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A 3-D microelectronic inductor has been fabricated and characterized for use 

as a magnetic flux sensor, also known as a telecoil, for a hearing aid application. This 

telecoil was fabricated in a 0.5pm CMOS process with three metal layers. The 3-D 

structure is more space efficient than conventional spiral inductors and allows for an 

optimal number of turns for the space available. The telecoil has an inductance of 80pH, 

a resistance of 34kR, and a capacitance of 275pF. 

The integrated telecoil acts as a magnetic flux sensor by picking up the magnetic 

signal fiom the phone speaker. The integrated telecoil is smaller than commercially 

available telecoils, which may allow telecoils to be available in all types of hearing 

aids. The electrical response of the telecoil to a changing magnetic field is linear with 

respect to the input amplitude. Neglecting the noise associated with lower frequencies, 

it is shown that the telecoil response is not dependent on frequency, which agrees with 

theory. The magnitude of the telecoil signal is of the form of A + 5 where r is the 

distance between the speaker and telecoil, which differs from the theory. The increase 

in response due to the addition of a permeable core is much lower than expected. 

When the telecoil is combined with a high-gain low-noise amplifier, it can easily 

be integrated with existing microelectronic hearing aid designs. Therefore the Cherry 



Hooper amplifier and a single-ended amplifier were investigated. A single stage Cherry 

Hooper amplifier design was simulated at a gain of 29 dB, THD of -SO&, and equivalent 

input noise of 2.01%. A three stage Cherry Hooper design (identical stages) with 

a filter has a simulated gain of 84 dB, THD of -49dB, and equivalent input noise of 

2.01%. The three stage amplifier also has a bandwidth of 3kHz and a driving capacity 

of 30pF external load capacitance. The complete single-ended amplifier design was 

simulated at a gain of 67dI3, THD of -48dB, equivalent input noise of 45.3%, and 

driving capacity of I n .  external load capacitance. More research is needed to obtain 

conclusive experimental parameters of the amplifiers. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Hearing aids often make use of a magnetic flux sensor called a telecoil. A 

telecoil responds to magnetic flux variations rather than acoustic vibrations. There are 

two primary applications for telecoil compatible hearing aids. The first application is 

in conjunction with a conventional telephone. The sound from the telephone speaker 

is produced by an electromagnet operating on a diaphragm. In a hearing aid without 

a telecoil, a small microphone in the hearing aid picks up the acoustic signal from the 

diaphragm of the phone speaker and transfers it into an electric signal. The electric 

signal is then amplified and used to drive a speaker in the hearing aid. In contrast, the 

telecoil converts the magnetic signal from the electromagnet to an electric signal. The 

electric signal from the telecoil can then be fed into the same amplification sequence 

as the signal from the microphone as shown in Figure 1.1. The telecoil makes use of 

inductive coupling as opposed to acoustic coupling and produces a tone clear of acoustic 

interference. 

The second application of a telecoil compatible hearing aid is called an Inductive 

Loop (IL) System. A portable IL System can simply consist of several loops of wire 

attached to an amplifier which plugs into the "line out" port on electrical equipment. 

More permanent installations require higher quality equipment to prevent "spillage" of 

sound outside the loop as well as added costs to hide evidence of the IL System from 

consumer view. Also, it has been shown that since using an IL system requires very 

little work or equipment to implement it is more cost efficient than a competitive FM 

system and therefore provides greater benefit to the consumer[2]. The basic principle 
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Figure 1.1: System level block diagram showing a complete hearing aid signal processing system[] 1. The shaded grey blocks form the 
section addressed by this thesis. 



underlying an IL System is that the telecoil inductively couples with the wire coil of the 

IL system instead of the electromagnet in a phone receiver. 

Current hearing aids have several ways to access the signal from the telecoil. 

The most basic design uses a switch with a telecoil position (T) and a default micro- 

phone position (M). An MIT position (both microphone and telecoil active) has recently 

become popular. The MfT option primarily benefits students who participate in group 

projects and therefore need to hear their classmates as well as the teacher. Some hearjng 

aids even offer a "touchless" T position so that when exposed to a strong magnetic signal 

the telecoil will automatically turn on[3]. 

The telecoil circuit is ideal for phone use, concert halls or anywhere a loudspeaker 

or public address (PA) system is used. In Europe (esp United Kingdom), concert halls 

have an IL System as a common service to their patrons. Concert halls in the US seem 

to rely on IR or FM communication systems which require bulky added equipment such 

as special microphones, speakers, andfor special headphones on each patron. Some of 

the IR or FM systems broadcast to a personal IL system around the neck, which then 

allows the telecoil in the patron's hearing aid to pick up the signal[2]. 

About 10% of the population would benefit from the use of hearing aides, and 

only 20% of those people who need them actually have hearing aides. Two common 

obstacles to getting a hearing aid are cost and vanity. People often do not want to admit 

they want a hearing aid or they do not want other people to know that they need one. 

Also, the hearing aid user almost always has to pay for a hearing aid themselves as very 

few health insurance policies cover hearing aid costs[4]. 

1.2 Pnrpose of the Research 

Due to the miniaturization of telecoils (Figure 1.2), telecoils can now be included 

in almost all hearing aid models except the completely-in-the-canal (CIC) model (approx- 

imately 20% of the hearing aid market)[2]. However, commercial telecoils consist of 



Figure 1.2: Example size of several telecoils. 



thin wire wrapped around a permeable core by use of a mechanical winding machine[5]. 

This process produces low yield and high production costs which are passed onto the 

consumer. Therefore even though telecoils can be included in most hearing aids, not all 

hearing aid users want to bother with the added expense[3]. 

This research investigates a way to hrther reduce the size and cost of manufac- 

turing telecoils by use of integrated semiconductor technology. Finding a way to implement 

a telecoil and a hgh-gain low-noise auho amplifier in an microelectronic technology 

would lower cost and size of telecoils. Therefore the prices of hearing aids could 

decrease and the hearing aid itself could become more discrete, encouraging more of 

the population to get their needed hearing aids. 

This project concentrates on the integration of a telecoil and audio amplifier on a 

single integrated circuit. This combination could be combined with current hearing aid 

circuits to form a completely integrated hearing aid. A properly designed telecoil will 

maximize the number of turns of wire for the fabrication technology utilized as well as 

having a constant sheet resistance. The audio amplifier should be linear in the audio 

spectrum and have high gain and low noise. 

1.3 Thesis Organization 

This thesis is organized to give background information on the physics of telecoils, 

followed by the design and testing of telecoils, and then the design, simulation, and 

testing of low noise amplifier circuits combined with the telecoil. 

Chapter 2 gives in depth information on the physics of telecoils. 

Chapter 3 describes the design process and testing results of the telecoil. 

Chapter 4 describes the design, implementation, and testing of two different 

analog amplifiers. 

Chapter 5 gives a summery of the results as well as suggestions for future work. 



CHAPTER 2 

TELECOIL PHYSICS 

2.1 Faraday's Law of Induction 

A telecoil consists of many loops of wire surrounding a permeable core. According 

to Faraday's Law of Induction [6], the electric field induced in a closed loop is directly 

proportional to the rate of change of the magnetic flux through the surface bounded by 

that loop. This phenomenon is described by 

where C is the closed loop, ds is a small section of the loop, I? is the electric field and 

QL3 is the magnetic flux. A telecoil has many turns of wire and therefore consists of 

many loops all connected together. The total induced voltage (emf) in the telecoil is 

therefore described by 

dsP, emf = - N -  
dt  

where N is the number of wire loops in the telecoil. 

Figure 2.1 shows a common hearing aid configuration[l] using a telecoil in 

conjunction with a telephone speaker. The signal from the telephone can send signals 

two different ways to the hearing aid. The first path involves the microphone. The 

diaphragm of the telephone speaker vibrates in the air and creates an acoustic signal. 

The microphone picks up the acoustic signal and translates it into an electronic signal. 

Signal processing is then employed with amplifiers and filters as shown in Figure 1.1. 

The second pathway takes the signal from the electromagnet in the telephone speaker. 

This electromagnet creates a changing magnetic field around the telephone speaker. 

When the consumer places their ear near the phone, a telecoil is able to measure this 

6 
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Figure 2.1 : Signal reception from a telephone speaker. The shaded boxes represent the scope of this project. 



signal as described by use of Faraday's Law of Induction (Equation 2.2). This signal is 

usually much smaller than the signal the microphone would pick up, so a preamplifier is 

required before reaching the rest of the hearing aid circuitry. The signal from the telecoil 

is void of acoustical interference. 

Let the voltage across the inductance of the speaker em f k  be a sinusoidal voltage 

defined by 

em fk = K sin(27r ft) (2.3) 

where K is the peak amplitude of the signal and f is the frequency of the signal. The 

speaker contains an electromagnet that follows Faraday's Law of Induction. Therefore, 

the magnetic flux cPb 'created' by the electromagnet can be described by 

where Nk is the number of wire loops in the speaker. 

The magnetic field strength H' induced depends on the geometry and material 

properties of the electromagnet as well as the magnetic flux. Therefore it can be described 

by 

where Mk is a constant defined by geometry, orientation and material properties. 

The telecoiI is located a distance r fi-om the speaker. When the source of the 

magnetic field is a made up of loops as in an electromagnet and the distance r is much 



larger than the radius of the loops, the magnetic field decreases as +[7]. Therefore the 

magnetic field H at the telecoil can be described by 

where m is a constant of the intervening media. 

The magnetic flux of the telecoil QiL1 also depends on geometry, orientation and 

material properties and is directly proportional to the area A encompassed by the loops. 

Therefore it can be described by 

where Mt is a constant defined by geometry, orientation and material properties. 

The ideal voltage across the telecoil using Q B  h m  Equation 2.7 and Equation 2.2 

is described by 

n 
= - sin(27r f t )  

7-3 

where 

Equation 2.8 shows that the magnitude of em ft is independent of frequency assuming 

that the magnitude of emfk ,  Mk,  and Mt are independent of fi-equency. It also shows 

that em ft decreases as 5. 



2.2 Lossy Modifications to Faraday's Law 

The telephone speaker and the telecoil are not ideal. They both have significant 

resistance and the telecoil has significant capacitance. These non-ideal parameters cause 

both the speaker and the telecoil to be termed lossy. This means that a significant portion 

of the signal from Vs is lost before it contributes to the magnetic field strength. Figure 

2.2 shows a model of the speaker and telecoil. It is assumed that the capacitance of the 

speaker is negligible at audio frequencies. The impedance of the speaker ZK and the 

impedance of the telecoil ZT are defined by 

where s = j27r f. 

The physics presented thus far is valid assuming a couple clarifications. From 

Figure 2.2, the voltage that contributes to the creation of the magnetic field from the 

speaker em fk can be described by 

The value of K in Equation 2.3 becomes a finction of frequency given by 

where Vs is sinusoidal with amplitude Kt and Kt is independent of frequency. Since the 

telecoil is not ideal, the signal picked up by the telecoil is attenuated over the length of 

the telecoil. The final voltage VT will differ from the magnitude of emf, by the amount 

described by 





Since the magnitude of em f k  is no longer independent of frequency, the resulting 

magnitude of emf, and therefore the magnitude of VT will also be dependent on frequency. 

However, the ratio of magnitudes of should be independent of frequency since the 

frequency component in both equations is confined to the parameter K. Also, em f t  and 

VT will still be proportional to $ as described at the end of Section 2.1. 



CHAPTER 3 

TELECOIL DESIGN AND TESTING 

3.1 Telecoil Layout 

In a commercially available telecoil, the wire is wound around the permeable 

core, so that looking from the top, the wires are vertically stacked atop one another. In 

silicon design technology, there are a limited number of metal lines that can be stacked 

atop one another. In the AM1 0.5pm CMOS process, there are only three metal layers. In 

commercially available telecoils there are hundreds to thousands of metal loops around 

the core. Since the number of loops is directly proportional to magnetic response of the 

telecoil (Equation 2.2), the maximum possible number of turns is desired. 

The integrated telecoil developed in this project uses all three possible metal 

layers. The bottom two metal layers are shorted together which produce a sheet resis- 

tance equal to the top metal layer. The telecoil consists of many small loops that 

alternate between metal layers as the telecoil winds further out. This allows the loops 

to be stacked on one another as much as possible and allows the maximum amount of 

turns[8]. The middle of the telecoil is left empty as an area to place a permeable core. 

Figure 3.1 (a) shows the final layout and Figure 3.1 (b) shows a picture of the fabricated 

chip. 

There are two sets of chips fabricated as part of this project, but the telecoils 

used in both are identical. Therefore, the following information taken from phase one 

of the project should also be accurate for phase two. The total simulated resistance of 

the telecoil (RL) is 34kR. 

An estimate was made for the inductance of the telecoil by modifying equations 

used for a one layer spiral inductor[9]. The modfied equations are given by Equation 3.1 

through Equation 3.7, and the parameters used are shown in Table 3.1. The number of 



(a) Layout of final chip (3mm x 3mm) 

(b) Picture of fabricated chip (3mm x 3mm). 

Figure 3.1 : Final Chip 



1 Parameter I Description 
number of turns per metal layer 
diameter of interior of telecoil 

line width 
line spacing 

line thickness 
number of metal lavers 

Value 

1270pm 

Table 3.1 : Parameters for Equations 3.1-3.7. 

turns of the telecoil on one metal layer was used for the value of n. The parameter din is 

the diameter of the space inside the telecoil. The parameters w, s, and t are respectively 

the average width, spacing, and thickness of the metal lines. The number of metal layers 

is used for the final estimate of the inductance and is defined by the parameter m. The 

divergence from the parameters in Table 3.1 due to the properties of the via connections 

between metal layers MI and M2 are neglected in this calculation. 

The total inductance for a single metal layer inductor is the sum of the self induc- 

tance Laelf,  and the mutual inductance.The mutual inductance is split into the negative 

mutual inductance -M- ,  and the positive mutual inductance M+. An estimate for 

a multiple layer inductor is obtained by multiplying this sum by the parameter m as 

shown by 

However, this estimate neglects both the positive and negative mutual inductance from 

metal lines on different metal layers. The value for Laelf is obtained empirically by 



using the total length of wire 1 and the parameters n, w and t. The total length of wire 

on one metal layer is described by 

1 = (4n + 1) (din + n(w + s)) 

= 0.9567m 

and is estimated from the parameters n, din, w, and s. The total positive mutual induc- 

tance M+ is described by 

and is dependent on 1, n, and d+. d+ is the average distance between lines contributing 

to a positive mutual inductance and is described by 

and is dependent on w, s, and n. The negative mutual inductance M- is described by 



and is dependent on only I and n. Therefore by Equation 3.1, the total inductance LT is 

equal to 79.9pH. 

The simulated capacitance of the telecoil includes the metal to metal and metal 

to substrate capacitances and totals 238pF. This estimate, however, does not take into 

account interline capacitance. The interline capacitance Cli, can be estimated by 

which is a model of a parallel plate capacitor. The two parallel plates are the vertical 

sides of the metal lines of the telecoil. Therefore the area A of the metal plates can be 

defined as Et and s is the distance d between the plates. The parameter m is multiplied 

since there are multiple layers of the telecoil. The total capacitance of the telecoil CL 

is the sum of the simulated capacitance and the interline capacitance and is therefore 

238pF + 36.7pF = 275pF. The metal to metal and metal to substrate capacitances 

dominate over the interline capacitance. 

The top metal layer has an area of 2.58 * 106pm2. The telecoil is so large that 

it violates antenna rules when connected to the gate of a MOS transistor. Therefore a 

fuse was created to tie the telecoil to substrate during fabrication. Before testing with 

an amplifier, the fuse line has to be hand scribed to open the fuse. Figure 3.2 shows the 



Figure 3.2: Picture of the fabricated fhse. 

telecoil h s e  layout. There are also probe pads connected to the ends of the telecoil for 

the direct testing of telecoil parameters. 

3.2 Testing 

The DC resistance of the telecoil was measured to be 34kR which is in good 

agreement with simulated results. However, because of this high resistance, the precision 

LCR meter (Agilent 4284A) cannot measure the inductance or capacitance. Therefore, 

the theoretical values derived in the previous section were wed as estimates. 

Figure 3.3 shows a diagram of the testing apparatus. A function generator 

(Agilent 33250A) is connected to the ends of a telephone speaker. The speaker is 

situated directly above the chip. The telecoil probe pads are connected to the spectral 

analyzer (Agilent 35670A). Data from the spectral analyzer is captured via GP-IB through 

Labview. This setup allows direct measurement of the response of the telecoil. The 

spectral analyzer allows analysis of data despite 60Hz noise. 

Appendix A describes the commands used to run the spectral analyzer. Appendix 

B describes the Labview code that was created to capture the information from the GP- 

IB port of the spectral analyzer: 
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Agilent 33250A L E I ~ ~ ~ O ~ L !  ,! Agilent j 5 6 7 0 ~  

Figure 3.3: Testing apparatus configuration. 

The telecoil was tested with three different configurations: the telecoil by itself, 

the telecoil with a magnetic core situated above, and the telecoil with a permeable (non- 

magnetic) core situated above. The magnetic core is a neodymium iron boron material 

with diameter of 0.1 inches and thickness of 0.25 inches[lO]. The Curie temperature of 

this material is 315°C. The permeable core is the same material as the magnetic core but 

was annealed to 320°C for 10 minutes. After this annealing step, the permeable core 

no longer exhibited magnetic properties. The experimental setup to test the telecoil is 

shown in Figure 3.4. The core is placed in the center of and above the integrated telecoil. 

Background noise was determined with the experimental setup in Figure 3.3 

with zero input to the speaker. This background result was subtracted from the differ- 

ential voltage signal from the telecoil. Figure 3.5 shows the measured voltage VT 

(Equation 2.14) with respect to frequency. In Figure 3.5 the difference in performance 

between the magnetic and permeable cores actually ~everses at higher frequencies. However, 

at all frequencies the addition of a core increases performance. 

Figure 3.6 shows the linearity of the telecoil at 1kHz with a sweep in amplitude 

of the input signal from OV to 10V with the speaker located 56mm from the telecoil. 

Linearity is independent of the type of core used. The graphs should appear linear as  the 
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Figure 3.4: Signal fiom changing magnetic flux. 
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Figure 3.5: Input response of telecoil versus frequency. 

20 



0 2 4 6 8 10 
Amplitude of Input Signal (V) 

Figure 3.6: Telecoil response vs input amplitude at 1kHz. 

telecoil is a passive component. The magnitudes in Figure 3.6 may not be characteristic 

of the differences between the cores at all frequencies. 

There are inductive as well as resistive components to the electromagnet in the 

telephone speaker and this causes the magnitude of the impedance to be function of 

frequency. Equation 2.12 describes the voltage over the inductance of the speaker. The 

value of Rs is 500 and the values of RK and LK are determined experimentally. Figure 

3.7 shows the value of IZK 1 defined by Equation 2.10 using the frequency dependent 

measured values of RL and RK. These values are used to determined em fk based on a 

source amplitude of 5V. The result is plotted in Figure 3.8. 

The skin depth of a metal such as copper at 20kHz is on the order of 0.5mm. 

Therefore skin depth should not be affecting either the speaker or the telecoil. 

The voltage source Vs shown in Figure 2.2 is not ideal. The power in the signal 

from the voltage source is mostly in one frequency, but there is a bit of spread to neigh- 

boring frequencies. Measured valued of VT were obtained by integrating over a small 

range of frequencies near the primary frequency. This works well for frequencies above 
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Figure 3.7: Speaker impedance as a hnction of frequency. 

Figure 3.8: em fk as a hnction of frequency with Vs of 5V. 
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1kHz. However, the lower frequencies have a lot of background noise and the amplitude 

of the noise could have been integrated as well. 

The ratio of was obtained using Equation 2.14 and Equation 2.13 and is 
emfk 

given by 

emft  - - IVTII~+SRTCTI 
emfk 1 vs 1 

sLK 1 .  (3.9) 
RK+Rs+sLK 

Figure 3.9 shows 2 as a function of frequency using the measured values of 

VT, RK, and LK at each frequency. The amplitude of VT associated with the lower 

frequencies is affected by the spread in signal from the hnction generator. However, 

at higher frequencies, the value of is independent of frequency. This matches 

the proposed theory that the frequency dependence of emf ,  and e m  f k  is contained to 

the parameter K of Equation 2.13 and that Mt and Mk are independent of frequency. 

The increase in response due to the addition of a permeable core is much lower than 

expected. The dispersive effects of the magnetic field at the end of the permeable core 

may account for some of this result. However, more research is needed into the exact 

cause of this phenomenon. 

Figure 3.10 shows the amplitude of the response of the telecoil when the probe 

pads are worn. Worn probe pads increase the resistance of the connection to the telecoil, 

and therefore attenuate the received signal. Figure 3.1 1 shows that the amplitude 

response is fairly constant when the experimental setup is left undisturbed. Since the 

results when the experiment is left undisturbed does not change significantly, the degra- 

dation in signal amplitude from Figure 3.10 is most likely due to pad degradation 

and not a reproducibility issue. A recommendation for hture research would involve 

including several sets of probe pads for testing purposes. This would allow testing on a 

single telecoil with several data sets of the same probe pad conditions. 
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Figure 3.9: Graph of 3 versus frequency. 
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Figure 3.10: 3 of telecoil with worn probe pads. 
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Figure 3.1 1: Reproducibility of 3 versus frequency over time (no core). 

Figure 3.12 shows that the magnitude of the telecoil signal is of the form A + 5 
where A equals 69.6, B equals 1.62 * lo7 and r is the distance between the speaker and 

telecoil. The theory as shown in Equation 2.8 expects a 5 dependence. More research 

is needed to determine the cause of this discrepancy. 

3.3 Summary 

The integrated telecoil acts as a magnetic flux sensor by picking up the magnetic 

signal fiom the phone speaker. Figure 3.13 shows that the integrated telecoil is smaller 

than commercially available telecoils, which may allow telecoils to be available in all 

types of hearing aids. 

Neglecting the noise associated with lower frequencies, it is shown in Figure 

3.9 that the telecoil response is not dependent on frequency which agrees with theory 

described by Equation 2.13. Figure 3.12 shows that the magnitude of the telecoil is of 

the form of A + $ where A equals 69.6 and B equals 1.62 * lo7. This result differs 
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Figure 3.12: Received signal amplitude vs distance of speaker. 

Figure 3.13: Example size of several commercial telecoils (left) and the integrated 
telecoil (right). 



from the theory defined in Equation 2.8. The increase in response due to the addition of 

a permeable core is much lower than expected. The dispersive effects of the magnetic 

field at the end of the permeable core may account for some of this result. However, 

more research is needed into the exact cause of this phenomenon. 

Possible improvements for the future include extending the telecoil into a process 

with 6 or more metal layers. This will greatly increase the number of turns possible and 

therefore increase the voltage signal from the telecoil. It would also be beneficial to 

fabricate several telecoils with different line widths to control resistance and investigate 

the effects of resistance, capacitance and inductance. The resistance of the telecoil was 

a large obstacle in experimentally findlng the CT and LT of the telecoil. The precision 

LCR meter could not determine those parameters of a circuit due to the magnitude of 

RT. Several sets of probe pads on the telecoil would allow more data to be taken per 

fabricated telecoil. 

Eventually it would be ideal to deposit the permeable core directly onto the 

silicon substrate. Magnetic materials have previously been deposited for use as printing 

heads[l 11 and therefore it could possibly be extending to non-magnetic permeable materials 

as well. The neodymium iron boron core used for testing has a low Curie temperature of 

315°C and would therefore be demagnetized during regular semiconductor fabrication. 



CHAPTER 4 

AMPLIFIER DESIGN 

4.1 Cherry Hooper Design 

This section describes an integrated circuit with two fully differentiable ampli- 

fiers attached to a telecoil. The two amplifiers connected to the telecoil are static gain 

amplifiers. To offset this liability, they have different gain regions. Several test arnpli- 

fiers are included to characterize the performance of the amplifier configuration as well 

as test structures for the main design in case unexpected behavior was observed. 

4.1.1 Circuit Design 

The Cherry Hooper amplifier design 1121 is a commonly used transconductance 

to transimpedance amplifier designed to work with very small input signals. Figure 4.1 

shows that the single Cherry Hooper stage actually consists of a two stage fully differ- 

ential amplifier with passive feedback. A simple current mirror was used for the current 

source. Iterative parametric simulations were used to obtain the optimum configu- 

ration for gain perfonnance while minimizing total harmonic distortion (THD) and noise 

analysis for the 0.5pm AN11 CMOS process. The values used for the components in this 

design are shown in Table 4.1. The resistances and transistors need to be matched which 

requires special layout considerations such as a common centroid layout. 

The design consists of a three stage amplifier and a four stage amplifier connected 

to the telecoil and with filters. Both of these amplifier designs include a low-pass filter. 

Several test circuits also exist including a stand-alone three stage amplifier with filter, a 

three stage amplifier without filter, a single stage amplifier, and a test filter. These will 



allow accurate debugging in the case of circuit failure. However, due to layout restric- 

tions, complete simulations were only completed for the single stage test amplifier, and 

three stage test amplifier with filter. 

The output filter consists of a simple low-pass RC filter. It has an RC time 

constant of 25ps and consists of a resistor of 5MR and a capacitor of 5pF. 

4.1.2 Circuit Performance 

All the circuit simulations were performed at 37.7S°C. This is slightly greater 

than body temperature and is close to the operating temperature of a hearing aid. The 

input signal has a frequency of 1kHz and a peak to peak amplitude of 1pV unless 

otherwise noted. The signal from the telecoil had been estimated as 1pV 

The output from the single stage amplifier has a bias voltage of 1.88V. If this 

signal was attached to the next stage of a multiple stage amplifier, the outputs of the 

second stage would saturate. This dc o%et voltage is too high for identical stages to 

be directly coupled. Therefore, decoupling capacitors of 5pF are added differentially 

between stages to bring the common mode voltage to zero for the following stage inputs. 

Figure 4.2 shows the gain response of a single stage Cherty Hooper amplifier as 

a function of input signal peak to peak amplitude. The circuit provides 27dB of gain up 

to a lOmV input signal before starting to saturate. 

Table 4.1 : Parameters for circuit shown in Figure 4.1. 

Parameter 
Rd 
Rf 

(8) M0 1 2 3 
vdd ' ' 
V S S  
I s  

Value 
850R 
6.5kR 
?!?lE 
O . b m  

2.5 V 
-2.5 V 
827pA 



Vdd 
T 

Figure 4.1 : Cheny Hooper amplifier schematic. 

Figure 4.2: Single stage Cherry Hooper gain response. 
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Figure 4.3: Single stage Cherry Hooper THD response. 

Figure 4.3 shows that the THD response of the single stage Cherry Hooper 

amplifier is -49dB for inputs up to 1OmV. 

The three stage amplifier with filter design was analyzed with worst case pins 

of the package model DIP40 attached to the outputs. The three stage Cherry Hooper 

amplifier design uses three identical single stage blocks with dewupling capacitors 

between stages and a filter on the output. There are no decoupling capacitors on the 

output of the three stage amplifier, so therefore there is a final output bias of 1.88V 

shown in Figure 4.4. 

Figure 4.5 shows that the THD response of the three stage Cheny Hooper amplifier 

is approximately -50dB for inputs up to 1 OpV, which is acceptable for hearing aid appli- 

cations. 

Figure 4.6 shows the three stage Chew Hooper amplifier gain to be 85dB. This 

circuit is linear for input amplitudes up to 1OpV. 

The AC response of the three stage amplifier with filter in Figure 4.7 shows that 

the 3dB point is at 3kT32, which will eliminate the high frequency noise on the output. 
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Figure 4.4: Three stage Cherry Hooper with filter biasing. 

Figure 4.5: Three stage Cherry Hooper with filter THD response. 
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Figure 4.6: Three stage Cherry Hooper with filter gain response. 

This value is not the perfect choice for a hearing aid application which should not start 

attenuation until frequencies reach 5kHz or more. However, for this project the filter is 

sufficient and most of the testing will be done at IkHz, which is not attenuated. 

Table 4.2 shows the equivalent input noise of the different Cherry Hooper ampli- 

fiers. The noise of the single stage amplifier is 2.014%. Over a frequency range of 

lOkHz, this would result in noise of about 0.2pV. The input noise of the three stage 

Cherry Hooper amplifier is 2.016%, which is only slightly greater than the single 

stage noise. 

Figure 4.8 shows the gain of the three stage amplifier as a function of decoupling 

capacitance. There is negligible attenuation for the signal if the decoupling capacitor is 

Table 4.2: Input referred noise for Cherry Hooper amplifier, 

3 3 

Amplifier 
SS Cherry Hooper 
3s Cherry Hooper 

Input Referred Noise (5) 
2.014 
2.016 



Figure 4.7: Three stage Cherry Hooper amplifier with filter AC response. 
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Figure 4.9: Capacitance drive capability of three stage Cherry Hooper amplifier with 
filter. 

10pF or greater. The tradeoff in this case is between layout size of the decoupling 

capacitors and overall gain performance of the amplifier. The value of 5pF was chosen 

to balance these two tradeoffs. 

Figure 4.9 shows that no output buffer is needed on the circuit. The three stage 

amplifier with filter and worse case pins can drive an additional capacitance load of 

30pF without sacrificing THD performance. The capacitance for the testing equipment 

for this project should be less than 30pF. 

4.1.3 Physical Design 

Figure 4.10 shows the layout of the single stage Cherry Hooper amplifier. Th~s  

design uses the common centroid layout design to minimize variations in parasitics in 

matched transistors. The multiple stage amplifiers consist of several single stage blocks 

with the decoupling capacitors in between stages. The pinout and bonding diagram for 

this design are found in Appendix C. 



Figure 4.10: Cherry Hooper amplifier layout. 



The main disadvantage of this design is that it does not scale to lower voltages[15] 

found in hearing aid applications. 

4.1.4 Experimental Results 

With a test input signal amplitude of lmV, the gain of the single stage test 

amplifier was measured to be 18dB, which is much lower than the expected 27dB. The 

three stage and four stage amplifiers attached to the telecoil as well as the three stage test 

amplifier attenuate the input signal down to zero. More time and research are needed to 

find out what exactly affected the gain of the Cherry Hooper amplifiers. 

4.2 Single Ended Amplifier 

The design of a second amplifier using ahvo stage single-ended amplifier config- 

uration was investigated. This amplifier uses a low-noise preamplifier and then a larger 

gain second stage. The test chip which is fabricated consists of the preamplifier and 

the complete single-ended amplifier connected to the telecoil, as well as test amplifier 

circuits which operate from separate power sources. 

4.2.1 Circuit Design 

The preamplifier was modified from a bipolar circuit [ 131 and is shown in Figure 4.1 1. 

This transimpedance amplifier consists of two common source stages in cascade and a 

current follower. The common source stages are implemented by transistors MO and 

M3, while the current follower is implemented by transistors M1 and M2. Transistors 

M4, M5, and M6 as well as the resistor R, define the bias circuitry. The resistor Rf is 

used adjust the gain of the amplifier. This circuit is scalable for low-voltage applications 

and constitutes the low-voltage counterpart of a common gate stage[l]. The current 

source is biased to provide 770pA. The values of the device parameters are given in 

Table 4.3. 



Figure 4.1 1 : Circuit diagram of preamplifier. 

Table 4.3: Parameters for circuit shown in Figure 4.1 1. 
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Figure 4.12: Circuit diagram of second stage of amplifier. 

Figure 4.12 shows the schematic diagram of the second stage of the amplifier 

which was modified from a basic operational amplifier design[l4]. This differential 

amplifier has one end tied to ground for single-ended use. It has an active current mirror 

load and an output buffer. The capacitor C2 is used to decouple the signal between 

stages. The transistors MI0 and M11 form the differential pair with transistors M12 and 

M13 forming the active load and M14 the output buffer. The transistors M7, M8 and M9 

as well as the resistor RS2 form the biasing for this stage. The current source is biased 

to provide 570pA and the gain of the second stage is very dependent on the value of the 

current. The values of the device parameters are found in Table 4.4. 

Figure 4.13 shows the schematic of the complete amplifier. Capacitor C1 is used 

as a decoupling capacitor and has the same value as capacitor Cz for convenience. 

4.2.2 Circuit Performance 

Unless stated otherwise, all simulations were done with an voltage amplitude of 

lpA, a frequency of IkHz, a temperature of 27oC, and a 40pF load capacitance. 



Table 4.4: Parameters for circuit shown in Figure 4.12. 

I I I  I 
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Figure 4.13: Circuit diagram of complete single-ended amplifier. 



Figure 4.14: Simulation setup for single-ended amplifier and preamplifier. 

The preamplifier is a transimpedance amplifier and therefore the voltage gain 

characteristics were only simulated for the complete amplifier. Figure 4.14 shows the 

simulation setup used for the following analysis, which is based upon the model for the 

telecoil shown in Figure 2.2. The gain of the complete amplifier is defined as e. 
Figure 4.15 shows the gain versus frequency response of the complete single- 

ended amplifier. The 3dB point of the amplifier is 200kHz, which is above the human 

range of hearing by a factor of 10. 

Figure 4.16 shows the THD performance of the complete single-ended amplifier 

to be -48dB. The maximum recommended input amplitude should be 20pV. The input 

referred noise for the complete amplifier is 45.3%. This noise value is much higher 

than the noise of the Cherry Hooper amplifier, but is acceptable. 

Figure 4.17 shows that the complete amplifier is capable of driving a load capac- 

itance of 1nF with negligible change in gain. The pins of the package used for the 

device has an estimated capacitance of 40pF. Therefore, this amplifier should have no 

trouble driving the pin capacitance. 



Figure 4.15: Gain response of complete single-ended amplifier . 
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Figure 4.16: THD of complete single-ended amplifier. 
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Figure 4.17: Single-ended amplifier with load capacitance. 

4.2.3 Physical Design 

The process used for fabrication of this design was the 0.5pm AMI CMOS 

process. Figure 4.18 shows the layout for the preamplifier while Figure 4.19 shows the 

layout for the second stage amplifier. This design includes a precision resistor imple- 

mented in the second level polysilicon. This was implemented because the gain of this 

stage is very dependent on the current biasing. Figure 4.20 shows the layout for the 

complete single ended amplifier. Both the layouts for the preamplifier and the second 

stage amplifier were done to conserve space as well as reduce parasitic capacitances and 

resistances. 

Figure 4.21 shows the layout for the complete test chip. The pinout and bonding 

diagram for this chip can be found in Appendix C. 



Figure 4.18: Layout of preamplifier 

Figure 4.19: Layout of second stage of single-ended amplifier. 



Figure 4.20: Layout of complete single-ended amplifier. 

Figure 4.2 1 : Layout of complete design. 



Figure 4.22: Preliminary result showing the output from integrated telecoil and 
amplifier. 
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Unfortunately, the fabricated chips were delayed in processing and did not return 

lo0 10' ,,, , , , , , , , , ,  Frequency lo2 , %\ (Hz) lo3 I o4 , , ,.., 105 j 

in time to do a detailed analysis. Preliminary results of the output response of the 

telecoiVamplifier combination is shown in Figure 4.22. This signal was obtained with an 

input voltage of 5Vp on the phone speaker input at a frequency of I Om. The speaker 

and telecoil were separated by 56mm. The peak seen in the figure is at 1 OlcHz and thls 

result demonstrates that the amplifier is functioning with the telecoil as an input. 

Unfortunately, this amplifier was designed before detailed experimental results 

of the telecoil were obtained. Originally, the expected output of the telecoil was lpV. 

As seen from Figure 3.9, the output is much greater than the expected 1pV. Therefore, 

the lack of amplification of the signal may be due to the design of the amplifier for 

a lower input signal. The input signal amplitude could be lowered from 5Vp, but the 

background noise is higher than expected and the signal gets lost in the background 

noise at lower input amplitudes. More research is needed for analysis of the amplifier 



to determine the cause of low amplification of the amplifier as well as fully characterize 

the integrated telecoil and amplifier circuit. 



CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

A 3-D microelectronic inductor has been fabricated and characterized for use 

as a magnetic flux sensor, also known as a telecoil, for a hearing aid application. This 

telecoil was fabricated in a 0.5pm CMOS process with three metal layers, consists of 

258 turns each with an average width of 2.7pm and a total wire length of 1.9m. The 

telecoil has a total area 5.9mm2 and is situated on a silicon die of 9mm2. The 3-D 

structure is more space efficient than conventional spiral inductors and allows for an 

optimal number of turns for the space available. The telecoil has an inductance of 80pH, 

a resistance of 34kR, and a capacitance of 275pF. 

A single stage Cherry Hooper amplifier design was simulated at a gain of 29 dB, 

THD of -50dB, and equivalent input noise of 2.01%. The three stage Cherry Hooper 

design with filter has a simulated gain of 84 dB, THD of -49dB, and equivalent input 

noise of 2.01%. The three stage amplifier also has a bandwidth of 3Wz and a driving 

capacity of 30pF external load capacitance. 

The complete single-ended amplifier design was simulated at a gain of 67dJ3, 

THD of -48dB, equivalent input noise of 45.3%, and driving capacity of 1nF external 

load capacitance. 

The integrated telecoil acts as a magnetic flux sensor by picking up the magnetic 

signal from the phone speaker. The integrated telecoil is smaller than commercially 

available telecoils, which may allow telecoils to be available in all types of hearing aids. 

Neglecting the noise associated with lower frequencies, it is shown that the 

telecoil response is not dependent on frequency which agrees with theory. The magnitude 

of the telecoil is of the form of A + 5 where r is the distance between the speaker and 

the telecoil, which differs from the theory. More research is needed to investigate the 

cause of this discrepancy. The increase in response due to the addition of a permeable 



core is much lower than expected. The dspersive effects of the magnetic field at the end 

of the permeable core may account for some of this result. However, more research is 

needed into the exact cause of this phenomenon. 

Unfortunately, the testing results of the Cherry Hooper amplifier were less than 

satisfactory. With a test input signal amplitude of lmV, the gain of the single stage 

test amplifier is 18dB, which is much lower than the expected 27dB. The three stage 

amplifier and four stage amplifier attenuate the input signal down to zero. More time 

and research would need to be invested to find out what exactly affected the gain of the 

Cherry Hooper amplifiers. 

One possible limitation of the Cherry Hooper amplifier is that there is no common 

mode feedback in the design. If this was part of the design, the decoupling capacitors 

would not be needed and the amplifier would increase in stability. Another limitahon 

of the Cherry Hooper amplifier is that it does not perform well with a low source 

voltage[l5] which is required for a hearing aid application. 

Preliminary analysis of the single ended amplifier was obtained with an input 

voltage of 5Vp on the phone speaker input at a frequency of 10kHz. The peak seen in 

Figure 4.22 is at 10kHz and therefore the amplifier was not damaged during fabricated 

by being connected to the telecoil. The lack of amplification of the signal may be due to 

the design of the amplifier for a lower input signal. More research is needed for analysis 

of the amplifier to determine the cause of low amplification of the amplifier. 

Possible improvements for the future include extending the telecoil into a process 

with 6 metal layers. This will greatly increase the number of turns possible and therefore 

increase the voltage signal from the telecoil. It would also be beneficial to fabricate 

several telecoils with different line widths. The resistance of the telecoil was a large 

obstacle in experimentally finding the CT and LT of the telecoil. The precision LCR 

meter could not determine those parameters of a circuit due to the magnitude of RT. 



It would also be beneficial for the amplifier to be variable gain[l6] to allow consumer 

adjustment of volume. 

An accurate bandpass filter would be beneficial to eliminate noise coming from 

frequencies outside the range of human hearing. A combination of second order Butter- 

worth filters have previously been implemented in integrated hearing aid circuitry[l] 

and could be applied to this application as well. 

Eventually it would be ideal to deposit the permeable core directly onto the 

silicon substrate. Magnetic materials have previously been deposited for use as printing 

heads[l 11 and therefore it could possibly be extending to non-magnetic permeable materials 

as well. The neodymium iron boron core used for testing has a low Curie temperature of 

315°C and would therefore be demagnetized during regular semiconductor fabrication. 
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APPENDIX A 

Directions for Setup of Agilent 35670A Spectral Analyzer 

The experimental setup conditions for the Aglient 35670A are described below. 

Frequency Setup 

- Set Bandwidth to 12.8KHz 

1. FREQ Button 

2. STOP 

3. 12.8kI-k 

- Set Resolution to 1600 

1. FREQ Button 

2. RESOLUTN(LINES) 

3. 1600 

Function Setup 

- Define Function 

1. ANALY S Button 

2. Define Function 

3. F1 

4. FFT(T1ME 1 -TIME2) 

- Set Active Function 

1. MEAS DATA Button 

2. More Choices 

3. Math Function 

4. F1 



Graph Setup 

- Set Type of Data 

1. TRACE Coord Button 

2. Y Units 

3. Amplitude PK 

- Set Display of Data 

1. TRACE Coord Button 

2. LOG Magnitude 

Get New Graph After GP-IB Capture 

1. LOCALIGP-IB Button 

2. Abort GP-IB 

3. START Button 



APPENDIX B 

Labview Subproject 

Figure B.l shows the front panel of the Labview environment. It includes a 

graph to make sure that the data received matches the data on the spectral analyzer. It 

also includes a prompt for the file to save the data. If no file is entered when the program 

runs, it will require the user to enter a filename at that time. 

Figure B.2 shows the outer sequential programming structure. The first step in 

this sequential structure is the setup command for the GP-IB interactions. The GP- 

IB address of the spectral analyzer in this case is 16. The program sends the command 

FORM ASC over the GP-IB link to address 16. This command tells the spectral analyzer 

to send data in ASCII format. 

Figure B.3 shows the second command of the outer sequential structure. This 

command contains an interior sequential structure. The first part of this interior sequential 

structure sends the command CALC : X : DATA? to the spectral analyzer (address 16). 

This command is a query command sent to the spectral analyzer asking for the data on 

the x axis. 

Figure B.4 contains the second step of the interior sequential structure. The first 

step involves Labview reading a string of 32020 bytes off of the GP-IB bus. This is the 

number of bytes that the spectral analyzer will send assuming that the resolution has 

been set to 1600 as mentioned in Appendix A. That information will then be sent to 

two different places. The first part takes the string and replaces every instance of a ',' 

with a blank space. This allows easier importing into programs such as MatLab for data 

analysis. The edited string is then send to the file specified on the front panel. 

The data also goes into a while looping structure. The purpose of this while 

structure is to extract all of the numbers from the string and put them into an array of 

numbers format. This array is then sent outside the interior sequential structure. 



Figure B. 1 : Front Panel 

Figure B.2: GP-IB Setup 

5 6 



Figure B.3: Query X axis data. 

. . . . . . . 

Figure B.4: Manipulate X axis data. 

. . . . . . . . . . . . . . . . . . . . 
@- 

Figure B.5: Query Y axis data. 
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Figure B.6: Manipulate Y axis data. 

Figure B.5 contains the third step of the interior sequential structure. This step 

sends the command CALC : DATA? to the spectral analyzer (address 16). This command 

is a query command sent to the spectral analyzer asking for the data on the y axis. This 

section also sends a CR/LF to the file containing the data. The 'T' needs to be added to 

this command so that the info is added together and not overwritten. 

Figure B.6 contains the last step of the interior sequential structure. Labview 

read a string of 32020 bytes off of the GP-IB bus to get the y axis data. As before, the 

data string is modified by replacing every instance of a ',' with a blank space. This new 

string is then send to the end of the file specified on the front panel. 

As before, all of the numbers from the string are extracted and put into an array 

of numbers format. This array is then sent outside the interior sequential structure where 

it is combined with the array of x axis values to form a bundle. This bundle is then sent 

to the graph on the front panel. At this point the data from the spectral analyzer is 

displayed on a graph on the machine running labview and the data is saved in a file 

specified on the front panel. 



APPENDIX C 

Pinouts & Bonding Diagrams 

Table C. 1: Cherry Hooper Pinout Table 

Name of Pin 
4stage-out 1 
4stage-out2 
3stage-out1 
3stage-out2 
ch-1s-out1 
ch-1s-out2 
ch3s-out1 
ch-3s-out2 
ch3sf-out1 
ch3sf-out2 
ch-1s-in1 
ch-lsin2 
ch3s-in1 
ch3s-in2 
ch3sf-in1 
ch-3sf-in2 

f-out 
f-in 
grid 

gnd2 
gnd3 
VCC 

vd d 
vdda 
vddd 

VSS 

I/O 
Output 
Output 
Output 
Output 
Output 
Output 
Output 
Output 
Output 
Output 
Input 
Input 
Input 
Input 
Input 
Input 

Output 
Input 
YO 
VO 
I/O 
I/O 
VO 
I10 
YO 
I/O 

Pin Number 
28 
29 
32 
3 1 
17 
16 
25 
24 
3 7 
38 
18 
19 
22 
23 
40 
39 
5 
6 
4 
3 6 
30 
20 
3 

2 1 
1 
2 



For Fabricatian 

Design Number. 69051 Customer Name. UMAIm-ECE 
D tslgn Name. Mags Customer Account: 2 ? 1 6 - M E P - ~ S K J ~ - E C E  
MOSIS Package Name: DIP40 Phone Number: 207 581-2248 r)-----------' 

Quantity Packqed: 2 Fm h b e r  207 581 -2220 
M n  Bond Pad Size 32 7 2 ~  Mtn Pad Pitch: PO urn 
NIin Bond Pad Size Y: 7h1-n Min Pad Spacing: 12um 

DIPLIB (318 MIL.. so CRVITY~ 
Figure C. 1 : Cherry Hooper Bonding Diagram 



Table C.2: Single Ended Pinout Table 
?Unnamed pin on layout 

Name of Pin 
fill-pres-o 
tfull-pres-i 

tpre-o 
tpre-i 
tfUll-0 

tfull-i 
res-iol 
res-io2t 

pre-o 
full-0 
grid 
gnda 
gndd 
VCC 

vdd 
vdda 
vddd 

VSS 

110 
Output 
Input 

Output 
Input 

Output 
Input 
I/O 
110 

Output 
Output 

I10 
I/O 
I/o 
I/O 
UO 
IJO 
I/O 
I/O 

Pin Number 
24 
23 
16 
15 
5 
6 
18 
19 
29 
3 1 
30 
25 
4 
3 

40 
26 
17 
1 



As Submitted 
For Fabricatron 

Design Number:7227 1 
Design Name: Magsensor2 
MOSJS Package Name: DlP40 
Quantity Ordered:5 
Quanticy Unpackaged: 2 
Quantity Packaged: 3 
Min Bond Pad Size X: 78um 
Min Bond Pad Size Y: 78um 

Customer Name: UMALNEECE 
Customer Account: 27 1 6-MEP-INSfUMAlNE-ECE 
Phone Number: 207- 581-2248 a I 

Fax Number: 207 -581-2220 
Min Pad Pitch: 90 um 

I I 

Min Pad Spacing: 12um a h .  
Die-Rotation (Clockwise) Ln Package Cavity: 0 

Figure C.2: Single Ended Bonding Diagram 
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