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The advantages of constructing bridges with integral abutments are recognized by 

transportation agencies worldwide. However, pile supported integral abutments are 

limited to locations where the depth of overburden can provide fixed support conditions. 

In Maine, there are often cases where the depth to bedrock prohibits integral abutment 

bridges from being used. The goal of this research is to determine the feasibility of 

constructing integral abutments in conditions that cannot provide the fixed support 

conditions that are traditionally assumed. 

A finite element model was created that incorporates realistic constitutive and 

surface interaction models. These models allow for a good prediction of the soil/structure 

interaction and the structural response. Three critical model responses were identified: 

pile stresses, pile kinematics, and pilelbedrock interaction. These responses were 

examined in later parametric studies, which investigated how changes in girder length, 



pile length, loading, geometry, member properties, and subsurface conditions influenced 

the pile responses. 

It was shown that for piles less than 4 m in length on bedrock, the tip of the pile 

rotates but does not translate horizontally or vertically. This is similar, in principle, to a 

column with a pinned support. Dead and live loading of the girder induces a rotation of 

the abutments, which causes pile head displacement. Typically, displacements due to 

thermal loading are the only lateral pile displacements considered in integral abutment 

design. Under cyclic live and thermal loading, plastic deformation of the pile did not 

accumulate if the strains in the head were kept below 125% of the yield strain (1.25 E,). 

Observations of behavior from the parametric study were used as a basis for a set of 

design guidelines for piles that did not meet the length criteria of the current Maine 

Department of Transportation procedure. 

Using the criteria that pile head strains are kept below 1.25 E,, pile head moments 

based on data from the parametric studies are calculated from a relationship with the axial 

load. These relationships were created for various soil conditions and loadings, as well as 

pile sections. Forces at the pile tip are estimated from the moments at the head of the pile 

in order to determine if the pinned idealization is valid for the proposed pile/soil/load 

combinations. The ratio of shear forces and normal forces are compared to an equivalent 

coefficient of friction between the pile tip and bedrock, along with a factor of safety. 

The proposed design procedure results in values of moments and shear forces that 

are higher than those obtained from the finite element model. This is due to the inherent 

conservatism built into the methods used to calculate pile forces, which presents a worst- 

case design scenario. The proposed method expands the application of integral 



abutments to instances where an integral abutment supported by short piles is currently 

considered impractical. However, even with the expanded design criteria, finite element 

modeling indicates that there are cases where the combination of geometry, loading, and 

subsurface conditions may prohibit the use of integral abutments. 
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Chapter 1 

INTRODUCTION 

1.1. Background 

Standard steel and concrete girder bridges require expansion joints and bearings at 

abutments and internal supports to accommodate movement and stresses due to thermal 

expansion. However, these joints and bearings are costly to maintain, and are subject to 

frequent damage. Hardware can be damaged by impact from heavy vehicles and by snow 

removal equipment in the winter. Ln addition, runoff can bring sand and deicing salts into 

contact with the bearings and joints. Many steel and Teflon bearings eventually freeze 

due to either corrosion, or excessive wear from grit. Malfunctioning joints and bearings 

can also lead to unanticipated structural damage. The presence of joints can allow for 

settlement of pile-supported abutments and overturning due to active earth pressures or 

surcharge forces (Wasserman & Walker, 1996). 

In the early 1980s, the Federal Highway Administration (FHWA) issued a report 

titled "Tolerable Movement Criteria for Highway Bridges" (Moulton et a]., 1985). This 

report examined 580 bridge abutments in the United States and Canada, of which three- 

quarters had experienced movement that was not accounted for in the design. The report 

states: 

"The magnitude of the vertical movements tended to be substantially greater than 
the horizontal movements. This can be explained, in part, by the fact that in many 
instances the abutments moved inward until they became jammed against the 
beams or girders which acted as struts, thus preventing further horizontal 
movements. For those sill type abutments that had no backwalls, the horizontal 
movements were often substantially larger, with abutments moving inward until 
the beams were, in effect, extruded out behind the abutments." 



This account of the condition of the abutments leads to the conclusion that the use 

of expansion joints and bearings to account for thermal movements tends to exacerbate 

maintenance problems, rather than solve them (Wasserman & Walker, 1996). In the 

cases where the bearings were seized, and the abutment backwalls were able to contain 

the expansion of the girders, the structures acted similarly to integral abutment bridges. 

Integral or continuous bridges are built without expansion joints, relying on the 

interaction between the structure and surrounding soil to accommodate lateral forces 

caused by thermal contraction/expansion and braking. They are single or multiple span 

bridges with the superstructure cast integrally with the substructure. Generally, these 

bridges include capped pile stub abutments. Piers for integral abutment bridges may be 

constructed either integrally with or independently of the superstructure. Semi-integral 

bridges are defined as single or multiple span continuous bridges with rigid, non-integral 

foundations. Their movement systems are primarily composed of integral end 

diaphragms, compressible backfill, and movable bearings in a horizontal joint at the 

superstructure-abutment interface (Mistry, 2000). 

Allowance for seasonal thermal expansion or contraction is provided using an 

approach slab and a sleeper slab. A crack in the pavement forms at the termination of the 

approach slab, preventing pavement buckling, or bulging. Infiltration of runoff, or forces 

from vehicular impact is far less detrimental at this location. A typical configuration of 

an integral abutment bridge is shown in Figure 1.1. 



Figure 1.1. Typical components of an integral abutment bridge (Arsoy et al., 1999) 
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loaded (Wassennan & Walker, 1996). 

Traditionally, the use of integral abutment bridges is limited by certain factors. 

Because of the unique stress and flexibility requirements of the foundations, steel H-piles 
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1.2. Research Objectives 

Current design practices in Maine and other states limit the use of pile-supported 

integral abutments to sites where there is sufficient soil overburden to provide a full fixed 

condition for a driven pile (Krusinski, 2002). The objective of this research is to explore 

the feasibility and safety of pile-supported integral abutment bridges where the depth to 

bedrock is relatively shallow, considered in this study to be less than 4 m (13 fi) from the 

ground surface. If integral abutment bridges with short piles can be utilized successfully, 

their use in Maine could greatly increase, where bedrock is often close to the ground 

surface. The research objective will be accomplished in two phases. 

Phase I: 

a) Review of pertinent literature on the behavior and design of pile-supported 

integral abutments. 

b) Parametric studies will be conducted using finite element analysis, to 

determine the effects of various design parameters, including pile length, on 

the bridge and foundation response. 

c) Development of a preliminary set of design guidelines for short pile-supported 

integral abutment bridges. 

Phase 11: 

a) Instrumentation and analysis of a short pile integral abutment bridge to be 

constructed in Coplin Plantation, Maine. 

b) Finite element model verification using data from instrumented bridge. 



c) Development of final design guidelines for short-pile integral abutment 

bridges, incorporating data from both the finite element model and an actual 

bridge. 

1.3. Organization of this Thesis 

This thesis deals with the work performed in conjunction with Phase I of the 

research. It will be organized according to the tasks listed for this phase. Chapter 2 

contains a literature review that focuses on aspects of modeling and integral abutment 

pile design relevant to this project. Chapter 3 discusses the development of the finite 

element model used to perform the parametric studies. Details of the model that are 

covered include formulation of material properties, development of model geometry, and 

modellmaterial verification. Chapter 4 describes the finite element parametric studies 

used to study the response of short-pile integral abutment bridges. The results of these 

studies are used to develop a set of preliminary design guidelines for short-pile integral 

abutment bridges, which are presented in Chapter 5. A summary of research findings, 

conclusions, and recommendations for future research is given in Chapter 6. 



Chapter 2 

REVIEW OF IULEVANT LITERATURE 

Integral bridges are not a recent development and even occur naturally in the form 

of arches carved from bedrock by water and wind. For man-made integral structures, one 

need not look further than the unreinforced concrete arch bridges built by the ancient 

Romans (Burke, 1993). True integral abutment bridges with continuous beams began to 

appear after the 1940s. Since the early 1960s, the number of integral or continuous 

bridges constructed worldwide has increased dramatically. As of 1999, more than 30 

American state and Canadian provincial transportation agencies have constructed over 

9700 bridges with integral abutments (Kunin & Alampalli, 2000). 

Although the benefits of constructing integral abutment bridges are clear, suitable 

methods for their design and analysis are somewhat uncertain. While the American 

Association of State Highway and Transportation Officials (AASHTO) Load Resistance 

Factor Design (LRFD) Bridge Design Specification (AASHTO, 1998) does not directly 

address specific methods of analysis, it recommends that "Integral abutment bridges shall 

be designed to resist and/or absorb creep, shrinkage, and thermal deformations of the 

superstructure." Many states have developed in-house design practices for bridges with 

integral abutments, and several researchers have proposed methods for design and 

analysis as well. Numerous papers have been published on the design of piles for the 

support of integral abutments. Increasingly, results from finite element models along 

with field data have been used to validate these design processes. It is unclear if the work 

that has been done on integral abutments to this point can be applied to integral 

abutments founded on short piles. 



This literature review gives a brief overview of the current practice in the design 

and construction of bridges with integral abutments. It reviews research conducted thus 

far, including full-scale and field testing, mathematical models created for analysis, and 

some of the design procedures that have been developed. Knowledge garnered fiom this 

review will be put towards the creation of modeling and design methods for short-pile 

integral abutment bridges. 

2.1. Planning, Design, and Construction of Integral Abutments 

The results of several studies on integral abutment best practices are summarized 

in this section. This review focuses on surveys performed by transportation agencies in 

the United Kingdom (U.K.), Canada, and the United States (U.S.). The Canadian surveys 

focus on the practices employed by the provinces of Alberta and Ontario. The survey of 

U.S. transportation agencies performed by Kunin and Alampalli (2000) encompasses 

over 30 states and Canadian provinces, excluding Alberta and Ontario. Each section 

discusses the planning, design, and construction considerations of these world regions. 

2.1.1. Current Practice in the United Kingdom 

The construction of integral bridges in the U.K. is different from that in the U.S. 

or Canada, mainly due to the various forms of integral bridges used. Figure 2.1 depicts 

the six abutment configurations considered integral. Of these six structures, only the 

frame, embedded, and bank pad abutments, or slight variations of the three are used in the 

U.S. or Canada. In a paper titled "The Design of Integral Bridges", (Highways Agency, 

1996) the British Highways Agency does not specifically limit the sites at which integral 



bridges can be constructed as many agencies do. In this paper, the only general limitation 

is that the longitudinal movement of the abutments cannot exceed 20 mm (0.75 in). 

The design of integral bridges in the U.K. is straightforward in that they are 

essentially designed in the same manner as jointed bridges, except that they must be able 

to accommodate thermal expansion and passive earth forces. Integral bridges in the U.K. 

must be stronger than their American counterparts, due to the higher design speeds and 

heavier design loading in the U.K. In certain cases, AASHTO design loads are 60% of 

the U.K. highway loading for bridges in the 40-60 m (130-200 ft) span range (Taylor, 

1999). Lntegral bridges may be founded on piles or spread footings. Piles must be 

designed to accommodate displacement and support axial loads, as well as resist forces 

due to the movement of the pile or surrounding ground. 

a) Frame Abutment b) Frame Abutment c) Embedded Abutment 

d) Bank Pad Abutment e) End Screen Abutment f) End Screen Abutment 

Figure 2.1. Types of integral abutments (Highways Agency, 1996) 
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The Highways Agency does not specify construction details such as approach, or 

run-on, slabs. Taylor (1999) describes a 1997 tour of integral abutments in the U.S. and 

Canada, which was attended by six engineers from the U.K. Department of Trade. They 

felt that the ride quality they experienced over displaced and settled run-on slabs would 

not be acceptable in the U.K. Lnstead of promoting or forbidding approach slabs, their 

recommendation was to rely on higher specification of backfill material and accept any 

pavement damage that occurs as a result of not having cycle control devices. 

The abutment backfill is a designed material, with properties specified to provide 

a balance between stiffness and flexibility. In general, granular materials comprising 

compacted rounded particles of uniform grading can have a peak angle of internal 

friction, $, as low as 35", and may accommodate thermal expansion without high earth 

pressures. However, these soils are somewhat vulnerable to settlement. Fill of 

compacted, well-graded, hard angular particles can have a peak angle of internal friction 

as high as 55" with very high resistance to thermal expansion. These soils are less 

vulnerable to settlement (Highways Agency, 1996). 

2.1.2. Current Practice in Canada 

Alberta Transportation (AT) and the Ontario Ministry of Transportation (MTO) 

favor the use of semi-integral and pinned-integral bridges as opposed to the integral 

abutment bridges that are more commonly used elsewhere. Semi-integral abutment 

bridges have a deck and girder that is continuous with the approach slabs, thereby 

eliminating the need for an expansion joint. However, unlike full integral abutments, the 

superstructure unit is not continuous with the abutments. In a pinned-integral abutment, 



the superstructure is embedded in a large concrete block called a diaphragm. The 

diaphragm is then connected to an abutment seat using a steel pin and bearing pad 

assembly. Both semi-integral and pinned configurations eliminate the transfer of moment 

between the abutments and girder ends. Semi-integral and pinned-integral abutment 

designs are not as cost effective and easy to construct as fully integral abutments. 

However, they can be used at sites where AT or MTO may not usually use a standard 

integral abutment, such as sites with large skew, long spans, or poor soil conditions. 

Examples of pinned and semi-integral abutment details are given in Figure 2.2. 

Figure 2.2. Examples of (a) Semi-Integral and (b) Pinned-Integral abutment 

configurations (Alberta Transportation, 2003) 

Abutment Seat 

( 4  

2.1.2.1. Selection Criteria for Integral Abutment Bridges 

Abutment Seat 

(b) 

During the planning stage, several factors are considered that determine the 

feasibility of using an integral abutment over a standard girder bridge. The length to be 

spanned is considered as a limiting factor. In Ontario, the total girder length is limited to 

150 m (492 ft), which is based on the MTO's success and experience with integral 



abutment bridges (Husain and Bagnariol, 2000). Integral bridges in Alberta are generally 

less than 50 m (164 ft) long, with a few bridges as long as 75 m (264 ft). In Appendix C 

of the AT Design Manual (2003), Yu notes that 95% of all bridges in Alberta are less 

than 100 m (328 ft) in length. Both agencies prefer to use concrete decks on steel girders, 

although prestressed concrete girders are also used. 

The geometry of the bridge plays an important role in the feasibility of bridges 

with integral abutments. For full integral abutments, MTO prefers skew angles of less 

than 20". Skews of up to 35" are allowed, but only if a thorough analysis is performed to 

determine the skew effects. The analysis must consider the effects of variables such as 

torsion, unequal load distribution, lateral torsion, etc. Semi-integral abutments do not 

have a limit on skew angle. Abutment height is limited to 6 m (20 ft), and wingwall 

length is limited to 7 m (23 ft) for all types of integral abutment bridges. While these 

provisions are intended to reduce the amount of soil pressure on the abutments, the 

minimum height of integral abutments should provide adequate protection from frost 

penetration. AT has geometric limits similar to MTO, however skews for all integral 

bridges are generally less than 30". They advise that abutment heights should be kept as 

short as possible to reduce earth pressures. 

MTO limits the use of integral abutments based on subsurface soil conditions. 

Sites where caissons or piles less than 5 m (16 ft) in length are planned for a foundation 

are considered unsuitable for integral abutment bridges. Integral abutments are not 

utilized at sites with soils susceptible to liquefaction, slip failure sloughing, or boiling. 

Sites with dense soil require piles to be installed in preaugured holes filled with loose 

sand. Use of semi-integral bridges are not as restricted and are subject to the same 



general requirements as jointed bridges. It can be assumed that the AT restrictions on use 

of integral abutment bridges with regards to soil conditions are similar to that of the 

MTO, since the AT design guidelines draw in part from those of the NIT0 (Alberta 

Transportation, 2003). 

2.1.2.2. Design and Construction of Integral Abutment Bridges 

Once the decision to use an integral abutment is made, the design process begins. 

h4TO Structures Office Report SO-96-01 by Husain and Bagnariol(1996) outlines a 

rational design method for integral abutments, which is used by both MTO and AT. This 

method is similar to the rational method proposed by Abendroth & Greimann (1988), 

which is discussed in Section 2.3. Husain & Bagnariol (2000) state, "In general, the 

analysis and design of semi-integral bridges are the same as those for conventional 

jointed bridges." MTO does not require any special design considerations for semi- 

integral bridges, except for the effect of the backfill pressure against the abutments and 

wingwalls. Both agencies specify that integral abutment bridges be founded on flexible 

piles, although AT does allow integral abutments to be constructed on shallow footings in 

some cases. The preferred pile type for the support of integral abutments is a steel H-pile 

oriented such that bending occurs about the weak axis. In skewed bridges, the web of the 

pile is oriented perpendicular to the direction of the girder. 

The considerations for the construction of integral abutment bridges are virtually 

identical for both Ontario and Alberta. Both agencies are most concerned with the 

construction details and cycle control joints at the end of the approach slabs. Provisions 

are made to allow the bituminous pavement to better compensate for structural 



Figure 2.3. Typical expansion systems for steel and concrete girder integral bridges 

(Alberta Transportation, 2003) 
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movements, by controlling the location and depth of cracking. Typical cycle control joint 

details from the AT Design Manual are shown in Figure 2.3. The cycle control details for 

MTO are identical to the Type 1 and Type 3 joints of AT. The type of cycle control 

detail to be used is chosen based on the girder material, overall structure length, seasonal 

temperature variation, and capacity for movement of the structural system. Cycle control 

system recommendations for MTO and AT are given in Table 2.1. 

Table 2.1. Suggested Joint Details for Various Span Lengths 

Afiel- Alberta Transportalion (2003) arzd Husain & Bag~znriol(2000), 1 m = 3.281f2 

Drainage and construction sequence are the other major construction details 

considered by AT and MTO. Both agencies specify that adequate drainage of the 

abutment backfill must be provided to prevent damage. This damage is due to not only 

frost action but also degradation of the concrete and steel by water. Construction must be 

scheduled, such that tasks like pouring the deck or placing approach fill do not cause any 

undue stresses in the structure. Fill must be placed in nearly equal lifts at both ends of 

the structure. This prevents the occurrence of unequal earth pressures on the abutments, 

as well as minimizes differential settlement. 

Agency 

Alberta (AT) 

Ontario (MTO) 

2.1.3. Current Practice in the United States 

Practices regarding integral abutment bridges vary considerably from state to 

state. These practices are typically based on past local experience, making them 
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somewhat empirical. Of the 39 transportation agencies responding to the survey by 

Kunin and Alampalli (2000), eight said that they had no experience with integral 

abutment bridges. Overall, the general opinion of integral abutment bridges was high, 

with most agencies describing their performance as good or excellent. The survey reports 

that the Arizona Department of Transportation (DOT) was the only agency with a 

negative opinion, commenting that Arizona DOT built 50 integral abutment bridges, and 

they all required expensive repairs on the approaches. Therefore, they do not recommend 

the use of integral abutments. The survey does not mention the nature of the problems 

with the approach system, or any possible causes. 

A summary of survey responses regarding the number, earliest and most recent 

construction of, and length of longest integral abutment bridges is given in Table 1 in the 

article by Kunin & Alampalli (2000). Integral abutment construction was reported as 

early as 1905, and as recently as at the time of survey. The longest precast concrete 

girder structure was a 358 m (1 176 ft) bridge built in Tennessee. The longest steel and 

cast-in-place concrete girder bridges were both built in Colorado, measuring 3 18 m 

(1045 ft) and 290 m (953 ft), respectively. Typically, the integral abutments in the U.S. 

are the full integral type, with some states using pinned-abutment details with concrete 

girder superstructures, or integral abutments founded on spread footings. A typical 

integral abutment detail used by the Maine Department of Transportation (MDOT) is 

shown in Figure 2.4. 

2.1.3.1. Selection Criteria for Integral Abutment Bridges 

Similar to agencies in Canada, state transportation agencies consider several 

factors that determine whether an integral abutment is a viable choice for a certain 



location. In order to control the thermal expansion and contraction, agencies in the U.S. 

limit either the length of the girders or the magnitude of thermal movements. While both 

measures aim to accoinplish the same goal, agencies that limit the girder length tend to 

tolerate larger thermal movements. These thermal movements are based on the 

temperature ranges suggested for cold and moderate climates in Article 3.16 of the 

AASHTO Bridge Design Specifications (1 998). 
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Figure 2.4. MDOT integral abutment detail (MDOT, 1999) 

There are several other limiting factors considered by agencies in .the U.S. 

According to the survey responses, skew is generally limited to 30'. However, one 

agency allowed no skew, while others have no skew limitations. There are various limits 

on abutment height and stem height as well. Kunin & Alampalli (2000) summarize the 

responses in regard to allowable limits in Table 2 of their article. 



2.1.3.2. Design and Construction of Integral Abutment Bridges 

The design process among state agencies is as varied as the limits imposed on 

geometry or thermal expansion. For the most part, passive soil pressure is used in 

abutment design, applied in distributions such as uniform or triangular. Massachusetts 

has started determining design earth pressures based on tests of an instrumented full-scale 

wall, while states such as North Dakota, California, and Alaska assume an ultimate 

passive soil pressure based on Rankine or similar methods. 

Approximately 60% of the respondents answered that skew effects are not 

considered with respect to calculation of soil pressures, with three states indicating that 

they currently have no skewed integral abutment bridges. In Colorado, the soil pressure 

is assumed normal to the abutment, and battered piles are used by the department of 

transportation to accommodate transverse loading. Maine assumes that loads on skewed 

abutments induce transverse forces and translation to the piles. In their response to the 

survey, Oregon designers expressed concern that large skew angles can result in a large 

torque, with soil thrust loads not opposing one another (Kunin & Alampalli 2000). 

Steel H-piles are the most frequently used foundation for integral abutment 

bridges, but respondents have also used cast-in-pace concrete, prestressed concrete, steel 

pipe, and concrete-filled steel pipe piles. About half of the respondents design piles 

solely for axial loads; the others conduct both axial and lateral analyses. Several agencies 

also analyze pile stresses using various methods. Some either consider the pile to be 

fixed at a certain depth, with a fixed, pinned, or free connection at the head, depending on 

the abutment connection detail. The computer program L-PILE (Ensoft, 2002), 

COM624P (Wang & Reese, 1993), or an equivalent program, are used by some agencies 



to analyze the pile stresses. Maine uses an allowable stress design based on rotation of 

the girder ends, discussed further in Section 5.1. 

Kunin & Alampalli (2000) summarize the various design criteria involving pile 

orientations in Table 3 of their article. Three U.S. agencies differ from those listed in the 

table. Washington State typically alternates orientation from pile to pile within an 

abutment, while North Dakota orients the weak axis parallel to the abutment face. 

Colorado typically places the weak axis parallel to the skew direction, however for larger 

movements, the weak axis is oriented in the direction of movement 

Much like the rest of the world, agencies in the U.S. use construction details such 

as approach slabs and cycle control joints, which allow movement of the abutments 

without causing distress to the approach pavement. Most details are similar, with the slab 

resting on a lip or corbel built into the abutment. Typical approach slab problems include 

settlement, transverse or longitudinal cracking of the slab, and cracks in asphalt overlays 

at the ends of approach slabs. Washington State reports difficulties with approach slabs 

when bridge length is more than 105 m (345 ft) (Kunin & Alampalli, 2000). 

Some agencies specify treatments to the abutment backwalls and backfill in order 

to reduce soil pressures. Wyoming has had satisfactory performance with a 50-100 mm 

(2-4 in) gap between the abutment and geotextile-reinforced backfill. Michigan has used 

high-density foam backing on one bridge. However, the performance of the foam is 

difficult to evaluate since the designers themselves questioned whether the foam backing 

was necessary. This is a sentiment echoed by agencies that have tried similar measures. 

Colorado typically uses a flowable fill with low-density foam and an expansion joint, 

providing for movements at the end of the approach slab via cycle control structures. 



When Kunin & Alampalli asked if oversized holes are predrilled before pile 

driving and later backfilled with granular material, eighteen of 30 agencies said no. 

Some use predrilled holes if certain conditions are met, such as short fixed piles, difficult 

driving conditions, piles in fill sections, and bridge lengths of more than 30 m (98 ft). 

Several provided details for size of the pile hole, minimum hole depth, type of backfill, 

and required density limits; which are summarized by Kunin & Alampalli (2000) in 

Table 4 in their article. No agencies currently use a compressible material on piles to 

reduce earth pressure, in the same manner as with abutments. Colorado has used a 

bitumen coating to reduce downdrag on piles, but has not tried to reduce earth pressure. 

2.2. Behavior of Integral Abutment Piles 

Lntegral abutments are most commonly supported by pile foundations, due to the 

ability of a pile to resist lateral loading while maintaining its axial capacity. Studies on 

the behavior of integral abutment piles have been performed both in the laboratory and in 

the field. Published studies on the behavior of integral abutment piles are reviewed in 

this section. In the past, investigations into the behavior of integral abutment piles had 

been limited to field studies of in-service integral abutment bridges and driven test piles. 

Laboratory studies of integral abutment piles, using either full-size or scaled-down 

models, have become popular. Most of the experimental studies involve the use of steel 

H-piles as the foundation type, although the study performed by Arsoy, Duncan, and 

Barker (2002) examined steel pipe and prestressed concrete piles as well. 



2.2.1. Field Studies 

Integral abutment bridges equipped with instrumentation provide valuable insight 

into the behavior of integral piles due to loading from traffic, earth forces, and 

temperature change. Many of the field studies performed are concerned more about the 

behavior and performance of the structure as a whole. A study of the Cass County 

Bridge by Jorgenson (1 983) focused primarily on the responses of piles due to the 

thermal movements of the bridge. The Cass County Bridge is located approximately two 

miles north of Fargo, North Dakota. It is a 137 m (450 ft) long prestressed concrete 

girder bridge with integral piers and abutments, supported by H-piles. 

Measures were taken in this bridge to relieve the earth pressure on the piles and 

abutments, and to permit longitudinal movements. The measures on the abutment 

consisted of a void space created with corrugated metal supported by 100 mm (4 in) thick 

pressure relief strips. The pressure relief strips are made from a material that will recover 

96% of its thickness after being compressed to 50% of its thickness according to the 

manufacturer (Jorgenson, 1983). 

Similar measures were taken to allow for longitudinal movement of the piles 

without resistance. A 400 mm (1 6 in) diameter hole was bored through the soil to a depth 

of 6 m (20 ft). Piles were then placed in the holes and driven to an average final depth of 

33.5 m (1 10 ft). A 50 mm (2 in) thick layer of compressible material was then glued to 

each side of the web for the first 6 m, and the hole was backfilled with sand. Figure 2.5 

provides schematics of the details of the pressure relief systems incorporated on the 

abutments and piles of the Cass County Bridge. 



To determine deflections and stresses, the piles were instrumented with slope 

indicators and strain gages. The slope indicators were installed in 10.5 m (35 fi) casings 

attached to the edge piles of each abutment. Readings were taken at 0.6 m (2 ft) 

intervals, with the instrument oriented in the plane of weak axis pile bending. Electric 

resistance strain gages were attached to the two edge piles of the north abutment. Stable 

instrument readings were obtained from installation in the fall of 1978 to the spring of 

1979, when a flood caused the water level to reach a height above all of the strain gages. 

After this point, the readings were erratic, and the data from the strain gages was ignored. 

1 400 rnrn predrilled hole 

permit sliding Sand 

, ' I  . 

intermittent pressure 2-25 mrn thick layers 
relief strips of Ray-Lite 

Figure 2.5. Pressure relief system details for abutments and piles (Jorgenson, 1983) 

Since data from the strain gages could not be used, moments in the pile were 

calculated based on the deflection readings obtained from the inclinometers. The 

bending moment was then related to the bending stress in the pile through the section 

modulus. It was calculated that the moment induced by the maximum measured 

abutment movement of 49.8 mm (1.96 in) was sufficient to cause yielding within the top 

305 mm (1 ft) of the pile. However, while strains exceeded the yield strain of the pile, 

the plastic hinge moment was not reached. 



Data from the instrumentation was compared against an analytical model that 

predicted stresses in the piles due to movement of the abutments. However, it was found 

that the model predicted stresses that exceeded the yield stress of the pile by a factor of 

approximately three. This was attributed to the fact that the behavior of the pile in the 

model was incorrectly assumed elastic. However, the movements in the pile estimated 

using the model compared well to those measured by the inclinometers. 

2.2.2. Laboratory Studies 

The results of two laboratory studies of integral abutment piles are presented in 

this section. The first study is a test of scaled-down steel H-piles subjected to axial and 

lateral loading. The second study involves full-scale cyclic lateral load testing of three 

types of piles, steel H-piles, steel pipe piles, and prestressed concrete piles. 

2.2.2.1. Small-scale Testing of Piles 

Amde, Chini, and Mafi (1997) performed experiments on model steel H-piles 

driven into dry silica sand. The model H-piles underwent simulated thermal expansions 

and contractions of a bridge abutment to determine the influence of lateral displacement 

on the vertical load-carrying capacity of the piles. Because the cost of tests increases as 

the size of the pile increases, small-scale tests were performed. In most physical models, 

scaling correlations are necessary to determine the equivalent full-scale values from 

experimental data. In the case of soil, which behaves non-linearly, model soil would 

require increased unit weight. In addition, if complete similitude is desired, the model 

piles must be tested under increased gravitational acceleration in a centrifuge to match 

stresses present at full-scale. For a model with a scale of 1/60, a radial acceleration of 



sixty times the acceleration of gravity is applied (Lock, 2002). However, since the model 

test results were compared with finite element models that used actual geometric and 

material properties existing in the model piles and soil, scaling relations were not 

required. 

The model H-piles used in this study were fabricated from A36 structural steel, 

with the width-to-thickness ratios of the web and flange conforming to American Institute 

of Steel Construction (AISC) specifications for 'compact sections'. This was done to 

allow the sections to develop their plastic moment without any local buckling of the 

compression flanges occurring. Consideration of the height and diameter of the soil test 

tank led to the sizing of the H-piles to minimize the effect of clearance between piles and 

clearance between the pile and tank. 

The testing apparatus is depicted in Figure 2.6. The tank was filled with dry silica 

sand in 15 layers. The first two layers were compacted to maximum density, and the 

other layers of soil were placed, leveled, and compacted to a unit weight of 16 k ~ / r n ~  

(102 lb/ft3). To model end bearing conditions, a piece of steel plate was added at the pile 

locations during the filling of the tank. Each test pile was marked in 25 mm (1 in) 

increments, placed over the desired position, plumbed, and driven to the required depth. 

In the locations that end-bearing tests were performed, the pile was driven until it 

encountered the steel plate. The number of blows required for driving the pile each 

increment using a 3.7 kg (2.2 Ib) hammer dropped from 305 rnrn (1 ft) was recorded. 
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Figure 2.6. H-pile testing apparatus (after Amde et al, 1997) 

The axial load test consisted of a vertical load applied to each model test pile in 

445 N (100 lb) increments. Settlement and strain were recorded for each load increment 

by means of dial and strain gages. The displacement was the average of measurements 

from two dial gauges located on the pile cap. The loading continued until the change in 

displacement increased rapidly over a small change in the applied load. 

Lateral load testing consisted of a load applied in 133.5 N (30 lb) increments. 

Displacement was measured by two lateral deflection gauges installed on the pile cap, 

and flexural strains were measured through strain gauges installed on opposite sides of 

the web. There was no mention as to whether the piles were subjected to weak or strong 

axis bending. As in the case for the axial test, failure was considered as the point where 

displacement began to increase rapidly over a small change in the applied load. The 

combined load tests were a combination of both the axial and lateral testing procedures. 

The procedures discussed for the lateral load test were used to displace the pile cap to the 



required lateral displacement, and then the procedures of the axial load test were 

conducted until the ultimate pile capacity was reached. The lateral and vertical loads, and 

the displacement for each direction were recorded. The test on the end bearing pile was 

run to the limit of the test set-up for vertical load, which was equal to 4.45 kN (1000 lb). 

The experimental data was compared to results from the finite element model. 

Curves for horizontal displacement versus lateral load for test pile A-3 obtained 

experimentally and from the finite element model are shown in Figure 2.7. The finite 

element model used for comparison is the same nonlinear model developed by Greimann 

et al (1986), discussed later in this chapter. Pile A-3 was 1143 mm (3.75 ft) long, and 

constructed from 3.2 mm (118 in) thick plates to a depth and width of 32 mm (1 !4 in) . 

Although the finite element results are conservative, for small horizontal displacements 

the discrepancy between the two curves is smaller than at higher displacements. In 

addition, piles 1143 mm in length were found to have more resistance to lateral load than 

those that were 990 rnrn (3.25 ft) long. The thickness of the webs and flanges also has an 

effect on lateral resistance of the pile. 
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Figure 2.7. Horizontal load/displacement curves (after Amde et al, 1997) 



A review of the vertical load-settlement data shows that all the piles failed 

through a vertical-type failure, occurring when the applied load exceeded the ultimate 

soil frictional resistance. The load settlement curves became horizontal as the load 

reached the ultimate pile load for all prescribed lateral displacements. When 

experimental data was compared to the results of the finite element program, the finite 

element model program underestimated the ultimate capacity of piles. 

Amde, Chini, and Mafi (1997) concluded that the results show that all the model 

piles failed through a vertical-type failure, that is, the applied load exceeded the ultimate 

soil frictional resistance. In addition, no plastic hinges occurred during any of the load 

tests. The results from a nonlinear finite element computer program were found 

conservative when compared to the experimental results. The experimental results 

showed greater pile capacities and lower bending moments than were predicted by the 

finite element program. 

2.2.2.2. Full-scale Testing of Piles 

Arsoy, Baker, and Duncan (2002) investigated the performance of various types 

of piles used to support integral abutment bridges. Full-scale tests were performed on a 

steel H-pile, a steel pipe pile, and a prestressed concrete pile to determine the capability 

of each type of pile to withstand thousands of lateral thermal loading cycles with minimal 

distress. As shown in Figure 2.8, the soil-pile-bridge interaction is not modeled in the 

test setup. Rather, only the pile behavior under cyclic thermal displacements is under 

investigation. 



Figure 2.8. Equivalent laboratory test setup (Arsoy, Duncan, and Barker 2002) 

The type of H-pile tested was an HP10x42 fabricated from grade A572-50 S50 

steel. The pipe pile was made from ASTM A252 Gr. 3 steel, and had a 350 mm (14 in) 

outside diameter, with a 12.7 mm (% in) wall thickness. The prestressed concrete pile 

was a 305 mm (12 in) square pile with five 12.7 mm diameter low relaxation steel 

strands, with a yield stress of 1.86 GPa (270 ksi). The prestress in the pile was 6 MPa 

(920 psi) (Arsoy et al, 2002). The piles were cast into pile caps constructed from 

Virginia DOT Class A4 concrete with a minimum 28-day strength of 27.6 MPa 

(4000 psi). Due to time constraints, early strength accelerators were added to achieve the 

28-day strength in 7 days. Both the H-pile and prestressed pile were embedded 460 mm 

(1 8 in) into the pile cap, while the pipe pile was only embedded 150 mm (6 in). 

However, reinforcement of the pipe pile extended another 305 mm into the pile cap to 

achieve the same embedment as the other two piles. 
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The pile caps were fastened to a reaction floor beneath a load frame. A gravity 

load simulator was used to apply a constant vertical load to the pile as it deflected 

laterally. Approximately 27,000 cycles of lateral load were applied by a displacement- 

controlled actuator to simulate the thermal loading over a 75-year bridge life. Pile 

displacements were measured using wire pot transducers. Three transducers were affixed 

to the pile, while two were used to measure the lateral displacement and rotation of the 

pile cap. Load cells were used to monitor the vertical and horizontal loads being applied 

to the pile. Four strain gages were attached to the H-pile near the pile cap, at the tip of 

each flange. The pipe pile had two strain gages near the cap, one 1397 mm (55 in) above 

the pile cap, and one 1778 mm (70 in) above the cap. The prestressed concrete pile had 

only two gages, both at the pile cap, on opposite sides of the pile. 

The H-pile bending about its weak axis exhibited the best behavior of the three 

piles tested. For the entire test, the maximum stress level was set to 50% of the nominal 

yield capacity of the pile. Overall, the H-piles sustained stresses in excess of 138 MPa 

(20 ksi) in cyclic loading and 241 MPa (35 ksi) in static loading without any sign of 

distress. The steel pipe pile was significantly stiffer than the H-pile. Consequently, the 

cap of the pipe pile rotated more than that of the H-pile. As was the case with the H-pile, 

the pipe pile did not sustain any damage during testing. The concrete pile was tested with 

no vertical load. In the first cycle, tension cracks developed at the interface with the pile 

cap. The tension cracks in the test pile developed progressively from the bottom (cap) 

towards the top (toe). The cracks gradually enlarged as the cycles continued. At the end 

of the test, it was observed that the contact area was only 20% of the original cross- 

sectional area of the pile. 



Arsoy, Duncan, and Barker (2002) conclude that steel H-pi1 es oriented in weak- 

axis bending are a good choice for support of integral abutment bridges. Pipe piles are 

less suitable for support of integral abutments, because they have significantly higher 

flexural stiffness than H-piles, for a given width or diameter. Because of this, stresses in 

an abutment supported by pipe piles will be higher than stresses in an abutment supported 

by steel H-piles in weak axis bending, leading to increased loading on the abutment. 

Concrete piles appeared to be the least suitable choice for support of integral abutments 

because tension cracks form and progressively worsen under cyclic thermal loading. 

This can greatly reduce their vertical load carrying capacity. While suitable integral 

abutment pile types are determined in this study, the results are lacking because they do 

not account for the soil/structure interaction, and the stress levels in the piles were 

relatively low. 

2.3. Design Methods for Integral Abutment Piles 

Because the AASHTO Specifications do not specifically address the design of 

piles for integral abutment bridges, there has been extensive research in this area. Many 

state transportation agencies use in-house methods, which are based on experience and 

are therefore highly empirical. The research into integral abutment pile design thus far 

has been aimed at using simplified structural models, or computer analysis, to account for 

the stresses and displacements in the pile created by thermal expansion of the 

superstructure. This section discusses the basis, procedures, and validity of two of the 

most widely accepted methods for integral abutment pile design. The first is referred to 

as a "rational design method" by Abendroth et al. (1989), which is in use by several state 

DOT'S, and was part of an FHWA sponsored workshop on integral abutment bridges 



(GangaRao, 1996). The other design method was prepared for the American Iron and 

Steel Lnstitute (AISI) by the Tennessee Department of Transportation (Wasserman & 

Walker, 1996). 

2.3.1. "Rational Design Method" 

The "rational design method" presented by Abendroth et a1 (1989) is an evolution 

of a design procedure by Greimann and Wolde-Tinsae (1 988). This procedure models 

the piles as equivalent cantilevers, based on the stiffnesses of the soil and the pile. Two 

alternatives are presented that address three AASHTO Specification (1993) design 

criteria: capacity of the pile as a structural member; capacity of the pile to transfer load to 

the ground; and the capacity of the ground to support the load. The first alternative is a 

conventional elastic approach, while the second is an inelastic approach that considers the 

redistribution principles of ductile piles. 

The principle of this method is that a pile embedded in soil can be modeled as an 

equivalent beam-column without transverse loading between the ends, having a fixed 

base at a certain depth. The head of the pile can be modeled as either a fixed or a pinned 

connection, depending on the type of integral abutment detail specified, fixed for a full 

integral abutment, pinned for pinned or semi-integral. Figure 2.9 shows an idealization 

of the fixed cantilever, with both types of restraint at the head. 

For a long pile embedded in soil, the length below which lateral displacements are 

relatively small (I,) can be computed as 

(Equation 2.1) 



Figure 2.9. Equivalent cantilevers for: (a) fixed-head condition (b) pinned-head 

condition (Greimann et al., 1987) 
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The quantity kh represents the lateral soil stiffness approximated by a linear 

Winlcler soil model (Poulos and Davis, 1980), and Ep and Ip represent Young's modulus 
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and moment of inertia of the pile, respectively. For non-uniform soil conditions, an 

iterative process is used to determine an equivalent lateral soil stiffness parameter, k,, 

which is used in Equation 2.1 in place of k,,. Using the ratio of the calculated value of 1, 

Actual System 

(b) 

to I,,, the equivalent embedment lengths, I,, for moment, buckling, and horizontal stiffness 

are calculated using Figure 2.10. However, it should be noted that the equivalent 

cantilever defined in Equation 2.1 is a common, although imprecise, idealization of 

laterally loaded piles. Fleming et a1 (1992) comment that the pile is considered "fixed at 

some depth determined by folklore and ignoring the soil support above that depth". 



Figure 2.10. Length of embedment factors for: (a) fixed-head condition (b) pinned- 

head condition (Abendroth & Greimann, 1987) 

Since this approach is based on elastic behavior and neglects any potential 

strength associated with the formation of plastic hinges, the redistribution of internal 

forces does not contribute to the ultimate strength of the pile. This design method is an 

elastic design procedure for the equivalent cantilever beam-column that considers all 

stresses developed in the pile. The lateral displacement, A, at the pile head, caused by 

thermal expansion and contraction of the bridge superstructure, produces an end moment, 

M I ,  given as: 
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The bending moment coefficient Dl equals 6 or 3 for fixed or pinned-head piles, 

respectively. Abendroth and Greimann comment that this moment can dramatically 

affect the axial capacity of the pile. 
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A second approach used for ductile piles does not neglect the redistribution of 

forces due to the formation of plastic hinges. The stresses induced by the horizontal pile 

head movement are considered to not significantly affect the pile ultimate strength, as 

long as the corresponding strains can be accommodated through adequate pile ductility. 

Neglecting these thermally induced pile stresses is justified by first-order plastic theory 

involving small displacements (Abendroth and Greimann, 1989). However, for this case 

to be valid, local and lateral buckling must be prevented. 

For the second alternative, the axial pile load, P, generates a bending moment due 

to the lateral displacement at the pile head. Abendroth and Greimann propose a 

conservative upper bound on this induced end moment as: 

M ,  = D, P A  (Equation 2.3) 

where the bending moment coefficient D2 equals 0.5 or 1 for fixed or pinned head piles, 

respectively. 

Using these thermally induced moments, combined with moments and axial loads 

produced by dead and live loads in the girder, the applied axial and bending stresses in 

the pile are calculated. For multi-span bridges, an axial force is induced in the pile by 

thennal expansion that must be considered as well. The axial and bending stresses are 

compared to allowable stresses using equations 10-42 and 10-43 in Section 10.36 of the 

AASHTO Standard Specification (1 996). 

In addition to strength and stability criteria, both design alternatives must satisfy 

local buckling and ductility criteria. For Alternative 1, the width-to-thickness ratios of 

the cross-sectional elements must be limited to prevent local buckling before the yield 



moment is obtained. According to Article 1.9 of the AISC Specification (1 980), standard 

rolled HP shapes satisfy these width-thickness criteria. Therefore, local buckling will not 

govern the pile capacity. 

The second alternative requires additional ductility greater than that needed to 

satisfy the conditions of the first. This is to allow the pile to develop the inelastic rotation 

capacity associated with plastic hinge formations. Equation 2.4 expresses the ductility 

criterion in terms of the lateral displacement of the pile head. 

A 5 A, (D, + 2.25 Ci )  (Equation 2.4) 

D3 is a ductility coefficient equal to 0.G or 1.0 for fixed or pinned head piles, respectively, 

and C, is an inelastic rotation capacity reduction factor, based on the flange width-to- 

thickness ratio and the yield stress of the pile. The expression for Ci is given as 

(Equation 2.5) 

An upper bound of 1.0 for Ci applies when b / l 2 t / ~  65fiP, and a lower bound of 

zero governs when b ~ I 2 q z  9 5 e P .  Ab is the horizontal movement of the pile head at 

which the actual extreme fiber bending stress equals the allowable bending stress, Fb. 

The displacement Ab is given as: 

(Equation 2.6) 

where S, is the section modulus of the pile with respect to the plane of bending. 



Abendroth and Greimann also determined that lateral displacement of the pile 

could affect the capacity of the pile to transfer load to the ground. However, this 

displacement should not affect the end bearing resistance of flexible piles, nor the 

capacity of the ground to support the load. Fleming et al. (1992) recommend that the 

maximum lateral displacement below which the frictional resistance is assumed to be 

unaffected by the movement is determined as 2% of the pile diameter. If the lateral 

displacement due to temperature change exceeds this value, the adjusted length of pile 

used in calculation of frictional resistance to axial load, I,,, is found using Figure 2.1 1. 

Figure 2.11. Adjusted pile lengths for frictional resistance of fixed-head piles in 

uniform soil (Abendroth et al, 1989) 

The ultimate strengths predicted by both alternatives were compared to a finite 

element model as well as data from two bridges in Iowa (Girton et al, 1991). For a steel 

HP 10 x 42 pile, the results showed that both design alternatives were conservative, with 

Alternative 1 being overly conservative for small slenderness ratios where yielding 

controls over stability. Both the design alternatives and the finite element model predict 



a decrease in the ultimate pile capacity as the horizontal displacement at the pile head 

increases. Detailed pile design examples using this method can be found in Abendroth & 

Greimann (1989) as well as in GangaRao (1996). 

2.3.2. Lateral Analysis Design Method 

Walker and Wasserman (1 996) proposed a design procedure that incorporated a 

computer program for analysis of soil-pile interaction. The software used for this 

procedure was COM624P, which models and analyzes laterally loaded piles (Wang & 

Reese, 1993). The differential equation governing the bending of the pile is solved to 

obtain pile deflections. The pile response is obtained by an iterative solution of the 

fourth-order governing differential equation using finite difference techniques. The soil 

response is described by a series of non-linear relations that compute the soil pressure 

resistance, p, as a function of lateral pile displacement, y. Once the pile is analyzed with 

COM624P, interaction diagrams for the pile are developed and compared to the applied 

loads. 

First, the movement at each abutment due to thermal expansion or contraction of 

the girder is calculated. The pile section that is chosen must be flexible enough to 

achieve double curvature within its design length under the thermal movement. Two 

calculations are performed to assess the adequacy of the abutment and pile system to 

function as needed. The first calculation determines whether the calculated thermal 

displacement is sufficient to cause a plastic hinge at the top of the pile, as plastic hinges 

can reduce the axial capacity of the pile. The second calculation determines if the 



bearing strength of the concrete is adequate to apply Mp to the embedded length of pile 

without damage to the abutments. 

After the ability of the HP section to develop the plastic-moment capacity at its 

top has been established, COM624P is utilized to develop the deflected shape of the pile 

under specified soil conditions. For the thermal displacements calculated initially, p-y 

curves are generated based on the soil properties. A thorough discussion of the procedure 

for the determination ofp-y curves is given by Wang & Reese (1 993). The pile is 

analyzed with the plastic moment and thermal displacement applied at the head of the 

pile. The unbraced length of the pile is determined from identification of the points of 

zero moment at varying depths of pile embedment, and the longest of these distances is 

used in subsequent calculations. 

The pile is designed using the provisions for the design of compression members 

given in AASHTO Article 10.54 (1996). The resulting values are used to develop 

interaction diagrams using AASHTO Equations 10- 155 and 10-1 56, given below as 

Equation 2.7 and Equation 2.8 respectively. 

(Equation 2.7) 

(Equation 2.8) 

The values of P and Mare detennined using the various applicable loading conditions as 

specified by AASHTO. It should be noted that the thermal movements and resulting 

factored loads are unique to the given soil profile and initial lateral displacements. 



Ingram et al. (2003) recently investigated the applicability of using the AASHTO 

and AISC column design equations to design integral abutment piles. They specifically 

mention the use of COM624P to determine the distance between inflection points on the 

pile moment diagram, which is taken as the effective length of the column. Tests were 

performed on piles driven into soil to compare the ultimate strength to that computed 

using AASHTO and AISC column design equations. The results of the field study 

showed that these equations result in overly conservative values for the ultimate capacity 

of the piles. This is attributed to the fact that the column design equations only consider 

length effects. In addition, considering piles as unsupported between inflection points 

does not take into account the influence and support provided by the surrounding soil. 

2.4. Finite Element Modeling of Integral Abutment Bridges 

Numerous finite element models of integral abutment bridges have been 

developed by researchers in the past decade. Some of these models have been produced 

using commercially available software packages, while other models are comprised of 

original code written by the researchers. Both two-dimensional and three-dimensional 

models have been developed. In these models, the structure and soil are modeled using 

either continuum elements, or specialty elements, such as beams and springs. A review 

of several recent finite element models of different composition is provided in this 

sectioi~. Discussion of the models includes the goal of each model, the elements and 

numerical methods used, and the conclusions or recommendations of the researchers. 



2.4.1. Two Dimensional Models 

The two-dimensional (2D) finite element analysis of integral abutments is very 

popular, because 2D models require fewer computational resources. The soil response is 

most frequently modeled as a series of linear or non-linear spring elements. However, 

this approach is considered unrealistic by some, as these elements do not account for the 

fact that the springs are uncoupled, while the actual soil behaves more like a continuum. 

In addition, there is no widely accepted theory from which the spring constant, or 

modulus of subgrade reaction, can be derived (Krusinski, 2002). To this end, researchers 

have used continuum elements to model the soil using easily determined properties, such 

as internal angle of friction (+), density (p), and cohesion (c). 

2.4.1.1. Soil Response Modeled Using Specialty Elements 

Greimann et a1 (1986) developed a nonlinear finite element algorithm (L4B2D) to 

study pile stresses and pile-soil interaction in integral abutment bridges. The piles, 

abutments, and girder were modeled using beam-column elements that incorporated 

geometric and material nonlinearities, such as yielding of steel. The soil was represented 

by vertical and lateral springs, as well as a spring supporting the tip of the pile. The soil 

springs and idealized structure are shown in Figure 2.12. The stiffness of these soil 

springs was determined using a modified Ramberg-Osgood cyclic model. 

The model was calibrated using an actual integral abutment bridge, and data from 

the model was compared to data collected from pile load tests. These tests consisted of 

three separate tests. The first test was an axial load test on a steel H-pile, while the other 

two tests were a combined axial and lateral load test on a timber pile. When compared to 



the test data for the different piles, the finite element models were found to give reliable 

results, although the program predicted a lower ultimate load than the load tests did. 
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Figure 2.12. 2D model of integral abutment bridge (Greimann et al, 1986) 

Thippeswamy et a1 (1 994) performed a parametric study on the response of 

single-span integral bridges. The analysis was perfonned using the commercial software 

program ANSYS (1987). The girder and deck were modeled using ANSYS STIF 3 one- 

dimensional beam elements, with four degrees of freedom at each node of the element. 

The model bridge was founded on a shallow footing, not on piles. Three types of 

foundation support conditions were considered: hinged, fixed, and partially fixed. The 

partially fixed conditions were represented by means of rotational springs, with stiffness 

values assumed for the springs to represent different types of soils and foundations. 

Effects of variation in span length, abutment height, ratio of superstructure to 

substructure stiffness (K) ,  gravity load, thermal load, lateral load, soil settlement, and 



their combinations were studied. The net moment developed at midspan due to thermal 

expansion in a jointed bridge was 1.8 and 1.9 times greater than that developed in an 

integral bridge with hinged and fixed foundation conditions, respectively. For thermal 

contraction, the net moment at midspan was 3 and 3.5 times greater than that for an 

integral bridge. It was determined that the stiffness ratio, K, and the boundary conditions 

have significant influence on the magnitude of the moments developed in an integral 

bridge. The thermally induced moment at the footing was found to be larger for smaller 

K values, and the moment at the footing associated with earth pressure was the highest 

for larger K values. 

More recently, Diceli and Albhaisi (2003) performed a finite element study 

aimed at developing maximum length recommendations for integral bridges supported on 

H-piles in sand. The model was constructed using the finite element based software 

SAP2000 (1998). A bridge with three 40 m (1 3 1 ft) spans and a bridge with six 20 m (65 

ft) spans were modeled in order to examine structures with varying deck and abutment 

stiffnesses. Only half of the actual structures were modeled due to their symmetrical 

configurations and nominally identical soil properties on each end of the bridge. An 

example of the structural model for the bridge with 20 m spans is given in Figure 2.13. 

The configuration for the larger-span bridge model is similar. 

The composite slab-on-girder section was modeled using beam elements, with 

elastomeric bearings represented with roller supports. The abutment was also modeled 

using elastic beam elements, and the deck-abutment joint was modeled using a horizontal 

and a vertical rigid elastic beam element. In the model, the effective lengths of the piles 

were taken as 30 times the pile width. It was assumed that the portion of the pile below 



this length has negligible effect on the pile-soil interaction. The pile was also modeled 

using beam elements with nonlinear frame-hinges to simulate the inelastic deformation of 

the steel H-piles under thermal effects. Approach slabs and wingwalls were not modeled 

because the frictional forces generated between these components and the backfill were 

found to have negligible effect on the movement of the structure. 

- Axial plastic hinge 

0 Hinge for moment release 

Figure 2.13. Nonlinear, symmetrical model of integral abutment (Diceli et a1 2003) 

The soil was modeled using truss elements with plastic axial hinges at their ends. 

The yield stress of the plastic hinges was calculated as the product of the ultimate soil 

resistance per unit length and the tributary length between nodes of the pile. The cross- 

sectional area of the truss elements were calculated using the coefficient of subgrade 

reaction, depth below surface, and arbitrary values of length and stiffness, 1 m and 1000 

W a  (3.28 ft and 145 psi), respectively. These elements were attached at each node along 

the pile, and the spacing of the nodes increased along the length of the pile. The soil 

response at the bottom of the pile was represented with a roller support to provide 



stability in the vertical direction. Backfill-abutment interaction behavior under thermal 

expansion was modeled in a similar fashion to that of soil-pile interaction. However, the 

soil-abutment interaction under thermal contraction conditions was not considered. 

Diceli and Albhaisi (2003) define a limiting value of structural movement called 

the displacement capacity (AD). The displacement capacity is reached when either: the 

pile fails due to moment fatigue, or the abutment fails in shear or flexure. They 

concluded that the displacement capacity of integral bridges decreases as the foundation 

soil becomes stiffer, or as the size of the bridge increases. In addition, they note that the 

flexural capacity of the abutment may control the displacement capacity of the bridge 

under positive thermal expansion. The backfill was found to restrain the displacement of 

the pile when the bridge expands, which allowed the piles to deform inelastically. It 

found that a pinned abutment-pile connection dramatically increases the displacement 

capacity of the bridge based on both the displacement capacity of piles and the flexural 

capacity of the abutment. The maximum recommended length of bridges in cold climates 

was 190 m (623 ft) for concrete girders and 100 m (328 ft) for steel girders. In moderate 

climates, the limits are increased to 240 m (787 ft) and 160 m (529 ft) for concrete and 

steel girders respectively. 

2.4.1.2. Soil Response Modeled Using Continua 

Lehane et a1 (1999) used a finite element model comprised of continuum elements 

to validate a simplified model for use in design of integral abutment bridges. The paper 

focused on the effects of thermal expansion on frame type bridges supported on shallow 

foundations (spread footings). The soil was modeled as an elastic continuum of uniform 

stiffness. This continuum was discretized with eight-noded quadrilateral elements. The 



concrete structure, as well as the empty space spanned by the girder, was also modeled 

using these elements. A simplified plane frame model, was created using data from the 

finite element model. The equivalent abutment height and stiffnesses of the translational 

springs were calculated based on the horizontal and rotational restraint provided by the 

abutment and soil in the complex model. 

Moments and axial forces predicted in the bridge deck by the analyses of Lehane 

et a1 (1999) were compared with that of the simplified model for various load cases. The 

results of both agree reasonably well. It was determined that the magnitudes of the 

induced moments and axial stresses in the deck are relatively small. In addition, the 

predictions were not overly sensitive to the choice of bridge geometry or material 

properties. 

Duncan and Arsoy (2003) used the finite element analysis program SAGE 

(Bentler et al, 1999) to investigate the significance of the interactions among the 

abutment, the approach fill, the foundation soil, and the piles of integral bridges. 

Specifically, the effects of the stiffness of the approach fill and the foundation soil on the 

stresses in the piles supporting the abutment, as well as the effects of the type of 

abutment detail were examined. The finite element mesh is symmetric about the 

centerline of the girder. The bridge superstructure, the piles, and the dowels of the semi- 

integral abutments were modeled as beam elements with linear stress-strain properties 

only. The approach fill and the foundation soil were modeled using four-node 

quadrilateral and three-node triangular elements with hyperbolic stress-strain properties. 

As shown in Figure 2.14, the finite element mesh is refined near the abutment and coarse 

near the boundaries of the model. 



Figure 2.14. Finite element model with soil as a continuum (Duncan & Arsoy, 2003) 

Parametric studies were conducted to study the effects of the approach fill for 

loose, medium and dense soils, and the effects of integral and semi-integral abutments on 

the pile stresses. The results from the finite element analyses indicated that semi-integral 

abutments offer benefits over integral abutments, such as reducing the pile stresses, 

especially those due to contraction of the bridge. In addition, interactions between the 

approach fill and the foundation soil creates favorable conditions with respect to pile 

stresses. Movement of the approach fill tends to cause the foundation soil to behave as if 

it were softer than it truly is. 

The authors comment that it would be interesting to extend these studies, by using 

zero-thickness interface elements between the piles and the adjacent soil and between the 

approach fill and the foundation soil to allow for slip at these interfaces. In addition, a 

study on the effects of different weight and the stiffness of the approach and foundation 

soils would be very beneficial. They also comment that data from instrumented piles 

supporting integral bridges would help to validate the findings of this study. 



2.4.2. Three DimensionaI ModeIs 

Three-dimensional (3D) finite element models of integral abutment bridges are 

not as prevalent as two-dimensional models. This is due to their increased complexity as 

well as increased computational requirements. However, unlike 2D models, 3D models 

can account for skew effects, as well as effects of off-center loading. 

A study by Mourad and Tabsh (1998) deals with the analysis of loads in piles 

supporting integral abutments. The load cases considered are composed of one or more 

side-by-side HS20 trucks, in accordance with AASHTO provisions (1 996). A detailed 

finite element analysis is used to develop a simple, approximate procedure utilizing a 

two-dimensional frame model for computing pile forces from complex loading. The 

finite element model was created using the program ALGOR (1994). 

The deck slab was modeled by both 3-node triangular and 4- node rectangular 

shell elements, with five degrees of freedom (DOF) at each node. The flanges of the steel 

girders were modeled using 2-node space beam elements with six DOF at each node, and 

the web of the girders was modeled with the 4-node rectangular shell elements used in 

the deck slab. Diaphragms composed of cross frames made from steel angles were 

modeled using space truss elements having three displacement degrees of freedom at 

each node. Ln addition, rigid beam elements were placed between all top flanges and 

deck elements to satisfy the compatibility of the composite behavior, and account for the 

thickness of the haunch. Abutments and wingwalls were modeled with %node brick 

elements with three DOF at each node. The steel H-piles were represented by 2-node 

space beam elements that span between the bottom of the abutments and the equivalent 

point of fixity of the piles. 



The study resulted in several observations about the behavior of an integral 

abutment bridge. It was shown that the abutment/wingwall system did not behave as a 

rigid block, as opposed to the case of a footing supported on flexible piles. As expected, 

reducing the number of piles under the abutment greatly affected the axial load in the 

piles, but it did not significantly change the tension force in the piles under the 

wingwalls. T11e axial stresses in the piles were not affected by modeling the connection 

between the top of the piles and the abutment/wingwall as fixed or hinged. 

Faraji et a1 (2001) created a 3D finite element model of an integral abutment 

bridge using the commercially available finite-element code GTSTRUDL (1991). They 

performed a small parametric study in which the compaction levels of cohesionless soils 

behind the abutment and adjacent to the piles were varied. The deck slab was modeled 

using shell elements, and stringers and diaphragms were modeled with linear beam 

elements. Rigid links were used between the stringers and deck slab to ensure strain 

compatibility and shear transfer between the deck slab and girder elements. The pier 

caps, reinforced concrete columns, and H-piles were all modeled using linear beam 

elements. Figure 2.15(a) shows the configuration of the model in its undefonned state. 

Figure 2.15. 3D Finite element model (a) in undeformed state (b) after thermal 

loading (Faraji et al, 2001) 



The soil reactions adjacent to the piles and behind the abutment walls were 

modeled as nonlinear support springs. The force-deflection characteristics of the springs 

behind the abutments were derived from curves recommended in the National 

Cooperative Highways Research Program design manual. The nonlinearp-y design 

curves recommended by the American Petroleum Institute were used for the soil springs 

adjacent to the piles. For the parametric study, the soil conditions behind the abutments 

and next to the piles were varied as follows: looseldense, loose/loose, denselloose, and 

denseldense, respectively. 

The results obtained from the finite element analyses show that the composite 

action of the slab and stringers must be properly modeled. Failure to do so alters the 

relative stiffness of the deck compared with the abutment-pile-soil system, which results 

in dramatically different structural responses. Soil compaction behind the abutment wall 

was also found to be an important factor affecting the overall bridge behavior. The level 

of compaction behind the abutment affects the axial forces and moments in the deck, 

increasing both peak values by more than twice when the compaction is varied from 

loose to dense soil. The magnitude of the peak moments in the piles decreases by a factor 

of two when the compaction is varied from loose to dense. The level of soil compaction 

adjacent to the piles does not significantly influence bridge deck deflections or moments. 

However, the moment in the pile is considerably affected by the relative density of the 

soil both next to the pile and behind the abutment. 

The authors plan to develop a 3D finite element model for a new h l ly  

instrumented bridge currently under construction, where field data such as lateral soil 

pressures behind the abutment walls and flexural strains in the H-piles will be 



continuously collected. The reliability of the finite element model will be assessed by 

comparing finite element results with observed bridge behavior. Future studies will 

investigate the impact of preaugering holes for the piles and backfilling with loose 

granular fill as well as the impact of skew alignments. 

2.5. Summary 

Based on the studies of integral abutment bridges presented in this chapter, it is 

clear that they warrant further study. Transportation agencies worldwide each have 

slightly different design and construction methods, with no consensus on which ones are 

appropriate. Furthermore, limits are imposed on the geometry of integral abutment 

bridges based on experiences in one region that may not apply to other regions. To this 

date, very little work concerning the capabilities of integral abutments founded on short 

piles has been done. Existing design procedures preclude the use of piles below a certain 

length simply because the assumptions they are based on are generally only valid for 

longer piles. In addition, these methods generally do not take any interaction between 

pile and bedrock into account. 

Finite element analysis seems to be the most preferred method for assessing the 

effect of changes in certain variables on the performance of integral abutment bridges. 

However, the large variety and limitations of existing models indicate that there is 

undoubtedly room for improved techniques. A large number of finite element models 

employ simplifications in modeling the soil and structure that may lead to only a partial 

understanding of the true behavior of the structure. The implementation of sophisticated 

and comprehensive methods of modeling may allow integral abutment bridges to be used 

in applications where simplified methods of modeling have concluded they cannot. 



Chapter 3 

DEVELOPMENT OF FINITE ELEMENT MODEL 

This chapter describes the development and implementation of a finite element 

model created to simulate the behavior of a typical integral abutment bridge. Using plans 

of various integral abutment bridges proposed or constructed in the state of Maine, a 

series of two-dimensional models were developed using the computer program ABAQUS 

(HKS, 2001). These models were used to perform a parametric study, which is described 

in detail in Chapter 4. A materially and geometrically nonlinear, small-displacement 

analysis was used to capture the behavior of the structure, as well as model the soil- 

structure interaction. 

3.1. Model Overview 

Plans for a proposed integral abutment bridge called the Mill Pond Bridge over 

the Can-abassett River in Salem Township, Maine were used as a basis for this model. 

This bridge consists of four 35 m (1 15 ft) long steel plate girders supporting a cast-in- 

place concrete deck. The ends of each girder are welded to the top of a HP 360x108 

(HP14x73) pile and cast within a 3 m (10 ft) high abutment. The spacing of the girders 

and piles is 2.7 m (9 ft). From these plans, a two-dimensional "slice" was taken through 

the three-dimensional structure. This "slice" contains five basic components: 

superstructure (girder and deck), piles, abutments, soil, and bedrock. A view of a typical 

model, showing the configuration of these components, is given in Figure 3.1. 



Figure 3.1. Typical finite element model of integral abutment bridge 

I Superstructure + - > 

All components of the bridge were modeled using continuum elements, as 

opposed to using specialty elements such as beams and springs. While the bridge plans 

specify wingwalls and approach slabs for each abutment, these were not included in the 

two-dimensional model. Many finite element models do not include approach slabs 

because they are not rigidly connected to the abutment. The finite element model studied 

by Diceli et a1 (2003) indicates that the effect of frictional forces between the approach 

slab and backfill and between the wingwalls and backfill on the behavior of the structure 

is negligible. The study preformed by Mourad & Tabsh (1 998) found that the 

abutment/wingwall system does not behave as a rigid block, as a footing on flexible piles 

would behave. 
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This model accounts for both normal and tangential surface interactions between 

components. ABAQUS allows contact between elements to be defined using either 

surfaces or specialized contact elements. Surface-based contact was defined because it 
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elements will permit. Using surface-based contact in ABAQUS allows structural 
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elements to push against and deform soil elements, while simultaneously allowing the 

elements to slide against each other in opposite directions. A more detailed discussion of 

the development of the model is provided in the following sections. 

3.2. Modeling Approach 

A discussion of the techniques used in the creation of the finite element model is 

given in this section. Topics include a brief discussion of the types of elements used in 

the model, the constitutive models used to define the various material behaviors, and the 

use of surface based contact to model the soil-structure interaction. 

3.2.1. Element Types 

Because ABAQUS allows for the combination of different element types, the 

continuum that represents the soil and structure is comprised of both plane stress and 

plane strain two-dimensional solid elements. Although the elements in this model are 

two-dimensional, they have a nonzero out-of-plane thickness, the implications of which 

are discussed in Section 3.5.1.1. The structural components (piles, girder, and abutments) 

were modeled using plane stress elements. This is appropriate, because the components 

have a small thickness (z-component) compared to their dimensions in the x-y plane, and 

all of the loads applied to these elements act in plane (Logan, 1993). It may have been 

more appropriate to model the abutments with plane strain elements, because of their 

relatively large z-dimension. However, due to their large stiffness, there will be little 

change in the behavior of the system. 

Conversely, the geotechnical components (soil and bedrock) were modeled using 

plane strain elements. Plane strain elements are well suited for geotechnical analysis, 



because these problems generally have one dimension (usually the z-component) that is 

large in comparison with the others. In addition, ABAQUS only allows plane strain 

elements to be used with the elasto-plastic constitutive models that are used to represent 

soils. 

As illustrated in Figure 3.1, the finite element mesh consists of both triangular and 

quadrilateral elements. The predefined ABAQUS element types used were: CPE6, CPS6, 

CPE8, CPS8, and CINPESR. Elements with PE in the nomenclature are plane strain 

elements, while those with PS are plane stress. CPE6 and CPS6 types are 6-noded, 

second-order triangular elements that have three Gauss integration points per element. 

CPE8 and CPS8 types are also second-order elements, but they are 8-noded quadrilaterals 

with nine integration points per element. CINPESR elements were used along the 

boundaries to represent soil and bedrock regions that extend a long distance away from 

the model. This element type is a 5-noded, second order infinite element, with four 

integration points per element. These elements are useful for modeling problems where 

the area of interest is small compared to the surrounding medium (HKS, 2001). General 

depictions of the elements used in this model are given in Figure 3.2. 
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Figure 3.2. Examples of (a) 6-noded triangular, (b) 8-noded quadrilateral, and (c) 5- 

noded infinite elements (HKS, 2001) 



3.2.2. Contact ModeJing 

Contact between elements in ABAQUS is defined in two different ways. 

Interaction between two materials can be defined with surfaces based on either nodes or 

element faces, or by using contact elements. Tn this model, the surface-based method was 

chosen because it was easier to implement and provided a more flexible method of 

contact modeling. The contact elements in ABAQUS are best suited for modeling large- 

sliding interaction between rigid bodies and small-sliding problems involving node-to- 

node contact (HKS, 2001). Use of contact elements in a model this large would require 

the definition of several thousand additional elements. In addition, advance knowledge 

of the kinematics of the two contacting bodies would be required to appropriately define 

their interaction. Surface based contact utilizes the faces of existing elements, and 

requires minimal advance knowledge of the behavior of the two bodies. Proper definition 

of contact surfaces allows the user to control deformation as well as frictional forces 

between surfaces. 

The contact surfaces were defined by specifying the faces of the elements 

comprising the surfaces. ABAQUS uses a masterlslave formulation to impose constraints 

on the interaction between the surfaces. The slave surface is usually defined as the 

surface with the finer mesh, to reduce the distance that nodes from one surface are 

allowed to penetrate into elements of the other. In this model, since the mesh densities 

across contact surfaces are equal, the slave surface was defined along the elements with 

the softer underlying material. This allows the structure elements and soil elements to 

push against each other, without allowing the nodes of the soil elements to penetrate into 

the pile and abutment elements. 



Because the model considers geometric nonlinearities, and because the exact 

kinematics of the soil-structure interaction is not known, a finite-sliding formulation was 

used to account for the relative motion between the surfaces. Finite sliding allows for an 

arbitrarily large amount of relative motion between the surfaces, as well as arbitrarily 

large rotations and deformations. The surfaces may separate, unless they are joined using 

a tied constraint as required at the connection between the pile and abutment. 

3.2.3. Constitutive Models 

This model incorporates three constitutive models for the simulation of various 

materials. A linear elastic material model is used for the girders and abutments, as well 

as for soil and bedrock more than 2 m (6.6 ft) fiom the structure. The piles are modeled 

using an elastic-plastic constitutive model that ABAQUS calls classical metal plasticity. 

Soil and bedrock that is within 2 m of any part of the structure (abutments and piles) was 

modeled as a plastic material, using a Mohr-Coulomb failure criterion. A discussion of 

the determination of material properties needed to define these constitutive models is 

presented in Section 3.3. 

In ABAQUS, stress-strain behavior for linear elastic materials is defined simply 

using Young's modulus and Poisson's ratio for the material. The girder was defined as a 

linear elastic material. This is reasonable since the model girder was based on the 

sectional properties of an actual girder, and the structure was analyzed under service 

loads. Thus, the girder strains will remain in the range of elastic material behavior. For 

the same reasons, the abutments were also modeled as linear elastic. Although the 

assumption of linear elasticity is unrealistic for soils, the soil and bedrock more than 2 m 



away from structural elements were also modeled as linear elastic materials. This is 

because the soil and bedrock in these locations undergo very small strains and the 

material constitutive relationship has little effect on the bridge response. Furthermore, 

the computational complexity of the model is reduced significantly by assuming a linear 

elastic model. Finally, CINPESR infinite elements may only be defined using linear 

materials, because the solution in the far field is assumed linear (HKS, 2001). 

Classical metal plasticity is defined similarly to linear elasticity. However, an 

additional parameter indicating the yield stress of the material must be defined. Since 

one of the main principles of an integral abutment bridge is the redistribution of forces in 

the pile due to inelastic behavior, elasto-plastic behavior was necessary to realistically 

model the pile response. The additional computational cost of using such a constitutive 

model is negligible and is overshadowed by the benefit of more realistic behavior. 

To achieve a higher degree of similitude with respect to the soil-structure 

interaction, the soil and bedrock adjacent to the abutments and piles were modeled using 

a Mohr-Coulomb plasticity model. This model is defined using the angle of internal 

friction ($), the dilation angle (y) ,  and the cohesion yield stress (c), in addition to the 

parameters used to define linear elastic behavior. The significance of these parameters is 

discussed in section 3.3.2. A popular simplification of this constitutive model is the 

Drucker-Prager material model. Unlike the Mohr-Coulomb yield function, the Drucker- 

Prager model does not have comers when plotted in principal effective stress space (Potts 

and ZdravkoviC, 1999). These corners can result in singularities, which translate into the 

use of increased computer resources. Despite these drawbacks, Mohr-Coulomb plasticity 

was used to model the soil, because the parameters needed to define the material behavior 



have more significance to a geotechnical engineer than those used to define the Drucker- 

Prager model. 

3.3. Material Properties of Model Components 

The development of material properties to be used for the various constitutive 

models in ABAQUS is discussed in this section. Two separate groups of components in 

the model are discussed herein. The first group is the structural components, which 

include the deck, girder, abutments, and piles of the bridge. The other group is the 

geotechnical components, comprised of soil and bedrock. 

Methods used to develop material parameters for the model are discussed for each 

component of the model. Numerous papers and studies were reviewed in order to make 

sure that the proposed parameters were acceptable. The ultimate goal of the material 

property selection is to allow actual material test data to be correlated to the model 

parameters. Once model material parameters had been chosen, their behaviors were 

verified from the results of simplified finite element models. 

3.3.1. Determination of Structural Properties 

Since the model is a two-dimensional representation of a three-dimensional 

structure, certain geometric transformations of the structural elements had to be 

performed. This ensured that the model components retained the sectional properties and 

stiffnesses of the true components. Determination of superstructure (girder and deck) and 

substructure (abutment and piles) parameters is discussed separately, since slightly 

different methods and considerations were required for each. 



3.3.1.1. Superstructure 

For all variations of this model, the superstructure consists of a cast-in-place 

concrete slab supported by steel girders, similar to that of the Mill Pond Bridge. The 

properties of the steel girders and concrete deck are representative of the current design 

criteria of the MDOT. Bridge girders are typically constructed of ASTM A709 Gr. 345W 

structural steel plate. The concrete for abutments and the bridge deck is cast-in-place 

using MDOT Class P concrete, with a 28-day compressive strength of 41.3 MPa (6 ksi). 

Table 3.1 lists the material properties used in the model for the steel and concrete. 

Table 3.1. Assumed Material Properties 

As stated earlier, the span length of the Mill Pond Bridge is 35 m (1 15 ft). 

However, since the parametric study will cover a range of span lengths, it would not be 

reasonable to use a superstructure designed for a 35 m bridge for shorter spans. 

Therefore, a series of girders for various span lengths were derived from an elastic 

section analysis of a typical 35 m girder. The short-term, long-term, and non-composite 

section moduli of the girder were first calculated as required by the AASHTO LRFD 

Bridge Design Specification (1998). Short-term properties were calculated by 

considering the girder and slab as a composite section, transforming the concrete into 

steel using the ratio of Young's moduli of the materials. Long-term properties were 

calculated in a similar manner, except the modular ratio was multiplied by three. This 

Designation 
Yield/Compressive Stress 
Young's Modulus 

Density 

Thermal Conductivity 

Steel 
ASTM A 709 

345 MPa (50 ksi) 
207 GPa (30000 ksi) 

786 1 kg/m3 (490 lb/ft3) 

Concrete 
MDOT Class P 
41.3 MPa (6 ksi) 

31 GPa (4500 ksi) 

2400 kg/m3 (1 50 lb/ft3) 

1.17x10-~ lIoC (6x10.~ lIoF) 



reduction in the modular ratio is intended to compensate for the effect of creep in the 

concrete deck. The non-composite section properties were simply the section properties 

of the steel girder, without considering the slab. 

Three moments to be applied to the girder were then calculated. The first moment 

(MDl) js due to the weight of the girder and slab. Weight of the crossframes and bracing 

was included by increasing the weight of the steel girder by 10% (Krusinski, 2002). The 

moment due to the weight of a 75 mm (3 in) thick bituminous concrete wearing surface 

(MD2) was also calculated. Finally, the moment due to live loading (MAD) was calculated 

using the HL-93 truck and lane load specified by AASHTO. The axle spacings of the 

truck were both 4.3 m (14 ft), and a distribution factor of 0.8 wheel lineslgirder was 

applied to the live loads. 

Using Equation 3.1, the tensile stress (fJ in the bottom flange of the girder was 

calculated as: 

(Equation 3.1) 

where SNC, SLT, and Ssr represent the non-composite, long-term, and short-term section 

moduli, respectively. The steel girder sections for other spans were sized such that the 

stress in the bottom flange was equal to this value under similar loading conditions. In 

addition, the span-to-depth ratios of all the girders were held constant. The thickness of 

the deck was also kept constant to simplify calculations. Section properties calculated for 

different spans are given in Table 3.2; these values compare well with section properties 

of actual girders used for bridges of similar lengths. 



Table 3.2. Adjusted Composite Section Properties of Girders 

*Actual val~ies 

Since the model is a two-dimensional representation of a three-dimensional 

structure, special measures had to be taken to represent the stiffnesses of the components 

accurately. The solid elements used to model the girder and deck have a rectangular 

cross-section, while the true cross-section is more complex. As illustrated in Figure 3.3, 

the depth (h )  of the model girder was set at the true depth of the actual girder, and the 

width of the girder elements was set at lm along the z-axis. Using the short-term 

composite properties determined in the elastic section analysis, the moment of inertia of 

the model cross-section (I,,,,,,,,) was then calculated for each span length. 

Figure 3.3. Cross-sections of (a) actual girder and (b) model girder 

Moment of Inertia (mm4) 

2.771 x lo9 

6.336 x lo9 

1.216 x 10" 

2.070 x 10" 

3.266 x 1 0 ' ~ "  

Length (m) 

15 

2 0 

25 

30 

35" 

Area (mm2) 
108326 

114319 

120603 

127595 

134800* 



An equivalent Young's modulus (E,,,de,) for the model girders was calculated 

using the following equation: 

(Equation 3.2) 

where Eflc,,flI and Iflc,,fll are the modulus of elasticity and moment of inertia of the 

composite girder section, respectively. Values for the equivalent Young's moduli are 

given in Table 3.3. Axial stresses in the girder are not examined in this study, so it is not 

critical that the axial stiffness of the girder is not consistent with that of the model girder. 

Ln addition, the axial stiffness in the model was large enough to ensure that the 

superstructure is essentially inextensible, which is the actual case. 

Table 3.3. Equivalent Young's Moduli for Model Girders 

It should be noted that the moments of inertia given in Table 3.3 were based on 

the short-term composite section properties of the girder. Use of these properties is only 

strictly valid for cases involving the live loading. There are certain instances where the 

non-composite and long-term composite section properties must be considered. The 

long-term composite section properties are more appropriate for dead loading, because 

they will account for additional creep deflections. An explanation ofhow these 



differences in section properties for various loadings were accounted for is given in 

Chapter 4. 

To account for the increase in cross-sectional area of the superstructure, the 

densities for each girder were also modified to give the correct girder weight. The 

modified density is based on the weight of both concrete and steel in each girder section. 

Material properties such as the coefficient of thermal expansion (a) and the Poisson's 

ratio ( v )  were unaffected by the transformation of the girder cross-section. 

3.3.1.2. Substructure 

Because the piles and abutments were also modeled using two-dimensional 

elements, cross-section transformations similar to those for the girder were performed. 

Unlike the girder, the cross-sections for the piles and abutments did not vary with span 

length. The abutment height was defined as 1.5 m plus the depth (height) of the girder. 

The pile section for all span lengths was chosen to be the same as that for the 35 m long 

Mill Pond Bridge. This was done to eliminate a variable in the parametric study, as this 

section is preferred by MDOT for integral abutment bridges with steel girder 

superstructures up to 36m (1 18 ft) long (MDOT, 1999). This pile may be oversized for 

smaller-span bridges, but as research by Arsoy et a1 (2002) shows that stiffer piles result 

in increased stresses for a given deflection. Therefore, use of a larger H-pile for smaller 

spans is thought to present a worst-case scenario in terms of pile stresses. 

Since the H-piles are embedded into almost half of the height of the abutment, it 

was felt that the increase in flexural stiffness due to the pile needed to be accounted for. 

Therefore, the properties of the abutment cross section were calculated in a manner 



similar to that used to determine the short-term composite properties of the girder, where 

the steel pile was transformed into concrete. The equivalent Young's modulus (Elllodel) 

that accounted for the presence of the embedded pile was found to be slightly larger than 

the value of Elnodel neglected the presence of the pile. 

Unlike the unit thickness of the girder elements, the thickness of the abutment 

elements was set at 2.7 m (8.8 ft), which is the pile spacing and the tributary deck width 

used in the section property calculations for the girders. When this thickness is used in 

conjunction with the true width (x-dimension) of the abutments, the flexural stiffness 

(E*I) and axial stiffness (E*A) of the model and actual abutment are equivalent. The 

density and Poisson's ratio of the abutments were set equivalent to those of reinforced 

concrete, since the transformed abutment section was based on properties of concrete. 

Because the widths of the model and portion of the actual abutment considered were 

equal, no transformation of the density of the abutments was required. 

Like other non-rectangular components, the properties of the piles had to be 

adjusted to account for the rectangular cross section of the elements. Because the pile 

material was homogenous, it was not necessary to transform materials to obtain 

composite cross-section properties. The piles in the Mill Pond Bridge were oriented for 

weak-axis bending, i.e., their webs were perpendicular to the direction of the span. 

Consequently, the thickness of the elements was set equal to the depth of the HP 360x1 08 

section, or 0.346 m (13.61 in). 

As with the abutments, it was critical that the flexural stiffness and axial stiffness 

of the model and actual pile be equal. However, if the x-dimension of the pile elements 

is set equal to the width of the pile flange, this cannot be accomplished. Therefore, it was 



necessary to calculate a dimension that allows this condition to be met. As mentioned 

earlier, the equivalent model Young's modulus based on flexural stiffness can be 

calculated using Equation 3.2. Likewise, the equivalent Young's modulus can be 

calculated based on the axial stiffness of the pile, using: 

(Equation 3.3) 

where A,,,,,,l and A,,,,deI are the areas of the actual and model piles, respectively. Setting 

both values of equal results in: 

Enr / t tn /  Anc /un /  
Enrodel = (Equation 3.4) 

A~nodel 

Since the thickness of the model pile, as well as the area and moment of inertia of 

the true pile are known, the x-dimension of the pile can be calculated as: 

x = / l2  Inc~l ln~  (Equation 3.5) 
A"r/ll"l 

This results in an element width of 0.308 m (12.1 in), compared to the flange width of 

0.370 m (14.5 in). Equation 3.2 or 3.3 can then be used to solve for of the pile. 

Unlike the superstructure, the piles incorporate nonlinear behavior, and are able to 

yield at a specified stress. The change to the element width described previously will 

alter the section modulus, which will affects the value of the yield stress. A procedure 

similar to that for finding can be used to determine an equivalent yleld stress, F,,, 

given in Equation 3.6 as: 

(Equation 3.6) 



where Fw is the yield stress (345 MPa), and Sm,,leI and are the section moduli of the 

model and actual piles. 

The density of the model pile was adjusted to give the correct pile weight. The 

mass of the pile plus the mass of the volume of soil contained between the webs and 

flanges was used to obtain the model pile density. The density of the soil was assumed as 

2000 kg/m3, and was included to give a better representation of the pressure on the 

bedrock at the pile tip. Table 3.4 compares properties of the model and actual pile cross- 

sections. A summary of all structural element properties is provided in Table 3.5. 

Table 3.4. Comparison of Actual and Model Pile Section Properties 

Table 3.5. Summary of Structural Element Properties 

Width 
Depth 
Moment of Intertia 

Area 

Section Modulus 

3.3.2. Determination of Geotechnical Properties 

Actual 
370 mm 
346 mm 

109 x loGmm4 

13800mm2 

5.87 x lo5rnm3 

A transformation such as the one performed on the structural elements was not 

necessary for the geotechnical elements, since the soil and bedrock were modeled with 

the assumption of plane strain conditions. Model soil properties were chosen to represent 

Model 
308 mm 
346 mm 

842.5 x lo6rnm4 

106600 mm2 

5.47 lo6 111111~ 

Pile 
26.78 GPa 

0.28 

3 172 kg/m3 

36.998 MPa 
-- 

Element Type 
Young's Modulus (E ) 
Poisson's Ratio (v) 

Density (p) 

Yield Stress (F,) 

Thermal Conductivity (a) 

Girder / Deck 
see Table 3.3 

0.28 

Varies with span 
-- 

1.17~1 o - ~  11°C 

Abutment 
28.4 GPa 

0.11 

2400 kg/rn3 
-- 

-- 



a group of subsurface conditions commonly found in Maine, rather than specific soils. 

This approach helps to limit the number of variables in the parametric study, as well as 

sin~plify the design procedure. 

Three general soil categories (granular, glacial till, and clay) were defined to 

represent subsurface conditions that could be encountered at bridge sites in Maine. The 

three categories were defined in a manner such that they each provide a different degree 

of support to the piles. It was desired that the granular material represent a dense sand 

and gravel, with high shear strength, to provide the most support to the foundation. On 

the other end of the spectrum, the clay material was defined as medium clay, offering less 

support to the piles. The properties of the glacial till were defined such that its behavior 

is somewhere in between that of the clay and granular materials. Properties for these 

soils are based mainly on published values and other empirical data. The properties of 

the bedrock were based on schist, which is a common type of bedrock in Maine. 

As discussed earlier, a material obeying the Mohr-Coulomb plasticity model is 

defined using six parameters: Young's modulus (E), Poisson's ratio (v), density (p), the 

angle of internal friction (4)' the dilation angle (tv), and the cohesion yield stress (c). 

While the definition of the latter four parameters is relatively straightforward for soils, 

the definition of Young's modulus is not. Typical values for c, 4, and p were derived 

from values found in literature, and the remaining parameters were calculated using 

various correlations. 

Parameters for the granular and glacial till materials were determined in the 

following manner. First, a range of representative values of + and c were chosen from 

published works. For the granular material and glacial till, the drained strength 



parameters 4' and c' were used, while undrained strength parameters were used for the 

cohesive material. Design values that are used in practice are generally conservative, 

having lower values for strength parameters. However, to predict performance, as is the 

case in this study, representative values measured in testing rather than overly 

conservative estimates are desired. According to Lambe & Whitman (1 969), values of 4' 

range from 33" to SO0 for gravel and sandy gravel, and from 33" to 45" for river sand to 

pebbles. Marsal (1973) gives values of 4' ranging between 32" and 53" for rockfill 

including sand and gravel. Lambe & Whitman (1 969) note that larger values are 

appropriate for dense soils, for soil with angular particles, and for well-graded sand and 

gravel mixtures. Terzaghi, Peck, and Mesri (1996) give values of +' ranging fiom 46" to 

59" for the normal stresses expected in this project. 

Most reported values of 4' are obtained by triaxial testing, whereas plane strain 

conditions usually prevail in most situations. Cornforth (1964) showed that 4' values for 

plane strain conditions were typically 4" higher than those obtained through triaxial 

testing. Terzaghi, Peck, and Mesri (1996) also report an average difference of 5" 

between plane strain and triaxial + values. Therefore, the range of +' for the granular 

material was chosen as 40" to 50". Since the granular material is cohesionless, c should 

theoretically be zero. However, the use of a zero cohesion value causes solution 

problems in ABAQUS. Therefore, a small cohesion stress of 300 Pa (6 psf) was chosen 

to facilitate in solution convergence. As discussed later, verification of the model 

properties shows that this small amount of cohesion has negligible effects on the material 

behavior. 



Values of 4' for glacial till were obtained from the proceedings of a research 

conference on shear strength of cohesive soils (Line11 & Shea, 1961). In these 

proceedings, results of tests on various glacial tills from New England were presented. 

Results from consolidated-undrained triaxial tests, and consolidated-drained direct shear 

tests were used to develop the range of c' and +' values. The range of $' for the glacial till 

material was chosen as 30" to 40°, and the range of c values was chosen as 0.0 to 0.2 tsf 

(20 ]<Pa). 

After the ranges of $' and c' were chosen, values for Young's modulus were 

determined. Duncan et a1 (1980) outline a procedure to determine stress-strain 

parameters based on the tangent value of Young's modulus. Values can be calculated 

using an equation proposed by Janbu (1 963): 

(Equation 3.7) 

where 0 3  is the confining stress and p, is atmospheric pressure, which is included for unit 

conversion purposes. The dimensionless parameters K and n are the modulus number 

and modulus exponent, respectively. Ei is the initial tangent to the hyperbolic stress- 

strain curve for soils. Duncan et a1 (1980) tested various soils under drained and 

undrained conditions to determine values of the modulus number and the modulus 

exponent. For each soil type, material properties such as unit weight, relative density, 

particle shape, $', and c' are published. The range of confining stresses under which the 

test was performed in order to determine K and n values were also included. 

Soils were selected that had $ and c values that fell within the range of values for 

the granular and glacial till  materials. For the granular material parameters, well graded 



gravels and sands as well as some poorly graded gravels were selected as a basis. h all 

cases, only soils with relative densities greater than 95% were considered. For the glacial 

till parameters, silty sands and sandy silts were selected. There was no relative density 

requirement for these soils. Equation 3.7 was solved using the values of the modulus 

number and exponent given for each soil, andp, was taken as 101.3 kPa (1 atm). 

An average value of the confining stress for the system was calculated at a depth 

of 5 m. This results in the values of Young's modulus above this depth being slightly 

higher than what would occur in the field, while values below this depth would be 

slightly less. This average confining stress was compared to the range of confining 

stresses given for the triaxial tests in Duncan et a1 (1980), and used to select appropriate 

values for K and n. The resulting Ei values, as well as the given values of c and p for 

each soil were averaged to give representative parameters for both the granular and 

glacial till materials. The calculated density of the glacial till was increased to reflect the 

densities for New England tills given by Line11 & Shea (1 961), as well as to reflect 

cobbles and boulders that are often present in Maine glacial tills. 

The clays tested by Duncan et a1 (1 980) did not have properties similar to those of 

clays of the Presumpscot formation, which is a "widespread blanket of glaciomarine silt, 

clay, and sand that covers most of southern Maine" (Thompson, 1987). Because of this, 

the method for determining representative values of E, c, and p described previously 

could not be used. Since extensive testing and research on the soils of the Presumpscot 

formation has been done in Maine, the material parameters are based on these values. It 

was assumed that the clay would be undrained, therefore the undrained friction angle (+) 

was set to 0'. However, this value was changed to O.OO1° because ABAQUS requires 4 



to be a nonzero value. The density of the material was taken to be higher than normal for 

clays in the Presumpscot formation, in order to mimic a saturated unit weight. This also 

helps to account for the fact that in shallow conditions most of the clay will consist of a 

stiff crust. 

Based on work by Amos (1 987), Andrews (1 987), and Devin (1 990), some 

representative values for undrained shear strength, plasticity index, and overconsolidation 

ratio of typical Presumpscot formation clays were derived. The undrained shear strength 

was taken as 35 kPa (730 psf), which is somewhat high for the softer Presumpscot 

formation clays, but is a low value for the crust. Because the clay is assumed to be 

saturated, and 4 is equal to 0°, the cohesion yield stress (c) is equal to the undrained shear 

strength. The overconsolidation ratio (OCR) was taken as 2.5. This value is an average 

of the OCR at the upper crust, which is approximately four, and the deeper deposits, 

which have an OCR closer to one. Finally, the plasticity index for Presumpscot 

formation clays was assumed as 20, based on test data of both brown and gray 

Presumpscot sediments (Amos, 1987). 

Duncan & Buchignani (1 976) and Mitchell (1993) suggest an empirical 

correlation between the undrained Young's modulus (E,,) and the undrained shear 

strength (C,): 

E, = Kc x C,, (Equation 3.8) 

where Kc is a dimensionless correlation factor determined from Figure 3.4, using the 

OCR and plasticity index (PI) for the soil. For the given conditions, Kc was estimated as 

850. This results in an undrained Young's modulus of approximately 30 MPa (4300 psi) 
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Figure 3.4. Chart for estimation of K, constant (Army Corps of Engineers, 1990) 

Parameters for the bedrock material based on schist were developed in the same 

manner as the parameters of the clay material. E, c, $, and p were based on typical values 

for schist, laboratory test data, and values from case histories. The values for Young's 

modulus and cohesion yield stress were based on laboratory data for schist from Lama 

and Vutukuri (1 978). However, this calculated value of Young's modulus was then 

decreased in order to allow the pile to be able to deform the bedrock, since the Young's 

modulus of the pile was decreased drastically from that of steel. The cohesion yield 

stress of the bedrock was taken as one-half of the unconfined compressive stress. 

Because of the reduced value of Young's modulus, larger unconfined compression 

strength values for the bedrock were used to prevent any premature yielding. Values for 

p and $ were based on the lower range of typical values for schist published in Bell 

(1992) as well as in Lama and Vutukuri (1978). 



The meanings of Poisson's ratio (v) and the dilation angle (y) for soils and rock 

are not as well understood as parameters such as E, c, and +. In triaxial testing, v can be 

calculated by measuring the axial compressive and lateral strains (Goodman, 1989). 

Head (1986) notes that it is common to use v = 0.5 for saturated soils, which is the 

theoretical value for an incompressible material. This represents a condition of no 

volume change, so in all cases Poisson's ratio is less than this value. Typical values for 

Poisson's ratio for numerous materials are given by Head (1 986), Bishop & Hight (1977) 

and Goodman (1 989). The value chosen for Poisson's ratio of the bedrock is somewhat 

high, compared to laboratory test data given by Lama and Vutukuri (1978). The higher 

value of Poisson's ratio was used in an attempt to capture any volume change of the 

bedrock due to deformation of the weathered upper layers. 

The dilation angle of a material is defined as the ratio of the plastic volume 

change to the plastic shear strain. It describes the plastic flow potential of a material, and 

whether or not this potential is associated or non-associated. Associated plastic flow 

occurs when the friction angle is equal to the dilation angle (HKS, 2001). However, the 

use of associated flow leads to physically unrealistic volume changes. Non-associated 

flow occurs when u/ < +, and if y = 0°, no plastic dilation or volumetric strain occurs 

(Potts and ZdravltoviC, 1999). Non-associated flow is preferred in most cases, because 

the vector of plastic strain is normal to the plastic potential, which is geometrically 

similar to the failure function (Rahim, 1998). This leads to better solution convergence, 

with more realistic volume change behavior with the application of stress. 

Non-associated flow was desired for all of the materials in the model. Potts and 

Zdravkovic (2001) performed an analysis of a single pile in soil modeled using Mohr- 



Coulomb plasticity, in which the value of y~ was varied from 0" to $. They demonstrate 

that the analysis where y is equal to 0" the plastic volumetric strain in the soil reaches a 

limiting (constant) value faster than in the analysis performed where y, = + (associated 

flow). Furthermore, the analysis with associated flow conditions gave no indications of 

the plastic strains ever reaching a constant value with further displacement. Therefore, it 

was decided to set y = 0" for all soils. The assumption of y, = 0" was valid for the clay 

material because the volume change of saturated undrained soils under stress is typically 

minimal. In addition, flow is still non-associated, since y, is still less than $ (0.001"). 

However, for the remaining geotechnical materials, the assumption of y = 0" led 

to numerous solution convergence problems. Rahim (1998) also noted that numerical 

difficulties occur when the degree of non-associativity is high ( y ~  << $). Therefore, for 

the rest of the soils and bedrock, y was set equal to a value of (4 - 5"). Better solution 

convergence was then obtained, while still incorporating non-associated plastic flow. A 

summary of the geotechnical material properties is presented in Table 3.6. 

Table 3.6. Summary of Geotechnical Element Properties 

Element Type 
Young's Modulus ( E )  
Poisson's Ratio (v) 
Density (p) 

Friction Angle (4) 
Dilation Angle (y,) 
Cohesion ( c )  

Granular 
120 NIPa 

0.40 

2000 kg/m3 
45" 
40" 

0.3 kPa 

Glacial Till 
80 MPa 

0.45 

2200 kg/m3 
35" 
3 0" 

9.0 kPa 

Clay 
30 MPa 
0.499 

1800 kg/m3 
0.00 1 " 

0" 
35 kPa 

Bedrock 
3.5 GPa 

0.25 

2660 kg/& 
26" 
21" 

82.7 MPa 



3.3.3. Frictional Parameters 

Surface contact in ABAQUS requires the input of various parameters that govern 

the behavior of the two bodies in contact. The first, as discussed in Section 3.2.3, is 

Young's modulus and density of the two materials. This keeps nodes of softer materials 

from penetrating the elements of harder materials. Interaction tangential to the surface is 

governed by a specified coefficient of friction, p. Initially, the coefficients of friction 

between all dissimilar materials (soillrock, soil/concrete, soillsteel, and steellrock) were 

all set to 0.5. This translates into the forces acting parallel to the surfaces being one-half 

the magnitude of those acting perpendicular to the same surface. However, this 

coefficient of friction overestimates the forces in some cases and underestimates those in 

others. 

Separate values for different material interactions were chosen in order to better 

capture the various surface-surface interactions around the model. The soillrock 

coefficient remained at 0.5, because it was felt that this parameter would have very little 

effect on the behavior of the system. For interaction between soillsteel and soillconcrete, 

j - ~  was chosen as 0.45. Separate coefficients of friction were not selected in order to 

reduce the number of variables in the parametric study. Although this value is high for 

steel on clay soils, it is a reasonable fit for the other soil types based on Table 1 of 

NAVFAC DM-7.02 (1 986). This table lists friction factors, friction angles, and adhesion 

values for dissimilar materials. 

Determining an appropriate value of p for the interaction of steel and rock was 

more difficult than for the other interactions. Friction between smooth steel and smooth 

rock is generally quite low. However, the bedrock surface at a gven bridge site would 



most likely be weathered and broken, and the steel piles would have a hardened driving 

tip with jagged teeth welded to the end. Because of this, a representative friction factor 

was calculated using principles developed for the study of rocMrock and rocMconcrete 

interaction. 

Patton (1 966a) presents the following equation used to determine the shear stress 

at a rough rocWrock interface: 

(Equation 3.9) 

where o, is the average normal stress applied to the joint, $ is the friction angle of the 

rock, and i is an angle that describes the roughness of the joint. In nature, rocMrock 

joints seldom have a regular saw-toothed pattern that would result in a constant value for 

i. Field measurements by Patton (1966b) show that a value of i between 10" and 15" is 

reasonable for the component of strength due to irregularities or in-situ discontinuities. 

Figure 3.5 shows examples of driving shoes manufactured by Associated Pile & 

Fitting, LLC (2004). As can be seen in the figure, it can be conservatively estimated that 

the slopes (i) of the teeth on the bottom of a generic pile shoe are *lo0. Using Equation 

3.12, 11 can be calculated, since it is defined as the ratio of the shear stress to normal 

stress. With an i of 1 0°, a $ of 26", and assuming that the surface of the bedrock is level, 

p is calculated as approximately 0.7. A summary of coefficients of friction (p) for all of 

the surface interactions included in this model is given in Table 3.7. 



Table 3.7. Summary of Frictional Parameters 

Figure 3.5. Examples of Hard-BiteTM H-pile points from Associated Pile (2004) 

Interaction 
Soil / Rock 
Soil / Steel 

Soil / Concrete 
Steel / Rock 

After changing the coefficients of friction for the various interactions in the 

model, several additional preliminary models were run to determine the effects of the 

changes. The results from these analyses showed improved behavior of the components 

of the model. However, it was determined that the frictional interface between the soil 

and structure was behaving improperly. Due to the incremented application of gravity 

loads discussed in section 3.4.2, the piles were experiencing downdrag forces from the 

soil 2-3 orders of magnitude greater than would be expected. When gravitational forces 

are applied to the soil, it settles while the positions of the piles and abutments remain 

Coefficient of Friction (N) 
0.5 
0.45 
0.45 
0.7 



fixed in space, causing large initial differences in displacements. These large initial 

displacements result in increased shear stress along the surfaces of the pile, which cannot 

be equalized by the settlement of the pile alone. 

This situation was resolved through the "CHANGE FRICTION command in 

ABAQUS, which allows for the user to modify the coefficient of friction for selected 

interactions at any time during the analysis. Initially, the coefficient of fnction between 

all soil and structural elements was set to zero, meaning that no shear forces will develop, 

and the contact surfaces are free to slide (HKS, 2001). Gravity was then applied to the 

soil, which settled without generating any downdrag forces on the pile. The friction 

factor was then set to 0.45, and gravity was then applied to the abutments and pile. The 

shear forces generated with this procedure were not downdrag forces; rather they were 

similar to the side resistance generated during the driving of piles. 

3.3.4. Verification of Material Properties 

The behavior of the structural and geotechnical elements was verified using 

simple finite element models. For the structural elements, it was necessary to determine 

if the girders and piles with transformed rectangular cross sections behaved like their 

non-rectangular counterparts. As for the geotechnical elements, simple finite element 

analyses were performed to study their behavior as well as verify the values of 

parameters such as c and 4. 

3.3.4.1. Structural Elements 

Checks were performed on both the girder and the piles. For the girder, the 

deflections due to loading, as well as the amount of expansion under temperature changes 



were examined. As for the piles, deflections and the stress at which the material yielded 

were reviewed. Simplified models were created, and results from these models were 

compared to hand calculations and theory. 

The deflections at the midpoints of the model girders were compared to the values 

calculated using equations for a simply supported beam and a beam fixed at both ends, 

subjected to a uniform loading, in addition to a point load acting at the midpoint. The 

magnitude of the distributed load represented the dead load of the girder plus the weight 

of the crossframes, pavement, and railing; the point load was an arbitrary value of 145 kN 

(32.6 kips). Deflections predicted by the model girders compared well with calculated 

values. Ln most cases, the deflections predicted by the model were slightly higher than 

the calculated values, but differed by only 3% at the most. 

Expansion and contraction of the model girders due to temperature change was 

also compared to theoretical values. The model girder was fixed at one end, and free to 

translate horizontally at the other. A temperature change of *50°C (*122"F) was applied 

to the girder. Values predicted using the finite element model compared extremely well 

with theory, falling within 0.03% of each other. The higher degree of accuracy of the 

predicted thermal movement can be attributed to the fact that the weight and stiffness 

parameters of the girder were transformed as discussed in this chapter, while the 

coefficient of thermal expansion was not. 

Deflections and the yield stress of the pile were verified by modeling the pile as a 

cantilever beam with the toe of the pile fixed, and applying a lateral load to the head of 

the pile. No soil was included, to allow for the comparison between the model results 

and the known solution for a cantilever beam. Piles 3m7 6m, and 9rn in length were 



studied to determine whether the load-displacement behavior of the model piles was 

affected by pile length. 

Initially, the fixed condition at the base of the pile was modeled by restraining all 

of the nodes along the toe in both the x and y directions. However, it was found that this 

method overpredicted the loads that cause the yield moment (M,,) and the plastic moment 

(M,) by artificially restraining the tip of the pile. To resolve this, the fixed condition at 

the pile tip was modeled by applying a shear force in the opposite direction of the applied 

force, distributed across the nodes of the pile toe as shown in Figure 3.6. Only the left- 

most node (node 80) in Figure 3.6 was restrained against movement in the x and y 

directions, while the rest of the nodes were restrained in only the vertical direction. The 

distribution of the shear reaction at the pile toe was taken as parabolic, in accordance with 

beam theory. The equivalent shear stress, T, , was calculated using the following 

equation (Gere & Timoshenko, 1997): 

(Equation 3.10) 

where V is the value of the applied lateral load, Ip and cl, are the moment of inertia and 

depth (308 mm) of the model pile, respectively. The value of xn is equivalent to the 

distance between the neutral axis of the cross-section, and the node at which the shear 

stress is calculated. The equivalent reaction force at each node is then given by the 

product of the shear stress, and 118 of the area of the model pile. 



Figure 3.6. Distribution of equivalent reaction forces at pile toe 

Load-displacement diagrams for the model piles utilizing the more compatible 

formulation at the pile tip are shown in Figure 3.7. The load-displacement behavior is 

linear up to the point where the applied load is sufficient to initiate yielding of the cross 

section. When the load is large enough to cause the entire cross section to yield, the 

diagram becomes a horizontal line. Thus, the finite element model predicts a curved 

transition between the loads causing the yield and plastic moments, which is due to the 

progression of yielding over the depth of the cross-section. The comparison between the 

finite element model results and the idealized elastic-plastic response is excellent. 
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Figure 3.7. Load-displacement curves for model piles of various lengths 

3.3.4.2. Soil Elements 

Plane strain compression tests were modeled using the three soil types in order to 

determine whether they exhibited a response consistent with their assigned material 

properties. Using ABAQUS, a 100 mm (4 in) cube of soil was tested at confining 

pressures ranging from 20 kPa to 400 kPa (3 to 58 psi). Instead of applying a load to the 

top of the soil specimen, the nodes along the top of the sample were displaced uniformly 

in the y-direction to apply a constant rate of strain to the specimen, which better simulates 

a laboratory triaxial test. The bottom nodes were restrained against displacement in the 

y-direction, while a single node at the bottom center of the specimen was restrained in the 

horizontal direction. The magnitude of the deviator stress was determined by subtracting 



the confining pressure from the vertical stresses in the soil elements given in the 

ABAQUS output. The model was run until the strain in the soil specimen reached 22%. 

The volumetric strain of the soil sample was calculated in order to determine the 

effect of the value of y on the material behavior. As expected, volumetric strains in the 

soil specimen increased with larger values of y ~ ,  with little to no volume change occurring 

when y~ = 0". While the value of \IJ significantly affected the volume change behavior of 

the material, there was little change in the stress-strain behavior, unless y = 0". To 

examine the stress strain behavior, the principal stress difference (o l  - 03) was plotted 

versus the axial strain. For all soil types, the slope of the initial linear portion of the 

stress-strain curves matched the Young's modulus of the material. As would be 

expected, for increasing confining stresses, the soils reached a higher peak principal 

stress difference. A limitation of the Mohr-Coulomb material model in ABAQUS was 

observed, as the soils did not exhibit strain softeninglhardening behavior past the peak 

principal stress difference. Overall, the stress-strain behavior of the model soils was 

satisfactory for this phase. 

Values of the friction angle ($) and cohesion (c) were verified using the data 

from the model plane strain tests. Based on the data, values of p and q were calculated 

using the following equations given by Holts and Kovacs (1981): 

(Equation 3.1 1) 

(Equation 3.12) 



where 01 is the value of the applied vertical stress, and 0 3  is the value of the applied 

confining stress. Using the values of p and q at different confining stresses, a Kf line for 

each material was plotted, as shown in Figure 3.8. The slope (q) and intercept (a) of the 

Kfline are related to the friction angle and cohesion of the material by the following 

equations: 

(Equation 3.13) 

(Equation 3.14) 

Table 3.8 gives a comparison between the intended soil parameters, and the values of 4 

and c based on the test data. As was the case with the pile elements, the soil elements 

exhibit the behavior that was expected in their definition. 

Glacial T i l l :  y = 0 . 5 7 2 ~  + 7.796 

Cohesive: y = 0.000026~ + 35.004 

0 200 400 600 800 
Normal Stress (kPa) 

Figure 3.8. Mohr-Coulomb failure envelopes for model soil types 



Table 3.8. Comparison of Intended and Actual Model Soil Parameters 

3.4. Loading and Boundary Conditions 

This section deals with the application of gravity, thermal, and live loads to the 

structure, as well as some of the initial boundary conditions used to constrain the model 

during different loading stages. The application of the gravity and thermal loads is 

governed by amplitude curves that improve model convergence. Live loads are applied 

instantaneously, using only amplitude curves to load the structure cyclically. 
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3.4.1. Initial Conditions 

Granular 

45" 

0.3 kPa 

44.9" 

0.301 kPa 

Friction Angle ($) 

Cohesion ( c )  

Friction Angle (4) 

Cohesion ( c )  

As mentioned in Section 3.2.1, the outer boundaries of the model are represented 

with infinite elements. By fixing the perimeter nodes of these infinite elements, any 

stresses caused by this constraint would be in the far field, and have little impact on the 

soil near the structure. The nodes along the sides of the model were fixed in the 

horizontal direction, allowing the soil elements to compress vertically. The nodes along 

the bottom edge of the model were fixed in the vertical direction. The only other instance 

of a constraint being placed on nodes for the entire simulation is at the pilelabutment 

interface. A fixed constraint was placed on the nodes in this area relative to each other, 

keeping the bottom of the abutment from separating with the pile elements. 

Glacial Till 

35" 

9.0 kPa 

34.8" 

9.5 kPa 

Clay 

0.00 1 " 

35.0 kPa 

0.0028" 

35.0 kPa 



Two other initial conditions are applied to other elements in the model. A 

geostatic state of stress is applied to the bedrock elements in the initial step. This stress 

state varies linearly with depth based on the unit weight of the bedrock material. The 

purpose of the geostatic state of stress is to preload the bedrock elements before the 

weight of the soil above is applied to them. This was done rather than apply gravity load 

first to the soil and then bedrock, as this method would have caused separation between 

the surfaces of the soil and bedrock. 

The only elements in the model that require the definition of an initial temperature 

state are the girder elements. The girder elements are given an initial temperature in 

order to define positive and negative temperature changes. In an actual structure, this 

initial temperature can be considered the ambient temperature at the time the girders are 

welded to the tops of the piles. This temperature is critical, because any change in 

temperature after this time will result in movement of the head of the pile. For this 

model, the initial temperature was chosen to be 20°C (68°F). 

3.4.2. Dead Loads 

The dead loading in this model can be broken down into two categories: dead 

loads due to gravity and supplemental dead loads. Jn ABAQUS, the gravity loads are 

applied as a distributed load over the entire element using the *DLOAD command. After 

the group of elements to which the distributed load is applied has been selected, the 

magnitude and direction of the gravity vector are defined using the GRAV option. 

ABAQUS uses the density of the elements together with this vector to calculate the 

loading due to gravity (HKS, 2001). 



The supplemental dead loads represent loads that cannot be accounted for using 

the combination of the density and acceleration due to gravity. These loads are applied as 

a pressure distributed over the faces of elements using the "DSLOAD command. There 

are two instances of supplemental dead loading in this model. The first SDL accounts for 

the weight of the pavement, railings, bracing, and crossframes for each girder. Based on 

calculations done for the Mill Pond Bridge (Krusinski, 2002), the weight of the 

crossframes and bracing are taken as 10% of the weight of the steel in the girder. As 

discussed in Section 3.3.1.1, since there are different girders for each span length, the 

magnitude of this portion of the supplemental dead load also varies. From the same set 

of calculations, the weight of the railing is taken as 4 kN/m (274 lblft). This value is then 

divided by two, since there are two railings and four girders. The weight due to the 

pavement is representative of an 80 mm (3 in) thick wearing surface of bituminous 

concrete. 

The other supplemental dead load accounts for bituminous pavement that would 

be installed on top of the soil leading up to the approaches of the bridge. The thickness 

of this pavement was assumed to be 150 mm (6 in) to account for wearing surface and 

binder courses. This load was included not only for the sake of completeness, but also to 

provide a small amount of confining pressure to the soil at the ground surface. 

Both the gravity and supplemental dead loads are applied to the structure using an 

amplitude curve defined with the *AMPLITUDE command. The curve used to apply the 

loads is shown in Figure 3.9. As shown on the y-axis, the relative magnitude of the load 

ranges from 0 (no load) to 1 (full-load). The curve was defined in a manner that provides 

small changes in relative magnitude up until the value reaches 0.25. This results in fewer 



convergence difficulties than would occur if the entire weight of hundreds of cubic yards 

of soil and structural elements were mobilized instantaneously. 
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Figure 3.9. Amplitude curve for application of dead loads to model 

In addition to being governed by the amplitude curve shown in Figure 3.9, gravity 

loads are also applied to different potions of the model at different stages in the 

simulation. This is done in order to attempt to duplicate some of the stresses created in 

the soil and structure by the construction loading sequence of an actual integral abutment 

bridge. Initially, gravity loads are applied to the soil and bedrock elements, in order for 

these elements to come to equilibrium. After this occurs, gravity is then applied to the 

piles, girder, and abutments. After gravity has been applied to the whole structure, the 

supplemental dead loads discussed earlier are applied, and the whole model is allowed to 

come to equilibrium once more. It is from this state of equilibrium, after the dead loads 

of the soil and structure have been applied, that further live and thermal loading of the 

structure commences. 



3.4.3. Thermal Loads 

Thermal expansion and contraction of the girder is governed by two separate 

thermal loads. These loads are based on the AASHTO requirements for structures in cold 

climates (1 996). For metal structures, the design temperature range is from -30°F to 

120°F (-35°C to 50°C). Because Maine has lower temperatures than many places in the 

country, the upper limit on the temperature range was reduced to 40°C (1 04°F). This 

results in a positive temperature change of 20°C (68"F), and a negative temperature 

change of 55°C (13 1°F). These temperature changes were applied to the nodes of the 

girder using the "TEMPERATURE command in ABAQUS for thermal loading of 

elements. 

The temperature changes were achieved by modulating the initial temperature of 

the girder using amplitude curves. The amplitude curves for the thermal loads used in the 

model are shown in Figure 3.1 0. The linear "curve" is the temperature increase, while 

the second, linear "curve" is the temperature decrease. It should be noted that the 

temperature decrease amplitude curve has many more data points than the curve for 

temperature increase. This is mainly because the negative temperature change is much 

more drastic than the positive change. Better convergence of the model is achieved by 

using smaller steps between temperature change, rather than large jumps. 

A third amplitude curve was created in order to model an annual temperature 

cycle that mimics the temperature changes a girder would see over an entire year. The 

curve shown in Figure 3.1 1 (a) is a portion of an actual plot of annual temperature data 

recorded at The Forks Bridge in western Maine by Sandford (1 997). The jagged peaks 

and spikes on the plot represent the day-to-day air temperature fluctuations. However, 



for a given year, the temperature curve is generally sinusoidal. Figure 3.1 1(b) is the 

amplitude "curve" created for ABAQUS that approximates the shape of an actual annual 

temperature cycle. For the purposes of this model, an annual cycle starts at 20°C, 

increases to 40°C, returns to the original temperature, decreases to -35"C, and then 

returns to 20°C. 

Figure 3.10. Amplitude curves for (a) positive and (b) negative temperature change 
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Figure 3.11. Annual temperature cycle curves for (a) actual bridge and (b) model 
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3.4.4. Live Loads 

The live loading for this model consists of three axle loads of a design truck 

placed at various locations on the girder, in order to maximize or minimize certain 

effects. Two design trucks were used in the parametric study, an AASHTO (1 998) HL- 

93 design truck, and the MDOT (1 999) design truck. A representation of the HL-93 

truck is shown in Figure 3.12. The MDOT truck is identical to the HL-93 truck in all 

respects, except for the axle loads, which are 25% higher. A distribution factor of 0.5 

was used, as the bridge contains two lanes supported by four girders. AASHTO requires 

the addition of a distributed lane load of 9.4 kN/m, to which the 0.5 distribution factor 

was also applied. 

Figure 3.12. HL-93 design truck (AASHTO, 1998) 

The axle loads were applied to the girder using the "CLOAD command, which 

allows for a force in any direction to be defined at a specified node. To maximize 

bending moment in the girder, a design truck was placed with its central axle at the 

centerline of the span, with the remaining axles located 4.3m away. If one of these axles 

did not fall at the location of a node, the load was split proportionately between adjacent 

nodes. Shear in the girder was maximized by placing the rear axle of a design truck at 

the location where the girder and abutment meet. As was done for maximum bending 

moment, the remaining axles were spaced at 4.3m. 



Unlike the dead and thermal loading, the live loads were applied to the structure 

instantaneously, without the use of an amplitude curve. However, the amplitude curve 

shown in Figure 3.13 was implemented in the studies to examine the effect of a cyclic 

live load. The purpose of this curve is similar to that of the curve used for the dead load 

in that its function is to modulate the relative magnitude of the live load between 0 and 1. 

The curve was defined using a sine function that could be repeated for as many cycles as 

were desired. 

0 0.5 1 1.5 2 
Step Time 

Figure 3.13. Amplitude curve for cyclic live load 

The three categories of load (dead, live, temperature change) were combined into 

six separate load cases, to be applied to the models in the parametric study. Load Case 1 

was simply the dead load of the structure, including all supplementary dead loads. Load 

Case 2 contained all of the dead loads in addition to the HL-93 truck and lane live 

loading. Load Cases 3 and 4 were a combination of the dead loading acting in 

conjunction with the 20°C (68°F) positive temperature change and 55°C (1 3 1°F) negative 

temperature change, respectively. Load Cases 5 and 6 were simply Load Cases 3 & 4, 

plus live load, respectively. A summary of the load cases to be used in the parametric 

studies is given in Table 3.9. 



Table 3.9. Summary of Load Cases 

3.5. Preliminary Finite Element Model 

Load Case 

1 

2 
3 
4 

5 
6 

After all of the material parameters had been settled upon and verified, a 

preliminary study was undertaken to determine whether the behavior of the model bridge 

was reasonable. Preliminary models consisted of an integral abutment bridge with a 25 

m (82 ft) long superstructure, and pile lengths that varied between 2 m (6.5 ft) and 10 m 

(32.8 ft). Pile lengths up to 10 m were included in the study in order to determine at what 

length the behavior of the piles drastically changes. The length of superstructure was 

chosen as 25 m, because this value fell at the center of the range of lengths that would be 

examined in the parametric study. All material behavior was linearly elastic in order to 

improve solution times, and to eliminate the effect of material plasticity on the behavior 

of the model. As a result, all models were run with granular soil, since the linear elastic 

soil models would not account for the differences in c and I$ in the soil behavior. The six 

load cases in Table 3.9 were applied to the models with the different pile lengths, 

resulting in 54 models examined in the preliminary study. 

The results of the preliminary analyses were used to eliminate anomalous model 

behavior and make improvements to the performance of the model. A secondary goal of 

Abbreviation 

DL 
DL+LL 
DL+AT 
DL-AT 

DL+LL+AT 
DL+LL-AT 

Components 

Dead load of structure and attachments 

Load Case 1 with HL-93 live loading 
Load Case 1 with positive temperature change 
Load Case 1 with negative temperature change 
Load Case 2 with positive temperature change 
Load Case 2 with negative temperature change 



the preliminary study was also to determine the critical model responses that warranted 

further examination in the parametric study. This section describes some of the factors 

that affected the behavior of the model, as well as the modifications made to the model in 

an attempt to mitigate their effect. The critical model responses selected for further study 

are also discussed. The mesh in the preliminary studies was coarse, in another attempt to 

reduce computational cost. Therefore, refinements were made in the areas of the model 

with critical responses in order to obtain a more accurate and convergent solution. 

3.5.1. Factors Affecting Model Behavior 

Two major factors that altered the behavior of the model are described in the 

following sections. The first factor relates to the out-of -plane thicknesses of the two- 

dimensional elements used in the model, and how of elements of varying thicknesses 

interact with each other. The second factor covered is the effect of the depth of the 

channel over which the bridge spans on the behavior of the piles. It was found that this 

factor, which is generally ignored in most simplified pile analyses, could have a 

significant effect on the behavior of the pile. 

3.5.1 .l. Variation of Element Thickness 

As discussed in previous sections, the plane stress and plane strain elements in 

ABAQUS are defined with an element thickness in the z-direction. This thickness is 

used to determine magnitudes of forces applied over the surfaces of the element (contact 

forces, distributed loading) and forces distributed throughout the entire element (gravity). 

In ABAQUS, the default value of this thickness is a unit width, 1 m in the case of this 

model. As discussed in Section 3.3.1, it was necessary to change the thickness of the pile 



and abutment elements in order to make their axial and flexural stiffnesses equal to those 

of the actual components. For the remaining elements, soil, bedrock, and girder, the 

default unit thickness was defined. 

Nodes of elements involved in surface-surface interaction lie on a plane at one- 

half the defined element thickness. Because the elements of the various components of 

the model have different thicknesses, there are several instances where elements of one 

thickness are required to contact elements of a larger or smaller thickness. ABAQUS 

accounts for this by allowing the user to define the dimension out-of-plane thickness of 

each contact surface using the "SURFACE INTERACTION command. For the 

preliminary analyses, the surface thickness was set to the smaller thickness dimension of 

the two contacting sets of elements. 

After examining output data from the preliminary studies, it was determined that 

this measure alone was not sufficient to solve all of the difficulties associated with having 

elements of a different thickness in contact with each other. Furthermore, in the case of 

the abutmentlsoil contact pair, it was not clear if the 1 m wide soil elements provided 

sufficient support to the 2.7 m wide abutment elements. However, it was felt that the 1 m 

wide soil elements provided a reasonable amount of resistance to the piles. Each pile is 

capable of mobilizing an area of soil up to three times the width of the pile. In the design 

of pile groups, a spacing of 2.5 to 3.5 times the pile diameter is therefore recommended 

to ensure that soil resistance is not affected by surrounding piles (Army Corps of 

Engineers, 1992; Chen & Poulos, 1993). The 1 m width of the soil elements is 

approximately 2.8 times the width of the pile, and therefore the resistance provided is not 

as questionable as in the case of the soillabutment interaction. 



To provide adequate resistance to the movements of the abutments, the width of 

the soil elements in contact with the abutment was increased to 2.7 m. This modification 

presented another problem, because in some cases the volume of the soil adjacent to the 

abutments was more than twice that of the soil adjacent to the piles. This not only 

resulted in unrealistic confining pressures on the soil at lower depths, but also brought 

about increased contact forces normal to the surface of the piles. To resolve this 

situation, a distributed load was applied upward to the bottom surface of the group of 2.7 

m soil elements adjacent to the 1 m elements. The distributed load is equivalent to the 

increase in weight caused by increasing the element width by 1.7 m. This load also takes 

the increased amount of pavement loading into account. 

3.5.1.2. Channel Depth 

During the examination of preliminary data, it became apparent that the depth of 

the channel under the bridge (as shown in Figure 3.1) contributed more significantly to 

the amount of support provided to the piles more than was initially expected. In the 

initial studies, the channel depth varied with pile length, with channel depth being 

measured downward from the abutmentlpile interface. The variation of channel depth 

with pile length is given in Table 3.10. Preliminary data showed that the lateral 

displacements at the pile tips were greater for longer piles than shorter, i.e., 10 m piles 

compared to 2 m piles. However, within groups of channel depth values, another trend 

was observed. It was shown that the longer pile within a group of channel depths had 

smaller displacements than a shorter pile with the same channel depth. 



Table 3.10. Variation of Channel Depth with Pile Length 

To quantify this trend, a simplified study was performed on a model bridge with 

10m long piles, subjected to Load Case #2. The depth of the channel was varied from the 

top of the pile (0 m deep) to 10 m below the top of the pile. Figure 3.14 presents a plot of 

deflections along the length of the pile for three different channel depths. It can be seen 

from the plots that the deflections at the pile tip are greater for deeper channels than 

shorter. In addition, the deflection at the head of the pile for each channel depth is shifted 

towards the right (in the direction of the channel). The most notable effect of the varied 

channel depth is that the maximum positive deflection along the length of the pile 

increases dramatically with channel depth. For a channel depth increase of 

approximately 5 m (16.5 ft), the maximum deflection increases by approximately 1 mm 

(0.04 in). While a 1 mm change is small when compared to some of the dimensions of 

the model, it is much larger than the change in deflections at the head and toe of the pile 

caused by the change in channel depth. 

Pile Length 

2 m 
3-4 m 
5-6 m 
7-8 m 

9-10 m 

Channel Depth 
(below top of pile) 

Om 
1 m 
2 m 

3 m 
4 m  



C4 

E w 

5 
g 
B 
eg 
E 
0 
6 
c 
0 .- 
i 
m 
2 - Channel Depth 
W om 2 - -  

- - - - - 10m 
I I I I I 

-3 -2 - I  0 1 2 3 
+ Approach Channel + 

Lateral Deflection (mm) 

Figure 3.14. Comparison of pile deflections for varied channel depths 

Because of the discrepancies in pile deflection caused by the varied channel 

depth, an attempt was made to minimize the effect the channel depth had on piles of 

varying length. It was decided that for piles with a length of 4 m or less, the depth of the 

channel would be equal to the length of the pile. This was done for two reasons, the first 

being after examinations of several bridge plans, the channel is often the same depth or 

deeper than the piles due to a sloping bedrock profile, or erosion by moving water. 

Furthermore, the effect on channel depth of piles shorter than 4 m was observed to be 

negligible. This solution also helps to present a worse case state of support for "short" 

piles, since that is the focus of this research. For piles 5 m and greater in length, the 

channel depth was set to a constant depth of 4 m. Although the effect of channel depth 

was reduced by this change, it was not completely eliminated. 



3.5.2. Establishment of Critical Model Responses 

The preliminary finite element model was used to determine the areas where 

changes in the loading and bridge geometry caused the greatest effects. It was quickly 

recognized that the piles were the most significant area of model behavior. Movements 

and stresses in and around the piles were the largest throughout the model. Based on the 

results of the preliminary analyses, three aspects of pile response were considered for 

closer analysis in the parametric studies: movement at the tip and head of the pile, 

stresses in the pile, and forces at the pilelbedrock interface. The abutmentlgirder 

interface was also considered an area of interest, because of relatively high stresses 

observed in the preliminary study. This area was also studied to try to determine whether 

the girder behaved as a simply supported beam, or a beam with fixed supports. 

The preliminary models were discretized with a coarse finite element mesh in 

order to reduce computational costs. Elements in the model had a y-dimension of either 

1.0 m or 0.5 m, which often resulted in aspect ratios greater than 2: 1 in the areas of 

interest, especially in the piles. The number of elements in the model varied with the pile 

length, with a minimum of 392 elements in the models with 2 m long piles, and a 

maximum of 902 elements in the models with 10 m long piles. It has been shown that as 

the number of elements increases, and as the aspect ratios of the elements in the model 

decrease, the solution converges on a more accurate value (Logan, 1993). Therefore, it 

was decided to utilize a finer mesh in the areas of interest; the pile, soil and bedrock 

adjacent to the pile, the pilelbedrock, pilelabutment interfaces, and girderlabutment 

interfaces. This increased the number of elements to 1874 for the model with 2 m piles 

and 33 15 for the 10 m model. The aspect ratios in the piles and other areas of interest 



were reduced to a value of 1 : 1 or less. Figure 3.15 provides a comparison between the 

initial and refined meshes for a model with 3 m long piles. 

Figure 3.15. Comparison between (a) coarse and (b) refined mesh 

3.6. Summary 

The process of creating a two-dimensional finite element model for a parametric 

study of integral abutment bridges founded on short piles has been outlined in this 

chapter. Complex constitutive and surface interaction models were used in order to 

provide a more realistic depiction of the soil/structure interaction. Material properties 

were based on test data and theoretical values, and adjusted to more closely resemble the 

anticipated conditions at bridge sites in Maine. The elastic-plastic behavior and 

properties of the soil and piles were verified using simplified models to determine their 

accuracy. Several load cases to be used in the parametric study were created based on 

design recommendations from MDOT and AASHTO. 



Preliminary finite element models were created and analyses were performed to 

resolve any abnormal model behavior. Factors such as the out-of-plane thickness of the 

two-dimensional elements, and varying the depth of the channel beneath the girder had 

unexpected influence on the behavior of the model. Once issues pertaining to these 

factors had been resolved or mitigated, critical model responses to be examined more 

closely in the parametric studies were selected. Accordingly, changes were made in the 

level of mesh refinement in order to provide a more accurate numerical solution for the 

selected model responses. 



Chapter 4 

PARAMETRIC STUDY 

Chapter 3 of this thesis discusses the details of the development of material and 

geometric properties for a preliminary version of a finite element model incorporating 

advanced material behavior and interactions. Further discussion of the finite element 

model in this chapter involves the procedure used to analyze the structure. Parametric 

studies were carried out in order to quantify the effects of certain factors on the three 

critical pile responses determined in the previous chapter; movement at the tip and head 

of the pile, stresses in the pile, and forces at the pilelbedrock interface. A primary study 

was focused on the effect of significant changes in the geometry of the bridge and 

subsurface conditions. Secondary studies with limited scope were also performed in 

order to investigate the consequences of smaller changes in the loading and material 

properties of the model. 

4.1. Analysis Procedure 

Model data was output in two separate formats, a text file (*.dat) and a file that 

allows ABAQUS to display graphical data (*.odb). The graphic files were not used as 

the primary source of output data due to their large size. However, these files were very 

useful in some instances to obtain qualitative information on the displacements of the 

structure and locations of stresses. The text files allowed the data to be imported into a 

spreadsheet program, which simplified organization and display of the data. Output 

variables in these files included stresses and strains in the pile elements, normal and shear 

forces at contact surfaces between the structure and soil or rock, and nodal displacements 



of the structure (piles, abutments, and girder) and the adjacent soil. An annotated 

example of ABAQUS script for a model used in the parametric study is given in 

Appendix A. 

4.1.1. Simulation of Construction Sequence 

An analysis procedure was written in order to mimic the construction process of 

an integral abutment bridge as closely as possible. This was accomplished by controlling 

the loads and displacements of certain areas of the model during increments of time. The 

detailed construction procedure used by the Maine Department of Transportation 

(MDOT) for each bridge was not known, so assumptions were made based on MDOT 

bridge plans and the procedures used by other agencies. Phase I1 of this research will 

examine the construction processes and may recommend changes. 

At the start of the analysis, gravity forces were applied to all components of the 

modeled structure simultaneously. However, the nodes at the perimeter of the structural 

components were restrained such that no displacements occurred, and no stresses 

developed in these elements. The nodal restraints were then released in separate time 

increments, in the order that they would be placed in the field. The nodes of the piles 

were released, followed by the girder, and abutments. This is the general order of 

construction for a typical integral abutment bridge. In subsequent time increments, the 

supplemental dead loading of the approach pavement and girder were added. After all 

dead loads were added and all nodal restraints released, the system was allowed to come 

to equilibrium. 



4.1.2. Composite vs. Non-Composite Girder Behavior 

One aspect that is overlooked in this process is the changing moment of inertia of 

the composite girder at various stages of construction. This is discussed briefly in 

Chapter 3. For a short period in the life of an actual bridge, the steel girder supports the 

additional weight of the uncured deck, without being able to take advantage of the 

stiffness of the concrete deck. Similarly, after the deck has fully cured, the stiffness of 

the composite cross section decreases with time due to creep effects. These varied 

stiffnesses could possibly lead to larger displacements and stresses at different stages of 

the analysis. In effect, there are three different girder sections representing construction, 

early use, and later use of the bridge. Therefore, it would be more realistic to include the 

effects of these different section properties in the finite element analysis. 

Calculations using the three separate section properties of the model girder were 

performed in order to quantify the differences in end rotations of a simply supported 

girder. A simply supported girder was studied, since the true support conditions provided 

by an integral abutment require the soil/structure interaction to be taken into account. 

The section properties considered were the short-term composite, long-term composite, 

and non-composite section properties. AASHTO (1996) defines the loadings appropriate 

for the given section properties. Non-composite sections only experience the dead load 

of the girder and uncured deck. Short-term composite sections experience these dead 

loads in addition to any dead loads from pavement, attachments, and barriers. Long-term 

composite sections experience only dead loads from pavement, attachments, and barriers. 

Live loading acts on the short-term composite section only. 



Four rotations were calculated for all five of the girder lengths. 8, is the sum of 

the dead load rotations of the non-composite and long-term composite sections, while O2 

is simply the dead load rotation of the short-term composite section. O3 and 8 4  were 

calculated by adding the live load rotation of the short-term composite section to 0, and 

O2 respectively. Comparisons of 0,  to O2 for the five girder lengths show that the short- 

term section properties underestimate the end rotations by up to 78%, while comparisons 

of O3 and 04, which include live load effects, show that the short-term properties only 

underestimate the end rotations by approximately 50%. 

While these comparisons may cause some to question the validity of the model 

results, there are additional factors that must be considered before any conclusions are 

made. The most important factor is the fact that all rotations (el,  02, 03, 04) are 

calculated for a simply supported beam, which an integral abutment bridge is not. It is 

common practice (MDOT, 1999; Abendroth & Greimann, 1988) to assume that the end 

rotation of a simply supported girder is an upper bound on the rotation of the abutment 

and the pile head, since they are both rigidly connected to the girder. Data from the 

model shows that the interaction between pile, abutment, girder, and soil results in 

rotations under the same loading for the short-term section properties that are 67% less 

than O2 and 75% less than 0 4 .  

In addition to the effect of the actual support conditions, thermal effects help to 

compensate for the differences in end rotations. As will be discussed later in this chapter, 

and in Chapter 5, the controlling load cases always involve a negative temperature 

change, which works to increase the rotation of the abutments. Examination of the model 



data shows that the rotational component of this temperature change is typically 1.5 to 2 

times greater than the components of dead and live load rotation. 

To the best of the writer's knowledge, only one researcher (Diceli, 2000) has tried 

to account for the effect of the changing moment of inertia of the girder at different 

stages. ABAQUS has provisions that allow the user to change the section properties of a 

beam element during an analysis, but not the material properties of the elements 

themselves. Since this model uses an equivalent Young's modulus and plane strain 

elements to define the section properties of the girder, there is no way that the changing 

moments of inertia can be accounted for explicitly. However, dead loads in future studies 

could be adjusted to compensate for the increased rotation of the non-composite and 

long-term properties. 

Since the support conditions provided by an integral abutment reduce end 

rotations, and the change in end rotations due to thermal effects are much more 

significant than those caused by the changes in section properties, the difference in girder 

section properties was ignored in this parametric study. However, this is something that 

should be addressed in future research, in order to determine exactly what effect this 

phenomenon has on the bridge behavior. 

4.2. Primary Parametric Study 

The primary parametric study investigated how changes in the length of the piles 

and girders affected the critical pile responses. As mentioned in Chapter 3, the pile 

lengths varied in 1 m increments from 2 m (6.5 ft) to 6 m (20 ft), with 8 m and 10 m long 

piles also considered. The length of the girder was varied in 5 m (16.5 ft) increments 



from 15 m (49 ft) to 35 m (1 15 ft), which resulted in 35 possible configurations of girder 

and pile geometries. From the 35 possible bridge configurations, models were created 

incorporating the six load cases presented in Table 3.9, and the three general soil 

categories: cohesive, granular, and till. A total of 630 combinations of bridge geometry, 

loading, and subsurface conditions were considered in this study. The effect of these 

combinations on pile stresses, pile kinematics, and the interaction between the pile and 

bedrock will be discussed separately in the following sections. 

4.2.1. Pile Kinematics 

There are several assumptions about the kinematics of laterally loaded piles with 

regards to integral abutment bridges that required investigation. Broms (1964a, 1964b) 

distinguishes between long and short piles based on comparisons between the stiffness of 

the pile section and the stiffness of the surrounding soil, with short piles having a much 

larger stiffness than the surrounding soil. The displacements of a laterally loaded pile 

depend on whether the pile is long or short, in addition to the manner in which the head 

of the pile is restrained. Figure 4.1 depicts the assumed deflections for short piles with 

heads that are allowed to rotate (free) and heads restrained against rotation (fixed), while 

Figure 4.2 depicts the same deflections for long piles. 



Figure 4.1. Deflections of short piles with (a) free head (b) fixed head (Broms, 

1964a) 

Figure 4.2. Deflections of long piles with (a) free head (b) fixed head (Broms, 1964a) 

Piles supporting integral abutments have been shown to behave similarly to the 

pile shown in Figure 4.2(b). These piles are fixed at some depth, with inelastic rotation 

occurring somewhere between this point and the head of the pile. The equivalent 

cantilever method used in the design of these piles is based on the assumption that the 

bridge piles will behave in this manner. Therefore, it has been assumed by many that 

"short" piles supporting an integral abutment bridge would behave in the manner 



depicted in Figure 4.1 (b). If piles supporting a bridge abutment were to move en masse 

under lateral loading, the structure may not be able to handle the resulting forces and 

displacements. By confirming the pile kinematics through the finite element model, the 

validity of design assumptions to certain pile lengths can be determined. 

The first aspect of pile kinematics examined was the behavior of the head of the 

pile. For both examples of fixed head piles shown in Figures 4.1 and 4.2, it is assumed 

that the concrete encasing the top of the pile only translates and does not undergo any 

rotation. In the case of integral abutment bridges, it is assumed that this translation of the 

abutment and pile head is caused only by thermal expansion and contraction of the girder. 

Examination of the graphic output from the model for all combinations of pile lengths, 

girder lengths, and soil types confirms that translation of the abutment and pile head 

occurs under thermal loading. As would be expected, longer girders resulted in larger 

displacements at the pile head. For a given girder length and temperature change, the 

length of pile had little effect on the displacements at the head. In general, piles longer 

than 4 m experienced slightly less deflection at the head of the pile than shorter piles. 

However, under dead and live loading additional pile head deflection was 

observed. This is a result of the girder deflection inducing a rotation of the abutment. 

Because the stiffness of the abutment is much greater than that of the pile or the 

surrounding soil, there is relatively little resistance to this motion. Therefore, the length 

of the pile does not have any effect on the magnitude of this displacement. Figure 4.3 

depicts the rotation of the abutment and resulting pile head displacement under live 

loading. Because the rotation of the abutment depends on dead and live loading, the 

magnitude of this deflection increases with girder length. 



Figure 4.3. Pile deflection due to dead and live loads (deflections magnified 100x) 

The second aspect of pile kinematics examined was the behavior of the pile at the 

tip, where it comes into contact with the bedrock. As can be seen in the figure above, 

lateral deflections along the length of the pile decrease with depth. For all load cases, and 

for all combinations of bridge geometry and soil conditions, there is no lateral deflection 

at the tip of the pile. This suggests that piles supporting integral abutment bridges do 

indeed behave as shown in Figure 4.2(b), for all pile lengths considered in this study. 

However, upon closer inspection of the pile response at the tip, it was shown that this is 

not accurate. 

For piles shorter than 4 m (13 ft), the tip of the pile does not exhibit behavior 

consistent with a fixed support condition. Although there is no significant lateral or 

vertical deflection, the tips of the piles are not restrained against rotation, as evidenced in 

Figure 4.4. Under dead and live loading, the rotation of the pile tip is not substantial. For 

load cases 3-6, where the structure is subjected to thermal effects, the rotation of the pile 

tip becomes important. As pile length increases above 4 m, rotation at the pile tip 

decreases to a point where the assumption of fixed conditions is valid. 



Figure 4.4. Rotation at tip of piles I 4 m in length (deflections magnified 100x) 

Initially, there was some concern about rotation occurring at the base of the pile, 

since this observation goes against the theoretical basis of how most integral abutment 

bridge piles are designed. However, in Broms' papers on laterally loaded piles (1 964a), 

he presents a case for piles whose length falls in between the criteria for "short" and 

"long" piles. The deflection behavior of the piles in the finite element model compares 

well with the behavior that Broms proposed for laterally loaded piles of intermediate 

length. Figure 4.5(b) shows that Broms predicts a lateral translation of the pile head, with 

rotation occurring at the tip of the pile. The tips of the model piles do not rotate to the 

degree of Broms' intermediate pile, but this can be attributed to the interaction between 

the pile and the bedrock. 



Figure 4.5. Comparison of deflections for (a) model pile (magnified 100x) and (b) 

intermediate pile with fixed head (Broms, 1964a) 

4.2.2. Pile Stresses and Forces 

Because almost all pile design criteria for integral abutment bridges utilize a 

limiting value of stress, a goal of the parametric study was to determine the effect of 

geometric and subsurface factors on the stresses in the pile. Specifically, it was important 

to determine the extent of yielding in the pile, and the locations where yielding occurs. 

Because the model utilizes a transformed cross section of the pile, as described in 

Chapter 3, the element stresses in the output files cannot be used directly. Therefore, 

element strains were used to calculate the stresses and moments in the actual pile cross- 

section, since they are unaffected by the section transformation. For all of the finite 

element models, strain data was taken at the integration points of the elements where it is 

the most accurate, and linearly extrapolated to the outer faces of the pile section. 

The magnitude of the strains at the head of the pile is not greatly affected by the 

length of the pile. However, because longer piles have more rotational restraint at the tip, 



the distribution of strains along the length of the pile is dependent on the length. Using 

the strains at the face of the pile, the axial load and moment along the pile was calculated. 

Figure 4.6a shows the distribution of moments from the finite element model along the 

length of a 3 m long pile, and Figure 4.6b shows the moment distribution proposed by 

Broms (1964a) for an intermediate length pile with a fixed head. 

The distribution of moments along the model pile compares very well with the 

distribution proposed by Broms. It should be noted that the model pile has a small 

moment acting at the tip, while Broms' distribution has no moment acting at the tip. The 

moment at the tip of the model pile is a result of the interaction between the tip and the 

bedrock surface, which will be discussed in the next section. However, because the 

magnitude of this moment is relatively small, the observation that the pile is free to rotate 

can still be considered valid. Examination of the results for longer piles shows that this 

distribution does not apply when the length of the pile is greater than 4-5 m. Therefore, 

the tips of piles greater than this length will tend to behave as if they have rotational and 

translational restraint. 
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Figure 4.6. Comparison of moment distribution for (a) model pile and (b) 

intermediate pile with fixed head (Broms, 1964a) 



Although the length of the pile did not greatly affect the magnitude of the strain at 

the head of the pile, the girder length and subsurface conditions were shown to have a 

significant effect on the magnitude of the strains. The discussion of pile kinematics 

showed that the displacements at the head of the pile for a given loading increase with 

girder length. Depending on the support provided by the surrounding soil, this 

displacement can cause large strains in the pile head. Piles in granular soil were shown to 

have the lowest strains at the pile head for a given combination of loading and geometry, 

while piles in cohesive soil were shown to have the highest strains. The strains at the 

head of piles in glacial till fell between the values for granular and cohesive soils. 

Because the magnitude of pile head strains varies with the subsurface conditions, 

piles embedded in a weaker soil, such as clay, are more likely to experience yielding than 

piles embedded in granular soil. For example, when the length of the girder is 25m, piles 

in cohesive soil begin to yield in all load cases involving live load (cases 2,5,  and 6). In 

contrast, piles in granular soil and glacial till begin to yield only under Load Case #6, 

which causes the most severe rotation and translation of the pile head. For combinations 

of geometry and loading that cause yield in any soil type, the extent of yielding is greater 

for piles in weaker soil. Results of the finite element analysis show that for a 30 m (98 ft) 

long girder under dead and live load only, piles in cohesive soil experience yield strains 

at a greater depth than piles in granular soil or glacial till. Furthermore, a larger 

percentage of the depth (flange width) of the pile section had undergone yielding. 

As would be expected, longer girders result in increased strains at the head of the 

pile. For girders 20 m (66 ft) in length and shorter, the strains at the pile head did not 

approach yield in any subsurface conditions. For girders 25 to 30 m (82 to 98 ft) long, 



yielding occurred in only a few of the load cases. When the girder length reached 35 m 

(1 15 ft), yielding occurred in all load cases, with up to 55% of the depth of the cross- 

section experiencing yield in some cases. Because of the severity of yield that 

combinations of geometry and subsurface conditions can cause, girder length will be a 

limiting factor for most integral abutment bridges founded on short piles. Figure 4.7 

illustrates the effect of soil type and girder length on the maximum compressive strains at 

the head of the piles. 

Figure 4.7. Effect of girder length and subsurface conditions on strains at head of 

pile under dead and live loading 
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4.2.3. Pile / Bedrock Interaction 
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As shown in Figure 4.4, the interaction between the tips of piles less than 4 m 

long and the bedrock is considerably different from the assumption of fixed conditions 
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that are typically associated with integral abutment bridge piles. The stiffness of a short 

pile is such that rotation will occur at the base, while lateral and vertical translations are 

resisted. The amount of rotation at the pile tip is generally governed by the support 

provided by the surrounding soil. Resistance to movement is dominated by the forces 

generated between the pile and bedrock. 

Contact forces acting perpendicular (normal forces) and parallel (shear forces) to 

the surface of the bedrock were examined. The normal force in the pile was found to be 

controlled by the load case and the span length. As would be expected, larger spans 

result in higher axial loads, due to the increased dead and live loading. The subsurface 

conditions contribute to differences in the axial loads, primarily due to adhesion between 

the pile and soil. Soils with a larger cohesion intercept generate larger downdrag forces 

in the pile. However, the downdrag forces generated in the model were not a major 

component when compared to the forces generated due to dead and live load. Thermal 

loading does not generate any significant changes in the axial forces. 

The shear forces acting parallel to the bedrock surface are controlled by the same 

factors that govern the nonnal forces. Subsurface conditions affect the shear force at the 

tip of the pile, in the same way that they change the strains in the head of the pile. 

Granular and glacial till will provide more lateral restraint to the pile than cohesive soils, 

thereby reducing the force that must be generated by the pilefrock interface in order to 

prevent translation of the pile tip. As in the case of the normal forces, girder length and 

load case again primarily dictate the shear forces generated between the bedrock and pile 

tip. This can be attributed to the amount of lateral deflection of the head of the pile 

caused by the rotation of the abutment under loading. Longer girders have an increased 



dead and live load and therefore will have a larger deflection at the head of the pile. In 

addition, a negative temperature change in the girder will induce a large rotation in the 

abutment and cause a subsequent pile head deflection. Longer spans will undergo a 

larger amount of thermal contraction. 

Unlike the normal force, shear force was affected by changes in the pile length. 

As pile length increased from 2 m to 4 m, the shear force at the tip of the pile also 

increased. In piles 5 m and longer, the shear force began to decrease with length. This 

behavior occurs because the 4 m models had the longest piles with the least amount of 

soil support provided under the bridge. Therefore, there is a tendency for the soil on the 

opposite side of the pile to push towards the centerline of the span. This effect is 

illustrated in Figure 3.14, where the largest pile deflections occur when the depth of 

channel is equal to the length of the pile. While an attempt to account for this 

phenomenon realistically is described in Chapter 3, the effects can be addressed better in 

a three-dimensional analysis. Ln order to quantify what the changes in shear force meant 

in tenns of the stability of the structure, the ratio of shear to normal forces at the tip of the 

pile was calculated for each combination of geometry, soil, and load. This ratio was then 

compared to the friction factor (p) used for the surface interaction between bedrock and 

the piles. As this ratio approaches p, the likelihood of movement occurring between 

these two surfaces increases. 

Typically, the highest shear to normal ratio was calculated for Load Case 3, where 

a negative temperature change was acting simultaneously with dead load. Load Case 6, 

where dead, live, and a negative temperature change act simultaneously, also produces 

large shear to normal ratios. These cases are the most severe because the strains in the 



pile are the highest for the given axial load. The highest ratio of these forces that was 

obtained overall was approximately 0.45, for a 15 m long bridge with 4 m long piles in 

clay, under Load Case 3. As pile length increased past 5 m for all girder lengths and soil 

types, the shear-to-normal ratios approached a constant value of approximately 0.3, 

which further indicates that piles 4 m and shorter behave differently than longer piles. 

4.3. Secondary Parametric Studies 

Parametric studies of a much more focused nature were performed in order to 

answer questions on how changes in other aspects than the basic dimensions of the bridge 

components and the subsurface conditions affected behavior of the structure. A major 

portion of these studies concentrated on aspects related to the loading of the structure in 

an attempt to elicit certain structural responses. A small study was also performed to 

determine if having unequal length piles at either end of the bridge drastically changes 

the behavior observed in the primary study. Finally, models incorporating different pile 

sections were studied in order to better define parameters for the proposed design 

procedure discussed in Chapter 5. 

4.3.1. Alternative Loadings 

The six load cases discussed in previous chapters were created in an attempt to 

create the highest probable stress levels and displacements in the structure. However, 

after examining the preliminary data, questions arose as to whether or not there were 

additional loadings that may cause behavior that would lead to instability or unacceptable 

stresses and deflections. Since the shear and normal forces at the pile tip are important to 

the stability of the structure, a study was run where the design truck was placed such that 



very large axial loads were developed in the pile. As mentioned in Chapter 3, MDOT 

uses a design truck with axle loads 125% greater than the AASHTO HL-93 truck. The 

effect of this loading on the behavior of the structure was also examined. Finally, since 

the bridge will presumably be loaded by a truck, or by seasonal temperature changes 

more than once in its design life, the consequences of applying cyclic live and thermal 

loadings were also investigated. 

4.3.1 . l .  Live Loading for Maximum Shear in Girder 

All of the load cases covered in the parametric study that incorporated live load 

(Load Cases 2,5,  and 6 )  had the AASHTO design truck placed on the girder in order to 

produce maximum bending moment. This in turn produced a rotation of the abutment, 

which caused strains and displacements in the pile head. Because the lateral restraint of 

the pile tip relies in part on the axial load in the pile, the effect of repositioning the 

location of the design truck along the length of the girder was investigated. The design 

truck was repositioned as shown in Figure 4.8, so that the rear axle was located at the 

interface between the girder and abutment. 

As would be expected, the relocation of the live loads to the ends of the girder 

increases the axial load in the closest piles by 8-lo%, while decreasing the axial load in 

the far piles by 17-20%. The difference between pile loads at opposite ends of the girder 

increases as the length of the girder increases. For piles in all soil types, the maximum 

compressive strains at the head under all load cases incorporating live load are 

approximately 85% of the strains developed when the girder is loaded for maximum 

bending moment. This is due to the reduced rotation of the abutments and smaller 

resulting pile head displacement. Overall, the deflected shape of the pile is not 



significantly altered from the previous live load position; the magnitude of the deflections 

along the length of the pile is simply smaller. The observation of rotation occurring at 

the pile tip without trailslation is still valid for all the various positions of live load along 

the girder. 

Figure 4.8. Placement of HL-93 truck on 15 m girder for maximum and minimum 

axial live load in piles 

Repositioning of the live loading has the greatest effect on the contact forces at 

the tip of the pjle. The larger axial load holds the pile tip against the bedrock more 

firmly, causing a larger portion of the resistance to deflection to be generated by the 

frictional interface between pile and rock. Data from the model shows that the shear 

forces generated at the tip of the pile are approximately 8% greater than when the girder 

is loaded for maximum live load moment. Coupled with increased axial forces in piles 

closer to the location of live loading, the shear to normal ratios for these piles decreases 

slightly. Shear to normal ratios increase for the piles at the opposite end of the girder, 

primarily due to the decrease in axial load but remain less than the values determined for 

the piles under the dead load cases. 



The iilvestigation into the effects of loading the girder for maximum shear shows 

some facts that are important considerations for the design procedure. Loading the girder 

for maximum shear produces smaller strains and deflections in the head of the pile. Axial 

loads in the piles are increased at one end of the girder, and decreased at the other end. 

These changes in axial loads affect the interaction between the pile tip and bedrock by 

increasing or reducing the shear-to-normal ratio, which has been used as an indicator of 

the stability of the structure. Shear-to-normal ratios in the piles with reduced axial loads 

are approximately equal to the values for piles under the load cases that do not include 

live load effects. As has been mentioned in this chapter, the load cases that do not 

include live loads produce higher shear-to-normal ratios than those that do. 

Repositioning the live load along the girder does not significantly affect the stability of 

the structure, since the shear-to-normal ratios for the controlling load cases are 

unchanged. 

4.3.1.2. MDOT Live Load 

Studies were conducted to show the effect of using the MDOT live load, which 

consists of the AASHTO HL-93 loading with a 25% increase in axle loads of the design 

truck. This loading is used in the Strength I limit state as defined by the AASHTO 

specifications. In these studies, the design truck was placed on the girder for maximum 

moment rather than for maximum shear. Maximum shear positioning was not considered 

because the axle loads in this study were simply increased, and it was assumed that 

results would be similar to the results of the study previously described. 

Use of the increased axle loads resulted in increases to the magnitudes of the pile 

head strains and displacements. For piles in all soil types, the maximum compressive 



strains at the head under all load cases incorporating live load are approximately 10% 

higher than the strains caused by the standard HL-93 axle loads. This fact is significant 

because for a given girder length, yielding is more likely to occur when the increased axle 

loads are used. The behavior of the tip of the pile was consistent with all of the other 

studies, in that the tip of the pile was able to rotate without any translations in the 

horizontal and vertical directions. 

Increasing the magnitude of the axle loads did not have as large an effect on the 

contact forces at the tip of the pile as did repositioning them. Data from the model shows 

that the shear forces generated at the tip of the pile are reduced slightly when the 

magnitude of the axle loads is increased, possibly due to the decreased likelihood of 

movement at the pile tip. Combine this with an increase in the axial load in the pile of 

5%, and the result is a decrease in the ratio of shear to normal forces at the pilebedrock 

interface. As with the models run with the standard HL-93 loading placed for both 

maximum moment and shear, the load cases that do not include live load effects tend to 

have larger shear to normal ratios than the load cases that include live loading. 

Based on the results of the study examining the effect of increased MDOT live 

loading over AASHTO HL-93 axle loads, it was determined that the change in pile 

strains is the most important consequence. Since the increased axle loads lower the shear 

to normal ratios at the pile tip, the MDOT live loading does not need to be considered in 

any design criteria regarding these forces. Further limits may have to be imposed on 

girder lengths in certain soil types in order to compensate for the increased likelihood of 

yielding at the pile head under the MDOT live loading. 



4.3.1.3. Cyclic Loading 

The goal of this short parametric study was to determine whether the application 

of additional thermal and live load cycles affected the behavior observed in the primary 

study, such as pile strains, deflections, and support conditions. In this portion of the 

study, the following cyclic loadings were considered: 

Annual temperature changes (AT = 0 "C, +20 "C, 0" C, - 55 "C, 0 "C) 

AASHTO HL-93 live load placed for maximum bending moment in girder 

Combination of -55 "C temperature change and HL-93 loading 

The change in girder temperature was modulated between +20°C and -55"C, 

which comprised one annual temperature cycle. Because of increased computational 

constraints for these models, only five annual temperature cycles were applied to the 

model. For the case involving only live load, one million cycles were applied. As will be 

discussed later, it was determined that any additional load cycles past this value had no 

significant detrimental effect. A model was also studied where a million live load cycles 

were applied to a girder that had undergone a large negative temperature change. This 

was done in order to determine the behavior of the structure under the worst load case 

(Load Case #6 )  as determined from earlier studies. 

As determined in the primary study, the deflections and stresses at the pile tip 

were more of a concern for thermal loading cycles than pile strains were. Under cyclic 

thermal loading, one of the concerns about having piles without fixed support conditions 

at the tip was "walking" or cumulative lateral deflection of the pile tips. Model data 



showed that the pile tips did not translate under cyclic temperature loading, and behaved 

like all of the other models. Lateral deflection of the pile head increased slightly (less 

than 0.5 mm) over initial cycles, but then became constant. An explanation of the 

increasing deflection could lie in deformations exhibited in the approach backfill. 

The soil elements in the areas of the approaches directly behind the abutment 

showed permanent deformation in the form of a "hump" which has been observed in 

actual bridges (Arsoy et al, 1999). This deformation of the approach soil due to thermal 

expansion of the girder is shown in Figure 4.9, the magnitude of which is 25 rnm (1 in). 

In an actual bridge, this deformation is not permanent, and a depression typically forms 

behind the abutment. Ideally, modeling the approach backfill with smaller soil elements 

would allow for a more accurate representation of the soil deformation, in which the 

approach fi l l  would settle as well as form a "hump". However, since the scope of this 

secondary study was limited, this sort of modification was not deemed necessary at this 

time. Whether modeled accurately or not, the occurrence of soil deformation behind the 

abutment helps to illustrate the necessity of approach slabs for integral abutment bridges 

to help maintain pavement integrity. 

Figure 4.9. Deformation of approach backfill due to thermal expansion (deflections 

magnified lox) 



The forces at the pile tip were examined at the point in each cycle where the 

girder had experienced the maximum temperature change. As stated previously, the 

loading conditions where the bridge is simultaneously exposed to dead loads and negative 

temperature change produces the highest ratio of shear to normal forces. After the first 

cycle, the axial forces in the pile increase slightly and the shear force at the base of the 

pile decreases slightly. Over the subsequent cycles, these values remain constant. This 

results in a shear to normal ratio that drops below the value calculated for a single 

instance of negative temperature change, and remains constant in later cycles. 

The models incorporating cyclic live loading only were analyzed for all three 

subsurface conditions. A major concern was the accumulation of plastic strains at the 

head of the pile, because pile stresses under live loading are often limited in integral 

abutment pile design procedures. Examination of the data shows that successive cycles 

of live load do not significantly increase the strains in the head of the pile. As shown in 

Figure 4.10, the flexural strains at the top of the pile increase slightly after initial live load 

cycles, and become constant for the remaining cycles. Deflections at the head of the pile 

also follow this trend, in that they increase initially and them remain constant for the 

remainder of the live load cycles. The largest increase in both pile strains and deflections 

over the initial cycles occurred for piles in cohesive soil and was approximately 1%. 

Inspection of forces at the pile tip show that after initial cycles, the axial forces in 

the pile increase slightly. Conversely, the shear forces at the pilelrock interface decrease 

slightly. Over the subsequent cycles, these values reach a constant magnitude. The net 

effect of the changes in forces results in a shear to normal ratio that is equal to the values 

calculated in the models where a single live load is applied. Therefore, the live load 



cycles that a bridge will experience over the design life will not affect the stability of the 

support conditions at the pile tip. As shown in the primary study, this loading rarely 

produces the highest values of shear to normal ratios. 

Since neither of the analyses with cyclic loading resulted in significantly more 

yielding at the head of the pile than due to a single load application, a series of models 

were run where a cyclic live load was applied to a girder that had undergone a change in 

temperature of -55 "C. From the primary parametric studies, it was determined that the 

condition of live loading and negative temperature change produced the largest abutment 

rotations, and therefore the largest pile head strains. While the other two cyclic studies 

showed that pile head strains remained constant after repeated live and thermal loading, 

these strains were still in the range of elastic behavior. 

The goal of these models was to determine whether the strains remained constant 

under cyclic loading once they had exceeded the yield strain. Data regarding 

displacements and forces at the tip of the pile were given a cursory examination, and 

were shown to mimic the behavior shown in the simple cyclic live load models. The only 

exception was that the magnitude of pile head displacement was larger, due to the 

additional abutment rotation caused by the temperature change. 

Models were run in various soil types for all span lengths described in the 

parametric studies. Strains at the head of the pile began to exceed yield under combined 

thermal and cyclic live loading for girders longer than 25 m (82 ft). For girders 30 m (98 

ft) long, the strains at the head of the pile reached a value 25% higher than the yield 

strain, E ~ ,  after the initial live load cycle. Further cycles of live load reduced the strain in 

the head of the pile to a value 20% higher than E,, where it remained constant. However, 



analysis of models with girders longer than 30 m could not be completed under combined 

thermal and cyclic live loading for more than 3-5 load cycles. Results of the preliminary 

study show that the strains at the head of the pile in these cases exceed the yield strain by 

over 40%. A summary of all models involving cyclic live loading (including live loading 

and -AT) is provided in Figure 4.10. 

- 30 m Girder, LL 

Figure 4.10. Change in pile head strains due to live load cycles 
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predicted strains exceed yield, without fear of strains and deflections building up to a 

condition that would weaken the structure or cause instability. Based on this study, and 

the results of the primary study, limits can be imposed on girder lengths for piles in 
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certain soil conditions in order to reduce strains. It is possible that these limits are over 

conservative due to the inconclusive results for longer spans. However, this can only be 

resolved through further study involving finite element modeling and examination of data 

from field instrumentation. 

4.3.2. Unequal Pile Lengths 

All of the models analyzed in this study have had equal length piles at both ends 

of the girder. However, because of bedrock conditions at bridge sites, this rarely occurs 

in actual bridges. The proposed bridge over Nash Stream in Coplin Plantation, ME that 

will be instrumented in Phase I1 of this project has 3 m (10 ft) long piles at the north 

abutment, and 7 m (23 ft) piles at the south abutment. A finite element model was 

created to determine the effects of having unequal length piles on the response of the 

structure. Figure 4.1 1 shows the finite element mesh of a bridge with 3 m and 7m long 

piles, and a 25 m long girder. Although the vertical bedrock surface at the center of the 

model is unrealistic, this has little to no effect on the response of the piles. 

Figure 4.11. Finite element model of bridge with 3 m and 7 m long piles 



The model bridge with unequal length piles was subjected to the same load cases 

used for the models in the primary parametric study. Granular soil conditions were the 

only conditions modeled initially, although the capability to analyze the other subsurface 

conditions existed if necessary. The live loading was at the center of the span, as shown 

in Figure 4.8, in order to induce maximum bending moment in the girder. Because the 

lengths of the piles were not symmetric about the centerline of the span, modifications 

were made to the cases incorporating live load. Live load cases with and without thermal 

effects were run with the design truck facing to the right (as shown in Figure 4.8) and 

with the truck facing towards the left. 

Results of the unequal pile length analyses were compared to the results obtained 

from the primary parametric study. Since models with 7 m piles were not run in the 

primary study, the results from this study were compared with the results of 6 m and 8 m 

piles. Live load data for the 3 m piles was taken with the design truck facing left, while 

data for the 7 m piles was obtained with the truck facing right. This was because in each 

of the cases, the heavy rear axle of the truck was closer to the pile. 

Pile head strains predicted by the unequal pile length model compared well to the 

data from the primary parametric study. For all of the load cases not involving live loads, 

the strains in the short pile were less than 1% smaller than the strains in a 3 m - 3 m 

bridge, and the data for the 7 m pile fell in between the values for the 6 m and 8 m piles. 

For the cases involving live load, the strains in the short pile were within 1 % of the 

values from the 3 m - 3 m model, with Load Case #6 being higher, and the other two 

load cases (2 & 5) being less. The strains in the 7 m pile were 1% greater than the values 

given by the 6 m and 8 m models, for all load cases involving live load. 



As with the cyclic temperature change model, there were concerns about the 

deflection behavior of an integral abutment bridge with one long pile and one short pile. 

Specifically, that the entire short pile would experience increased translation because of 

the fixed support conditions of the longer pile. Deflections along the entire lengths of 

both the 3 m and 7 m long piles were examined and shown to be consistent with the 

deflections from the models with equal length piles. There was no lateral deflection at 

the tips of either pile, and the support conditions at the tip of the shorter pile still allowed 

for rotation to occur. Displacements of the pile head under dead and live loading were 

identical to the values from the primary study, while values in load cases involving 

temperature change were within 1 % agreement for both the short and long piles. 

The contact forces at the tip of the 7 m long pile typically fell between the range 

of values for models with G m and 8 m piles from the primary study. However, since this 

length of pile can develop fixed support conditions under the current design guidelines, 

there was no real concern about behavior at the pile tip. Rather, the comparison was 

made simply to validate that both models behaved alike. The 3 m long pile showed 

decreased normal and increased shear forces for load cases 1,2,  3, and 5. This resulted in 

shear-to-normal ratios that were up to 6% larger than those determined for a 3 m - 3 m 

bridge. However, in load cases 4 and 6, which typically produce the largest ratios of 

shear to normal forces, both the normal and shear forces decreased. The decrease in both 

forces resulted in shear to normal ratios that were less than 1% smaller than those 

calculated for a bridge with equal length piles. These shear to normal ratios were still the 

largest among all of the load cases, even with the 5% increase in the other four cases. 



Since there were no major differences in any of the pile responses between 

bridges with equal and unequal length piles, no further studies were performed regarding 

girder length and soil type. It can be presumed that changes in girder length and soil type 

will affect the response of a bridge with unequal length piles in the same way that they 

would a bridge with equal pile lengths. Because of these observations, it was felt that 

instrumentation of the proposed bridge in Coplin Plantation would provide meaningful 

data, despite the fact that the lengths of the piles at each abutment were different. 

4.3.3. Pile Cross-Sections 

As discussed in Chapter 3, the section properties of the piles used in all of the 

models were based on an HP360x108 (HP14x73) pile, because that is what was used in 

the bridge design for the proposed Mill Pond Bridge. However, data about the behavior 

of other pile sections was necessary in order to give flexibility to the proposed design 

procedure. For integral abutments, in addition to the HP360x108 section, Maine 

commonly uses the following pile sections: HP 250x62 (10x42), HP 310x79 (12x53), 

and 360x123 (14x89). A parametric study was performed to detennine the response of a 

pile with a higher moment of inertia (HP360x123) and a lower moment of inertia 

(HP3 10x79) than the piles used in all of the other studies. The HP250x62 section was 

not studied, because the current design provisions already allow for a minimum 

embedment length of 3 m (1 0 ft) for this pile section. 

Equivalent section properties for each pile type were determined using the method 

described in Chapter 3 for the substructure elements. In addition, the mesh required 

slight modifications in order to accommodate the slightly different dimensions of each 



pile section. Table 4.1 provides a comparison between the model section properties of 

the three different pile types. The effects of changing soil conditions, utilizing the three 

soil types discussed earlier, were considered in this parametric study 

Table 4.1. Comparison of Model Section Properties for Different Pile Sections 

Examination of the model results shows that the pile head strains vary with pile 

stiffness. For all subsurface conditions and girder lengths, the strains at the head of the 

pile were less for piles stiffer than the HP360x108 section, and greater for piles with less 

stiffness. This pattern holds true for all load cases. As was observed in the primary 

parametric studies, longer girders result in increased strains at the head of the pile. 

Therefore, for a given girder length, piles with a higher stiffness will be less likely to 

yield than piles with a lower stiffness. Figure 4.12 illustrates the effect of girder length 

on the stresses in the various pile sections for a given load case. The strains on the y-axis 

are given as a ratio of the pile head strain to the yield strain. 

Width 
Depth 
Moment of Intertia 

Area 

Section Modulus 

The deflection characteristics of the pile are also affected by the section 

properties. Because of the reduced stiffness of the HP310x79 section, it is able to 

achieve double curvature, which leads to an increase in pile head deflection over the 

HP360x 108 section. Conversely, the stiffer HP360x123 section only exhibits bending in 

the upper portion of the pile. Because the soil cannot provide the necessary support for 

HP 3 10x79 
252 mm 

299.7 mm 

399.7 x 1 o6 mm4 

75520 mm2 

3.17 x 1 0 6 m 3  

HP 360x108 
308 mm 
346 mm 

842.5 x lo6mm4 

106600 m2 

5.47 1 0 ~ ~ ~  

HP 360x123 
311 mm 
351 mm 

879.8 x lo6 mrn4 
109200 mm2 

5.66 x 10~1-r-1rn~ 



the HP360x123 to achieve double curvature, the entire pile translates in the lateral 

direction. As a result, the deflections along the entire length of the HP360x123 section 

are greater than for the HP360x108 section. 

Figure 4.12. Effect pile stiffness on strains at pile head under dead and live loading 

in granular soil 
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Pile stiffness also alters the forces at the pile tip, in that stiffer pile sections 

generate larger shear forces. This allows the upper portions of stiff pile sections to 

translate laterally, but remain restrained at the tip. Because of the increase in shear 

forces, shear-to-normal ratios for the stiffer pile section are 5% greater than those 

calculated in the primary parametric study, while the shear-to-normal ratios for the 

HP3 10x79 section are 10-20% less. 

0 

These differences appear to be much less crucial to the design of a pile than the 

changes in strains and deflections are. The section moduli and stiffness of the various 

pile sections dictate the amount of axial load and moment that the pile can withstand 
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without yielding. The changes in the strains at the head of the pile for a given girder 

length, as shown in Figure 4.12, are much more drastic than the 5-20% change in the 

forces at the pile tip. 

4.4. Summary 

Parametric studies using the model described in Chapter 3 were performed in 

order to determine the effect of several variables on three major structural responses: pile 

stresses, pile kinematics, and pilelbedrock interaction. An analysis procedure was 

developed that approximated the construction sequence of an integral abutment bridge. 

However, one facet of this process that is neglected is the changing section properties of 

the girder at various stages of construction. Differences in the support conditions of the 

girder, as well as the degree to whch girder behavior influences the critical load 

conditions allow for the effect of the section properties to be ignored. Nonetheless, the 

detailed consequences of these property changes should be addressed in future studies. 

A primary parametric study was performed that investigated how changes in 

girder length, pile length, and subsurface conditions affected the pile responses. 

Lnspection of the pile kinematics showed that piles less than 4 m in length behave similar 

to a laterally loaded, fixed-head pile of intermediate length, as defined by Broms (1964% 

1964b). The tip of the pile rotates, but does not translate horizontally or vertically, 

similar to a column with a pinned support. In addition to translation of the pile head due 

to thermal movement of the girder, dead and live loading of the girder induce a rotation 

of the abutments, causing additional pile head displacement, that is not typically 

accounted for. 



The magnitudes of the pile strains were found to be independent of the pile 

length. Changes in the girder length (and therefore loading), as well as the subsurface 

conditions, cause the greatest differences in pile head strains. Therefore, piles embedded 

in clay soils are more likely to experience plastic deformation than those in granular soils 

are. Similarly, for piles in a given soil type, those supporting longer spans can be 

expected to experience some degree of plastic deformation. Because of the consequences 

of plastic deformation on the stability of the structure, limits on girder length may have to 

be imposed for various soil conditions in order to control this occurrence. 

Forces at the tip of the pile were found to be an important factor in controlling the 

stability of the structure. A ratio of the shear force and the normal force acting at the 

bedrock was compared to the coefficient of friction determined for this interface, as a 

measure of the validity of the assumption of pinned support conditions. The normal force 

at this interface is dictated by loading and girder length, although downdrag resulting 

from certain soil conditions has some effect also. Subsurface conditions as well as pile 

length influence the magnitudes of shear forces at the tip. Inadequate soil support causes 

more of the force resisting translation of the tip to be developed between the bedrock and 

pile. Pile length indirectly influences the forces at the tip, mainly due to the effect of the 

depth of the channel under the bridge. The forces peak for a 4 m pile, because this is the 

longest pile with the least amount of soil supporting it on one face. 

Smaller parametric studies were performed in order to investigate less significant 

changes in loading, geometry, and member properties. It was found that positioning the 

design truck at different locations along the girder had no adverse effect on the pile 

behavior. The larger live loading used by MDOT was found to increase strains at the 



head of the pile, which may further reduce the allowable girder lengths used in design. 

The structure was shown to accommodate cyclic live and thermal loading without any 

major consequences. Under annual temperature cycles, the abutment backfill is shown to 

deform, illustrating the need for approach slabs behind integral abutments. Under 

combined cyclic live and thermal loading, plastic strains did not accumulate under 

progressive cycles, if the strains in the pile head were less than 1.25 E,. 

Bridges constructed with unequal length piles at either end of the girder were 

examined. A major concern was that a bridge with a short pile, and a pile with adequate 

overburden would cause erratic behavior of the structure. In particular, the short pile 

would experience increased translations, since the other end of the structure had more 

lateral resistance. It was found that while deflections of the shorter pile were slightly 

different than for a structure with short piles on either end, there was no significant 

change in behavior for a bridge with unequal length piles. 

The use of different pile sections was also considered in a smaller study. It was 

shown that stiffer piles experience smaller strains at the pile head. Therefore, the length 

of span and soil conditions may dictate the section of pile that can be used for a particular 

bridge, especially if the limiting strain at the pile head is considered to be a critical factor. 

Short, stiff pile sections cannot develop double curvature as readily as other pile sections, 

because of insufficient soil support. Because of this, stiffer piles experience more lateral 

translation along the entire length of the pile. Larger shear forces are generated at the tips 

of stiffer piles in order to compensate for the lack of lateral support provided by the soil. 

Therefore, there are some cases where simply specifying a larger pile section will not 

improve design. 



Chapter 5 

PRELIMINARY DESIGN GUIDELINES 

Using data fiom the parametric studies described in the previous chapter, 

recommendations for a procedure to be used in the design of pile foundations for integral 

abutment bridges are made in this chapter. This procedure is intended to be utilized in 

instances where the depth to bedrock is less than the depth of embedment required to 

obtain fixity. This chapter discusses the underlying assumptions and principles of the 

proposed design procedure. The assumptions for design and construction of integral 

abutment bridges in the proposed procedure are essentially the same as in the current 

procedure. The only difference is the idealization of the support conditions at the pile tip. 

5.1. Current Design Guidelines 

Section 5.4.2 of the Maine Department of Transportation (MDOT) Bridge Design 

Guide (1 999) addresses the use of piles to support integral abutments. Pile capacity is 

governed by axial and biaxial bending action of the pile. The axial stresses are a result of 

the dead loads of the piles, abutment, and superstructure, as well as the live loading on 

the superstructure. For single-span bridges, such as the ones considered in this study, 

shear forces in the pile induced by thermal displacement are not considered by MDOT. 

Research by Abendroth and Greimann (1 988), discussed in Chapter 2, was used to 

evaluate maximum bridge length and design pile loads for four preferred pile sections 

used by MDOT. 

Pile stresses are limited by two separate criteria. Axial stresses are limited to 0.25 

F,, as discussed in Section 5.7 of the MDOT Bridge Design Manual (MDOT, 1999), 



while bending stresses in the pile are limited to 0.55 Fy. For this criterion, only the 

bending stresses in the pile induced by the superstructure live load reactions (W) are 

considered. Using these live loads, the end rotation of the girder (R,) is calculated using 

a modified equation for the end rotation of a simply supported span: 

(Equation 5.1) 

where Ls is the length of the span, E, is Young's modulus of the girder, and I, is the 

moment of inertia of the girder. The stiffness of the abutments allows this rotation to be 

transferred directly to the pile head, inducing a moment (M) in the pile head, given by: 

M =  4EP I P  R g  
(Equation 5.2) 

L 

where L is the length of pile below the ground surface, and Ep and I, are Young's 

modulus and the moment of inertia of the pile, respectively. The bending stress in the 

pile (0,) caused by the applied end-rotation moment (M) is calculated with the following 

equation: 
M 

=- 

S P  
(Equation 5.3) 

where S, is the section modulus of the pile. If the value of o, exceeds 0.55 Fy, then a 

different pile section or a greater pile length must be used. 

Based on the estimates of thermal movement from FHWA Technical Advisory 

T5 140.13 (1980) and the stress criteria, the maximum bridge length and maximum 

allowable pile loads for integral abutments with fixed pile heads are given in Table 5.1 

and Figure 5.1 respectively. Figure 5.1 follows the FHWA recommendation that the 

thermal movements for steel superstructures be calculated as 1 % in1100 ft of length (1 -04 



mmlm), while thermal movements of concrete superstructures be calculated as % in11 00 

ft (0.625 mmlm). The pile sections were evaluated as beam-columns without transverse 

loads between their ends, fixed at some depth and either pinned or fixed at their heads 

(MDOT, 1999). Because MDOT primarily uses fixed-head abutments, which were 

incorporated in the finite element model, discussion of the current and proposed design 

procedure is limited to this abutment configuration. 

Table 5.1. Maximum Bridge Length for Steel Girders with Fixed-Head Abutments 

Afier MDOT Bridge Design Guide (/999), Table 5-3 

Pile Section 

HP 10x42 (HP 250x62) 
HP 12x53 (HP 3 10x79) 
HP 14x73 (HP 360x 1 08) 
HP 14x89 (HP 360x1 32) 

+ HP10x42 (250x62) 

HPI 2x53 (3 10x79) 

HP14x73 (360x108) 

1 -W- HP14x89 (360x123) 
I 

Notes: 1 kp=4.48 kN 
1 fi=0.348m 

0 50 100 150 200 

Girder Length (ft) 

Figure 5.1. Maximum Allowable Pile Load for Steel Girders with Fixed-Head 

Abutments (MDOT, 1999) 

0° - 19' Skew 

200 ft (60 m) 
130 A (40 m) 
120 ft  (36 m) 
200 ft  (60 m) 

20° - 2 5 O  Skew 

140 ft  (42 m) 
75 ft (22 m) 

70 fi (20 m) 
200 ft  (60 m) 



The length of pile in Equation 5.2 for the purposes of design is generally taken as 

the minimum embedment length given in Table 5.2. However, soil and loading 

conditions may require additional pile embedment to achieve fixity at some point in the 

pile (MDOT, 1999). MDOT allows the minimum pile length to be evaluated using 

COM624P (Wang & Reese, 1993) or L-PILE (Ensoft, 2002), if site-specific loading and 

subsurface data exists. Both programs are widely used for the analysis of a single, 

laterally loaded pile. 

Table 5.2. Minimum Embedment Lengths 

Pile Section I Minimum Embedment Length 

HP 10x42 (HP 250x62) 
HP 12x53 (HP 3 10x79) 

5.2. Proposed Design Guidelines 

10 ft (3.0m) 
12 ft(3.6 m) 

HP 14x73 (HP 360x1 08) 
HP 14x89 (HP 360x132) 

The proposed design procedure outlined in this section is an extension of the 

current design procedure, to be used in cases where the depth of overburden, i.e. the 

distance from the bottom of the abutment to the bedrock surface, is less than the 

minimum embedment length. As determined from the parametric study presented in 

Chapter 4, short piles supporting integral abutments tend to behave similarly to columns 

with a pinned base rather than fixed, as is normally assumed for integral abutment bridge 

piles. Therefore, the same "long" pile capacity checks used in the current design 

procedure do not necessarily apply to short piles. In the proposed guidelines for short 

piles, two criteria are used to determine the suitability of a certain pile section for the 

13 ft (3.9 m) 
15 ft (4.5 m) 

Ajter MDOT Bridge De~ign Guide ( I  999), Table 5-5 



support of an integral abutment. The first criterion considers the moment capacity of the 

pile and resulting stress conditions at the pile head. The second criterion examines the 

interaction between the pile tip and the bedrock surface. In this criterion, the forces 

acting at the pile tip are used to assess the validity of the assumption that the piles behave 

similarly to a column with a pinned base. An example design problem illustrating the use 

of the design procedure is given in Appendix B. 

5.2.1. Moment Capacity of the Pile 

The proposed design guidelines limit the moment in the head of the pile to My 

under dead and live loading from the girder and abutments. Results of the parametric 

studies of Chapter 4 show that the moment at the head of the pile depends mainly on the 

length of the bridge girder. Table 5.3 can be used as a conservative estimation of an 

appropriate pile section for a given girder length and category of subsurface conditions, 

such that the moment induced in the pile under dead and live loading will not exceed My. 

Since the models used in the study were two-dimensional, effects of skew on the 

maximum girder length are not taken into account at this time. The effects of skewed 

bridge alignments on these guidelines will be considered in future studies, using data 

from an instrumented bridge with abutments that have a large skew angle ( > 25'). 

Table 5.3. Maximum Bridge Length for Fixed-Head Abutments on Piles < 4m 

Pile Section 

HP 3 10x79 (HP 12x53) 

HP 360x1 08 (HP 14x73) 

HP 360x132 (HP 14x89) 

General Soil Category 
Sand & Gravel 

25 m 

30 m 

35 m 

Clay 

25 m 

25 m 

30 m 

Glacial Till 

25 m 

30 m 

30 m 



Once the appropriate pile sectjon is selected, the vertical pile loads PDL and PD 

are calculated. PLIL is calculated as the sum of the dead load superstructure reaction, the 

unfactored live load superstructure reaction, the abutment dead load, and the pile weight. 

MDOT includes an impact factor for live load in the current design guidelines. However, 

impact loading was not considered in the finite element model, since the focus of the 

design is on a buried component, not the superstructure or abutments, which is consistent 

with the AASHTO guidelines (AASHTO, 1996). PD is calculated in a similar manner, 

except the contribution of the superstructure live load is neglected. The moments at the 

head of the pile are calculated using a relationship between pile head moment and vertical 

pile load, developed from the parametric study results. Although this relationship was 

based on the finite element models using the standard AASHTO HL-93 live load, it was 

shown to hold true for the increased MDOT live load case. For the appropriate 

subsurface conditions, Po and PDL are used in conjunction with Figures 5.2 - 5.7 to 

determine MD and MDL, respectively. 

After determining MD and MDL from the appropriate figure, both moments must 

be adjusted to account for thermal forces on the structure. Since the integral abutment 

bridges in this study were all single-span, there are no additional axial forces due to 

thermal expansion/contraction. As shown in the results of the parametric study, the 

displacements caused by a negative temperature change tend to increase the pile head 

stresses, while a positive temperature change will have a tendency to reduce stresses in 

the pile head. The design negative temperature change is multiplied by the appropriate 

moment correction factor given in Table 5.4. This moment is added to MD and MDL, 

resulting in two additional moments MDrand MDLT, respectively. 
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Figure 5.2. Dead load moment at top of piles in sand and gravel 
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Figure 5.3. Dead and live load moment at top of piles in sand and gravel 
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Figure 5.4. Dead load moment at top of piles in clay 
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Figure 5.5. Dead and live load moment at top of piles in clay 

I I I 

-- 

- HP360x132 

HP360x108 - HP 310x79 

-- 
-- 

-- 
-- 
-- 
-- 

4 
-- 
-- 
-- 
-- I 

I I I I 
1 1 1 1  - 1 1 1  I l l 1  1 1 1 1  1 1 1 1  1 1 1 1  I I I I  I l l 1  1 1 1 1  



350 400 450 500 

Axial Load, P, (kN) 

I I I 
-- - HP 360x132 -- 
-- - H P  360x108 
-- - I-IP 310x79 
-- / 
-- 
-- 

-- 

-- 

-- 
-- 

-- 
-- 

-- 

-- 
-- 
-- 

1 1 1 1  1 1 1 1  1 1 1 1  I l l  I I l l 1  
1 1 1 1  1 1 1 1  1 1 1 1  I I I I  1 1 1 1  

Figure 5.6. Dead load moment at top of piles in glacial till 
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Figure 5.7. Dead and live load moment at top of piles in glacial till 



Table 5.4. Negative Temperature Change Moment Correction Factors (kN-mI0C) 

For higher axial loads, this moment correction could result in MDLr exceeding My, 

resulting in plastic deformation when subjected to dead, live, and thermal loading 

simultaneously. One of the cyclic live load studies discussed in Chapter 4 involved the 

application of live load cycles to a girder experiencing a negative temperature change. In 

all cases, the strains at the head of the pile exceeded E,, and portions of the pile yielded 

after one load cycle. However, for all cases with pile strains less than 1.25 E,, it was 

shown that there was no further plastic deformation with the application of additional live 

load cycles. 

Pile Section 

HP 3 10x79 (HP 12x53) 

HP 360x1 08 (HP 14x73) 

HP 360x1 32 (HP 14x89) 

The strains in the three pile sections were studied in models incorporating the 

maximum allowable girder length for each type. The moments at the head of the pile 

under dead, live, and thermal loading were calculated with the maximum strain in the pile 

equal to 1.25 E,. The resulting moments at this strain were all approximately equal to 

1.2 M,,, which is less than M p  in all cases. To ensure that the moment due to cyclic live 

load and thermal effects does not result in significant accumulation of plastic 

deformation, it is recommended that the values of MDT and MDLr do not exceed 1.15 My. 

General Soil Category 
Sand & Gravel 

0.45 

0.61 

0.67 

Clay 

0.19 

0.23 

0.29 

Glacial Till 

0.40 

0.54 

0.61 



5.2.2. Forces Acting on Tip of the Pile 

The moments MD and MDL are calculated primarily to verify that the piles do not 

reach My under dead and live loading. MDT and MDLT are used with a simplified 

approximation to determine the shear forces acting at the bottom of the pile. As stated 

earlier, piles less than 4 m long act more like a column with a pinned support at the tip, 

rather than the equivalent cantilever that is typically assumed. This approximation for 

short piles is shown in Figure 5.8. By applying MDT and MDLT, to the top of the column, 

the rotations and displacements of the pile head for the particular load cases are 

essentially defined. 

Displacement and rotation due to 
MDT or MDLT 

Pinned support condition at pile 

Figure 5.8. Idealization of pile with pinned support conditions at tip 

The above simplification causes shear forces at the pile tip to decrease with 

length, which is to be expected. However, data from the parametric study shows that the 

shear forces increase for lengths up to 4 m and then decrease. This is due to the effect of 

the channel depth on the soil support provided to one face of the girder. Because this 

simplified model cannot possibly account for the interactions and behavior exhibited in 

the finite element model, factors (PI and P2) were created for MDT and MDLT in order to 



better approximate the shear values predicted by the model. Incorporating the P factors 

into the equation for shear at the support of the system shown in Figure 5.8 results in the 

following equations: 

PI * MDT (Equation 5.4) 
V m  = L 

(Equation 5.5) 

where VDT and VDLT are the shear forces at the pile tip due to MTD and MDLT, respectively. 

Values of p 1 and P2 for various soil categories and pile lengths are given in Table 5.5. 

For pile lengths that fall between values on the table, the P factors for the greater pile 

length can be used conservatively. These factors along with Equations 5.4 and 5.5 apply 

for all pile sizes considered in the parametric study. 

Table 5.5. Shear Coefficients for Short Piles 

The assumption of a pinned support at the base of the pile is verified by 

comparing the ratio of the shear and normal forces in the pile to the friction coefficient of 

the rock/pile interface (p). This friction coefficient can be determined for specific 

bedrock conditions using Equation 3.9, if sufficient information exists to determine 

values for + and i. The value of 0.7 used in the finite element models was detennined 



using a low value of 4 for intact schist (26") from Lama & Vutukuri (1 978). Because this 

4 value compares well with published values of the residual friction angle (+,.) for other 

types of rocks, p = 0.7 can be used conservatively for cases where site-specific bedrock 

data does not exist. 

A factor of safety is applied to p in order to account for the uncertainties in the 

condition of pile and bedrock profile. The ends of steel H-piles may become damaged or 

misaligned during driving, especially when driven to bedrock. Uncertainties in the 

bedrock surface include the extent and severity of weathering and the overall slope of the 

bedrock profile. A factor of safety of 1.75 should be considered appropriate in cases 

where there is insufficient data with regards to the surface of the bedrock. Based on work 

done by Rehnrnan & Broms (1971), the slope of the bedrock surface will have an effect 

on the capacity of piles driven to rock. If the overall slope of the bedrock in the vicinity 

of the pile can be determined with some degree of certainty from boring logs, 

adjustments to the factor of safety given in Table 5.6 can be applied. 

Table 5.6. Recommended Factors of Safety if Slope of Bedrock Surface is Known 

The following equations are used to compare the calculated shear and normal 

forces at the pile tip to p, with the factor of safety (FS): 

Slope of Bedrock 

0" - 30" 

30" - 4.5" 

45" - 60" 

> 60" 

Factor of Safety (FS) 

1.5 

1.75 

2.0 

3.0 



(Equation 5.6) 

(Equation 5.7) 

If Equations 5.6 and 5.7 are satisfied, than the chosen pile section can be considered 

suitable. However, if the sheadaxial ratio is greater than p divided by the factor of 

safety, it may be necessary to specify certain construction details. These details could 

include increasing the size of the abutments to increase dead load, or utilizing shallow 

rock sockets for the pile tip. The research performed by Rehnman and Broms (1971) 

indicate that if the pile penetrates into the rock by a depth equal to its diameter, the 

capacity of the rocWpile system is increased by approximately 25-50% over the capacity 

achieved when the pile does not penetrate the bedrock surface at all. 

5.3. Summary 

The current design procedure for piles supporting an integral abutment relies on 

the assumption of fixed conditions at the base of the pile. Maximum bridge lengths and 

pile loads were determined for certain pile sections, using the methods described by 

Abendroth & Greimann (1988). This method reduces the pile to an equivalent cantilever, 

based on loading and soil conditions. Therefore, sufficient pile length must be provided 

in order to achieve support conditions approximating a cantilever with a fixed end. 

However, there are often cases where the depth of soil to the bedrock is less than the 

minimum length required to achieve fixity. 

Therefore, a design procedure is proposed as an addendum to the current 

procedure, when situations where the depth to bedrock results in pile lengths less than 



currently allowed. Based on data from the parametric studies described in Chapter 4, a 

relationship between the moment at the head of the pile and the axial load was created for 

various soil conditions and loadings. The proposed guidelines inherently limit the strain 

in the pile to a maximum value of 1.25 E,, which was shown to be the point where plastic 

deformation accumulates under the most severe loading conditions (dead, live, and 

negative temperature change). This is different from the current guidelines, where stress 

in the piles (due to live load only), is limited to 0.55 F,. 

Unlike the current guidelines, the proposed guidelines idealize the support 

conditions at the pile tip as a pinned support, i.e. the pile tip cannot translate horizontally 

or vertically, but is free to rotate. Checks involving estimation of forces at the pile tip are 

used in order to determine if this idealization is valid for the proposed pile/soil/load 

combinations. The ratio of shear forces and normal forces are compared to the 

coefficient of friction between the pile and bedrock. A factor of safety is used to account 

for variations in the bedrock surface that may affect the amount of displacement restraint 

provided. 

Shear forces are calculated from the moment at the head of the pile using a 

simplified structural model, as shown in Figure 5.8. Data from the parametric study 

shows that the effect of channel depth for piles less than 4 m long causes an increase in 

shear forces at the pile tip. Therefore, shear factors are necessary to obtain values from 

the simplified model that are similar to those provided by the finite element model. 

Figure 5.9 provides a comparison between pile head moments predicted by the finite 

element model, and moments determined using Figures 5.2-5.7. Figure 5.10 provides a 

similar comparison for the shear forces at the pile tip from the model and design method. 
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Figure 5.9. Comparison of moments predicted by model and design method 
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Figure 5.10. Comparison of shear forces predicted by model and design method 



As shown in the previous figures, the values of moment at the pile head predicted 

by the design procedure compare very well with the values calculated using the finite 

element model. On average, the moments predicted using the proposed design method 

are 16% greater than those from the finite element data are, which is somewhat 

conservative. The values of the shear force at the tip of the pile obtained with the design 

procedure exceed the model data by 44% on average, which is conservative. The data 

points that overestimate shear are generally long spans supported by piles on the lower 

range of those considered "short". This is because the design procedure bases the shear 

force on the moment at the head of the pile, which increases proportionately with girder 

length. 



Chapter 6 

CONCLUSIONS AND RECOMMENDATIONS 

This chapter provides a summary of the work done thus far in order to determine 

the feasibility of supporting integral abutment bridges on "short" piles. Conclusions 

drawn from the results of this research, as well as recommendations for areas of further 

study are also included. 

6.1. Summary of Work Performed 

The following sections provide a summary of the major components of this thesis. 

For a more detailed explanation of processes and results, please refer to the appropriate 

chapter. 

6.1.1. Finite Element Model 

The use of finite element analysis to study the performance of integral abutment 

bridges is widespread. Because of the large variety and limitations of modeling 

techniques, implementation of sophisticated and comprehensive methods of modeling 

may allow integral abutment bridges to be used in applications where simplified 

techniques have concluded they cannot. In view of this, a two-dimensional finite element 

model was created, based on a typical integral abutment bridge, incorporating complex 

constitutive and surface interaction models. The goal of using these more complex 

models was to provide a more realistic depiction of the soil/structure interaction, in the 

l~opes of achieving an accurate representation of the structural response. 



Material properties for the soil, bedrock, and structural elements were based on 

test data and theoretical values, and adjusted to more closely resemble the anticipated 

conditions at bridge sites in Maine. The soil elements incorporated Mohr-Coulomb 

failure criteria, while the piles were represented using elastic-plastic behavior. Simplified 

models were used to verify that the materials were behaving in the manner that one 

would expect for the parameters that were defined for each. 

Preliminary models were developed and used to resolve any abnormal model 

behavior. It was shown that factors such as the out-of-plane thickness of the two- 

dimensional elements, and varylng the depth of the channel beneath the girder had 

unexpected influence on the behavior of the model. While changes were made to the 

model in an attempt to mitigate these factors, they could not be eliminated because of the 

two-dimensional nature of the model. The preliminary models were also used to select 

critical model responses to be examined closer in the future parametric studies. As a 

result, refinements were made to the finite element mesh, in order to provide a more 

accurate numerical solution for the selected model responses. 

Using the finite element mesh in its final form, an analysis procedure was written 

that approximated the construction sequence of an integral abutment bridge. While the 

general order of the construction stages was considered, the effect of the changing section 

properties of the girder at various stages of construction, e.g. uncured concrete during 

placement or creep under sustained dead loading, was neglected. It was determined that 

the differences in the support conditions of the girder, as well as the degree to which 

girder behavior influences the critical load conditions, allowed for the effect of the 

section properties to be ignored in this study. 



6.1.2. Parametric Studies 

Parametric studies were performed in order to determine the effect of several 

variables on three major structural responses determined using the preliminary models: 

pile stresses, pile kinematics, and pilelbedrock interaction. A main parametric study was 

performed to investigate how changes in girder length, pile length, and subsurface 

conditions influenced pile response. It was shown that piles on bedrock and less than 4 m 

in length behave similar to a laterally loaded, fixed-head pile that is pinned at the tip, in 

that the tip of the pile rotates, but does not translate horizontally or vertically. This is 

similar, in principle, to a column with a pinned support. Dead and live loading of the 

girder induces a rotation of the abutments, which causes pile head displacement. This 

displacement is not typically accounted for in current design procedures. 

Changes in the girder length, loading, and subsurface conditions were found to 

cause the greatest differences in pile head strains. Piles embedded in weaker soils, such 

as clay, are more likely to experience plastic deformation than those embedded in 

stronger soils. Piles in a given soil type supporting longer spans can be expected to 

experience some degree of plastic deformation, while those supporting shorter spans (< 

25 m) typically will not. 

To validate the assumption of a pinned support at the base of the pile, a ratio of 

the shear force and the normal force acting at the bedrocwpile interface was compared to 

a coefficient of friction between these materials. The normal force at this interface is 

dictated by loading and girder length, while the shear forces depend on subsurface 

conditions, pile length, and loading. 



Smaller parametric studies were performed in order to investigate less significant 

changes in loading, geometry, and member properties. It was found that the position of 

the live loading on the superstructure had no adverse effect on the pile behavior, while 

increasing the live loading was found to increase strains at the head of the pile. The 

model structure was shown to accommodate cyclic live and thermal loading without 

major consequence. Changes in geometry and member properties includes models 

incorporating unequal length piles at either end of the girder, and piles with section 

properties different from those in the primary study. It was shown that stiffer piles 

experience smaller strains at the pile head, but larger overall translations and shear forces 

at the pile tip. 

6.1.3. Design Procedure 

The current design procedure for piles supporting an integral abutment used by 

MDOT reduces the pile to an equivalent cantilever based on loading and soil conditions. 

Therefore, sufficient pile length must be used in order to provide fixed support conditions 

at some point along the pile length. 

A design procedure was developed for situations where the depth to bedrock 

results in pile lengths less than currently allowed. Pile head moments are calculated from 

a relationship with the axial load, based on data from the parametric studies. These 

relationships were created for various soil conditions and loadings. The proposed 

guidelines do not have an explicit limitation on pile stresses/strains, as the current 

procedure does. Girder lengths for different pile sections and soil conditions are 



implicitly limited by keeping the strain in the pile below a point where plastic strains start 

to increase under repeated applications of live and thermal loads. 

The proposed guidelines idealize the support conditions at the pile tip as a pinned 

support, i.e. the pile cannot translate horizontally or vertically, but is free to rotate. This 

is drastically different from the assumption of fixed conditions commonly used for longer 

piles. Forces at the pile tip are calculated in order to determine if this idealization is valid 

for the proposed pile/soil/load combinations. The ratio of shear forces and nonnal forces 

are compared to the coefficient of friction between the pile and bedrock, along with a 

factor of safety. 

6.2. Conclusions 

Based on comparisons of the model behavior to the results of theoretical 

calculations and simplified models, it was felt that the finite element model in this 

research provided a reasonable approximation of the behavior of an actual structure. The 

phenomenon of the changing section properties of the girder at various stages of 

construction, caused by differences in concrete strength over time, is neglected in the 

analysis procedure. However, the degree to which girder stiffness influences the critical 

load conditions allow for the effect of the section properties to be ignored without major 

consequences. 

Piles less than 4 m in length, for the cross-sections studied, behave differently 

than piles greater than this length. Because the tip of the pile rotates, but does not 

translate horizontally or vertically, support conditions at the base should be approximated 

as a pinned support. A ratio of the shear force and the normal force acting at the bedrock 



can be compared to the coefficient of friction, as a measure of the validity of this 

approximation. 

The structure was shown to accommodate cyclic live and thermal loading without 

any major consequences. Under annual temperature cycles, the abutment backfill is 

shown to deform, illustrating the need for approach slabs behind integral abutments. 

Under combined cyclic live and thermal loading, plastic strains did not accumulate under 

progressive cycles, if the strains in the pile head were less than 1.25 E ~ .  

It was found that while deflections of the shorter pile were slightly different than 

for a structure with short piles on either end, there was no significant change in behavior 

for a bridge with unequal length piles. Stiffer piles experience increased lateral 

translation in addition to increased shear forces at the tip, due to the smaller relative 

stiffness of the surrounding soil. Therefore, there are some cases where simply 

specifying a larger pile section will not improve the performance of the structure. 

The current MDOT procedure is sufficient for designing piles for integral 

abutment bridges. The proposed design procedure is an addendum to the current 

procedure, intended for use in cases where the depth to bedrock cannot provide fixed 

conditions along the pile. This design method results in values of moments and shear 

forces that are somewhat higher than those obtained from the finite element model. 

Inherent conservatism is built into the methods used to calculate both forces, presenting a 

worst-case design scenario. While this method certainly expands the application of 

integral abutments, there are cases where the support provided by the soil and bedrock 

will still be insufficient, and a pile-supported integral abutment bridge should not be 

used. 



6.3. Recommendations 

Based on the results of the finite element modeling and parametric study, it 

appears that it is indeed feasible to construct integral abutments in some areas with 

shallow bedrock. However, there are several areas that should be investigated before a 

final determination is made. The field study and additional finite element modeling 

proposed in Phase I1 of this research will deal with many of these issues. 

The two-dimensional finite element model used in the parametric study 

adequately represented the behavior of an integral abutment bridge with no skew. 

However, a three-dimensional model is recommended in order to capture skew effects, as 

well as provide a better comparison to data obtained fi-om the instrumented bridge. 

While the effects of the changing girder properties could not be accounted for in this 

study directly, it is recommended that modifications be made to dead loads in order to 

represent the deflections and stresses one would experience with different section 

properties. 

Model data showed that the depth of the channel had an effect on the behavior of 

the piles that is not generally accounted for in conventional design. The two-dimensional 

model may not capture this phenomenon faithfully. Field data and results of three- 

dimensional studies should be used to verify the magnitude of this effect. 

Pile behavior in the finite element model indicates that some methods of lateral 

analysis of piles, in the context of integral abutments, are lacking several important 

considerations. Rotation, in addition to translation, occurs at the pile head not only under 

thermal loading, but also under dead and live loading. Furthermore, programs such as 

COM624P (Wang & Reese, 1993) do not take any interaction between the pile tip and 



bedrock, or effect of construction sequence into account. Finally, lateral pile analysis 

programs cannot model the effect of channel depth on the behavior of the pile. This 

could be important if the field data reveals that this effect is found to be as significant as 

shown in this study. 
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APPENDICES 



Appendix A 

EXAMPLE ABAQUS INPUT FILE 

This appendix provides a sample ABAQUS model input file used in the 

parametric study. Annotations have been added for clarification, and are preceded by 

multiple asterisks. ABAQUS commands and keywords are in all caps, and are preceded 

by a single asterisk. Required data lines for the various commands and keywords are 

preceded by a blank space. 

For further information about ABAQUS commands or required data, please refer 

to the ABABQUSIStandard Version 6.2 User's Manual (HKS, 2001). 



"HEADING 
25m span, 4m piles, Native soil: Sand & Gravel, OUTPUT: DL&+T, DL&LL&+T 
* * 
** This model is an IAB with a 25m clear span and 4m long piles, The loading is a 
* * temperature increase of 20°C and an HL-93 truck placed for maximum bending 
** moment in the girder. 
* * 
** The native soil is granular glacial outwash (sand & gravel) modeled using Mohr- 
** Coulomb plasticity. 
* * 
** Dead & +T Output: Step 6, Dead/Live/+T Output: Step 8 
* * 

"PREPRTNT, ECHO=YES, MODEL=YES, HISTORY=YES, CONTACT=YES 
** These commands provide information in the *.dat file useful for debugging 
* * 

** Nodal coordinates are read from comma delimited text files 
*NODE, NSET=WSOIL, 
NUT=F:\TENIP\CURRENT\V~\MESH\~~~-S\~~-PWD-WSOIL-~~-~.~~~ 
*NODE, NSET=INSOIL, 
NPUT=F:\TEMP\CURRENT\V~\MESH\~~~-S\~~-PWD-IS OIL-25-4.inp 
*NODE, NSET=ESOIL, 
INPUT=F:\TEMP\CURRENT\V~\MESH\~~~-S\~~-PWD-ESOIL-~~-~.~~~ 
"NODE, NSET=PILES, 
INPUT=F:\TEMP\CURRENT\V~UVIESH\~~~-S\~~-PW-PILE - 25 - 4.inp 
*NODE, NSET=ABUTS, 
NUT=F:\TEMP\CURRENT\v3\MESH\25m-S\4m-PWDWDABUT254.inp 
"NODE, NSET=ROCK, 

**  Element definitions are read from comma delimited text files. The TYPE command 
**  specifies 6 noded or 8 noded plane stresslstrain elements, or 5 noded infinite elements. 
* * 
"ELEMENT, TYPE=CINPESR, ELSET=WSOIL, 
NUT=F:\TEMP\CURRENT\V~\MESH\~~~-S\~~-P\EL~~WSOIL-~~~.~~~ 
*ELEMENT, TYPE=CPE8, ELSET=WSOIL, 
NUT=F:\TEMP\CURRENT\V~\MESH\~~~-S\~~-PEL~-WSOIL-~~-~.~~ 
*ELEMENT, TYPE=CPE6, ELSET=WSOIL, 
INPUT=F:\TEMP\CURRENT\V~\MESH\~~~-S\~~-PEL~WSOL - 25 - 4.inp 
"ELEMENT, TYPE=CPE8, ELSET=INSOIL, 
NPUT=F:\TEMP\CURRENT\V~\MESH\~~~-S\~~-P\EL~-ISOIL-~~-~.~~~ 



"ELEMENT, TYPE=CPE6, ELSET=INSOIL, 
I~TPUT=F:\TEMP\CU'RRENT\V~\MESH\~~~-S\~~-PEL~ISOIL - 25 - 4.inp 
"ELEMENT, TYPE=CINPESR, ELSET=ESOIL, 
NPUT=F:\TEMP\CURRENT\v3\MESH\25m-S\4mmP\EL5-ESOL-254.inp 
"ELEMENT, TYPE=CPE8, ELSET=ESOIL, 
INPUT=F:\TEMP\CURRENT\V~WIESH\~~~_S\~~-PEL~-ESOIL-~~-~.~~~ 
"ELEMENT, TYPE=CPE6, ELSET=ESOIL, 
INPUT=F:\TEMP\CURRENT\V~\MESH\~~~-S\~~-P~EL~-ESOIL - 25 - 4. inp 
"ELEMENT, TYPE=CPS8, ELSET=PILE, 
INPUT=F :\TEMP\CURRENT\V~\MESH\~~~-S\~~-P\EL~-PILE-~~-~.~~~ 
"ELEMENT, TYPE=CPS6, ELSET=PILE, 
I N P U T = F : \ T E M P \ C U R R E N T \ V ~ \ M E S H \ ~ ~ ~ - S \ ~ ~ ~ \ I L E  - 25 - 4.inp 
"ELEMENT, TYPE=CPS8, ELSET=ABUTMENT, 
INPUT=F:\TEMP\CURRENT\V~WIESH\~~~~~S\~~~P\EL~-ABUT - 25 - 4.inp 
"ELEMENT, TYPE=CPS6, ELSET=ABUTMENT, 
INPUT=F:\TEMP\CURRENT\V~WIESH\~~~-S\~~-PEL~-ABUT-~~-~.~~~ 
"ELEMENT, TYPE=CINPE5RY ELSET=BEDROCK, 
NUT=F:\TEMP\CURRENT\V~\MESH\~~~-S\~~-PEL~-ROCK-~~-~.~~~ 
"ELEMENT, TYPE=CPE8, ELSET=BEDROCK, 
IhlPUT=F:\TEMP\CURRENT\v3WESHD 5m-S\4m-PEL8-ROCK-25-4.inp 
*ELEMENT, TYPE=CPEG, ELSET=BEDROCK, 
INPUT=F:\TENIP\CURRENT\V~\MESH\~~~-S\~~-PEL~-ROCK-~~-~.~~~ 
*ELEMENT, TYPE=CPS8, ELSET=GIRDER, 
INPUT=F:\TEMP\CURRENT\V~WLESH\~~~-S\~~-PEL~-GIRD-~~-~.~~~ 
"ELEMENT, TYPE=CPS6, ELSET=GIRDER, 
INPUT=F:\TEMP\CURRENT\V~\MESHD~~-S\~~-PEL~-GIRD-~~-~.~~~ 
* * 
* * .................................... NODE SET GENERATION ................................. 
* * 
** Sets of nodes are defined in order to apply boundary conditions or loads, or to obtain 
** model output data, such as deflections. The names of the node sets describe their 
** locations. 
"NSET, GENERATE, NSET=LEFT 
1,5201,400 
20500,21300,400 
"NSET, GENERATE, NSET=BASE 
20000,20094,l 
"NSET, GENERATE, NSET=RIGHT 
79,5279,400 
20570,2 1370,400 
"NSET, NSET=CORNERS 
20000,20094 
"NSET, GENERATE, NSET=WSOILFACE 
5912, 12712, 100 
5360,7660,100 
8056,9456, 100 



14310, 15710, 100 
"NSET, NSET=WFACE-ANGLE 
7759,7858,7957 
"NSET, GENERATE, NSET=W-APPROACH 
15701, 15710,l 

"NSET, GENERATE, NSET=INSOILFACES 
5913,12713,100 
5361,7661,100 
7663,9063,100 
5936,12736,100 
5384,7684,100 
7682,9082,100 
"NSET, NSET=INSOILFACES 
7662,7683 
*NSET, GENERATE, NSET=ESOILFACE 
5937, 12737, 100 
5385,7685, 100 
8089,9489, 100 
14339, 15739, 100 

"NSET, NSET=EFACE-ANGLE 
7786,7887,7988 
"NSET, GENERATE, NSET=E-APPROACH 
15739,15748,l 

*NSET, NSET=SOILFACES 
WSOILFACE, TNSOILFACES, ESOILFACE 
*NSET, NSET=APPROACHES 
W-APPROACH, E-APPROACH 
"NSET, GENERATE, NSET=PLLEBASES 
80, 97, 1 

"NSET, GENERATE, NSET=PILETOPS 
13580,13597,l 

*NSET, GENERATE, NSET=PILE-CL 
84,5284, 100 
9684,13584,100 
93,5293, 100 
9693, 13593,100 
"IVSET, GENERATE, NSET=ABUTBASES 
13654,13662,l 
13667,13675, 1 

*NSET, GENERATE, NSET=ABUTTOPS 
16850, 16858,l 
16865,16875,l 

*NSET, GENERATE, NSET=ABUTFACES 
15164,15264,100 
15358,16858,100 
15165,15265, 100 



15365,16865,100 
*NSET, GENERATE, NSET=BACKWALLS 
14050,16850,100 
14079,15279,100 
15375,16875,100 

*NSET, GENERATE, NSET=GIRDER-TOP 
17801,17853 
** 
** .................................. ELEMENT SET GENERATION .............................. 
** 
** Sets of elements are created in order to apply certain material properties to elements, 
** define contact surfaces, or to obtain model output data, such as strains. The names of 
** the sets describe their locations and material. 
* * 
****MATERIAL PROPERTY SETS (Used with *SOLID SECTION command) 
* * 
"ELSET, GENERATE, ELSET=WNATIVE-ELASTIC 
1, 10, 1 
14, 23, 1 
27, 36, 1 
40, 49, 1 
53, 82, 1 
92, 111, 1 
118,177,l 
196,235,l 

"ELSET, GENERATE, ELSET=WNATIVE-MC 
248,286,l 
294,329,l 
337,370,l 
1471, 1490, 1 
1506,1510,l 
1532, 1540, 1 

"ELSET, GENERATE, ELSET=INNATIVE - ELASTIC 
480,991, 1 
"ELSET, GENERATE, ELSET=INNATIVE-MC 
371,479,l 
992, 1 100,l 
1546,1571, 1 
1574,1578,l 
1581,1608,l 
1611,1619,l 

"ELSET, GENERATE, ELSET=ENATIVE-ELASTIC 
1224,1263, 1 
1276, 1335, 1 
1354, 1373, 1 
1380, 1409, 1 



1419,1428,l 
1432, 1441,l 
1445, 1454, 1 
1458,1467,l 

"ELSET, GENERATE, ELSET=ENATIVE-MC 
1101,1170,1 
1178,1216,l 
1622, 1647,l 
1653,1657,l 
1679,1681, 1 

"ELSET, GENERATE, ELSET=WFILL-ELASTIC 
1543, 1545, 1 

*ELSET, GENERATE, ELSET=WFILL-MC 
11, 13, 1 
24,26, 1 
37,39, 1 
50, 52, 1 
83,91, 1 
112,117,l 
178,195, 1 
236,247, 1 
287,293, 1 
330,336,l 
1491,1505,l 
151 1,1531,l 
1541,1542, 1 

"ELSET, GENERATE, ELSET=INFILL-MC 
1572,1573, 1 
1579,1580,l 
1609, 1610, 1 
1620, 1621, 1 
1800, 1879, 1 

"ELSET, GENERATE, ELSET=EFILL-ELASTIC 
1650,1652,l 

"ELSET, GENERATE, ELSET=EFILL-MC 
1264,1275,l 
1336,1353, 1 
1374,1379,l 
1410, 1418, 1 
1429, 1431, 1 
1442,1444,l 
1455, 1457,l 
1468,1470,l 
1171,1177,l 
1217,1223, 1 
1648,1649, 1 



1658, 1678, 1 
1682, 1696, 1 

"ELSET, GENERATE, ELSET=ROCK-ELASTIC 
4000,4144,l 
4200,4244,l 
*ELSET, GENERATE, ELSET=ROCK - MC 
4300,4643, 1 
** 
****SURFACE SETS (Used with "SURFACE command) 
** 
*ELSET, GENERATE, ELSET=WESTSOIL-PILE 
362,370,l 
1478,1486,2 
1534,1542,2 

*ELSET, ELSET=WESTSOIL-PILE 
1487,1533,337 

"ELSET, GENERATE, ELSET=WESTSOLL_ABUT 
330,336,l 
1518,1528,2 

*ELSET, ELSET=WESTSOIL-ABUT 
1531 

"ELSET, ELSET=WSOIL_ONROCK 
14,27,40,53,54,92, 118, 
119,196,248, 1472, 1477, 1478 

"ELSET, ELSET=WSOIL-SURF 
26, 39, 52,91, 117, 193, 195,247,293,336 
*ELSET, GENERATE, ELSET=INSOIL-WPILE 
396,404,l 
1546,1554,2 
1564,1572,2 

*ELSET, ELSET=INSOIL-WPILE 
1555,1563,371 

*ELSET, GENERATE, ELSET=INSOIL-WABUT 
1800, 1806,l 

*ELSET, GENERATE, ELSET=INSOIL-EPILE 
1092,1100,l 
1591, 1599,2 
1613, 1621,2 

*ELSET, ELSET=INSOIL-EPILE 
1600, 1612, 1067 

"ELSET, GENERATE, ELSET=INSOIL-EAI3UT 
1873, 1879,l 

*ELSET, ELSET=INSOIL-ONROCK 
1546,1547,1557,441,480,520,522,580,581,619,621,648, 
659, 670, 681,691,701,761,771, 781,791, 802, 813, 824, 825, 
853,854,892,893,952,992,1585, 1590, 1591 



"ELSET, GENERATE, ELSET=EASTSOIL-PILE 
1126,1134,l 
1622, 1630,2 
1640, 1648,2 

"ELSET, ELSET=EASTSOIL-PILE 
1631,1639,1101 

*ELSET, GENERATE, ELSET=EASTSOIL-ABUT 
1664,1676,2 
1171,1177,l 

*ELSET, ELSET=ESOIL-ONROCK 
1622,1623,1633, 1178,1224,1276, 
1278,1354,1380, 1382,1419,1432,1445 

*ELSET, ELSET=ESOIL-SURF 
1177, 1223, 1275, 1352, 1353,1379, 1417, 1431,1444, 1457 

"ELSET, ELSET=SOIL-UP 
24, 37, 50, 83, 84, 112, 178, 179,236, 1491, 1492, 1513, 
1514, 1543, 1544, 1650, 1651, 1660, 1661, 1682, 1684, 1264, 1336, 
1338, 1374, 1410, 1412, 1429, 1442, 1455 
* * 
*ELSET, GENERATE, ELSET=WPILELEFT 
2076,2092,2 
2000,2016,4 
2100,2116,4 
"ELSET, ELSET=WPILE - LEFT 
2026 
"ELSET, GENERATE, ELSET=WPILE-RIGHT 
2077,2093,2 
2003,201 9 ,4  
2103,2119,4 
"ELSET, ELSET=WPILE-RIGHT 
2027 
*ELSET, GENERATE, ELSET=EPILELEFT 
2196,2212,2 
2120,2136,4 
2220,2236,4 
"ELSET, ELSET=EPILE-LEFT 
2146 
"ELSET, GENERATE, ELSET=EPILE-RIGHT 
2197,2213,2 
2123,2139,4 
2223,2239,4 
"ELSET, ELSET=EPILE-RIGHT 
2 147 
"ELSET, GENERATE, ELSET=WPILETOP 
2116,2119,l 
*ELSET, GENERATE, ELSET=WPILETIP 



2000,2003, 1 
"ELSET, GENERATE, ELSET=EPILETOP 
2236,2239, 1 
"ELSET, GENERATE, ELSET=EPILETP 
2120,2123,l 
** 
"ELSET, GENERATE, ELSET=WABUTLEFT 
3013,3048,7 
3058,3062,4 
3066,3076,2 
"ELSET, GENERATE, ELSET=WABUT-NGHT 
3005,3047,7 
"ELSET, GENERATE, ELSET=WABUTBASE 
3001,3004,l 
*ELSET, GENERATE, ELSET=EABUT - LEFT 
3092,3 134,7 
"ELSET, GENERATE, ELSET=EABUT-RIGHT 
31 12,3140,7 
3150,3158,4 
3174,3184,2 
"ELSET, GENERATE, ELSET=EABUT-BASE 
3093,3096, 1 
** 
"ELSET, GENERATE, ELSET=TOP-GLRDER 
5016,5028,2 
5046,5056,2 
"ELSET, ELSET=TOP GIRDER 
5006,5007,5069,5076 
* * 
"ELSET, ELSET=WROCK-SURF 
4002,4005,4008,4015,4017,4311,4361, 
4362,4363,4364,4529,4576,4577,4578 
*ELSET, GENERATE, ELSET=WPILE-ROCK 
4578,4581,l 
* * 
"ELSET, ELSET=INTROCK SURF 
4581,4582,4583,4550,439~4400,4401,4402,4410,4037,4045, 
4046,4049,4052,4055,4058,4061,4064, 4082,4085,4088,4091, 
4094,4097,4104,4106,4112,4423,4473,4474,4475,4476,4589, 
4636,4637,4638 
* * 
"ELSET, GENERATE, ELSET=EPILE-ROCK 
4638,4641, 1 
"ELSET, ELSET=EROCK-SURF 
4641,4642,4643,4610,4511,4512,4513, 
4514,4522,4134,4135,4138,4141,4144 



* * 
**-------------------------------------- SURFACE DEFINITIONS .................................. 
** 
** Element-based surfaces are created using the element sets defined above, to be used 
* * with the *CONTACT PAIR command. 
* * 
"SURFACE, NAME=WSOIL-BOT 
WSOIL-ONROCK, S 1 
*SURFACE, NAME=W SOIL-TOP 
WSOIL-SURF, S3 
"SURFACE, NAME=WSOIL-PILE 
WESTSOIL-PILE, S2 
"SURFACE, NAME=WSOIL-ABUT 
WESTSOIL-ABUT, S2 
1544, S2 
1545, S2 
** 
*SURFACE, NAME=INSOCBOT 
INSOIL-ONROCK, S 1 
*SURFACE, NAME=INSOIL-W-PILE 
INSOIL-WPILE, S4 
1572, S3 

*SURFACE, NAME=INSOIL-W-ABUT 
INSOIL WABUT, S4 
*SURFACE, NAME=~NSOIL-E-PILE 
INSOIL-EPILE, S2 
1621, S3 

"SURFACE, NAME=INSOIL-E-ABUT 
INSOIL-EABUT, S2 

1572, S4 
*SURFACE, NAME=INSOIL-ETOP 
1621, S2 
1621, S3 
* * 
"SURFACE, NAME=ESOILBOT 
ESOIL-ONROCK, S 1 
"SURFACE, NAME=ESOIL-TOP 
ESOIL-SURF, S3 
*SURFACE, NAME=ESOIL-PILE 
EASTSOIL-PILE, S4 
"S'CrRFACE, NAME=ESOIL-ABUT 
EASTSOIL - ABUT, S4 
1650, S3 
1652, S3 



* * 
"SURFACE, NAME=SOIL-REACTION 
SOIL-UP, S1 
** 
"SURFACE, NAME=WROCK-TOP 
WROCK-SURF, S3 
"SURFACE, NAME=WPILEROCK 
WPILE ROCK, S3 

*SURFACE, NAME=INROCK-TOP 
INTROCK-SURF, S3 
*SURFACE, NAME=EPILEROCK 
EPLE-ROCK, S3 
"SURFACE, NAME=EROCK-TOP 
EROCK - SURF, S3 
* * 
*SURFACE, NAME=WPILE-LH 
WPILE LEFT, S4 
2020, s3 
2094, S3 
"SURFACE, NAME=WPILE-RH 
WPILE RIGHT, S2 
2099, ST 
2025, S2 
"SURFACE, NAME=EPILELH 
EPILE-LEFT, S4 
2214, S3 
2140, S3 
*SURFACE, NAME=EPILE-RH 
EPILE RIGHT, S2 
2219, $2 
2145, S2 
"SURFACE, NAME=WPILEBASE 
WPILE TIP, S1 
*SURFACE, NAME=WPILE-ABUT 
WPILE TOP, S3 
*SURFACE, NAME=EPILE-BASE 
EPILE-TIP, S 1 
"SURFACE, NAME=EPILE-ABUT 
EPILE-TOP, S3 
* * 
"SURFACE, NAME=WABUT-LH 
WABUT-LEFT, S4 
3000, Sl 
3006, Sl 
"SURFACE, NAME=WABUT-RH 
WABUT - RIGHT, S2 



3057, S2 
*SURFACE, NAME=WABUT-PILE 
WABUT-BASE, S l  
*SURFACE, NAME=WABUT-TIP 
3005, S l  
"SURFACE, NAME=EABUT-LH 
EABUTLEFT, S4 
3141, S3 
"SURFACE, NAME=EABLTT-RH 
EABUT-RIGHT, S2 
3097, Sl 
3105, Sl  
"SURFACE, NAME=EABUT-PILE 
EABUTBASE, S I 
"SURFACE, NAME=EABUT-TP 
3092, Sl  
** 
"SURFACE, NAME=TOPGTRDER 
TOP-GIRDER, S3 
5014, S2 
5062, S3 
* * 
** ...................................... PAIRS ......................................... 
* * 
** The *SURFACE INTERACTION command specifies the z-dimension of the contact 
** between two elements. The coefficient of friction between the two surfaces is defined 
** using the *FRICTIOlV command 
* * 
"SURFACE INTERACTION, NAME=SOIL-ROCK 
2.7 
*FRICTION 
0.5 
* * 
*SURFACE INTERACTION, NAME=SOIL - PLLE 
0.346 
*FRICTION 
0.0 
* * 
*SURFACE INTERACTION, NAME=SOIL-ABUT 
2.7 
"FRICTION 
0.0 
** The coefficients of friction between soil/abutments and soillpiles are set to zero 
** initially, to prevent excessive downdrag forces that occur during the construction steps 
** (1 & 2) 



*SURFACE INTERACTION, NAME=PILE-ROCK 
0.346 
*FRICTION 
0.7 
** 
*SURFACE INTERACTION, NAME=PILE-ABUT 
0.346 
"FRICTION, ROUGH 
** The rough parameter results in no tangential motion between surfaces, or a coefficient 
** of friction equal to 1.0 
* * 
** The *CONTACT PAIR command groups the surfaces defined earlier, and assigns a 
** surface interaction 
* * 
"CONTACT PAIR, INTERACTION=PLLE - ABUT, ADJUST=1.78E-15, TIED 
WABUT PILE, WPILE-ABUT 
*CONTACT PAIR, INTERACTION=PILE-ABUT, ADJUST= 1.78E- 1 5, TIED 
EABUT-PILE, EPILE-ABUT 
** The TIED parameter keeps the surfaces of two element sets from separating, and 
** allows them to cany tension. The ADJUST parameter corrects initial overlapping or 
** separation of the surfaces 
* * 
"CONTACT PAIR, INTERACTION=SOIL-ROCK, ADJUST=O.O 
WSOIL BOT, WROCK-TOP 
*CONTACT PAIR, ~TERACTION=SOIL~ROCK, ADJUST=O.O 
INSOIL-BOT, INROCK-TOP 
"CONTACT PAIR, TNTERACTION=SOTL-ROCK, ADJUST=O.O 
ESOIL-BOT, EROCK-TOP 
* * 
"CONTACT PAIR, INTERACTION=SOIL - PILE, ADJUST=1.78E-15 
W SOIL PILE, WPILE-LH 
*CONTACT PAIR, INTERACTION=SOIL-PILE, ADJUST=O.O 
INSOIL-W PILE, WPILE-RH 
*CONTACTPAIR, INTERACTION=SOIL-PILE, ADJUST=O.O 
INSOIL - E - PILE, EPILE-LH 
"CONTACT PAIR, INTERACTION=SOIL-PILE, ADJUST=7.11 E- 15 
ESOIL-PILE, EPILE-RH 
* * 
"CONTACT PAIR, INTERACTION=SOIL-ABUT, ADJUST=O.O 
W SOIL-ABUT, WABUT-LH 
*CONTACT PAIR, INTERACTION=SOIL-ABUT, ADJUST=O.O 
INSOIL-W-ABUT, WABUT-RH 
"CONTACT PAIR, INTERACTION=SOIL-ABUT, ADJUST=O.O 
INS OIL-E-ABUT, EABUT-LH 
"CONTACT PAIR, INTERACTION=SOIL-ABUT, ADJUST=7.11E- 15 
ESOIL-ABUT, EABUT-RH 



"CONTACT PAIR, INTERACTION=SOIL-ABUT, AD.JUST=O.O 
INSOIL WTOP, WABUT-TIP 
*CONTACT PAIR, NTERACTION=SOIL - ABUT, ADJUST=O.O 
INSOIL-ETOP, EABUT-TIP 
* * 
"CONTACT PAIR, INTERACTION=PLLE_ROCK, ADJUST=O.O 
WPILEROCK, WPILE-BASE 
*CONTACT PAIR, INTERACTION=PILE-ROCK, ADJUST=O.O 
EPILEROCK, EPEE - BASE 
** 
* * ................................... M A T E m L  DEFTNITION ................................... 
* * 
******LINEARLY ELASTIC MATERIALS 
**  Materials incorporating linearly elastic behavior are defined with Young's modulus, 
**  Poisson's ratio, and a mass density. Stresses are in Pa, densities are kg/m3 
* * 
"MATERIAL, NAME=EL - GRAVEL 
"ELASTIC 
1.2E+08, 0.4 

"DENSITY 
2000.0 
* * 
"MATERIAL, NAME=EL-TILL 
"ELASTIC 
8.OE+07,0.45 

*DENSITY 
2200.0 
** 
*MATERIAL, NAME=EL-CLAY 
*ELASTIC 
3 .OE+07,0.499 
"DENSITY 
1800.0 
* * 
"MATERIAL, NAME=EL - ROCK 
"ELASTIC 
3.5E+09, 0.25 
"DENSITY 
2660.0 
** 
*MATERIAL, NAME=ABUTMENTS 
*ELASTIC 
2.8398E+lO, 0.1 1 
"DENSITY 
2400.0 
** 



"MATERIAL, NAME=GIRDER 
"ELASTIC 
2.1214E+10, 0.28 
"DENSITY 
1517.4 

*EXPANSION 
11 .OE-6, 
** The "EXPANSION command defines the coefficient of thermal expansion to be used 
**  in thermal loading of the girder. 
* * 
******NONLINEAR MATERIALS 
** Nonlinear materials are defined exactly like elastic materials, but with additional 
** parameters. f and y are defined under the *MOHR COULOMB command in degrees, 
** while c is defined with the first parameter in the *MOHR COULOMB HARDENING 
** command in Pa. The second value is always zero. 
** 
"MATERIAL, NAME=MC - GRAVEL 
"ELASTIC 
1.2E+08, 0.4 

*DENSITY 
2000.0 
*MOHR COULOMB 
45.0,40.0 
*MOHR COULOMB HARDENING 
0.3E+03, 0.0 
* * 
"MATERIAL, NAME=MC - TILL 
"ELASTIC 
8.OE+07, 0.45 
"DENSITY 
2200.0 
*MOHR COULOMB 
35.0, 30.0 
*MOHR COULOMB HARDENING 
9.OE+03, 0.0 
* * 
*MATERIAL, NAME=MC - CLAY 
*ELASTIC 
3.OE+07,0.499 
"DENSITY 
1800.0 

*MOHR COULOMB 
0.001, 0.0 
*MOHR COULOMB HARDENING 
35.0E+03,0.0 
** 



*MATERIAL, NAME=MC-ROCK 
"ELASTIC 
3.5E+09,0.25 
"DENSITY 
2660.0 
*MOHR COULOMB 
26.0, 21.0 
*MOHR COULOMB HARDENING 
82.7E+06, 0.0 
* * 
"MATERIAL, NAME=HPILES 
"ELASTIC 
2.6782E+107 0.28 
"PLASTIC 
36.998E+06,0.0 
36.9981E+06,0.001 
36.9982E+06, 1.0 
"DENSITY 
3 172.0 
** The "PLASTIC command defines the yield stress in Pa. As it is defined here, the 
** yield plateau has a small positive slope, rather than being perfectly horizontal. 
* * 
* * ....................................... SECTION DEFINITION .................................. 
** 
** The *SOLID SECTION command is used to assign material properties to various 
** element sets. 
** 
"ELSET, ELSET=EL-NATIVE 
WNATIVE-ELASTIC, INNATIVE-ELASTIC, ENATIVE-ELASTIC 
*SOLID SECTION, MATERIAL=EL-GRAVEL, ELSET=EL-NATIVE 
1 .o 

* * 
*ELSET, ELSET=EL-FILL 
WFILL ELASTIC, EFILL-ELASTIC 
*SOL~SECTION, MATERIAL=EL-GRAVEL, ELSET=EL-FILL 
2.7 
** 
*ELSET, ELSET=MCNATNE 
WIVATIVE-MC, INNATIVE-MC, EIVATIVE-MC 
*SOLID SECTION, MATERIAL=MC-GRAVEL, ELSET=MC-NATIVE 
1 .o 
* * 
*ELSET, ELSET=MC-FILL 
WFILL - MC, INFILL-MC, EFILL-MC 
*SOLID SECTION, MATERIAL=MC-GRAVEL, ELSET=MC-FILL 
2.7 



*SOLID SECTION, MATERTAL=ELROCK, ELSET=ROCK-ELASTIC 
1 .o 

* * 
*SOLID SECTION, MATERIAL=MC-ROCK, ELSET=ROCK-MC 
1 .o 
* * 
*SOLID SECTION, MATERIAL=ABUTMENTS, ELSET=ABUTMENT 
2.7 
*SOLID SECTION, MATERIAL=HPILES, ELSET=PILE 
0.346 
"SOLID SECTION, MATERIAL=GIRDER, ELSET=GIRDER 
1 .o 
* * 

**  Initial states (displacement, stress, temperature) and amplitude curves are defined 
* * 
"BOUNDARY, FIXED 
LEFT, 1 
RIGHT, 1 
CORNERS, 1 
BASE, 2 
** Perimeter nodes of the finite element model are fixed 
** 
"INITIAL CONDITIONS, TYPE=STRESS, GEOSTATIC 
BEDROCK,O.O, 0.0, -104378.4, -4.0, 0.3333 
** Geostatic stress state is applied to bedrock 
* * 
"INITIAL COIVDITIONS, TYPE=TEMPERATURE 
GIRDER, 20.0 
* * Initial (construction) temperature of the girder is set to 20°C 
* * 
*AMPLITUDE, NAME=TEMP-POSY TIME=TOTAL TIME 
4., 1.0, 5., 1.0, 6., 1.2, 7., 1.4, 
8., 1.6, 9., 1.8, lo., 2.0 
** This amplitude curve is defined to vary the temperature in the girder with step time 
* * 
"AMPLITUDE, NAME=GRAVITY-EXP, DEFINITION=EQUALLY SPACED, 
FIXED lNTERVAL=0.05 
0.0, 0.01, 0.01274275, 0.016237767, 0.020691 381, 0.026366509, 0.033598183, 

0.04281 3324, 0.054555948, 0.0695 1928, 0.088586679, 0.1 12883789, 0.143844989, 
0.183298071, 0.233572147, 0.297635144, 0.379269019, 0.483293024, 0.61584821 1, 
0.78475997, 1 .O 
** This amplitude curve ramps the gravitational forces from zero to the full magnitude 
** gradually, instead of all at once. 



* * 
**-------------------------------------------- LOAD STEPS .......................................... 
* * 
* * 
"STEP, NLGEOM=YES, EXTRAPOLATION=NO 
STEP 1 
** Geometric nonlinearity is accounted for, extrapolation from previous incremental 
** solution is not used 
** 
"STATIC 
0.5 
** Static load step, with an initial time increment of 0.5 
* * 
*CONTROLS, PARAMETERS=TIME INCREMENTATION 
8, 10,9, 16, 10,6,20, 8, 8, 
0.5,, , , 0.5, 0.5, 1.5, 
"CONTROLS, PARAMETERS=FIELD 
.01, 1 
**  These parameters are used to improve solution convergence. They adjust ABAQUS' 
** automatic time incrementation, as well as set parameters for satisfying field equations. 
* * 
"BOUNDARY, FIXED, OP=MOD 
WFACE-ANGLE, 1 
EFACE ANGLE, 1 
~ U T F A C E S ,  1 
ABUTTOPS, 2 
PILEBASES, 2 
PILE-CL, 1 
** OP=MOD allows boundary conditions defined in initial conditions section to remain, 
** while new boundary conditions are defined. All structural elements restrained. 
* * 
"DLOAD, AMPLITUDE=GRAVITY - EXP 
ESOIL,GRAV,9.81,0.,-1.,0. 
WSOIL, GRAV, 9.81, O., -I., 0. 
INSOIL, GRAV, 9.81, O., -I., 0. 
BEDROCK, GRAV, 9.8 1, O., - 1 ., 0. 
** Gravity is applied to soil and bedrock elements. 
** 
*DSLOAD, AMPLITUDE=GRAVITY-EXP 
SOIL-REACTION, P, 3241 6.4 
** Load to counteract difference in 2.7m and 0.346m wide soil elements in contact with 
** each other. 
** 
*PRINT, PLASTICITY=Y ES 
*END STEP 
** 



*** 
* * 
*STEP, NLGEOM=Y ES, EXTRAPOLATION=NO 
STEP 2 
*STATIC 
*COIVTROLS, PARAMETERS=CONSTRAINTS 
0.001 
**  Adjusts tolerances on constraint equations 
* * 
*BOUNDARY, FIXED, OP=NEW 
WFACE ANGLE, 1 
EFACE ANGLE, 1 
LEFT, 1 
RSGHT, 1 
CORNERS, 1 
BASE, 2 
PILE-CL, 1 
ABUTFACES, I 
** OP=NEW clears all existing boundary conditions and redefines them. Piles and 
**  abutments allowed to move vertically 
* * 
"CHANGE FIUCTIOIU, INTERACTIO1U=SOIL-PILE 
*FRICTIOIU 
0.45 
"CHANGE FRICTION, I N T E R A C T I O N = S O V U T  
"FRICTION 
0.45 
**  Coefficient of friction between soil/piles and soil/abutments is changed from 0.0 
* * 
*DLOAD, AMPLITUDE=GRAVITY-EXP 
PILE, GRAV, 9.81, 0.,-1.,0. 
ABUTMENT, GRAV, 9.8 1, O., - 1 ., 0. 
**  Gravity loading applied to piles and abutments 
* * 
*PFUNT, PLASTICITY =Y ES 
*END STEP 
* * 
*** 
* * 
*STEP, NLGEOM=YES, EXTRAPOLATION=NO 
STEP 3 
"STATIC 
* * 
"DLOAD, AMPLITUDE=GRAVITY-EXP 
GJRDER,GRAV,9.81,0.,-1.,0. 
** Gravity loading applied to girder elements 



** 
"DSLOAD, AMPLITUDE=GRAVITY-EXP 
TOPGIRDER, P, 6965.0 
** Supplemental dead load applied to girder surface 
WSOIL-TOP, P, 3438.6 
ESOIL-TOP, P, 3438.6 
** Dead load of pavement applied to approach fill surface 
* * 
"DSLOAD, AMPLITUDE=GRAVITY-EXP 
SOIL-REACTION, P, 2 165.04 
**  Additional reaction force to account for pavement on 2.7m wide soil elements. 
* * 
"PRINT, PLASTICITY=YES 
*END STEP 
** 
*** 
** 
*STEP, NLGEOM=YES, EXTRAPOLATION=NO 
STEP 4 
*STATIC 
* * 
"BOUNDARY, FIXED, OP=NEW 
LEFT, I 
RIGHT, 1 
CORNERS, 1 
BASE, 2 
**  All structural elements released and allowed to come to equilibrium 
* * 
"PRINT, PLASTICITY=YES 
* * 
*END STEP 
** 
*** 
** 
*STEP, NLGEOM=YES, EXTRAPOLATION=NO 
STEP 5 
"STATIC 
1 .O, 6.0, , 1 .O 
** Static load step, with an initial time increment of 1.0, lasting for 6 increments. 
* * 
"CONTROLS, PARAMETERS=TIME INCREMENTATION 
8, 10, 9, 16, 10,6,20, 5, 5, 
0.5,, , , 0.5, 0.5, 1.5, 
"TEMPERATURE, AMPLITUDE=TEMP-POS 
GIRDER, 20.0 
** Temperature is varied with time increment, according to amplitude curve 



*PRINT, PLASTICITY=YES 
*END STEP 
* * 
*** 
* * 
*STEP, NLGEOM=YES, EXTRAPOLATION=NO 
STEP 6 
*STATIC 
* * 
**  This step provides data for the DL+T load case (Load Case #3) 
**  No loading takes place in this step. Requests for nodal, element, and contact surface 
** data are made 
* * 
"PRINT, PLASTICITY=YES 
* * 
*CONTACT PRINT, SUMMARY=YES, FREQUENCY=l 
CSTRESS, CDISP 
**  Shear and normal stresses, surface openings, and relative tangential displacements. 
"CONTACT PRINT, SUMMARY=YES, FREQUENCY=l 
CFN, CFS 
** Total normal and shear forces on surface 
*CONTACT PRINT, SUMMARY=YES, FREQUENCY=l 
XN, XS, CAREA 
**  Centers of total normal and shear forces, total area of surface in contact. 
* * 
*NODE PRINT, NSET=PILE-CL, FREQUENCY=l 
U 1, U2, COOR1, COOR2 
**  Displacements in horizontal and vertical directions, X & Y coordinates of nodes 
*NODE PRINT, NSET=PILETOPS, FREQUENCY=l 
U l ,  U2, COOR1, COOR2 
*NODE PRINT, NSET=PILEBASES, FREQUENCY=l 
U1, U2, COORl, COOR2 
*NODE PRINT, NSET=GIRDER - TOP, FREQUENCY=l 
U l ,  U2, COOR1, COOR2 
*NODE PRINT, NSET=APPROACHES, FREQUENCY=l 
U 1, U2, COORl, COOR2 
*NODE PRINT, NSET=ABUTFACES, FREQUENCY=l 
U1, U2, COORl, COOR2 
"NODE PRIIVT, lVSET=BACKWALLS, FREQUENCY=l 
U1, U2, COOR1, COOR2 
* * 
*EL PRINT, ELSET=PILE, POSITION=AVERAGED AT NODES, FREQUENCY=l 
S, SP 
** All stress and principle stress components, extrapolated to nodes of the elements 
*EL PRINT, ELSET=PILE, POSITION=INTEGRATION POINTS, FREQUENCY=l 
S, SP 



** All stress and principle stress components, at integration points of the elements 
*EL PRINT, ELSET=PILE, POSITION=AVERAGED AT NODES, FREQUENCY=l 
E, EP 
** All strain and principle strain components, extrapolated to nodes of the elements 
*EL PRINT, ELSET=PILE, POSITION=INTEGRATION POINTS, FREQUENCY=l 
E, EP 
** All strain and principle strain components, at integration points of the elements 
*EL PRINT, ELSET=PILE, POSITION=AVERAGED AT NODES, FREQUENCY=l 
PE 
** All plastic strain components, extrapolated to nodes of the elements 
*EL PRINT, ELSET=PILE, POSITION=INTEGRATION POINTS, FREQUENCY=l 
PE 
** All plastic strain components, at integration points of the elements 
* * 
*END STEP 
* * 

*STEP, NLGEOM=YES, EXTRAPOLATION=NO 
STEP 7 
"STATIC 
0.25 
**  Static load step, with an initial time increment of 0.25 
* * 
*CLOAD 
17814, 2, -21750.0 
17815, 2, -50750.0 
178 19, 2, -72500.0 
17839, 2, -12250.0 
17840, 2, -5250.0 
** HL-93 axle loads applied at nodes of the girder with 0.5 DF. Where axles fell 
** between nodes, equivalent loading was placed on adjacent nodes. 
* * 
*DSLOAD 
TOPGIRDER, P, 4650.0 
** HL-93 LANE LOAD WITH 0.5 DISTRJBUTION FACTOR 
* * 
"PRINT, PLASTICITY=YES 
* * 
** Output from last step is suppressed for this step in order to reduce memory demand 
"CONTACT PFUNT, SUMMARY=YES, FREQUENCY=O 
CSTRESS, CDISP 
"CONTACT PRINT, SUMMARY=YES, FREQUENCY=O 
CFN, CFS 
"COIVTACT PRIIVT, SUMMARY=YES, FREQUENCY=O 
XN, XS, CAREA 



* * 
*NODE PRINT, NSET=PILE-CL, FREQUENCY=O 
U1, U2, COOR1, COOR2 
*NODE PRINT, NSET=PILETOPS, FREQUENCY=O 
U1, U2, COOR1, COOR2 
*NODE PRINT, NSET=PILEBASES, FREQUENCY=O 
U1, U2, COOR1, COOR2 
*NODE PRINT, NSET=GLRDER-TOP, FREQUENCY=O 
U1, U2, COORl, COOR2 
*NODE PRINT, NSET=APPROACHES, FREQUENCY=O 
U1, U2, COORl, COOR2 
*NODE PRINT, NSET=ABUTFACES, FREQUENCY=O 
U1, U2, COOR1, COOR2 
*NODE PRTNT, NSET=BACKWALLS, FREQUENCY=O 
Ul ,  U2, COOR1, COOR2 
** 
*EL PRINT, ELSET=PILE, POSITION=AVERAGED AT NODES, FREQUENCY=O 
S, SP 
*EL PRIhTT, ELSET=PILE, POSITION=INTEGRATION POINTS, FREQUENCY=O 
S, SP 
*EL PRINT, ELSET=PILE, POSITION=AVERAGED AT IVODES, FREQUENCY=O 
E, EP 
*EL PRINT, ELSET=PILE, POSITION=INTEGRATION POINTS, FREQUENCY=O 
E, EP 
*EL PlUhTT, ELSET=PILE, POSITION=AVERAGED AT NODES, FREQUENCY=O 
PE 
*EL PRINT, ELSET=PILE, POSITION=INTEGRATION POINTS, FREQUENCY=O 
PE 
* * 
*END STEP 
** 
* * * 
* * 
*STEP, NLGEOM=YES, EXTRAPOLATION=NO 
STEP 8 
"STATIC 
** 
** This step provides data for the DL, LL,+T load case (Load Case #5) 
** No loading takes place in this step. Requests for nodal, element, and contact surface 
** data are made 
* * 
*PRINT, PLASTICITY=YES 
* * 
"CONTACT PRINT, SUMMARY=YES, FREQUENCY=l 
CSTRESS, CDISP 
*CONTACT PRINT, SUMMARY=YES, FREQUENCY=l 



CFN, CFS 
"CONTACT PRINT, SUMMARY=YES, FREQUENCY=l 
XN, XS, CAREA 
* * 
*NODE PRINT, NSET=PILE-CL, FREQUENCY=l 
U1, U2, COOR1, COOR2 
*NODE PRINT, NSET=PILETOPS, FREQUENCY=l 
U1, U2, COOR1, COOR2 
*NODE PRINT, NSET=PILEBASES, FREQUENCY=l 
U 1, U2, COOR1, COOR2 
*NODE PRINT, NSET=GIRDER-TOP, FREQUENCY=] 
U1, U2, COOR1, COOR2 
*lUODE PRINT, NSET=APPROACHES, FREQUENCY=l 
U1, U2, COOR1, COOR2 
*NODE PRINT, NSET=ABUTFACES, FREQUENCY=l 
U1, U2, COOR1, COOR2 
*NODE PRTNT, NSET=BACKWALLS, FREQUENCY=l 
Ul,  U2, COOR1, COOR2 
* * 
*EL PRINT, ELSET=PILE, POSITION=AVERAGED AT NODES, FREQUENCY=l 
S, SP 
*EL PRINT, ELSET=PILE, POSITION=INTEGRATION POINTS, FREQUENCY=l 
S, SP 

*EL PRINT, ELSET=PILE, POSITION=AVERAGED AT NODES, FREQUENCY=l 
E, EP 
*EL PRINT, ELSET=PILE, POSITION=INTEGRATION POIhTTS, FREQUENCY=l 
E, EP 
*EL PRINT, ELSET=PILE, POSITIOIU=AVERAGED AT NODES, FREQUENCY=l 
PE 
*EL PRINT, ELSET=PILE, POSITION=NTEGRATJON POINTS, FREQUENCY=l 
PE 
* * 
*END STEP 
* * 
**A~lalysis complete 



Appendix B 

DESIGN EXAMPLE 

Given: Single span, steel girder bridge with fixed-head integral abutment 

Span length: 32 m (105 ft) 

Skew: 0" 

Girder and pile spacing: 2.5 m (8 ft) 

Abutment height: 3 m (10 ft) 

Abutment wall thickness: 750 mm (2.5 ft) 

Depth to bedrock (pile length): 2.5 m (8 ft) 

General subsurface category: Sand & Gravel 

Step 1:  Check adequacy of pile using Procedure 5-4 from the NIDOT Bridge Design 

Guide (1 999). 

If the conditions of Procedure 5-4 are not satisfied, continue to Step 2. If the 

conditions of Procedure 5-4 are met, then no further steps are required. For the 

given parameters, Procedure 5-4 determines whether the proposed integral 

abutment bridge can be supported on H-piles, or whether the pile length is less 

than the minimum embedment length required for any of the "preferred" pile 

sections. 

Step 2: Determine MD and M D ~  from values of PD and PDL. 

The vertical pile loads from Procedure 5-4 are: 

Dead load superstructure reaction: 295 kN 

Live load superstructure reaction (including impact): 205 kN 

Abutment dead load: 0.75 m * 3.0 m * 2.5 m * 23.5 k ~ / r n ~  = 132 kN 

Pile dead load (assume HP 360x132) 1.3 kN/m * 2 m = 



Using Figures 5.2 and 5.3 in Chapter 5, the following pile head moment are 

determined for various pile sections as shown in Table B.1. 

Table B.1. Calculated Pile Head Moments for Example Problem 

A value of MDL was not able to be determined for the HP 310x79 section, 

because the yield moment is exceeded. Therefore, either the HP 360x108 or 

360x132 sections are suitable for support of the bridge. 

Pile Section 

HP 3 10x79 (HP 12x53) 

HP 360x108 (HP 14x73) 

HP 360x132 (HP 14x89) 

Step 3: Determine the additional pile head moment due to negative temperature change. 

From Table 5.4, the moment correction factors for HP 360x108 and 360x132 

piles in sand and gravel are 0.61 and 0.67 kN-mI0C, respectively. The resulting 

pile head moments in each pile section due to a 55 "C negative temperature 

change are given below. 

MD W - m )  

75 

105 

120 

For HP 360x108: 

MDr = 105 kN-m + (0.61 kN-mI0C) * 55  "C = 138 kN-m 

MDLT = 165 kN-m + (0.61 kN-mI0C) * 55 "C = 198 kN-m 

MDL W - m )  

165 

190 

For HP 360x132: 



Step 4: Compare MDLT to My for the pile section. 

The moments in the head of the pile are limited to 1.15 * My under dead, live, 

and thermal loading. My for each pile section is calculated by multiplying the 

yield stress (345 MPa) by the section modulus for the plane of bending. Table 

B.2 compares MDLT and M,, for both pile sections. 

Table B.2. Comparison of M L ~  to My for Example Problem 

Both sections meet the MDLT < 1.15* My criterion. Furthermore, the moment in 

the most severe loading case for both pile sections will remain below My, and 

therefore yielding of the pile will be less likely to occur. 

Pile Section 

HP 360x1 08 (HP 14x73) 

HP 360x132 (HP 14x89) 

Step 5: Calculate VDTand VDLT. 

The coefficients for the shear at the pile tip calculated from MDT and MDLT are 

taken from Table 5.5. For a 2.5 m long pile in sand and gravel, P I  and P2 are 

equal to 3.1 2 and 1.95, respectively. 

Section Modulus 

(mm3) 

586657 

725947 

For HP 360x 108: 

VD7. = (138 IN-rn * 3.12) / 2.5 m = 172 kN 

VDLT = (198 kN-m * 1.95) 1 2.5 m = 154 kN 

For HP 360x132: 

VDT = (157 kN-m * 3.12) / 2.5 m = 196 kN 

VDLT = (227 kN-m * 1.95) / 2.5 m = 177 kN 

MDLT 
(kN-m) 

198 

227 

My 

(kN-m) 

202.4 

250.3 

MDLT/ My 

98% 

91% 



Step 6: Calculate ratio of shear force to axial load. 

For HP 360x 108: 

VDT/ PD = 172 kN / 430 kN = 0.40 

v D L T / P D L  = 154 kN / 635 kN=o.24 

For HP 360x132: 

VDT/  PD = 196 kN 1 430 kN = 0.45 

VDLT / PDL = 177 kN / 635 kN = 0.28 

For both pile sections, the case where the pile is subjected to dead and thermal 

loading is the controlling case. 

Step 7: Verify assumption of pinned support at pile tip. 

Since there is insufficient information about the bedrock in the area of the piles, 

the factor of safety can be conservatively taken as 1.75. For a steel H-pile with a 

driving point on intact bedrock, p can be taken as 0.7. 

For HP 360x108: 

0.7 / 1.75 = 0.4 2 0.4 - 

For HP 360x132: 

0.7 / 1.75 = 0.4 i 0.45 - Not acceptable 

Based on the friction criteria at the pile tip, the pinned support assumption at the 

tip of an HP 360x132 section is not valid. Therefore, a HP 360x108 section 

should be used 
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