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The use of unidirectional Glass Fiber Reinforced Polymer (GFRP) composites to 

reinforce glulam beams in tension has been proven by researchers at University 

of Maine and others to improve both allowable strength and ductility. The addition 

of 3% E-glass FRP has been shown to increase the allowable flexural strength 

by as much as 100%. These promising findings can be used in practice only if 

the GFRP will maintain a major proportion of its strengthfstiffness mechanical 

properties over the life of the structure. 

This study focuses on the fatigue life of two types of E-glasslphenolic 

GFRP (hand lay-up and pultruded) with special emphasis on the effect of 

environmental degradation on the fatigue life of pultruded GFRP. Fatigue life of 



pultruded GFRP was evaluated after treatment in salt water, hot water, freeze- 

thaw, and UV weathering. 

Static tests indicate that hot water (45°C) causes the higher reduction in 

tensile strength. The Young's modulus did not change significantly for any of the 

exposed specimens. Fatigue tests were conducted at constant amplitude at a 

frequency of 20H2, and S-N curves were developed for each exposure group. 

The results show that except for UV weathering, the fatigue life of all the exposed 

specimens exhibited slight statistically significant improvement for low stress 

fatigue tests. Residual strength tests conducted at 10% of ultimate strength 

exhibited no statistically significant (a=0.05) reduction in tensile strength or 

modulus at 3 million cycles of fatigue. 

The fatigue data was plotted using S-N diagrams and modeled using Log- 

linear equations. From the models, allowable strength for design purposes was 

recommended using statistical analysis. One-sided lower 95% tolerance limit for 

95% of the population (5% LTL) were developed for pultruded control and hand 

lay-up specimens. 
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1 INTRODUCTION 

Two types of E-glasslphenolic FRP (Fiber Reinforced Plastic) materials were 

developed at the Advanced Engineered Wood Composites Center, University of 

Maine, for use as tension reinforcement in glulam beams. The FRPs were 

designed to be compatible with hygrothermal properties of glulam beams and 

conventional wood (PRF) adhesives. The first type of FRP is a pultruded product. 

The second is a hand lay-up type produced by impregnating stitched glass fabric 

with phenolic resin and curing under standard room temperature. FRPs can be 

used to reinforce glulam beams just as steel is used to reinforce concrete beams. 

The reasons for reinforcing glulam beams include higher flexural strength and 

stiffness, better use of lower grade lumber, reduced beam size use of lumber. 

FRP materials are a promising reinforcement for wood members because 

they can be designed to match the hygrothermal properties of wood, their high 

strength to weight ratio and high corrosion and creep resistance compared to 

conventional constructional materials. Over the past twenty years fiber reinforced 

plastics, have been used successfully in civil infrastructure applications such as 

bridges, piers, walkways, pipelines, and building panels etc. (Gentry et al, 1998; 

Liao et al, 1998). The common types of reinforcements are glass, carbon and 

Aramid whereas vinylester, polyester and epoxy are used as common resin 

matrix materials. 

As with any new material, engineers need to have a good understanding 

of the properties and performance of this material before they can design its use 



in any application. When the FRP is used in bridge applications, it is subjected to 

cyclic loads from vehicular traffic. This cyclic or fatigue loading can reduce the 

strength and stiffness of most conventional construction materials such as steel 

and aluminum. This weakening of a material is called fatigue and is mostly due to 

the propagation of cracks within the material. Cyclic loading can reduce both 

tensile strength and stiffness of a material. Fatigue damage is an important 

concern because materials can thus fail at stresses or loads much below their 

ultimate strengths. Although numerous research has been done on the fatigue of 

FRP materials by the defense industry, and NASA in particular, the very fact that 

composite materials behave differently depending on the composition, orientation 

of reinforcement, and manufacturing method makes it difficult to apply the results 

of one test to another. For design purposes it is always required that the exact 

properties for the particular FRP used are well documented and understood. 

Thus, this study was designed to evaluate the fatigue performance of the two 

types of E-glass/phenolic FRP wood reinforcements developed at University of 

Maine, under normal and environmentally aged conditions. It is intended that this 

study will allow engineers to design wood structural members with the FRP 

reinforcements with safe allowable limits. 

The objectives of this study are: 

1. To evaluate the fatigue performance of the two E-glass/phenolic FRP 

wood reinforcements developed at the University of Maine under 

control conditions. 
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2. To evaluate the fatigue life of the pultruded E-glasslphenolic FRP after 

it has been subjected to accelerated environmental degradation. 

3. To evaluate the feasibility of using the two FRP for bridge applications. 

4. To recommend safe fatigue life design values. 

The objectives were accomplished in four stages. The first stage included 

literature review and organization of methodologies recommended by code 

officials such as AASHTO, ICBO, BOCA, Caltrans, NIST and ASTM E 632 

concerning the use of FRP materials for civil infrastructure applications and 

measuring service life of building components. The use of FRP reinforced glulam 

beams for bridge application is a new technology that is yet to be addressed by 

AASHTO. However, there are other evaluation criteria and specifications 

pertaining to the use of FRP in general. California Department of Transportation 

(Caltrans) was among the first to specify tests for evaluating performance of FRP 

materials used as concrete column wrappinglcasing for seismic retrofitting. 

International Conference of Building Officials (ICBO) also specifies tests for 

evaluating FRP materials for masonry reinforcement [ICBO AC 1251. These 

specifications along with other general recommendations from ASTM and NIST, 

and recent research in this field were used to design a suitable test program for 

evaluating the fatigue and long-term durability of the two E-glasslphenolic FRPs. 

Thus this stage included identifying degradation factors and mechanisms. Once 

all the information was studied, an experimental plan was developed with proper 

regard to statistical significance and required sample size. 



The second stage involved conditioning the pultruded FRP material in 

different environmental exposures, staggering the tests such that post- 

conditioning tests could be conducted without much delay. The norm of 

environmental exposure tests is to simulate accelerated environments that the 

FRP is likely to be exposed to or come in contact with. Since the FRP was 

designed for exterior applications, this includes freeze-thaw cycling, simulated 

salt water, Ultra Violet (UV) radiation from sunlight, moisture, and hot water. 

Thus, the degradation mechanisms considered are hygrothermal changes, 

chemical attack such as hydrolysis, photo-oxidation, and moisture corrosion. The 

third stage involved determination of physical and mechanical properties of the 

FRPs afler pre-determined exposure periods. This was done to evaluate the 

severity of the exposure factors. Physical properties tested were density, volume 

fraction of fiber, resin and voids, and glass transition temperature (Tg). 

Mechanical properties included static tensile strength and stiffness, and 

interlaminar shear strength. 

The fourth stage, which was the longest in this study, involved evaluation 

of the fatigue strength, and statistical analysis for design recommendations. 

Fatigue testing involved testing coupons in tension-tension set-up under constant 

amplitude, stress ratio (R), and frequency. Specimens tested at low stresses 

required considerable amount of time. A specimen tested at 20% UTS required 

42 hours to undergo 3 million cycles of continuous fatigue. Residual strength 

tests were also conducted at 10% UTS to study reduction in tensile strength and 

stiffness due to fatigue loading. This was followed by recommendations using 



statistical methods to evaluate safe design life based on tolerance limits of the 

fatigue S-N curves. 

This study consists of six chapters along with appendices. The first 

chapter introduces the reader to the objectives and rationale of this study along 

with a summary of the methodology. Chapter 2, Literature Review, summarizes 

recent work on fatigue evaluation of FRP materials, environmental durability, and 

long-term performance. Chapter 3, Materials and Methodology, gives description 

of the materials studied including the manufacturing process. The methodology 

followed for conditioning and testing the specimens is described and justified. 

Chapter 4, Results of Physical and Mechanical Tests, describes the results of the 

tests conducted to evaluate static physical and mechanical properties. These 

properties were later used to develop fatigue parameters and baseline properties 

to compare with that of conditioned specimens. Chapter 5 gives the results of 

fatigue tests, including the S-N curves and residual strength findings. The 

statistical bounds on the S-N curves are also included. Chapter 6, Conclusions 

and Recommendations, summarizes all the findings and proposes design 

allowable limits for fatigue. Recommendations for future work are also given. 

Several appendices are included to provide further documentation for the 

work. An appendix on SI unit conversion is also given. 



2 LITERATURE REVIEW 

2.1 Introduction to Fatigue 

The concept of fatigue failure was discovered back in the 1800s when European 

investigators observed that a number of railroad (axle) and bridge components 

made of steel were cracking when subjected to repeated loading. It was in the 

mid 1800s when A. Wohler proposed a method to mitigate or in some cases 

eliminate fatigue failure. This method gave rise to the development of the 'Stress- 

Life response diagram' approach to fatigue design. But it was not until the early 

part of the 1900s that the physical basis of fatigue began to be understood 

(Taylor, 1989). 

Fatigue in general is the reduction or decay of mechanical properties of a 

material subjected to cyclic loading. "Fatigue" is defined by ASTM E 1150 as: 

"the process of progressive localized permanent structural change occurring in a 

material subjected to fluctuating stresses and strains at some point or points and 

that may culminate in cracks or complete fracture after a significant number of 

fluctuations" (ASTM 1999). It is well known that when materials are subjected to 

fluctuating loads above their fatigue limit, they may fail at stresses well below 

their ultimate tensile strengths. This implies that cyclic loading can reduce the 

strength of a material. In fact, it has been reported that 50-90% of the failure of 

engineering components and structures are attributed to fatigue (Gao et all 1994; 

Beynon et all 1995). This premature failure or damage is often catastrophic and 

caused many injuries and financial losses in the past. To utilize structures 



effectively and efficiently, the fatigue strength of the materials used must be well 

understood. 

Fatigue strength is a measure of the materials resistance to the formation 

of cracks. It is a relative term and corresponds to a given number of cycles. For 

example in Figure 2.0 we observe that the fatigue strength at one million cycles 

is about 30%UTS. If cracks did not occur in materials, then fatigue would not be 

an issue. Thus fatigue falls within the study of fracture mechanics. Cracks may 

initiate from weak regions and points of high stress concentration. Cracks can 

also arise from surface imperfections and defects such as voids which are 

inherent in the material as a product of the manufacturing process (Beynon et al 

1995). 

Crack growth (damage mechanism) is much more complex in FRP 

materials compared to metallic materials because of its non-homogeneous 

content and anisotropic characteristics of its strength and stiffness (Whitworth et 

al, 1998). Fatigue damage initiates as micro crack in the matrix material and 

interfacial cracking between the matrix and fiber (Agarwal, 1990). As for steel, 

K.J. Miller (Baynon et al (Eds), 1999) states that it is the development of a 

specific dislocation structure, which leads to the formation of a crack. 

Material failure occurs when the size of these cracks grows or propagates 

to a critical size. The crack growth process has two distinct phases namely (1) 

initiation and, (2) propagation. The initiation phase is said to be the time required 

to form a crack. The propagation phase is marked by growth of these cracks. 



With the advent of specialized techniques such as Ultrasonic C-Scanning 

(best for observing delamination), Photomicrography, X-ray radiography (best for 

observing in plane damage such as transverse crack), Scanning Electron 

Microscopy (SEM), fluorescence and Non-destructive evaluation (NDE) methods, 

it has become easier to study the quality, quantity and behavior of cracks. Many 

theories of crack growth have been postulated to relate crack to the stress field. It 

was A.A. Griffith who first proposed an energy balance equation for fracture back 

in 1920 and to whom the origin of modern fracture mechanics for engineering 

practice is attributed (ASM Hand Book, 1998). 

Fatigue is an important issue for engineers because most engineering 

materials such as steel, aluminum and Fiber Reinforced Plastics (FRP) are prone 

to fatigue damage when subjected to cyclic loading while in service. Fatigue is of 

particular interest to bridge engineers because bridges are continuously 

subjected to cyclic loading. Since bridges have been made of steel for a long 

time, a wealth of information, arising from the numerous fatigue researches 

exists today for steel connections and details. Fatigue design of steel members 

are described in the American Association of State Highway and Transportation 

Officials (AASHTO) specifications. Fatigue data pertaining to FRP in bridge 

applications is quite limited because it is still an emerging new technology. Data 

on the combination of fatigue with environmental degradation of FRP is very 

limited in open literature. 



The growing use of composite materials in the transportation industry and 

the demand for better long-term performance makes fatigue analysis an 

important consideration. 

2.2 AASHTO Fatigue Design Code for Steel 

Fatigue design of steel members depends on the type of member being 

considered. Reduction factors are based on the geometry of the member. 

Fatigue strength of connections and joints are given special attention in AASHTO 

specifications because this is where most failures occur. The fatigue limit states 

are defined in terms of the accumulated cycles i.e. the maximum number of 

cycles that can be endured by a given member geometry before fatigue fracture 

occurs. Specification of load alone is not adequate and thus stress-range and 

frequency (traffic) of the loading are considered. Since truckloads are the 

heaviest, frequency is defined in terms of the truck loading in a given period. 

Research has shown that the average daily traffic (ADT) per lane under normal 

conditions, which includes all vehicles, is physically limited to 20,000 (AASHTO 

Section C3.6.1.4.2). Some 15-20% of this traffic is due to trucks depending on 

where the bridge is located. The fatigue limits for steel structures are calculated 

as described below (AASHTO, 1994): 

Average daily truck traffic on a single lane. (ADTT)sL = p x ADTT 

where p depends on the number of lanes available to trucks. p=l (one 

lane) 

In urban areas ADTTsL = 0.15 x ADT (AASHTO Table 3.6.1.4.2.1) 
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In rural areas ADITsL = 0.20 x ADT 

Eqn 2-1 

Basic design: 

y Af S (AF), 

where, 

y = load factor ( 0.75 for fatigue) 

Af = live load stress range due to the passage of the fatigue load 

AF = nominal fatigue resistance 

n = 1 for fatigue 

Equation 2-1 simply states that the applied fatigue load multiplied with the 

load factor shall be less than the nominal fatigue resistance. Nominal fatigue 

resistance is given by: 

(AF), = (AIN)"~ 2 '/2 ( A F ) w  Eqn 2-2 

where, 

(AF), is the nominal fatigue resistance (ksi). 

N = (365) (75) n (ADTT)sL, where n is the number of stress range cycles 

per truck taken from AASHTO Table 6.6.1.2.5-2. 

A = detail category constant taken from AASHTO Table 6.6.1.2.5-1. 

(AF)TH = constant amplitude fatigue threshold (ksi) taken from AASHTO 

Table 6.6.1.2.5-3. 

Equation 2-2 above states that the fatigue resistance must be equal to or 

greater than half the constant amplitude fatigue threshold of the particular 

geometry considered. If the fatigue stress range (load) is below the threshold, the 



member is said to have infinite life. The design life is considered 75 years and 

can be changed depending on the use of the bridge. The constant N 

approximates the number of load cycles the bridge is expected to endure during 

its service. Consider a single span steel girder bridge longer than 40 ft (n=l) 

designed to last 75 years. Assuming we are designing a plain (detail category A) 

section, the constant A is given as 250x10~ (AASHTO Table 6.6.1.2.5-1). The 

constant amplitude fatigue threshold for this member is given as 24 ksi. The 

fatigue resistance (AF), of this member would thus be 6.1 1 ksi. Since this 

number is less than half the fatigue threshold, the design stress range of 12 ksi 

will be used. 

2.3 Fatigue of FRP (Polymer Composites) Materials 

2.3.1 General Overview 

Curtis et al (1989) reported that the increasing use of FRP in primary structures 

is mainly because of their high strength and stiffness combined with low density 

compared to steel. However, like steel, FRP materials also undergo fatigue 

degradation when subjected to cyclic loading. Unidirectional FRP materials have 

been shown to posses excellent fatigue resistance in the fiber direction. This is 

because the load in the longitudinal direction is primarily carried by the fiber, 

which exhibits excellent resistance to fatigue compared to the matrix material 

(Agarwal, 1 990). 



Exposure to fatigue leads to the formation of cracks first in the matrix and 

then into the fiber. FRP materials can be made in a variety of laminate 

combinations (laminates with different orientations) and shapes, and this makes 

fatigue analysis rather difficult. 

Fatigue failure is first seen in the most brittle component (lowest failure 

strain). As a result, the matrix (resin) material is damaged first by the formation of 

cracks. Fatigue failure in a FRP laminate may occur in many forms such as fiber 

fracture, failure in fiber-matrix interface, delamination, matrix cracking and void 

growth (Stinchcomb et al, 1995). Cracking results in the lowering of both stiffness 

and strength of FRP materials. As a result the residual strength and stiffness 

decrease with increasing crack density. Crack accumulation and density varies 

depending on the orientation of the laminates. 

In multidirectional laminates, cracking occurs in succession from the 

weakest layer (off axis-90") to the strongest layer (0") (ASM Hand Book, 1998). 

When the crack growth reaches a certain limit, stresses cannot be transferred 

from the matrix to the fibers. At this stage only the fibers carry load and final 

failure occurs due to fiber fracture. 

In unidirectional FRP material, since fibers virtually carry the entire load, 

the matrix shows extensive longitudinal splitting parallel to the fibers caused by 

interfacial damage. This can result in brush-like failure characteristic of most 

unidirectional materials (Curtis, 1989). Fabric based or woven FRP materials 

offer greater versatility in producing complex shapes but are known to exhibit 

lower static stiffness and strengths due to the distortion of fibers in the weave. 



Curtis (1989) also reports that another reason for this is that high fiber volume 

fraction (60-65) is usually not achievable in woven FRP. Fatigue strengths of 

woven unidirectional FRP are also low compared to non-woven unidirectional 

FRP mainly due to the effect of stress-concentrations near fiber tow crossover 

points in the fabric, which induce premature damage in the fiberlmatrix interface. 

The degradation process in the matrix in an FRP is primarily controlled by 

the bulk strain in the matrix. Polymer composites or FRP made with carbon fibers 

(typically with stiffness of 220-700 GPa and failure strains of 0.6-1.8%) exhibit 

lower strains in the matrix (see section 2.3.2) and as a result have better fatigue 

strengths (shallow S-N curve). Using glass-fiber reinforced plastics (GFRP), 

which have lower stiffness (typically with stiffness of 70-80 GPa and strains of 

2.5-3.5%) compared to carbon fibers leads to greater matrix strains and thus 

comparatively lower fatigue strengths (steeper S-N curve) (Curtis, 1989, 1991). 

Aramid fiber has stiffness between that of carbon and glass fibers (typically 120 

GPa) and as a result is expected to show intermediate fatigue behavior. Aramid 

fibers are sensitive to fatigue (may defibrillate) but carbon and glass fibers do not 

show this effect. 

A good composite must have strong and durable fiber-matrix interface to 

reduce both crack initiation and propagation. During fatigue, the rise in 

temperature caused due to viscoelastic energy dissipation may also contribute to 

the weakening of the material and shortening of its fatigue life (Agarwal, 1990). 



Unidirectional composites are not the optimum design for fatigue. This is 

because of the splitting in the fiber direction resulting from low transverse 

strength and imperfect gripping condition (Agawal, 1990). This problem may be 

mitigated by providing a few plies in the 90" directions. The 90" plies help in 

terminating crack growth as seen in Figure 2.1. 

Figure 2.1 Delamination-Crack Terminations on a Cross -ply Laminate 

(Aqawal. 1990) 

2.3.2 Representation of Fatigue Life: S-N Curves 

The most common method of presenting fatigue data is to plot the applied stress 

(S) against the number of cycles (N) to failure. These plots are called S-N curves. 

The ordinate is usually the maximum stress or stress range (AS = Smax-S,i,), 

strain or the stress or strain amplitude that is usually plotted on a linear scale. 



The abscissa of the plot is usually the number of cycles to failure for a fixed 

stress or strain cycle and is usually plotted on a logarithmic scale. The stress 

ratio (R), defined as the ratio of minimum to maximum stress and the test 

frequency (Hz) are kept constant for all the specimens for which an S-N curve is 

developed. All materials including metals and composites exhibit a negative 

slope. This shows that for all materials, the number of cycles to failure increases 

as the applied cyclic load decreases. As for the exact shape of the curve, it 

depends on the material and testing variables. The S-N curve of composite 

materials generally depend on factors such as: 

Material variables: 

1. Fiber material and volume fraction (Vf) 

2. Matrix material (resin) 

3. Ply orientation 

4. Interface properties 

Test variables: 

1. Type of loading (tension-tension, tension-compression) 

2. Mean stress 

3. Frequency 

4. Environment 

The S-N curves of FRP materials are generally linear (Figure 2.2) for lives less 

than one million cycles. 



The S-N curve of a typical FRP material may be expressed using a linear 

equation: 

oaPd ustat = A + B log N Eqn 2-3 

where A and B are material constants. Another model for S-N curve of 

unidirectional FRP material is given by S. Subramanian, and K.L. Reifsnider 

(Sridharan et al, 1998): 

oapd ustat = An -& [ log (N) 1'" Eqn 2-4 

where, 

oapp - applied stress 

oSbt - static strength 

A ,  B ,  Pn are material constants. 

At a very low stress, the S-N curve of most ferrous and non-ferrous 

materials flattens indicating infinite life. Infinite life is said to exist when the 

applied stress is below the fatigue threshold. Since fatigue involves cycling over 

a range of stresses (between maximum and minimum stresses), it is more 

appropriate to use the stress range term rather than stress alone. Although steel 

and its alloys are known to exhibit distinct endurance limit it is generally not true 

for non-ferrous materials. In FRP materials, the term endurance limit is better 

explained by fatigue threshold, which is that stress or load below which a crack 

does not form or grow. 
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Fatigue threshold of FRP materials have been studied by a few authors 

including Taylor (1989) and is reported to be dependent on many factors such as 

type of reinforcements, matrix, curing method and fiber orientations. 

~ 

S,,M = 212 MPa 

R =0,1 
freq = 10 Hz 

run-ods mdlcated 
by squares 

Figure 2.2 Typical S-N Curve with 95% Confidence Bands (Hayes et al, 1998) 

Among the resins, Agarwal (1990) reports that epoxy exhibits the best 

fatigue property because of their inherent toughness, durability, low shrinkage 

during cure, and high mechanical strength. FRP made with high modulus fibers 

such as graphite or carbon, aramid, and boron fibers show excellent fatigue 

resistance when properties are fiber controlled in the testing direction. This is due 

to the fact that these fibers are more environmentally stable compared to glass 

fibers, and has low strain to failure, which induce low strains in the matrix 

material. 



As a result the S-N curves of FRP made with these fibers have smaller 

slopes. Some examples of fatigue strength of different composites are given in 

Table 2.1. 

Table 2.1 Typical Fatigue Strength of Unidirectional FRP Materials 

I Fatigue Strength (ksi) 

Material 
systems 

ks i 

E-glass I 
Phenolic 
E-Glass I 

Epoxy 

Kevlar 49 I I ,,, 

R 
- 

1 o6 cycles 

MPa 

Graphite I 
Epoxy 

10' cycles 

30 

30 

Ksi 

140 

MPa 

207 

207 

Epoxy 
E-Glass I vinyl 

ester 
S2 Glass I 

- 

Boron I Epoxy 

2024-T35 1 
Aluminum 

Reference 

0 

0.1 

965 

1 034 

62 

345 

-I 3u 

9 

Steel 

Branco et al, 
1994 

Agarwal, 1990 

150 

21 
(threshold) 

Agarwal, 1990 30 

140 

24 
(threshold) 

Agarwal, 1990 

1034 

145 

Hayes et al, 
1998 

Hayes et al, 
1998 

207 

965 

166 

Agarwal, 1990 

0.1 

0.1 

0.1 

0.1 

140 

0.1 

Chatterjee et al, 
1997 

AASHTO, 1994 

965 

2.3.3 Standard Method for Fatigue Testing of FRP 

Parameters for the fatigue testing are usually specified to closely approximate 

real-life situation. Thus, specimens may be tested in tension-tension, tension- 

compression or compression-compression fatigue. Testing can be done on both 

life-size specimens and on coupon level. 

0.1 

0.1 



Although there are no guidelines for testing life-size specimens in the 

laboratory, researchers have followed AASHTO load specifications when testing 

a bridge member (Lopez-Anido et al, 1999). 

Coupon testing of FRP materials can be carried out according to ASTM 

D3479 "Tension-Tension Fatigue of Polymer Matrix Composite Materials", which 

is described in the methodology section (section 3.5.3.1). The coupons are 

usually machined to a rectangular or dog-bone shape. The aforementioned 

ASTM method suggests rectangular specimens. Gripping is a continuous and 

irksome problem in fatigue testing because specimens are prone to failure at the 

grips. However rectangular specimens have been used successfully when well- 

machined and proper grips are used. It is also much easier to fabricate defect- 

free rectangular specimens compared to dog-bone specimens, which require 

specialized machinery such as CNC and water jet cutting systems. 

Servo hydraulic machines such as those manufactured by INSTRON and 

MTS are commonly used to apply fatigue loading. The loading pattern can be 

sinusoidal, triangular or square and the amplitude may be constant or variable. 

Constant amplitude sinusoidal loading is a common method used to test 

composite materials (Branco et all 1996). Frequencies ranging from 5 to 20 Hz 

have been used to study fatigue behavior of FRP materials (Branco et al, 1992). 

A point on the S-N curve represents a specimen tested at a particular stress 

range and the corresponding number of cycles at which it failed; stress ratio (R) 

and frequency being the same for all specimens. If a specimen is tested for high 

cycle life, a simple S-N curve may require many months to develop. 
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2.3.4 Residual Strength Modeling of FRP Materials 

Residual strength is the remaining static strength of the FRP after it has been 

subjected to a given number of cycles (Figure 2.3). To obtain the residual 

strength, a specimen is fatigued for a given number of cycles at a particular 

stress range and then tested statically to failure. Hayes et al. (1998) suggested 

an equation for modeling residual (remaining) strength of FRP material: 

S,$Sut, = 1 - ( 1 - S,/Sut,) ( nlN)* 

where S,, is the residual strength, 

Suit is the ultimate strength 

S, is the applied stress 

N is the life of the specimen 

n is the number of loading cycles applied on the specimen. 

a accounts for the non-linearity in the strength reduction curve. 

Eqn 2-5 

1 10 100 1,000 . f0,OOO 100,000 1,000,000 

# of Cycles 

Figure 2.3. Typical Residual Strength Curve of an FRP Material 

(Hayes et all 1998). 



Residual strength tests indicate the extent of damage in a material and 

allow one to predict properties of a material after it has been subjected to cyclic 

loading. This tool is very useful for estimating remaining service life of materials 

used in structures such as bridges. 

2.3.5 Fatigue of Phenolic Composites 

Although today vinyl ester and polyester composites dominate the construction 

industry for structural applications, the reasons for using phenolic resins are 

many. In the construction industry fire hazards are a growing concern. Phenolic 

resins are known to perform better at high temperatures compared to other 

resins. Traditionally, phenolic materials were used in a variety of household 

goods such as handles in cooking utensils, radio buttons, and counter-tops. This 

is due to their excellent thermal and dimensional stability at elevated 

temperatures, and due to superior chemical and corrosion resistance compared 

to other thermosetting polymeric materials. 

Phenolic compounds are also known to possess low toxicity and low 

smoke emission at temperatures up to 200°C (Branco, 1996). These properties 

have been advantageously used today in the making of Phenolic fiber-reinforced 

polymers for structural applications. Among the fibers, glass fiber seems to be 

the most attractive reinforcement for phenolic resins due to their high tensile 

strength, corrosion resistance and low cost. 



Phenolic composites reinforced with glass fibers have been well received 

by the auto and aerospace industries, which uses them for interior molding and 

body panels such as cockpit panels and seats in aircraft, pulleys, intake 

manifolds, water pumps, and valve covers etc (Branco et all 1994). They have 

also been successfully used as body frames in railway carriages and buses not 

only because of high strengthlweight ratio and better creep resistance at high 

temperature but also because of faster manufacturing processes available today. 

Although phenolic composites are not yet widely used by the construction 

industry, phenolic adhesive such as phenol resorcinol formaldehyde (PRF) is 

widely used by the plywood industry for exterior application. This is due to its 

ability to form excellent adhesive bond with wood. The chemical structure of 

Phenolic compounds is also similar to that of Lignin present in wood species 

(Bodig , 1 992). 

Phenolic composites are thus an excellent choice for reinforcing wood and 

wood composites. However as this concept is quite new, the data available in the 

open scientific literature pertaining to phenolic GFRP is quite limited. Most 

available data consists of thermal and tensile properties in the form of product 

literature published by manufacturers. Most durability data of composites is 

currently available from the use of FRP by the aerospace industries. This data is 

mostly restricted to epoxy resins and carbon fibers. Very few articles in the open 

literature pertain to durability of E-glass reinforced phenolic composites. 



Branco and Ferreira (1 994, 1996) tested tension-tension fatigue properties 

of pultruded and hand lay-up phenolic GFRP at varying temperatures, 

frequencies, stress ratios and fiber lay-up. It was observed that the fatigue 

strength of phenolic composites, like other composites, increases with the fiber 

volume fraction. The Young's modulus and rupture stress were shown to 

decrease as the temperature was increased from 20" C to 200°C. The authors 

tested dog-bone coupons measuring 220mm in length, 22mm in width and 2mm 

thick. The narrow part of the coupon (gauge length) was only 40mm long. A 

silane-coupling agent was used to enhance bonding during manufacturing. 

They have observed that the fatigue strength at room temperature of 

pultruded unidirectional E-glass phenolic composites (700MPa UTS) was 

40%UTS at 1 o4 cycles and 30%UTS at l o6  cycles for R=O and frequency of 10 

Hz. Fatigue strength decreased by 10% when the frequency was reduced from 

10Hz to 1.5Hz. All the different types of hand lay-up composites have shown 

higher fatigue lives when the stress ratio was increased from R=O to R=0.4-0.5. 

The pultruded specimens were tested at room temperature only, and their fatigue 

strengths were shown to be lower (10%) than unidirectional hand lay-up 

specimens at 2 million cycles. Woven pultruded composites gave the lowest 

fatigue strength data of all the composites tested. From SEM scans, the authors 

have concluded that the main failure mechanism was shear delamination 

between the resin and the fiber. 



The S-N curves were modeled using log-log linear regression analysis as 

shown below. 

Log(Ao) = a Log(N) + b Eqn 2-5 

where A o  is the applied stress range and N is the number of cycles to failure. 

The constants a and b are material specific parameters. Hand lay-up 

unidirectional composites were also tested for their fatigue strength at 1.5, 10 

and 25Hz. Branco et al (1996) reported that at room temperature, the fatigue life 

of a unidirectional pultruded GFRP (700 MPa UTS) was approximately 1 million 

cycles at 21%UTS. They also reported that a woven pultruded E-glass phenolic 

FRP with 305 MPa UTS had a fatigue life of 1 million cycles at 28% UTS. 

It was concluded that fatigue strength increased when the testing 

frequency was increased from 1.5Hz to 10Hz. Further increase to 25Hz had 

negligible effect on fatigue life. It was observed that virtually no loss in stiffness 

occurred up to 75% of the fatigue life. The modulus starts to reduce after 75% of 

the fatigue life and the maximum reduction occurs when there is only about 15% 

of the life remaining. The authors stated that the fatigue strength of phenolic 

composites were lower than those of epoxy and polyester matrices. 

2.3.6 Design Methodology for Fatigue of Composite Materials 

To account for fatigue, composites are designed to carry stresses well below 

their ultimate tensile strength. Typically these stresses are selected from the S-N 

curves where the curve tends to flatten. The design is also very much dependent 

on the application. 



Composites are most sensitive to fatigue when they are subjected to high 

frequency and stresses such as in high-speed cutting tools and machinery. As a 

result, the life of such composites will be estimated differently from say a 

structural member in a building subjected to wind loads. 

The basic fatigue design method for any material is to ensure that the 

particular member has infinite life when subjected to fluctuating loads. The 

condition of infinite life is met when the maximum stress range induced is less 

than the fatigue threshold stress range. The fatigue threshold stress range is that 

stress range just sufficient to initiate and grow a short fatigue crack [58]. Since 

below this threshold no cracks are expected to occur, a material is said to exhibit 

infinite life. Fatigue limit and Endurance limit can be and often is used as 

synonyms of fatigue threshold although fatigue threshold is specifically derived 

from fracture mechanics concepts and the others are not. 

Tolerance limits are also used to estimate safe design life of composites. 

The tolerance limit method has been used for fatigue design of steel, wood and 

polymer composites (Wirsching, 1983; Bond et al, 1998; Roland et al, 1996). The 

most common method is to use the lower 95% tolerance (one-sided) for 95% of 

the population. This tolerance is also called the 5% Lower Tolerance Limit (LTL). 

This tolerance limit describes a lower limit to the data, above which one can say 

that at least 95% of future observations (or sampled normal population) will have 

a 95% survival probability. 



The 5% LTL was used here because it provides a precise statistical lower 

boundary which is not too stringent for widely scattered fatigue data (Bond et al, 

1998). This method has been in use for a long time and has been used to study 

fatigue of steel connections (Little (Ed), 1979). 

2.4 Environmental Degradation of Composite Materials 

The sources of degradation from the environment are many. Moisture is the most 

common source and is known to affect both the fibers and the matrix. Ultraviolet 

light from the sun, concrete pore water and salt water from de-icing salts cause 

damage to both fiber and matrix. The synergistic effects of temperature and 

fatigue have been studied by Branco et al. (1994) and Liao et al (1998). Strong 

acids and bases are also known to cause significant damage to FRP material. 

Fatigue testing of environmentally conditioned Phenolic composites is yet 

to be found in literature. Since Vinyl Ester composites are widely used in the 

construction industry, it is worthwhile mentioning some of the findings pertaining 

to fatigue strength of these composites. Hayes et al (1998) studied the effects of 

moisture on the fatigue strength of glasslvinyl ester composites. They have 

stated that moisture acts as a plasticizer in the matrix and thus lowers the glass 

transition temperature (Tg). The lowering of glass transition temperature causes 

reduction in modulus, tensile strength, and fracture toughness. When the 

composite is dried, the effect of plasticization is reduced, although permanent 

damage such as matrix cracking, hydrolysis and fiber-matrix debonding can 

occur due to the swelling stresses. 



The combined effects of moisture, temperature and stress are difficult to 

model and predict. In this study Hayes et al (1998) have used off-the-shelf 

unidirectional pultruded composite plates with random-fiber continuous strand 

mat layers. They fail to report the exact quantity of unidirectional and random mat 

layers. The total fiber volume fraction was 50-55%. The coupons were 6" long, 1" 

wide and 118" thick. Samples were tested in tension-tension fatigue at 10Hz and 

stress ratio R=0.1. The authors have concluded that the results are dependent on 

fiber and matrix lay-up, laminate lay-up, pre-conditioning methods, solution 

contents and the environmental conditions during fatigue. The damage due to 

moisture is fiber-dominated and is irreversible. The static tensile strength was 

reduced by as much as 26% at a moisture concentration of 0.95% by weight. 

This reduction in static strength causes a vertical shift in the S-N curve. Thus 

moisture does not affect fatigue mechanism. 

2.5 Summary 

Fatigue has been a design consideration ever since engineers realized that 

metals such as steel and aluminum might fail at stresses well below the UTS 

when subjected to fluctuating loads. With the advent of high strength fibers such 

as Carbon, Kevlar, Boron and Glass, metals are being replaced in some 

application in favor of FRP materials mainly due to their high strength to weight 

ratio. Glass fiber reinforced plastics (GFRP) composites are widely used because 

of comparatively low unit cost. Like steel, FRP materials are also prone to fatigue 

degradation due to crack initiation and propagation. 



Fatigue behavior is commonly represented by an S-N curve, which plots 

the number of load cycles it takes to fail a specimen when subjected to a 

particular stress range. Unidirectional (0") FRP material in general performs 

better in fatigue than multidirectional laminate FRP. Fatigue failure in 

unidirectional FRP material initiates with matrix cracking or splitting parallel to 

fiber direction. This results in fiber-matrix debonding and ineffective load 

distribution, which leads to fracture of weaker fibers and consequently total 

failure. 

In multidirectional laminates failure occurs in succession from the 90" to 

the 0" plies. For a given type of laminate and testing parameters FRP materials 

with higher fiber volume fraction show higher fatigue performance. Carbon and 

Epoxy show the best fatigue properties among fibers and matrix materials 

respectively. 

Moisture can cause significant damage to FRP materials by degrading the 

fiber-matrix interface. Among the fibers mentioned above, carbon fibers are least 

affected by moisture (Curtis, 1989). A strong interface ensures protection to the 

fiber. Fatigue data of E-glass phenolic composites are scarce in literature and 

some authors have stated that the fatigue strength of phenolic composites in 

general is lower than those of epoxy and polyester matrices. The basic fatigue 

design method for any composite is to limit the maximum stress range such that 

it is lower than the constant amplitude fatigue threshold. 



3 MATERIALS AND METHODOLOGY 

3.1 Introduction 

This chapter describes the materials used in the study; pultruded and hand lay- 

up GFRP, the methods used to condition the specimens prior to testing, and the 

testing methods followed to determine physical, mechanical and fatigue 

properties. The pultruded GFRP was exposed to five different types of 

environments, which include control (at RT air), freeze-thaw, hot water, UV 

weathering, and simulated seawater. The exposed specimens were then tested 

for the change in mechanical and fatigue properties at the end of the exposure 

period. The hand lay-up GFRP was not exposed to any of the environments but 

tested for static and fatigue control properties. 

3.2 Rationale 

The mechanical properties of GFRP are known to degrade when exposed to a 

variety of environments including high temperature and humidity. Strong acids 

and bases are also known to cause significant reduction in the mechanical 

properties of GFRP. Thus, it becomes imperative to study the extent of damage 

for design purposes. Other factors such as salt from deicing materials and 

concrete pore water are studied because GFRP used in Glulam beams for bridge 

application may be exposed to these chemicals. Since it is not always practical 

to study long-term durability on in-service structures, accelerated tests are 

performed in the laboratory on small-scale specimens such as coupons to 



simulate real life conditions. In this study GFRP plates were conditioned in 

different solutions and environmental exposures. After the conditioning period, 

ASTM specified coupons were cut and promptly tested for physical and 

mechanical properties. To maintain consistency in the testing methods, American 

Standards for Testing and Materials (ASTM) specified methods were followed in 

all cases. International Conference of Building Officials (ICBO), Acceptance 

Criteria (AC) 125 in particular specifies evaluation tests for FRP materials for 

reinforced and unreinforced masonry. This specification recommends tests to 

evaluate FRP materials for exterior purposes. These methods were followed for 

conditioning the specimens to the different exposure environments. ASTM E 632 

was also reviewed to help with organizing the tests. 

3.3 Materials 

Pultruded and hand lay-up GFRP are the two types of glass fiber reinforced 

polymers (GFRP) evaluated in this study. A brief description of a glulam beam is 

also given since these GFRP materials were designed to be used as tension 

reinforcement in glulam beams. 

3.3.1 Pultruded Phenolic GRFP 

The pultruded GFRP was designed and formulated by a team of University of 

Maine, Orono Maine and Winona State University, Winona Minnesota engineers. 

It was manufactured at Strongwell, Chatfield Minnesota. This GFRP consists of 

approximately 54% unidirectional glass fiber, 22% phenolic resin, and 24% voids 

by volume. It is approximately 3.3mm (0.13in) thick and 120mm (4.725in) wide 



(Figure 3.1). The reinforcement used is made of E-glass fibers (10-20 microns), 

which have high tensile strength (1.7 GPa, 250 ksi) and low density (2.54 g/cm3) 

Unidirectional GFRP 
Pultruded 

Mat layer 

(random 

glass fibers) 

Figure 3.1 Cross Section of GFRP Showing the Different Layers 

compared to mild steel; 0.640 GPa (92 Ksi) and 7.8 g/cm3 respectively (Agarwal, 

1990). These fibers are also the least expensive ($0.6/1b) compared to other 

common fibers (carbon- $8.0/lb) and most readily available. The fibers have also 

been coated with a suitable sizing to enhance bonding with the phenolic resin. 

The matrix used is a one-part phenolic resin supplied by Georgia Pacific. It is a 

thermosetting resin and cures at high temperature. It is formulated to produce 

maximum wetting of fibers. Good wetting ensures good bonding and better 

protection of the fibers. Phenolic resin is used as the matrix because of its low 

cost compared to epoxies as well as its fire resistance characteristics and good 

bonding with wood. 

The GFRP is encased on both faces by a thin mat layer. The surface mat 

layers consist of randomly oriented short glass fibers, which constitute high 

porosity. The porosity facilitates bonding of the GFRP with wood or other material 



through mechanical interlocking. When bonded to wood laminations, the 

unidirectional glass fibers are aligned parallel to the wood grain (longitudinal). 

The GFRP was manufactured using the pultrusion method, which can only 

produce constant cross-section composites. A schematic view of a pultrusion 

process used to manufacture the pultruded GFRP is shown in Figure 3.2. The 

process consists of pulling continuous rovings of glass fiberslmats through a 

resin bath, and then through a preforming die where it is shaped and excess 

resin is removed. 

Fiber 
Prfaol 

%t Layer HOII Cutter - . -.- 

Y 1  --I Forming and Roller 
Preforming Die Curing Die Pullers Sander n 

Figure 3.2 Schematic of the Pultrusion Method for Resin Starved Mat Layers 

The unidirectional core is then surfaced with the mat layer, on top and 

bottom faces. It then goes through a heated die where the section is cured 

continuously. Special pullers are used at the front end of the pultrusion process 

to pull the section continuously. Cut-off saws are used at the end of the 

production line to section the composite as desired. The GFRP is passed through 

a drum sander to remove the gloss from both faces, and then rolled for shipment. 



Different types of GFRP were pultruded by varying the resin quality and 

quantity. A letter and a number designated the different types of GFRP. The 

ultimate GFRP manufactured was designated K-1 after several cyclic- 

delamination tests were done on its predecessors, 1-2 and 1-3 to evaluate bond 

compatibility with wood. The manufacturing parameters for this GFRP cannot be 

disclosed due to pending patents. In this study only K-1 pultruded GFRP was 

used. 

3.3.2 Hand Lay-up GFRP 

The hand Lay-up GFRP consists of unidirectional woven E-glass fibers in a 

Phenol Resorcinol Formaldehyde (PRF) adhesive matrix. The glass fiber fabrics 

were provided by Brunswick Technologies, Inc (BTI) of Brunswick, Maine. The 

unidirectional glass fabrics weighed 26 oz/yd2. They were shipped in rolled mats 

of varying widths. The resin (GP 4242) and hardener (GP 4554) were both 

obtained from Georgia Pacific Resins, Inc. 

The matrix is a three-part adhesive that was prepared by mixing water, 

hardener and resin in an 18:12:70 ratio respectively. This ratio allowed a 

workable time of only 45 minutes. The powdered hardener was first mixed with 

water to form liquid slurry followed by the addition of resin. The mixture was 

stirred for at least five minutes to ensure uniform consistency. A resin 

impregnator was used to infuse the resin into the woven fiber mats. The gap 

between the rollers was adjusted to obtain pre-cure 5050 ratio of fiber to resin. 



Mats were cut to 280cm long and then after being impregnated with 

adhesive they were folded to form five-layered 50cm long plates. Each plate was 

then pressed between two steel plates and clamped at 550kPa (80 psi) for 24 

hours at room temperature. They were allowed to dry for two weeks at room 

temperature after unclamping. Tensile coupons were then cut from these plates 

using a wet diamond saw. The typical properties of the adhesive mix are given in 

Table 3.1. 

Table 3.1 Typical Properties of PRF Uncured Adhesive Mix [GP PUB 1511 

Appearance I Redlbrown-slurry 

r Mix Ratio; parts by weight 1 70 resin : 30 hardener (water added) 

I Gelation Time at 25 C I 1.58 - 2.25 hours 

Wet Density , Ibs.lga1 (kgll). @ 25 C 

Viscosity, cps @ 25 C 

pH 

Free Formaldehyde, % 

3.3.3 Glue-Laminated Beam (Glulam) 

The cross-sectional dimensions and length of sawn lumber are limited by the size 

of the tress available to produce this type of lumber. Thus when span becomes 

long, sawn lumber is impractical and glulam beams are used. Glulam beams 

(Figure 3.3) are fabricated from thin laminations of solid wood, which can be end- 

jointed and glued together to produce wood members of practically any size that 

can be shipped. 

9.5(1.13) - 9.7(1.16) 

3000- 6000 

8.7-9.0 

< 1.0 



The structural properties of glulam members in most cases exceed those 

of sawn lumber (Breyer, 1993). A reason for this is that laminating wood 

optimizes material by dispersing the strength reducing defects in the laminating 

material throughout the member. Glulam beams also make efficient use of 

available structural material by incorporating high-quality laminations in the 

portions of the cross-section that are more highly stressed. Phenol Resorcinol 

Formaldehyde (PRF) is the common adhesive used in glue-laminating plants. 

Glulams also have a number of advantages. Large glulam have good fire 

resistance because they are charred in a fire and not readily consumed. 

Wood 
Laminations 

- 
Figure 3.3 An FRP Glulam Showing Location of FRP Reinforcement 



The outer charred layer acts as a thermal shield to the core. Glulam 

beams exhibit good fatigue strength and are aesthetically pleasing. Another 

advantage is that they do not rust or corrode and therefore are used in industrial 

storage buildings for alumina, salt and potash, which corrode steel. Glulam 

beams can be strengthened with fiber-reinforced plastics (FRP) just as concrete 

is reinforced with steel. The FRP is usually laminated into the beam in the 

tension zone. They are typically called FRP-Glulam (Figure 3.3). The GFRP 

used in this study is intended as a tension lamination for glulam beams. 

3.4 Summary of Test Program 

To evaluate environmental durability, the pultruded GFRP was exposed to 

different artificial environments. At the end of the exposure period, the specimens 

were tested for both static and fatigue strength retentions. The wet-preg GFRP 

was tested for static and fatigue control properties. The following section (section 

3.4) describes how the exposure environments were prepared. Section 3.5 

describes the testing methods followed to determine strength retention. The 

entire test matrix is given in Table 3.2. 



Table 3.2 Summary of Entire Test Plan 

Number of Specimens 

Hand Lay- 
up GFRP 

Dry Control 

Pultruded GFRP 
Test Type and 

Method Total 
No. Of 

Specimens 

Simulated 
seawater 

ASTM D 
1141 

ICBO AC 
125 

5 

Freeze- 

Hot 
Thaw 

Water ICBO AC 
125 

uv 
Weathering 

ASTM G 
53 

ICBO AC 
125 

5 

Dry 
Control 

Density 

ASTM D 792 

Vf, Voids 

ASTM D 2584 

TQ, DMTA 

ASTM D 541 8 and 
ASTM E 1640 

Longitudinal Tensile 
properties 

ASTM D 3039 

Interlaminar Shear 
Strength 

ASTM D 2344 

Fatigue 
Strength 

ASTM D 
3479 

Residual 
Strength 

ASTM D 
3479 

Microscopy 
STEREO t 



3.5 Exposure Methods 

Pultruded FRP was exposed to five different environments as shown in Table 3.2 

in addition to room temperature and humidity. Hand lay-up FRP was not exposed 

to any of the environments but conditioned to room temperature and humidity 

only. These five exposure environments are known to degrade FRP material 

properties. Pultruded specimens were exposed to the different environments as 

per ASTM or ICBO AC 125 specifications. 

To simulate actual conditions in glulam beams, all pultruded specimens 

were primed with PRF and allowed to dry for two weeks before exposure. Instead 

of exposing test coupons, 25.4cm (loin) long plates were exposed with the as 

received width (12cm, 4.725in) to reduce edge effect and ensure uniform 

diffusion. The exposed edges were sealed off with a durable epoxy adhesive. 

The epoxy was cured at room temperature and not cured in an oven to avoid any 

pre-exposure effects. Seven 12.7mm (0.5in) wide tensile coupons could be cut 

from each plate. High-density Polyethylene (HDPE) tanks, which are known to be 

inert to most solvents, were used to expose the specimens to different solutions. 

Wherever applicable only TYPE I distilled water was used in preparing the 

solutions. Each tank had a capacity of 20 liters (6 gal) and a separate tank was 

used for each exposure setting. The tanks were also covered with a spill-proof lid 

to minimize evaporation and spilling during handling. The exposure test matrix is 

given in Table 3.3. 



Table 3.3 Exposure Parameters for Pultruded GFRP 

Exposure 
Parameters 

Hot Water 

tjzl++i 
Simulated I ( seawater 1 ( 

50% RH, 23°C 

-18°C -12 hrs 
38°C -1 2 hrs 

45°C 
(100% RH) 

63OC, 102 min UV 
+ 18 min 

of UV+water 
spray 

8.2 pH 
(100% RH) 

I 1 Retention 

Duration I Conditioning I as per 
Method ICBO AC 

3000 hrs I ReleMnt ASTM I 
3 weeks at 38°C 

3000 hrs I AsTM 570 I 

I I I I L 
'Plate size: I lm x 25cm. Seven tensile coupons (12.7mm wide) were art from each plate. 

3000 h n  

3.5.1 Priming Method 

ASTM D 1141 1 85% 

Prior to exposure to the different environments, all pultruded specimens were 

primed with PRF, which is commonly used to bond wood in glue-laminated 

beams. The hand lay-up GFRP did not need to be primed as it was not exposed 

to the different environments and did not have surface porosity like the pultruded 

GFRP. The priming method consisted of simply painting the surface with PRF 

and using a roller to ensure consistent penetration. The adhesive was rolled over 

twice on each face and excess adhesive was immediately wiped off with a 

squeegee. 



The specimens were kept upright in a rack and dried at room temperature 

for three weeks. The rationale behind priming is that the GFRP will always be 

primed with the adhesive just as any wood lamination in a glue-laminated beam 

and this will simulate real-life conditions. 

3.5.2 Room Temperature Conditioning (Control specimens) 

Room temperature specimens, designated as control specimens were kept in a 

humidity and temperature-controlled laboratory. The humidity and temperature 

were maintained at 50 f 10% RH and 23.0 f 3" C (73" F) respectively. The 

specimens were conditioned at the aforementioned humidity and temperature for 

at least three weeks before testing. This period includes PRF primer cure time. 

3.5.3 Freeze-thaw Cycling 

ICBO AC-125 specified this exposure method. It is intended to measure the 

damage caused by thermal shock due to sudden change in temperature and 

humidity. Ten plates of pultruded FRP were exposed to this environment. A 300- 

watt heater with a thermostat was used to maintain the temperature. A water 

pump with a 4-literslmin capacity was used to circulate the water. The water was 

TYPE I distilled. The first step of this method consisted of conditioning the 

specimens in a heated bath (Figure 3.4) at 38°C (100°F) for three weeks. 

The second part consisted of cycling the specimens between -18" C (0° F) 

in a freezer for twelve hours and then in the heated bath at 38" C (100° F) for 

another twelve hours. This cycling was done for twenty days. 



Thus the complete conditioning period was about six weeks. The specimens 

were then removed from the bath and stored in a sealed plastic bag at room 

temperature until tested for static and fatigue properties. 

Figure 3.4 Freeze-Thaw Conditioning Tank 

3.5.4 Hot Water Exposure at 45" C (1 15" F) 

This test was done to measure moisture adsorption according to ASTM D 570 

and effect of moisture at high temperature. Since the GFRP will be bonded to 

wood in a glue-laminated beam, it is expected to absorb a certain amount of 

moisture from both faces. To accelerate the adsorption process specimens were 

conditioned by submerging them in 45°C (1 15" F) distilled water. An HDPE tank 

equipped with a 1000-watt water heater and a circulating pump was used to 

maintain the desired environment (Figure 3.5). The plates were exposed to this 

environment for 3000 hours (125 days) to allow uniform concentration of 

moisture throughout the specimen. 



Fresh distilled water was used to replace water lost due to evaporation. An 

external digital thermometer with an alarm was used to monitor isothermal 

conditions. 

Figure 3.5 Hot Water Conditioning Tank 

3.5.5 UV+Spray (Simulated Exterior Weathering) 

ICBO AC 125 recommends this test and ASTM G 53 describes the testing 

method. It is an accelerated simulation of exterior exposure. Eight plates were 

exposed to a combination of UV light, high temperature, and water spray at cyclic 

intervals. The UV light with an irradiance of 0.55 ~ /m* /nrn  using UVA 340nm 

(peak radiation) fluorescent bulbs and 63" C chamber temperature was used to 

simulates sunlight during a hot day. Although sunlight radiation consists of 

wavelengths greater than 315nm and beyond the infrared (>700nm), shorter 

wavelength radiation (~300)  penetrates FRP more and as a result causes more 

damage than longer wavelengths (ASTM G53). 



The normally distributed radiation wavelengths of UV-A bulbs range 

between 31 5 and 400nm which is a better simulation of sunlight compared to UV- 

B lamps which emit radiation of shorter wavelengths. Water spray represents 

rain. All these factors are known to cause degradation in FRP materials. The 

specimens were directly exposed in a weatherometer (QUV) for 2000 hours. All 

eight plates were exposed on only one side for 102 minutes of UV followed by 18 

minutes of UV and distilled water spray. The water was supplied and recycled 

from a 190-liter (50-gal) reservoir, which was connected to the weatherometer 

and replenished every 500 hours (Figure 3.6). 

Figure 3.6 UV Weathering Chamber (b) Showing FRP Exposure Set-up (a) 

3.5.6 Simulated Seawater (Salt Water Resistance) 

Salt water was prepared in accordance with ASTM D 1141 (Substitute Ocean 

Water) method. Only reagent grade chemicals were used. Three types of stock 

solutions were prepared as shown in Table 3.4. 



Table 3.4 Composition of Stock Solutions Used in Preparing Seawater. 

I CaCh (anhydrous) 

Stock Solution 3 
(in 10 Liters) Stock Solution 1 Stock Solution 2 

555.6 g/L 

57.9 g/L 

2.1 g/L 

The simulated seawater was then prepared by combining common salt, 

anhydrous sodium sulfate (NaS04), and the stock solutions 1,2 and 3 in 20 liters 

(6 gal) of TYPE I water such that the resultant solution was composed of 

chemicals in the concentration shown in Table 3.4. 

-- 

Table 3.5 Chemical Constituents of Simulated Seawater as Per 

KC1 

NaHC03 

KBr 

H3B03 

ASTM D 1141 

NaF 

69.5 glL 

20.1 glL 

10.0 g/L 

2.7 g/L 

0.3 g/L 

Ba(N03k 

Mn(NO3)2.6Hz0 

Cu(N0&.3H~0 

Zn(N03h.6H20 

0.994 g 

0.546 g 

0.396 g 

0.151 g 

Pb(NO3h 

ASNOS 

0.066 g 



Ten plates were stacked vertically on a HDPE rack and immersed in the 

seawater for 3000 hours. The pH was maintained and adjusted to 8.2 with drops 

of 0.1N sodium hydroxide (NaOH) solution. The tank was stirred every week to 

maintain uniform concentration throughout the tank. 



3.6 Test Methods 

Physical, mechanical and fatigue properties were determined according to ASTM 

specified methods. The laboratories in which the testing were conducted were 

temperature and humidity controlled at 23.0 + 3" C (73°F) and 50% * 5% RH. 

This section describes the methods used to determine physical, mechanical and 

thermal properties of both exposed and unexposed pultruded, and hand lay-up 

FRP. The testing matrix is shown in Table 3.2 (section 3.4). 

3.6.1 Physical Properties 

Physical properties evaluated in this study include density, volume fraction of 

resin, reinforcement, and voids content. The glass transition temperature (Tg) 

was also evaluated for both control and exposed specimens. 

3.6.1 .I Density by Volume Displacement Method 

Density was determined by the liquid displacement method using a laboratory 

density determination kit and an analytical balance. ASTM D 792 was followed 

while conducting this test. Five specimens with 2cm sides were cut from a plate 

using a wet diamond saw. The specimens were then washed with tap water and 

conditioned at room temperature (23OC, 73°F) and humidity (50 2 5 % RH) for 4 

days. The specimens were weighed in air and then weighed again by completely 

submerging them in distilled water (Specific gravity = 1 glcc). 



3.6.1.2 Fiber, Resin, and Void Volume Fractions by Ignition Loss Test 

This test method involves burning the specimens in a furnace such that only 

glass fibers remain. The test method specified in ASTM D 2584 was followed. A 

rule of thumb for a well-fabricated composite material is that the void content 

should be less than 1 % (Agarwal 1990). Higher void content can adversely affect 

the mechanical, and durability properties of FRP. Higher void content results in 

poor fatigue strength (higher crack density), greater susceptibility to moisture 

penetration and weathering, and increased variation in strength properties 

(Agarwal, 1990). 

Only the control pultruded and hand lay-up FRP were tested for void 

content and fiber volume fraction. Five control specimens were prepared and cut 

as described in section 3.6.1.1. The specimens were weighed and placed on 

aluminum crucibles and then heated at 565°C in a muffled furnace for two hours. 

At the said temperature all polymeric and volatile materials burned off and only 

glass fibers remained. The remains were cooled to room temperature in 

desiccators (to prevent moisture condensation) and weighed again. The 

difference in weight constitutes the weight of resin in the composite sample. The 

weight of the remains constitutes the weight of fibers. The volume fraction (Vf) of 

fiber is determined by using the following equation (Agatwal, 1990): 

Vr = (pcelpf) Wr Eqn 3.1 

In the above equation, PCe is the experimental density of the composite material 

obtained by the method described in the preceding section, pf is the density of the 

glass fiber, taken as 2.54 glcc. Wf is the weight fraction of the glass fibers 



(residue weight). The void content was calculated according to ASTM D2734. 

The equation for void content is given by: 

Eqn 3-2 

where : 

Md = measured composite density 

r = resin, weight % 

g = glass, weight % 

d, = density of resin, and 

d, = density of glass. 

3.6.1.3 Glass Transition Temperature (T,) 

Tg is the characteristic temperature at which glassy amorphous polymers 

become flexible (soften) due of the onset of concurrent motion of large segments 

of the polymer molecule. Tg is typically used to determine extent of cure and 

evaluate effect of plasticization in the exposed specimens. A Dynamic 

Mechanical Thermal Analyzer (DMTA) was used to determine the Tg of the two 

GFRP used in this study. The tests were done according to ASTM El640 and D 

5418 specifications. An increase in the Tg implies further curing (the resin has 

become stiffer) whereas a decrease in the Tg implies softening of the resin 

(plasticization). Five specimens from each exposure environment were tested 

using a DMTA. A DTMA machine measures mechanical and viscoelastic 

properties with change in temperature. It applies a dynamic load to measure the 



difference in the viscous and elastic properties. A DMTA applies a temperature 

ramp beyond the Tg temperature and measures the change in elastic modulus 

(storage modulus) and viscous modulus (loss modulus). The force was applied in 

a dual cantilever (Figure 3.7) fashion. 

Figure 3.7 Dual Cantilever Set-up for Pultruded GFRP on a DMTA 

Five specimens of the pultruded FRP from each conditioning were cut to 

dimensions with a diamond saw and conditioned at room temperature and 

humidity for 4 days prior to testing. The specimens were cut to 44.5mm long and 

6.4mm wide from the pultruded plates. The DMTA test parameters were set in 

accordance with ASTM D 5418 method. A Rheometric Scientific DMTA IV with 

Nitrogen cooling capability was used to determine the Tg and flexural modulus 

changes in the specimens. The testing parameters are given in Table 3.6. The 

frequency and load application were adjusted to obtain clear and accurate DMTA 

graphs. 



Table 3.6 DMTA Test Parameters. 

~eometrv T v ~ e  I Dual Cantilever 

DMTA Parameters 

r Test t v ~ e  I Dynamic Temperature Ramp 

Value 

r Frequency I 1 HZ 

Frame size 
Center Clamp 

Sam~le size (LxWxD) 

Large (34mm) 
Small (2mm) 

32.0 mm x 6.3rnrn x 3.3mm 

lnitial-static force I 

Temperature ramp 

Temperature ramp rate 
Strain 

23" C to 300" C 
2" C 1 min 
0.002 % 



3.6.2 Mechanical Properties 

The mechanical properties measured include longitudinal tensile strength, 

Young's modulus, strain to failure, and interlaminar shear strength. The pultruded 

specimens were cut from plates as shown in Figure 3.8. The hand lay-up 

specimens were cut to 23cm long and 1.9cm wide. Straight edge coupons of 

unidirectional FRP have been found to perform better in static tests than others 

with varying widths (ex. Dog-bone) (Curtis, 1989). 

3.6.2.1 Tensile Strength and Young's Modulus 

The FRP coupons were tested for tensile strength using the method specified in 

ASTM D 3039. The FRP cutting configuration is shown in Figure 3.8. 

Static tensile testing was conducted before and after exposure to various 

Figure 3.8 Specimen Cutting Configurations for Pultruded GFRP 
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environments to determine the ultimate tensile strength (UTS), strain to failure, 

and the Young's modulus of elasticity. Seven coupons from each exposure 

environment were tested using the lnstron 8801, 100 KN (22 kip) mechanical 

testing machine. An extensometer was used to measure strain in the specimen. 

The specimens were tested at a strain rate of 1.27mmlmin (0.05inlmin). 

3.6.2.2 Apparent Interlaminar Shear Strength 

This test was done to determine change in bond properties of the interface 

between the fiber and the resin as well as resin properties. Rectangular 

specimens measuring 22.86mm x 6.55mm x 3.3mm (L x W x D) were cut from a 

Composite 

Specimen 

Span Length 

6 in 

plate using a water-cooled diamond saw. 

Depth 
3.3rnrn 

X-section 
4----- Length 

22.86mm d 
Figure 3.9 Schematic of Interlaminar-Shear Testing Fixture and Sample 



The dimensions were cut according to the lengthlthickness ratio (Lld) of 

seven and spanlthickness ratio of five as specified by ASTM D2344. This test is 

a simple three-point bend test. A schematic of the fixture is shown in Figure 3.9. 

Seven specimens from each exposure environment were tested for interlaminar 

shear strength. 

3.6.3 Fatigue Properties 

The fatigue properties evaluated are the fatigue life at different stress levels and 

the residual strength at 10%UTS after 3 million cycles of fatigue. The fatigue life 

is the number of cycles a specimen endured before failure, at a particular stress 

level. The residual strength of only the pultruded GFRP was evaluated. The 

procedure used to evaluate both fatigue life and residual strength is given below. 

3.6.3.1 Fatigue Life 

The fatigue life was determined in accordance with ASTM D 3479. Specimens 

were cut from plates as shown in Figure 3.8. In addition to the control specimens, 

the fatigue life of all the exposed specimens were also determined. The 

parameters used for the fatigue test are given in Table 3.7. The applied stress is 

reported as the percentage of ultimate tensile strength (UTS) of unexposed (dry 

control) specimens, which is 703.26 MPa (102 ksi). The specimens were tested 

for fatigue only in the longitudinal direction, as they will be used in practice. 



Table 3.7 Fatigue Test Parameters for Pultruded and Hand Lay-up GFRP 

I Fatigue Parameters I Calculationlcomment I Parameters 

I Stress Ratio (R) I (min stresslmax stress) I 0.1 

Attack time 

I Frequency I # of cycles per second I 20 Hz 

Initial time to gradually 
increase amplitude 

A bridge girder such as an FRP-Glulam beam will always carry a constant 

dead load. The fatigue test was designed in a similar manner where the 

specimen is cycled between a minimum and a maximum load or stress, both 

being in tension. The ratio of minimum to maximum stress applied is called the 

stress ratio (R). In this study an R ratio of 0.1 was used. This test is also 

commonly called a Tension-Tension fatigue test because both the minimum and 

maximum stresses cause the specimen to be always in tension. The cyclic siess 

applied to the specimens was a sinusoidal waveform with a frequency of 20Hz 

(Figure 3.10). Specimens were tested at different stress levels and the S-N curve 

was plotted on a logarithmic scale. The fatigue waveform settings for exposed 

and unexposed pultruded GFRP are shown in Table 3.8. The hand lay-up 

specimens were also tested at proportional stress levels. 

20 seconds 

Mean stress 

Amplitude 

(max stress + min stress)/2 

(Max stress - mean stress) 
See Table 3.8 



Table 3.8. Fatigue Waveform Settings for All Pultruded GFRP 

Waveform settings I Stress level I Sample size I (l2.7mm wide by 3.3mm thick specimens) 

I Amplitude I Control I Exposed I (MPa) 

Five specimens were tested at each stress level for the control group and 

four at each stress level for the exposed groups. A servo hydraulic mechanical 

testing machine (INSTRON 8801 100 KN) was used to generate the waveform. 

The INSTRON actuator was controlled by software from a PC provided by the 

manufacturer. Running a fatigue test consisted of entering all the parameters 

shown in Table 3.7 and Table 3.8, and setting the interrupts so that the machine 

automatically stops when a specimen fails. Failure is said to occur when the 

specimen could no longer maintain the minimum load applied. The trip limit was 

set at 10% below the minimum load. For example if a specimen were cycled 

between 9000 N (max) and 900 N (min), failure would occur if the minimum load 

drops below 810 N. Since failures have been observed to be abrupt, these limits 

were set to prevent the machine from completely separating the fractured pieces 

and to allow visual examination of the fracture surface. 

50 % 

40 % 

30 % 

20 % 
UTS (control)= 703.26 MPa (102 Ksi) 

5 

5 
5 
5 

4 
4 
4 
4 

352 
281 
21 1 
141 

197 

155 
116 
76 

155 
126 

95 
65 



I One cycle (0.05 S ~ C )  

Figure 3.10 An Example of Fatigue Cycle Waveform 

An attack time was used to gradually increase the amplitude to the desired 

load. This was done to minimize impact loading on the GFRP as well as to allow 

proper alignment of the specimen between the grips. The fatigue life was 

recorded both in the PC and in test data book. 

3.6.3.2 Residual Strength 

Residual strength is the term used to define the remaining static strength of a 

specimen after it has been subjected to a certain number of fatigue cycles. To 

determine residual strength fatigue cycling was interrupted and static tensile tests 

to failure were conducted. Only the unexposed pultruded GFRP was tested for 

residual strength. The residual strength degradation was obtained at only one 

fatigue stress level (10%). To obtain a residual strength diagram, specimens 

were tested as shown in Table 3.9. 



Table 3.9 Residual Strength Testing Parameters for Pultruded GFRP 

Maximum Stress 
(%UTS-Control) 

3.6.4 Microscopy 

I 

A light microscope was used to examine failure samples for possible trends in 

Cycles after which residual strength was 
determined 

the failure mode. A stereomicroscope as well as a transmitted light microscope 

No. of specimens 
for each number of 

elapsed cycles 

6 10 % 

with polarized light was used to observe surface features. Both microscopes 

0.5 million. 1 million and 3 million 

were connected to a digital camera to allow pictures to be taken and stored. A 

Scanning Electron Microscope (SEM) was used to examine fiber interface and 

bond characteristics in the pultruded and hand lay-up failed specimens. 



4 RESULTS OF PHYSICAL AND MECHANICAL TESTS 

4.1 Introduction 

The results of the physical and mechanical tests of the pultruded and hand lay-up 

GFRP are presented in this chapter. This chapter is organized into two main 

sections. The first section (section 4.2) presents the physical data and the next 

section (section 4.3) covers the static mechanical properties of the two GFRP. All 

tests were done according to ASTM specified methods. Statistical analysis was 

done using Analysis of Variance (ANOVA) at the 5% significance level. A 

summary of the findings is given at the end of the chapter. The results of fatigue 

tests are given in Chapter 5. 

4.2 Physical Properties 

The results of the ignition loss tests are given in Table 4.1 and 4.2. The results 

are explained in the following sections. 

4.2.1 Density, Volume Fractions and Void Content 

Pultruded GFRP 

The density of the pultruded GFRP (unprimed) is approximately I .75 g/cc (Table 

4.1). The fiber volume fraction, which includes unidirectional and randomly 

oriented short fibers in the mat layer, is approximately 54%. However the fiber 



volume fraction of the core alone, which consists of unidirectional fibers only, is 

approximately 70%. 

Table 4.1 Density and Ignition loss Results of Pultruded and Hand Lay-up GFRP 

1 I Pultruded GFRP 1 Hand Lay-up GFRP 

Fiber 1 6 1 54.19 1 1.31 1 65.1 fraction Vf 

Sample size 

Resin 
volume 

Pultruded GFRP 

Volume 
fraction % 

Volume 
fraction % 

fraction V, 
Void volume 
fraction V, 

I Hand Lay-up 1 2.01 1 2.54 

cov % 

6 

Resin 
glcc 

6 

cov % 

21.07 

Table 4.2 Density of Pultruded and Hand Lay-up GFRP 

24.74 

The SEM images (Figure 4.1), taken on smooth cross section of the 

GFRP support the results of the ignition loss tests. The mat layer has high voids 

content (45%) and low fiber volume fraction compared to the core. Each mat 

layer is approximately 0.55mm thick and the core is approximately 2.2mm thick. 

The thickness of the GFRP varies along the width because it was belt sanded 

after pultrusion. SEM images also indicate that the wetting of fibers by the resin 

is poor. The resin volume fraction (lost weight) of the entire GFRP is 

approximately 21.7%. 

2.89 27.02 

1.87 8.06 



Mat layers 

Figure 4.1 SEM Image of Pultruded GFRP Cross-Section 

The void content of the pultruded GFRP was approximately 24.7%, which 

is considered very high compared to common FRP materials. This figure also 

exceeds the ICBO AC 125 requirement of 6% or less. However, this void content 

is primarily due to the mat layers, which are intended to allow adhesive 

penetration and thus improve bonding with solid wood and other wood 

composites. Priming the surface with PRF resin seals off most of the surface 

voids, but not completely (see Figure 4.2). The phenolic resin also appeared to 

be highly porous (see Figure 4.3). This porosity must have been formed during 

the manufacturing process when the resin cured in the pultruder forming-die. 

The curing process of phenolic resin is known to produce significant 

amount of water from the condensation reaction (Tavakoli et al 1990). Branco et 

al (1994) also stated that they observed internal voids in the phenolic composite 

they were testing. They concluded that the voids were due to entrapped water 

bubbles produced during composite manufacture. 



Previous attempts by the author, to produce pure cast resin in a 

conventional oven resulted in the formation of large quantities of bubbles in the 

cast. These bubbles are due to the formation of water produced during 

condensation reaction and consequently the observed porosity in the resin. An 

important observation made during burn out tests is that the pultruded GFRP did 

not produce any flames during ignition loss tests. The residue left behind after 

the ignition test consisted of glass fibers only, which separated easily when 

probed with a glass rod. This indicated that the resin had completely vaporized. 

(a) (b) 

Figure 4.2 SEM Image of Unprimed (a) and Primed (b) Surface of Pultruded 

GFRP 



Figure 4.3. (a) and (b), SEM lmage of Fractured pultruded GFRP Showing Voids 

in the Resin 

Hand Lay-up GFRP 

The hand lay-up GFRP was made of five layers of woven unidirectional glass 

mats (Figure 4.4). The fiber, resin, and void volume fractions of this GFRP are 

approximately 65%, 27.02% and 8% respectively. 

Figure 4.4 Stereomicroscope lmage (16x) of Hand Lay-up GFRP Showing the 5 

Glass Layers Along the Edge (thickness) 



Unlike the pultruded GFRP, the hand lay-up GFRP does not have porous 

surface mat layers and thus we observe a comparatively higher fiber volume 

fraction and lower voids content. Bare fibers (Figure 4.5) observed through a 

SEM indicate that the fiber wetting is generally poor. Good wetting is usually 

indicated by fibers completely circumfused by resin without interfacial gaps. 

During ignition loss tests, no flame was observed around the specimens 

even at 565°C. This confirms that phenolic resins do not combust at high 

temperature. This characteristic behavior has been advantageously used in 

applications where fire resistance is an important consideration; for example 

handles for cutlery items. 



(b) 

Figure 4.5 SEM Image (a) and (b) of Hand Lay-up GFRP Cross-Section Showing 

Poor Wetting of Fibers 



4.2.2 Glass Transition Temperature (Tg) 

Dynamic mechanical thermal analysis (DMTA) tests were done on the exposed 

and control pultruded specimens only. The results are given in Table 4.3. In 

summary, the Tg following the various exposures ranged from 194°C to 207"C, 

with simulated seawater specimens and UV weathered specimens exhibiting the 

lowest and highest Tg respectively (see Appendix D). Analysis of Variance 

(ANOVA) was used to verify the differences in the results. The Tg of control 

specimens is 20I0C, which is high compared to common types of thermosetting 

resins such as epoxies (60-175"C), polyesters (1 10°C), and vinyl esters (75- 

105°C) (Bauccio, 1994). Statistical analysis (ANOVA) of the Tg using a 

significance level of 0.05 (95% confidence) shows that, except for freeze-thaw 

specimens, all other exposures had a significant change in the Tg. The DMTA 

diagram of freeze-thaw specimens exhibited two loss modulus peaks. The first 

peak, which was lower in magnitude, was observed at approximately 120°C and 

the second occurred at the actual Tg. Since water boils at 100°C, it is possible 

that the first peak represents water loss. 

The possibility that this first peak is associated with the PRF primer has 

been ruled out since preliminary tests with unprimed pultruded GFRP also 

exhibited such peaks between 90 and 150°C. The water present is due to the 

water immersion in freeze-thaw cycling. The second peak clearly represents the 

glass transition temperature, Tg. Following the second peak, the viscous property 

decreases without any recovery. The elastic modulus (storage modulus) 

continuously decreases with increase in temperature and levels off after the Tg. 
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The maximum temperature was set to 300°C because it was known from 

previous tests that the Tg of this particular phenolic GFRP would not exceed this 

value. 

The Tg of hot water specimens decreased by approximately 5.4"C. This 

decrease may be due to plasticizing effects of water. Water tends to swell and 

increase the free volume of the polymer thus decreasing Tg. Moisture is known 

to significantly alter the viscoelastic property of polymeric thermosetting resins 

(Dillard et al, 1991). The effect of matrix plasticization of thermosetting polymer 

such as vinyl ester due to water ingression has been reported by Liao et al 

(1998). Sridharan et al (1998) also claimed that moisture (water) acts as a 

plasticizer to vinyl ester matrix systems, causing a fall in tensile properties. The 

loss modulus curve of the hot water pultruded GFRP exhibited two peaks similar 

to the freeze-thaw specimens (Figure 4.6). 

UV weathered specimens exhibited the highest increase in Tg. The Tg 

increased by approximately 5.2OC. An increase in Tg usually implies post curing. 

This may have been the case with UV weathered specimens. The temperature 

within the UV chamber was kept constant at 63°C with relatively short period of 

water spray. High temperature along with UV radiation may have further cured 

the resin. Since the water spray was only active for 18 minutes every 2 hours, it 

is possible that this short duration coupled with the high temperature did not 

allow sufficient time for water to be absorbed in the GFRP. Thus the effect of 

moisture may have been rendered insignificant. The weathering effect inside the 



UV chamber caused significant erosion of the mat layer. The dark PRF primer 

turned into pale purple exposing the surface fibers. 

The Tg of simulated seawater specimens decreased by approximately 

7.6OC. The lowering of Tg can be attributed to plasticizing effects of water. These 

specimens also exhibited two loss modulus peaks, but the first peak was very 

small in magnitude compared to the second. 

Table 4.3 Glass Transition Temperature (Tg) of Pultruded GFRP 
7 

Exposure 

Control 

Figure 4.6 DMTA Diagram of Pultruded GFRP - Hot Water Specimen 

- 
Hot water 

UV weathering 

Simulated Seawater 

Sample size 

5 

5 

5 

5 

Tg ("C) 

201.06 

COV% 

1.33 

1 96.44 

207.01 

194.23 

0.79 

0.70 

1 .OO 



4.3 Mechanical Properties 

4.3.1 lnterlaminar Shear Strength 

The interlaminar shear strength (ILSS), also called short beam shear helps to 

determine the change in the fiber-matrix interface bond strength. The ILSS of 

pultruded control and exposed specimens are given in Table 4.4. Failure was 

observed as a single horizontal shear crack that extended longitudinally in the 

core of the specimens. Tension failure of mat layer or core did not occur in any 

specimen. As a result all failures were considered valid. The average interlaminar 

shear strength of the control pultruded specimens is 24.29 MPa (3523 Psi). 

Table 4.4 lnterlaminar Shear Strength of Pultruded GFRP Specimens 

Exposure 

Hot Water 

Simulated Seawater t 
UV weathered specimens had the lowest interlaminar shear strength. The 

ILSS of UV weathered specimens decreased by 11%. Hot water exposure also 

caused statistically significant decrease (6% reduction) in the ILSS. The ILSS 

loss in hot water specimens may be attributed to damaging effects of moisture in 

the interface. Several authors have reported this effect suggesting that the 

damage mechanism is due to moisture corrosion caused by exchange of alkali 

size 

lnterlaminar 
Shear Strength 

( M W  

Standard 
Deviation 

( M W  
COV % Reduction 

(5% 



metal ions (Na* and K') in the glass and hydrogen ions in the attacking fluid (H') 

(Liao et al, 1998). The specimens in both these exposures were not only 

exposed to 100% water immersion but also high temperature (45°C hot water 

and 63°C UV). Thus it is difficult to ascertain which of the two factors caused 

more damage. 

4.3.2 Longitudinal Tensile Properties. 

Pultruded GFRP 

The average longitudinal tensile strength (see Table 4.5) of the pultruded control 

GFRP is 703.22 MPa (102 ksi). The Young's modulus is 40.56 GPa (5.88 msi) 

with a strain to failure of approximately 2.0%. The tensile failure of the control 

pultruded specimens was characteristic of unidirectional composites. Failure 

initiated with the outer mat layer fracture and a few longitudinal fiber rupture 

along the edges. Close to the ultimate stress progressive fiber fracture along the 

edges were observed. At ultimate stress, failure occurred abruptly with massive 

fiber fracture (explosion) and longitudinal shear splitting (Figure 4.7). 

The longitudinal tensile strength of freeze-thaw specimens decreased by 

approximately 10%. Hot water specimens were affected the most. The tensile 

strength of hot water specimens reduced to 480 MPa (31.74% reduction). This 

result clearly indicates that the fibers have been damaged due to a combination 

of moisture adsorption and high temperature. 



Figure 4.7. Tensile Failure of Pultruded GFRP Seen Between lnstron Grips 

UV weathered specimens, exhibited almost no significant change in 

tensile strength. The standard deviation of these specimens was low indicating 

uniform properties. The failure mode of these specimens was also different from 

the control group. The characteristic explosion of fibers was not observed and 

instead the coupon failed abruptly at ultimate stress with mostly longitudinal 

shear splitting (Figure 4.8). The ultimate tensile strength of simulated seawater 

specimens reduced by only 7%. However, the change is statistically insignificant 

due to the large standard deviation. 



Figure 4.8. Tensile Failure Mode of Pultruded GFRP at UTS 

No change was observed in the Young's modulus of any of the exposed 

specimens (see Table 4.6 and Figure 4.11). Any change observed was not 

statistically significant at the 5% level. 

Hand Lay-up GFRP 

The longitudinal tensile strength of hand lay-up GFRP specimens is 

approximately 422 MPa (61.29 ksi). The strength varies significantly as 

observed from the high COV (18%) (see Table 4.5). The modulus of elasticity of 

this GFRP is approximately 36 GPa (5.33 msi). Failure mode is characterized by 

transverse tensile fracture in the gage length with some fraying of fibers as 

shown in Figure 4.9. Transverse fracture tends to propagate along a region on 

the surface where a cross-weave was present. 



Figure 4.9 Hand Lay-up GFRP Specimens Failed in Static Tests 

Table 4.5 Longitudinal Tensile Strength of Pultruded and Hand Lay-up GFRP 

Pultruded GFRP 

Samp'e l  size 7 1 7  1 7  1 7  1 7  

Control 

Strength reduction 1 9.5% 1 31.7% 1 0.5% 1 7% 

Hand 
Lay-up 
GFRP 

Freeze- 
thaw Control Hot 

Water 
UV 2000 

hrs 
Simulated 
Seawater 



Table 4.6 Longitudinal Young's Modulus of Pultruded and Hand Lay-up GFRP 

Sample 
size 

Pultruded GFRP 

I COV % 1 2.49 

Hand 
Lay-up 

Freeze- 
thaw 

Hot UV 2000 Simulated I Control I 
Water I hrs I Seawater 

Control UV-2000 Freeze-Thaw Simulated Hot Water 
20 cycles Seawater (45c) 

Figure 4.1 0 Longitudinal Tensile Strength of Pultruded GFRP vs. Exposure. Error 

Bars Indicate One Standard Deviation 
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Control UV 2000 Freeze-Thaw Simulated Hot Water 

Seawater (45C) 

Figure 4.1 1 Tensile Young's Modulus of Pultruded GFRP vs. Exposure. Error 

Bars Indicate One Standard Deviation 



4.4 Summary 

Two types of E-glass reinforced phenolic composites (pultruded and hand lay-up) 

were tested for physical and mechanical properties. The pultruded GFRP was 

exposed to different accelerated environments and after the exposure period, the 

mechanical strength retentions were determined. The findings are summarized 

below. 

From ignition loss tests it was observed that the void volume fraction of 

pultruded and hand lay-up GFRP were 24% and 8% respectively and 

exceeds the recommended 6% or less by ICBO AC 125. SEM images 

of pultruded GFRP revealed large number of pores in the resin. These 

pores may have been formed due to condensation reaction during 

curing of phenolic resin. 

The pultruded control specimens had a Tg of 201°C. UV weathered 

specimens showed an increase in Tg (207°C) whereas hot water 

(197°C) and simulated seawater (194°C) specimens exhibited a 

decrease in Tg. The increase in Tg can be attributed to post curing of 

the resin and the decrease in the Tg is mostly due to plasticizing 

(softening) effects of water. 

The interlaminar shear strength of UV weathered specimens was 

reduced by 11%. Although slight changes were observed in other 

exposure environments, the changes were not statistically significant. 

Hot water exposure caused the highest reduction in tensile strength. 

The ultimate tensile strength of the hot water specimens was reduced 



by as much as 31%. Hot water specimens also exhibited a reduction in 

ILSS (6%). Thus, it may be concluded that hot water exposure 

damaged both glass fibers and the interface. Freeze-thaw specimens 

exhibited a 10% reduction in tensile strength. The damage can be 

attributed to resin and fiber-resin interface deterioration caused by 

moisture ingression. Salt water did not cause any statistically 

significant change in the tensile strength. 

None of the exposed specimens showed any statistically significant 

change in Young's modulus. 

UV weathered specimens indicate that high temperature can further 

cure (post curing) the resin if polymerization was not complete in the 

manufacturing process. If the cross-linking of polymer chains were 

complete in the manufacturing process, no increase in the Tg would be 

observed. Although UV showed no degradation in tensile strength, the 

ILSS was reduced by 11%. This indicates that UV had some effect on 

the interface. The difference in the thermal expansion coefficients of 

the glass fiber and resin may be a possible explanation of the 

reduction in ILSS. 

Except for hot water exposure test, which was not specified by ICBO, 

all the tests that were specified by ICBO AC 125 passed the minimum 

strength retention. 



5 RESULTS OF FATIGUE TESTS 

5.1 Introduction 

This chapter describes the results of all the fatigue tests conducted in this study. 

The first section describes the results of fatigue tests conducted on exposed and 

control pultruded GFRP followed by a discussion on fatigue failure mechanism. 

The next section describes the results of the fatigue tests conducted on the hand 

lay-up GFRP. The following section describes the results of residual strength 

tests followed by a summary of the chapter. 

5.2 Fatigue Strength of Pultruded GFRP 

Fatigue tests were conducted using a servo hydraulic INSTRON machine at 

constant amplitude with a stress ratio of R=0.1 and a frequency of 20 Hz. 

Specimens were tested at different stress levels until failure, and the test was 

stopped at 3 million cycles if no failure occurred. For the control type, five 

specimens were tested at each of the seven stress levels (80%, 70%, 60%, 50%, 

40%, 30% and 20% UTS). For the exposed types, four specimens were tested at 

each stress level (50%, 40%, 30%, 20%). The control specimens were tested 

first to observe material variability and to estimate failure boundaries. S-N 

diagrams were developed for each exposure type and then compared with the 

control to observe any change in fatigue behavior. Fatigue testing presented 



many problems, which were solved earlier during dry runs to obtain maximum 

number of valid results. 

5.2.1 Failure at Grips 

Failure at the grips was the most persistent problem in fatigue testing. Other 

authors have recorded this problem also (Bronco et al, 1996; Lorenzo et al, 

1986). Initially, it was thought that tabs were needed at the gripping area of the 

pultruded GFRP to reduce failure at grip edges. Failure at the grip edge is mainly 

due to high stress concentration. Rectangular specimens were tested with a 

variety of tab types and adhesives. Glass fiber reinforced epoxy tabs with a 15" 

machined tapered edge were used with little success. The tabs remained intact 

but the mat layer sheared off at both high (>50% UTS) and low ( ~ 5 0 %  UTS) 

stresses. In the next attempt, thin aluminum strips were bonded to the coupons 

with polyurethane (PU) adhesive. This type of tab was attempted due to the 

success reported by few authors who tested similar FRP materials (Bronco et al, 

1996). This time the mat layer was intact and well bonded to the core but the 

adhesive bond failed before actual fatigue failure of the specimen. The PU 

adhesive penetrated the mat layer very well, which was evident from the foaming 

action observed during adhesive application. However, the PU adhesive did not 

bond very well to the aluminum strips in spite of careful material cleaning and 

preparation. 

Two other adhesives, an epoxy and a methacrylate industrial strength 

adhesive were used with the aluminum strips, but unfortunately failure at the 



grips persisted. The grip pressure was also adjusted to find an optimum value. 

The grip pressure had to be adjusted to prevent crushing and slippage in the grip 

area. Finally coupons were tested with no tabs. The mat layer, although 

damaged by the gripping, was beneficial in protecting the core from the rough 

serrated faces of the grips. This produced very few failures at the grips for higher 

stress fatigue tests and almost no failure at the grips for lower stresses. Thus, all 

fatigue tests were conducted without tabs. Specimens that failed at the grips 

were discarded and not used in the data analysis. 

5.2.2 S-N Curves of Pultruded Specimens: Effect of Environmental 

Exposure 

The S-N curve of control pultruded specimens is presented in Figure 5.1. The 

entire data set is given in Appendix C. The S-N curves were plotted and analyzed 

using Microsoft Excel. The abscissa represents number of cycles to failure in the 

logarithmic scale (base lo), while the ordinate represents the maximum tensile 

strength applied on the specimens in percentage. The S-N curves were drawn 

using a linear fit of the data (least squares method). The fatigue lives of exposed 

specimens were compared to the control values at the same stresses. 



UTS Contml = 703 MPa 
Stress Ratio = 0.1 
Frequency = 20 Hz 

- Mean S N  Curve 

- - - 5% Lower Tolerance Limit with 95% 
ConfMce 

* 
Run Outs 

0 1 2 3 4 5 6 7 

Fatigue life (LOG N) 

Figure 5.1 S-N Curve of Control Pultruded GFRP with 5% LTL with 95% 

Confidence 

The S-N curve has a negative slope, which is indicative of the fact that lower 

applied stresses result in higher fatigue lives. The five control specimens that 

were tested at 20% UTS exceeded 3 million cycles of fatigue (Run outs). 

S-N Curves Of Exposed Specimens 

The S-N curves of exposed specimens (see Figure 5.2) also exhibited the 

general trend seen in control specimens. The entire data set is given in Appendix 

C. In qualitatively comparing the S-N curves of the exposed specimens with that 

of the control, three characteristic behaviors were observed. UV weathered 

specimens stand out from other S-N curves and show a slight decrease in the 

fatigue life as compared to the control at high and low stresses (the slope of the 

S-N curve is approximately equal to the control specimens but the curve is 
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shifted down). The rest of the exposure types, which include hot water, simulated 

seawater and freeze-thaw cause an increase in the fatigue life compared to the 

control S-N curve for stresses lower than 45% UTS. As for stresses higher than 

approximately 45% UTS, the fatigue life decreases compared to the control 

specimens. In other words, the slopes of the S-N curves of these exposures 

appear to be less steep than that of the control. Table 5.1 summarizes the fatigue 

strength of the pultruded GFRP at different cycles. 

An analysis of variance (ANOVA) show that the fatigue life of UV 

weathered and hot water specimens are not statistically different from the control 

specimens at a significance level of 0.05. This is indicated by the F-statistic 

value, which is smaller than the Fdt in the corresponding exposures (Table 5.2). 

Table 5.1 Fatigue Strength (% of Mean UTS Control) of Pultruded GFRP 

I I % UTS Control (UTS Control = 703 MPa) 
Exposure 

3 million 

18.9 

100000 

A 

B 

C 

D 

E 

39.0 

41 .o 

Control 

Freeze-thaw 

1 million 

Hot water 

UV weathering 

Simulated seawater 

2 million 

25.5 

31 .I 

21.3 

28.1 

40.9 

36.3 

41.8 

29.1 

23.1 

30.6 

25.6 

19.2 

27.2 



Table 5.2 Statistical Analysis of Mean Life at 30%UTS Using ANOVA 

I D I UV Weathered 1 278,300 1 A-D 1 1.98 1 5.99 1 Not different 

Significance 
a=0.05 

A 

6 

C 

I E I Salt water 1 1 . l7  lo6 1 A-E 1 10.82 1 5.99 1 Different 

Freeze-thaw and salt-water exposures caused statistically significant 

increase in the fatigue life over the control (Table 5.2) at 30%UTS. This is 

detected by the F-statistic, which is higher than the F ~ t  value. At 30% UTS- 

control, the fatigue lives of freeze-thaw and salt water specimens increased by 

166% and 139% respectively. At 40% and 50% UTS, the fatigue lives of exposed 

specimens are not any different from the control. Fatigue strength of exposed 

specimens was not tested at stress level higher than 50%UTS-control. 

F Means 
compared Exposure 

Control 

Freeze-thaw 

Hot water 

Fcrit 

Fatigue Life at 

(Cycles) 

490,600 

1.3 lo6  

805,900 

A-B 

A-C 

8.33 

1.55 

5.59 

5.99 

Different 

Not different 



UTS Control = 703 MPa 
Frequency = 20 Hz 
R (stress ratio) = 0.1 

Hot Water 
A Seawater 
X Freeze-thaw 

Hot water 

0 1 2 3 4 5 6 7 

Fatigue Life (Log N) 

Figure 5.2 S-N Diagrams of Exposed and Control Specimens 



The S-N curves were modeled using the Log-normal linear equation given 

below. It must be noted that the logarithm used in all the equations is the 

logarithm to the base ten. 

aa = - ALogN,,, + B Eqn 5-1 

For mean S-N, A = 13.942, B = 108.06 

Where: a, is the maximum applied stress, 

N is the number of cycles to failure 

A and B are constants. 

For example if the desired mean fatigue life were 3 million cycles (Loglo N = 

6.477) then the mean applied maximum stress would be 18%UTS (UTS Control 

= 703 MPa, 18%UTS = 126 MPa). The parameters A and B for each exposure 

are listed in Table 5.3. The parameter A represents the slope of the curve and B, 

which is the intercept of the linear equation, represents the mean ultimate tensile 

strength. 

Since fatigue cycling was limited to 3 million cycles, no apparent fatigue 

threshold or endurance limit were observed. However, it can be deduced from 

the fatigue tests that the S-N curve behaves differently below 20%UTS. This can 

be further substantiated by the fact that at 20% UTS, the strain is approximately 

0.35%, which is below the strain to failure of the phenolic resin; 0.45%. Thus, at 

stresses lower than 20%, the matrix damage mechanism is different and 

consequently the fatigue behavior is expected to be different. 
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Table 5.3 S-N Curve Parameters For Exposed and Control Pultruded GFRP 

Exposure I A B l  Actual UTS 
(%UTS Control) 

5.3 Statistical Analysis of S-N Data 

A 

C 

D 

E 

Two methods are shown for providing upper and lower bounds for the fatigue 

data: (1) 5% Lower Tolerance Limit (one sided) and, (2) 5m Percentile. The 

tolerance limit method has been used for fatigue design of steel, wood and 

polymer composites (Wirsching, 1983; Bond et al, 1998; Roland et al, 1996). The 

tolerance used in this study is the one-sided lower 95% tolerance limit for 95% of 

the population. Since we are interested in the lower limit for safe design, this 

tolerance limit can also be called the 5% Lower Tolerance Limit (5%LTL) with 

95% confidence. This tolerance limit describes a lower limit to the data, above 

which one can say that at least 95% of future observations (or sampled normal 

population) will have a 95% survival probability. The 5% LTL was used here 

because it provides a precise statistical lower boundary which is not too stringent 

for widely scattered fatigue data (Bond et al, 1998). The tolerance limit was 

calculated according to a method described by Wirsching (1983). The method is 

13.9 Control 

Hot water 

UV weathering 

Simulated Seawater 

108 loo  

11.8 

13.1 

11 .i 

loo 

102 

97.7 

69.6 

too 

94.8 



described in Appendix C. The equation used for calculating the tolerance limit is 

given below: 

Log N5%LTL = T - h Eqn 5-2 

where , N5%LTL = Fatigue life with 95% survival probability 

T = mean life calculated from the best-fit straight line at a 

particular stress level, 

k = tolerance coefficient (k2.126, n=40 for control) 

corresponding to the total sample size and required 

population (p=95%), 

s = standard deviation of the mean S-N curve 

The tolerance limit is parallel to the mean S-N curve (see Figure 5.1). The 

equation of the tolerance limit in terms of stress level and fatigue life for the 

control pultruded GFRP is given by: 

0, = -13.95LogN5,,, + 105 Eqn 5-3 



gh Percentile 

The 5" perhentile line for the control pultruded GFRP is shown in Figure 5.3. It 

was obtained by finding the 5" percentile values at each stress level. The line 

was then drawn by fitting a linear regression line (least squares line) through all 

the stress levels. At each stress level, 5 specimens were tested. Therefore the 

student t distribution was used to obtain the 5th percentile. 

T+ks Eqn 5-4 

where: F is the mean fatigue life at each stress level 

s is the sample standard deviation at each stress level 

k is 2.01 5 for n=5 and a =0.05 (Hogg, 1987, p 449) 

The equation of the 5" percentile line of control pultruded GFRP is given by: 

0, = -14.5LogN5, + 107 Eqn 5-5 

where: o, is the applied maximum stress in percentage 

N5" is the 5" percentile value of the fatigue life 

The 5th percentile line and the 5%LTL line would be very close to each other if 

potted on the same graph. This is because the equations (Eqn 5-3 and 5-5) are 

about the same. However, the 5%LTL is more sensitive to the number of 

specimens and thus more statistically sound compared to the 5" percentile line. 

The 5" percentile line is dependent on the standard deviation at each stress level 

whereas the 5%LTL pools the entire data set and uses one standard deviation 

which is constant at every stress level. Thus the 5%LTL is parallel to the mean S- 

N curve unlike the 5" percentile line. 



UTS Control = 703 MPa 
Stress Ratio R = 0.1 
Frequency = 20 Hz 

- Mean S-N Curve 
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Figure 5.3 S-N Curve of Control Pultruded FRP with 5'" Percentile Line 

A 95% confidence interval on the mean is also sometimes used and many 

authors have reported S-N curves with this statistical analysis (Little, 1979; 

ASTM E 739). However, this interval only estimates the mean S-N curve with a 

95% confidence and not the entire population. An example of this is given in 

Appendix C. 

Although UV weathering did not cause statistically significant change in 

fatigue life compared to the control, it was the worst-case scenario for 

combination of fatigue with environmental exposures used in this study. This is 

merely because fatigue life of UV specimens were lower than those of all other 

exposures, which caused some increase in fatigue life at 30%UTS control. 



The mean S-N curve of UV weathered specimens with both the 5%LTL 

with 95% confidence, and the 5' percentiles are given in Figure 5.4. The 

equation for the 5%LTL tolerance limit of UV specimens is given by: 

0, = -14.13LogN5,,, + 79.12 Eqn 5-6 
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Figure 5.4 S-N Curve of UV Weathered Specimens with 5% LTL with 95% 

Confidence and 5' Percentile Lines 

Due to the small number of UV weathered specimens available for testing 

fatigue life, tolerance limit coefficient k was large and hence the 5%LTL is much 

further away (left) from the mean. Since the 5m percentile line is based on the 

standard deviation at each stress level, this line is much closer to the mean S-N 

curve compared to the 5%LTL. The author recommends testing at least 30 

specimens total for future work. 



5.4 Fatigue Failure Mechanism in Pultruded GFRP 

The fatigue failure mechanism observed was identical in all the pultruded 

specimens whether exposed or unexposed, but dependent on the applied stress. 

The failure types are described in Figure 5.5. The common failure mechanisms 

include edge cracks, longitudinal cracks, abrupt fiber fracture, and shear 

delamination. 

The differences in failure mode due to decreasing stress level can be seen 

in Figure 5.6 (a). As the stress level decreases, the failure mode changes from 

explosive blooming effect at 80%UTS (Figure 5.6-a left) to a simple transverse 

crack at 30%UTS (Figure 5.6-a right). Specimens that were tested at relatively 

high stresses (>50%UTS) failed in a fashion (Type 3) similar to static failure tests 

(blooming explosive failure) as shown in Figure 5.5. 

Type 1 Type 2 

Figure 5.5 Common Fatigue Failure Modes in Pultruded GFRP 



At 50% UTS, hot water and simulated seawater specimens exhibited 

numerous longitudinal cracks (Type 2) as shown in Figure 5.7 (a) and (b). At 

40% UTS some specimens also exhibited Type 2 failures (see Figure 5.8-b). At 

relatively low stress levels damage appeared to accumulate progressively (Type 

1,2 and 4) and no specimens exhibited explosive blooming effect. 

At lower stresses failure was mostly characterized by progression of a 

single crack, which usually originates at one edge in the gauge length (see 

Figure 5.9 a and b) and propagates perpendicular to the loading direction along 

the width of the coupon. This type of crack is named as Type 1 in this study (see 

Figure 5.8 a). The crack however never seemed to propagate along the entire 

width but branched off parallel to the loading direction along the length of the 

coupon, often terminating at the opposite edge or resulting in longitudinal 

splitting. This type of failure has been observed by Curtis (1989) and Liao et al 

(1998), and is characteristic of unidirectional materials. In some cases an edge 

crack initiated with abrupt fiber fracture resulting in instant failure as seen in 

Figure 5.6 (b). Another failure type is characterized by a shear crack (or 

delamination), which runs along the edge through the thickness (Type 4) (see 

Figure 5.8 c, and 5.10 a and b) and splits the coupon into two pieces. This type 

of delamination often terminated at the grip edge. The specimens that were 

tested at 20%UTS showed no cracks or delamination. 

In almost all cases, the mat layer failed prematurely before any edge 

crack or delamination occurred. However, a crack in the mat layer often indicated 



where an edge crack initiated. Figure 5.7-b clearly shows a mat layer fracture 

tracking the progress of a longitudinal or transverse split. 

Figure 5.6 Fatigue Failure Mode in Control Pultruded GFRP, (a) Specimens 

Tested From 80%UTS (left end) to 30%UTS (right end), (b) Edge Crack at 

40%UTS 



Figure 5.7 Fatigue Failure Mode of Exposed Specimens: (a) Hot Water at 

5O%UTS, (b) Simulated Seawater at 50%UTS 



(C) 

Figure 5.8 Fatigue Failure of Exposed Specimens: (a) UV Weathered at 30%UTS 

Showing Edge Crack, (b) UV Weathered at 40%UTS Showing Longitudinal 

Splitting, (c) Freeze-Thaw at 40%UTS Showing Shear Delamination 



(b) 

Figure 5.9 Stereoscope Images (16X) of UV Weathered Specimens (30%UTS) 

Showing Edge Cracks 



Figure 5.10 Stereoscope Images (16X) of UV Weathered Specimens (40% UTS) 

Showing Edge Delamination 



5.5 Fatigue Strength of Hand Lay-up GFRP 

The S-N curve of hand lay-up GFRP was plotted using the same method 

described in section 5.2. Figure 5.1 1 shows the mean S-N diagram of the hand 

lay-up GFRP with the 5% LTL line. The fatigue life at 26%UTS is approximately 1 

million cycles. All specimens tested at 20% UTS exceeded the 3 million cycles 

limit set on the testing machine. The equations for the mean S-N curve, the 5% 

LTL line, and the 5th percentile line are given below: 

Mean S-N curve a, = -10.42LogN + 90.7 Eqn 5-7 

5% LTL a, = -10.8L0gN,,~, + 85.6 Eqn 5-8 

5' Percentile a, = -10.52LogN5, + 87.5 Eqn 5-9 
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Figure 5.1 1 S-N Diagram of Hand Lay-up GFRP with 5% LTL with 95% 
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Figure 5.12 S-N Diagram of Hand Lay-up GFRP with the 5h Percentile Line 

Failure Mechanism in Hand Lay-up GFRP 

At higher stresses, most specimens failed with a combination of longitudinal 

splitting and tensile failure at the grip edge. Failure was observed as matrix 

cracking followed by fiber rapture and longitudinal splitting, which extended along 

the length of the specimen and usually terminated at the grip edge as shown in 

Figure 5.13. Grip failures although unavoidable, were not the primary source of 

failure, and thus were considered as valid results. It must be noted that grip 

failures seem to occur only after the coupons had developed a longitudinal or 

edge crack. As for lower stresses, most failures initiated with a crack in the 

narrow edge of the coupons like Type 1 mode. Most often these cracks 

propagate along the entire width leading to complete failure as shown in Figure 



5.13 and 5.15. Specimens that were tested at 20% UTS showed no cracks or 

delamination. 

Crack end 

/ 
Longitudinal Crack 

Edge crack initiated / 

Figure 5.13 Typical Fatigue Failure of Hand Lay-up GFRP at High Stress 

(6O%UTS) 

It is quite evident from the S-N diagram (Figure 5.1 1) that the fatigue 

strength of the hand lay-up GFRP exhibits high variability compared to the 

pultruded type. This is mainly due to the hand lay-up process, which introduces 

many variables such as temperature and humidity at impregnation, speed and 

thickness of the impregnator, clamp pressure, and curing period. 

In Figure 5.14, the S-N curve of hand lay-up and pultruded GFRP are 

given in the same plot on a normalized scale for comparison purposes. The S-N 

curve of pultruded GFRP is steeper than that of the hand lay-up type. This 

indicates that at lower stresses, the hand lay-up GFRP would have relatively 

higher fatigue lives compared to the pultruded GFRP on a %UTS basis. 



Figure 5.14 S-N Diagram of Pultruded and Hand Lay-up GFRP 



Figure 5.1 5 Hand Lay-up Fatigue Specimen Edge (thickness) (a) Edge Crack at 

30%UTS, (b) Stereoscope Image (16X) of Edge Crack Starting and Ending 

Points. 



5.6 Residual Strength of Pultruded GFRP 

Residual strength was determined by fatiguing specimens at 10% UTS for 0.5, 1, 

and 3 million cycles, and statically testing to obtain residual tensile strength and 

Young's modulus (Table 5.4). Analysis of the results using ANOVA shows that 

the mean strengths and moduli at half, one, and three million cycles of fatigue 

are not statistically different from the control specimens at a significance level of 

Table 5.4 Results of Residual Strength Tests of Control Pultruded GFRP 

The composite strain due to 10%UTS load on the control pultruded GFRP is 

approximately 0.17%, which is smaller than the strain to failure of the phenolic 

resin, 0.45%. Thus the matrix may not have cracked as rapidly as high stress 

fatigue. 

Control 

0.5 million 

1 million 

3 million 

Sample 
size 

7 

6 

6 

6 

Ultimate Tensile Strength Young's modulus 

UTS (MPa) 

703.2 

703.4 

694.7 

694.2 

UTS (GPa) 

40.6 

40.57 

41.41 

41.04 

COV % 

4.99 

6.26 

8.68 

8.33 

COV % 

2.49 

1.80 

2.14 

2.82 



5.7 SEM Imaging of Fatigue Specimens 

Pultruded GFRP 

SEM images were taken on both pultruded and hand lay-up GFRP near fracture 

surfaces. Figure 5.16 shows fiber fracture and a large number of resin particles 

on a freeze-thaw pultruded specimen tested at 30% UTS control. This type of 

feature was also seen on other exposed pultruded specimens including control 

type (see Figure 5.17). 

Figure 5.16 SEM Image of Freeze-Thaw Specimen at 240X Tested at 30%UTS 

Control 



Figure 5.1 7 SEM Image (260X) of Control Pultruded GFRP Tested at 40% UTS 

Hand lay-up GFRP 

Hand Lay-up GFRP tested in fatigue show de-bonding between fiber and resin. 

Figure 5.18 shows a large number of resin debris. Near the fracture surface 

much fiber pullout is seen (see Figure 5.19). The bare fibers with little resin on 

them indicates poor wetting. 

It can be concluded from the SEM images that failure initiated with matrix 

cracking followed by fiber-resin de-bonding. This resulted in fracture of those 

fibers that carried larger stresses, leading to ultimate composite failure. 



Figure 5.18 SEM lmage (240X) of Hand Lay-up GFRP Tested at 40%UTS 

Showing Resin Debris and Fiber Fracture 

Figure 5.19 SEM lmage (120X) of Hand Lay-up GFRP Tested at 40%UTS 

Showing Fiber Debonding and Fracture 



5.8 Summary 

Pultruded and hand lay-up GFRP were cyclically loaded at different stresses at a 

frequency of 20 Hz and stress ratio of R=0.1. S-N curves (Figure 5.1, 5.2 and 

5.1 1) were developed from the fatigue tests. Additionally, pultruded specimens 

that were treated in different accelerated environments were also tested for 

change in fatigue behavior. 

Pultruded control specimens were also cyclically loaded at 10% UTS and 

static tests were conducted at 0.5, 1 and 3 million cycles to evaluate residual 

strength and modulus. The results are summarized below. 

The mean fatigue life of control pultruded GFRP is approximately 1 million 

at 26.4%UTS (185 MPa, 26.93 ksi). 

UV weathering and hot water (45°C) exposures had no statistically 

significant effect on the fatigue strength at a significance level of 0.05. 

However, freeze-thaw and simulated seawater exposures show a 

statistically significant increase in fatigue lives at 30%UTS at a 

significance level of 0.05. 

The fatigue lives (cycles to failure) of freeze-thaw and simulated seawater 

specimens at 30%UTS control, increased by 166% and 139% 

respectively. 



UV weathering is considered that worst-case scenario for a combination of 

environmental exposure and fatigue. However, the difference between 

the fatigue lives of UV weathered specimens and control is statistically 

insignificant. 

The fatigue lives of all specimens (exposed and control) tested at 

20%UTS exceeded the 3 million cycles limit set on the fatigue-testing 

machine. 

Fatigue failure mechanism was quite identical in all the specimens 

whether exposed or unexposed but dependent on the stress level. Failure 

at high stresses was mostly due to longitudinal splitting. Failure at low 

stresses was mostly due to the propagation of an edge crack, and shear 

delamination. 

Hand lay-up GFRP specimens had a fatigue life of 1 million cycles at 

26%UTS (109 MPa, 15.83 ksi). Specimens tested at 20%UTS exceeded 

the 3 million cycles limit. Failure was mostly due to crack that initiate at the 

edge. The crack often propagates to the grip edge causing tensile failure. 

The residual strength tests show that when the pultruded GFRP was 

subjected to cyclic loading at 1 O%UTS, neither ultimate tensile strength 

nor Young's modulus changed significantly (significance level of 0.05). 

However, this conclusion can only be made for fatigue lives less than 3 

million cycles at a stress level of 10%. 



SEM images of both pultruded and hand lay-up GFRP show a large 

amount of resin debris and fiber fracture near the cracks. The resin 

particles indicate the brittle nature of phenolic resins. The bare fibers 

indicate poor fiber-resin bonding. It seems failure initiated with matrix 

cracking followed by fiber de-bonding, and eventually fiber fracture. 



CONCLUSIONS AND RECOMMENDATIONS 

6.1 Introduction 

A composite material is defined as a material consisting of two or more distinct 

components combined on a macroscopic scale (Jones, 1999). An FRP 

composite primarily consist of continuous fibers, which provide strength and 

stiffness, embedded in a resin system, which hold the fibers together and protect 

them from degradation. If the reinforcement used is glass fibers, the composite is 

referred to as "GFRP". 

In this study two types (pultruded and hand lay-up) of phenolic GFRP 

materials were tested for physical, mechanical and fatigue properties. These 

GFRP materials were designed to be used as tension reinforcement for glulam 

beams. The GFRP materials were also designed to be compatible with the 

hygrothermal properties of wood. 

To evaluate long-term durability, mechanical and fatigue properties were 

determined after exposing the pultruded GFRP to different accelerated 

environments. Some of the accelerated environments were designed according 

to recommendations given in International Conference of Building Officials 

(ICBO) Acceptance Criteria 125. American Society for Testing and materials 

(ASTM) testing standards were followed in all cases where applicable. The entire 

test matrix is given in Table 3.2. 



The pultruded type was exposed to UV weathering, freeze-thaw, 

simulated seawater, and hot water (45°C). Table 3.3 provides details on the 

environmental exposures used. The hand lay-up GFRP was only tested under 

control conditions (no weathering). 

Fatigue life was evaluated at different stress levels using a servo hydraulic 

testing machine. The fatigue cycle was a constant amplitude sinusoidal 

waveform with a frequency of 20Hz. The stress ratio (R) used was 0.1. Residual 

strength of the pultruded FRP was obtained at 3 million cycles for stress level of 

lO%UTS. 

The results of both mechanical and fatigue properties were analyzed using 

single factor one-way ANOVA at a significance level of 0.05. For design 

purposes, the S-N curves were analyzed to obtain (1) the 5% one-sided Lower 

Tolerance limit with 95% confidence and, (2) the 5" Percentile line. These lines 

give reasonable safe design values for fatigue design of the two GFRP examined 

in this study. 

This chapter summarizes the results of physical, mechanical and fatigue 

tests. The results are discussed, and important findings are noted. This is 

followed by recommendations for design purposes, and for future work. 



6.2 Literature Review 

The literature review pertaining to this study was drawn from 6 articles on fatigue 

of phenolic composites, 31 articles on fatigue mechanisms and environmental 

effects and durability, 15 articles on modeling and 9 articles on statistical analysis 

of fatigue data. In summary, the following results were relevant to this work: 

Fatigue in general can be defined as the progressive permanent 

damage due to fluctuating load. 

Fatigue has been a design consideration ever since engineers 

realized that metals such as steel and aluminum might fail at 

stresses much below their static ultimate tensile strength when 

subjected to cyclic loading. 

In the past twenty years, much of the research on fatigue of FRP 

composites was conducted by the aerospace industry. 

Phenolic materials are becoming viable replacements of metals due 

to their high strength and creep resistance and dimensional stability 

at relatively high temperatures. They also posses good chemical 

and corrosion resistance (Branco et al, 1994). 

It is possible to produce large scale phenolic GFRP components 

with much superior fire and toxic fume emission characteristics 

compared to polyester and epoxy matrices (Tavakoli et al, 1990). 

Study on the fatigue of phenolic composites by Branco et al (1996) 

show that the fatigue life is approximately 1 million cycles at 



30%UTS. The authors concluded that main failure mechanism is 

shear delamination between the resin and fibers. 

Moisture is known to act as a plasticizer and reduces the Tg of a 

GFRP. 

The damage caused due to moisture is fiber dominated and 

irreversible (Hayes et al 1998). 

The fatigue performance of phenolic GFRP is lower than those of 

epoxy and vinyl ester GFRP. This may be due to the brittles of the 

phenolic resin. 

The basic method for fatigue design is to limit the allowable stress 

such that it is below the fatigue threshold, if the threshold value is 

known. Another common method is to use the 5% one-sided Lower 

Tolerance Limit (5%LTL) as the safe design S-N curve. Safety 

factors may be used depending on the application. 

6.3 Effects of Environmental Exposure on Physical and Mechanical 

Properties 

Physical properties tested include density, volume fraction of fiber, resin, and 

voids. These properties were tested for unexposed (control) pultruded and hand 

lay-up GFRP. Glass transition temperature (Tg) of pultruded specimens was 

measured before and after each accelerated environmental exposure to 

determine if moisture caused any plasticization in the resin matrix. 



The hand lay-up GFRP was not tested for Tg in this study. The reader is 

referred to reports written by Eoin Battles to obtain more information on the 

environmental durability of hand lay-up GFRP. The work by E. Battles include 

testing of Tg and Interlaminar shear strength of the hand lay-up GFRP. 

Mechanical properties tested include interlaminar shear strength, ultimate 

tensile strength and Young's modulus. These properties were measured before 

and after exposure. All results were analyzed using ANOVA to check if the 

differences were statistically significant. The results summarized below are 

illustrated in Figure 6.1. 

Physical Properties 

The pultruded E-glass/phenolic FRP is made of a 2.2mm core of 

unidirectional glass fiber rovings, encased between chopped strand mat 

layers, which are 0.55mm thick (see Figure 3.1). The hand lay-up GFRP is 

made of five layers of PRF impregnated unidirectional glass weave, which 

cured to a thickness of 3.5mm. 

The fiber volume fraction of the pultruded FRP is approximately 54%, with 

22% resin volume fraction and 24% voids. The hand lay-up FRP consists 

of 65% fiber, 27% resin and 8% voids. The densities of pultruded and 

hand lay-up FRP are approximately 1.75gIcc and 2.0lgIcc respectively 

(see Appendix B). 



SEM images of pultruded GFRP (Figure 4.1 and 4.2) show that the 

chopped glass fibers in the mat layers are randomly oriented and consist 

of large void spaces. The core of the pultruded GFRP also exhibited large 

number of voids as shown in Figure 4.3. This feature of phenolic 

composites was also reported by Branco et al (1992). 

Glass Transition Temperature: Tg 

The glass transition temperature (Tg) of pultruded control GFRP is 201 & 

2.7"C. 

The Tg of exposed pultruded specimens ranged from 194°C to 207°C with 

simulated seawater specimens showing the lowest Tg and UV weathered 

specimens showing the highest Tg respectively (see Table 4.3). The Tg of 

hot water and simulated seawater specimens, which were exposed to 

3000 hours, reduced by 54°C and 7.6"C respectively. Freeze-thaw 

specimens showed no statistically significant change in the Tg. 

The lowering of Tg may be due to plasticization of the matrix caused by 

moisture intake. Other authors who tested vinyl ester and epoxy GFRP 

laminates have reported this phenomenon (Sridharan et al, 1998; Liao et 

al, 1998). The Tg of UV weathered specimens in this study, which were 

exposed to 2000 hours of UVA at 63°C with periodic water spray, 

exhibited a 5.2OC increase. This may be due to post-curing of the phenolic 

matrix material. Gentry et al (1998) also reported that the increase in Tg 

indicates an increase in molecular weight due to post curing. 



The surface color of the mat layer of the UV weathered specimens turned 

from dark brown to pale purple exposing some of the surface chopped 

glass fibers. 

Hand lay-up specimens were not tested for Tg in this study. 

Interlaminar Shear Strength 

The mean interlaminar shear strength of control specimens is 24.3 MPa 

with a COV of 4.76%. Statistical analysis show that the interlaminar shear 

strength of hot water and UV weathered pultruded specimens reduced by 

6% and 11% respectively. It is possible that the reduction in ILSS was 

caused by degradation of the fiber-resin interface due to moisture. The 

ILSS of simulated seawater and freeze-thaw specimens were not 

statistically different from the control at a significance level of 0.05. The 

hand lay-up FRP was not tested for ILSS. 

Ultimate Tensile Strength and Young's Modulus 

The mean ultimate tensile strength and modulus of control pultruded 

GFRP is 703 MPa with a COV of 5.0% and, 40.6 GPa with a COV of 2.5% 

respectively. 

Hot water exposure caused the highest reduction (31.7%) in ultimate 

tensile strength (UTS) of pultruded GFRP (see Table 4.5). This reduction 

in tensile strength of the hot water specimens may be due to the 

synergistic effect of high temperature (45°C) and 100% RH conditions. 



UTS of Freeze-thaw and simulated seawater specimens reduced 

significantly by 10% and 7% respectively. UV weathered specimens 

showed no statistically significant change in ultimate tensile strength at the 

5% significance level. 

None of the exposed specimens showed any statistically significant 

change in the Young's modulus at the 5% significance level. Liao et al 

(1998a) tested pultruded vinyl ester E-glass composites in salt water and 

plain water and reported that the flexural modulus did not chance at the 

90% confidence level in spite of conditioning for 6 months (significance 

level of 0.1). However, Sridharan et al (1 998) also tested E-glass vinyl 

ester pultruded composites, at 50" C and 80" C in water for 52 days and 

reported an 8% decrease in the flexural modulus for both temperatures. 

The mean ultimate tensile strength and modulus of hand lay-up GFRP is 

422 MPa with a COV of 18% and 36 GPa with a COV of 9.5% 

respectively. 
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Figure 6.1 Property Retention in Pultruded GFRP 

Freeze-thaw cycling, UV weathering and simulated seawater tests were 

specified by ICBO AC125, which required a retention value of 85% after 

3000 hours for simulated seawater, 90% retention for 2000 hours of UV 

weathering and 90% retention for 20 cycles of freeze-thaw. These 

retention values were required for tensile strength, modulus, and 

interlaminar shear strength. The residual mechanical properties of the 

pultruded specimens exposed to these environments exceeded the 

required retention values specified in ICBO AC 125 (see Figure 6.1). The 

worst condition was hot water, which was not specified by ICBO. 



6.4 Fatigue Life and Residual Strength Tests 

The fatigue life of control pultruded GFRP and hand lay-up GFRP was evaluated 

at every decade of UTS from 80% to 20%. The fatigue life of exposed pultruded 

specimens was tested at 50%, 40%, 30% and 20%UTS-control only. S-N curves 

were then developed for each exposure (see Figure 5.2). The stress ratio (R) 

and frequency for both were 0.1 and 20 Hz respectively. All specimens were 

fatigued in sinusoidal constant amplitude waveform using a servo-hydraulic 

testing machine. A minimum of five specimens was tested at each stress level for 

the control, and four for the exposed types. Equations for finding the lower 95% 

tolerance limit (5% LTL) and 5m Percentile line were also developed (see Figure 

6.2). The results of fatigue tests are summarized below. 
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Figure 6.2 S-N Curve of Pultruded GFRP with 5%LTL with 95% Confidence 



Control Specimens 

For control pultruded specimens, the mean fatigue life at 25%UTS is 

approximately 1 million cycles. This result is in line with other fatigue 

studies. Branco et al (1996) reported that at room temperature, the fatigue 

life of a unidirectional pultruded GFRP (700 MPa UTS) was approximately 

1 million cycles at 21%UTS. They also reported that a woven pultruded E- 

glass phenolic FRP with 305 MPa UTS had a fatigue life of l million cycles 

at 28% UTS. 

All 5 specimens tested at 20% UTS exceeded the 3 million cycles limit. 

Exposed Specimens 

At 30%UTS, freeze-thaw and simulated seawater specimens showed a 

statistically significant increase in fatigue lives at the 5% significance level. 

The mean fatigue lives of freeze-thaw and simulated seawater specimens 

at 30%UTS increased by 166% and 139% respectively. However, Liao et 

al (1998) tested glasslvinyl ester composites in four-point bend 

environmental fatigue (5 months) and reported that salt water (5% and 

10% NaCI) has a significant detrimental effect on the fatigue life at 

30%UTS. The four point bend fatigue test is much more severe than the 

tension-tension fatigue done in this study. Liao conducted fatigue tests 

simultaneous with the exposure. This is known to cause stress corrosion 

which induces much more damage compared to tension-tension fatigue at 

normal lab atmosphere as done in this study. 



The mean fatigue lives of UV weathered and hot water specimens at 

30%UTS are not statistically different from the control at a significance 

level of 0.05. At 40% and 5O%UTS none of the exposures caused any 

statistically significant change in the fatigue lives compared to the control 

specimens. Liao et al (1998) also states that above 45%UTS, water and 

salt water conditioning had very little effect on the fatigue life pultruded 

vinyl ester GFRP. 

In spite of the 31% reduction in tensile strength of hot water specimens, 

the fatigue performance did not change (see Figure 5.2). Figure 5.2 

indicates that hot water slightly improved fatigue life of pultruded GFRP. 

However the change is not statistically significant at the 5% level. It is 

known from literature that resins with higher strain to failure perform better 

in fatigue. Hot water specimens exhibited a reduction in Tg, which is 

indicative of plasticization, i.e. reduced brittleness. 

UV weathered specimens exhibited the lowest fatigue life among all the 

exposures. However the mean fatigue life of UV weathered specimens 

was not statistically different from the control mean S-N curve at the 5% 

level. 

All 16 specimens (4 from each of 4 exposures) tested at 20% UTS 

exceeded the 3 million cycles limit. 



Hand Lay-up Specimens 

Hand lay-up GFRP had fatigue life of 1 million cycles at 26%UTS. All 

specimens tested at 20%UTS exceeded the 3 million cycles limit. Fatigue 

failure mechanisms are shown in Figure 5.5. Branco et al (1996) found 

that a particular unidirectional hand lay-up phenolic GFRP (462 MPa UTS, 

Vf = 0.42) had a fatigue life of 1 million cycles at 44%UTS. 

The hand lay-up specimens exhibited high variability at lower stress levels 

(see Figure 5.1 1 ). 

Fatigue Failure Mechanism 

Failure mechanism of control pultruded specimens at high stresses 

(>50%UTS) was similar to that of static failure, characterized by massive 

fiber brooming near the middle of the gauge length (Figure 4.7, 5.6- 5.9). 

At lower stresses, failure was characterized by cracks at the narrow edge, 

and longitudinal splitting with no brooming (Figure 5.8). Failure seems to 

initiate by matrix micro-cracks transverse to the loading direction. This 

results in fiber breakage or interfacial failure (fiber-resin debonding) 

followed by ultimate composite failure. This type of failure mechanism has 

been observed by others and is extensively reported in literature (Liao et 

al 1998a). 



Residual Strength 

Residual strength tests were conducted at 10%UTS. Six specimens were 

fatigued at each of 0.5, 1 and 3 million cycles and tested for ultimate tensile 

strength and modulus. The results show no statistically significant changes in 

tensile strength or Young's modulus at a significance level of 0.05. 

6.5 Recommendations for Fatigue Design of Pultruded GFRP 

The fatigue strength of a material is an important factor that most design 

engineers consider for structures subjected to cyclic loading. In fact 50-90% of 

the failure of engineering components and structures are attributed to fatigue 

(Gao, 1994; Beynon et al (Eds), 1999). 

Advances in composite materials lead to the development of more efficient 

FRP structures where the allowable strength has increased significantly. This 

makes fatigue analysis an important part of design process because most often 

fatigue tends to be the controlling factor in such designs. The fatigue data of the 

pultruded E-glasslphenolic FRP and the hand lay-up FRP are given in S-N 

curves from which one may estimate the service life of a component depending 

on the number of cycles the structure is likely to endure during its service. 

The design strength may be based on the lower 95% tolerance limit for 

95% of the population. This tolerance limit has been called the 5% LTL (Lower 

Tolerance Limit) with 95% confidence in this study (see Figure 6.2). It assures 

that at least 95% of the specimens will have a 95% survival probability. It must be 

noted here that a designer needs to incorporate a safety factor, the magnitude of 

which will depend on the load uncertainty, frequency and service life. 



In the following table, the mean S-N curves of control specimens are 

tabulated because these specimens displayed the lowest fatigue life compared to 

the exposed types at stresses around 30%UTS-Control. UV weathered 

specimens exhibited the lowest fatigue life but the difference from the control was 

not statistically significant at the 5% level. 

The fatigue life of pultruded FRP at different stress levels is given in Table 

6.1. It must be noted here that the fatigue strength at 3 million cycles is a 

projected value. Since fatigue strength of the pultruded and hand lay-up GFRP 

has not been tested at stress lower than 20%, the equations given in this study 

should not be used to evaluate fatigue life for stresses below 20%UTS. 

Table 6.1 Fatigue Life Data of Pultruded and Hand Lay-up GFRP 

50 1 5% LTL 50 1 5% LTL* I Mean I I EEI I MPa I IUi I Mean I Percentile 

Stress Level 

30 397100 204300 236600 669300 290800 140800 

25 906800 452000 539800 2 mill 869200 408500 

20 > 3 mill 1 mill 1.2 mill >3 mill 2.6 mill 1 .18 mill 
I , 

* with 95% Confidence 

Fatigue life (cycles) 

The data from the above table can be used to estimate the minimum 

fatigue life of both the pultruded and hand lay-up phenolic GFRP used in this 

study. Designers may include addition safety factors based on the application of 

the GFRP. 

Control Pultruded GFRP Hand lay-up GFRP 



6.6 Recommendations for Future Work 

In this study the pultruded specimens were exposed in simulated seawater 

and hot water for 3000 hours only, and then tested for mechanical and 

fatigue properties. To get a better understanding of how the material 

properties change, the author recommends testing at 1000, 2000, 6000, 

and 10,000 hours of exposure. These tests would give a better 

perspective of the rate of change of properties. The author recommends 

similar tests for hand lay-up GFRP type 

A good continuation of this project would be the study of fatigue strength 

of glulam beams reinforced with GFRP. The parameters for such a test 

would be much different from the coupon testing. It is recommended that 

the fatigue loads exerted on the GFRP be 30%, 20% and 10% of UTS 

because this is the typical load range that the GFRP is likely to see in real 

life applications. 

The fatigue strength of the pultruded GFRP exposed to acidic (HCI) and 

highly basic solutions (NaOH) may help in better evaluating the FRP 

material. Freeze-thaw, hot water and simulate seawater tests may also be 

repeated in an environmental chamber such that the specimens are 

continuously exposed while subjected to cyclic loading. 

It is also recommended to test at least 10 specimens in each stress level 

to obtain more accurate distribution of fatigue life. 

Residual strength tests are also recommended at 30% and 20%UTS 

control in addition to 10%UTS. 
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Appendix A: US to Metric Conversions 

Unit To convert from 

Length in 

t? 

Area in2 

fe 

Volume in3 

Mass I b 

Force I bf 

Torque lbf in 

Pressure 1 b/in3 

psi 

ksi 

msi 

Fluid pressure in Hg (32°C) 

Temperature O F 

"C 

Speed mph 

Power density w/in2 

MPa 

GPa 

multiply by 

2.54 

3.0480 E - 1 

6.451 6 E + 2 

9.2903 E - 2 

1.6387 E - 5 

4.5359 E -1 

4.4482 

1.1298 E - 1  

2.7679 E + 4 

6894.7 

6.8947 

6.8947 

3.3863 E + 3 

519 (OF - 32) 

OC+ 273.1 5 

1.6093 

1 .55OO E + 3 



Appendix B: Physical and Mechanical Test Data 

Figure B-1 Stress vs. Strain of Control K-1 Primed GFRP 

- - - - -- - 

0.01 
Strain 

0.015 

Figure B-2 Stress vs. Strain plot of Control Hand Lay-up GFRP 

400 - - """ - -- ------ - - - --- - - 

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 

Strain 



Table B-1 Tensile Strength and Modulus of Control Pultruded GFRP 

Sample 

Average 29.555 703.350 40.512 

Std dev 1.324 32.046 0.933 

cov % 4.479 4.556 2.303 

K-1 # I  

K-1 #2 

K-1 #3 

K-I #4 

K-1 #5 

K-1 #6 

K-1 #7 

Most GFRP failures in the above table initiated in the middle (M) of the gauge 

length area (G) and failed in an explosive (X) manner with much fiber fracture. 

Max Load 
kN 

Table 8-2 Tensile Strength of Control and Exposed Pultruded GFRP 

30.749 

27.712 

27.933 

30.923 

29.555 

29.380 

30.632 

Average 703.4 636.7 480.0 699.4 653.8 

St Dev 32.0 32.9 19.4 17.8 54.8 

cov % 4.56 5.17 4.05 2.54 8.39 

Tensile 
Strength 
(MP4 

733.255 

658.465 

664.748 

735.921 

704.1 70 

697.675 

729.213 

Tensile 
modulus 
@Pa) 

Failure mode 

42.430 

39.927 

40.479 

39.548 

40.210 

40.196 

40.796 

XGM 

XGM 

XGM, minor damage at grip edge. 
, 

XGM 

XGM 

XGM 

XGM 



Table 5 3  Tensile Young's Modulus of Control and Exposed Pultnrded GFRP. 

Average 40.51 2 39.881 41.183 40.879 40.249 

St DW 0.933 1.31 1 1.052 0.894 1.074 

cov O h  2.303 3.287 2.954 2.187 2.669 

Table 84 Single Fador ANOVA - Tensile Strength of Control and Exposed Pukruded GFRP 

Sample # 

1 
2 
3 
4 

5 
6 
7 

1 Between exposures 

Hot water 

40.713 

39.810 

40.024 

42.740 

41.878 

41 .575 

SUMMARY 

Control 

42.430 

39.927 

40.479 

39.548 

40.210 

40.196 

40.796 

Groups Count Sum Average? Vanance 
Control 7 4923.447 703.350 1026.954 
Freeze-thaw 7 4457.128 636.733 1084.539 
Hot water 7 3360.435 480.062 377.888 
UV Weathering 7 4895.914 699.416 315.121 
Simulated Seawater 7 4577.01 9 653.860 3008.1 59 

Freeze-thaw 

39.127 

39.51 4 

38.927 

41.844 

40.575 

41 .a37 

38.141 

UV Weathering 

38.658 

42.051 

40.927 

40.355 

42.023 

40.844 

ANOVA 

Simulated 
Seawater 

38.624 

40.31 3 - 

40.458 

40.306 

40.285 

42.196 

41.541 1 40.293 

Source of Van'ation SS df MS F P-vaIw F crit 
Between Groups 232295.2 4 58073.81 1 3 49.954582 7.65E-13 2.689632 
Wfiin Groups 34875.97 30 1162.53221 

39.582 

Total 267171.2 34 



2 Comparing Control and Freeze-thaw 

SUMMARY 
Groups Counf Sum Average Variance 

Control 7 4923.447 703.350 1026.954 
Freeze-thaw 7 4457.128 636.733 1084.539 

ANOVA 
Source of Variation SS df MS F P-value F crit 

Between Groups 15532.33 1 15532.3337 14.71 21 85 0.002371 4.747221 
Within Groups 12668.95 12 1 055.74623 

Total 28201.29 13 

3 Comparing Control and Hot water 

SUMMARY 
Groups Count Sum Average Variance 

Control 7 4923.447 703.350 1026.954 
Hot water 7 3360.435 480.062 377.888 

ANOVA 
Source of Variation SS df MS F P-value , F crit 

Between Groups 174500.3 1 174500.298 248.42695 2.2E-09 4.747221 
Wdhin Groups 8429.052 12 702.42096 

Total 182929.3 13 



4 Comparing Control and UV weathering 

SUMMARY 
Groups Count Sum Average Variance 

Control 7 4923.447 703.350 1026.954 
UV Weathering 7 4895.914 699.416 315.121 

ANOVA 
Source of Variation SS df MS F P-value F crit 

Between Groups 54.14603 1 54.1460262 0.08069 0.781206 4.747221 
Wlthin Groups 8052.45 12 671.037532 

Total 8106.596 13 

5 Comparing Control and Simulated Seawater 

SUMMARY 
Groups Count Sum Average Variance 

Control 7 4923.447 703.350 1 026.954 
Simulated Seawater 7 4577.01 9 653.860 3008.159 

ANOVA 
Source of Variation SS df MS F P-value F crit - - - - - - - - - 

Between Groups 8572.294 1 .OOO 8572.29399 4.2488503 0.061 632 4.747221 
Wlthin Groups 24210.67 12.000 2017.55616 

Total 32782.97 13.000 



Table 5 5  Tg of Control and Exposed Pultruded GFRP 

Isample #I Control I Simulated Seawater I Hot Water I UV IFreeze-thd 

St Dev 2.694 1.940 1.553 1.443 4.795 

1 
2 
3 
4 

5 

cov % 1 335 0.999 0.W 0.697 2.354 

Table 86 Single Factor ANOVA - Tg from DMTA Data of Control and Exposed Pultruded GFRP. 

Average 201.81 6 194.236 196.442 201.01 6 203.66 

203.8 

204 

202.5 

201.4 

197.38 

1 Comparing all exposures 

SUMMARY 
Groups Count Sum Average Vm-all~e 

Control 5 1009.08 201.816 7.25628 
Hot Water 5 982.21 196.442 2.41312 
UV 5 1035.08 207.016 2.08268 
Freeze-thaw 5 101 8.3 203.66 22.993 
Simulated Seawater 5 971.1 8 194.236 3.76208 

194.s 

191.06 

196.36 

194.4 

194.8 

Source of Vananation SS df MS F P-value F ctit 
Between Groups 548.955 4 137.23874 17.81 9899 2.246E-06 2.866081 
Wnhin Groups 154.0286 20 7.701432 

Total 702.9836 24 

194.28 

197.82 

197.44 

(97.36 

195.32 

I- 

208.9 

205.6 

203.6 

XlO.5 

X5.s 1 2085 

207.8 1 208.2 - 

207.22 197.5 



2 Comparing Control with Hot water exposure 

SUMMARY 
Groups Count Sum Average Variance 

Control 5 1009.08 201.816 7.25628 
Hot Water 5 982.21 196.442 2.41 312 

ANOVA 
Source of Variation SS df MS F P-value F crit 

Between Groups 72.19969 1 72.19969 14.933644 0.004779 5.31 7645 
Wlthin Groups 38.6776 8 4.8347 

Total 110.8773 9 

3 Comparing Control with UV weathering exposure. 

SUMMARY 
Groups Count Sum Average Variance 

Control 5 1009.08 201.816 7.25628 

ANOVA 
Source of Variation SS df MS F P-value F crit 

Between Groups 67.6 1 67.6 14.476987 0.0052005 5.31 7645 
Wlthin Groups 37.35584 8 4.66948 

Total 104.9558 9 

4 Comparing Control with Freeze-thaw exposure 

SUMMARY 
Groups Count Sum Average Vari'ance 

Control 5 1009.08 201.816 7.25628 
Freeze-thaw 5 101 8.3 203.66 22.993 

ANOVA 
Sourceof Variation SS df MS F P-value F crit 

Between Groups 8.50084 1 8.50084 0.5620524 0.474901 2 5.31 7645 
Wdhin Groups 120.9971 8 15.12464 

Total 129.498 9 



5 Comparing Control with Simulated Seawater exposure 

SUMMARY 
Groups Count Sum Avera V&ance 

Control 5 1009.08 2 0 1 z 6  7.25628 
Simulated Seawater 5 971.18 194.236 3.76208 

ANOVA 
Source of Vanattion SS df MS F P-value F crif 

Between Groups 143.641 1 143.641 26.073027 0.0009228 5.317645 
Wdhin Groups 44.07344 8 5.50918 

Total 187.7144 9 



Table 0-7 lgnition Loss Results of Hand Lay-up GFRP. 

Density of hand lay-up composite (experimental- liquid displacement method (LDM)) = 2.008 glcc 

Density of PRF (Phenol Resorcinol Formaldehyde) = 1.33 glcc (manufacturer data verified by LDM) 

Density of E-glass fiber = 2.54 glcc (Manufacturer data) 

After lgnition 

Sample # 

Void 
Volume 

fraction Vv 
(%) 

lgnition loss 
(Resin) 

(9) 

Residue weight 
(glass fibers) 

(9) 

Average 82.29 65.05 17.71 26.74 2.57 

St Dev 0.76 0.60 0.76 1.15 0.02 

cov % 0.92 0.92 4.29 4.29 0.86 

Fiber 
Weight 
fraction 

Wf 

Fiber 
Volume 

fraction Vf 
(W 

Resin 
Weight 
fraction 

wm (%) 

Resin 
volume 

fraction Vm 
(%) 

Theoretical 
density 
(glee) 



Table B-8 Ignition Loss Results of Pultruded GFRP 

Density of pultruded GFRP obtained through micrometer measurements of small specimens 

~ v e r a ~ e  2.1 12 1.398 4.785 3.387 1.604 4.304 2.907 14.188 85.812 14.188 54.192 21.069 24.739 

St Dev 0.013 0.008 0.021 0.021 0.014 0.033 0.033 0.483 0.483 0.483 0.710 0.608 0.463 

Burnt Fiber 
Volume Crucible ","Lpz sample Experimental Sample + Residue weight volume volume lgnition 

Matrix 
weight loss volume Sample # 

(cm3) wt (g) (g) 
density Crucible fraction fraction fraction fraction wt (g) (wt%) (%) (%) % % 

(%I 

Fiber Matrix Void 



Appendix C: Fatigue Data 

Table C-1 Fatigue Data of Control and Exposed Pultruded GFRP 



Method for calculating the 5% LTL with 95% Confidence 

The method for calculating the 5%LTL with 95% confidence was according to a 

NASA report published by Paul H. Wirsching (1983). The method is summarized 

below: 

The S-N curve is plotted with Log of life vs. Stress level. The fatigue life 

(Log N) is called the Y axis (unlike conventional graphs). The stress level 

is the X axis. 

Using least squares method, the mean S-N curve is drawn with slop b and 

intercept a. 

The equation of the line is thus Yo = a + bx 

n - C (xi  - x ) (Y i  - Y )  

The term b is given by: 

The standard deviation s is the standard deviation of the mean line. It is 

given by: 

The tolerance limit is then calculated by finding the k coefficient from a 

one-sided tolerance table for 95% of the population and 95% confidence. 

The equation for the tolerance line is given by: 

Log N5%LTL = Y - k S. The calculation method is illustrated in Table C-2. 



Table C-2 Calculation of 5% LTL for Control Pultruded GFRP 

Xm 
Ym 
b 
a 
s 

Alpha 
population 

k(one sided) 

Sum Sum Sum 
-695.753 9710 0.59727 

Best Fit line: 5% LTL line : 
Y = a + b x  Log(N)=Y-ks  
Where Y, a, and b are estimates where N is the fatigue life 

Y is Log (N) Y is the mean fatigue life 
x is stress level k is the one sided lower tolerance limit 

s is the standard deviation for the best fit line 



Table C-3 Calculation of 5% LTL Values of Hand Lay-up GFRP 

Xm (mean of x) 
Ym (mean of y) 
b 
a 
S 

Alpha 
population 
k(one sided) 

Sum : -303.585 3280.952 1 .056 

Best Fit line: Y = a + bx 
Where Y, a, and b are estimates 
Y is Log (N) 
x is max stress level 

5% LTL line : Log (N) = Y - k s 
where N is the fatigue life 
Y is the mean fatigue life 
k is the one sided lower tolerance limit 
s is the standard deviation for the best fit line 

Table C-4 Mean Fatigue Life Data of Pultruded GFRP at 30% UTS 

Control uv I Seawater Ifreeze-thaw1 weatherin I Hot water 



Table C-5 Single Factor ANOVA - Fatigue Life at 30% UTS Control. 

1 Comparing Control and Freeze-thaw 

SUMMARY 
Groups Count Sum Average Variance 

Control 4 1962431 490607.75 76687320203 

Freeze-thaw 4 5551 924 1387981 3.10042~+11 

ANOVA 

Source of Variation SS df MS F P-value F crit 
Between Groups 1.61~+12 1 1.61056~+12 8.3291 181 99 0.0278378 5.987374 

Within Groups 1.16E+12 6 1.93365E+ll 

Total 2.77~+12 7 

2 Comparing Control and UV Weathering 

SUMMARY 
Groups Count Sum Average Variance 

Control 4 1962431 490607.75 76687320203 

UV weathering 4 11 13207 278301.75 140961 14228 

ANOVA 
Source of Variation SS df MS F P-value F crit 

Between Groups 9.01E+lO 1 90147675272 1.985993939 0.2084228 5.987374 

Within Groups 2.72E+11 6 45391717216 

Total 3.62~+11 7 

3 Comparing Control and Hot Water (45°C) 

SUMMARY 

Groups Count Sum Average Variance 
Control 4 1962431 490607.75 76687320203 

Hot water 4 3223628 805907 1.7931~+11 

ANOVA 
Source of Variation SS df MS F P-value F crit 

Between Groups 1.99E+ll 1 1.98827~+11 1.5533561 51 0.2590937 5.987374 

Within Groups 7.68E+11 6 1.27998E+11 

Total 9.67~+11 7 



4 Comparing Control and Simulated Seawater 

SUMMARY 
Groups Count Sum Average Variance 

Control 4 1962431 490607.75 76687320203 

Simulated Seawater 4 46981 39 11 74534.75 96278753572 

ANOVA 
Source of Variation SS df MS F P-value F crit 

Between Groups 9.36E+11 1 9.35512~+11 10.81729223 0.0166353 5.987374 

Within Groups 5.19~+11 6 86483036888 



Table C-6 Calculation of 95% Confidence Bands for UV Weathering S-N Curve Using Equation 9 of ASTM E 739 

The confidence Bands are Given by: 

I 1 ( X - X ) ~  
A+BX&=O -+ 1 Where Fp is obtained from F distribution table, o is standard deviation and k is the total 

k Ck i=l ( x ~ - x ) ~  
number of specimens. 

Life 
Cycles 
10222 

5469 

13369 

49742 

107648 

373424 

29091 9 

, 341216 

Log cycles 
Y i 

4.010 

3.738 

4.126 

sum= 800 sum= 0.297971223 

B =  -0.0708 

A =  7.5492 

Mean X 40 

Mean Y 4.717304 

St dev 0.1726184 =((Sum (Yi-Y~aret)~Z(k-2))~2 = 0.2979110 

Linear equation from least squares line fit: y = -0.0708~ + 7.5492 
This is done by plotting stress levels in the X axis and log life in the Y axis according to ASTM E739 
Total # of Specimens (k) = 12 
For F distribution, n l  (numerator) =2, n2(denominator) = k-2 a = 0.05 

4.697 

5.032 

5.572 

5.464 

5.533 

Stress Level 
Xi 
50 

50 

50 

40 

30 

30 

30 

30 

(Xi-meanX)Y 
100 

100 

100 

0 

100 

100 

100 

100 

Ycaret 
4.009 

4.009 

4.009 

4.717 

5.425 

5.425 

5.425 

5.425 

(Yi-Ycaret)Y 
0.000 

0.074 

0.014 

0.000 

0.155 

0.022 

0.001 

0.012 

Confidence bands 
95% Lower 

3.784 
3.784 
3.784 

4.574 
5.200 
5.200 
5.200 
5.200 

95% upper 
4.235 
4.235 
4.235 

4.860 
5.651 
5.651 
5.651 
5.651 



UTS Control = 703 Mpa 
UTS UV = 699 MPa 
Stress Ratio = 0.1 
Frequency = 20 Hz 

Linear (Mean S-N Cum) 

-. - - - 95% Confidence Bands 

'.. Mean S-N CUM y = -13.148~ + 102.02 

Lower 95% Confidence band 

4 5 

Fatigue Life (Log N) 

Figure C-1 S-N Curve of UV Weathered Specimens With 95% Confidence Bands 



Appendix D: DMTA Plots 
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Appendix E: List of ASTM Standards, and Specifications 

Used in this Study. 

ICBO Acceptance Criteria 125- Acceptance Criteria for Concrete and 

Reinforced and Un-reinforced Masonry Strengthening using Fiber- 

Reinforced Composite Systems. 

Pre-qualification requirements 1124197- CALTRANS Pre-qualification 

Requirements for Alternative Column Castings for Seismic Retrofit 

(Composites). 

ASTM D 3039- Tensile Properties of Polymer Matrix Composite 

Materials. 

ASTM D 3479- Tension-Tension Fatigue of Polymer Matrix Composite 

Material. 

ASTM E 739- Practice for Statistical Analysis of Linear or Linearized 

Stress-Life (S-N) and Strain-Life (e-N) Fatigue Data. 

ASTM D 2344- Apparent Interlaminar Shear Strength of Parallel Fiber 

Composites by Short-Beam Method. 

ASTM D 2584- Ignition Loss of Reinforced Composites. 

ASTM E 1049- Practice for Cycle Counting in Fatigue Analysis. 

ASTM D 2734- Void Content of Reinforced Plastics. 

ASTM D 1141- Standard Specification for Ocean Water. 

ASTM D 11 93- Standard S~ecification for Reaaent Water. 



12. ASTM D 2247- Standard Practice for testing Water resistance of 

Coatings in 100% Relative Humidity. 

13. ASTM G 53- Standard practice for Operating Light-Exposure Apparatus 

(Carbon-Arc type) With and Without Water for Exposure of Non-Metallic 

Materials. 

14. ASTM G 23- Standard Practice for Operating Light-and Water-Exposure 

Apparatus (Fluorescent UV-Condensation Type) for Exposure of Non- 

Metallic Materials. 

15. ASTM D 570- Standard Test method for water absorption of plastics. 

16. ASTM E 632 Developing Accelerated Tests to Aid Prediction of the 

Service Life of Building Components and Materials. 

17. ASTM D 792 Density and Specific Gravity (Relative Density) of Plastics 

by Displacement. 
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