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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Biodeterioration is a prime cause of failure of wooden structures in service and 

causes billions of dollars in loss every year. Conventional methods to prevent wood 

deterioration include the use of pressure systems to force preservative chemicals such as 

creosote or water-borne chromated copper arsenate into wood. However, environmental 

concerns require that new approaches and the use of more environmentally acceptable 

chemicals be found to prevent wood deterioration in a more appropriate manner. In order 

to develop environmentally acceptable methods to prevent wood decay, a better 

understanding of wood decay mechanisms is needed. 

Brown rot fungi are some of the most important wood-degrading organisms[']. They 

are characterized by their extensive and rapid depolymerization of cellulose leading to a 

rapid loss in wood strength at early stages of the decay process[21. The mechanisms of 

wood degradation by brown-rot have been studied for decades, but to a less degree than 

that of white-rot fungi. It is believed that the decay process by brown-rot occurs by an 

initial non-enzymatic process, and that it involves a Fenton type catalytic system that 

produces hydroxyl radicals capable of attacking wood componentsP"'. 

Low molecular weight compounds produced by brown rot fungi have been 

proposed to mediate the redox cycling of iron to generate Fe(II), which reacts with H202 

to produce highly reactive hydroxyl radicals. A study using the model chelator, 2,3- 

dihydroxybenzoic acid (2,3-DHBA), showed that this ligand not only has a high affinity 



for binding Fe(II1) but also will reduce Fe(II1) to F~(II)[~'.  Recent re~earch[~-~'  has 

confirmed that compounds isolated from brown rot hngus Gloeophyllum trabeum will 

reduce Fe(II1) to Fe(II), while, in the presence of quinone reductase enzymes, undergoing 

a quinone redox cycle to generate extracellular H202. However, quinone reductase 

enzymes have to great a molecular mass to penetrate the wood cell wall structure and this 

would limit this mechanism in decay progression. 

Thus, study of the interaction between metals and low molecular weight compounds 

secreted by brown rot hngi will help us to gain a better understanding of the brown-rot 

decay mechanisms. In this thesis a voltammetric study of the interaction between Cu and 

two model fhgal-secreted ligands (2,5-DMBQ and 2,3-DHBA) was conducted. 

Although Fe(II1) has been the only transition metal hypothesized to hnction in the non- 

enzymatic Fenton based degradation system, this metal has a relatively low solubility 

even at low pH, and therefore Cu(I1) was used as a model transition metal in this work. 

Cu also undergoes Fenton type reactions with Hz02 to produce hydroxyl radicals. 

1.2 Scope and objectives of study 

The general objective of this research is to study the interaction between metals and 

the low molecular weight chelators isolated from G. trabeum, from which a better 

understanding of nonenzymatic wood decay process by brown rot hngi can be obtained. 

The binding capacity of 2,5-dimethoxybenzoquinone (2,5-DMBQ, one of low 

molecular weight chelators secreted by G. trabeum) with Cu will be studied by using 

CLEIASV (competitive ligand exchange1 anodic stripping voltammetry) method, from 

which the stability constants between 2,5-DMBQ and Cu can be determined. The stability 



constant for Cu and 2,SDMBQ will be useful for comparing the affinity of this quinone 

to other ligands in the decay environment and could help explain a possible mechanism 

for the non-enzymatic quinone redox cycle hypothesized to exist in brown rot wood 

decay processes. 

In addition, the reaction characteristics of Cu and 2,3-DHBA (a model ligand for Gt 

chelators) will be studied by the cyclic voltammetry method. The cyclic voltammetry 

data will provide information on the thermodynamics of the redox processes and will be 

useful for identification of redox potentials of the electroactive species, and evaluation of 

the effect of environmental conditions upon the redox process. The cyclic voltammetric 

study of the interaction between Cu and 2,3-DHBA in the absence and presence of H202 

will help to improve our understanding of reaction mechanisms related to a Fenton-type 

catalytic system proposed to be involved in wood decay processes. 

1.3 Thesis organization 

This thesis is divided into five chapters. The background and objectives are 

presented in chapter one. Chapter two discusses the current understanding of brown-rot 

decay mechanisms and the theories and advantages of the CLEIASV method and cyclic 

voltammetry method in this research. In chapter three, the CLEIASV and cyclic 

voltammetry methods are described. Chapter four presents the results of the experiments 

and the related discussion. Chapter five presents a summary and conclusions of the work, 

along with suggestions for future work. 



CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

Brown rot decay is the most common and most destructive type of decay in 

Northern Hemisphere forests and in structural wood products. It causes billions of dollars 

in loss each year in the United States and the rest of the world[g1. To effectively prevent 

wood decay in an environmentally appropriate manner, a systematic understanding of the 

mechanisms of wood biodegradation by brown rot hngi is needed. 

The wood decay mechanisms used by brown rot hngi have been previously 

hypothesized to involve a non-enzymatic pathway[101. In particular, this pathway has been 

proposed to include a free radical mechanism initiated by the reduction of metals such as 

Fe or potentially other transition metals by the low molecular weight organic compounds 

produced by brown rot hngi in the early stages of wood degradation['. "I. Most of the 

work supporting this hypothesis has been based on the activity of Gt chelators that have 

been isolated from the brown rot hngus Gloeophyllum trabeum. Recently, three 

compounds, 4,5-dimethoxycatecho1 (4,5-DMC), 2,5-dimethoxyhydroquinone (4,5- 

DMBQ) and 2,5-dimethoxybezonquinone (2,5-DMBQ), have been isolated from the 

brown rot hngus G. trabeum and a related study indicated that these compounds have the 

ability to reduce Fe (111) and to initiate an extracellular Fenton reaction in brown rot 

wood degradation processes[6-81. 



2.2 Mechanisms of wood degradation by brown rot fungi 

The mechanisms and hypotheses involved in non-enzymatic fiee radical production 

in brown rot fungi are presented in this section. Most published research concerning the 

activity of Gt chelators has dealt with the binding of Fe by these ligands or by model 

ligands such as 2,3-DHBA. 

2.2.1 Non-enzymatic wood decav mechanisms 

The most serious kind of microbiological deterioration of wood is caused by fungi 

because some types of wood degrading fungi can cause rapid structural failure. Brown rot 

fungi are characterized by their ability to degrade the cellulose and hemicellulose of the 

wood cell wall rapidly and selectively, leaving the lignin modified but unmetabolized [I2'. 

Historically, this was considered as a purely enzymatic process [I3]. Later research '91, 

however, revealed that degradation was not localized near the hyphae of fungi, as even 

the smallest fungal extracellular enzymes are too large to penetrate the wood cell wall 

and reach cellulose in early decay stages[14' "I. Instead, the low molecular weight 

compounds produced by brown rot fungi were hypothesized to be capable of diffusing 

into the wood cell wall to initiate the decay process. This suggested the degradation of 

cellulose by brown-rot fungi must involve a non-enzymatic process at least in the initial 

stages of degradation. 

~a l l iwe l l [ ' ~~  first proposed the possibility of the existence of a non-enzymatic 

cellulolytic system involving peroxide and iron based on the observation of the 

degradation of cotton cellulose by Fenton's reagent (I&02/Fe2+). Subsequently, ~ o e n i ~ s [ ~ ,  

41 demonstrated that cellulose in wood can be depolymerized by Fenton's reagent, that 



brown-rot hngi produce extracellular H202, and that wood contains enough iron to make 

Halliwell's hypothesis viable[16]. The production of hydroxyl radicals (OH') from ~ e ~ '  

and Hz02 by the Fenton reaction [2' 17] is shown as: 

Fe2' + H 2 0 2  + Fe3+ +OH- +OH' (2-1) 

The hydroxyl radicals produced by the above Fenton reaction were proposed to 

cleave long chain cellulose molecules into small fragments. Given the very short half life 

of OH*, this species does not diffise into wood, and as such, it has been argued that it 

must be formed at its site of reaction[51. Further research in this area by ~ i ~ h l e ~ [ ' ~ ]  and 

Schmidt et al.12' showed that wood degraded by reactive products of the Fenton reaction 

displayed the unique features similar to that of brown rotted wood. All this research 

suggests that brown rot decay involves a Fenton-type catalytic system that produces 

OH'to attack and degrade wood components. But a plausible explanation for the sources 

of the requisite Fe(I1) and H202 in above reaction schemes was needed to hlfill the non- 

enzymatic decay process. 

2.2.2 Hypotheses on the source of Fenton reagents 

Several hypotheses have been recently proposed for the source of Fenton reagents in 

the brown rot decay process. Hyde and suggested that the decay process 

involves the reduction of Fe(II1) by cellobiose dehydrogenase (CDH) within the fungal 

cells, diffusion of the produced Fe(I1) away from the hyphae, formation of an Fe(I1)- 

oxalate complex, and finally, hydroxyl radical formation at a safe distance from the 

hyphae. But a weak point of this model is the very slow interaction of CDH with F~(III)[~]. 



Enoki et a1.[20' 211 postulated that Fe(II1) is coordinated to a glycopetide and the 

presence of extracellular NADH (nicotinamide ademine dinucleotide) or ascorbate is 

required to reduce Fe(II1). However, no evidence was presented to suggest that NADH is 

secreted outside the cells of brown-rot fungi16]. 

Shimada et a1.[221 proposed that brown rot hngi might use oxalic acid as a chelator 

and a reductant for an Fe(I1)-H202 system to generate hydroxyl radicals. However, 

. erefore, oxalate does not reduce Fe(II1) except as a light-dependent reaction[19, 23' 241 Th 

oxalate cannot function as a direct catalyst of Fenton type chemical reaction in wood, 

where light levels are low. 

Goodell et al!] proposed that a low molecular weight metal chelator other than 

oxalate is involved in brown rot wood decay. Their model suggested that the natural 

chelators produced by brown rot fungi not only have a strong affinity for Fe(II1) but also 

mediate redox cycling of iron at the low pHs associated with fungal cultures. Fe(I1) 

produced fiom the reduction of Fe(II1) by the low molecular weight chelators could then 

react with H202 to produce reactive oxygen species involved in the wood brown rot 

decay process. This model is illustrated in Figure 2.1. 

In this model, the Gt chelators (with ortho-dihydroxy substituted benzoic 

compounds as the primary components) can diffise into the wood cell wall where they 

bind metals to initiate redox cycling reactions. The reduced metals then react with 

hydrogen peroxide, which is produced either directly from the fungus, or fiom the 

oxidation of semiquinones and other phenolic compounds that can be formed from Gt 

chelators. These reactions produce reactive oxygen species such as OH'and peroxyl 

radicals ( H 0 0 '  and 0,- that would degrade cellulose and hemicellulose. Further 
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research is required to explore the mechanism of chelator redox cycling within the wood 

cell wall to substantiate this model. 

Wang and ~ a o [ ~ ~ ~  271 also proposed that a special low-molecular-weight peptide named 

Gt factor has a high affinity of chelating with Fe3+ and could reduce Fe3+ to Fe2+. Their 

work demonstrated that the Gt factor could mediate the formation of hydroxyl radical 

OH' and play an important role in the initial degradation of lignocellulose. 

2.2.3 Studies on the low molecular weight h n ~ a l  chelators 

Low molecular weight chelators were first isolated from white and brown rot f h g i  

in the late 1980's and early 1990's[~', 291. Isolated chelators from the brown rot hngus 

Gloeophyllum trabeum have small molecular size (<lo00 dalton), allowing them, unlike 

enzymes, to penetrate through the wood cell wall matrix[301 where they could mediate 

redox reactions to generate hydroxyl and superoxide radicals[311. However, the 

availability of iron in wood is limited [321. Iron in the wood may not exist as a free cation 

but be bound to the wood cellulose or in hydr(oxide) form[33, 341. Research has revealed 

that oxalate in the wood may sequester water insoluble Fe(II1) and solubilize it, making it 

available for reaction with the Gt ~he la tor~~] .  The work of Xu and ~ o o d e l l [ ~ ~ ]  also 

suggested that oxalate and Gt chelator secreted by brown rot hngi are capable of 

diffusing into the wood cell wall to sequester Fe(II1) from cellulose to form oxalate-iron 

complexes and Gt chelator-iron complexes, and to initiate the redox cycling within the 

wood cell wall. 

More recent work has focused on the redox cycling pathways of iron and Gt 

chelators. Paszczynski et a1.16] identified two compounds, 4,5-dimthoxy-l,2-benzenediol 



(DMC) and 2,5-dimethoxy-1,4-benzenediol @MH), in the Gt chelator. DMC and DMH 

are interesting compounds in that the methoxyl groups increase redox reactivity of the 

hydroxyls, which can readily reduce oxygen. Jensen et al.['] also reported that DMC and 

DMH are able to rapidly reduce Fe(II1) even in the presence of oxalate at pH 4. Since 

DMC was found both extracellularly and within the fungal cells[61, it is a good candidate 

for an electron carrier between hyphae and Fenton reaction centers outside the cell. Also, 

DMC and DMH in their quinone forms could be involved in the redox reactions during 

brown rot fungi decay process. Kerem et al.17] confirmed the presence of DMH in the 

culture medium of G. trabeum, and also reported the presence of 2,5-dimethoxy-1,4- 

benzoquinone (DMBQ) in the same culture medium. Their work also demonstrated that 

G. trabeum can use a quinone redox cycle to generate extracellular ~ e ~ +  and H202, the 

two ingredients needed for Fenton chemistry (Figure 2.2). However, it is unlikely that 

this reaction occurs as part of the wood degradation process because the required quinone 

reductase enzyme, like all enzymes, is too large to penetrate the intact wood cell wall. 

The mechanism proposed would require an active redox cycling system deep within the 

wood cell wall layers. Other researchers17, 351 showed that there are quinone reductases 

produced by G. trabeum capable of eliciting high levels of extracellular quinone redox 

cycling, but it is not clear what the function of these enzymes have. Goodell et al.[361 and 

Qian and ~ o o d e l l [ ~ ~ ]  have shown that repeated iron reduction can occur in the presence of 

catechol and iron alone, without enzymatic activity. The mechanism for this is presumed 

to be the oxidation of catechol or its breakdown products, but more study on this is 

needed. DMC and DMH appear to fit well into the model of brown rot decay proposed by 

Goodell et al.[51, however, the mechanism for the iron cycling is as yet unknown. 



Figure 2.2: Proposed pathway for extracellular ~ e ~ '  reduction and Hz02 production by 

G. trabeum (Kerem, et al., 1999) 



It is unclear how these chelating compounds (DMC, DMH and DME3Q) compete 

with other metal complexes such as oxalate to sequester and reduce iron to initiate 

quinone redox cycling. In this work, the binding characteristics of DME3Q and Cu will be 

examined by competitive ligand exchange/ anodic stripping voltammetry (CLEJASV) 

method. This will give a trend of binding affinity between iron and these compounds and 

help to improve understanding of the biochemical processes employed by brown rot fungi. 

2.3 Metal-ligand complexation using CLEIASV 

2.3.1 Metal speciation 

Metal ions occur in natural waters or aquatic environments in a variety of chemical 

forms, namely as free aquo ions, as complexes with inorganic and organic ligands, as 

particulate (or colloidal) phases, and adsorbed on particulate (or colloidal) phases[381 . 

These different chemical species have different degrees of reactivity and availability. The 

availability of metal ions to organisms, as well as their toxic effects, strongly depends on 

chemical speciation[391. In many instances the effects have been shown to be related to 

the concentration of free aquo ions[401, which is regulated by complex interactions 

between various ligands in solution, particle surface and biota. In order to evaluate the 

fate and effects of metal ions in natural environments, it is thus essential to understand 

their speciation. 

2.3.2 Anodic stripping voltammetry 

Anodic stripping voltammetry (ASV) has been widely used for metal speciation 

studies[411. It involves the electrochemical preconcentration of reducible species, 



primarily metallic ions, from a solution containing trace quantities of such analytes onto 

the surface of an electrode. This step is followed by the application of a potential ramp in 

the anodic direction, generating a current that results from the oxidation of the 

preconcentration analyte(s) on the electrode surface. ASV has good sensitivity (down to 

nanomolar concentrations) and distinguishes between labile and non-labile species. The 

labile species are reducible at the specific deposition potential on the time scale of the 

electrochemical method; they include inorganic species (free aquo ions and inorganic 

complexes) and readily dissociable weak organic complexes. The difference between the 

total and labile species is called the non-labile (inert) species. Even though ASV does not 

directly determine the concentration of free metal ions[421, it is still a usehl method for 

speciation because of its sensitivity and ability to distinguish labile metal species from 

strong organic complexes, as well as those species bound to the particulate phase[431. 

Differential pulse anodic stripping voltammetry (DPASV) is the most widely used 

ASV technique. The application of this technique often involves titration of natural water 

with metal ions, from which the stability constants of metal-organic complexes and 

ligand concentrations can be obtained[441. 

The ASV technique was used in the current research to help determine the type 

(labile or inert) species of Cu binding with the model hydroquinone. The importance of 

this understanding was to allow a determination of the stability constants between Cu and 

2,5-DMBQ by choosing an appropriately competitive ligand. After determining the 

stability constant of Cu-2,5-DMBQ complexes, the binding affinity can be compared 

with that of Cu and other organic ligands, such as oxalic acid in the wood decay 



environment. Thus, a better understanding of the brown rot decay mechanisms involved 

in the interaction between metals and hngal secreted ligands will be obtained. 

2.3.3 Competitive ligand-exchange technique 

Ligand-exchange techniques are based on the competition between natural ligands 

and added known ligands for metals, and the subsequent specific and sensitive 

measurement of the affinity of these known ligands for the metals. The free metal ion 

concentrations are then determined by equilibrium calculations, on the basis of the 

concentration of complexes formed with the known ligands, and their stability constants. 

A variety of organic ligands, such as EDTA, ethylenediamine, catechol, 

hydroxyquinoline and tropolone have been used as exchanging ligands to determine the 

stability constants for metal-organic complexes[381. Ligand-exchange anodic stripping 

voltammetry with added ethylenediamine as the labile ligand has been used to study the 

binding of Cu with dissolved organic matter in seawater14']. Cathodic stripping 

voltammetry of labile Cu-catechol complexes was used for Cu speciation in the presence 

of natural organic matter in Altantic seawater[461, in estuarine wateri4'] and in lake water[48' 

491. Beside copper, the speciation of many other metals including several transition metals 

may also be determined with stripping voltammetry and various competitive ligand- 

exchange te~hni~ues[ '~"~] .  All of the aforementioned studies used the competitive ligand- 

exchange method combined with stripping voltammetry techniques to estimate the 

thermodynamic stability constants of metal and natural organic ligands, such as humic 

[53-551 substances , 



The ligand-exchange followed by voltammetric measurements, DPASV or DPCSV, 

has shown advantages with good sensitivity and without pre-separation. With ligand 

competition techniques, the detection of unknown ligands depends on the values of the 

complexing coefficient of added competing ligands (a-value, production of stability 

constant times free ligand concentration) and also on analytical sensitivity[381. 

2.4 Cyclic voltammetry methods 

2.4.1 Theon, 

Cyclic voltammetry is a widely used technique for acquiring qualitative information 

about electrochemical reactions. The power of cyclic voltammetry results from its ability 

to rapidly provide considerable information on the thermodynamics of redox processes, 

on the kinetics of heterogeneous electron-transfer reactions and on coupled chemical 

reactions or adsorption processes[561. In particular, this technique offers rapid 

identification of redox potentials of the electroactive species, and convenient evaluation 

of the effect of environmental parameters upon the redox process. 

Cyclic voltammetry is done by linearly scanning the potential of a stationary 

working electrode (in an unstirred solution) using a triangular potential waveform (Figure 

2.3). Depending on the information sought, single or multiple cycles can be used. During 

the potential sweep, the potentiostat measures the current resulting from the applied 

potential. The resulting plot of current versus potential is termed a cyclic voltammogram. 

The cyclic voltammogram is a complicated, time-dependent function of a large number 

of physical and chemical parameters. 



Time 

Figure 2.3: Potential-time excitation signal in cyclic voltammetric experiment 

(Wang, 2000). 

Figure 2.4 illustrates the response of a reversible redox couple during a single 

potential cycle. It is assumed that only the oxidized form "0" is present initially. Thus, a 

negatively directed potential scan is chosen for the first half cycle, starting from a value 

where no reduction occurs. As the applied potential approaches the characteristic EO for 

the redox process, a cathodic current begins to increase, until a peak is reached. After 

traversing the potential region in which the reduction process takes place, the direction of 

the potential sweep is reversed. During the reverse scan, the reduced " R  molecules 

(generated in the forward half cycle, and accumulated near the surface) are reoxidized 

back to " 0  and an anodic peak results. 

For a reversible electrochemical reaction, the cyclic voltammogram recorded has 

certain well-defined characteristics: 

1) The voltage separation between the current peak is: 



Figure 2.4: Typical cyclic voltammetry for a reversible 0 + n e - a  R redox process 

(Wang, 2000). 



where n is the number of the electrons transferred during the redox process. 

2) Neither the cathodic and anodic peak potentials alter as a function of voltage scan rate. 

3) The ratio of the peak currents is equal to one: 

4) The peak currents are proportional to the square root of the scan rate v, 

ipa and ipc a & 

The influence of the voltage scan rate on the current for a reversible electron transfer 

can be seen in Figure 2.5. Each curve has the same form but the total current increases 

with increasing scan rate. This can be explained in terms of the diffusion layer thickness. 

The cyclic sweep voltammogram will take longer to record as the scan rate is decreased. 

Therefore, the size of the diffusion layer about the electrode surface will be different 

depending upon the voltage scan rate used. In a slow voltage scan, the diffusion layer 

will grow much further from the electrode in comparison to a fast scan. Consequently the 

flux to the electrode surface is considerably smaller at slow scan rates that it is at fast 

rates. As the current is proportional to the flux towards the electrode, the magnitude of 

the current will be lower at slow scan rates and higher at fast rates. 

For the irreversible electron transfer process, the cyclic voltammogram shows a 

different behavior from its reversible counterpart. Figure 2.6 illustrates a series of 

voltammograms recorded at a single voltage sweep rate for a quasi-reversible reaction for 

different values of the reduction and oxidation rate constants. 



Current , 

Figure 2.5: Current peak changes with scan rates for reversible electron transfer 

processes[57'. 

Figure 2.6: Current changes with different reduction and oxidation rate constants for 

irreversible electron transfer processes at a single voltage scan rate [571. 



The first curve in Figure 2.6 shows the case where both the oxidation and reduction 

rate constants are still fast. The other two curves show the cases for lower rate constants 

but at the same scan rate. For decreasing rate constants, the curves shift to higher 

reductive potentials as shown in Figure 2.6. Again this can be explained in terms of the 

fact that equilibrium at the surface is no longer establishing so rapidly. In these cases, the 

peak separation is no longer fixed but varies as a function of the scan rate. Similarly, the 

peak current no longer varies as a function of the square root of the scan rate. By 

analyzing the variation of peak position as a function of scan rate, for reactions where a 

chemical reaction in solution is followed by an electron transfer step at the surface of the 

electrode, it is possible to gain an estimation of the electron transfer rate constants[581 . 

2.4.2 CV application to the interaction between metals and hydroauinones 

Cyclic voltammetry methods have been used to characterize the oxidation state and 

the type of binding between hydroquinones and metals ions in dimethyl sulfoxide 

(DMSO) solutions. Hatzipanayioti, et al.[591' studied the interactions between 2,3- 

dihydroxy-benzoic acid (2,3-DHBA) and Mn(I1) in DMSO solution using cyclic 

voltammetry. They demonstrated that 2,3-DHBA is electrochemically oxidized to the 

dimeric semiquinone form by two one-electron transfer steps. Under anaerobic conditions, 

2,3-DHBA formed stable complexes of the MnLz type with Mn(I1) and Mn(III), while in 

the presence of air the oxidized forms of the ligand reacted with Mn(I1) to give a mixed- 

valence species. Bodini et used the same method to investigate 3,4-dihydroxy-2- 

benzoic acid (3,4-DHBA) interactions with Mn(I1) and Mn(II1). Their results showed that 

3,4-DHBA is also oxidized to the semiquinone and quinone by two one-electron transfer 



steps. The presence of a semiquinone dimer was formed by a stable complex with Mn(I1) 

and Mn(II1) was proposed. A similar approach will apply to the study the interaction 2,3- 

DHBA and Cu in this work. 

In this work, if any effect on the electrochemical redox process of 2,3-DHBA by 

Cu(I1) is found, it will help in characterizing the mechanism of the interaction between 

Cu and 2,3-DHBA. In the presence of HzOz, if an effect of HzOz on the redox process of 

Cu and 2,3-DHBA is observed, it may indicate that Fenton type reactions can be affected 

by Cu and 2,3-DHBA as well as H202 Alternately, we may difference in redox potential 

of 2,3-DHBA that are affected by changes in pH. In this case, since the pH of the 

fhgal/wood environment may change significantly within a mater of microns, and 

microsite pH values may range from 2.0 near the hngal hyphae to 6.0 within the wood 

cell wall, understanding how pH affects oxidation of 2,3-DHBA by Cu(I1) can be 

important in understanding how this will affect decay processes. When these basic 

mechanisms are understood, they can be compared to the results obtained from Fenton 

chemistry studies involved in brown rot decay process in the literature. Thus, a better 

understanding the mechanism of Fenton type reactions involved in brown rot decay 

process can be obtained or developed. 



CHAPTER 3 

MATERIALS AND METHODS 

3.1 Introduction 

The experimental work here focuses on: 1) the development of the Competitive 

Ligand Exchange 1 Anodic Stripping Voltammetry (CLEIASV) method to study the 

binding of Cu with low molecular organic acids (Gt chelators) secreted by brown rot 

hngus Gloeophyllum trabeum at a range of pHs, and 2) the study of the interaction 

between Cu and a model hngal-secreted ligand, 2,3-DHBA, using the cyclic 

voltammetry method. 

3.2 Reagents and material preparation in this research 

3.2.1 Labware cleaning 

Deionized water was obtained from a NANOpure ultrapure water system. The 

source water was double distilled in house from a Mega-Pure distillation system. 

Since a very low concentration of Cu was used in the CLEJASV experiments, all the 

labware for storage solutions were meticulously cleaned with a 5M solution of trace 

grade HN03, and rinsed with D.I. water before use. The Teflon tubes used to synthesize 

the samples were cleaned with a 1% (vlv) solution of trace grade HN03 and rinsed with 

D.I. water before use. The Teflon vessel used in the voltammetry instrument was kept in 

a 0.1% (vlv) solution of trace grade HN03 when not in use, and rinsed with D.I. water 

before use. 



3.2.2 Reagents for CLEICSV experiments 

The chemical solutions used in the CLEIASV experiments were prepared as follows: 

CuC12 stock solution at a concentration of 5x10" M was prepared by dissolving 

0.03368 ACS analytical grade CuC12 in 50mL of trace grade O.1M HCl. The solution was 

kept in a plastic bottle and was used within 2 weeks. 2,3-DHBA stock solution, 5x10" M, 

was made by dissolving 0.03858 99.9% 2,3-DHBA in 50mL of double distilled deionized 

(D.I.) water. This solution was aerated with Argon gas to remove oxygen and was stored 

in a dark glass bottle. 2,5-DMBQ stock solution, 5x10" M, was made by dissolving 

0.04258 2,5-DMBQ in 50mL of 0.1M NaOH and was stored in a dark glass bottle. 

EDTA stock solution, 1x10" M, was made by dissolving 0.029228 ACS analytical grade 

EDTA in a lOOmL of 0.02M NaOH and was stored in a dark glass bottle. KN03 solution, 

1.5M, was made by dissolving 15.15g KN03 in lOOmL of D.I. water. To this solution, 

O.lmM of Mn02 was added to remove any iron that might be present in the 

background[611. This solution was shaken for 8h followed by filtration through a 0.2pm 

syringe filter (GelmanSciences). Acetate buffer, 2 M pH 4, was prepared by dissolving 

3.2818 sodium acetate and 9.15mL 100% acetic acid in lOOmL of D.I. water; 2M pH 5, 

was prepared by dissolving 11.550g sodium acetate and 3.83mL 100% acetic acid in 

lOOmL of D.I. water. Phosphate buffer, 2M pH 6, was prepared by dissolving 25.948 

sodium phosphate monobasic anhydrous (NaH#04) and 1.6858 sodium phosphate 

dibasic salt (Na2HP04) in lOOmL of D.I. water. HEPES buffer, 1M pH 6.9, was prepared 

by dissolving 23.83g of HEPES in about a 100 ml flask and titrating it with 5M NaOH to 

pH 6.9. Except for 2,5-DMBQ, which was purchased from Tokyo Kasei Kogyo Co. LTD, 

all reagents were purchased from Sigma-Aldrich company. 



3.2.3 Reagents for CV experiments 

The 2,3-DHBA stock solution at a concentration of 0.05M was made by 

dissolving 0.77g 2,3-DHBA in lOOmL of 0.025M NaOH. CuC12 stock solution, 0.5M7 

was made by dissolving 3.368 CuC12 in 50mL of 0.01M HCl. KN03 solution, 1.5M7 was 

prepared and purified as described in section 3.2.7. H202 solution, 0.185M7 was made by 

diluting 1mL of 30% (wlw) Hz02 solution in 49mL of D.I. water. NaOH solution, 0.05M7 

was made by dissolving 20g sodium hydroxide in lOOmL of D.I. water to 5M solution, 

which is diluted 100 times by adding proper amount of D.I. water. HCl solution, 0.05M7 

was made by diluting 425pL 37% HC1 in lOOmL of D.I. water. 0.05M NaOH and HCl 

solutions were used to adjust the pH of the analytes. All the reagents were purchased 

from Sigma-Aldrich. 

3.3 CLEIASV method 

3.3.1 General approach 

The CLEIASV method presented here for the determination of Cu complexation 

by low molecular weight organic ligands is based on the competition between natural 

organic ligands and the added ligands, and the Differential Pulse Anodic Stripping 

Voltammetry (DPASV) measurement. A similar approach was also used by Xue and 

sigg14'] when studying the binding of copper to organic lignands in lake water. Using 

DPASV, a distinction is made between electrochemically labile and inert species. The 

inert Cu species are the complexes that are not dissociated in the boundary layer of the 

mercury electrode at the specific deposition potential within the electrochemical time 



scale, and that are not reduced. The labile species are electroreactive and can be reduced 

on the mercury electrode and give a current peak at a certain potential. 

Using the competitive ligand exchange approach, a ligand whose complexation 

equilibria with Cu are well characterized is added to compete with a ligand of unknown 

binding characteristics. The added ligand must be inert if the studied ligand is labile, or it 

must be labile if the studied ligand is inert. For a given total concentration of Cu, by 

varying the ratio of Cu, the studied ligand and the added ligand, the concentration of Cu 

complexing with the studied ligand can be determined, and the stability constants for the 

interaction between Cu and the studied ligand can be calculated. 

3.3.2 Selection of the competing ligand 

Two organic ligands, 2,3-dihydroxybenzioc acid (2,3-DHBA) and 2,5- 

dimethoxybenzoquinone were studied using the CLEIASV method. Preliminary 

experimental results indicated that Cu complexes of both 2,3-DHBA and 2,5-DMBQ are 

h l ly  labile ligands in an aqueous acidic solution. Therefore, an inert ligand was needed 

as the competing ligand. 

Ethylenediaminetetraacetic acid (EDTA) was chosen here as an inert ligand to 

compete with 2,3-DHBA or 2,5-DMBQ. The concentration of DPASV labile Cu was 

followed as a hnction of added EDTA. The concentration of CuEDTA complexes 

formed was calculated from the difference between initially labile Cu and labile Cu after 

addition of EDTA, from which the stability constants for Cu and 2,3-DHBA or 2,5- 

DHBA were calculated. The concentration of EDTA used in a sample solution was 



chosen to allow approximately 20% to 80% of total Cu bind with EDTA to prevent errors 

due to very low or high Cu binding. 

3.3.3 Determination of the working limit for DPASV 

The detection limit for Cu using the stripping voltammetry technique can reach 

down to picomolar levels. However, this requires a very clean experimental environment 

and very pure reagents. In our experiments, the total concentration of Cu used in all the 

CLEIASV experiments was between 5x10-~ M and 5 ~ 1 0 - ~  M, which is low enough to 

simulate natural wood decay conditions. Preliminary experiments indicated that 5x10" 

M 2,3-DHBA or 3x10-' M 2,5-DMBQ are suitable to obtain a good calibration curve of 

Cu-labile ligand complexes by CLEIASV. 

3.3.4 Voltammetric instrument 

The voltammetric measurement system consisted of a hanging mercury drop 

electrode (HMDE), an AgIAgC1, KC1 (saturated) reference electrode and a platinum 

auxiliary electrode held in a Metrohm 747 VA stand, and a Metrohm 746 VA trace 

analyzer which connected with a PC for data storage and processing. The Metrohm 746 

VA trace analyzer controls the 747 VA stand via a set-up procedure for the voltammetric 

measurement and records the resulting DPASV curves. 

The voltammetric experiments were conducted in a Teflon vessel. The three 

electrode system of the 747 VA stand is illustrated as below in Figure 3.1 : 



Figure 3.1: The three electrode working system of the Voltammetric instrument. 

3.3.5 CLEIASV experimental procedure 

3.3.5.1 Phase I: Cu-2.3-DHBA-EDTA svstem 

2,3-DHBA was used initially as a model ligand for the Gt. chelator to examine 

whether the CLEIASV method was feasible for the study of the binding of Cu with 

organic ligands under acidic conditions. The experimental results of Cu-2,3-DHBA 

complexes were then compared with the model predicted values. 

3.3.5.1.1 Sample solutions 

Two sets of solutions for the study of Cu-2,3-DHBA binding were synthesized in 

acid washed Teflon tubes. One set contained 5 x 1 o - ~  M to 5x 1 0-6 M CuC12, 5x 1 o - ~  M 2,3- 



DHBA, 0.0 1M KN03 and 0.03M buffer (for pH 4 and 5, acetate buffer was used; for pH 

6.9, HEPES buffer was used). The other set of solutions contained the same amount of 

the above reagents plus 5 x 1 0-' M EDTA for Cu concentrations from 5 x 1 0-' M to 1 x 1 o - ~  

M, and 1 x M EDTA for Cu concentrations from 1 x M to 5x M. All the 

samples were placed in an incubator at 22 OC and rotary shaken in the dark overnight 

before the DPASV measurement. 

3.3.5.1.2 DPASV measurements of Cu-2.3 -DHBA complexes 

Prior to the start of the experiment, the sample solution was added in the Teflon 

vessel, then stirred and bubbled with Suprapure Argon for 3min. A hanging mercury drop 

was then formed at the working electrode to allow the deposition of all species including 

the Cu-2,3-DHBA complexes at the mercury drop. One minute was deemed sufficient 

for the deposition of species at the electrode surface with an applied potential of -200mV. 

After the deposition period, the stirrer was turned off. After 15 sec, the voltage scan was 

started in the positive direction. Scanning parameters were: initial potential of -600mV, 

ending potential of 300mV (vs. Ag/AgCl reference electrode), pulse height of 50mV, and 

scan rate of 5OmVIs. DPASV measurements were camed out at room temperature about 

20 OC. The oxidation peak potential of all the labile Cu species, including CU-2,3-DHBA 

complexes, was between -100mV and +50mV depending on the pH. The height of 

current peak was proportional to the concentration of the labile Cu species in the sample 

solution. This peak decreased when EDTA was added due to the formation of non-labile 

CU-EDTA complexes. 



3.3.5.2 Phase 11: Cu-2.5-DMBQ-EDTA system 

3.3.5.2.1 Sample solutions 

As above in section 3.2.5.1.1, two sets of solutions, one with EDTA and one without 

EDTA were prepared. One set contained 5x lo-* M to 1 x M CuC12, 2 . 5 ~  M 2,5- 

DMBQ at pH 4 and 3 x 1 o - ~  M 2,5-DMBQ at pH 5 and 6, 0.12M KNO:, and 0.03M buffer 

(for pH 4 and 5, acetate buffer was used; for pH 6, phosphate buffer was used). The other 

set contained the same amount of above reagents plus 5 x 1 0 ~  M EDTA. All solutions 

were placed in an incubator at 22 "C and shaken in the dark for 2 hours before the 

DPASV measurement. 

3.3.5.2.2 DPASV measurements of Cu-2.5-DMBQ complexes 

The measurement procedure was generally similar to the experiments with 2,3- 

DHBA as described above with a few exceptions. A deposition time of 30 sec with an 

applied electrode potential of -200 mV was allowed to obtain sufficient sensitivity (S, 

n~*pM- ' )  with the ASV measurement, and an initial potential of -600mV and an ending 

potential of 400mV (vs. AgIAgC1 reference electrode) were used. The oxidation peak 

potential of Cu-2,5-DMBQ complexes was between -30mV and -200mV, which shifted 

depending on the pH. As before, the height of current peak was proportional to the 

concentration of labile Cu species, including the Cu-2,5-DMBQ complexes, and as such, 

the peak height decreased when EDTA was added. 



3.3.6 Application of the theon, of competitive liaand exchange and calculation of 

stability constants 

3.3.6.1 Cu-2.3-DHBA-EDTA system 

The calculation of stability constants of Cu-2,3-DHBA-EDTA system is described 

as below: 

Free aquo Cu ion concentration [cu~'] can be calculated from equilibrium 

relationships with the 2,3 DHBA complexes. The total concentration of dissolved Cu in 

the water sample in absence of EDTA is given by: 

[cu], = [CU '+ ] + [cu], + c [CU (DHBA), ] (3-1) 

where [ C U ] ~  and C[CuDHBAi] represent Cu concentrations as inorganic complexes and 

complexes with 2,3-DHBA, respectively. The 2,3-DHBA complexes can then be 

determined by DPASV, together with [CuIin: 

[Cu], = [Cu2+]+[Cu], +C[Cu(DHBA,)] = i, I S  (3-2) 

where i, (ampere, A) is the peak current and S (AM-') is the electrode sensitivity. 

If, in the presence of EDTA and 2,3-DHBA and EDTA, the dissolved copper after 

equilibration is distributed as follows: 

[cu], = [cu~+]+[cu], +C[CU(DHBA),]+C[CU(EDTA),] (3-3) 

where, C[Cu(EDTAi)] is the concentration of Cu-EDTA complexes. Then, the 2,3- 

DHBA complexes can be determined selectively by DPASV, together with [CU]~ :  

[Cu '+ ] + [Cu] , + C [Cu(DHBA, )I = i, I S  (3-4) 



Maintaining the same total Cu concentration in the absence and presence of EDTA, 

the difference between Equations 3-2 and 3-4 is the concentration of Cu-EDTA 

complexes: 

Equation 3-3 can be rewritten as: 

where sin is the inorganic complexation coefficient, equal to the ratio of the 

concentrations of inorganic complexes to free cupric ions, as calculated from the major 

ion composition and pH of the sample. For the synthetic solution, 

where p; represents the stability constants of the ith Cu complex with a specified 

inorganic ligand i such as OH-. CXDHBA is the 2,3-DHBA complexation coefficient, equal 

to the ratio of the concentrations of Cu-2,3-DHBA complexes to free cupric ions, and can 

be calculated as below: 

where plDHBG PZDHBA and P~DHBA represent the stability constants of CUHDHBA', 

CUH~DHBA' and CU(HDHBA)~~- complexes, respectively. 

The concentration of free deprotonated 2,3-DHBA, [DHBA~-], was calculated from 

mass balance and the acid dissociation equilibria of 2,3-DHBA: 

where K1, K2 and K3 stand for the first, second and third protonation constant of 2,3- 

DHB A. 



Therefore, [cu2+] in the presence of EDTA can be calculated from Equation 3-6: 

[Cu 2' ](I+ ain + aDHBA ) = ie /S (3-10) 

then, 

[Cu 2+ ] = ie 1s (3-1 1) 

1 + a i n  + ~ D H B A  

The concentration of Cu-2,3-DHBA complexes were then calculated from Equation 

3-12: 

C [CU (DHBA, )] = [Cu 2' ]aDHBA (3-12) 

The stability constants for the complexation of Cu with 2,3-DHBA and EDTA can 

be found in the literature. An equilibrium speciation computer program, MICROQL'~~], 

was used to predicted Cu distribution among inorganic ligands, 2,3-DHBA and EDTA. 

The model results were compared to the experimental data calculated from above 

equations to verifjr the CLEIASV method. 

3.3.6.2 Cu-2.5-DMBO-EDTA svstem 

For Cu-2,5-DMBQ-EDTA system, the total concentration of dissolved Cu in the 

water sample in the presence of EDTA is given by: 

[Cu], = [Cu2+]+[Cu],, +~[Cu(DMBQ),]+c[Cu(EDTA),] = ie I S  +c[Cu(EDTA),] 

(3- 13) 

where C[CU(DMBQ)I] represents the Cu-2,5-DMBQ complexes. 

The concentration of Cu-EDTA complexes were obtained from equation 3-13 with 

the known total concentration of Cu and the electrode sensitivity, S, as described above. 

By varying the total concentration of Cu, data for Cu-EDTA concentrations as a hnction 



of total Cu, EDTA and 2,5-DMBQ concentrations were obtained at different pHs. These 

data were fitted to a set of equilibrium reactions describing the speciation of Cu in the 

presence of EDTA and 2,5-DMBQ using a computer program, FITEQL~~~'. The program 

output is the fitted values for the Cu-2,5-DMBQ stability constants. 

3.4 Cyclic voltammetry method 

The instrument used for cyclic voltammetry was the same as described in section 

3.3.4, with the exception that the working electrode was a glassy carbon electrode with a 

surface area of 0. 126cm2. The cyclic voltammetry measurements were conducted at room 

temperature. Ultrapure argon was passed through the solution for 15min before taking the 

measurements. The glassy carbon electrode was polished for 10 seconds with small, 

circular movements with 0.5pm alumina (A1203) compound on a polishing pad, rinsed 

with D.I. water, immersed in diluted HCl for 10s, rinsed again with D.I. water and dried 

with a cloth or filter paper before use. The glassy carbon electrode was introduced into 

the voltametric cell immediately before scanning. The cyclic voltammetry scan rates were 

2000 mV/s and 5OOmV/s. The resulting scan curves were recorded by the 746 VA trace 

analyzer, and the data from the resulting scans were saved in a personal computer. 



CHAPTER 4 

RESULTS AND DISCUSSION 

4.1 Competitive ligand exchange1Anodic stripping voltammetry (CLEIASV) study 

4.1.1 CLEIASV study with 2.3-DHBA 

4.1.1.1 Anodic stripping voltarnmetq of Cu-2.3-DHBA-EDTA system 

Differential Pulse Anodic Stripping Voltammetry (DPASV) measurements were 

conducted on the solutions with Cu and 2,3-DHBq and with Cu, 2,3-DHBA and EDTA 

by varying total Cu concentration at different pHs. Preliminary experimental results 

indicated that the Cu-2,3-DHBA complexes were hlly labile ligands that produce a 

current peak at a specific potential. In solutions that contained excess 2,3-DHBq this 

current peak was proportional to the Cu concentration. A typical voltammogram of a Cu- 

2,3-DHBA complex is shown in Figure 4.1. 

Figure 4.1: Anodic stripping voltammogram for CU-2,3-DHBA complexes (5x ~ o - ~ M  Cu, 

5 x ~o-'M 2,3-DHBA, pH=5.0 (0.03M acetate buffer) and 0.01M KNO,). 



The specific peak potential for Cu-2,3-DHBA complexes at the conditions shown in 

Figure 4.1 is -23mV, which increases with Cu concentration and decreases with pH as 

shown in Figure 4.2. The height of the current peak corresponds to the labile species of 

Cu, which include free Cu ions, the complexes of Cu and inorganic ligands such as O K  

in this case, and Cu-2,3-DHBA complexes. In presence of the competitive ligand EDTA, 

the height of the current peak decreases because the Cu-EDTA complexes 

species that do not react on the surface of electrode. 

are inert 

Figure 4.2: Peak potential for Cu-DHBA complexes vs. Cu concentration at different 

pHs (5 x 10-*-1 x ~ o - ~ M  CU, 5 x 1 0 - ' ~  2,3-DHBA, 0.03M acetate buffer and 

0.01M KN03). 

Figures 4.3 though 4.8 illustrate the DPASV experimental results at different 

concentrations of Cu, 2,3-DHBA and EDTA, and at different pH values. 
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Figure 4.3: DPASV experimental results: current peaks of Cu-2,3-DHBA complexes at 

pH 4 (5  x l0-'-3 x 1 O - ~ M  Cu, 5  x 1 0 " ~  2,3-DHBA, 1 x 1 O - ~ M  EDTA, 0.03M 

acetate buffer and 0.01M KN03, deposit time=60s). 
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Figure 4.4: DPASV experimental results: current peaks of Cu-2,3-DHBA complexes 

at pH 5  (5  x l0-'-3 x 1 odM Cu, 5  x 1 O-'M 2,3-DHBA, 1 x 1 O - ~ M  EDTA, 

0.03M acetate buffer and 0.01M KN03, deposit time=60s). 
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Figure 4.5: DPASV experimental results: current peaks of Cu-2,3-DHBA complexes at 

pH 6.9 (5x 10-'-3x ~ o - ~ M  Cu, 5 x 10-'M 2,3-DHBA, 1 ~ 1 0 - ~ M  EDTA, 0.03M 

HEPES buffer and 0.01M KN03, deposit time=60s). 
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Figure 4.6: DPASV experimental results: current peaks of Cu-2,3-DHBA complexes at 

pH 4 (7x l0-~-3 x ~ o - ~ M  Cu, 5 x 1 0 " ~  2,3-DHBA, 5x ~ o - ~ M  EDTA, 0.03M 

acetate buffer and 0.0 1M KN03, deposit time= 180s). 
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Figure 4.7: DPASV experimental results: current peaks of Cu-2,3-DHBA complexes at 

acetate buffer and 0.01M KN03, deposit time=180s). 
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Figure 4.8: DPASV experimental results: current peaks of Cu-2,3-DHBA complexes at 

pH 6.9 (7x 10-~-3x ~ o - ~ M  Cu, 5 x 1om5~2,3-DHBA, 5 x 1 0 - ' ~  EDTA, 0.03M 

HEPES buffer and 0.01M KN03, deposit time=180s). 



In Figures 4.3 through 4.8, the slope of the trend lines (S) of the experimental data 

without EDTA represents the sensitivity of the electrode, which has a unit of n ~ - p M - ' .  

In Figures 4.3 through 4.5, 1x ~ o - ~ M  EDTA was used to compete with 5 x 1 0 " ~  2,3- 

DHBA for Cu concentrations ranging from 5 x 1 0 " ~  to 3 x 1 0 ~ ~ .  In Figure 4.6 through 

4.8, 5 x 1 0 ~ ~ ~  EDTA was used to compete with 5 ~ 1 0 - ~ M  2,3-DHBA for Cu 

concentrations ranging from 7 ~ 1 0 - ~ M  to 3 ~ 1 0 - ~ ~ .  In both above conditions, the peak 

currents (i,) are lower in the presence of EDTA compared with that without EDTA (i,). 

From the difference between i, and i,, the free aquo Cu ion concentration [cu2'], the 

concentration of Cu-2,3-DHBA complexes, C[Cu@HBA)i], and the concentration of Cu- 

EDTA complexes, C[Cu(EDTA)i], can be calculated using the equations described in 

section 3.3.6.1. This was done using the known stability constants for Cu inorganic 

species and 2,3-DHBA species. 

4.1.1.2 Calculation of Cu-2.3-DHBA complexes from the experimental data 

The concentration of Cu-2,3-DHBA complexes were obtained by multiplying the 

concentration of free aquo Cu ions [cu2'] and the 2,3-DHBA complexation coefficient 

C~DHBA (Equation 3-12). The 2,3-DHBA complexation coefficient, CIDHBA, was calculated 

from equation 3-8: 

=~~DHBA[H'~[DHBA3-l+~~~~~~[H'~2[DHBA3-l+~3DHBA[H'l2[DHBA3-l2 (3-8) 

The relevant stability constants are reported in Table 4.1. 

The concentration of free deprotonated 2,3-DHBA, [DHBA~-], was calculated from 

the mass balance values and the acid dissociation equilibria of 2,3-DHBA as described in 

equation 3-9: 



Table 4.1: Dissociation reactions and related stability constants for Cu-2,3-DHBA- 

EDTA systems (constants are used to calculate speciation distribution). 

Dissociation reaction Symbol l0gK 



The protonation constants of 2,3-DHBA, K1, K2 and Kj  are reported in Table 4.1. The 

concentration of free aquo Cu ions, [cu2+], was calculated from equation 3-1 1 : 

where i, is the peak current in presence of EDTA, S is the electrode sensitivity, and the 

inorganic complexation coefficient ah can be calculated from equation 3-7: 

ah = ~ j o t f  [ O H  li (3-7) 

The stability constants of the ith Cu complex with a specified inorganic ligand i such as 

O H  are reported in Table 4.1. The stability constants of EDTA and Cu-EDTA complexes 

are also reported in Table 4.1. 

With these known stability constants, Cu species distribution among inorganic 

species OH', 2,3-DHBA and EDTA at different pHs were predicted using the computer 

program, MICROQL[~~]. A comparison between the model predicted data and the 

experimental data then allowed an assessment of the feasibility for application of the 

competitive ligand exchange method in the acidic aqueous conditions used in this study 

as outlined below. 

4.1.1.3 Comparison of experimental data and model predicted data 

Figures 4.9 through 4.14 show the comparison between the experimental data of Cu 

species distribution of Cu-2,3-DHBA-EDTA system, and the model predicted results at 

different pHs and different total Cu concentrations. Logarithmic (log-log) plots of free 
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Figure 4.9: Comparison of experimental data and model predicted data at pH 4 with 

3 x 10'~-5 x 1 O*M Cu, 5 x 1 O-'M 2,3-DHBA, 1 x 1 O - ~ M  EDTA. 
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Figure 4.10: Comparison of experimental data and model predicted data at pH 5 with 

3 x l0'~-5 x 1 O*M Cu, 5 x 1 0 " ~  2,3-DHBA, 1 x 1 O - ~ M  EDTA, 
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Figure 4.11: Comparison of experimental data and model predicted data at pH 6.9 with 

3 x l0-~-5 x 1 04M Cu, 5 x 1 om5M 2,3 -DHBA, 1 x 1 O - ~ M  EDTA. 
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Figure 4.12: Comparison of experimental data and model predicted data at pH 4 with 

5 x 1 0-~-3 x 1 O'~M Cu, 5 x 1 O - ~ M  2,3 -DHB A, 5 x 1 O - ~ M  EDTA. 
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Figure 4.13: Comparison of experimental data and model predicted data at pH 5 with 

5 x l0-~-3 x 1 O - ~ M  Cu, 5 x 1 0-'M 2,3-DHBA, 5 x 1 O - ~ M  EDTA. 
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Figure 4.14: Comparison of experimental data and model predicted data at pH 6.9 with 

5x lom9-3 x ~ o - ~ M  Cu, 5 x 10-'M 2,3-DHBA, 5~ ~ o - ~ M  EDTA. 



aquo Cu concentration, [cu2'], VS. total Cu minus the concentration of Cu-2,3-DHBA 

complexes, {CUT-[Cu(DHBA);]), were used here as adapted from Xue, H. and Sigg, L ' ~ ~ ] .  

Figures 4.9 through 4.14 show that the model predictions (free aquo Cu ion 

concentrations calculated using the computer program MICROQL) match the 

experimental data well at all pH values studied here. This correspondence between the 

experimental and model predicted data suggests that it is feasible to use the CLEDPASV 

method to study chemical speciation for the Cu-DHBA-EDTA system. If the stability 

constants for Cu and 2,3-DHBA complexes are unknown, chemical speciation modeling 

of the complexation data obtained from the CLEDPASV experiments for the Cu-2,3- 

DHBA-EDTA system can be used to determine such stability constants. 

4.1.2 Competitive ligand exchange study for the Cu. 2.5-dimethoxybenzoauinone system 

4.1.2.1 Anodic stripping voltarnmetrv of Cu-2.5-DMBO-EDTA system 

Differential Pulse Anodic Stripping Voltammetry measurements were conducted on 

solutions containing Cu and 2,5-DMBQ, and Cu, 2,5-DMBQ and EDTA by varying the 

total Cu concentrations at different pHs. Cu-2,5-DMBQ complexes are filly labile 

ligands which give a current peak at a specific potential. In the presence of excess 2,5- 

DMBQ in solution, this current peak is proportional to the Cu bound by the ligand. A 

typical voltammogram for Cu-2,5-DMBQ complexes is shown in Figure 4.15. 

The peak potential for Cu-2,5-DMBQ complexes at the conditions shown in Figure 

4.15 is at -136mV, which decreases with Cu concentration and with pH as shown in 

Figure 4.16. The height of the current peak corresponds to the concentration of labile 

species of Cu, which include free Cu ions, the complexes of Cu and inorganic ligands 

such as OH-, and Cu-2,5-DMBQ complexes. In presence of the competitive ligand EDTA, 
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Figure 4.15: Anodic stripping voltammogram for Cu-2,5-DMBQ complexes (5x ~ o - ~ M  

Cu, 3 x ~ o - ~ M  2,5-DMBQ, pH=5 .O(O.O3M acetate buffer) and 0.12M KN03). 

Figure 4.16: Peak potential for Cu-DMBQ complexes vs. Cu concentration at different 

pHs ( 0 - 1 ~ 1 0 - ~ ~  Cu, 2 . 5 ~ 1 0 " ~  2,5-DMBQ at pH4.03 and 3 x 1 0 " ~  2,5- 

DMBQ at pH 5.0 and 5.93 in order to get good sensitivity of the ASV 

measurement, 0.03M acetate buffer and 0.0 1 M KN03). 



the height of the current peak decreases because the Cu-EDTA complexes are inert 

species that do not react at the surface of electrode, and therefore, cannot generate a 

current peak during voltammetric measurements. 

Figures 4.17 though 4.19 illustrate the DPASV experimental results at different 

concentrations of Cu, 2,s-DMBQ and EDTA, and at different pH values. 

11 wlo EDTA I 

Figure 4.17: DPASV experimental results: current peaks of Cu-2,s-DMBQ complexes 

at pH 4.03 (5x 10-~-1 x 1 O m 6 ~  Cu, 2.5 x 1 0 m 5 ~  2,s-DMBQ, 5x ~ o - ~ M  EDTA, 

0.03M acetate buffer and 0.12M KN03, deposit time=30s). 



Figure 4.18: DPASV experimental results: current peaks of Cu-2,5-DMBQ complexes 

at pH 5.0 ( 5 x l 0 - ~ - 1 x 1 0 ~ ~  Cu, 3 . 0 ~ 1 0 - ~ ~  2,5-DMBQ, 5 ~ 1 0 - ~ M  EDTA, 

0.03M acetate buffer and 0.12M KN03, deposit time=3Os). 
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Figure 4.19: DPASV experimental results: current peaks of Cu-2,5-DMBQ complexes 

at pH 5.93 (5 x 1 o -~ -  1 x 1 O - ~ M  Cu, 3 .Ox 1 0-'M 2,5-DMBQ, 5 x 1 O - ~ M  EDTA, 

0.03M acetate buffer and 0.12M KN03, deposit time=3 0s). 



In Figures 4.17 through 4.19, the slope (S) of the trend lines of the experimental data 

without EDTA represents the sensitivity of electrode. For these experiments, a Cu 

concentration range of 5 x 1 0-*M to 1 x 1 o-~M, an EDTA concentration of 5 x 1 o'~M, and a 

2,5-DMBQ concentration of 2.5 x ~o-'M at pH 4.03 were used. For pHs of 5.0 and 5.93, 

however, an EDTA concentration of 5 x 1 o-~M, and a 2,5-DMBQ concentration of 3 x 10- 

'M were used in order to get sufficient sensitivity (S, ~ A @ ~ M - ' )  of the DPASV 

measurements. Under all experimental conditions, the peak current (i,) is lower in 

presence of EDTA compared with that without EDTA (i,) as anticipated because EDTA 

would irreversibly complex with copper reducing the current. From the difference 

between i, and i,, the concentration of Cu-EDTA complexes C[Cu(EDTA);] can be 

calculated using equation 4.1. 

~[CU(EDTA),]  = Cu, - i , / S  (4-1) 

The calculation results at three different pHs are shown in Table 4.2. These results were 

then used in the computer model FITEQL'~~] to estimate the stability constants of Cu and 

2,5-DMBQ complex. 

Table 4.2: The concentration of Cu-EDTA complexes calculated from experimental data. 

CUT (M) 

5.00E-8 

C[CU(EDTA)~] (M) 
pH=5.93 

8.5 72E-09 

pH=4.03 

O.OOOE+OO 

pH=5.0 

4.35OE-09 



4.1.2.2 The binding of Cu and 2.5-DMBQ 

The structure of 2,5-DMBQ is illustrated in Figure 4.20(a). In the presence of 

excess2,5-DMBQ in solution, it is possible to have a 1 to 1 Cu-DMBQ complex; i.e., 

cuDMBQ2+. Under acidic conditions, 2,5-DMBQ also can bind with protons to form 

HDMBQ' species. The structures of these two species are shown in Figure 4.20(b) and 

(c), respectively. 

(a) 2,SDMBQ CUOMBQ'* (4 HHDMBQ* 

Figure 4.20: The molecular structure of 2,5-DMBQ and its proposed Cu- and proton- 

bound species formed under experimental conditions. 

4.1.2.3 Modeling of Cu-DMBQ binding 

Two chemical species (HDMBQ' and cuDMBQ2+) were used to model the 

experimental data shown in Table 4.2 to estimate the stability constants of these two 

species using the computer program FITEQL'~~]. The best fitted values for the two 

species are shown in Table 4.3. 

Table 4.3: Stability constants for the formation of HDMBQ' and CUDMBQ~' species. 

Species Dissociation reaction log K 

HDMBQ+ HDMBQ+ * DMBQ +H+ 15.94 



Figure 4.21 shows the fitted results using the data in Table 4.2, and the resulting 

constants are reported in Table 4.3. Sensitivity analysis suggests that model simulation is 

indeed sensitive with respect to the fitted HDMBQ' and CUDMBQ~' complexation 

constants (Table 4.3). Figures 4.22a and 4.22b show that the sum of the squares of the 

difference between the experimental data and model simulations is at a minimum for the 

stability constants reported in Table 4.3 

pH 4.03 data 

Figure 4.21: The fitted results given by FITEQL: for HDMBQ', log K=15.94 and for 

CUDMBQ~', log K=22.52 
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Figure 4.22: The fitting sensitivity of FITEQL. (a) Stability constant of HDMBQ'; (b) 

stability constant of CUDMBQ~'. 

Figures 4.23 and 4.24 show, in the presence of EDTA, the species distribution of Cu 

and DMBQ at different pHs respectively. The speciation is calculated by MICROQL 

using the stability constants shown in Table 4.3. As shown in Figure 4.23, as the pH 

increases, the concentration of the Cu-DMBQ complex decreases and the concentration 

of the Cu-EDTA complex increases. Most of the DMBQ, however, remains in the 

protonated form according to the model for the stability constants developed here (Figure 

4.24). 

Figure 4.23 shows that at low pHs (2.5 and 4.03) 2,5-DMBQ has relatively strong 

binding affinity with Cu(I1) compared with a strong metal chelator, EDTA. This may 

increase the solubility and availability of Cu(1I) in the wood decay environment. 

It has been proposed that oxalic acid produced by wood degrading fungi fimctions 

not only as a chelation agent to sequester iron from iron (hydr)oxide complexes, but also 
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Figure 4.23: The species distribution o f  Cu at different pHs with 5x ~ o - ~ M  Cu, 5x M  

EDTA and 2 . 5 ~ 1 0 ' ~ ~  DMBQ at pH 2.5 and 4.03, 3 . 0 ~ 1 0 - ~ ~  DMBQ at pH 

5.0 and 5.93. 
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Figure 4.24: The speciation distribution of DMBQ at different pH with 5x ~ o - ~ M  Cu, 

5 x 1 0 ~  MEDTA and 2 . 5 ~ 1 0 - ~ ~  DMBQ at pH 2.5 and 4.03, 3 . 0 ~ 1 0 " ~  

DMBQ at pH 5.0 and 5.93. 



to reduce the pH, thus creating a pH gradient between the immediate fbngal environment 

(pHm2.5) and the wood cell wall (5.5-6.0)~~. 361. Because oxalate is a weak chelator of 

transition metals (binding constants are shown in Table 4.4), Gt chelator has been 

proposed to sequester metals from it with the oxalate fbnctioning as a phase transfer 

agent[361. In Figure 4.25 the binding ability of 2,5-DMBQ to Cu(I1) is compared with that 

of oxalic acid at different pHs. The Cu(I1) distribution between 2,5-DMBQ and oxalic 

acid was calculated using MICROQL with the stability constants reported in Table 4.3 

and Table 4.4. Due to the accumulation of oxalate surrounding the fbngi hyphae[361, an 

excess of oxalic (2000 times) was used to do the speciation calculation. 

Table 4.4: Dissociation reactions and related stability constants for transition metals and 

oxalic acid. 

Dissociation reaction Symbol lo& 

HzOxalic - HOxalic - + & K1 1 .25L641 

HOxalic - - Oxalic '- + & Kz 3.8'@ 

CuOxalic - CU" + 0xalic2- Plcu 4.85L651 

~u(0xalic)2~- - CU" + [ ~ x a l i c ~ ] ~  Pzcu 1 0 . 2 3 ~ ~ ~ ~  

Figure 4.25 shows that 2,5-DMBQ is indeed a strong chelating reagent compared 

with oxalic acid at pH range from 2.5 to 6.0. Especially from pH 4.0 and up, 2,5-DMBQ 

is binding more Cu than oxalic acid even given a 112000 of DMBQIoxalic ratio. Thus, the 

estimated stability constants of 2,5-DMBQ with Cu indicate that 2,5-DMBQ would be 



I Cu-Oxalic 

I CU-DMBQ 

Figure 4.25: The species distribution of Cu at different pHs with 5 x ~ o ' ~ M  Cu, 1 x lo-' M 

Oxalic acid and 5 x 1oe7M DMBQ. In this work a 2000-fold greater 

concentration of oxalate was use compare to the DMBQ to simulate 

conditions that may occur in the fbngal environment. 



able to sequester Cu(I1) fiom oxalic acid under conditions found in wood decay 

environments (pH=3-4). Further, the increasing affinity of the 2,5-DMBQ with increasing 

pH supports the data and hypothesis presented by Goodell et al[5'361 with regard to phase 

transfer of transition metals as the pH increases from low immediately surrounding the 

fbngal hyphae to much higher within the buffered environment of the wood cell wall. 

This is important as it suggests how reduced metals that can participate in Fenton 

reactions can be controlled so that damaging free radicals are prevented fiom forming in 

close proximity to the fbngal hyphae whereas their generation is promoted in the higher 

pH environment within the wood cell wall. Due to the presence of trace amounts of iron 

in the environment of the laboratory, the binding ability of 2,5-DMBQ with Fe(II1) could 

not be estimated by CLEIASV method in this work. However, 2,5-DMBQ may have a 

stronger affinity with Fe(II1) than Cu(I1) like other organic ligands, such as salicylate and 

EDTA[~']. Thus, 2,5-DMBQ could sequester Fe(1II) fiom oxalic acid in the wood decay 

conditions. 

The study of binding affinity of cellulose and iron by Xu and ~ o o d e l l [ ~ ~ l  

showed that the binding constant for cellulose-iron (about 10' M1) is smaller that that for 

Fe(II1)-oxalate (1 o8 M'), Fe(III)(~xalate)~ (1 oi4 M-'), and Fe(III)(~xalate)~ (1 018 M'). 

Thus, the binding affinity of 2,5-DMBQ with iron should be greater than that of cellulose. 

This suggests that 2,5-DMBQ secreted by brown rot fbngi may be capable of difising 

into the wood cell wall to sequester Fe(II1) fiom cellulose to form Fe(II1)-DMBQ 

complexes. 

According to the work of Kerem et a117], 2,5-dimethoxy-1,4-hydroquinone (2,5- 

DMHQ) and 2,5-DMBQ are produced by G. trabeum and they could undergo a quinone 



redox cycle with Fe (111) to generate extracellular Fenton reagents Fe(I1) and hydrogen 

peroxide (H202), which is responsible for biodegradation by brown rot fungi. However, 

in this quinone redox cycle process, reductase enzymes are needed to reduce 2,5-DMBQ 

to 2,5-DMHQ allowing the chelators to be cycled[6371. But the quinone reductase or other 

enzymes are too large to penetrate the wood cell wall, it is unlikely that this mechanism 

functions to actively cycle quinones for continued metal reducing activity in the brown- 

rot decay process. Filley et al[671 proposed a hypothesis that, if a nonenzymatic quinone- 

driven Fenton's reaction is active within the wood cell wall, ferric iron and hydroxyl 

radicals are free to react with lignin and cellulose simultaneously where spatial 

considerations permit. Demethylation of lignin could be occurred by reaction with ferric 

iron and halides. It is possible that once a portion of the lignin is demethylated, the 

altered lignin backbone itself acts as a chelator and electron source for ferric/ferrous 

conversion. Thus, the fugal chelators would only need to be produced initially and in 

small amounts and afterward, the catechoYquinone-ferridferrous conversion would 

develop as a reaction front moving progressively through the lignin backbone. However, 

further experimental study needed to test this hypothesis. Our study of 2,5-DMBQ 

binding ability indicates that 2,5-DMBQ may increase the availability of Fe(II1) in the 

wood decay environments and allow participation in some sort of non-enzymatic redox 

cycle in brown-rot decay process. 

The reduction rate of Cu(I1) by hydroquinone and its derivatives is very fast[681 and it 

may not possible to estimate the stability constant of Cu(I1)-DMHQ complexes. However, 

the weak binding of Cu(I1) by the oxidation product, DMBQ (Figure 4.24), at least does 

not have the strong ability to compete with DMHQ to react with Cu(I1). This finding 



may also relate to the binding of Fe(III), and suggests that a reaction between DMHQ and 

Fe(II1) should be favorable under the conditions found in wood decay environments. 

4.2 Cyclic voltammetry study 

Cyclic voltammetry was used to study the interaction characteristics of Cu(I1) and 

2,3-DHBA in the absence and presence of H202. Cu(I1) instead of Fe(II1) was chosen in 

this study due to the low solubility of Fe(II1) even at low pH conditions. Analysis of the 

cyclic voltammograms, was intended to show the reaction mechanisms between Cu and 

2,3-DHBA and the effect of H202 upon these reaction mechanisms. 

4.2.1 Cyclic voltammetric analysis of 2.3-DHBA 

The electrochemical behavior of 2,3-DHBA was studied in aqueous solution under 

anoxic conditions at various pHs. Figure 4.26 illustrates the cyclic voltammograms of 

2,3-DHBA at four different pHs. The anodic peaks A and B in each voltammogram 

represent the oxidation of 2,3-DHBA into the 'semiquinone7 and the 'quinone' forms of 

the ligand, respectivelyv93601. The oxidation to the quinone form occurring at the surface 

of the glassy carbon electrode is irreversible, because no corresponding reduction peak of 

the oxidation peak B appeared. The cathodic peak C in each voltammogram may 

represent the reduction of the semiquinone form back to the original ligand form. The 

cathodic peak D, was not identified in this work. 

The potential of peak A varies with pH as shown in Table 4.5. This potential shift 

may be attributed to the speciation of 2,3-DHBA species in aqueous solution as a 

function of pH. Oxidation of 2,3-DHBA takes place more readily at high pH values, since 

the oxidation peaks A and B shift to a less positive potential as the pH increases. The 



Figure 4.26: Cyclic Voltammograms for 5mM 2,3-DHBA in 0.5M KN03: (a) pH=2; (b) 

pH=4.4; (c) pH=7; (d) pH=12. Scan rate 0.5VIs (A: oxidation peak of 

DHBA to semiquinone; B: oxidation peak of semiquinone to quinone, C: 

reduction peak of serniquinone to DHBA, D: unknown). 



Table 4.5: Cyclic voltammetry analysis data of 2,3-DHBA from Figure 4.26. 

height of the anodic peak A decreases in the order: pH2 > pH4.4 = pH7> pH12, which 

indicates that semiquinone formation is favored at low p~I '91.  

The large oxidation-reduction peak potential separation between peaks A and 

C, as shown as (E,,,-b,) in Table 4.5, can be observed in all the voltammograms in 

Figure 4.26. This indicates that the electro-oxidation of 2,3-DHBA ligands is kinetically 

since for a h l ly  reversible reaction, this separation must be close to 59ln mV (n 

is the number of electrons transferred during the oxidation or reduction reaction) at 

2 5 0 ~ ~ ~ ~ ~ .  The height of peak C is much smaller than that of peak A for each 

voltammograms in Figure 4.26. This quasi-reversible process may be attributed to the 

redox kinetics behavior between 2,3-DHBA and its semiquinone species[591. The hrther 

oxidation of semiquinone to quinone species is an 'EC' mechanism[581, which is indicated 

by the oxidation peak B and no corresponding reduction peak. Oxidation from the 

semiquinone radical to its di-radical form is an electron transfer process at the surface of 

the electrode known as the 'E' mechanism, which is followed by a chemical process from 

the di-radical form to the quinone in solution (the 'C' mechanism). No reduction peak 
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appears even at very fast scan rates indicating that the di-radical form is very short-lived 

and turns into the quinone very quickly. The overall redox reaction scheme of 2,3,- 

DHBA at the surface of the electrode is shown in Figure 4.27. 

COOH COOH COOH 

Figure 4.27: The redox reaction scheme of 2,3-DHBA 

r 2,3-DHBA Speciation Distribution at Different pHs 

Figure 4.28: Speciation distribution of 5rnM 2,3-DHBA in water at different pHs. 



Figure 4.28 illustrates the species distribution of 5rnM 2,3-DHE3A in aqueous 

solution at different pHs, which was calculated by the MICROQL program. There are 

four species of 2,3-DHE3A in aqueous solution. These are the fully protonated species 

H~DHE~AO, partially protonated species H2DHE3A- and HDHE3A2-, and fully deprotonated 

species DHE3A3-. The dissociation reactions among these four species and their acidity 

constants are shown in Table 4.6. Figure 4.28 shows that at pH 2, fully protonated 

H ~ D H E ~ A O  is the dominant species in aqueous solution, at pH 4.4 and 7, H2DHE3Am is the 

dominant species, and at pH 12, HDHE3A2- is the dominant species. 

Table 4.6: Dissociation reactions and related acidity constants for 2,3-DHE3A. 

Dissociation reactions P K ~  1'11 

As discussed previously, oxidation of 2,3-DHE3A at the surface of the electrode was 

facilitated as the pH increased. This can be explained by the different species distribution 

of 2,3-DHE3A. At a high pH (such as pH 12), the dominant monoprotonated HDHE3A2- 

species has a higher electron density than the fully protonated H ~ D H E ~ A O  species and the 

diprotonated H2DHE3A- species. Thus, the HDHE3A2- species is oxidized at a less positive 

potential than the other two species. At pH 2, the dominant species is H~DHE~AO, which 

has three protons and a lower electron density, and thus, it is the most stable species 

against oxidation. At pH 4.4 and 7, the dominant species is H2DHE3A-, which is oxidized 

at a potential between those of H ~ D H E ~ A O  and HDHE3A2-. 



4.2.2 Cyclic voltammetric study of Cu(I1) and 2.3-DHBA 

Cyclic voltammetric measurements were made in aqueous solutions, containing 

different ratios of Cu(I1) to 2,3-DHBA at pH 4.4. Figure 4.29 illustrates a cyclic 

voltammogram with a 10:l ratio of Cu(II)/2,3-DHBA, which is compared with a 

voltammogram for 2,3 -DHB A only. 

As before, the anodic peaks A and B in the cyclic voltammograms are attributed to 

the oxidation of free 2,3-DHBA species and Cu(I1)-DHBA complexes to the semiquinone 

and quinone forms, respectively. The cathodic peak C is assigned to reduction of 

semiquinone back to the original ligand. 

-1 -0.5 0 0.5 1 1.5 2 

EN (vr. AgIAgCI) 

Figure 4.29: Cyclic Voltamrnograms at pH=4.4: 5mM Cu with 0.5mM DHBA and 

0.5mM DHBA only (Scan rate 0.5V/s; supporting electrolyte 0.5M KN03) 

(A, B, C as indicated in Figure 4.26, E: oxidation peak of Cu(1) to Cu(I1); F: 

reduction peak of Cu(I1) to Cu(1) and G: reduction peak of Cu(1) to Cu(0)). 



When Cu (11) is analyzed alone, peaks E, F and G appear in the voltammogram (not 

shown in Figure 4.29). These peaks increase with increased Cu concentration. The anodic 

peak E may be assigned to the oxidation of Cu(1) to Cu(I1). Although there is no Cu(1) in 

solution originally, some Cu(1) may be produced at the surface of electrode when the 

voltammetric scan is initiated at OV. Peak F may be assigned to the reduction of Cu(I1) to 

Cu(I), and Peak G may be assigned to the reduction peak of Cu(1) to Cu(0). The data for 

peaks B, E, F and G with different CuIDHBA ratios are shown in Table 4.7. 

The presence of Cu increases the anodic current of the semiquinonelquinone couple 

(peak B) as shown in Table 4.7 and Figure 4.30. The effect of Cu on the anodic peak of 

semiquinonelquinone can be explained as follows, and as illustrated in Figure 4.3 1: 2,3- 

DHBA is oxidized to its quinone form by two one-electron-transfer steps (2,3-DHBA to 

semiquinone radical and semiquinone radical to quinone) at the surface of the electrode. 

At the same time, Cu(I1) oxidizes 2,3-DHBA into its semiquinone radical in the bulk 

solution[721. This semiquinone radical difises to the surface of the electrode where it is 

oxidized into the quinone form, resulting in an increase in the current compared to the 

oxidation of 2,3-DHBA at the surface of electrode in the absence of Cu(I1). The height of 

peak B increases with Cu concentration in solution (Figure 4.32), which indicates that 

formation of the semiquinone radical is favored at high Cu concentrations. The overall 

process may be classified as a 'CE' mechanism, with the 'C' step representing the 

chemical reaction in the solution followed by the redox reaction involving the product at 

the surface of the electrode represented by the 'E' step: 

k 
C step : 2,3DHBA + Cu(II) + Cu(II) - DHBA< > semiquinone radical + Cu(I) (4-2) 

k, 

E step : semiquinone radical - e- t, quinone (4-3) 



Table 4.7: Cyclic voltammetry analysis data for different Cu/2,3-DHBA ratios. 

Peak B Peak E Peak F Peak G 
Cu/DHBA 

ratios 

DHBA 

only 

Current 

(UA) 

- 

Current Potential Current Potential 

(mV) 

1340 

1370 

1380 

1400 

Potential 

(mV) 

Cu only 



There are no theoretical treatments for the voltammetric reactions involving the 

'CE' mechanism such that the reaction rate constant may be directly calculated from the 

experimental data[581. Theoretical treatment of this data is hrther complicated by the fact 

that Cu(I1) is continually regenerated due to the oxidation of Cu(1) at the surface of 

electrode for potentials above 0 V. 

El  V (vs. PglAgCI) 

Figure 4.30: Voltammograms of anodic peak B with different CuDHBA ratios at pH 

4.4, 0.5mM 2,3-DHBA (The height of peak indicates the concentration of 

semiquinone) (scan rate SOOmVIs, 0.5M KN03). 



in solution 

Electrode 
surface 

Figure 4.31: Redox scheme of Cu-DHBA complex at pH 4.4. 

Figure 4.32: Current height of peak B increases with Cu concentration for 0.5rnM 2,3- 

DHBA concentration at pH 4.4 with the scan rate 0.5VIs. (The height of 

peak B indicates the concentration of semiquinone). 



The scheme for the reaction in equation 4-2 may be described as in Figure 4.33: 

0 
I I 
C-OH O=C 

Figure 4.33: The scheme of interaction between Cu and 2,3-DHBA. 

The initial step in the oxidation of 2,3-DHBA by Cu(I1) involves the formation of a 

Cu(I1)-DHBA complex. The next step may involve intramolecular electron transfer 

within the Cu(I1)-DHBA complex to produce Cu(1) and the DHBA radical. The 

formation of the initial Cu-DHBA complex likely alters the electron density distribution 

increasing the probability that the semiquinone can form by one electron oxidation with 

cui5]. The semiquinone structure is then hrther oxidized at the surface of working 

electrode to form the quinone species. 

Alternatively, it may be possible, in analogy to Xu and Jordan's observation for the 

oxidation of 2,3-DHBA by F~( I I I ) [~~] ,  that the Cu(I1)-DHBA complex is subsequently 

oxidized by an additional Cu(I1) to form the semiquinone intermediate with the 

concurrent reduction of only the second Cu(I1) to Cu(1). However, at least in the presence 

of an excess of 2,3-DHBA, involvement of a second Cu(I1) in the oxidation of 2,3,- 

DHBA by Cu(I1) may not be likely due to the lack of Cu(I1) available. Ferrozine assay 

results with iron and 2,3 DHBA have confirmed that an excess of 2,3-DHBA may indeed 

inhibit Fe(II1) reduction[741. This inhibition effect of Fe(II1) reduction probably because 

the hexadentate coordination of 2,3-DHBA with iron, which ties up the iron preventing 



hrther reaction. However, Cu (11) could not have the hexadentate coordination with 2,3- 

DHBA. In the cyclic voltammetric study, the formation of semiquinone is not inhibited 

by an excess concentration of 2,3-DHBA with respect to Cu(II). As shown in Figure 4.30 

and 4.32, the height of peak B increases with Cu(I1) concentration even at low Cu(II)/2,3- 

DHBA ratios down to 10:l. According to the observations of this cyclic voltammetry 

study, in contrast to Xu and Jordan's observations for the oxidation of 2,3-DHBA with 

Fe(II1) where a second Fe(II1) is required, the presence of a second Cu(1I) does not 

appear to be required for the oxidation of 2,3-DHBA by Cu(I1) for the concentration 

range used here. 

4.2.3 Cyclic voltarnmetric study of Cu!II). 2.3-DHBA and hydrogen peroxide (H&J 

4.2.3.1 CV study of Cu(I1) and H2& - - at pH 4.4 

Cyclic voltammetric measurements were made in aqueous solutions, containing 

different ratios of Cu(I1) to Hz02 at pH 4.4. Figure 4.34 shows the voltammograms of 

Cu(I1) with different concentrations of H202. Solutions containing only H202 do not 

exhibit any peaks within the voltammetric scan range used here. Peaks F and G are 

assigned to the reduction of Cu(I1) to Cu(I), and Cu(1) to Cu(O), respectively. In the 

presence of H202, peak G, which was assigned to the reduction of Cu(1) to Cu(0) at the 

surface of the electrode, decreases due to the oxidation of Cu(1) to Cu(II) by H202 and 

possibly by OH' as indicated by equations 4-4 and 4-5. 

H 2 0 2  + Cu(I) + H' + OH' + Cu(II) + H 2 0  

OH' + & ( I ) +  H' + Cu(II)+ H 2 0  



Cu only 

Cu:H202=5: 1 

Cu:H202=1:2 
. - - - . . . H202 only 

Figure 4.34: Voltarnrnograms of 5mM Cu, 5mM Cu and 1rnM H202, 5mM Cu and 

1OmM H202, and 5mM H202 at pH 4.4 (scan rate 0.5V/s7 in 0.5M KNO3) 

(peak F and G as indicated in Figure 4.29; H: the reduction peak of 02). 



Peak F, which was assigned to the reduction of Cu(I1) to Cu(1) at the surface of the 

electrode, however, increases with H202 concentration due to the increase in the 

concentration of Cu(I1) brought about by the oxidation of Cu(1) to Cu(II) by Hz02 and 

OH' in solution. 

For a 1 :2 ratio of Cu/H202, a new peak H appears. This peak may be assigned to the 

reduction of dioxygen (02) at the surface of electrode as established separately by 

conducting voltammetric scans of an electrolyte solution saturated with 0 2 .  Peak H is 

absent when Cu(II)/H202>1. Therefore, we propose that the following reactions may be 

dominant[751 instead of reaction 4-5 when Cu(II)/H202<1. 

H202 +OH' -+ HOO' + H,O t, 0;- + H' (4-6) 

Cu(II) + HOO' -+ &(I) + 0, + H' (4-8) 

A similar behavior has also been proposed for the reactions involving different 

concentrations of Fe and ~ 2 0 2 ~ ~ ~ ~ .  

4.2.3.2 CV study of Cu(I1). 2.3-DHBA and H& - - at pH 4.4 

Cyclic voltammetric measurements were made in aqueous solutions, containing 

constant concentrations of Cu(I1) and 2,3-DHBA with different concentrations of Hz02 at 

pH 4.4. Figure 4.35 illustrates the cyclic voltammograms of 2,3-DHBA only, Cu-2,3- 

DHBA, and Cu-2,3-DHBA-H202 at pH 4.4. The analysis data are given in Table 4.8. 



-1.5 -1 -0.5 0 0.5 1 1.5 2 

E N  (vs. AgIAgCI) 

Figure 4.35: Voltammograms of O.5mM 2,3-DHBA, 0.5mM Cu+O.SmM 2,3-DHBA and 

0.5mM Cu+O.5mM 2,3-DHBA+2.5mM Hz02 at pH4.4 (Scan rate 0.5V/s7 

0.5M KN03) (Peak A and B as indicated in Figure 4.26; Peak H as 

indicated in Figure 4.34). 



Table 4.8: Cyclic voltammetry analysis data for Figure 4.35. 

The anodic peak A in Figure 4.35 was assigned to the oxidation of Cu(I1)-DHBA 

complexes and free 2,3-DHBA into semiquinone as before. In the presence of H202, this 

oxidation is more favored since it occurs at a less positive potential compared to absence 

of H202 The anodic current of the semiquinone/quinone couple (peak B) also increases 

nearly two fold in the presence of H202. Peak H due to the reduction of 0 2  is generated 

only in the presence of H202. For constant concentrations of Cu(I1) and 2,3-DHBA , both 

the anodic peak B and cathodic peak H increase with an increase in hydrogen peroxide 

concentration as shown in Figure 4.36 and Table 4.9. 

The mechanism for the increase of peak B in the presence of H202 can be described 

as follows: 

At the surface of the electrode, 2,3-DHBA is oxidized to semiquinone and quinone forms 

as described in equation 4-3. In solution, Cu(I1) reacts with DHBA and H202 as described 

as equations 4-2 and 4-4, respectively. Equation 4-4 is a Fenton type reaction which 
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Figure 4.36: Voltammograms of O.5mM Cu and 0.5mM 2,3-DHBA with different 

concentrations of H202 at pH 4.4 (scan rate 0. 5V/s, in 0.5M KN03) (Peak A 

and B as indicated in Figure 4.26; peak H as indicated in Figure 4.34). 

Table 4.9: Cyclic voltammetry analysis data for Figure 4.36. 

Peak A 

Potential 

H202 (mM) 

Current 

42.5 1 

42.87 

32.23 

Potential 

(mV) 

1400 

1410 

Peak B 

Current Potential 

Peak H 

Current 



forms highly reactive OH'. The OH' can then attack either Cu(I1) (equation 4-5) or 

DHBA as shown below: 

OH' + DHBA + H' -+ semiquinone radical + H 2 0  (4-9) 

OH' + semiquinone radical + H' -+ quinone + H 2 0  (4- 10) 

The presence of H202 generates more semiquinone radicals than in the absence of 

H202. This is primarily due to the fact that Cu acts as a catalyst in the Fenton reaction to 

oxidize DHBA (equations 4-2 and 4-4). This results in an increase of the anodic current 

for the semiquinone/quinone couple. 

In presence of H202, the OH' generated by the reaction of Hz02 and Cu(1) can either 

attack 2,3-DHBA to form the semiquinone species directly, or attack H202 to form HOO' 

and 02'-, which in turn reduces Cu(I1) to Cu(1). This redox cycling continually generates 

the semiquinone radical species, which could be indicated by the increase of peak B in 

the voltammograms. In the presence of excess H202, the overall process forms the redox 

cycling as described in Figure 4.3 7. 

Radical 

- 
and 0,' 

Figure 4.37: The redox cycling scheme of Cu-2,3-DHBA-Hz02 system. 



The cyclic voltammetry study on 2,3-DHBA itself shows that the electrochemical 

oxidation of 2,3-DHBA to its semiquinone form becomes easier as the pH increases. This 

indicates that the reducing ability of 2,3-DHBA is greater at high pH. This may provide 

an explanation to the question of why iron reduction by Gt chelator is favored at pH 4.0 

or greater, in contrast to low pH environments.[341. Oxalate produced by brown rot fungi 

has been proposed to function in the control of pH of the fungal environment, which 

creating a pH gradient between the immediate fungal environment (pHm2.5) and the 

wood cell wall (5.5-6.0)[~. 361. The redox reaction between a transition metal and 2,3- 

DHBA or Gt chelator is favorable in the wood cell wall (higher pH). Thus, the hydroxyl 

radicals produced by the chelator-mediated Fenton system would also favorable in the 

wood cell wall, the region undergoing degradation. 

The cyclic voltammetric study with Cu(I1) and 2,3-DHBA shows that Cu(1I) can 

oxidize 2,3-DHBA to its semiquinone form under acidic conditions, similarly to the 

oxidation action reported by F~(III)[~, 341. the cyclic voltammetry study on Cu(II), 2,3- 

DHBA and Hz02 shows that Cu(I1) can also react with dihydroxy derivatives (such as 

2,3-DHBA) at low pH conditions to drive the Fenton chemistry reactions to generate OH'. 

In the presence of 2,3-DHBq the Fenton-type reaction between Cu(1) and Hz02 is 

accelerated due to continual generation of Cu(I), not only from the reaction between 

Cu(I1) with HOO' and 02'-, but also because of reduction of Cu(I1) by 2,3-DHBA. Thus 

more hydroxyl radical will be produced than would be expected than from Fenton 

chemistry alone. This is consistent with studies of hydroxyl radical activity by Qian et 

alP7], in which hydroxyl radicals are produced by Fe(I1) and H202 and where radical 

production or activity occurs over a longer time span when in the presence of 2,3-DHBA 



than in the absence of 2,3-DHBA. Fe(II1) may undergo the same reaction mechanisms 

with 2,3-DHBA and H202 as CU (11) as shown in Figure 4.37. In this case, in the fungal 

decay environment, as proposed by Kerem et a~ . '~ ' ,  0 2  could react with DHMQ 

semiquinone to produce H202 and DMBQ, which forms the cycle between H202 and 02. 

This may provide a possible source of H202 in the wood cell wall. Thus, the production 

of hydroxyl radicals could occur in the wood cell wall with available Fenton reagents, 

H202 and Fe(I1) (from reduction of Fe(II1) by the chelator). 

The cyclic voltammetry analysis with Cu(I1) and 2,3-DHBA did not provide an 

explanation of how is quinone may be reduced to hydroquinone in the wood decay 

process to potentially maintain the cycle of a 'chelator-mediated' Fenton chemistry. 

During the voltammetry scan, quinone and semiquinone radicals of 2,3-DHBA were 

reduced on the surface electrode. No evidence indicated Cu or H202 was involved in 

these reductions. Other types of study may be needed to elucidate the hypothesized 

reduction of quinone via a nonenzymatic mechanism in wood decay processes. 

In this work, direct study Fe(II1) with 2,3-DHBA using cyclic voltammetry 

techniques was not possible due to the low solubility of Fe(II1) even at low pH conditions. 

In the cyclic voltammetry study, given the available environment and instrumentation, a 

minimal 0.5mM concentration of Fe(II1) was required to obtain acceptable 

voltammograrns and to perform related analyses on the redox mechanisms of Fe(II1). 

Thus, a very low pH condition (4) could have been used to solubilize 0.5rnM Fe(II1) for 

the analysis. This is a lower pH than would normally occur in the natural fungal 

environment, and the data obtained would therefore have been of little value fro this 

study. Alternatively, oxalic acid could have been added to increase the solubility of Fe(II1) 



at a higher pH, such as pH 4. This could also be useful in mimicking the wood decay 

environment. However, oxalic acid itself may have oxidation and reduction peaks during 

the voltammetric scan. Thus, a more complicated voltammogram will be obtained in the 

presence of oxalic acid. This may increase the difficulty of analyzing the reaction system 

and complicate peak assignments for specific oxidation or reduction reactions. 

Future work could also be done with Cu(I1) or Fe(II1) and 2,5-DMBQ using the 

cyclic voltammetry technique. Future work in this area may allow a reaction mechanism 

between metals and 2,5-DMBQ to be proposed through the analysis of voltammograms 

as outlined in this work. 



CHAPTER 5 

CONCLUSIONS 

5.1 Ligand exchange study 

The results of a competitive ligand exchange study for the Cu, 2,5- 

dimethoxybenzoquinone (2,SDMBQ) system show that there are two possible species 

formed at a pH range between 4.0 and 6.9, CUDMBQ~' and HDMBQ'. The relevant 

equilibrium stability constants for the formation of these complexes estimated from 

experimental data by FITEQL[~~] program are 22.52 and 15.94, respectively. Speciation 

analysis using these stability constants shows that 2,5-DMBQ has a relatively strong 

binding ability with Cu(I1) at low pH conditions. If these results can be assume to be 

similar to the reactions between 2,5-DMBQ with Fe (111), the strong binding affinity of 

2,5-DMBQ would allow sequestration of Fe(II1) from both oxalate and wood cell wall 

components, thus increasing the availability of Fe(II1) in the wood decay process. Under 

acidic conditions, most 2,5-DMBQ exists in the HDMBQ' form, which will not 

effectively compete with its reduced form, 2,5-dimethoxyhydroquinone to inhibit the 

quinone redox cycle. 

5.2 Cyclic voltammetry study 

From the cyclic voltammetry study in this work, it can be concluded that: 

1. 2,3-DHBA is electrochemically oxidized to its semiquinone and quinone form via 

two one-electron transfer steps. Oxidation of 2,3-DHBA is facilitated as pH 

increased, which suggests that the redox reaction between the metal and 2,3- 



DHBA may be more favorable in the wood cell wall (pH 4-6) rather than in the 

environment immediately adjacent to the fungal hyphae. This would therefore 

potentially allow the generation of OH' radicals away from the fungus where they 

would be damaging, and permit production instead within the wood cell wall 

where oxidation of wood cell wall components would occur as part of the decay 

process. 

2. In the presence of Cu(II), the overall oxidation process of 2,3-DHBA may be 

classified as a 'CE' mechanism. The increase of anodic current of the 

semiquinone/quinone couple with Cu(I1) indicates that 2,3-DHBA is oxidized by 

Cu(I1) in solution to generate the DHBA semiquinone radical (the 'C' step), 

followed by further oxidation of the semiquinone to the quinone at the surface of 

electrode (the 'E' step). This indicates that DHBA will be oxidized by Cu(I1) 

under acidic conditions. 

3. The increase of a cathodic peak due to the reduction of Cu(I1) to Cu(I), and the 

decrease of the cathodic peak due to reduction of Cu(1) to Cu(0) in the presence of 

H202 suggest that Cu(I1) can be regenerated via the Fenton reaction between Cu(1) 

and H202 under the experimental conditions. In the presence of excess H202, the 

OH' produced from the oxidation of Cu(1) in solution is scavenged producing 

HOO' and 02 ' -  species. Further reaction of Cu(I1) with the latter two species 

generates dissolved oxygen. This could provide a source of H202 in the wood cell 

wall via a reaction between 0 2  and DMHQ. 

4. The increase in the anodic current of the semiquinone/quinone couple in the 

presence of H202 indicates that DHBA semiquinone radicals are not only 



generated fiom the electron transfer step at the surface electrode and the oxidation 

2,3-DHBA by Cu(II), but also generated by oxidation of 2,3-DHBA by hydroxyl 

radicals (OH*). The redox cycle involving Cu(II), 2,3-DHBA and H202 leads to a 

continuous regeneration of Cu(I1) and production of OH', which accelerate the 

formation of DHBA semiquinone radicals. A proposed reaction mechanism fiom 

this study indicates that OH' production by the Fenton reaction is accelerated by 

the reaction between Cu(I1) and 2,3-DHBA. 

In summary, the cyclic voltammetry study shows evidence that the chelator- 

mediated Fenton reaction is favored in the wood cell wall, where it may promote the 

degradation process. Also, reaction mechanisms between Cu(II), 2,3-DHBA and H202 

have been proposed which provide at least partial explanations for the H202 cycle, and 

the mechanism for non-enzymatic, chelator-mediated Fenton reactions in brown rot 

wood decay processes. 

Future research in this area should explore cyclic voltarnrnetry analyses of Cu(I1) 

and ligands secreted by fungi, such as 2,5-DMHQ or 2,5-DMBQ in the absence or 

presence of H202 under a range of acidic conditions. Cyclic voltammetry experiments 

should also be conducted with Fe(III), oxalic acid and ligands secreted by fungi, to gain 

insight into the mechanism and kinetics of the relevant redox reactions in wood decay 

processes. 
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