=MeetBikers, Rest, HorseRental, (PicnicLunch, TakePhoto) 

I,=(PicnicLunch, TakePhoto), HorseRental, Rest, MeetBikers. 

Events PicnicLunch and TakePhoto occur at the same location. 

latitude 

Event 

locations 

Line of - 
best fit 

longitude 

Figure 5.5 Plot showing event locations and line of best fit. 

When the orders in 01 are compared with I,, or I,, one order - PicnicL~inch 

TakePhoto HorseRental Rest MeetBikers - is found to correspond with I,. This order 

is retained in the set 01, and the other order is eliminated. The set 0, now contains only 

one order: 

Ol={PicnicLunch TakePhoto HorseRental Rest MeetBikers) 



5.3.3 Cases where event locations are not specified 

In the case where no events have locations, all orders are retained in 0 1 .  In cases where 

location information exists for some events, these event locations are used in testing for 

linearity. Events without locations are automatically included in the linear orders in the 

set 0 1 .  This means that in the case of a significant linear trend in event locations, the 

lists 1, or I, will not contain all the events present in the orders within 01. Lnstead of 

checking for orders that match I, or I,, then, we check for orders containing 1, or 1, as a 

subset. 

5.4 Summary 

In this chapter, the methodology for determining linear orders of events was expanded 

to include event locations for refining orders. Hierarchical clustering was used to 

identify events that were not spatially relevant to other events, and these outlying 

events were eliminated from the orders in the set 01 .  Linear regression was then used 

to identify linear trends in the distribution of event locations, and in cases where one or 

more orders in 01 corresponded with the spatial order of events, a spatio-temporal 

ordering of events was assumed. Orders in 0, that did not correspond with the spatial 

order were eliminated. The orders in the resulting set 01 contain only events that are 

spatially relevant to each other, and the possibility of a spatio-temporal sequence of 

events is accounted for. 

The following chapter describes a method of evaluating the plausibility of orders in 

the set 01,  and presents conclusions based on the results of this evaluation. 



C h a p t e r  6 

EVALUATION OF RESULTING ORDERS 

In Chapter 3, a method was introduced for generating all possible orders of a set of 

events, given a set of event-relation combinations. Chapter 4 presented a series of 

constraints based on semantics of the temporal relations of events, which were used for 

refining the resulting set of orders. In Chapter 5, two methods are described for using 

event locations in further refinement of the orders. This chapter presents an evaluation 

of the results of these processes. Two test scenarios are used as the basis for evaluation, 

based on timelines found in Timelines on File: The 2d" Century (Diagram 2000). A 

timeline is a linear order of events in which explicit temporal information is available 

for every event. The first test scenario includes sixteen events taking place at the end of 

World War I. Its set of event-relation combinations includes several meets and 

during/contains relations in addition to before/after relations. The second test scenario 

includes six events taking place before and during the Cold War. Its set of event- 

relation combinations includes during/contnins, starts, and ends relations as well as 

befove/after relations. Sets of event-relation combinations from each scenario are used 

to generate linear orders of events, and the constraints based on semantics of temporal 

intervals are applied. Each set of resulting orders is compared to the source's timeline, 

and an average percent similarity between orders in the set and the timeline is 

calculated. This measure describes the level to which orders in the set 0, agree with the 



timeline. High percent similarity indicates that an order is very similar to the timeline. 

A low percent similarity indicates that an order is significantly different fiom the 

timeline, and suggests a lower level of plausibility. 

6.1 Comparing orders 

Each order in the set O1 is compared to the reference order (RO) based on the longest 

common subsequence ( L C 9  of events within the two orders. That is, a search is 

performed for the most events that occur in the same sequence within both orders. A 

set of events q is said to be a subsequence of an order r if the events in q occur 

sequentially in the order r. There may, however, be gaps between the events as they 

occur in r. For example, the set of events q=A, B, D, F is a subsequence of the order 

r=A, B, C, D, E, F because all the events in q occur sequentially within the order r. 

Formally, given q=ql,qz ...q, and r=rl, rz, ..., r,, we say that q is a subsequence of r if 

there exists a set of events I<il<iz< ...< i , < n  such that for l<j<m, q, = r, (Eppstein 

1996). This method of comparison is used in several disciplines, including molecular 

biology, where it is commonly used for comparison of genetic sequences (Needleman 

and Wunsch 1970; Smith and Waterman 198 1 ; Booth et al. 2004). 

The length of the longest common subsequence of two orders can be determined 

using an iterative algorithm (Needleman and Wunsch 1970). The algorithm creates a 

two-dimensional array, LCS, which has events from one order at the head of each 

column, and the events from the other order at the head of each row. Each cell in the 

array is populated, beginning at the bottom right-hand corner of the array. For a cell 



[i][j], the event at the head of column i and row j are compared, and if they are the 

same, then the value of LCS[i][i] is l+LCS[i+l][i+l]. Otherwise LCS[i][i] = 

LCS[i+l][j+l]. When the array is full, the value in cell LCS[O][O] is equal to the 

length of the longest common subsequence, 

L e n g t h - L C S  ( O r d e r  r ,  O r d e r  s )  

{ F o r  ( i = m ;  i > = O ;  i - - )  

F o r  ( j = n ;  j > = O ;  j - - )  

{ i f  ( r  [ i ]  == s [ j ]  ) , LCS [ i ]  [ j l  = 1 + LCS [ i + l ]  [ j + l ]  ; 

E l s e  ~ [ i ]  [ j ]  = m a x ( L C S  [ i + l - I  [ j l  , LCS [ i l  [ j + l l  ) 

1 
R e t u r n  LCS [O] [O] ; 

Once the length of the longest common subsequence has been determined, apercent 

similarity between two orders r and s can be computed. This percent similarity is 

defined as the ratio of length of the longest common subsequence to the number of 

events in the orders (Equation 6.1). 

Length[LCM (r, s)] 
PercentSimilarity (r, s )  = 

Length(r) 

The percent similarity between two orders ranges from 0 to 1, with values close to 

zero indicating that the orders are nearly distinct, and values close to 1 indicating that 

the orders are very similar. In an evaluation of the closeness of the linear orders 

generated to the reference order, we would expect a similarity value close to 1. 



6.2 First test scenario: World War I events 

The first test scenario is a set of event-relation combinations based on a timeline of 

events taking place during the second half of World War I. There are fifteen events in 

this scenario, presented in Table 6.1 (Diagram Group 2000). 

Feb-Dec 19 1 6 :  Battle of Verdun - Verdun 

May-Jun 19 16: Battle of Jutland - Jutland 

Jul-Nov 1916: Battle of the Somme - Somme 

Feb I9 17: Germany resumes unrestricted submarine warfare -Sub Warfare 

Apr 6 ,  19 17: US declares war on Germany - USDecWar 

Jun 19 17: US troops begin landing in France - USTroopsLand 

Jul-Nov 19 17: Battle of Passchendaele - Passchendaeb 

Nov 191 7: Russian Revolution - Revolurion 

Jan 8, 191 8: Woodrow Wilson announces his Fourteen Points - 14Points 

Mar 19 18: Germany launches first of its final three offensives - Ofensive 

May 1918: Allies stop Germans at Chsteau-Thierry - ChcEteauThierry 

Jul-Aug 19 18: 2"d Battle of the Marne - ZndMarne 

Sep 1 9 1 8: Bulgaria surrenders to the Allies - BulgariaSurrender 

Oct 1918: Allies defeat Austria-Hungary at Vittorio Veneto - ViflorioVenero 

Nov I 1, I9 18: End of World War I - EndWar 

Table 6.1 Events in World War I test scenario. Text in italics refers to short forms for 
the events. 

Based on this timeline, the order in which events are presented in the source is: 

{ Verdun Jutland Somme Subwarfare USDecWar USTroopsLand Passchendaele Revolution 14Points 
Offensive ChdteauThierry 2ndMarne BulgariaSurrender VittorioVeneto EndWar } 

This order of events is the reference order (RO). A set of event-relation 

combinations are extracted horn the temporal relations that are explicitly stated to hold 



between these events, based on the temporal information explicit in the source. For 

example, the event Verdun occurred from February to December of 191 6, and the event 

Jutland during May and June of 1916, thus Verdun contains Jutland. The event- 

relation combinations used to describe this scenario are: 

Verdun contains Jutland 

Jutland meets Somme 

Somme before SubWarfare 

Somme during Verdun 

Verdun before SubWarfare 

SubWarfare before USDecWar 

USDecWar before USTroopsLand 

USTroopsLand meets Passchendaele 

Passchendaele before 14Points 

Revolution ends Passchendaele 

Passchendaele before ChiteauThierry 

Passchendaele before Offensive 

ChiiteauThierty before 2ndMarne 

2ndMarne meets BulgariaSurrender 

BulgariaSurrender meets VittorioVeneto 

VittorioVeneto before EndWar 

The set of event-relation combinations that result from mapping all relations to 

1-before is: 

Verdun 1 - before Jutland 

Jutland 1 - before Somme 

Somrne 1-before SubWarfare 

Verdun 1 - before Somrne 

Verdun 1-before SubWarfare 

SubWarfare 1-before USDecWar 

USDecWar 1-before USTroopsLand 

USTroopsLand 1-before Passchendaele 

Passchendaele 1-before 14Points 

Passchendaele 1 - before Revolution 

Passchendaele 1 - before ChiteauTh ierry 

Passchendaele 1 - before Offensive 

ChiteauTh ierry 1-before 2ndMarne 

2ndMarne 1-before BulgariaSurrender 

BulgariaSurrender 1-before VittorioVeneto 

VittorioVeneto 1 - before EndWar 



An initial topological sort of the events is determined from this revised set of event- 

relation combinations based on the algorithm described in Section 3.2.1. The initial 

topological sort based on these event-relation combinations is: 

{ V e r d u n  .Jutland S o m m e  SubWar fa re  U S D e c W a r  USTroopsLand  Passchendae le  ChfiteauThierry 
14Points  Revolut ion Offensive  2 n d M a r n e  Bu lga r i a su r rende r  Vi t tor ioVeneto  E n d W a r  ) 

The topological sort algorithm is applied on this initial sort and the mapped event- 

relation combinations. The result is a set 0 of 336 possible orders. Applying the 

constraints based on the semantics of the temporal relations between events reduces the 

set of 336 possible orders to ten: 

0 , = { I  Verdun Jutland Somme SubWarfare USDecWar USTroopsLand Passchendaele Revolution 14Points 
ChlteauThierry Offensive 2ndMame Bulgariasurrender VittorioVeneto EndWar 

2 Verdun Jutland Sornrne Subwarfare USDecWar USTroopsLand Passchendaele Revolution 14Points 
ChAteauThierry 2ndMarne BulgariaSurrender VittorioVeneto Offensive EndWar 

3 Verdun Jutland Somme Subwarfare USDecWar USTroopsLand Passchendaele Revolut~on 14Po1nts 
ChateauTIiierry 2ndMarne BulgariaSurrender VittorioVeneto EndWar Offensive 

4 Verdi~n Jutland Somme Subwarfare USDccWar USTroopsLand Passchendaele Revolution 14Points 
Offensive ChPeauThierry 2ndMame Bulgariasurrender VittorioVeneto EndWar 

5 Verdun Jutland Somme Subwarfare USDecWar USTroopsLand Passchendaele Revolution ChlteauTIiierry 
14Points Offensive 2ndMarne BulgariaSurrender VittorioVeneto EndWar 

6 Verdun Jutland Somme Subwarfare USDecWar USTroopsLand Passchendaele Revolution ChateauTh~erry 
14Points 2ndMarne BulgariaSurrender VittorioVeneto Offensive EndWar 

7 Verdun Jutland Somme Subwarfare USDecWar USTroopsLand Passchendaele Revolution ChlteauThierry 
14Points 2ndMarne BulgariaSurrender VittorioVeneto EndWar Offensive 

8 Verdun Jutland Somme Subwarfare USDecWar USTroopsLand Passchendaele Revolution ChlteauThierry 
2ndMame BulgariaSurrender VittorioVeneto l4Points OKensive EndWar 

9 Verdun Jutland Somme Subwarfare USDecWar USTroopsLand Passchendaele Revolution ChiteauTh~erry 
2ndMarne BulgariaSurrender VittorioVeneto 14Points EndWar Offensive 

10 Verdun Jutland Somme Subwarfare USDecWar USTroopsLand Passchendaele Revolution ChltcaoThierry 
2ndMame BulgariaSu~render VittorioVeneto EndWar 14Points Offensive) 



When the orders in this final set 01 are compared with the RO (Verdun Jutland 

Somme SubWarfare USDecWar USTroopsLand Passchendaele Revolution 14Points Offensive 

Ch2teauThierry 2ndMarne BulgariaSurrender VittorioVeneto EndWar), the results are: 

Percent Similarity between the RO and order 4 is 100%. 

Percent Similarity between the RO and orders I, 2, 3, and 5 is 93.3%. 

Percent Similarity between the RO and orders 6, 7, 8, 9 and 10 is 86.7%. 

The average percent similarity between the orders in 0, and the RO is 90.7%. The 

average percent similarity between the RO and the initial 336 in the set 0 of all 

possible orders is 83.34%. The average percent similarity between the RO and the 326 

orders removed as a result of the application of the semantic constraints is 83.1%. The 

average percent similarity is higher for the orders in 0, than for the orders in 0. This 

indicates that the orders least similar to the RO were removed with the application of 

the semantic constraints. 

Since locations of events in this scenario are known, location-based reasoning can 

be applied to this set of events. Based on the hierarchical clustering algorithm 

discussed in Section 5.2.1, two events are found to be less spatially relevant than the 

others. These events are Revolution and 14Points. When these two events are removed 

from the orders, three sets of orders become identical and are collapsed. These sets are 

orders 1 and 5, orders 2, 6, and 8, and orders 3, 7 ,9  and 10. Thus, 0, becomes: 

O,= {I Verdun Jutland Somme SubWarfare USDecWar USTroopsLand Passchendaele ChateauThierry Offensive 
2ndMame Bulgariasul~ender VittorioVeneto EndWar 

2 Verdun Jutland Somme Subwarfare USDecWar USTroopsLand Passchendaele ChtiteauThierry 2ndMa1ne 
Bu lga r~aSu~~ende r  VittorioVeneto Offensive EndWar 



3 Vcrdun Jutland Somme Subwarfare USDecWar USTroopsLand Passchendaele ChateauTh~erry 2ndMarne 
BulgariaSurrender VittorioVeneto EndWar Offensive 

4 Verdun Jutland Somme Subwarfare USDecWar USTroopsLand Passchendaele Offensive ChlteauThierry 
2ndMa1ne BulgariaSurrender VittorioVeneto EndWar } 

The average percent similarity between orders in the revised 0, and the reference 

order is 81.7%. Events are not removed from the reference order when location-based 

reasoning is applied, and this means that the percent similarity between the reference 

order and the orders in 0, will decrease. This is because the orders in 0, now contain 

only thirteen events, while the reference order contains fifteen. The best possible 

similarity between the reference order and any order in Or after location-based 

reasoning has been applied is 86.7%. A significant linear trend in the remaining event 

locations, based on linear regression as described in Section 5.3.1, is not found. 

6.3 Second test scenario: Iron Curtain 

The second test scenario involves six events, shown in Table 6.2 (Diagram Group 

2000). 

1 1946-1 949: Creation of Soviet satellite states in Eastern Europe -Sovietstater 

March 1946: Churchill gives a speech warning that Europe is being divided by an "Iron Curtain" - Ironcurlain 

1946- 199 1 : Cold War - Cold War 

1989: Widespread antigovernment demonstrations in Eastern Europe - AntiGov 

1 1 990- 199 I: Iron Curtain descends - EndlronCurtain 
I 

Table 6.2 Events in Iron Curtain test scenario. 



The reference order in this scenario is: 

{EndWWII SovietStates IronCurtain ColdWar AntiGov EndIronCurtain) 

Based on the dates given in the source, a set of event-relation combinations that 

describes this scenario is: 

EndWWII before ColdWar 

IronCurtain starts Cold War 

SovietStates starts ColdWar 

AntiGov during ColdWar 

EndIronCurtain ends ColdWar 

When all relations are mapped to before, the revised set of event-relation 

combinations becomes: 

EndWWII 1-before ColdWar 

IronCurtain I-before ColdWar 

SovietStates I-before ColdWar 

ColdWar I-before AntiGov 

ColdWar I - before EndIronCurtain 

The initial topological sort based on this set of event-relation combinations is 

( E ~ ~ W W I I  IronCurtain SovietStates ColdWar AntiGov EndIronCurtain). 

When the revised set of event-relation combinations and the initial topological sort 

are input in the topological sorting algorithm, the result is a set of twelve possible 

orders: 



O={EndWWII SovietStates IronCurtain ColdWar AntiGov EndIronCurtain 

EndWWII SovietStates IronCurtain ColdWar EndIronCurtain AntiGov 

EndWWII IronCurtain SovietStates ColdWar AntiGov EndIronCurtain 

EndWWII Ironcurtain SovietStates ColdWar EndIronCurtain AntiGov 

IronCurtain EndWWII SovietStates ColdWar AntiGov EndIronCurtain 

IronCurtain EndWWII SovietStates ColdWar EndIronCurtain AntiGov 

SovietStates EndWWII IronCurtain ColdWar AntiGov EndIronCurtain 

SovietStates EndWWII IronCurtain ColdWar EndIronCurtain AntiGov 

SovietStates IronCurtain EndWWII ColdWar AntiGov EndIronCurtain 

SovietStates IronCurtain EndWWII ColdWar EndIronCurtain AntiGov 

IronCurtain SovietStates EndWWII ColdWar AntiGov EndIronCurtain 

IronCurtain SovietStates EndWWII ColdWar EndIronCurtain AntiGov) 

The application of the constraints based on semantics of temporal interval relations 

reduces the set to only two: 

0, =/ 1 EndWWII SovietStates IronCurtain ColdWar AntiGov EndIronCul-tain 

2 EndWWII IronCurtain SovietStates ColdWar AntiGov EndIronCurtain) 

For the Iron Curtain test scenario, similarity results are: 

Percent Similarity between the reference order and order 1 is 83.3%. 

Percent Similarity between the reference order and order 2 is 100%. 

The average similarity in this scenario between the reference order and orders in 0, 

is 91.7%. The average similarity between the reference order and the twelve possible 

orders in 0 is 75%. The average similarity of the ten orders in 0 that were not included 

in 0, is 71.7%. Again, the percent similarity to the reference order was higher on 

average for orders in 0, than for orders in 0, showing that the least plausible orders 

were removed from 0 with the application of the semantic constraints. 



6.4 Hypothesis evaluation 

The hypothesis of this thesis is that constraints that enforce the original semantics of 

the event interval relations are necessary in the generation of pluusible linear orders. 

The results of this evaluation support the hypothesis; in both test scenarios, the average 

percent similarities between the reference orders and the orders in 0, were higher than 

the average percent similarity between the reference order and the orders in 0 before 

constraints were applied. The average percent similarity between the orders removed 

because of semantic constraints and the reference orders was in both cases lower than 

the average similarity between the reference order and the orders in set 0, as well as 

the orders in the set 0,. The plausibility of the orders in the final set 0, was on average 

greater than the plausibility of orders prior to the constraints being applied. 

6.5 Summary 

This chapter introduced two example scenarios of events that had been put in order by 

an external source, and showed the results of generating possible linear orders from the 

sets of event-relation combinations describing these scenarios. Orders in the resulting 

set 0 were then compared to the reference order based on their longest common 

subsequence. A measure of similarity between orders and the reference order, percent 

similarity, was introduced and used to evaluate the average similarity of events in 0 

with the reference order. The results of comparing the orders in the set 0 with the 

reference order showed that the average percent similarity was improved with the 



application of the constraints based on the semantics of the temporal relations between 

events. 

The following chapter presents a summary of the thesis and describes the 

methodology for generating linear orders from a set of event-relation combinations, as 

well as filtering that can be applied to the orders generated. These filters are based on 

the semantics of the temporal relations between events, and location information about 

events. Directions for future work, including the use of explicit temporal information in 

ordering, and the automatic extraction of event-relation combinations from text, are 

discussed. 



Chapter  7 

CONCLUSIONS 

This thesis presents the steps necessary for generating linear orders of events, given a 

set of event-relation combinations that are partially ordered. A method of refining 

orders based on semantics of the temporal relations is also established, in order to 

increase the plausibility of the set of orders returned to a user. 

This chapter summarizes the work described in this thesis, and concludes with a 

discussion of directions for possible future work. 

7.1 Summary 

Events in the world are not linear. For example, any two events may occur such that 

one is during the other, or the two events may meet or overlap. There are thirteen 

possible relations that may hold between two event intervals (Section 1.1). However, a 

linear order is a useful way of summarizing and describing scenarios of real-world 

events. This thesis describes the methods for automatically generating linear orders 

based on descriptions of geographic events. 

Events in this thesis are assumed to be presented in the form of event-relation 

combinations, in the form el  R e2, where el  and e2 are events, and R is one of Allen's 

thirteen temporal interval relations. The event-relation combinations occur, most likely, 

as a partial order, i.e., not all information about the relations between all events in the 



set is available. In order to generate a linear order, the relations between events must 

be mapped from one of the possible thirteen interval relations to 1-before or 1-eqtials. 

In this way, the set of event-relation combinations can be translated to a set of event- 

relation combinations in which the relations between events are all linear. 

Event-relation combinations e l  R e2 in which the start point of e l  precedes the start 

point of e2 (R= before, overlaps, contains, meets, or ended-by) map to e l  I-before e2. 

For event-relation combinations e l  R e2 in which the start point of e2 precedes the start 

point of e l  (R= after, overlapped-by, during, met-by, or ends) the mapping is e2 

1-before e l .  In the case of event-relation combinations involving starts and starteclby, 

the start points of the events are equal. In this case, the end point of the events is used 

as the basis for the mapping. The event-relation combination e l  starts e2 maps to el 

1-before e2, and e l  started-by e2 maps to e2 I-before e l .  In the case where two events 

are equal, as in e l  equals e2, the two events remain equal in our linear orderings. 

Therefore e l  equals e2 maps to e l  1-equals e2. The mapping of each event interval 

relation to I-before is shown in Table 7.1. 

Relation Maps to Relation 

A before B + A I-before B 

A contains B + A 1-before B 

A meels B + A I-beyore B 

A overlaps B -+ A 1-before B 

A starts B + A I-before B 

Relation Maps to Relation 

A during B + B 1-before A 

A met-by B + B 1-before A 

A overlapped-by B + B 1-before A 

A slarted-by B + B 1-before A 

A ends B -+ B 1-before A 

A eqrials B + A 1-equals B 

Table 7.1 Mapping rules to 1 - before and 1 - equals for each of the thirteen relations. 



7.1.1 Constraints based on semantics of relations 

When the set of event-relation combinations has been revised in this way, the set may 

be used, along with one topological sort of the events in the set, as input for a 

topological sorting algorithm. A topological sort is a linear order of events in a set such 

that, for any event-relation combination a 1-before b, event a precedes event b in the 

order. The topological sorting algorithm generates a set of all possible orders of the 

events in the set of event-relation combinations, given the temporal relations between 

the events. There may be multiple possible orders; the highest possible number of 

orders generated by the topological sorting algorithm, given n events in the set of 

event-relation combinations, is (n-I)!. 

Not all orders generated by the topological sorting algorithm, however, are equally 

plausible. In some orders, for example, there may be intermediate events between two 

events that are related to each other by meets. Similarly, two events related by a cluring 

relation may be separated by one or more intermediate events in an order. This is 

contrary to the semantics of the relations meets and during, as one would not expect 

intermediate events to occur between events related by either meets or during. To 

prevent this kind of implausibility, a set of constraints is developed, based on the 

semantics of the thirteen temporal relations. These constraints are presented in Table 

7.2. When these constraints have been applied to the set of all possible orders of 

events, the result is a set of orders, 0, in which the semantics of the original relations 

between events have been preserved. 



Relation Maps to Relation Constraints 

A before B A 1-before B A before B +A < B 

A afier B B 1-before A A afier B +B<A  

A conlains B A 1-before B A contains B +A+B and 3~ 1 A<C<B 

If 3 E 1 B during E,  and not A during E ,  then A < E < B. 

A me[-by B B 1-before A Amel-by0 +B<A and IC 1 B<C<A .  

I f  A me!-by B and 3 D I D during B, then B 4 D + A. 

If 3 E I A during E, and not B during E, then B < E< A. 

A overlaps B A I-before B A overlaps B -+A + B 

A overlapped-by B B 1-before A A overlapped-by B +B < A 

A slarls B A /-before B AstartsB+A<Band d C I A < C < B .  

I f  A starts B and 3 D I D during A, then A < D 4 B 

A started-bv B B 1-before A Astarled-byB-+B+Aand ~ C I B + C < A .  

I f  A started-by B and 3 D I D during B, then B 3 D < A. 

A ends B B 1-before A A ends B+B<A and dc B<C<A.  

I fAendsBand 3 D ~ d u r i n g ~ ,  t h e n B < ~ < ~ .  

A ended-by B A 1-before B Aerlded-byB +A<Band 3~ 1 A<C<B. 

If A ended-by B and 3 D I D during B ,  then A + D < B 

A equals B A 1-equals B A equals B +A=B, and if not A equals C, then 3~ I A=C. 

Table 7.2 Mapping rules and constraints for each event interval relation. 

7.1.2 Filtering orders based on spatial information 

There may be cases in which there is spatial as well as temporal information about 

some or all events in a set of event-relation combinations. In these cases it  is possible 

to further refine the orders in the set 0. A hierarchical clustering technique is used to 

prune events that are not spatially relevant to the scenario from the generated orders. 



In some cases, events may occur in a spatial order as well as a temporal order. An 

example is the case where events occur along a linear trajectory. This kind of spatial 

order of events can be used to hrther filter orders from the set 0. Linear regression is 

used to determine whether there is a significant linear trend in the locations of events 

within a set, and to calculate the equation of a line of best fit among the events. If a 

significant linear trend is present, the spatial orders of events (one in each direction 

along the line of best fit) are compared to the orders in 0. If any orders in 0 match one 

of the spatial orders of events, they show evidence of a spatio-temporal sequence of 

events, and are considered to be plausible. These orders are retained in the final set of 

orders presented to a user. 

7.1.3 Evaluation 

A method of comparing the results of the ordering methodology (the orders in the set 

0) with a reference order was developed to evaluate the veracity of the orders in the 

final set 0. The ratio of the length of the longest subsequence of events between the 

two orders and the length of the reference order was used as a measure of similarity 

between two orders. Ratios close to one indicate a high degree of similarity, while 

ratios close to zero indicate a low level of similarity. Orders that are very similar to the 

reference order are considered more plausible than orders with a low degree of 

similarity. 



7.2 Conclusions 

The major results of this thesis are: 

The set of constraints based on the semantics of temporal intervals, which 

assist in filtering orders from the set of all possible linear orders of events. 

The set of mapping rules, which translate any of the thirteen temporal 

interval relations to 1-before or 1-equals. 

In certain cases, such as sequences of events that occur in a linear trajectory, 

it is necessary to account for the spatial locations of events in addition to 

their temporal relations in order to prune irrelevant orders from the set of 

results. 

These results can be used to answer the research questions posed in Chapter 1. The 

beginning questions were: What criteria should be used to determine which event or 

pair of events begins an order? How are subsequent event intervals placed in the 

order? and Do the orders generated retain the semantics of the original event 

scenario? The topological sorting algorithm determines which event in a set of event- 

relation combinations should begin an order, and how subsequent events should be 

placed in the order. The semantics of the original event scenario, however, are not 

always preserved in the resulting set of all possible linear orders of events, and so for 

these cases additional filtering is necessary. 

This brings us to the next two research questions posed in Chapter 1, Are all orders 

equally plausible? and Which orders should be presented to a user? Some, but not all, 



orders in the set of all possible linear orders retain the semantics of the original 

scenario of events. Thus, all orders generated by the topological sorting algorithm are 

not equally plausible. Tests are applied to be sure that only the orders which do retain 

the semantics of the original scenario of events are presented to a user. 

Another research question, Are there meaningfulfilters that could be applied, either 

to the event description or to the orders generated from it, that would render the 

results more rneaningfiul to a user?, requires a solution to the problem of unequal 

plausibility within the set of all possible linear orders. In this case, constraints based on 

semantics of the thirteen temporal interval relations were used to filter out less 

plausible orders, resulting in a set 0, containing only the orders that retain the 

semantics of the original scenario of events. Spatial information about events, when 

available, can also be used for filtering events and orders from the set 01, such that the 

resulting set of orders contains only spatially relevant events. If the event locations 

exhibit a significant linear trend, the set of orders can be pruned to include only orders 

which show evidence of a spatio-temporal sequence. 

The veracity of the results of these procedures was evaluated by running the 

topological sorting algorithm on test scenarios where an order was provided by an 

external source, and applying the filtering methods outlined in this thesis on the 

resulting set of possible linear orders. Comparison of the orders in the resulting set 01 

with the pre-existing order of events showed that the orders in the set O1 after all 

filtering methods have been applied show a consistently higher average percent 

similarity with the reference order than the orders in the set 0. For this reason, we 



conclude that constraints based on semantics of event interval relations do increase the 

plausibility of orders presented to the user. This supports the hypothesis of this thesis: 

Constraints that enforce the original semantics of the event interval relations are 

necessary in the generation of plausible linear orders. 

7.3 Future work 

This thesis considered methods of generating plausible linear orders based on a set of 

event-relation combinations that are partially ordered. Methods of generating all 

possible orders were established, and filtering procedures were developed to increase 

the plausibility of orders presented to a user. This section discusses directions for 

future work that builds on the work presented in this thesis. 

7.3.1 Use of explicit temporal information in the ordering process 

In this thesis, it was assumed that no explicit temporal information about events, such 

as dates or times, were available. However, there may be cases where some temporal 

information is available, such as the case where certain events are time-stamped. In 

these cases, temporal information should be used to further increase the plausibility of 

orders returned to a user. 

7.3.2 Detection of other spatial patterns of event locations 

In this work, linear regression was used to determine whether event locations in a set of 

event-relation combinations exhibited a significant linear trend. The orders in the set 0 



were then tested for evidence of a spatio-temporal sequence. However, spatial patterns 

of event locations are not always in the form of a straight line. For example, events 

may occur along a network such as street or electrical network, in a curved or looped 

pattern, or back and forth between two locations. Methods of detecting these kinds of 

spatial patterns would provide additional opportunities for filtering orders from the set 

0. 

7.3.3 Further evaluation of the overlaps/overlapped_by relations 

The overlaps and overlapped-by relations were treated in this thesis in the same 

manner as the before and after relations, i.e., no additional constraints are applied . The 

justification for this is that when two events are related by overlaps or overlapped-by, 

there are many uncertainties as to the semantics of the relation between the two events. 

In the case where the overlap between the two events is very small, the overlaps 

relation may closely resemble a meets or before relation. In cases where the overlap is 

large, however, the relation between the two events may closely resemble a starts, 

ends, or equals relation. Since each of these possibilities comes with its own semantics, 

no constraints based on the semantics of overlaps or overlapped-by were applied in 

this work. However, further research into the patterns of semantics of the 

overlapsloverlapped - by relation would be beneficial, leading to additional constraints 

that may be applied to the orders generated by the topological sorting algorithm, and 

further increasing the plausibility of the orders presented to a user. 



7.3.4 Automatic extraction of event-relation combinations 

The work in this thesis assumed the existence of a set of event-relation combinations 

describing a scenario of geographic events that are partially ordered. Methods to derive 

the set of event-relation combinations from a narrative, for example, were not 

discussed. While there is a growing literature on extracting this type of information 

from text (Pustejovsky et al. 2003), automatic event extraction remains an open and 

challenging research area, and one that will be essential in developing on the ideas 

presented in this thesis. 
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