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Semiconducting metal oxide sensors are limited in their usage because of their 

poor detection selectivity. The current approach to achieve better selectivity in SMO 

detection uses prefiltering/ preconcentration schemes to reduce the number of gases in 

contact with the sensor in combination with array-based detection. In this thesis we have 

investigated different materials and approaches for use as elements in an array based 

detection system. 

One approach we have investigated involves the use of porous monoclinic W03 to 

obtain size selectivity in detection within the sensing element itself. In chapter 3 we 

describe the synthetic protocol used to generate high surface area porous monoclinic 

tungsten oxide. Mesoporous oxides are produced by a sol-gel polymerization in the 

presence of a self-assembled surfactant structure. This approach has not been applied to 

the synthesis of W03 based oxides because the presence of salts leads to mixtures of 



WO3 and tungstates. By minimizing the presence of Na' ions, it  is shown that ordered 

porous monoclinic W03 can be prepared. The sodium tungstate is first passed through an 

ion exchange resin to remove the sodium and tungstic acid thus formed is then added to 

solution containing a cationic surfactant, n-cetyltrimethylammonium bromide (CTAB) to 

template the structure. While a salt is formed with the CTAB cation, it does not lead to 

stable tungstates because these salts are easily decomposed during the calcination step. It 

is also shown that the need for ion-exchange can be avoided by using ammonium 

tungstate as a precursor in place of sodium tungstate. As with CTAB cations, the N H ~ '  

ions are easily decomposed during the calcination step. While the surfactant template 

collapses during the calcination step, the morphology and properties of the product is 

controlled by the initial template structure. Using these cationoic surfactant based 

receipies unique high surface area and porous monoclinic W03 powders are prepared. 

In Chapter 4, we examine the sensor properties of the various porous W 0 3  

powders. The sensors were tested to a series of alcohols of various size as well as 

dimethyl methyl phosphonate (DMMP, a nerve agent stimulant) and it was found that 

there was a size dependent response signal on the porous W03 relative to sensors 

fabricated with nonporous WOs powders. IR spectroscopic measurements shows that the 

difference in sensor responses on porous material was due to a size dependent control 

over the amount of alcohol absorbed on the surface. A key aspect of this approach is to 

operate the sensors in a difference mode in which a gas pulse is simultaneously exposed 

to several sensors composed of both porous and nonporous powders. By comparing the 

response on a porous sensor to that of a nonporous sensor it is possible to separately 

distinguish the signal of DMMP from methanol. The ability to distinguish the response of 



DMMP from methanol has been a longstanding goal to demonstrate selectivity in nerve 

agent detection. 

In chapter 5 we examined a different approach to achieve selectivity in an array 

based SMO sensor. Specifically, the approach involves the use of UV illumination to 

selectively decompose adsorbed molecules from the surface of W03. In infrared studies, 

it is found that adsorbed DMMP decomposes under UV illumination at room temperature 

to form a stable methyl phosphate species on the surface. However, the decomposition 

under UV does not occur with the lattice oxygen but rather with the ozone or surface 0' 

sites oxygen radicals produced in the gas phase and this is and this is unlikely to lead to a 

change in sensor response. In addition, i t  is found that the sensor base conductivity is also 

very sensitive to UV illumination at room temperature. The UV generates electron-hole 

pairs that decompose surface water and these results in the intercalation of H' into the 

material to produce tungsten bronzes and a resulting change in base conductivity. 
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Chapter 1 

INTRODUCTION 

1.1 .  Background 

Developing semiconducting metal oxide (SMO) based sensors has been a 

cornerstone of research activity at the Laboratory for Surface Science and Technology 

(LASST) at the University of Maine for the last 20 years. While films such as s ~ o ~ " ~ ,  

~ n 0 ~ ~ ~  and W 0 3  have been used as the sensing element in gas detectors, the work at 

LASST has focused on W 0 3  based materials. The advantage of SMO based detection is 

that it provides an inexpensive, compact, and rapid method for the detection of low 

concentrations (ppb) of gases. However, the SMO detectors are plagued by poor 

detection selectivity and it  is this aspect that provided the impetus for the research 

described in this thesis. 

Figure 1 . 1  shows a typical sensor platform used for the SMO gas sensor 

fabricated at LASST~. A sapphire substrate is prepared with interdigitated platinum 

electrodes on the top and a serpentine heater and resistance temperature device (RTD) at 

the bottom. SMO based sensors are typically fabricated by depositing an oxide layer, 

either as a thin film oxide layer or a powder dispersed in with a suitable binder on the top 

of underlying platform containing the electrical  contact^."^ The work at LASST has 

focused on thin film based technologies in which W 0 3  films of about 500 A thickness are 

deposited by reactive Rf magnetron sputtering. The RTD is needed because the sensors 

are typically operated at temperatures of 250 "C to 400 "C in order to increasing detection 

sensitivity by increase the rate of reaction. 



Doped Tunpsten Trioxide Film Plahum Electrodes 
\ 1 

Sapphire Substrate rn 
TOP BOTTOM 

Figure 1.1.  Chemiresistive Semiconducting metal oxide Gas sensor platform. 



Another reason for operating at high temperature is at room temperature the W 0 3  

film is an insulator. At elevated temperatures, the W03 becomes sub-stoichiometric in 

composition due to loss of lattice oxygen and semiconducting in nature. 

High temperature - - W03-,  + x/2 0 2  (Eq. 1.1) 

Low temperature 

The conductivity increases because the carrier concentration increases as "x" increases in 

W03., and because of thermal excitation of electrons in to the conduction bands. The 

lattice oxygen concentration also occurs when an oxidizing or reducing gas comes in 

contact with the W 0 3  surface, which leads to a change in carrier concentration and signal 

detection in the sensor. 

1.2. Chemistry of Sensor Response 

The reaction sequence leading to a change in conductivity is illustrated using 

methanol as the target gas as described in the work of Dr. Frederick's group at LASST 

8.9.10 In Figure 1.2, the upper curve shows the time interval of the methanol gas pulse. 

The lower curve in Figure 1.2 shows that a decrease in resistance occurs with the initial 

introduction of the methanol. The methanol in contact with the W 0 3  surface is oxidized 

to CHzO by reacting with the lattice oxygen according to:" 



where 0," is lattice oxygen and V," is positively charged vacancies generated in W 0 3  at 

elevated temperature. 

This process occurs rapidly owing to the high mobility of the lattice oxygen leading to a 

fast initial decrease in resistance which plateaus when the lattice oxygen attains a new 

equilibrium concentration level. The removal of the lattice oxygen leads to vacancies and 

generation of a pair of electrons, leading to a decrease in the resistance of the oxide film. 

When the methanol gas pulse is turned off, the equilibrium concentration of  lattice 

oxygen is reestablished to the original level (and hence the resistance of the film) through 

oxidation with the oxygen gas in the air. 

Vow ' + 2 e' + ' / 2 0 2  kox oxo ................................................... (Eq. 1.3) - 
1.3. Selectivity 

The above reaction mechanism with methanol also illustrates the problem in 

detection selectivity. There is very little information content in the sensor response other 

than an increase in conductivity occurs when a reducing gas molecule is oxidized and a 

decrease occurs when a gas molecule is reduced. Given that any organic molecule will 

undergo an oxidation reaction with the lattice oxygen, a problem clearly exists in 

distinguishing the response from a target gas amongst the myriad of other compounds 

that could be present in a gas stream. This leads to false alarms and is the biggest 

technical hurdle preventing the widespread use of this technology. 



oxidation 

920E103 970E+03 1.02Et04 1.07E104 1.12Et04 1.17Et0-4 1.22€+04 1.27E+04 132E+04 

Time ( sec) 

Figure 1.2. Sensor response to a methanol gas pulse 



The current approaches to improve selectivity in SMO sensing involve a 

combination of filtrationI2 1 concentration13 and array based detection.'" l 5  This approach 

is actively pursued by researchers at LASST and a schematic of this approach is shown in 

Figure 1.3 

Sample Chamber 

-*EX?KIUSI 

valve 

Figure 1.3. Schematic of Prototype Hybrid Chemical Sensor Suite 

Use of prefilters/concentrators tackles the problem by reducing the number of 

components in the gas stream impinging on the SMO detector element. Materials such as 

inorganic membranes, zeolites, and other adsorbents are used to selectively 

preconcentrate and prefilter interferent molecules from the gas stream. For example, 

work in our group has recently shown that silica based material can be used to selectively 

adsorb organophosphonates from a gas stream16. l 7  and other work by colleagues at 

LASST ' "~~  shown that silicalite (a zeolite) can be used for size and polarity based 

separation of isoprene and NO2 from NO. 



An array-based approach tackles the problem of minimal information content of 

the response signal in that each element of the array produces different response 

characteristics to the gas matrix. In this case, a bank of sensors is used in which each 

sensor element produces a different response to the various components of the gas 

stream. Variables such as metal oxide composition and morphology, impregnation with 

metal catalysts and operational temperature are a few approaches that are under 

investigation to achieve distinguishable sensor array e ~ e m e n t s . ' ~ - ~ j  Neural network 

methodologies are then used to process the complex response signal. 

The role of our research effort in the array based approach was to use infrared 

spectroscopy to provide a molecular understanding of the chemical reactions of various 

gaseous molecules on the different sensor materials. The aim was to use the molecular 

information derived from the spectroscopic studies to provide insight into the selection of 

material and operational conditions for the sensor elements used in an array-based 

detection system. Ideally, the infrared studies would be conducted in situ directly on the 

sensor devices themselves as this would lead to a direct correlation between surface 

reactions and sensor response. In practice, this proved to be very difficult to perform and 

the reason for this can be traced to two fundamental aspects of infrared spectroscopy. 

1.4. FTIR Studies of WOJ 

The first limitation arises from the fact that infrared spectroscopy is not a surface 

sensitive technique. The infrared beam passes through the bulk as well as the surface of 

the W 0 3 .  In the case of the W 0 3  sensor platform shown in Figure 1.4, transmission 

studies were not possible owing to the opacity of the sapphire substrate. 



Reflection (IR) (external, ATR) 

Platinum 
Doped Tungsten Electrodes 
Trioxide Film \ / 

Sannhire Substrate k 

Beam (I,) 

)r 
Transmission 

Figure 1.4. IR studies on thin film sensor element 

External reflection measurements were attempted but these measurements on 

semiconducting material are difficult to interpret because of the complex refractive index 

(and hence the external reflectivity) changes that occur within an adsorption peak 

superimposed on a semiconducting metal oxide surface. The most promising method 

involved the use of Attenuated Total Reflection (ATR) in which a WO3 film is coated on 

25.26 an internal reflection element. . While i t  was possible to collect spectra with this 

approach, our attempts to study surface reactions on W 0 3  coated ATR crystals were not 

successhl because of the difficulty in detecting the weak bands due to adsorbed species. 

The second limitation arises from the fact that the light absorbed by the sample is 

not measured directly. In IR, a reference spectrum is first measured and then a separate 

spectrum is recorded with the sample in place. In recording the sample spectrum, it is the 



light transmitted (I-r.) or reflected (IR) that is measured by the detector and this is then 

ratioed to the reference spectrum (I,). In the case of the thin fiIm W 0 3  sample, the 

percent of the total light absorbed by surface species leads to a very small attenuation of 

the IR beam27 (i.e., the difference between I.r and I, is about 1 photon in lo6). AS a result, 

this places a high demand on the dynamic range (i.e., measuring a difference of 1 : lo6 

between two signals) and also translates to band intensities of about absorbance units 

which are at the edge of the practical detection limit of infrared spectrometers. 

The most common method to circumvent the detection and dynamic range 

Iimitations in surface IR studies is to increase the surface area probed by the IR beam by 

using metal oxide powders. While the surface area probed on a thin film oxide is about I 

cm2, metal oxide powders can have surface areas in excess of 500 m21g and thus probing 

even milligram quantities of powder with an IR beam translate into 3-4 orders in 

magnitude increase in intensity of the bands due to adsorbed species. While there exists 

an enormous volume of literature o f  surface infrared studies on metal oxide powders,28-30 

until our recent work 16, 31-33 we are unaware of similar IR surface studies on W 0 3  

powders. The development of synthetic methods leading to the generation of high surface 

area W 0 3  particles was the key enabler for our infrared work. Commercial particles are 

micron sized and were not suitable for infrared studies because they scatter the IR beam 

and have low surface area (< 1 m21g). 

1.5. Sol-Gel Synthesis of nano-sized W 0 3  particles 

An exhaustive search for a commercial source of high surface area monoclinic 

W 0 3  particles met with little success. The best commercial particles had measured 



surface areas of 1.7 m2ig and i t  is estimated that a particle size reduction of at least a 

factor of 10 ( i.e. about 20 m2ig ) was needed for our infrared studies. A description of the 

synthetic methods used to produce the nano-sized particles is provided below because the 

recipes used in this thesis for generating mesoporous W03 are extensions of prior work. 

Tungsten oxide powders are typically generated by the sol-gel process.34 Sol-gel 

processing is a wet chemical route to synthesis of a colloidal suspension of solid particles 

or clusters in a liquid (sol), and subsequently to formation of a dual phase material of a 

solid skeleton filled with a solvent (gel). When the solvent is removed, the wet gel 

converts to a xerogel through ambient pressure drying or an aerogel through supercritical 

drying. In the sol preparation, the precursors (either organic or inorganic) undergo two 

chemical reactions: hydrolysis and condensation or polymerization, typically with acid or 

base as catalysts, to form small solid particles or clusters in a liquid (either organic or 

aqueous solvent). In this process an inorganic or organic molecular precursor M(OR),, is 

typically used as the starting material, where M is a metal and (OR) a hydrolysable 

alkoxy group, respectively. The reaction can be utilized to provide oxides in the form of 

powders or a macromolecular network for use as thin films on other substrates. 

In principle the sol-gel reaction can be written as:35 

M (OR), + n/2H20 + MO,/z + nROH (Eq. 1.4) 

Organic additives are commonly used in sol-gel chemistry.36 These additives can 

37 .38  operate as stabilizers or reactive metal alkoxides towards hydrolysis or as drying 



agents (such as dimethylformamide). These organic compounds and the by-products of 

sol-gel reactions can drastically modify the physical properties of  the materials. 

The literature on sol-gel tungsten oxides is almost entirely devoted to the 

formation of  films on surfaces. The synthesis of the films can be divided into methods 

39.40 based on the hydrolysis of  tungsten alkoxides and methods based on the acidification 

of  alkali tungstates. In the latter, the most widely used sol-gel method begins with the ion 

exchange o f  sodium tungstate at ambient temperature. Chemseddine el. al. 4 1  have 

prepared stable W 0 3  films using this ion-exchange resin process. A solution of  

Na2W04.2H20 in water was passed through a protonated ion exchange resin, leading to a 

colloid solution of  sodium and chloride free tungstic acid. 42 

Na2W04 + 2 ~ ' +  2 ~ a '  + H2WO4 (Eq. 1.5) 

The sodium cation is removed and trapped by the resin. In the next step, the 

condensation (polymerization) of  the H 2 W 0 4  results in a network of  tungsten oxide. 

CH 

Sol 
(Eq. 1.6) 



The polymerization in acidic conditions involves several stages4', starting with 

formation of metal hydroxy complexes, formation of hydroxy polymers (olation), 

formation of oxobridges (oxolation) and finally a visible yellow tungsten trioxide hydrate 

(W03.H20), solid product. Depending on the concentration and polymerization 

conditions, the sol may precipitate from the solution as individual particulates or form a 

stable gel. 

In the formation of W03 particles, the growth of the hydrated tungsten oxide sol 

continues until the particle precipitates from solution. This occurs when the particles are 

approximately micron-sized. To produce particles with high surface area (i.e., smaller 

size) it is necessary to inhibit the growth of the sol particulates and to limit the 

aggregation of particles during the calcination step. 

Calcination at elevated temperature is required to convert the hydrated tungsten 

oxide to a crystalline form. To make stable crystalline tungsten trioxide powders, 

calcination temperatures of at least 500 "C are required. At temperatures below 500 "C, 

the crystalline W03 slowly reverts back to its amorphous hydrated form. 16.33 

1.5.1 Chelating Agents Approach 

Lu et. al. showed that it was possible to obtain small W03 particles with high 

surface area by controlling the reaction conditions through the use of organic chelating 

43.44 agents and water and oil emulsions.32 Chelating agents such as oxalic acid , 

a ~ e t ~ l a c e t o n e ~ ~  and 2,4-pentanedione46 have been used to generate stable W03 sol-gel 

films. The rate of condensation occurring between two W-OH groups is reduced as the 

number of non-condensable chelating agents attached to the central W atom increases. 



The slower condensation or cure produces less stress between a sol-gel film and the 

substrate and this minimizes the cracking that occurs when the film is annealed at 

elevated temperatures. 

Lu et. al. showed that oxalate and acetate chelating agents that lead to stable sol- 

gel films also inhibit the condensation, growth and aggregation of individual particles.32 

Furthermore, it has been shown44 that bound oxalate remains on the hydrated tungsten 

oxide particle at temperatures up to 200 O C .  This was also important in powder synthesis, 

as the presence of coordinated oxalate at these elevated temperatures also inhibits the 

reduction in surface area or aggregation of particles during the calcination step. By using 

oxalic acid or a mixture of oxalic acid and acetic acid during the sol-gel synthesis, W 0 3  

particles with surface area of about 20 m21g were produced.33 

There was a dramatic improvement in our ability to perform IR surface studies 

with the availability of W 0 3  powders with surface areas in the 20 m21g range. An 

example of this improvement is demonstrated with the spectra shown in Figure1.5. 

The top curve in Figure 1.5 shows the transmission infrared spectra of adsorbed 

dimethyl methyl phosphonate (DMMP, a nerve agent simulant) recorded using a 

commercial W 0 3  powder and the bottom curve is the spectrum for the same experiment 

on a 20 m21g W 0 3  powder. The distinction between these curves is clearly evident as the 

intense bands due to the adsorbed DMMP are only observed on the high surface area 

powders. 

1.5.2. Emulsion Based Synthesis 

Although the W 0 3  particles fabricated using chelating agents produced material 

that enabled our infrared surface studies, the question remained as to whether this is the 



limit or whether it is it possible to prepare material with even higher surface area. Any 

further increase in surface area beyond the 20 m21g range would directly translate in 

improved ability to detect weak features and/or increase the lower detection limit. 

However, efforts by other researches in our group to increase the surface area of 

the particles beyond 18-22 m21g by altering reaction conditions with chelating agents met 

with little success. Clearly, a completely different synthetic approach would be needed to 

achieve significantly higher surface area powders. 

An alternative route involved the use of emulsion-based synthesis. In this case, 

the condensation reaction occurs in the aqueous phase inside a water-in-oil (WIO) 

emulsion. A W/O emulsion is composed of a continuous phase containing solvent, micro- 

water-droplets, inverse micelles and free surfactant. (see Figure 1.6) 

In essence, the surfactant stabilized water droplet behaves as a micro-reactor in 

which the condensation and hence, growth in particle is limited by its size. The 

conditions leading to droplet-stabilized emulsions for polymerization reactions depends 

on parameters such as the type and concentration of surfactant, the 

surfactant/water/organic solvent ratio, the rate of stirring and For W 0 3 ,  

the system is limited to nonionic surfactant systems as traditional cationic or anionic 

surfactants are salts. These salts have counter ions such as Na' or C1' and their presence 

would lead to products containing mixed tungstates. 49-50 
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Figure 1.5. Transmission infrared spectra of adsorbed DMMP on commercial powder 

(top) and nano-sized powder (bottom) 



In principle, the size of the droplet is in the submicron to micron range and this size 

provides a potential means for substantially increasing the surface area of W03 particles. 

Furthermore, the individual particles are encapsulated by surfactant and this should 

sterically restrict the amount of sintering occurring in the calcination step. These 

advantages were realized as the emulsion based powders typically had surface areas that 

were twice the values obtained using oxalatelacetate chelating agents. (i.e. around 40 

m21g )32 This resulted in a direct improvement in sensitivity in the IR studies as the 

bands due to adsorbed species were also doubled in intensity on the emulsion-based 

powders. These powders have been the backbone of our IR studies and have been used to 

identify surface sites33 as well as to elucidate the surface intermediates during 

decomposition of organophosphonates on W03 surfaces. 13, 17, 31 Several other infrared 

studies on the adsorption of alcohols, sulfur based compounds (H2S, SO2, CH3SH), and 

nitric oxides (NO, NO2) are in progress. 

We recall that one of the aims in performing infrared measurements was to obtain 

a molecular insight into the behavior of the thin film sensor. This has been demonstrated 

on a regular basis. For example, W03 thin film sensors operating at 400 OC are poisoned 

by repeated doses to DMMP gas whereas no such poisoning occurs with repeated doses 

to met ha no^.^' IR adsorption studies have shown that adsorbed methanol is completely 

desorbed from W03 powders at 400 OC whereas adsorbed DMMP decomposes leaving a 

stable methyl phosphate species on the surface." It  is the presence of the methyl 

phosphate that leads to poisoning of the detector. 
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Figure 1.6. Inverse micelles and droplets in the emulsion showing tungstic acid and 

water trapped inside droplets 



1.6. Porous Materials 

While the current powders have satisfied our spectroscopic requirements, it was 

the use of these powders in sensing that has prompted the additional synthetic effort 

described in this thesis. In particular, we have found that sensors prepared using the same 

powders developed for the infrared studies show slightly higher sensitivity and faster 

response compared to their thin film counterpart. While the powder based sensors enable 

a direct comparison of the surface chemistry by IR and the sensor response, it was also 

recognized that a sol-gel preparative methodology could provide new materials for use in 

our array-based sensor strategy. 

Specifically, it is our intent to leverage the experience gained from work with 

surfactant driven synthesis of nano-particles to develop "designer" nanocomposite 

material with structural control extending to micron dimensions. 47.48.5 1-54 Known as 

mesoporous, materials composed of oxides, sulfides and phosphates have been made in 

this manner using liquid crystal surfactants and phase separated block copolymers to 

template the assembly of the inorganic framework.55s56 Mesoporous materials have 

significantly higher surface areas than their nonporous equivalents and thus generating 

porous W 0 3  based on mesoporous material synthetic strategy would be attractive from 

this standpoint alone. However, there is an additional attraction to fabricating a sensor 

based on W 0 3  prepared via a mesoporous synthetic route in that the periodic porous 

structure could provide size selectivity in detection within the sensor element itself. 

1.6.1. General Synthesis of Mesoporous Oxides 

The general principles leading to mesoporous oxides are illustrated in the water- 

oil-surfactant phase diagram shown in Figure 1.7. The emulsion polymerization 



described earlier for the production of W 0 3  was conducted in the lower right hand side of 

the phase diagram. Inverse micelles were prepared using water droplets in oil and the sol- 

gel polymerization occurred in the aqueous phase contained inside the micelles. 

Mesoporous oxides are not formed in an oil solvent but rather, fabricated in water (i.e, 

along the water-surfactant edge o f  the phase diagram) with little or  no oil present. By 

increasing the surfactant concentration, various aggregated surfactant structures are 

formed in the aqueous phase. For example, the micelles convert to cylindrical micelles 

and at higher surfactant concentration pack into a contiguous hexagonal network. At even 

higher surfactant concentrations, cubic and lamellar structures are formed. 

1.6.2. Mechanism of Pore Formation 

Addition of the sol-gel precursor leads to polymerization in the aqueous phase 

surrounding the surfactant architecture and not inside the hydrophobic regions containing 

the surfactant tails. The procedure is shown in Figure 1.8. When operating at surfactant 

concentration above the second critical micellar concentration( CMC-2), rod like micelles 

form. The outer surfaces of these rod-like micelles are hydrophilic and the internal 

regions containing the surfactant tails are hydrophobic. The sol-gel polymerization occurs 

in the hydrophilic region around the structure and therefore, the structure o f  the oxide is 

templated by the surfactant architecture. The oxide is dried and calcined at elevated 

temperature to remove the surfactant leaving a highly porous and structured material with 

adjustable pore sizes. 
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Figure 1.7. Ternplated Fabrication of Porous ~dsorben t s .~ '  
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Figure 1.8. Steps in synthesis of mesoporous materialsSg 

1.6.3. Pore Size Control Parameters for Mesoporous Oxides 

A major advantage of using mesoporous materials is that pore size can be adjusted and 

this may lead to a size selective approach in SMO detection. There are several 

experimental parameters that can be used to control the pore size and these are listed 

below. 

Temperature: At high temperatures, surfactant molecules acquire considerable energy; 

self-assembly takes longer periods of time and/or forms disorganized structures. At very 

low temperatures, solubility problems are observed.49 Critical rnicellar temperature 

(CMT) refers to a "pseudophase" transition from spherical to rod like micelles which 



occur at low temperature or high surfactant concentrations. Regions are also observed 

where hydrated solid (gel or coagel) phases and liquid crystals (lamellar or hexagonal) 

appear (Figure 1.7)." 

Surfactant Nature: As shown in Figure 1.9, micelle size depends on the relative length 

of surfactant hydrophobic tail and headgroup size and charge. Longer chain lengths 

result in larger pore size. However, if the tail length is reduced below C-8, micelles will 

not self assemble. Furthermore, the surfactant length is limited to C-20 chains since 

natural surfactants longer than C-20 are rare and very expensive. 59-61 
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Figure 1.9. Spherical micelle showing surfactant tail influence on the size of pores62 

Surfactant and Water Concentration: The major factor influencing micelle size is the 

molar ratio of waterhurfactant. At a concentration less than the first critical micellar 

concentration (CMC- I), micelles are not formed, whereas above the CMC- 1, spherical 



micelles are formed. When the concentration of surfactant is further increased, a second 

critical micellar concentration is reached (CMC-2). Above this concentration, rod like 

micelles are formed and mesoporous materials templated by these surfactant structures 

are known as MCM-4 1 (Space group: P6m name given by Mobile Catalytic Materials) 

type material, cubic MCM-48(materials with space group Ia3d) and lamellar templated 

60.63 structures are known as MCM-50 type material respectively. The topology of the 

mesosilicate formed is generally very similar to the known liquid crystal phases. 

However, sometimes unknown liquid-crystal phases, such as P63/mmc, are also 

obtained.64 

pH and Ionic Strength: Variations in pH are used to stabilize or destabilize the 

surfactant assembly. Addition of ionic salts reduces the micelle size by screening the 

electrostatic repulsion between the surfactant headgroups. 

Calcination Conditions: Gel preparation is followed by calcination at 500°C to 550 "C 

to remove the surfactant. Slow heating and cooling rates (1  "C/ min) are important to 

avoid collapse of the mesoporous structure. 

Rate of stirring: I t  was found that high stirring rates tend to deform the structures and 

prevent surfactant self-assembly. Moderate stirring, on the other hand, promotes 

aggregation of surfactant water oil molecules and aids structure formation. 

Organic Additives: Organic hydrophobic additives, such as mesitylene, acts as a "seed" 

for structure growth. The surfactant hydrophobic tails assemble around this "seed" 

resulting in larger micelles and leading to bigger pore sizes within the mesoporous 



product. However, when hydrophilic additives are used, pore size does not decrease. 

Instead, the spherical micelles revert to cylindrical m i ~ e l l e s . ~ ~  

Given the above synthetic latitude, a variety of mesoporous W03 materials should 

be possible. However, to the best of our knowledge, ~nesoporous W03 based materials 

have not been reported in the literature. 

1.7. Summary 

In this chapter we provided a discussion on the problem of detection selectivity in SMO 

based sensing. It was shown that, recent work generating W03 provide new opportunities 

in generating novel materials for SMO duel sensors. One possible strategy to improve 

selectivity would be to incorporate porosity into the design of the powder. In, Chapter 3, 

a description of the protocols used to generate porous materials along with the 

characterization of material produced is provided. In Chapter 4, the sensor response of 

the porous material was tested to a series of alcohols of various sizes. Detection 

selectivity is shown and has been attributed to size selectivity in the alcohol adsorption in 

the pore structure of the WO3. In Chapter 5, an alternative approach to acquire detection 

selectivity is investigated. A combination of IR measurements and sensor test data was 

collected for DMMP and methanol adsorption under UV illumination. 



Chapter 2 

EXPERIMENTAL 

In this chapter we describe the materials and general procedures used to 

synthesize and characterize the porousW03. Each subsequent chapter also contains a 

brief experimental section describing the specific details related to that work. For 

example, in this chapter we describe the materials and details of the preparation of the ion 

exchange column and surfactant solutions, whereas a detailed description of specific 

reaction conditions for the synthesis of the various porous oxides are provided in Chapter 

3. 

2.1. Materials 

Starting materials were obtained from the Aldrich Chemical Company. For the 

synthesis of porous W03 ,the chemicals used were the ion exchange resin (DOWEX 50 

WX2-200), sodium tungstate dihydrate (99%), ammonium tungstate, ammonium 

hydroxide (28%), commercial monoclinic tungsten (VI) oxide powder ( 1-5 microns 99.9 

%) as well as the cationic surfactants cetyltrimethyl ammonium bromide (CTAB, 

( c H ~ ) ~ N + ( c H ~ ) I s ( c H ~ )  Br-)and cetyltrimethyl ammonium chloride (CTAC, 

( c H ~ ) ~ N + ( c H ~ ) ~ s ( c H ~ )  CI-) 25% solution. 
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Figure 2.1. Experimental setpup for preparation of sol (H2WO4 solution) using ion 

exchange resin. 



2.2. Synthesis of Tungsten Trioxide 

Both Na2W04 and (NHJ)~WOJ were used as precursors in the sol-gel preparation 

of WO3. The Na2WOj and (NH&W04 were converted to H ~ W O J  by acidification with 

HCI. Particular care was needed when using NazW04 because the presence of ~ a '  ions in 

H2W04 during the synthesis of W 0 3  leads to mixed products of W 0 3  and sodium 

t ~ n ~ s t a t e s . ~ ' " ~  Therefore, Na2W04 was first passed through an ion exchange resin to 

remove ~ a '  ions prior to addition to the surfactant solution. 

The experimental setup for performing the ion exchange is shown in Figure 2.1. 

All glassware was ultrasonically cleaned with soap and water and rinsed thoroughly with 

deionized water three times before use. 35 g of Dowex 50WX2-200 resin was first 

washed with 400 mL of DI water 3 times to remove excess sulhric acid. Then resin was 

transferred into a standard 50 mL buret. A small wad of cotton covered by a Teflon film 

was inserted at the bottom of the buret. The 35 g of the ion exchange resin was loosely 

packed in a standard 50 mL buret. Deionized waster was passed through the column until 

the pH of the water effluent was 5-6 (measured with pH paper) (pH of double distilled 

water was 5.8). Alternatively a solution of silver nitrate could be used to test for residual 

C1- ions. 

2.2.1. Preparation of Tungstic Acid Solution 

A predefined amount of sodium tungstate dihydrate (or ammonium tungstate) was 

dissolved in a 100 mL volumetric flask of double distilled water. The amount of solute 

depends on the concentration used in the experiments and this typically was 0.12 M. The 

solution of sodium tungstate dihydrate was added to a hydrogen ion exchange column 



and eluted at a rate of 0.5 mL / min. With too high a rate of elution, sodium ions appear 

in the tungstic acid solution. Our experience in working with the ion exchange column 

showed that there is a narrow operational range between solution concentration, amount 

of resin used, and elution rate. Using higher concentrations ofNa2W04 or less resin in 

the column leads to mixtures of W 0 3  and sodium tungstate whereas using more resin and 

slow elution rates clogged the column with polymerized W 0 3  sol. Collection of effluent 

began when the solution pH was 1.5 or lower. 

The receiving flask contained the assembled surfactant architectures and upon 

addition of the H2W04 exiting the ion exchange the templating process commenced. The 

experimental conditions used in this stage are detailed in Chapter 3. After completion of 

the sol-gel process, the final step is calcination at elevated temperature to remove the 

surfactant and convert the hydrated W 0 3  into monoclinic form. 

2.2.2. Calcination 

To obtain the stable monoclinic form of W03, the tungsten trioxide dihydrate was 

calcinated at 500 "C. Several heating protocols were tested and it was found that the 

higher the calcination temperature, the lower the surface area of the particle. Although 

monoclinic W 0 3  was obtained at a minimum 400°C, the samples needed to be heated to 

at least 500°C. At temperature below 500 "C, the samples reverted to their amorphous 

hydrated form. The calcination step was also needed to bum off the surfactant leaving 

behind open channels inside the hardened W 0 3  lattice. 

The heating rate was found to be an important parameter in dictating the final 

structure. A fast heating rate led to collapse of the mesoporous structure, agglomeration 



of the water-laden particles, and reduction in the surface area. T o  minimize the structural 

collapse, the samples were first heated at 150 "C to remove water, then the material was 

dried at a temperature ramp rate set between 1 and 10 "C/ min to  the temperature of 500 

"C and held at this temperature for 6 hours, followed by cooling to room temperature at a 

rate o f  20  "C 1 min. 

2.3. Characterization of Tungsten Oxide Powders 

Porous materials are principally identified by adsorption isotherms, XRD patterns 

and transmission electron microscopy. However, in our case, the powders were first 

analyzed by infrared and Raman spectroscopy because this instrumentation was readily 

available in our laboratory and provided a quick screening method of  the samples before 

proceeding to adsorption isotherm, XRD and TEM measurements. 

2.3.1. Raman Spectroscopy 

Raman spectroscopy was used because o f  the ease in identifying characteristic bands for 

sodium tungstates, hydrated tungsten oxide and W03. 42,66-70 For all samples except those 

that used Na2W04 directly (no ion exchange) , characteristic sodium tungstate bands in 

the 940-960 cm" range were not detected7'. A spectrum of  the hydrated tungsten oxide 

and tungsten oxide with sodium is shown in fig 2.2. For comparison, a Raman spectrum 

of  a typical porous sample and a commercial powder is shown. 
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Figure 2.2. Raman Spectra o f  (a) porous W03 sample A l  (b) nonporous W 0 3  sample 

C (c) hydrated W 0 3  and (d) W 0 3  produced using Na2W04 without ion exchange 



The similarity between Figure 2.2 a & b show that little, if any, hydrated tungsten 

oxide remains upon calcination. Major Raman bands at 807, 7 18 cm-' ( W - 0  stretching 

modes) and 273 and 136 cm-' (W-0  bending modes, 136 a n - '  is not shown) in Figure 2.2 

a and b are characteristic of monoclinic WO3. Miyakawa eta/ .  7 '  have shown that the 

Raman bands at 807 and 7 18 cm" were observed for monoclinic W 0 3  and do not change 

as a function of temperature indicating formation of highly stable monocrystalline W 0 3  

at temperatures up to 500 "C. 328 cm-' is a WO3 lattice mode. 

Raman spectra were collected using a Renishaw Raman Imaging Microscope 

System 1000. The system is equipped with a diode laser having h ,, =785 nm. Signal 

detection is archived through the use of a sensitive charge coupled device (CCD) array 

detector. 

2.3.2. Infrared Spectroscopy 

Infrared spectroscopy was used to detect the presence of residual surfactant 

(absence or appearance of C-H modes) and as a quick assessment of particle size and 

surface area. In brief, a smaller particle size exhibits less scattering of the infrared beam 

and is accompanied by more intense surface W-OH and adsorbed water modes.)) 

FTIR spectra were recorded on a Bomem MB-Series spectrometer with a liquid 

Nz cooled MCT detector. Typically 200 scans were co-added at a resolution of 4 cm-'. 

Spectra were recorded in transmission using a thin film technique7= or Diffbse Reflection 

Infrared Fourier Transform (DRIFT) using a Harrick Preying Mantis apparatus equipped 

with an environmental chamber. 
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Figure 2.3. Transmission cell used for IR experiments 

The transmission cell is shown in Figure 2.3. The W 0 3  powder was dispersed on 

an infrared window using minimal pressure and inserted into the cell. The cell was placed 

in the FTIR and could be evacuated by connection to a standard glass vacuum line or 

operated in a flow through arrangement using a carrier gas .The cell contained a hrnace 

region which enabled operation from ambient to 600 'C. Standard vacuum line 

techniques were used to deliver gaseous compounds to the cell. 

The DRIFT apparatus shown in Figure 2.4 was used in the UV illumination experiments. 

This cell was used instead of the transmission cell because the environmental chamber 

contained a glass viewing port which enabled UV illumination during collection of IR 

spectra. 
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Figure 2.4. DRIFT apparatus for IR measurements. 



2.3.3. BET (Brunauer Emmett and Teller) Surface Area Measurement 

NZ adsorption isotherms were used to measure surface area and pore size of the 

mesoporous W03.  Bninauer-Emmett-Teller (BET) surface area measurements for W 0 3  

powders were recorded on a Gemini 2360 Surface Area Analyzer Micromeritics 

instrument. The surface area measurement in this system is based on the volume of 

nitrogen uptake by a known amount of sample at liquid nitrogen temperature. Samples 

were degassed at 150 "C for 4 hours under dry nitrogen flow. Nitrogen and helium 

pressure was maintained to 25-30p.s.i.. The precision of the data from surface area was 

+/- 0.2 m2/ g at the 95% confidence level. 

The Brunauer, Emmett and Teller (BET) technique is one of the most widely used 

techniques in surface area measurements because of its high reproducibility in measuring 

the surface area of a wide variety of porous substances. This method was first described 

in 1 9 3 8 . ~ ~  For more reliable results, the sample is first degassed by heating the solid 

sample to about 1 10 "C to 150 "C under dry nitrogen flow or vacuum to get rid of 

absorbed water and other gases from the sample. The solid sample vessel in vacuum is 

cooled to approximately -196 "C using a liquid nitrogen Dewar. Then the amount of N2 

adsorbed by the sample at liquid N2 temperature is measured at various partial pressures 

of N2 up to the saturation pressure. The saturation pressure for nitrogen is generally close 

to the atmospheric under experimental conditions. The slight deviations from 

atmospheric pressure are primarily due to dissolved oxygen and other impurities in the 

liquid nitrogen surrounding the sample tube. These impurities raise the boiling 

temperature of liquid nitrogen." 



The experimental data of BET is generally expressed as an isotherm plot of 

adsorbed volume of N;! as a function of partial pressure. The partial pressure is calculated 

as a ratio of applied pressure to saturation pressure. Typical adsorption desorption curves 

are shown in Figure 2.5. The top curve is a desorption isotherm, where readings are first 

taken at the saturation pressure and then the pressure is systematically reduced and the 

nitrogen evolved is measured. In the lower adsorption curve, the isotherm is measured by 

starting at low NZ pressure and then measuring the volume of nitrogen adsorbed at 

gradually increasing pressure. 

The surface area is calculated from the adsorptive branch of the isotherm using 

the BET equation for multilayer adsorption equation 2.1, 

Where, 

P and Po are the equilibrium pressure and the saturation pressure of nitrogen at the liquid 

nitrogen boiling temperature, respectively. 

V is the volume adsorbed at the pressure P (mL STP per gm of the solid adsorbent) 

V, is the volume of the nitrogen corresponding to one complete monolayer of adsorbed 

gas (mL STP per gm of solid adsorbent), and C is a constant. 



For most compounds the BET equation applies reasonably well in relative pressure range 

0.05 to 0.35. A plot of 
P 

produces a straight line where the monolayer 
v(% - p) 

vo l~~rne  V, can be calculated from the slope and intercept. The surface area of the sample 

is calculated from determining V, assuming the area of a nitrogen molecule is 16.2 A'. 75 

2.3.4. Porosity and Pore Size Distribution 

Adsorption isotherms can also be used to distinguish between porous and 

nonporous materials. "An adsorption isotherm is a plot of the equilibrium amount of a 

substance adsorbed (in terms of coverage or uptake) against pressure of the adsorbing 

substance in the gas phase, measured at constant temperature." 77 These isotherms are 

measured using either gravimetric or volumetric techniques. The IUPAC Comn~ission on 

Colloid and Surface Chemistry recommended classifying sorption isotherms in porous 

media according to their qualitative behavior7' and they fall in six categories for 

adsorption systems. The calculations of the pore size distribution are based upon the 

measurements made at high relative pressure in the hysteresis loop area of Figure 2.5. 

Figure 2.6 shows these isotherms. A type I isotherm is a typical "ideal" 

chemisorption process where the amount adsorbed increases and reaches a plateau at 0=1 

and no hrther adsorption occurs. 

Here 8 is the fractional coverage and it  is given by formula 

(Eqn. 2.3) 

where, 

Nads : Number of adsorbate atoms per unit area 



Relative Pressure, PIP, 

Figure 2.5. Desorption (top part of hysteresis loop) and Adsorption ( bottom part of 

hysteresis loop) curves. Plot A starts with filled pores and Plot B starts with empty pores 

showing hysteresis in type IV i~otherm.'~ 



N, : the number of atoms/molecules adsorbed per unit area to produce one complete 

monolayer on the surface. 

In the case of physisorption, a type I1 type isotherm is observed where the 

monolayer plateau is first obtained followed by a second increase at higher partial 

pressure due to multilayer adsorption. Type 111 adsorption is associated with multilayer 

formation from the onset. Type I1 and Type 111 are characteristic of multiIayer adsorption 

on nonporous materials with type 11 due to strong and type 111 weak interactions between 

the solid and gas adsorbate. Types IV and V occur when multilayer adsorption occurs on 

a porous material with corresponding strong and weak fluid and solid interactions, 

respectively. Type VI interaction occurs when there is a strong fluid to wall interaction in 

nonporous materials at a temperature close to the melting point of the adsorbed gas.79 

Mesoporous materials give rise to type IV isotherms for N2 adsorption whereas 

their nonporous equivalents produce type I1 isotherms. The origin of the second sharp rise 

in the type 1V adsorption isotherm distinguishes the isotherm from a type 11 isotherm and 

its origin is illustrated in the four stage process shown in Figure 2.7. 
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Figure 2.6. Adsorption isotherms shown as coverage 6 or volume versus partial pressure 

of the gas77 
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Figure 2.7. Different stages in adsorption of gas molecules on a surface. 

Stage 1: Isolated sites on the sample surface begin to adsorb molecules at low pressure. 

Stage 2: As the gas pressure increases, the coverage of molecules increases to form a 

contiguous layer. 

Stage 3: Further increasing the gas pressure will cause the beginning of multilayer 

coverage. If the material is porous, the pore wall fills due to capillary action, producing 

the second rise in a type IV character adsorption isotherm curve. Smaller pores in the 

sample will get filled first. 

Stage 4: Still fbrther increases in the gas pressure will cause complete coverage of the 

sample and fill all the pores. 

Various adsorption models can be used to determine pore diameter, volume and 

distribution. Type IV behavior, also known as "hysteresis behavior", provides 

information on the porous substrates (see Figure 2.5). This behavior is a characteristic 



property of porous media where evaporation from pores requires much more energy than 

the condensation in pores. Evaluation of the adsorption and desorption branches of type 

IV isotherms and the hysteresis (Figure 2.5) that occurs between the two branches is used 

to extract information about pore size, pore volume, and pore shape. Pore volume and 

pore distribution is generally calculated using the Barrett, Joyner, and Halenda (BJH) 

method and requires both branches of the hysteresis curve.*' Given that the Gemini 2360 

could only provide the adsorption branch of the isotherm, we have used Saito and Foley's 

established method8' to calculate the pore size for our tungsten oxide powders. 

Saito and Foley's cylindrical model is an extension of the slit model by Horvath 

and ~awazoe".  Their assumption was a slab wall geometry with the slit walls comprised 

of two infinite graphite planes and adsorption occurs on two parallel planes. Saito and 

Foley proposed a cylindrical model with some assumptions (see Figure 2.8) The 

assumptions in Saito and Foley's cylindrical model are: 

(1) pores are perfect cylinders of infinite length but finite radius, 

(2) The inside walls of these cylinders are a single layer of atoms or oxide ions which 

is taken as a continuum of potential interaction. The interaction with the pore wall 

was taken to be due to only the dispersion forces as assumed by the Horvath and 

Kawazoe models2. 

(3) Adsorption occurs only on the inside wall of a cylinder. 

(4) The interaction of adsorption is taken to be only between the adsorbate and the 

adsorbent with adsorbate as an oxide ion in mesoporous materials. 



Figure 2.8. Cylindrical geometry where r, : radius of pore, do: mean diameter, dA: 

adsorbate diameter, dE: adsorbent diameter ( do = 0.5(dA + dE) 

Utilizing the parameters for the physical properties of surface oxide ion and N2 as 

the adsorbate, the cylindrical model equation 2.4 is: 

where, 

do : arithmetic mean of the diameter of adsorbent molecules in the wall and the adsorbate 

atom. 

r, : radius of the pore 



The expression coefficients ak and Pk in above equations are given in equations 2.5 and 

2.6 

(Eqn 2.5) 

(Eqn 2.6) 

where both cl, and Po are equal to 1.  

k is the index and it was varied from 0 to 100 as a close approximation to infinity for 

calculation purpose 

Equations 2.4,2.5 and 2.6 provide the relationship between the micropore size and 

relative pressure. This model gives the effective pore diameter (Desf) after correcting for 

the diameter of the tungsten oxideg3 with substituting for do equation 2.7. 

Deff = 2r - 0.276 nm ( Eqn. 2.7) 

The change in volume per change in DCff plotted against Deff ( dV/dDen.) gives values for 

the pore diameters and pore size distribution plots that are shown in chapter 3. 

Unfortunately, we could not verify to our satisfaction if these approximation can give 

sufficiently reliable results for mesoporous materials. We believe additional information 

from desorption isotherm may provide that information. Our group may acquire these 

facilities in near future and we may reveal additional data in future. 



2.3.5. X-ray Diffraction (XRD) 

XRD also provides key evidence for the existence of a mesoporous structure. In 

addition to the peaks identifying the crystalline structure of the material, the long range 

periodic pore structure leads to characteristic peaks at low 28 values. All XRD 

measurements were performed using a X2 Advanced Diffraction System which was 

equipped with a copper anode and a simple crystal lithium doped silicon peltier detector 

which has a 100% energy absorption from 2-20 Kev with a Beryllium window thickness 

of 0.005 inches. hc, K, = 1 S406 A 

2.3.6. Scanning Electron Microscopy (SEM) 

Particle size and shape was obtained by Scanning Electron Microscopy (SEM). 

SEM pictures were taken on an AMRay 1000 instrument at the University of Maine. This 

instrument has a resolution of 7 nm, a magnification range of 20- 100,000 X and 

accelerating voltage range of 1-30 kV. The powders were mounted on a eucentric 

goniometer stage, which enabled both tilt and rotation about the viewing axis. 

Sample Preparation: Samples were suspended andlor diluted in 95% ethanol. 

Several droplets of a sample were applied to a carbon underlayinent on an aluminum 

specimen support stub. The suspension was allowed to settle, and dry. After the samples 

were filly dry (overnight), they were sputter-coated with 200 angstroms of gold using a 

Conductavac I sputter-coater (Seevac Inc. Pittsburg PA). Samples were examined using 

an AMRay I000 SEM (AMRay Inc. Bedford MA), at 5 and 20 kilovolts. Polaroid type 

665 positivelnegative film was used for capturing images. 



2.3.7. Transmission Electron Microscopy (TEM) 

Dilute ethanol suspensions of the samples were applied drop-wise to specimen 

support grids with carbon-coated pioloform as a substrate. Suspensions were allowed to 

settle (approximately 2 minutes), and the remaining droplets blotted dry from the grid 

edge using hardened filter paper. After the samples were fully dry, they were examined 

with a Philips CM-I 0 TEM (Philips Electronics N.V., Eindhoven, The Netherlands) 

using a mean energy of 100KV. Photographs were taken using a Gatan Bioscan model 

792 digital camera (Gatan Inc. Pleasanton CA) running Digital Micrograph version 3.3.1, 

for the Macintosh Operating System. 



Chapter 3 

SYNTHESIS OF POROUS MONOCLINIC W 0 3  USING CATIONIC 

SURFACTANT TEMPLATING METHODS. 

3.1. Introduction 

An increase in the surface area of W03 powders using synthetic methods involving 

chelating agents or emulsion polymerization32 occurred because these methods produced 

smaller sized particles. Thesew03 powders had surface areas of about 20 m2/g (chelating 

agents) and 45 m21g (emulsion) giving rise to primary particle diameters of about 40 nm 

and 18 nm, respectively. A substantial increase in surface area by using synthetic 

methods to further reduce the particle size would be difficult because an 18 nm diameter 

particle is near the practical lower size limit for metal oxide powders. 

Alternatively, much higher surface areas could be achieved by incorporating porosity 

into the W03 particles. For example, nonporous silica particles produced by high 

temperature flame hydrolysis typically have surface areas of 50 m21g to 300 m2/g with 

particle diameters of 40 nm to 7 nmg3 In contrast, precipitated silica gels are much larger 

in size, (> 1 um in diameter) but these materials have surface areas of 250 m21g to 700 

m2/g due to their porous natureg4. The highest surface areas are achieved for mesoporous 

2 85 silica and these are in the range of I 100 to 1500 m /g Based on these surface areas 

obtained for mesoporous silica, we would anticipate a substantial increase in surface area 

with the successful fabrication of mesoporous or porous W 0 3  powders. 



The last decade has seen an explosion in the synthesis of a variety of novel 

mesoporous oxides whose structure and shape are defined by the self-assembled 

architecture of surfactants and polymers. The attraction lies in the simplicity in which the 

mesoporous structure can be tailored. Various architectures are possible by varying 

reaction parameters such as the nature and concentration of surfactant, choice of solvent, 

pH, ionic strength and dryinglcalcination protocol. Most of the work has been targeted to 

silica based mesoporous materials templated with ionic surfactants and this area is well 

established and developed.86 In contrast, there is much less work in defining synthetic 

routes leading to the fabrication of non-silica based mesoporous oxides even though these 

mesoporous oxides will have use in many industrial applications.87 The problem is that 

non-silica oxides are typically more difficult to fabricate into mesoporous structures 

because they are more susceptible to hydrolysis, redox reactions, phase transitions and 

often the structure collapses during the calcination step. Despite these synthetic 

challenges, various non-siliceous mesoporous materials such as A ~ ~ o ~ " ,  T ~ ~ o ~ " ,  snora9, 

~ i 0 ~ ~ ~ * ~ ~  and ~ b 2 0 5 ~ ~  have been produced. 

Most of the literature recipes used to generate mesoporous oxides rely on the use 

of ionic surfactants as the templating agent. From our perspective, the simplest approach 

would be to apply and if necessary, adapt the established protocols used for other oxides 

to the synthesis of novel mesoporous W03 powders. However, fabrication of 

mesoporous structures using Group VI elements such as tungsten are especially 

problematic because of their tendency to form stable ionic compounds rather than a 

93-95 polymerized oxide network. As a result, the synthesis of W03 particles using ionic 



surfactant based recipes have not been reported because the presence of common ions 

41.65 ( ~ a ' ,  NO3-etc.) leads to mixtures of W 0 3  and tungstate salts . 

Current methods to prepare W 0 3  generally start by passing Na2W04 through an 

ion exchange column followed by a condensation of the eluted H2W04 in a solution 

containing nonionic surfactants or polymers. Nano-sized W 0 3  powders have been 

recently fabricated using nonionic surfactant based emulsion polymerization 94 and the 

first example of mesoporous W 0 3  has been reported using self-assembly of nonionic 

PEO as the templating molecule96. 

The need to exclude common ions and ionic surfactants in generating mesoporous 

W 0 3  drastically reduces the number of synthetic routes and thus limits the number of 

possible architectures that could be generated for mesoporous W03. In this chapter, we 

show that the synthesis of monoclinicW03 powders is not limited to nonionic surfactants 

and polymers. In particular, we describe the synthetic protocols that lead to porous W 0 3  

generated with the same cationic based synthetic procedures used to fabricate MCM-41 

and MCM-48 metal oxide powders. While it is not clear that we have obtained 

mesoporous material because the high calcination temperatures collapses the templating 

architecture, it is found that the final material morphology and properties can be altered 

by using different surfactant templating architectures. Moreover, the resulting materials 

produced by surfactant templates are of interest because they are porous with high 

surface areas. 

Three synthetic approaches leading to porous W 0 3  are compared. In the first 

approach, Na2WOd is passed through an ion exchange column to remove ~ a +  ions and 

the HzWOs exiting the column is added to a solution containing cetyltrimethylammonium 



bromide (CTAB). In a second approach, the Na2W04 dissolved in water is added directly 

to the CTAB solution. In a third approach, we have used NH4W04 as a precursor in an 

attempt to develop methods that avoid the need for ion exchange. The WO, materials 

were characterized by XRD, TEM, SEM, N2 adsorption isotherms, infrared and Raman 

spectroscopy. 

3.2. Experimental 

3.2.1 Synthesis of Porous W 0 3  using MCM-41 Type Templating Architecture 

The experimental procedures for preparing the ion exchange columns, tungstic 

acid and post calcination procedures are described in chapter 2. W 0 3  was prepared by 

adding the H2WO4 effluent from the ion exchange column to an aqueous CTAB solution 

that is commonly used in the preparation o f  MCM-4 I mesoporous s i~ ica .~ '  In brief; 0.6 g 

of CTAB was dissolved in 5 mL o f  deionised water and stirred until the solution was 

homogeneous and clear. Then 2 mL of NH40H (32 wt %) was added to the CTAB 

solution and the solution was stirred for an additional 5 min. Next 25 mL of a freshly 

eluted solution of H 2 W 0 4  was then added to the CTAB solution; the solution was stirred 

for 24 hours and then allowed to continue the sol-gel polymerization process without 

stirring at ambient temperature for an additional 4 8  hours. The resulting yellow powder 

was filtered, then washed sequentially with ethanol and deionised water. The dried 

powder was then calcinated at 500°C for 5 hours. The temperature was raised at 1 "Clmin 

to 500°C and was decreased at a rate of 20 "Clmin to ambient temperature. The 

calcination step served a dual purpose of burning off the surfactant and conversion of the 

hydrated W 0 3  to the monoclinic form o f  the oxide.32 



3.2.2. Synthesis of Porous W 0 3  using MCM-48 Ternplating Architectures 

MCM-48 type materials were prepared by adopting standard recipes used in the 

synthesis of mesoporous silica.97 First, CTAB (1.6 g, 4.4 mmoles) was dissolved in 7 g of 

distilled water and this was added to 33 mL of technical grade ethanol (0.58 mol) and 8.5 

mL of aqueous NH40H (29.2 wt %, 0.14 moles). The solution was stirred for 10 min and 

then 25 mL of eluted H2W04 solution (1 0 mmoles of W03) was added. The mole ratio of 

the solution prepared was l mol W03: 12.5 mol: NH40H: 54 mol EtOH: 0.4 mol CTAB: 

174 mol H20.  The mixture was stirred for 24 hrs and then left undisturbed at room 

temperature for an additional 48 hours. The precipitate that formed was filtered and then 

washed with ethanol and then with deionised water. The calcination protocol was the 

same as used in section 3.2.1. 

3.2.3 Synthesis of Porous W 0 3  using (NHj)zW04'2Hz0 

To fabricate porous W 0 3  using (NH4)2W04'2H20, we used the same MCM-48 

type recipe with some minor modifications. First, 0.15 mL of 37.5% HCI was diluted 

with 3 mL deionised water and to this 0.5 g CTAB (I  .S mmoles) was added with stirring. 

After a uniform and clear solution was obtained, 1 g of (NH4)2W04'2H20 was added and 

the solution was stirred for 1 hour at ambient and then allowed to stand overnight at 

90 "C. The solution was cooled to room temperature and the pH was adjusted to a value 

between 6 to 7 with 37% HCI. The solution was then reheated for 3 days at 90 "C to 

complete the sol-gel process. A light yellow precipitate forms and this was then washed 

with deionised water, dried and calcined at 550 "C for 6 h. A slightly higher calcination 

temperature of 550 "C was required to remove all evidence of ammonia and to convert 

the hydrated W 0 3  to the monoclinic form. 



The mole ratio of the reagents used in the synthesis of various W03 san~ples is 

listed in Table 3.1. For example, the molar ratio used to generate the MCM-4 1 sample 

labeled A l was 1 mol Na2W03.2H20: 1.64 mol NH40H: 0.15 mol CTAB: 126 mol H20. 

Samples prepared using MCM-4 1 protocols are identified as Al to A4 and those prepared 

using MCM-48 protocols are designated as B I and B2. Two separate batches of each 

material were produced to test for reproducibility. The XRD patterns obtained for both 

batches of each material were the same. 

3.3. Results And Discussion 

3.3.1 Raman Spectroscopy 

Raman spectra were recorded in order to assess the degree of conversion of the 

hydrated W 0 3  to the monoclinic form and to detect the presence of sodium tungstates. In 

Figure 3.1, the spectrum of sample A1 in curve 3.la is shown and this spectrum is 

identical to the spectrum of the nonporous sample C powder prepared by( curve 3. l b) an 

emulsion polymerization.32 The Raman spectrum for sample A1 is also identical to the 

spectrum obtained for samples A2, A3, B 1 and B2 ( spectra not shown ). In figure 3.  Ia 

and 3.lb characteristic sharp bands at 81 1,723,330,274 cm-' due to various W - 0  modes 

of the monoclinic form of W03 are observed 98. The presence of hydrated WO3 gives 

rise to characteristic broad bands at 807 and 704 cm-' (see curve 3. l c) and these are not 

observed in the spectrum of sample A I or C. The presence of sodium tungstates produce 

characteristic bands at 950 cm-' with a shoulder at 790 cm' 1 66-71,99 and these too are not 

observed in the Raman spectra of samples A 1 or C. In contrast, the Raman band due to 



Table 3.1. Mole Ratios of Reagents 

Na2 W04 NHjOH CTAB Water Ethanol 

Al 1 1.64 0.15 252 0 

A2 I 1.64 0.15 160 0 

A3 1 1.64 0.15 126 0 

B1 1 12.5 0.4 174 54 

Ammonium Tungstate 

B2 1 12.5 0.4 174 5 4 

Without column 

A4 1 1.64 0.1 5 252 0 



sodium tungstates appears in sample A4 or when Na2W04 is used as a precursor 

regardless of the initial concentration of the Na2W04 (see curve 3. Id). 

3.3.2. X-ray Diffraction (XRD) 

Figure 3.2 shows the XRD pattern for sample A l and a nonporous monoclinicW03 

powder (sample C). Before calcination, sample A1 has numerous XRD peaks above 20" 

along with a peak at 20 = 8.6", whereas sample C shows weak broad peaks. AAer 

calcination both sample C and A 1 show characteristic peaks above 28 = 20" that are due 

to the monoclinic form of W03. In the region below 28 = 20°, the XRD pattern of sample 

A1 (curve 3.2a) shows a sharp band at 28 = 7.32" and this corresponds to a d-spacing of 

12.0 A. Peaks below 28 = 20' are not present in the nonporous sample C and therefore 

bands in this region are characteristic of the longer range periodicity within sample Al .  

An attractive feature of synthetic methods used in generation of MCM-41 type 

mesoporous oxides is that it is possible to tune the pore size through changes in the 

synthetic procedures and conditions. For example, it has been shown that an increase in 

the Si precursor to CTAB ratio leads to different types of mesoporous silica. 97, 100-104 

Samples A2 and A3 are prepared using MCM-41 based recipes in which the tungstic acid 

to CTAB is kept constant and the CTAB to water ratio is increased. By increasing the 

CTAB to water ratio, the packing density of the rod-like micelle in the templating 

architecture increases. '05 
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Figure 3.1. Raman Spectra of (a) sample A 1 (b) nonporous W 0 3  sample C (c) 

hydrated W O j  and (d) W 0 3  produced using NazW04 without ion exchange (sample 

A4). 



28 degrees 

Figure 3.2. XRD spectra of uncalcinated and calcinated W 0 3  (a.) Uncalcinated A1 

sample, (b) A1 sampled after calcination at 500 "C, (c) non-porous C sample before 

calcination and (d) non-porous sample after calcination at 500 "C. 



The XKD patterns for samples A1 -A3 recorded prior to calcination are shown in 

Figure 3.3 and the corresponding patterns obtained for the same samples after calcination 

are shown in Figure 3.4. The XRD pattern for the uncalcined sample A2 shows similar 

patterns to A l  above 20" and different peak positions below 20". For sample A3, a 

completely different pattern from either samples A 1 or A3 emerges in which there a 

multitude of peaks is located across the entire region. All three samples show XRD peaks 

at low 2 9 values which is indicative of a long range periodicity within the material. As 

found with sample A 1, calcination of samples A2 and A3 lead to a change in the long 

range periodicity ( peaks below 20" disappear or shift their 2 9  positions) along with 

characteristic XRD peaks of a monoclinic W03,  The positions of the main peaks for 29 < 

20" are listed in Table 3.2 along with their respective d spacing. 

Table 3.2. XRD Low Angle Peaks 

I After Calcination 

Sample I XRD20 I d spacing 



Intensity (arbitrary units) 



Intensity (arbitrary units) 



The absence of XRD peaks in sample C before calcination is expected and consistent 

with formation of hydrated amorphous tungsten oxide network. In sample Al ,  an 

amorphous tungsten oxide network would also form but in this case, the structure would 

exhibit long range periodicity arising from the surfactant templated architecture. The 

most likely explanation for the numerous peaks above 20" in the XRD patterns for 

samples A 1 -A3 is that they are due to CTAB polytungstate salts. Tungstate salts are 

known to produce numerous XRD peaks in this region (for example, see the XRD pattern 

of Na2W04 in Figure 3.3.). 

Evidence supporting a decomposition of the CTAB polytungstate salts after 

calcination is provided by the Raman spectra shown in Figure 3.5. Figure 3.5a and 3.5b 

are the spectra of sample A 1 recorded prior to calcination and after calcination, 

respectively. The Raman peaks at 1004,977 and 950 cm-I in Figure 3.5a are not due to 

CTAB ( see Figure 3.5c), hydrated W03 (see Figure 3.lc ) or monoclinic W03 (Figure 

3.1 b) but rather are characteristic of tungstate ions.'' The broad bands located at 660 cm" 

and 226 cm-' in Figure 3.5a is indicative of a highly hydrated polytungstate. The 

spectrum in Figure 3.5a shows that a polymerized tungsten oxide network forms that is 

negatively charged with CTAB cations as the counter ion. After calcination, this network 

is converted to monoclinic W03, giving rise to a Raman spectrum with distinctive peaks 

at 807 and 7 18 cm-I (Figure 3.5 b). 



Raman Shift (cm-I) 

Figure 3.5. Raman spectra of sample A2 (a) before calcination and (b) after the 

calcination step. Curve (c) is the Raman spectrum of solid CTAB. 



The Raman spectra of uncalcined samples A I -A3 are shown in Figure 3.6. The 

Raman spectrum of Na2W04 is provided for comparative purposes. Thus, similar 

information was obtained from both XRD patterns and the Raman spectra for these 

samples. As with the XRD patterns, the Raman spectra for samples A 1 and A2 are very 

similar and differ from the spectra obtained for A3. The bands due to a hydrated 

polytungstate are much weaker in the Raman spectrum of sample A3. At the higher 

CTAB/H20 loading in sample A3, there is less hydrated polytungstate and the spectrum 

is more like that of an ionic salt giving rise to Raman and XRD data closer to that of 

simple tungstate salts. 

The XRD peak pattern for the precalcined sample B1 is shown in Figure 3.7 and 

the corresponding Raman spectrum is shown in Figure 3.6.d. The Raman spectrum 

shows that a tungstate salt similar to the sample A3 is formed. While the appearance of 

XRD peaks at low 28 values provide evidence of a surfactant templated structure, it is 

noted that the XRD peak pattern for sample B 1 is different from those obtained for 

samples A1 -A3. This is expected given that a MCM-48 surfactant based recipe should 

lead to a cubic structure instead of a hexagonal array generated with MCM-4 1 based 

lo6 recipes. However, it is found that the peaks obtained for the uncalcined sample B 1 in 

the low 28 region do not index to a body-centered cubic structure that is expected when 

using a MCM-48 ternplating recipes. On closer inspection of the literature, the 

assignment of MCM-48 to a body-centered cubic structure based on XRD data is 

debatable. Although it is generally accepted that MCM-48 produce body centered cubic 

structures indexed in the space group 1a3d107, the XRD peaks in the original paper 
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Figure 3.6. Raman spectra of uncalcinated and Na2 W04 



describing the synthesis of MCM-48 materials'06 and those in subsequent articlest0' do 

not index to a body centered cubic structure. In the end, the structure of MCM-48 

materials remains ill-defined. 

2 0 ( degrees ) 

Figure 3.7. XRD spectra of W03  top curve showing B 1 sample before calcination 

and bottom curve showing B1 sample after calcination at 500 "C. 

After calcination of sample B1, all XRD peaks are removed and replaced by 

characteristic peaks of a monoclinic W03  along with a series of sharp peaks in the region 

below 20". The sample labeled B2 also follows this trend producing a series of bands in 

the low 20 region. Here we limit our discussion to sample B1 as the analysis of sample 

B2 will be discussed in section 3.3.6. As found for the AI-A3 samples, the severe 

calcination process resulting in the formation of monoclinic W03  lead to a collapse of the 

long range periodic structure in MCM-48 templated materials. While the calcination step 



for both A and B samples lead to peaks at low 2 8  values, samples A 1 - A3 are dominated 

by a single XRD peak in this region whereas the sample B 1 gave rise to a series of peaks. 

For sample B 1, the peak pattern below 20" is very similar to those reported for 

mesoporous MCM-48 silica''', but again, the peaks do not index to a body-centered 

cubic structure. 

3.3.3. TEM Micrographs 

TEM micrographs are important because they provide a visualization of the 

templated structure. Figures 3.8 and 3.9 shows the micrographs of samples A1-A3 and 

B 1, respectively. There are differences in the general features of samples A 1 -A3 

compared to sample B 1 .  Sample A 1 clearly show a crystal habit whereas B 1 appears as a 

noncrystalline spherical particle. A thin section of sample B 1 shows a honeycomb type 

structure whereas it is not observed in samples A1-A3. Thin sections of both samples A l  

and B 1 also show long range periodicity with the appearance of parallel planes spaced at 

regular intervals. This ordered pattern explains the appearance of XRD peaks below 20". 

The spacing between the parallel planes is approximately 12 A and 28 A for samples A 1 

and B 1, respectively. A 12 A and 28  A d-spacing would produce XRD peaks at about 2 8  

values of 7" and 3" and this is consistent with the XRD peaks observed for these two 

samples. Sample A 1 has a single XRD peak at 7-12" whereas sample B 1 has two peaks 

at 2.72" and 3.09". The second order peaks for sample Bl would be assigned to peaks at 

5.42" and 6.14" and third order peaks are located at 8.16" and 9-13". Other peaks located 

at 6.84" and 7.28" in sample Bl remain unassigned. Note that these parallel planes are 

not observed in the TEM micrographs of nonporous sample C (see Figure 3.10) and we 

recall the XRD pattern of sample C has no bands below 20". 



Figure 3.8. TEM micrograph of sample A l .  Small part in circle in a is magnified in 

picture b. (a) A1 (b) A1 sample magnified (c) A2 sample (d) A3 sample 



Figure 3.9. TEM micrograph o f  porous WO3 samples (a) B1 sam 

shows sample B 1 under higher magnification (c) B2 sample. 

picture 



Figure 3.10. TEM micrograph of non-porous W 0 3  sample. 

A similar structure of parallel planes in the TEM micrographs of MCM-48 based 

mesoporous silica has been reported when viewed along the cubic [ I  101 plane.'07 In this 

article, the spacing of the planes was approximately 30A and was used as an estimate of 

the pore size. It  is tempting to assign the B 1 structure to a cubic mesoporous material 

given that both the XRD pattern and TEM micrograph of sample BI are similar to those 

reported for MCM-41 mesoporous s i~ica . '~ '  However, it is unlikely that the WO3 samples 

have retained a mesoporous structure because the conversion of the amorphous W 0 3  

material to a crystalline material results in the collapse of the surfactant template. This is 

in contrast to the preparation of mesoporous silica in which the calcination temperature 

usually does not exceed 400°C, the XRD pattern does not change drastically during 

calcination, and there is no transformation from an amorphous to crystalline state.'08 

Given that we have generated a crystalline material, a plausible explanation for the 

appearance of parallel planes in the TEM micrographs of sample A 1 and B 1 it that it is 

simply due to formation of crystallographic shear planes'09 



3.3.4. SEM Micrographs 

From a materials standpoint, we find it interesting that the starting CTAB architecture is 

important in dictating the final material properties of the calcined product. The TEM 

micrographs and XRD show that the materials produced with MCM-4 1 based recipes 

differ from those starting with MCM-48 type recipes and this is consistent with the 

pictures of the SEM micrographs shown in Figures 3.1 1. Samples A 1 -A3 that are 

templated with MCM-41 based recipes lead to large platelet materials whereas sample B1 

appears as micron-sized spherical particles. 

The surface topology of sample A 1 -A3 are also quite different from B 1. Sample 

Al  shows a highly "wrinkled" surface with many pores whereas the surface of sample 

B1 resembles interwoven tubular structures. The continuation of this entangled web of 

tubular structures into the internal volume could explain the honeycombed pictures 

obtained by TEM. 

3.3.5. Nz Adsorption Isotherms 

From our perspective, the most interesting property of the surfactant templated 

W 0 3  materials is that the calcined materials have relatively high surface area. The 

measured BET (N2) surface areas are given in Table 3.3. For MCM-41 based samples 

(A I-A3) the surface areas are 98 to 120 m21g whereas the surface areas MCM-48 based 

samples are slightly higher at 130-1 50 m21g. These surface areas are substantially higher 

than the surface areas obtained for nonporous powders generated from emulsion based 

methods (about 40 m21g) or those using chelating agents (about 20 m21g). 



Figure 3.1 1. SEM picture of sample porous W 0 3  (a and b) BI,  (c) B2, (d) A 1, (e) A2 and 

(f) A3. 



Table 3.3. d-Spacing and Surface Area of Samples. 

Sample Type XRD d Surface Area 

2 8 W m21g 

Al MCM-41 7.32 12.0 120 

A2 MCM-41 13.2 6.71 112 

A3 MCM-41 20.6 4.31 98 

B1 MCM-48 several - 150 

B2 MCM-48 several - 130 

Both chelating and emulsion based methods achieved a higher surface area 

powder by reducing the size of the W03  particles. For a spherical particle the surface to 

volume ratio is calculated as: 

Surface - 4.7r.r2 3 
volume - = ; ( Eqn 3.1) 

Where r is the radius of the particle. 

Surface areas are usually quoted in units of m2lg by including the density of the material: 



3 
Surface. Area(S. A.) = - 

r-p 
(Eqn. 3.2) 

where p is the density. 

For the nonporous powders of 20 m21g, the particle diameter calculated using 

equation 3.2 is about 40 nm. This calculated particle size is consistent with the diameter 

of these particles shown in the TEM micrograph (see Figure 3.10) and measured by 

S E M ~ ~ .  Based on the much higher surface areas obtained for samples A 1 -A3 and B 1,  

smaller particles of diameters in the range of 5.5-7 nm would be predicted. However, the 

SEM pictures in Figure 3.1 1 of both A and B series powders show that the particles are 

several microns in diameter. The external surface area for a 2 pm particle would be 0.4 

m21g and therefore can not account for the measured areas of 98- 150 m21g. 

It is noted that the above spherical model is an oversimplification as the SEM 

pictures clearly show that the external surface area of both A1 -A3 and B 1 particles are 

highly "wrinkled". While this "wrinkling" effect would lead to an increase in the external 

surface area, it is unlikely that the highly wrinkled W 0 3  surface would account for the 

factor of 300 times difference between a measured surface area of 150 m21g and the 

surface area of a smooth micron sized nonporous particle of the same size. It is noted that 

roughening of the surface of nonporous silica particles is a common practice to increase 

surface area but this process only leads to a 30 to 50% increase in area. 83 

The combination of high surface area and large particle size is indicative of a 

porous material. Nonporous fumed silicas have surface areas ranging from 50 m21g to 

380 m2/g whereas porous silica gels are much larger particles (> 1 um in diameter) and 

have surface areas of 250 m21g to 700 m21g. Although at first glance the surface areas 



obtained for W03 are not as impressive as those obtained for silica, one must remember 

that the density of the oxide enters into the surface area calculation. Thus a 150 m21g 

surface area for W03 (density of 7.2 g/cm3) would be equivalent to a silica (density of 2.2 

m21g) of 490 m21g. This is in the porous domain as nonporous silicas with surface areas 

near 500 m21g are not available. 

Additional evidence supporting the formation of a porous W03 is provided by the 

N2 adsorption isotherm. Figure 3.12 shows the N2 adsorption isotherm of samples A I ,  

B1, B2 and C. While the nonporous W03 powders (sample C) exhibits a characteristic 

type I1 isotherm, the mesoporous samples A 1, B 1, and B2 are typical type IV isotherm 

with a characteristic sharp inflection due to capillary condensation inside a porous 

material. The PIP, location of the sharp step in the adsorption isotherm provides a 

measure of the pore size while the sharpness of the step is a measure of the pore 

distribution.lo7 It  is possible that the sharp inflection is due to adsorption on a 

heterogeneous surface containing both strong and weak adsorption sites. However, this is 

unlikely because infrared studies show that the adsorption behavior of water, pyridine 

and methanol are similar on samples A2, B1 and c."' 

The appearance of a sharp step at the relative pressure range of PIP, = 0.2-0.3 is not 

associated with adsorption in micropores but rather with capillary condensation in a 

mesoporous material having pores greater than 20 A in size. Thus Al ,  B 1 & B2 samples 

possess some level of mesoporosity. By inspection of the curves in Figure 3.12, sample 

B 1 and B2 have have larger pores and a narrower pores size distribution than sample B1. 



PIP, 

Figure 3.1 2. N2 Adsorption Isotherms for porous samples B 1, B2,A 1 and a non 

porous C sample is shown as curve d for comparison 



3.3.6. Porous W 0 3  Generated using (NH&WOJ as the Precursor 

The synthesis of porous W 0 3  required the initial step of passing the sodium 

tungstate through an ion exchange column. All our attempts at making mesoporous W 0 3  

by adding a solution of sodium tungstate directly to the CTAB solution failed in that it 

lead to mixtures of sodium tungstates and W 0 3  with low surface area (< I m2/g). It is for 

this reason that nonionic surf act ant^^^ and polymersy8 have been the main approach for 

synthesis of mesoporous W03. However, our results clearly show that the presence of 

ions such as CTAB cations can be used as templating agents in the sol-gel polymerization 

of monoclinic W03.  The failure to get mesoporous W 0 3  in the presence of metal cations 

may be due to crystalline and non-volatile nature of the tungstate salts. 

It has been shown that a change in ~ a '  concentration during the precipitation of 

tungsten oxide dihydrate leads to considerable changes in morphology of the grains."' 

The ~ a '  form salts with tungstic acid during calcination, disrupting the formation of the 

long-range mesoporous architecture. This does not occur with CTAB because the 

tungstate salts formed with the CTAB cation are easily decomposed with heating to 

elevated temperature. We recall that the Raman spectra of all uncalcined samples 

showed that CTAB tungstate salts formed during the sol-gel process and that these 

decompose during calcination to form a monoclinic W03. 

The success of using a CTAB cation in the synthesis of W 0 3  lead us to attempt 

the synthesis of porous WO3 using (NH4)2WO~ as a substitute for Na2W04. As found in 

the CTAB cation, the ammonium ion should also decompose with the calcination step 

and lead to the formation of a porous W03. In this case, the use of the ammonium 



tungstate would have the advantage of eliminating the slow and tedious step of using an 

ion-exchange column. 

The Raman, XRD and N2 adsorption data of sample B2 showed that a 

mesoporous W 0 3  material was produced using (NH4)2W04. The Raman spectrum (not 

shown) was identical to the spectrum shown in Figure 3.1 a. This shows that the hydrated 

W 0 3  was fully converted to a monoclinic W03. As with sample B 1, the XRD pattern 

produced several peaks at low 29 values along with peaks due to monoclinic W03. (see 

Figure 3.13) 

Figure 3.13. XRD of MCM-48 samples B1 and B2. 

The N2 adsorption isotherm of sample B2 was type IV and the surface area for B2 

was 130 m21g and this is slightly lower than the 150 m21g obtained for sample B1( Figure 



3.12). We attribute the slightly lower surface area to higher calcination temperature of 

550°C compared to 500°C used with the NazWOj produced material. A 20-60% decrease 

in the surface area for non-porous W 0 3  has been observed when calcination temperature 

is increased from 500UC to 5 5 0 0 C . ~ ~  While 500°C is the preferred maximum calcination 

temperature, material produced using (NH4)2W04.2H20 showed residual amounts of 

N H ~ '  and hydrated W 0 3  when calcinated at 500 "C. These were eliminated by increasing 

the temperature to 550 'C. 

3.4. Summary 

We report here the synthesis of porous monoclinic W 0 3  using cationic surfactant 

based recipes as templating molecule. Though the synthesis of W 0 3  films and powders 

have been reported using nonionic surfactants, our work shows that unique materials can 

be produced using cationic surfactant based recipes. Both MCM-41 and MCM-48 type 

synthetic methods were used in preparation of porous W 0 3  using CTAB as the 

templating molecule and Na2W04 or NH4W04 as the precursor. When using Na2W04 as 

a precursor, i t  is important to remove ~ a '  ions during the synthesis as this leads to 

sodium tungstates, which disrupts the formation of the mesoporous oxide. However 

mesoporous W 0 3  is produced when metal cations are removed by ion exchange or 

replaced with combustible cations (CTAB, NH~+) .  Removal of ~ a '  is accomplished by 

first passing the Na2W04 through an ion exchange column. The use of (NH4)2W04 has an 

advantage in that no ion exchange column is needed. The NHJ+ cations are easily 

removed during the calcination step but this requires a slightly higher temperature which 

leads to a slight reduction in the surface area. 



Chapter 4 

SIZE SELECTIVE DETECTION IN POROUS W 0 3  BASED SENSORS 

4.1. Introduction 

As discussed in Chapter 1, the development of new approaches that would lead to a 

reduction in the number of "false alarms" is a critical requirement for SMO sensor 

technology. Given the success in fabricating porous W03, the next step was to 

investigate the usefulness of these materials in improving detection selectivity in a 

working sensor. Detection selectivity is anticipated because the access and adsorption of 

a gas molecule in the interior pore structure of the porous W03 would be size dependent 

leading to a size dependent magnitude change in conductivity of the SMO sensor. In 

essence, use of the porous W03 incorporates a filtering approach directly into the sensor 

element itself. It is noted that the powder based sensors have been shown to be equal in 

sensitivity with thin film based sensors. Therefore any improvement in selectivity 

obtained by using the porous W03 powder sensors would occur without a sacrifice in 

sensitivity. 

Work at LASST has centered on nerve agent detection and the structures of two 

agents are shown in Figure 4.1. For obvious safety reasons, research on nerve agent 

detection in academia is accomplished with benign analogues. The choice of the simulant 

depends on the particular nerve agent characteristic to be mimicked, and by far, the most 

common molecule used as a simulant is DMMP. The structure of DMMP is shown in 

Figure 4.1. 
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Figure 4.1. The Structures of Nerve Agents, Tabun, Sarin and Simulant DMMP 

showing their relative size and shapes. 

There have been numerous infrared studies on the adsorption of DMMP on oxide 

surfaces and the general findings are described by the reaction equations shown in 

Figure 4.2. On most oxides such as A1203, 112-1 15 Ti02P1,1 14.1 16.1 17 WO~:'.' l 4  ~a203,'" 

MgO,l 14.1 15.1 18-121 Fe203,1 15,122-124 and ~ ~ 2 0 , ' ~ ~  DMMP adsorbs through the P=O 

hnctionality and decomposes via elimination of the methoxy groups at elevated 

temperatures producing a stable methyl phosphonate (phosphate in the case of Fe203) 

on the surface. This is in contrast to the adsorption behavior on silica, where DMMP 

adsorbs via a hydrogen bond between the methoxy modes and the surface SiOH 

groups with subsequent evacuation at elevated temperature resulting in the complete 

desorption of intact DMMP molecules from the surface." 
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Figure 4.2. Reaction equations of DMMP at elevated temperature on various metal 
oxides 



The decomposition of DMMP on W 0 3  liberates methanol in the process, and it is the 

subsequent oxidation of methanol to formaldehyde that leads to a change in 

conductivity.118 Since the mechanism of signal generation for DMMP and methanol are 

the same, (i.e., oxidation of methanol) developing a method that can distinguish between 

DMMP and methanol has been a critical goal and benchmark for demonstrating detection 

selectivity for toxic nerve agents by this technology. 

4.2. Experimental 

Development of the sensor platform is a major task in itself which lies outside the 

scope of this thesis. Dr. Lad's group at LASST has been at the forefront of sensor 

platform research and their platforms have been used with our W 0 3  powders.127 In brief, 

Sensor platforms were prepared using photolithographic lift-off techniques. The sensor 

platform, a 6 mm square device, is composed of an interdigitated electrode pattern 

composed of 300 nm of platinum on 20 nm of zirconium as an adhesion layer. The 

substrate is R-cut sapphire. The reverse side contains a serpentine heater and a resistance 

temperature device (RTD) of the same material as the electrode. To produce the sensor, 

photoresist was spun on a clean 3 inch sapphire wafer. After a soft bake at 1 15 "C, the 

electrode pattern was produced using an ultraviolet mask aligner. After development, the 

wafer was hard baked at 1 15 "C and placed in an ultra high vacuum chamber for metal 

deposition. Zirconium and platinum were deposited using electron beam evaporation.128 

Subsequently, the wafer was placed in a photoresist stripper to remove the excess metal. 

The heaterIRTD side of the wafer was then processed identically. After removal of the 



excess metal, the wafer was rinsed in solvents and deionised water, then placed in a 

furnace at 500 "C to stabilize the platinum. Before introduction of the powders, the wafer 

was diced into individual sensors. 

A suspension of W 0 3  powders (25 mg) in 1 mL of deionised water was prepared 

and sonicated for 30 minutes. A drop of the suspension was placed on the sensor 

platform to cover the electrodes and dried in a nitrogen environment. W 0 3  powder films 

produced with this simple deposition procedure were remarkably robust and stable, 

routinely generating sensor data over months of operation at temperatures above 300 'C. 

Furthermore, the powder based sensors showed good sample-to-sample reproducibility as 

the response signal was insensitive to variations in powder film thickness. Above a 

minimum threshold thickness, the rapidity and magnitude of the sensors response to 

target gas pulse showed little, if any, thickness dependence. Both the nano-sized 

nonporous and porous powder sensor show very fast response to a gas pulse because the 

migration of bulk lattice oxygen to the surface is dictated by particle size ( or wall 

thickness in porous materials ) and not the thickness of the powder layer deposited on the 

sensor platform. Below a minimum thickness the devices usually failed because the films 

were not contiguous with large cracks appearing leading to an equivalent electrical open 

circuit. 

The RTD of each sensor was then calibrated in an oven at various temperatures up 

to 400 "C. The response of the film was measured at the same time. After RTD 

calibration, the sensor platform was bonded into a standard header. The sensors were 

then placed in a test chamber and heated using a Watlow temperature controller. 

Temperatures ranged from room temperature to 400 "C. Several samples were also 



prepared by calibrating the RTD prior to the W03 powder films being placed on the 

electrodes. Therefore, these devices were not heated prior to introduction into the test 

chamber. 

Once bonded into a header package, the sensors were placed in a stainless steel 

test chamber in a chemical fume hood. A picture of the test chamber is shown in Figure 

4.3. A principle advantage of this test chamber is that up to four sensors can be tested 

simultaneously to the same gas pulse. The entire test system is composed of eight Tylan 

General mass flow controllers, each mixed and plumbed into one inlet for the test 

chamber. The ability to perform simultaneous measurements on more than one sensor 

element is a critical element of the work described in this chapter as the selectivity is 

derived from normalizing the sensor response obtained from the mesoporous W03 

sensors to the same response obtained for a nonporous W03 sensor. 

Four powder 
sensors 

Stainless steel 
chamber 

Gas inlet 
Electrical 
connectors 

Figure 4.3. Sensor testing device 
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A test protocol program written in C+ controls each mass flow con t ro~ le r . '~~  The 

same program also records the resistance of each sensor by cycling through the four 

sensors in the test chamber starting with sensor I .  Data is collected by a HP 34970A 

Data Acquisition System. The operating temperature was fixed at 360 C and target gas 

flow rate was 100 sccm. The test protocol consists of first flowing air with all 

hydrocarbons removed, zero air, for 20 minutes to establish a baseline. Second, the target 

gas is switched on for five minutes, followed by a two-minute purge of the target gas line. 

Third, the system flows zero air over the sensors for either 20 minutes or 40 minutes to 

again establish a baseline. For this experiment, only one target gas line was used. 

Following exposure to the selected target gas, the input line was switched to a 

new target gas. The target gas methanol was supplied at a pressure of 30 psig. However, 

for the other targets, a bottle of gas was not prepared. In this case, following exposure to 

methanol, the input line was placed in a bottle containing the alcohol and left above the 

liquid level. The bottle was then sealed with the gas line inside. 

After stabilization of the film, the sensors were tested against a series of random 

pulses of the five alcohols and DMMP with a minimum of three separate pulses per 

alcohol (at least 15 random alcohol pulses in total). The alcohol pulses were performed 

before DMMP because the alcohols do not poison the sensor enabling repeated 

measurements. The last gas pulse was reserved for DMMP as this led to poisoning of the 

sensor, and thus ending its usefulness for hrther testing. 

Prior to performing sensor testing with random alcohol sequences, a series of 

measurements using sample A2 and sample C coated sensors were performed to examine 

device-to-device reproducibility. On four separate occasions, new sensor platforms were 



coated with sample A2 and C powders and the response of these sensors measured to 

pulses of methanol and DMMP. The device-to-device reproducibility was high and data 

from these measurements are included in the calculation of error bars (95% confidence 

level ) in Figure 4.7. 

The shape and size for the structures for Figure 4.4 and 4.5 were obtained from 

Hyperchem program. 

4.3. Results and Discussion 

The space filling models of DMMP and methanol depicted in Figure 4.4 show that the 

largest diameter of DMMP is about 5.71 A and for methanol it is 2.8 A in diameter. 

Methanol DMMP 

Figure 4.4. Methanol and DMMP space filling models and their sizes 



Thus, obtaining size selectivity in detection between methanol and DMMP, would 

require a microporous material with pores larger than 2.8 A and less than 5.71 A. By 

definition mesoporous material has pore sizes greater than 20 A and these larger pores 

would not be expected to get exhibit size selectivity between adsorbed methanol and 

DMMP. 

At first glance, the use of a porous WOs samples with pore sizes between 3-5.5 A 

will operate as a selective sensor for methanol rather than the target DMMP or the even 

larger sized nerve agents. This is in an opposite direction to our goal. The intent is to 

detect the larger DMMP or nerve agents whereas methanol is an interferent giving rise to 

false alarms. While methanol would adsorb inside 3- 5.5 A pores, the larger DMMP (5.71 

A diameter) would be excluded from the inner pore area and this exclusion would be 

more severe for the even larger nerve agents. The solution to this problem is to operate 

the sensor in a difference detection mode where the response of a target molecule on the 

porous W 0 3  is compared to a second sensor containing the nonporous W 0 3  powder. 

On the nonporous W 0 3  sensor, there should be minimal, if any size dependence 

in the availability of surface sites to the target gas. In contrast, a molecule too big to enter 

a pore will result in a lower adsorbed amount on the porous based sensor, leading to a 

lower change in resistance relative to the same signal measured on the reference, 

nonporous W 0 3  sensor. Hence, the lower the change in resistance, the larger the 

difference when exposed to the reference sensor. 

4.3.1. Adsorption of Methanol and DMMP 

In chapter 3 we clearly showed that porous W03 materials were fabricated. 

However, the exact nature of the pore size distribution is currently not known. While the 



NZ adsorption isotherm for these material show a sharp rise in PP,  at 0.2-0.3 nm 

characteristic of mesopores, determination of the microporosity (if any) requires analysis 

of the adsorption isotherm in the PRO < 10 -3 region. This low pressure range is below the 

operational range of our Gemini instrument. Although we now have IR data suggesting 

that there is a size dependant adsorption occurring on the porous powders, our initial 

choice to perform powder based sensor tests using sample A2 and A3 material is in 

hindsight, fortuitous and were based solely on the fact that these materials showed large 

differences in sensor response to methanol and DMMP. 

To hl ly  explore a possible size dependence in selectivity, we have performed 

experimental measurements not only with the two test molecules of methanol and 

DMMP, but also with a series of alcohols of different shapes and sizes. The additional 

alcohols used were ethanol, isopropanol, t-butanol and 2-hexanol and their structures and 

relative size are shown in Figure 4.5. 

Figure 4.6 shows a typical sensor response curve to three consecutive gas pulses 

of methanol, t-butanol and DMMP. The upper curve is the data obtained from the porous 

A2 sample and the lower curve is the response obtained from the nonporous C sample 

W 0 3  sensor. The curves are on the same ordinate scale and are offset for clarity. 

It is noted that the gas pulses were done without strict controls on the dosing 

protocol. The carrier gas was simply passed over a vial containing the alcohol for a 

period of about 2 minutes. This means that each pulse was ill-defined with no control in 

concentration and mixing with the carrier gas. While this would account for pulse-to- 

pulse differences in the magnitude and shape of the sensor response on the same detector, 

i t  is noted that the shape including the fine features of the response on each sensor for the 
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Figure 4.5. Space filling models of various alcohols showing relative size and shapes 

same pulse was very similar. This is not surprising as both sensors are in contact with the 

same ill-defined gas pulse at the same time. While the initial slope of the change in 

resistance was rapid for both mesoporous and nonporous sensors, the slope was always 

steeper on the nonporous oxide and this is perhaps indicative of a slower difision of the 

gas in the porous oxide. However, the variation in the initial slope showed large pulse-to- 

pulse variations in value for repeated measurement to the same target gas. Therefore, no 

trend was discernable from the initial slopes for different gases. Given the ill-defined 

nature of the gas pulse, the result is consistent with recent work by Frederick e t d .  129 that 

showed the pulse-to-pulse variation in the initial sensor response is controlled by the gas 

delivery system. 
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By far, the biggest difference in sensor response for these sensors to a given gas 

pulse was the relative change in magnitude in resistance. While the magnitude of the 

resistance change for methanol is about the same on both sensors in Figure 4.6, the 

magnitude of the response is clearly lower for both t-butanol and DMMP on the 

mesoporous sensor relative to the nonporous material. For each pulse, we calculated the 

change in conductivity ( A C ) with equation 4.1 : 

I I AC=---- ( Eqn. 4.1) 
'Pu lse  ' D u s e  

where RPulse is the resistance measured in the plateau region of the pulse and RBase 

is the based resistance measured just prior to the gas pulse. An example of the selection 

points for RBase and RPulse are indicated for the methanol pulse in Figure 4.6. 

The value of A C is proportional to the number of carriers generated in the WO, 

which is related to kinetics of the redox reaction of the surface with the gaseous 

molecule. The A C obtained on each mesoporous WOs sensor is then ratioed to the 

corresponding A C obtained on the nonporous W 0 3  sensor (ACporoUs /A Cnonpor,us ). A plot 

of this ratio versus volume of the molecule is given in Figure 4.7 and these curves clearly 

point to a selective detection method for methanol from DMMP. The error bars in Figure 

4.8 represent the 95 % confidence level. 

It is possible that the difference in ACp,,o,s /A C,on,o,,u, arises from different 

reaction chemistry on the nonporous and porous materials. This would alter the kinetics 

of the surface reduction and hence change the number of charge carriers under steady 

state conditions. However, our infrared data suggests that there is very little difference in 

the adsorption behavior of the various alcohols on sample A2 or the nonporous sample C. 

Figure 4.8 shows the FTIR spectra of sample A2 and sample C. Of particular note is the 
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Figure 4.7. ACporous /A Cnonporous value as  a hnct ion o f  size o f  the molecule 

similarity in the intensity ratio of the two bands at 1394 cm-' and 1124 cm-' on 

both materials which indicates the same relative amount o f  undissociated and dissociative 

adsorption on both materials. The band at 1394 cm-' is the 0 - H  bending mode of 

molecularly adsorbed water and the band at 1124 cm-' is the 0 -C  structure mode of 

adsorbed CH3 group on the surface.'29 
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Figure 4.8. FTIR of Methanol on porous and nonporous tungsten oxide. 

This similarity in the IR spectra o f  methanol on the sample A2 and A3 is also 

observed for other alcohols and DMMP used in this study. However, we note that 

changes in the conductivity can arise from minute changes in the surface kinetics. Thus 

the IR data does not eliminate the possibility that the difference in sensor response is due 

to differences in reaction kinetics arising from subtle differences in surface chemistry. 

4.3.2. Adsorption of a Series of Alcohols 

On the other hand, the IR data does support a size selectivity explanation for the 

detection selectivity. In a series of thin film infrared experiments, samples A2,A3 and C 

were evacuated at room temperature and exposed to the saturation vapor pressure o f  

various alcohols. Typical spectra obtained on the nonporous W 0 3  are shown in Figure 

4.9. Each alcohol produces unique bands that could be used to measure the relative 



adsorbed amount of each alcohol on all three powders. For each alcohol, the value 

obtained for the integrated intensity of a C-H bending mode was first normalized by the 

value obtained for the intensity of the W 0 3  bulk mode. This value gives the relative 

adsorbed amount of the alcohol per gram of W 0 3  probed by the IR beam. 

15'00 
Wavenumber (cm-1) 

Figure 4.9. Typical FTIR spectrum of various alcohols adsorbed on W 0 3  

For a given alcohol, we then compute a second ratio in which the above values for 

the adsorbed amount per gram of W 0 3  on the porous sample is normalized by the same 

value obtained on the nonporous oxide. A pIot of this normalized value as a function of 

the size of the alcohol is shown in Figure 4.10. The trend obtained from the infrared 

measurements clearly show the strong correlation between the relative amount of 

adsorbed alcohol and the AC,o,,u, /A Cnon,o,,u, values plotted in Figure 4.7. 
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Figure 4.10. Relative adsorbed amount of various alcohols on W 0 3  samples A2 and A3 

as determined by IR spectroscopy 



We recall that, our initial intent was to develop a strategy for distinguishing 

between methanol and DMMP in SMO detection. This is clearly demonstrated as the 

ACporous /A Cnonporous for methanol is about 0.8 and for DMMP this value is 0.2 for both 

porous materials. This is a factor 4 of a difference in magnitude and this same factor is 

obtained when comparing methanol to t-butanol. Similarly, the IR also shows a large 

difference in adsorbed amounts of methanol relative to t-butanol. The adsorbed amount 

ratio for t-butanol is a factor of 2.5 times lower than the value obtained from methanol. 

Given the large difference in both adsorbed amount and ACPOrOUS /A CnOnPOrOUS 

measurements as a function of size of the alcohol. We conclude that with a narrow pore 

size distribution we expect a sharp reduction in ACpo,,,, /A Cn,nporou, values with 

molecules too large to f i t  in the pores if the difference arises from the microporosity of 

the W03  material. The fact that a sharp size selectivity is not observed could be due to a 

combination of a wide pore size distribution coupled with a size independent contribution 

from adsorption on the highly "wrinkled" external surface. 

Perhaps more interesting is that the results point to a strategy for developing a 

very narrow "Notch" detection system. For example, the data in Figure 4.7 show that by 

comparing the response from two closely related porous powders, we have a system that 

can detect ethanol. This is shown in Figure 4.1 1 .  A possible explanation for this effect is 

that a slight difference in the pore size distribution between the two porous materials 

enhances the capillary condensation of ethanol over methanol. This produces a higher 

relative adsorbed amount of ethanol leading to highly selective "Notch" detector. In 

principle, this concept could be applied to any size molecule. In the case of DMMP, we 



predict that two porous materials with average pore size distribution near 5.7 A and 

different pore size distribution would lead to a DMMP notch detector. 

2.2 1 

Ethanol 

Hexanol 
DMMP 

Volume in cubic angstrom 

Figure 4.1 1. Ratio of response of A2 sensor to A3 sensor for each alcohol 

4.4. Summary 

Use of porous W03 materials in SMO detection has been shown to provide a route to 

achieve detection selectivity between methanol and DMMP. The key to achieving 

detection selectivity is to perform measurements on a dual detection system in which the 

response of a sensor based on porous powder is compared to that of a nonporous 

counterpart. IR adsorption measurements show that the difference in sensor response is 



due to a size dependent difference in the adsorbed amount of the target compound on the 

surface of the porous W 0 3  relative to the amount adsorbed on a nonporous W 0 3  powder. 

As a final comment, we believe the strength of this approach is in its simplicity. 

Identification of a particular molecule is not done by comparing the response of different 

gases on a single sensor, but rather the same gas pulse on two different detectors. While 

each pulse has different pressures and gas delivery characteristics and different gases 

would have different reaction rates, these differences are normalized in calculating the 

values for the curves in Figure 4.8 and Figure 4.1 1.  



Chapter 5 

UV ILLUMINATION OF W 0 3  POWDER SENSORS 

5.1. Background 

In the last chapter, we demonstrated a size selective approach to improving 

selectivity in SMO sensors and this was obtained by tailoring the architecture of the W03  

powders. However, we recall that the original intent in establishing a research effort in 

the synthesis of W 0 3  powder was not to produce new sensor material but rather, to 

generate material with sufficient surface area to enable IR adsorption studies. In this 

respect, the porous oxides also represent a factor of 3 improvement in surface area 

compared to the highest area material produced by the emulsion-based synthesis. The 

porous W 0 3  had surface areas in the 1 10-1 50 m21g range whereas the highest surface area 

obtained for nonporous W 0 3  material was 45 m21g. Given that the same high surface area 

WO3 powders are amenable to both IR studies and sensor fabrication, we are now in a 

position to use the IR studies to gain a molecular understanding of the sensor behavior 

and to provide some insight to the development of new materials and approaches in an 

array-based detection system. Current and planned IR studies in nerve agent detection 

include photooxidation catalysts and powders impregnated with metal catalysts as well as 

the detection of other hazardous sulfur-based molecules (SOz, H2S, mercaptans) and NOx 

compounds. 

In this chapter, we examine the potential use of UV illumination as a means to 

increase selectivity in SMO sensors. For photooxidation catalysts such as Ti02, it is well 

known that UV radiation of energy above the band gap generates electron-hole pairs that 



migrate to the surface to initiate redox reactions leading to the decomposition of many 

organic m o l e c ~ l e s . ' ~ ~  While Ti02 is the most widely used photooxidation catalyst, W03  

also has the same band gap of 3.2 eV as Ti02 and when W03 is radiated with UV light 

this material is well known to exhibit photochromism.'3' In WO3 powders, the 

photochromism is due to the injection of H' and electrons132 (or 0 ~ 3 ' ~ ~  into the W 0 3  

lattice to produce a tungsten bronze structure. w + ~  is partly reduced to wfS or w + ~  in the 

tungsten bronze and the blue coloration of the material results in electron transfer 

between adjacent w + ~  and w5 or w+' While the source of the H' is adsorbed 

water, it remains unclear as to whether the decomposition of the water is initiated by 

electron-hole pairs generated in W03 or by direct ionization under UV illumination. 

Our interest in UV illumination of WO3 stems from its potential use for selective 

oxidation of specific adsorbed compounds on the surface, thus providing an additional 

selective lever in a sensor array approach in SMO detection. Given the emphasis of nerve 

agent detection at LASST, our work in this chapter has focussed on photodecomposition 

of DMMP on W03. Using our two pronged approach, we performed both infrared studies 

and sensor measurements with and without UV illumination. The infrared studies under 

UV illumination were used to identi@ the conditions leading to decomposition of DMMP 

as well as for identifying the species formed on the surface. However, a sensor could 

also respond to UV illumination alone as the generation of electron-hole pairs or tungsten 

bronzes would cause a change in conductivity in the base material. Therefore, we also 

needed to measure the sensor response in order to understand the impact of UV 

illumination on the conductivity of the bare W03 powders as well as during exposure to a 

target gas pulse. 



5.2. Experimental 

The UV lamp was obtained from Pen-Ray (part # 90-0030-01) and produced 254 

nm radiation at a power density of 3 milliwatts/cm2 measured at a distance of 0.5" from 

the source. In the infrared measurements using DRIFT (See chapter 2 for details on the 

DRIFT accessory) the UV lamp was placed against the environmental viewing port at a 

distance of about 1 cm away from the powder sample. For the sensor testing data, the top 

plate of the sensor chamber was modified with a viewing port containing a UV-grade 2 

in. glass disc. The UV lamp was placed in intimate contact with the glass window at a 

distance of approximately 4 cm from the sensor surface. All other experimental details 

are provided in chapter 2. 

5.3. Results and Discussion 

5.3.1. IR Studies 

The infrared spectra of adsorbed DMMP on the WOs powder evacuated at various 

temperatures have been reported by Kim et. Figure 5.1 shows the spectra obtained in 

the low frequency region after the addition of DMMP on a nonporous powder at room 

temperature (curve a) and subsequent evacuation at elevated temperatures. 

The assignments of the various bands are listed in Table 5.1. In brief, Kim et. a/. 

showed that the features associated with the methoxy group decrease in intensity at 

200'C and disappear at 350 "C (bands at 2955,2854, 1064 and 1037 cm-') whereas the 

methyl group (band at 13 13 cm" remains at 350 'C along with several P - 0  bands in the 

1200 -1000 cm-' region associated with a methyl phosphate species remaining on the 



surface. The removal of the methoxy group results in the formation of methanol and it is 

the subsequent oxidation of the methanol on the W 0 3  surface that leads to a change in 

conductivity.'26 

Figure 5.2 shows the infrared spectra obtained for DMMP adsorption under UV 

illumination. An excess quantity of DMMP vapor was added to the W 0 3  powder at room 

temperature for 5 minutes, the cell was evacuated, and spectra were recorded as a 

function of time of illumination. No change in the spectrum was observed for 

illumination over a period of 24 hrs. It was only after the sample was exposed to air that 

noticeable changes did occur in the spectrum. The curves in Figure 5.2 were obtained as a 

hnction of time of illumination in air and the changes that occur are very similar to the 

spectral changes with evacuation at elevated temperature shown in Figure 5.1. We 

therefore conclude that the adsorbed DMMP decomposes under UV illumination in air to 

form a methyl phosphate. 

In a separate experiment, there was no decomposition of adsorbed DMMP 

observed when the UV illumination is performed in the presence of N2 gas instead of air. 

0 2  is needed for this reaction to occur and it is most likely that decomposition of 

adsorbed DMMP occurs because of reaction with oxygen radicals or ozone generated by 

the UV lamp and not a photooxidative process involving W 0 3  or by 0- adsorbed on the 

surface. There is evidence provided by ESR '34 showing that the electron-hole pairs 

formed by irradiation of a metal oxide can be captured by surface hole trapped centers 

leading to formation of reactive 0' sites. The presence of stable 0- species on the surface 

of silica supported W 0 3  catalysts at room temperature have been detected by ESR 

spectroscopy~35 
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Figure 5.1. IR spectra of DMMP adsorbed on nonporous W 0 3  at a) 27 "C and then 

evacuated at the specified temperature for 30 minutes. All spectra were recorded at room 

temperature. 



Table 5.1. A Summary o f  Rand Assignments for DMMP Adsorbed on TiOz and W03 

Surfaces at 27 "C. 

Ti02 wo3 Assignments 
3006 2998 va (CH3), v (CH30) 





Given that a change in resistance in the W 0 3  sensor is due to reaction with lattice 

oxygen and not ozone or oxygen radicals in the air, it is possible that the UV illumination 

will still be an approach to aid in detection selectivity in SMO sensing because the UV 

illumination could accelerate the methanol production or lower the temperature at which 

the sensor could operate. While the results with DMMP do not exclude other molecules 

from being directly photooxidized by W03,  it does show that we need to understand how 

UV illumination and secondary reactions such as ozone generation alter the operation of 

a W 0 3  based sensor. 

5.3.2. Sensor Testing under UV Illumination 

Figure 5.3 is the sensor response curve obtained for methanol pulses on a 

nonporous W 0 3  sensor operated at 400 'C. The sensor response to the first pulse was 

recorded with the UV lamp off and the response to the second pulse was recorded under 

UV illumination. UV illumination did not have any effect on the sensor response to the 

alcohol pulse. There is no change in the base resistance when the UV lamp was turned on 

or off and the initial drop in resistance was the same for both methanol pulses. We 

anticipated a change in the base conductivity with the generation of electron-hole pairs 

and this was not observed. 

The results obtained with the sensor operating at 400 "C are in contrast to the 

change in resistance when a powder sensor is illuminated at room temperature. The curve 

in Figure 5.4 shows a sharp and immediate lowering of the resistance after the UV lamp 

was turned on. After I minute of UV exposure, the lamp was turned off and this resulted 

in a slow gradual return to the base resistance. In a second experiment, the resistance 

change was measured under continuous UV illumination at room temperature and the 



sensor response is shown in Figure 5.5. As in Figure 5.4, there was an initial rapid drop 

in resistance when the lamp was turned on but this time, it was followed by an increase in 

resistance to a value well above the starting base resistance. 
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Figure 5.3. Sensor response curve to methanol pulses at 400 "C using a nonporous W 0 3  

powder sensor. 



In metal oxides, both electrons and ions can be charge carriers. Since the mobility 

of electrons is typically I 0'- I 0' times higher than the mobility of ions, the concentration 

of ionic carrier must be lo4-] 0' times higher than the concentration of electronic carriers 

before ionic conduction is a contributing factor to the overall conduction of the materiallo 

The density of electrons and holes in W 0 3  has been estimated at lo5 1 cm3 at 500 K 'O. By 

increasing the temperature, the conductivity of W 0 3  increases because there is an 

increase of carriers due to the generation of sub-stoichiometric W03-, and because of an 

increase in the number of electrons in the conduction band due to thermal excitation. For 

example, Barak and ~ i e n k o ' ~ ~  have measured carrier concentrations of 5x 1019/ cm3 at 

417" K for W03-0.0076. This value is 1 oi4 times greater than the estimated carrier 

concentration for stoichiometric W03. 

This larger difference in electron carrier concentration at room temperature and 

400 "C could explain why a change in resistance is observed only at room temperature 

with UV illumination. At room temperature, the number of electron-hole pairs generated 

by UV illumination with sufficient energy to be excited in to the conduction band would 

result a in significant increase above the background carrier conduction. In contrast, at 

400 "C the additional number of carriers generated by UV illumination would have a 

negligible contribution and thus would not leap through a perceptual change in resistance. 

Using mobility data for WO3 thin film sensorsI3', we have estimated that an increase in 

carrier concentration on the order of 1 016 /cm3 for stoichiometric W 0 3  would be needed 

to generate a drop in resistance with UV illumination shown in Figure 5.4. This value is 

significantly higher than the lo5 /cm3 for stoichiometric W 0 3  and insignificant to the 



1 0 ' ~ - 1 0 ' ~ / c m ~  carrier concentration in substoichiometric W03_, produced with heating to 

400 "C. 

However, it  is unlikely that the initial rapid drop in resistance when the UV lamp 

is turned on in both Figures 5.4 and 5.5 are solely due to generation of electron-hole 

pairs. The electron-hole recombination process in photoelectric devices is much faster 

than the gradual return to the base resistance that is observed when the lamp is turned off 

in Figure 5.4. Ion mobilities are typically lo4-lo8 times slower than electron-hole 

mobilities and thus a more plausible explanation for the sharp decrease in resistance is 

that the UV illumination is forming a tungsten bronze through intercalation of H+ ions. It 

has been shown that the H' ions result from the decomposition of adsorbed water by 

optically generated electron-hole pairs138. At room temperature, the surface is covered 

with a layer of strongly adsorbed water33 providing a source of H', and the migration of 

these H'and electrons into the WO3 would lead to an increase in the conductivity of the 

material. The subsequent gradual decay when the lamp is turned off is due to the slow 

migration of the H' from the powder. 

The difference in the curves in Figures 5.4 and 5.5 is most likely due to oxidation 

of the powder by the ozone generated by prolonged UV illumination. This was confirmed 

by repeating the prolonged UV illumination experiment in a flowing N2 gas. In this case, 

after the initial drop in resistance, there was a slow small increase to an equilibrium base 

resistance that was still lower than the starting base resistance. (not shown) The 

implication of the ozone oxidation to a higher base resistance is that the starting material 

was already in a partially reduced state which was most likely due to the presence of a 

small amount of tungsten bronze. 
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Figure 5.5. Resistance change under continuous UV illumination at room temperature. 

The finding that tungsten bronzes are present in the starting powders helps explain 

a longstanding, yet unexplained feature of both thin film and powder based W 0 3  sensors. 

Both powder and thin film sensors require an initial "bake in" to 400°C as the resistance 

change during the initial heating cycle is completely different from subsequent heating 

cycles. A typical example of this behavior is shown in Figure 5.6. The resistance is 

measured as a function of temperature and the temperature ramp rate was 2 'C. During 

the first ramp in temperature, the resistance change follows the path labeled "A". In path 

A, there is an initial rapid drop in resistance at relatively low temperature that plateaus 

nears 170°C followed by a slight increase to a maximum occurring at about 380 "C and 

then a second decrease to 400 "C. At 400 "C the temperature is lowered and the 

resistance follows path 'B". Afler this initial "bake in" to 400°C, subsequent heat-cool 



cycles retrace path "B" of the curve. While there are subtle differences in the curve 

depicted in Figure 5.6 from sensor-to-sensor, the general features described above occur 

in every W 0 3  sensor tested at the LASST facility. 

Since the resistive change along path A was of little consequence to the sensor 

operation (as a precautionary measure all sensors are first heated to 400°C) there was 

little effort to explain the origin of this behavior. It was generally accepted that Path A 

was the consequence of impurities or defect sites occurring during thin film preparation 

that were removed during the first heat cycle. However, the fact that the same curves are 

obtained in thin film sensors and in our recent powder work would make an impurity 

argument suspect at best. It is doubthl that the same impurities present in a UHV 

generated film would appear in a surfactant/solution generated powder. Moreover, the 

curve in path A appears despite the fact that both powder and thin films are first calcined 

at 500°C prior to the wire bonding step. Furthermore, we have found that sensors that 

have passed through one heat-cool cycle will retrace path A provided that these sensors 

sit on the shelf at room temperature for a period of a week before being retested. 

An increase in temperature leads to both an increase in the number of carriers 

through an increase in "x" in W03., and an increase in the number of electrons in the 

conduction band by thermal excitation. Both of these effects combine to lower the 

resistance of the W03 sensor with increasing operating temperature and can not explain 

the increase in the resistance that occurs between 250 'C and 380°C in path A. One 

possible explanation for an increase in resistance with temperature below 250°C and 

380°C in path A is that, it is due to surface conductivity arising for a continuous network 

of water adsorbed on the surface 139,140 Using infrared spectroscopy the relative amount 
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Figure 5.6. Characteristic plot of base resistance vs temperature for a W 0 3  sensors. 



of adsorbed water on the W 0 3  powder surface was measured as a function of evacuation 

temperature,33 and this curve is shown in Figure 5.7.From the water desorption curve it 

was concluded that there were two types of water on the surface; a weakly bound layer 

that could be removed by evacuation at room temperature and a strongly bound layer that 

requires heating to 400°C to be completely removed from the surface. The resistance 

passes through a maximum at 380°C because at temperatures above 380°C, the resistance 

is no longer dictated by a depletion of the contiguous adsorbed water layer but rather by 

the temperature dependence of the bulk conductivity. Once all the water is removed, the 

material follows path B as dictated solely by the lattice oxygen concentration and thermal 

excitation of carriers. 

However, there is several inconsistencies with the water adsorption/desorption 

curve determined by infrared measurements and the sensor resistance curve shown in 

Figure 5.6. Once a sensor is heated to 400°C, it then follows path B with repeated 

temperature cycles from room temperature to 400°C. It does not return along path A. 

However, when a W 0 3  powder that had undergone one cycle (heat to 400 "C, cool to 

room temperature) is then exposed to air, the infrared spectrum shows an immediate 

readsorption of water to the original level. With a second temperature cycle, the water 

desorption follows the same curve shown in Figure 5.7. In other words, the water 

desorption curve shows no hysteresis behavior in that it is identical with repeated 

temperature cycles from room temperature to 400 "C. 
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While water is a contributing factor, we believe that it is the combination of 

adsorbed water leading to the presence of tungsten bronze in both the thin film sensor 

that gives rise to the hysteresis in the curve shown in Figure 5.6. Even though both 

powder and thin film sensors are calcined at 500°C before the wire bonding step, these 

sensors are only tested several days later. This is the critical time delay needed to form 

tungsten bronzes. Our UV illumination results suggest that there is a small amount of 

these bronzes present in the starting material and that they both form and decompose 

slowly with time. To support this conclusion, we recall, it is found that the shelf time is a 

critical factor in duplicating a path A response in a sensor. When a powder sensor that 

has undergone a hll complete cycle (heat to 400°C, cool to room temperature) is allowed 

to sit on the shelf for a week, it  will reproduce path A behavior when retested. 

5.4. Summary 

IR studies have shown that UV illumination at room temperature leads to 

decomposition of DMMP on W03 to form a methyl phosphonate. However, it is unlikely 

that this will lead to a method for improving detection selectivity in W03 based sensor as 

the decomposition does not involve lattice oxygen. The UV illumination experiments did 

reveal the presence of tungsten bronzes in the thin films or powder based W03 material. 

While tungsten bronzes can be eliminated by heating the sensors to 400°C , their presence 

was used to explain the anamolous resistance changes that occur during the first 

temperature cycle. 



Chapter 6 

FUTURE WORK 

This work clearly shows that we have generated inherently porous materials that 

lead to selective detection between methanol and DMMP. Additional work in both 

material design, characterization and in sensor testing are clearly needed. Synthesizing 

different pore size W03 as well as other metal oxide @no2) sensors could open a new 

route to improve the selectivity in the sensors. The mesoporous structures for W03 are 

fragile but it is known that organic and inorganic additives and binders can stabilize the 

structures. Obviously, choosing proper additives that will not interfere with the sensor 

response may or may not be easy. In future synthesis of this material this option could 

also play a valuable role in applying higher selectivity since structures will be more stable 

and this can be used to sense larger molecules. Method to directly fabricate porous W03 

on the sensor platform may lead to the orientation of pores in the films. Additional 

characterization as N2 adsorption to determine the morphology and XPS to determine 

degree of reduction of the materials also need to be investigated. In terms of sensor 

testing, there are plenty of additional studies that could be conducted. Certainly, samples 

A 1,  B I and B2 should be tested for size selectivity. The robustness of the approach 

should also be examined by controlled measurements at different target concentration and 

at different temperatures. 
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