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Dissolved organic carbon (DOC) is a water quality concern in estuarine 

environments, as DOC facilitates mobilization of metals and organics in sediments and 

leads to toxic disinfection byproducts during water treatment.  Export of DOC from 

sediments can vary with changing environmental conditions, including wetland 

restoration and rising sea levels.  Therefore, it is important to quantify flux of DOC 

across the sediment-water interface (SWI).  Existing DOC flux measurement techniques, 

such as equilibrium dialysis, porewater extraction, and benthic chamber measurement, 

are intrusive to the sediment environment and underestimate flux by only capturing 

certain flux contributions. 

In this research, methods for estimating benthic DOC flux using the eddy 

correlation technique (also known as the eddy covariance technique) were developed and 

implemented at three estuarine mudflats and one freshwater wetland throughout Maine 

and New Hampshire.  The eddy correlation technique, first developed for use in 



 

atmospheric sciences and later applied to aquatic O2 and groundwater flux measurement, 

is a non-intrusive, in situ method based on measurement of turbulent fluctuations of 

properties such as fluid velocity, solute concentration, and temperature.  The methods 

employed here utilized vertical velocity vectors obtained with an acoustic Doppler 

velocimeter (ADV) and DOC concentrations approximated with a chromophoric 

dissolved organic matter (CDOM) fluorometer.  Both linear regression and moving 

average techniques were investigated for isolation of turbulent fluctuations in the velocity 

and concentration data, and spectral analysis was used to analyze flux contribution in the 

frequency series. 

DOC flux values obtained using eddy correlation were compared with results 

from porewater extraction.  Eddy flux values were typically an order of magnitude higher 

than the diffusive fluxes calculated from porewater gradients, which are thought to 

underestimate flux, as turbulent eddy diffusion dominates vertical transport in these 

aquatic systems.  Reasonable flux estimates are a function of adequate trend removal to 

separate turbulent fluctuations from mean flows and wave-induced fluctuations.  This can 

be difficult in heterogeneous environments such as the ones studied here.  In addition, 

spectral analysis shows that DOC flux estimates can be compromised by high-frequency 

noise caused by particle attenuation of the CDOM fluorometer measurements. 
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Chapter 1 

I�TRODUCTIO� 

 

Dissolved organic carbon (DOC) is a water quality concern in coastal 

environments, as estuarine sediments release significant amounts of DOC due to high 

levels of microbial activity.  DOC complexes with toxic metals and organics, and flux of 

DOC from sediments can then transport these contaminants into the water column.  In 

addition, DOC in source waters can lead to toxic disinfection byproducts during the 

drinking water treatment process.  There is a potential for increases in DOC export from 

wetland and estuarine sediments due to wetland restoration, dam removal, and rising sea 

levels.  These factors can facilitate exposure of sediments high in organic content to tidal 

flow, thus increasing DOC production.  Therefore, it is essential to be able to reliably 

quantify DOC flux from estuarine sediments. 

Various methods are currently used to measure DOC flux.  Some methods, such 

as equilibrium dialysis and porewater extraction, rely on porewater concentration 

gradients to estimate solute flux.  These techniques, however, only capture flux due to 

molecular diffusion, thus underestimating net flux.  Alternatively, benthic chambers rely 

on temporal measurement of properties in the overlying water, but do not adequately 

replicate physical aquatic conditions that facilitate turbulent transport.  In addition, these 

methods are intrusive and result in disturbance of the sediment environment. 

The eddy correlation technique provides a non-invasive, in situ method for 

measuring flux and monitoring changes over time. This technique has been used in 

atmospheric sciences for many years and more recently has been adopted to measure 
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solute flux across the sediment-water interface (SWI) in aquatic systems.  Eddy 

correlation principles involve the separation of turbulent fluctuations from mean flow.  

Turbulent fluctuations of velocity and those of a scalar, such as heat, O2, or DOC 

concentration, can be correlated to estimate the vertical benthic flux due to turbulent eddy 

diffusion, which is expected to dominate vertical transport through the water column, 

provided that there is no significant vertical advective flow.   

The research presented here illustrates the first known attempt to quantify benthic 

DOC flux using the eddy correlation technique.  Eddy correlation instrumentation was 

deployed at three estuarine mudflats and one freshwater wetland in northern New 

England in August and September of 2009.  An acoustic Doppler velocimeter (ADV), 

which utilizes acoustic backscattering of suspended particles as a proxy for water 

velocity, was used to measure three-dimensional velocity vectors.  A chromophoric 

dissolved organic matter (CDOM) fluorometer was used to estimate DOC concentration.  

The data collected with these two instruments were processed and correlated to obtain 

estimates of vertical DOC flux across the SWI.  The following report will include an 

outline of background theories and prior research in benthic flux measurement and eddy 

correlation.  A comprehensive method for assessing benthic DOC flux in estuarine 

environments based on field studies and data analysis will be presented, and the results of 

this research will be discussed.  Lastly, conclusions and recommendations for future work 

will be made. 
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Chapter 2 

BACKGROU�D 

 

2.1 DOC production and benthic flux measurement 

The benthic boundary layer is the zone of marine sediment and overlying water 

that is directly affected by the SWI.  Carbon cycling in this boundary layer involves 

complex biogeochemistry.  DOC in aquatic environments can originate from a variety of 

sources and accumulate in the benthic zone (Carlson, 2002).  For instance, particulate 

organic carbon (POC) from plant matter, dead marine organisms, and other detritus 

accumulates in the sediment, and POC suspended in the water column flocculates and 

settles on the sediment surface (Cauwet, 2002).  These organic compounds are broken 

down into dissolved form and then cycled by benthic macrofauna and by sediment 

bacteria via extracellular enzyme-mediated hydrolysis (Burdige, 2006).  Another source 

of DOC in sediment and in the water column is cell lysis.  It is estimated that as much as 

26% of carbon fixed during primary production is released as marine DOC by viral lysis 

(Maier et al., 2009).  DOC in turn can be remineralized by bacteria, or it can be 

consumed and transformed, resulting in lower molecular weight, more refractory forms 

of DOC.  This leads to net accumulation of DOC in benthic sediment porewaters 

(Burdige, 2006). 

Upon its release from porewater into the water column in estuarine environments, 

DOC may be consumed by prokaryotic bacterioplankton or by other marine organisms.  

DOC is also susceptible to abiotic removal via photoirradiation or particle sorption 

(Carlson, 2002).  DOC flux is of concern because DOC is known to complex with metals 
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and other contaminants (e.g., Kalbitz et al., 1997).  Therefore, DOC has the potential to 

transport contaminants such as mercury from the sediment into the water column.  DOC 

also has an effect on the bioavailability of mercury, and environments with high DOC 

production may have increased rates of mercury methylation, leading to higher 

concentrations of toxic methylmercury (Benoit et al., 2003).  In addition, DOC in source 

waters can lead to reactions during disinfection in the water treatment process, resulting 

in harmful disinfection byproducts, such as trihalomethanes (Fleck et al., 2007). 

Total benthic flux of a solute across the SWI has been described as the sum of 

fluxes due to diffusion, bioturbation, bioirrigation, porewater advection, and sediment 

resuspension (Burdige, 2006): 

 Jtot = Jdiff + Jbiot + Jirr + Jadv + Jrsp  (2.1) 

Since, in many sediments, porewater DOC concentrations are an order of magnitude 

higher than concentrations in the overlying water, the sediments can serve as a DOC 

source to the water column via diffusive transport (Burdige, 2006).  In turbulent systems, 

eddy diffusion dominates molecular diffusion as the dominant transport process of 

solutes from the diffusive boundary layer at the SWI to the water column (Crusius et al., 

2008).  In order to effectively quantify vertical flux between sediment porewaters and the 

water column, all of the processes in Equation 2.1 should be accounted for. 

Various methods exist to quantify DOC concentrations and flux across the SWI, 

and they capture flux components from Equation 2.1 with varying success. Multi-

chambered equilibrium dialysis samplers, or “peepers,” and sediment core centrifugation 

can be used to measure porewater DOC concentration gradients, from which flux can be 

calculated.  In situ benthic chambers are used to measure temporal release of DOC from 
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sediments into the overlying surface water.  The following sections will provide a brief 

explanation of these techniques and their applications in measuring organic carbon, as 

well as potential shortfalls in using these methods for DOC flux measurement. 

 

2.1.1. Peepers 

Peepers can be used to measure porewater concentrations of various analytes, 

including DOC.  The concentration gradients obtained can in turn be used to calculate 

flux across the SWI.  First introduced by Hesslein (1976) for measurement of methane 

and phosphate profiles in river sediments, peepers are typically characterized by a sheet 

of acrylic securing a dialysis membrane over multiple DI-water- or gel-filled chamber 

cells hollowed out of another sheet of acrylic.  The peepers are driven into sediments, 

where they are allowed to equilibrate with surrounding porewaters via diffusion of 

dissolved compounds across the permeable membrane, which occurs due to concentration 

gradients between the DI water and surrounding porewater. 

Merritt and Amirbahman (2007, 2008) used peepers to study mercury and 

methylmercury dynamics in estuarine sediments at Frankfort Flats, one of the sites also 

investigated in the eddy correlation research presented here.  DOC porewater 

concentrations were measured using peepers at 1.5 cm (2007) and 0.75 cm (2008) 

resolution, and profiles were reported.  Methylmercury flux was calculated using Fick’s 

First Law and a diffusion coefficient obtained from the literature. 

There are limitations to using peepers to obtain flux.  Due to long equilibration 

times (e.g., 30 d by Merritt and Amirbahman, 2008; 32 d by Merritt and Amirbahman, 

2007; 16 d by Carignan et al., 1994), peepers cannot be used to examine short-scale 
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temporal variations in flux.  Peepers provide only an average flux over the period of 

equilibration.  This raises concerns about effectively capturing short-term changes in 

solute transport caused by bioturbation, bioirrigation, and sediment resuspension.   

Sediments are also subject to disturbance during peeper installation.  When driven into 

the sediment, the peeper can carry material from the sediment surface and overlying 

water down through the sediment profile.  The soil structure along the face of the peeper 

is also altered, which could result in changes in porewater diffusion characteristics. 

When peepers are to be deployed in anoxic sediment environments, they must be 

deoxygenated, and extensive care must be taken to ensure they maintain anoxia prior to 

deployment (Carignan, 1994).  In addition, peepers are not entirely an in situ technique, 

as they must be removed from the environment for chemical analysis. 

 

2.1.2. Porewater extraction 

Porewater extraction from sediment cores via centrifugation or squeezing has 

been used extensively to quantify concentrations of various porewater analytes.  In 

addition, syringe extraction can be used to obtain porewater samples directly from the 

sediment.  The following section will briefly describe a few studies involving porewater 

extraction, as well as potential deficiencies to using these methods for DOC flux 

calculations. 

Lahajnar et al. (2005) measured deep-ocean benthic DOC flux using sediment 

core centrifugation.  Cores 10 cm in diameter were collected, extruded, and sliced into 

0.5-cm or 1-cm sections.  Each sediment section was centrifuged at 2000 rpm for 20 min, 

and the resulting porewater was filtered.  Flux was calculated from DOC concentrations 
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using Fick’s First Law.  Diffusion coefficients were calculated based on DOC molecular 

weights from the literature.  Benthic DOC flux for all study sites ranged from 47.2 to 

223.9 µmol m
-2

 d
-1

 (Lahajnar et al., 2005). 

Carignan et al. (1985) used sediment core centrifugation, producing porewater 

profiles for comparison with peeper results.  Cores 8 cm in diameter were sliced into 

sections 1 cm thick and centrifuged for 20 min at 5000 rpm.  Resulting porewater was 

passed through filters corresponding with the filter pore sizes utilized in the peepers.  

When 0.45-µm filters were used, centrifugation produced higher concentrations of DOC 

than did peepers.  When 0.03 µm filters were used, centrifugation and peepers produced 

similar DOC profiles.  However, the authors noted that there is potential for 

contamination from sediment colloids during porewater extraction by centrifugation 

(Carignan et al., 1985). 

Burdige and Homstead (1994) used two methods of porewater extraction from 

sediment cores in a Chesapeake Bay study comparing porewater gradient flux to 

measurements obtained using benthic chambers.  In one method, 3.5-in. diameter 

sediment subcores obtained from a larger box core were sectioned, and porewater was 

removed using low-pressure sediment squeezers.  In the other method, 2.25-in. diameter 

sediment cores were obtained using a special core tube with sampling ports that collected 

porewater when gas pressure was applied to the core, eliminating the need for sectioning.  

Porewater samples were filtered through 0.45-µm filters to remove any particulate matter.  

A total of seven data sets were obtained from two study sites over the course of one year.  

The study found that flux values calculated from porewater gradients were generally 

similar to values produced in a laboratory flux chamber (Burdige & Homstead, 1994). 



8 

  

Calculating flux from porewater gradients relies heavily on diffusion coefficients, 

which depend on DOC molecular weight and sediment porosity, two factors that may 

vary considerably with temperature, season, and from site to site and may be difficult to 

accurately estimate (Alperin et al., 1994).  Another potential source of error in calculating 

flux based on porewater gradients lies in the variability of what is chosen for �z, the 

change in depth over which the change in concentration occurs.  Burdige (2006) 

describes �z as being calculated utilizing the porewater concentration from the sample 

collected closest to the SWI.  It is noted, however, that this may not always capture the 

most accurate porewater gradients.  For instance, Lahajnar et al. (2005) used �z value of 

1.5 cm or 1.75 cm, but DOC concentrations were often higher in samples from closer to 

the SWI and decreased sharply with depth.  In this study with deep-ocean sediments, the 

higher values at the SWI were considered to be due to extraction artifact; i.e., lysis of cell 

biomass during porewater DOC extraction. 

 

2.1.3. Benthic chambers 

Benthic chambers, which can be installed in situ or in the laboratory, involve 

trapping a finite volume of overlying water over a finite surface area of sediment to 

measure solute flux across the SWI.  Benthic chambers have been described as 

advantageous because they measure flux due to both molecular diffusion and advection 

(Reimers et al., 2001).  A detailed review by Tengberg et al. (1995) describes various 

chamber technologies.  The following section briefly describes three studies involving 

benthic chambers.  Some of the potential problems with using these systems for DOC 

flux measurement will also be discussed. 
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Burdige and Homstead (1994) used laboratory incubation chambers to quantify 

DOC flux for comparison with flux calculated from gradients obtained by porewater 

extraction, as described previously.  3.5-in diameter chamber tubes were used to collect 

sediment cores.  Overlying water heights of 9-13 cm were maintained, and the water was 

mixed using a glass stirring rod.  Filtered air was pumped into the water to replicate in 

situ oxygen concentrations, which would be depleted in the closed-system chambers due 

to consumption by benthic organisms.  Samples of the overlying water were extracted 

over time, and DOC concentrations were measured.  The change in concentration over 

time was used to estimate benthic DOC flux, and fluxes ranged from -0.12 ± 0.27 to 3.08 

± 0.21 mmol m
-2

 d
-1

 (Burdige & Homstead, 1994).   

Janssen et al. (2005) deployed an in situ chamber in sandy sediments, where 

porewater advection would likely contribute to benthic flux.  The chamber, which was 

constructed of stainless steel and had a 200-mm diameter, was lowered through the water 

and into the sediment until the top of the chamber was positioned approximately 120 mm 

above the SWI.  A stirring disk positioned at the top of the chamber provided circulation 

of the water in the chamber, resulting in a pressure gradient.  The authors suggest that 

their instrumentation can be adjusted to replicate in situ pressure conditions (Janssen et 

al., 2005). 

In a study to measure O2 flux using the eddy correlation technique, Berg et al. 

(2003) deployed ten benthic chambers at two locations for comparison with results 

obtained with other methods.  The chambers were 19 cm in diameter and were inserted 

into the sediment such that approximately 12 cm of overlying water was trapped in each 

chamber.  Mixing in the chamber was achieved by a 15-cm diameter rotating disk located 
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approximately 7 cm above the SWI.  Water was collected from the chambers through a 

sampling port for O2 analysis.  Benthic flux estimates from the chambers at one project 

site, which were deployed in sediments described as “fine-grained marine mud,” were 

compared to diffusive flux obtained by measuring O2 sediment profiles with a 

microelectrode.  The average flux of the four chambers at this site was found to be nearly 

1.5 times greater than the average flux calculated from three porewater profile gradients 

(Fig. 2.1.b).  More discussion about this study’s eddy correlation findings will be 

presented later in this chapter. 

Benthic flux chambers attempt to capture a more comprehensive flux than do 

porewater gradients.  However, there are still some issues that can lead to artifact in flux 

measurement using chambers.  While both laboratory and in situ benthic chambers do 

attempt to reproduce advective flow using stirring rods or disks, these chambers do not 

take into account the same turbulent flow induced by horizontal currents present in tidal 

or riverine systems.  The lack of wave- and current-driven flow may also lead to 

underestimation of porewater pressure-induced pumping in coarser sediments (Huettel 

and Webster, 2002).  As noted by Janssen et al. (2005), the circular chamber and stirring 

disk resulted in a radial pressure gradient.  In addition, advection from rotational mixing 

can lead to an increase in sediment resuspension as compared to true in situ conditions 

(Janssen et al., 2005).  Chambers also can lead to underestimates in diffusive flux by 

maintaining higher concentrations in the overlying water than would exist under true in 

situ conditions, leading to less of a gradient between porewater and surface waters. 
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2.2. Eddy correlation 

Eddy correlation, sometimes referred to as eddy covariance, is a process by which 

flux of a variable across a plane can be estimated from the covariance of two variables, 

i.e. vertical velocity and a scalar or horizontal velocity (Glickman, 2000).  This 

correlation can be employed to calculate flux of variables such as momentum, heat, 

chemical species, particles, or other passive contaminants (Tennekes & Lumley, 1972).  

In benthic systems, eddy correlation provides a method by which vertical solute flux can 

be estimated by measuring properties in the water column (e.g., Berg et al., 2003; Kuwae 

et al., 2006).   

Eddy correlation measurement is facilitated by the Reynolds decomposition, in 

which fluid velocities or passive contaminant concentrations can be broken down into 

mean and fluctuating values (Tennekes & Lumley, 1972).  Reynolds (1896) first 

presented the mathematical separation of mean and relative motions of matter, which, in 

the aquatic systems studied here, can be applied to vertical water velocity (w) and solute 

concentration (C):   

 w = w  + w’ (2.2) 

 C = C  + C’ (2.3) 

where w  and C  represent mean values, and w’ and C’ represent turbulent fluctuations.  

The correlation between velocity and concentration can be established by the covariance, 

or the product of the fluctuating components averaged over a length of time, ''Cw

(Everitt, 2006).  If this product does not equal zero, the two variables are considered 

correlated (Tennekes & Lumley, 1972).  The product when applied to momentum is 

referred to as the Reynold’s stress, and when applied to solute transport can be referred to 
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as eddy flux.  Turbulent fluctuations are extracted from the data by manipulating 

Equations 2.2 and 2.3 to remove the mean: 

 w’ = w – w  (2.4) 

 C’ = C – C  (2.5) 

Total vertical diffusive flux of a solute is described by the following equation 

(Boudreau, 2001): 

 
''Cw

z

C
Dj +
∂
∂

−=
 (2.6)

 

where the first term is representative of molecular diffusion, and the second term is 

representative of eddy diffusion due to turbulent fluctuations.  Since vertical transport in 

the water column is dominated by turbulent fluctuations (Berg et al., 2003), the molecular 

diffusion term can be neglected such that the covariance of vertical velocity and solute 

concentration is representative of the total vertical flux: 

 Flux = ''Cw  (2.7) 

In this research, flux will be calculated from the turbulent fluctuations of vertical velocity 

and DOC concentration measured in the water column a short distance above the SWI. 

 

2.2.1. Eddy correlation in atmospheric sciences 

The eddy correlation technique has been utilized in atmospheric sciences since the 

mid-twentieth century to measure fluxes of properties such as energy and mass transfer.  

Eddy correlation is applicable to these types of measurements because atmospheric 

turbulence is the driving force behind transfer in the lower atmosphere (Dyer & Maher, 

1965).  These fluxes are of interest in the agriculture, forestry, hydrology, and ocean 
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science fields.  The first direct method of measuring vertical eddy flux was developed by 

Swinbank (1951) to quantify vertical heat and water vapor fluxes induced by turbulent 

wind eddies over open grasslands in Australia.  Swinbank’s eddy correlation apparatus 

made use of a hot wire anemometer to measure wind speed and thermocouples to 

measure temperature and humidity. 

Eddy correlation measurements were initially difficult due to complicated data 

collection and processing.  In addition, a major concern regarding instrumentation was 

ensuring that sensor response times were fast enough to capture the smallest eddies that 

contribute to turbulent flux.  Dyer (1961) successfully employed the use of an automatic 

instrument, known as the Evapotron, which simplified the required measurements.  The 

accuracy of eddy flux measurements obtained using this instrument was verified by 

comparison with surface energy balance, including evaporation and radiation 

measurements made using different instruments (Dyer & Pruitt, 1962).  The Evapotron 

was improved upon with the creation of the Fluxatron, which filtered out non-turbulent 

eddies that do not influence eddy flux (Dyer et al., 1967).  The instrument was then 

advanced further so that it could measure Reynolds stress (Hicks, 1970). 

It was recognized that the use of fast response chemical sensors would allow eddy 

correlation to measure real-time, instantaneous flux of various analytes in the 

atmosphere.  Eastman and Stedman (1977) used eddy correlation with a 

chemiluminescent ozone meter and achieved good correlation between ozone and 

momentum flux.  Eddy correlation was also used to quantify particulate flux near an oil 

refinery (Wesely et al., 1977).  Such applications illustrate the capability of eddy 

correlation to monitor flux of pollutants into the atmosphere.  In addition, a fast response 
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CO2 sensor was developed for atmospheric eddy correlation measurements to study 

ocean-atmosphere exchange (Jones et al., 1978).   

 

2.2.2. Eddy correlation in aquatic environments 

The eddy correlation technique utilized for atmospheric measurements has been 

adapted for in situ application in aquatic environments.  For example, West and Oduyemi 

(1989) measured turbulent velocity fluctuations with an electromagnetic current meter 

and measured suspended solids concentration with a siltmeter to determine Reynolds 

stresses and suspended solids flux in two estuaries.  Similarly, van der Ham et al. (1998) 

determined Reynolds stresses and vertical sediment flux in an estuary.  Fiber optic 

turbidity meters operating at 20 Hz were used to quantify suspended sediment 

concentration.  In another study, energy and momentum fluxes between water and ice 

were determined from measurements made using an ultrasonic current meter and a fast-

response temperature-conductivity meter (Shirasawa et al., 1997).  More recently, studies 

have used eddy correlation to measure solute flux across the SWI (Table 2.1).  The 

following section briefly describes some of the deployment characteristics and data 

analysis associated with these studies. 
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In the first use of eddy correlation to quantify flux of a dissolved species in water, 

Berg et al. (2003) coupled a fast response Clark-type O2 microelectrode with an ADV to 

capture O2 uptake by marine sediments.  Berg recognized that “vertical transport of O2 

through the water column toward the sediment surface is facilitated by turbulent motion” 

(Berg et al., 2003).  Instrumentation was deployed at three study sites (Table 2.1).  At one 

site, the measurement volume was varied from 15 cm to 55 cm above the SWI in order to 

compare the effects of measurement volume height on the resulting O2 flux 

measurements.  At the other two sites, eddy correlation flux values were compared with 

flux calculated using O2 microprofiles and benthic chambers (Fig. 2.1).  The differences 

in flux between each of the three methods at the Aarhus Bay site and the two methods at 

the Limfjorden Sound site were attributed to each method’s varying ability to capture 

flux due to macrofaunal influence.  The results of the study illustrated the potential for 

eddy correlation to be used for O2 flux measurement, as well as for other dissolved 

analytes for which fast-response sensors exist.  Trend removal was performed using a 

moving average, and optimum averaging window was established by plotting O2 flux 

against varying averaging window.  The averaging window length where O2 flux leveled 

off was chosen for use in trend removal.  Spectral analysis showed that the frequencies 

contributing to vertical O2 flux were less than 1 Hz (Berg et al., 2003). 
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      a.                                                    b.                                            c. 

 
 

Figure 2.1. Comparison of O2 flux: (a.) O2 eddy correlation flux estimates at varying 

measurement volume heights collected at River Wümme; (b.) Comparison of O2 flux 

using different methods at Aarhus Bay; and (c.) Comparison of O2 flux using different 

methods at Limfjorden Sound (reproduced from Berg et al., 2003). 

 

Kuwae et al. (2006) expanded upon the methods developed by Berg et al. (2003) 

for measuring sediment O2 flux.  An ADV and a Clark-type O2 sensor were deployed 

over fine, sandy sediments in a tidal flat in Tokyo Bay, Japan. The authors examined the 

effects of high-frequency components of w’ and C’, and found that frequencies > 5 Hz 

had an effect of < 7% on total flux.  They also found that the O2 sensor’s response time of 

< 0.3 s was sufficient to capture turbulent fluctuations contributing to flux.  Kuwae et al. 

(2006) also investigated the implications of detrending to remove the effects of long-term 

changes in concentration.  Trends were removed using linear regression over 2-min 

blocks, and flux data showed that detrending was necessary during periods in which 

concentration varied with time.  Eddy correlation flux produced similar results to flux 

obtained in previous studies using sediment core incubation.  The authors found a high 

degree of variability, which was attributed to either actual variations in flux or artifact in 

the eddy correlation measurements.  By studying spectral analysis, the authors concluded 

that wave-induced vertical fluctuations between frequencies of 0.3 and 1.4 Hz were the 

dominant process controlling O2 flux (Fig. 2.2) (Kuwae et al., 2006). 
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Figure 2.2. Example of cumulative spectra for (a.) w’ and (b.) C’, cumulated from the 

high-frequency end (reproduced from Kuwae et al., 2006). 

 

Berg et al. (2007) used mathematical modeling to investigate and develop 

equations for determining the size and orientation of the footprint, or sediment surface 

area contributing to benthic flux as calculated by eddy correlation.  The footprint depends 

on factors including water depth, sediment surface roughness, and current velocity (Berg 

et al., 2007). 

Crusius et al. (2008) expanded on the previous aquatic eddy correlation methods 

and applied the technique to the measurement of groundwater discharge into surface 

waters.  Salinity and temperature, measured by rapid response sensors, were used as 

tracers for groundwater input, since these two characteristics differ for groundwater and 

the overlying surface water.  The sensor, coupled with an ADV, was deployed in a tidal 

channel at the Cape Cod National Seashore.  Eddy correlation measurements were taken 

at night, so solar radiation would not affect temperature measurements in the shallow 
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water.  Cumulative heat and salt fluxes were calculated using eddy correlation methods 

and were converted to groundwater specific discharge.  The two tracers produced similar 

discharge rates.  In addition, values compared well with flux obtained using traditional 

seepage meters and 
222

Rn modeling (Crusius et al., 2008). 

McGinnis et al. (2008) utilized the techniques developed by Berg et al. (2003) to 

measure O2 flux over a 38-hr period in Lake Wohlen, a shallow freshwater environment 

in Switzerland.  An O2 sensor with a 2.25-s response time was coupled with an ADV, and 

the O2 sensor lag led to an error in total flux of < 5%.  Different flux calculations were 

done using a program that used mean removal, linear detrending, and a moving average 

to determine turbulent fluctuations in velocity and concentration.  Eddy correlation flux 

values were comparable to results from O2 microprofiles.  Differences in contributing 

eddy sizes were observed between daytime and nighttime deployment periods, and 

optimum averaging window lengths were 60 s and 250 s, respectively.  The authors 

recognized the importance of trend removal to separate turbulent fluctuations from large-

scale advective flow, but noted that uncertainty exists due to the lack of a distinct spectral 

shift to distinguish the two processes (McGinnis et al., 2008). 

Brand et al. (2008) used eddy correlation to measure O2 flux in Lake Alpnach, 

Switzerland, a water body that experiences highly-variable flow characteristics as a result 

of varying wind energy inputs.  The study aimed to examine relationships between 

bottom boundary layer dynamics and benthic exchange processes.  A fast-response Clark-

type O2 sensor was coupled with an ADV for eddy correlation measurements.  

Temperature profiles in the bottom 4 m of the water column were also collected during 

the deployment to model hydrodynamics resulting from internal lake seiching.  Trend 
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removal of velocity and concentration data was performed on 15-min bursts of data using 

linear detrending.  Flux results showed high temporal variation due to the hydrodynamics 

in the lake.  Eddy correlation flux was compared with flux obtained from sediment 

microprofiling, and in some cases, eddy correlation produced values three times larger 

than the traditional profile method.  Extensive spectral analysis and studies of changes in 

velocity and turbulent conditions were done to examine flux variability.  Periods of 

negligible flux occurred when both horizontal velocities and vertical turbulent velocities 

were small, while net flux occurred when the Reynolds number was above 1700 (Fig. 

2.3).  When the bottom boundary layer was completely mixed, the O2 concentration 

gradient was low, and thus flux was also negligible.  The authors note that previous 

aquatic eddy correlation studies were done in environments where steady state conditions 

could be assumed.  In the highly-variable hydrodynamic conditions of Lake Alpnach, 

however, turbulent O2 transport between the bottom boundary layer and the lake’s 

interior is not necessarily indicative of flux across the SWI (Brand et al., 2008). 
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Figure 2.3. Plots illustrating the relation between turbulent velocities and O2 flux.  

Positive flux occurred during some transitions between highly-turbulent and less 

turbulent flow (reproduced from Brand et al., 2008). 

 

Berg et al. (2009) revisited the eddy correlation technique to measure small O2 

sediment fluxes in deep ocean waters.  A fast-response Clark-type O2 sensor and ADV 

were deployed at the sediment surface in 1450-m-deep water using a free-falling lander, 

and adjustments were made using a remotely operated vehicle.  The study also detailed 

O2 microprofiling and benthic chamber deployments used for verification of the eddy 

correlation technique.  The deep ocean site was characterized by lower horizontal and 

vertical velocities and lower concentrations of suspended particulate matter than in 

estuarine sites, which led to greater high-frequency noise in velocity measurements.  The 

noise was described as being “randomly distributed around the mean,” so the presence of 

noise did not lead to contamination of flux estimates.  According to the authors, the 
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environmental conditions actually produced a “strong eddy flux signal,” indicating nearly 

steady state conditions (Berg et al., 2009).  Least-square linear fits were used to remove 

trends from velocity and concentration data.  Using spectral analysis, the authors 

determined that eddies contributing to flux were in the frequency range of 0.0025 Hz to 

0.62 Hz (Fig. 2.4.a).  Eddy correlation flux estimates were very similar to values obtained 

using chambers and profiling (Fig. 2.4.b) (Berg et al., 2009). 

 

    a.                                                                     b. 

 
Figure 2.4. Example cospectrum and comparison of O2 flux: (a.) Example normalized 

cumulative cospectrum showing frequency range of eddies contributing to flux; (b.) 

Comparison of flux estimates (O2 uptake) from three techniques (reproduced from Berg 

et al., 2009). 
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Chapter 3 

MATERIALS A�D METHODS 

 

3.1. Acoustic Doppler velocimeter 

A Vector acoustic Doppler velocimeter (ADV) (Nortek AS, Rud, Norway) was 

used to obtain water velocity measurements.  The ADV (Fig. 3.1) uses Doppler principles 

to measure particle velocities in three dimensions via acoustic backscattering.  The 

particle velocity measured by the ADV is used as a proxy for water velocity.  Velocity 

measurements are taken within a cylindrical volume 14 mm in diameter by 14 mm in 

height, located 15.7 cm from the instrument’s transmit transducer.  A sonic pulse is 

emitted from the transmit transducer, and echoes are returned to the three receive 

transducers.  In turn, the instrument converts the change in frequency of the sonic pulse 

into three-dimensional particle velocity.  The ADV has a maximum sampling rate of 64 

Hz, but 8 Hz was used throughout this project due to the limitations of the fluorescence 

sensor, as described in the next section. 

The ADV construction includes a titanium probe and receiver arms, which hold 

the epoxy-coated transducers.  The probe is attached to a Delrin
®

 pressure casing, which 

contains the onboard data collection and storage system.  Also contained in the pressure 

casing is an internal battery pack.  The internal pack used on this project utilized NiMH 

rechargeable batteries (total maximum voltage of 13.1 V) and was used either alone or as 

a backup for a 15 V external marine battery. 
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Figure 3.1. Vector acoustic Doppler velocimeter held in bracket.  

 

The onboard data acquisition system stores data in a binary format that can be 

converted to ASCII files using the appropriate software.  The ADV records x-, y-, and z-

direction velocity vectors and additional information such as signal-to-noise ratio and 

signal strength.  In addition, the pressure casing has built-in pressure, temperature, 

compass, and tilt sensors.  The ADV can also accept and record data from up to two 

analog inputs.   

 

3.2. Fluorometer 

An ECO-FL chromophoric dissolved organic matter (CDOM) fluorometer 

(WETLabs, Philomath, OR, USA) was used to measure in situ CDOM concentration, 

which is an indicator of DOC concentration (Blough & Del Vecchio, 2002) (Fig. 3.2).  

The instrument is housed in an acetal copolymer pressure casing measuring 6.3 cm in 

diameter and 12.7 cm in length.  The ECO-FL operates at a maximum sampling rate of 8 

Hz.  The ECO-FL utilizes excitation and emission wavelengths of 370 nm and 460 nm, 
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respectively, corresponding to the fluorescence characteristics of CDOM.  The 

fluorometer measures CDOM concentration at approximately 2 cm from the face of the 

optics head.  Unlike some other fluorometers, the ECO-FL is not a flow-through device, 

thus reducing the chance of contaminating velocity measurements. 

 

 

Figure 3.2. ECO-FL CDOM fluorometer mounted on bracket at 45˚. 

 

This particular fluorometer has an analogue output voltage range of 0.025 V to 

4.96 V, with a resolution of 1.6 mV.  This is converted to a digital signal ranging from 64 

counts to 16327 counts, with a resolution of 2 counts.  The minimum value of 64 counts, 

or dark current, is the output when the optics head is covered with black tape and 

submerged in clean water, as determined by the manufacturer. 

The ECO-FL was calibrated in the laboratory using multiple concentrations of 

water collected from Burton Bog, one of the project field sites.  The ECO-FL was 

connected as an analog through the ADV, and both were powered by an external marine 



26 

  

battery with a backup internal battery pack to emulate the power and data collection 

conditions used in the field.  During calibration, the ECO-FL was placed in an acid-

washed plastic tank, which was entirely concealed with aluminum foil to prevent light 

from entering the system.   

For each dilution, the ECO-FL collected 3 min of data.  Each 3-min set of data 

was then averaged to obtain a single mean fluorescence count for each dilution.  

Immediately following each data collection period, a 120-mL sample of water was 

collected in an acid-washed plastic bottle.  Each sample was filtered through 0.45-µm 

filter paper and preserved with 4 drops of a 1:1 18M sulfuric acid and DI water solution.  

Samples were stored at 4˚C until DOC concentration measurement. 

Samples were run through a 1010 Total Organic Carbon (TOC) Analyzer (OI 

Analytical, College Station, TX, USA) to measure DOC concentration.  Calibration 

standards were prepared using potassium hydrogen phthalate for concentrations ranging 

from 0 to 30 ppm.  The standard curve produced R
2
 = 0.9993.  The collected samples 

from the ECO-FL calibration were then run through the TOC analyzer within 24 hr of 

collection, and the resulting concentrations were plotted against the fluorometer digital 

counts to obtain a calibration curve.  The curve was fit to a linear function with R
2
=0.98, 

(Fig. 3.3). 
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Figure 3.3. CDOM fluorometer calibration curve based on diluted Burton Bog sample 

water and dark current value. 

 

3.3. Deployment setup 

For deployments, the two instruments were attached to an A-frame aluminum step 

ladder (Fig. 3.4), similar to the setup previously used by Kuwae et al. (2006).  The ADV 

was mounted vertically and held in place by an acrylic and stainless steel bracket that was 

clamped to a ladder rung.  The ADV was easily adjustable to the desired measuring 

height, and the bracket’s rigidity prevented excessive wind and wave-induced movement 

of the instrument.  The ECO-FL was mounted to a lower ladder rung using a different 

acrylic and stainless steel bracket that allowed the instrument to be oriented pointing 

downward at a 45 degree angle to reduce the instrument’s influence on water flow 

through the ADV’s measurement volume.  The 6-pin fluorometer was connected by a 

water-tight cable to the analog receiver of the ADV. 
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a.                                                              b. 

  

Figure 3.4. Eddy correlation instrumentation setup: (a.) Instrument setup in laboratory 

and (b.) deployed in field to measure 12 cm above the SWI at Burton Bog (right). 

 

Due to restrictions of the instruments’ sizes and orientations, the two instruments 

did not share exactly the same measurement volume.  For a typical field deployment, the 

ADV and fluorometer measurement volumes were located as much as 2 cm apart.  This 

distance was acceptable, however, since smaller eddies that would not be captured due to 

the difference in measurement volumes, do not contribute significantly to momentum and 

solute transport compared with larger eddies (Tennekes and Lumley, 1972).  The ladder 

was positioned so that the primary direction of flow occurred between the ladder’s legs 

and orthogonal to the face of the fluorometer. 

Data can be monitored real-time on a computer, but for autonomous field 

deployments, the data collection specifications were set in the field using a laptop 
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computer, which was then disconnected during deployment.  For each of the four project 

sites studied in this research, data were collected continuously at 8 Hz for the duration of 

the deployment time. 

 

3.4. Project sites 

Four study sites were chosen for deployments: (1) Frankfort Flats, Frankfort, ME; 

(2) Squamscott River, Stratham, NH; (3) Piscataqua River, Kittery, ME; and (4) Burton 

Bog, Old Town, ME.  Sites were chosen based on accessibility and availability to 

monitor a deployment for several hours.  The first three sites, which are all intertidal 

mudflats, were the subject of concurrent and prior research, and the sediments at these 

sites are well-characterized, including the DOC porewater gradients. 

 

3.4.1. Frankfort Flats 

Frankfort Flats (Fig. 3.5) is located in the Lower Penobscot watershed at the 

mouth of Marsh Stream in Frankfort, ME.  The intertidal mudflat, characterized by fine-

grained, cohesive marine sediments, is adjacent to an estuarine salt marsh dominated by 

Spartina spp.  The site has been the subject of mercury studies that have also 

characterized porewater DOC concentrations at various depths in the estuarine sediment 

(Merritt, 2007; Merritt & Amirbahman 2007a & b).  In a previous study, LOI ranged 

from 3-9%, and approximately 80% of the sediment was < 0.63 µm (Merritt, 2007). 
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Figure 3.5. Frankfort Flats deployment site (•) near the confluence of Marsh Stream and 

the Penobscot River (photo from NAIP, 2009). 

 

The eddy-correlation instrumentation was deployed on August 19, 2009 for 

approximately 1.7 hr during high tide.  Previous test deployments at this site were done 

with the measurement volume positioned as low as 10 cm from the sediment surface, but 

sediment resuspension resulted in the face of the fluorometer becoming covered with a 

film of sediment.  Therefore, the final measurement height used for data collection was 

35 cm.  The instrumentation was placed on the mudflat at low tide, and data collection 

was initiated when the water depth reached 2.66 m above the SWI.  The water depth, 

calculated from pressure sensor readings, ranged from 2.54 m to 2.76 m during 

deployment, with an average of 2.68 m.  Average DOC concentration in the measurement 

volume during the deployment was 3.51 ± 0.17 ppm (mean ± SD).  Average horizontal 

velocity was 2.1 ± 1.0 cm/s (mean ± SD). 
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Due to the lateral extent of tidal inundation at this site, use of an external battery 

on adjacent dry land was not feasible, so power for this deployment was provided by the 

internal battery only.  The initial battery voltage was 13.1 V and decreased steadily 

throughout the deployment until it reached 10 V at approximately 1.7 hr after the 

initiation of data collection.  The voltage then dropped quickly to 8 V, and the ADV 

subsequently entered a power-conservation mode, leading to discontinuous data 

collection.  Therefore, data obtained at a voltage of less than 10 V was discarded. 

 

3.4.2. Squamscott River 

The instrumentation was deployed on September 2, 2009 near the mouth of the 

Squamscott River in Stratham, NH.  The Squamscott River (Fig. 3.6) drains into Great 

Bay, and the tidal portion of the river where this research was conducted is part of the 

Great Bay Estuary.  As part of concurrent research on porewater and sediment mercury 

geochemistry (Brown, 2010), sediment cores were extracted from the mudflat during low 

tide and sectioned, producing the porewater profile data shown in Table 3.1. 
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Figure 3.6. Squamscott River deployment site (•) in Great Bay Estuary (photo from 

NAIP, 2009). 

 

Table 3.1. Porewater profile data obtained from sediment cores collected at Squamscott 

River mudflat (Brown, 2010).  Average porosity from a different core collected in August 

2008 was 0.81. 

 

 

Depth (cm) DOC (ppm) Fe (II) (µm) %LOI

0.5 10.5 201.7 6.3

1.5 13.6 383.8 9.5

2.5 10.0 401.8 9.1

3.5 22.8 413.4 9.6

4.5 13.2 335.1 8.8

5.5 18.4 389.5 8.8

6.5 16.6 303.5 8.5

7.5 19.6 140.5 8.2

8.5 11.2 97.4 7.3

9.5 18.2 98.6 7.6

Average = 8.4

September 2009
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The eddy-correlation instrumentation was deployed on a narrow intertidal 

mudflat, directly adjacent to a large salt marsh inhabited by Spartina spp.  The mudflat 

was characterized by fine-grained cohesive sediments.  The instrument measurement 

volume was situated 25 cm above the SWI.  The instruments were powered by an 

external marine battery.  An internal battery pack was installed as backup but was not 

needed during the deployment.  The water depth above the SWI ranged from 0.96 m to 

1.78 m, with an average depth of 1.44 m.  The average DOC concentration in the 

measurement volume was 5.36 ± 0.63 ppm (mean ± SD).  The site was nearby to a 

popular public boat launch.  Boating occurred in the channel during the deployment and 

created wakes, which may have led to increased velocity measurements.  Average 

horizontal velocity was 6.5 ± 3.9 cm/s (mean ± SD). 

 

3.4.3. Piscataqua River 

The Kittery, ME deployment site was on a mud flat in a sheltered tidal inlet of the 

Piscataqua River near Portsmouth Naval Shipyard.  The inlet (Fig. 3.7) was characterized 

by a small freshwater stream flowing into the river.  Compared to the previous two 

estuarine sites, the surface sediments at the Kittery site were lighter in color and were less 

cohesive.  There was less organic matter in the sediments at this site, as indicated by the 

lower loss on ignition (LOI).  The site also had considerably more benthic macrofauna 

throughout the sediment column.  Sediment cores were extracted during low tide, and 

Table 3.2 shows porewater profile data for some geochemical properties. 
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Figure 3.7. Kittery deployment site (•) on the Piscataqua River (photo from NAIP, 2009). 

 

Table 3.2. Porewater profile data obtained from sediment cores collected at Kittery 

mudflat (Brown, 2010).  A core collected at the same site in August 2008 yielded an 

average porosity of 0.67 and an average LOI of 5.6%. 

 

 

 

Depth (cm) DOC (ppm) Fe (II) (µm)

0.5 3.5 107.6

1.5 2.7 171.6

2.5 2.8 245.0

3.5 4.4 180.5

4.5 6.0 224.9

5.5 18.4 180.1

6.5 10.8 211.1

7.5 18.2 55.9

8.5 20.0 70.5

9.5 27.7 53.8

September 2009
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Instrumentation at the Piscataqua River site was deployed on September 3, 2009 

for 5.8 hrs.  Again, power was provided by an external marine battery.  Water depth 

ranged from 0.98 m to 2.26 m, with an average depth of 1.87 m.  The measuring height 

was 30 cm above the SWI.  The overlying water at this site had a low DOC 

concentration, averaging 1.28 ± 0.19 ppm (mean ± SD) over the entire length of the 

deployment.  Average horizontal velocity was 2.9 ± 1.9 cm/s (mean ± SD). 

 

3.4.4. Burton Bog 

Burton Bog (Fig. 3.8) consists of a series of tiered beaver ponds located on private 

lands in the Lower Penobscot watershed.  The wetland area ultimately drains into a 

tributary of the Penobscot River north of Orson Island.  Advective flow is driven 

primarily by wind at this freshwater site, as there is no tidal-induced current or significant 

gravity flow.  Large algal mats were suspended in the water column.  The sediments at 

this site have not been characterized.  Data were collected during an 8-hr deployment on 

September 9, 2009, and the instruments were powered by an external marine battery.  

The ADV’s pressure sensor was not properly calibrated for this deployment, but the 

water depth was measured as 60 cm above the SWI.  The deployment measuring volume 

was 12 cm above the SWI.  DOC concentrations were higher at this site than at the other 

three project sites and did not fall within the linear range of the CDOM calibration curve.  

A water sample from the site had a DOC concentration of 28.5 ppm, as measured using a 

TOC analyzer.  Due to the long retention time of this multi-pond system, DOC tends to 

accumulate.  As expected, horizontal velocity was slowest at this site, averaging 0.7 ± 0.5 

cm/s (mean ± SD). 
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Figure 3.8. Burton Bog deployment site (•) in the Lower Penobscot watershed (photo 

from NAIP, 2009). 

 

3.5. Data Analysis 

Data analysis was performed using the MATLAB programming environment.  

Text versions of the code developed and used for this project are provided in Appendix 

A.  The ASCII files discussed in section 3.1, which include velocity measurements and 

analog CDOM counts, were imported into MATLAB for data manipulation.  CDOM 

counts provided by the ECO-FL were converted to concentration of DOC in ppm using 

the equation presented in Figure 3.3. 
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The ADV provides continuous pressure measurement, indicating the depth of 

water above the pressure sensor on the instrument.  This pressure reading, given in 

meters, was filtered down to 1 Hz to improve clarity.  Each pressure reading was added to 

the measured height of the sensor above the SWI in order to obtain the total water depth 

at any given time during the deployment.  Plots showing the change in water depth over 

time are shown in Appendix B. 

Sections of data for preliminary analysis were selected by visual inspection.  

Bursts of data at least 10 min in length that were relatively stationary in w and C in 

comparison to the rest of the data were selected, as mean flow must be statistically 

stationary in order to facilitate adequate trend removal (Tennekes & Lumley, 1972). 

 

3.5.1. Velocity vector rotation 

Since the ADV is not mounted perfectly orthogonal to the sediment surface, the 

three-dimensional velocity vectors require transformation to represent true horizontal and 

vertical velocities.  The ADV provides measurements of pitch and roll, which could be 

used to translate the velocity vectors (West & Oduyemi, 1989).  However, translations 

would be dependent on the accuracy of the tilt sensor.  Therefore, another approach was 

used.  By assuming that variance is minimized in the z-direction, the following 

relationships were used to develop angles of rotation and transform each velocity vector: 
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where 1u  and 2u  are velocity vectors (Emery & Thomson, 2004).  This two-dimensional 

rotation is performed three times to correct all three velocity vectors, as detailed in the 

code (Appendix A).  The validity of these transformations was tested by comparing the 

correlation between C and both the corrected and uncorrected values of w. 

 

3.5.2. Averaging window selection 

It is necessary to determine an averaging window size for velocity and 

concentration trend removal such that the turbulent eddies that contribute to flux are 

captured in the flux calculations.  To accomplish this, blocks of data ranging in length 

from 10 min to 60 min were analyzed for correlation between w and C at varying filter 

lengths ranging from 3 s to 10 min.  Digital filtering was performed using the filtfilt 

function in MATLAB.  This function provides a zero-phase filter by filtering in both 

forward and reverse directions.  The corrcoef function was used to calculate the 

correlation coefficient R at varying filter lengths: 

 R(y) = 
2/1)}](var{)}([var{

)}(),(cov{

yCyw

yCyw

 (3.2)

 

where y corresponds to the filter length, and 10 ≤≤ R . 

The technique used here is similar to the method used by Berg et al. (2003) and 

McGinnis et al. (2008) in which flux was calculated directly for varying averaging 

windows.  In this DOC study, however, the correlation is based on the covariance of wC 

rather than w’C’.  In order to analyze w’C’, trends must first be removed from w and C.  

The goal of examining correlation in this study is to directly determine from velocity and 

concentration the window lengths over which to establish these trends. 
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The optimum window sizes for block or running trend removal were determined 

by examining the change in correlation plotted over the change in filter length.  Optimum 

window size was established as the filter length at the first local maxima on the 

correlation plot, indicating a likely shift from small-scale turbulent eddy-induced flux to 

large-scale advective flux.  In cases where local maxima or minima did not exist due to 

continuously increasing correlation with filter length, the optimum window size was 

taken as the filter length at the first inflection point of correlation plot.  Inflection points 

were determined by taking the second derivative of a polynomial fit (R
2
 > 0.999) to the 

correlation plot.  The plot was smoothed prior to fitting to reduce the influence of 

possible abrupt changes not representative of the overall curve.  Smoothing did not 

significantly affect R
2
 values.   

 

3.5.3. Trend removal 

Once an optimum averaging window was determined for a burst of data, two 

different methods were used to establish the trends, w  and C : (1) moving average and (2) 

linear regression.  The moving average technique has been used by Berg et al. (2003) and 

McGinnis et al. (2008).  The moving average was carried out using the filtfilt function in 

MATLAB.  The beginning and end portions of each burst corresponding to one half the 

length of the averaging window were used in calculating the moving average, but were 

not included in flux calculations, as the data used to calculate the trend for these portions 

were outside the initial burst.  The resulting w  and C  values were subtracted from w and 

C to obtain w’ and C’. 
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Block averaging using the statistical mean of w and C has been utilized previously 

to establish trends over a burst of data (e.g., Kuwae et al., 2006).  The statistical mean, 

however, does not provide an adequate trend if there is noticeable long-term change or 

drift in the velocity or concentration over the length of the averaging window.  Such 

conditions were observed in the data collected for this research.  Therefore, a linear 

regression technique, which has been used previously by Brand et al. (2008) and Berg et 

al. (2009), was adopted.  Each burst of data from a particular deployment site was broken 

down into smaller blocks corresponding to the size of that burst’s optimum averaging 

window.  The total number of blocks per burst ranged from 1 to 19.  Least squares linear 

regression was applied to a block of data, producing a “best-fit” line, and the resulting 

trend was removed to obtain w’ and C’. 

 

3.5.4. Flux calculation 

Following trend removal of both w and C, instantaneous flux was calculated by 

multiplying w’ and C’.  As shown by Kuwae et al. (2006), large variations in w’ and C’ 

can be reduced by eliminating values greater than three standard deviations above or 

below the mean for a given block or averaging window.  This method was applied to the 

data in this study, but it was found that despite the removal, large variations in w’C’ over 

a block of time still existed, leading to possible artifact in cumulative flux over the given 

period.  Therefore, rather than remove the variations prior to correlation, variations 

greater than three standard deviations were removed from w’C’.   

The basis of using three standard deviations was also investigated.  According to 

Laws (1997), data falling within a certain number of standard deviations from the mean 
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can be removed as outliers.  Based on a t distribution function, 95% percent of the data 

should fall within a certain standard deviation range, which varies with sample size.  

Following this methodology, a data set of only 50 points would require use of a three 

standard deviation cutoff.  Therefore, the use of three standard deviations provides a 

conservative analysis, since the smallest averaging window used in this study included 

1440 data points. 

Once instantaneous flux was obtained for a burst of data, the cumulative flux over 

the entire burst was calculated using a trapezoidal numerical integration method.  The 

cumulative flux over a given period can be extrapolated to estimate average daily flux. 

 

3.5.5. Spectral analysis 

Spectral analysis was performed on all blocks of flux data to examine the 

behavior of the data in the frequency domain.  This representation shows the distribution 

of eddy sizes that contribute to the total flux.  The MATLAB periodogram function was 

used to obtain power spectral densities for each burst of data.  The resulting spectra were 

cumulated, normalized, and plotted against the log of frequency (Kuwae et al., 2006).  

Spectra were also produced for flux calculated using uncorrected velocity and for flux 

calculated with no removal of bad data in order to examine the potential effects of these 

transformations on the data. 
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Chapter 4 

RESULTS A�D DISCUSSIO� 

 

4.1. Data processing  

 

4.1.1. DOC concentration 

The CDOM to DOC calibration curve presented in Section 3.2 utilizes the 

fluorometer’s dark current value and the first three data points obtained from the 

calibration.  These four points were fit with a linear trend allowing conversion to DOC 

concentrations up to 6 ppm.  Data at higher concentrations deviated from this trend, as 

CDOM counts began to level off with increasing DOC concentration.  This deviation 

from linearity is likely due to attenuation in the 4-cm light path length between the source 

and detector.  Absorption and scattering interactions can be attributed to bulk optical 

properties, including chlorophyll, suspended solids, and dissolved organics.  For instance, 

suspended particulate minerals are known to have an effect on volume reflectance across 

the CDOM emission wavelength (Bukata et al., 1995).  Additional measurements of 

absorption and backscatter would be required to correct for these issues (e.g. Chen et al., 

2004).  All data points obtained in the calibration are shown in a plot in Appendix C. 

 Since CDOM can be affected by site-specific and deployment characteristics, 

such as temperature, salinity, particles, and depth, laboratory DOC calibrations should 

ideally be performed on samples collected in situ during the deployment (e.g. Downing et 

al., 2009).  For the purposes of this study, all CDOM data were converted to DOC using a 

single laboratory calibration obtained using water collected from one of the project sites.  
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This may have led to some bias in DOC concentrations, since laboratory conditions did 

not replicate field conditions, and the sample water was from a freshwater system, which 

has considerably lower salinity than the three estuarine sites. 

 

 4.1.2. Velocity vectors 

The validity of the velocity vector rotations was tested by comparing the 

correlation between C and both the corrected and uncorrected values of w.  Correlation 

was calculated and plotted as a function of filter length, as described for the averaging 

window determination in Section 3.5.2.  The maximum correlation coefficients obtained 

in this comparison are shown in Table 4.1, and plots of correlation coefficient vs. filter 

length are shown in Appendix D. 

 

Table 4.1. Correlation of C with uncorrected and corrected w. 

 

 

 

The corrected velocity vector was more correlated with concentration for all but one of 

the deployment bursts.  The ADV pitch and roll data were examined for the Kittery data 

set to determine if there were any anomalies that led to a less correlated corrected 

velocity for the second burst.  However, the mean and standard deviation of the angle of 

Uncorrected w Corrected w

Frankfort 76900-81700 0.44 0.45

Frankfort 88000-92800 0.11 0.48

Squamscott 103000-107800 0.06 0.47

Kittery 8700-37500 0.28 0.61

Kittery 127000-141400 0.61 0.45

Burton Bog no acceptable range - -

Project Site Time Range (counts)
Maximum Correlation Coefficient
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rotation determined from pitch and roll were similar for both bursts from the Kittery 

deployment.  The correlation coefficient of 0.45 from the second Kittery burst is similar 

to coefficients obtained from other bursts, so the vector rotation was still utilized. 

The pressure readings from the ADV, which were converted into the depth of 

water above the SWI, showed that periods of tidal flow, high tide, and tidal ebb were 

captured during each estuarine deployment. 

 

4.2. Data selection 

DOC concentration and vertical velocity are plotted for the entire collection 

periods at each project site in Appendix B.  Visual inspection yielded a total of five bursts 

from three of the sites for further analysis, as detailed in Table 4.2. 

 

Table 4.2. Bursts of data selected for flux analysis. 

 

 

 

The selected bursts account for only 10% of the total data collected during the 

four deployments.  This low percentage of quality data reflects the overall variability in 

the CDOM concentration as measured with the fluorometer with time in a given 

measurement volume.  High DOC variability over scales shorter than 10 min was 

typically the controlling factor in eliminating data from further analysis.  Frankfort 

Project Site Time Range (counts) Burst Length (min) Tidal Period

Frankfort 76900-81700 10 Ebb

Frankfort 88000-92800 10 Ebb

Squamscott 103000-107800 10 Ebb

Kittery 8700-37500 60 Flow

Kittery 127000-141400 30 Ebb

Burton Bog No acceptable range - -
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yielded only two 10-min bursts for analysis, both occurring within a 33-min period, while 

the Squamscott deployment resulted in only one selected 10-min burst.  The Kittery 

deployment produced the longest periods of steady DOC concentration, which accounted 

for 28% of that deployment. 

The Frankfort and Squamscott deployments took place directly in river channels, 

where the flow was subject to both tidal influence and continuous current flow.  In 

Kittery the instruments were deployed in a sheltered tidal inlet, and the actual input of 

freshwater was small in relation to tidal inundation, so riverine currents were not as 

prevalent as at the other two estuarine sites.  There was also no vegetation in the tidal 

range at the Kittery site, while the banks at the other two estuarine sites were heavily 

populated by Spartina spp., which became inundated at high tide. 

DOC concentration remained steady at 1.53 ppm in the initial part of the Kittery 

deployment during tidal flow.  As the tide peaked and subsequently began to ebb, DOC 

decreased steadily at a rate of 0.15 ppm/hr for about 3 hr until reaching a concentration of 

1.06 ppm, where it remained steady for the rest of the deployment. 

The Burton Bog deployment site was characterized by very low horizontal 

velocities.  Low-velocity deep ocean systems have been studied with success (Berg et al., 

2009), but these systems exhibited stationary O2 concentration, which made establishing 

trends and calculating O2 flux feasible.  At Burton Bog, DOC concentration was highly 

variable, suggesting that DOC was controlled by factors other than release from 

sediment. 
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4.3. Averaging windows 

By examining the correlation between w and C at different filter window lengths, 

the window length that will adequately capture turbulent eddies can be estimated.  Since 

the eddy-correlation technique depends on the correlation between the two parameters, 

the correlation coefficient is an indicator of flux contribution, and the filter window 

length is an indicator of the size of eddies contributing to flux (Tennekes & Lumley, 

1972).   

Figure 4.1 shows two typical plots of correlation coefficient vs. filter length.  In 

Figure 4.1.a, correlation reaches a local maximum and then begins to decrease with 

increasing filter length.  In Figure 4.1.b, a local maximum is never reached, so the first 

inflection point was taken as the optimum filter length.  The only data set that required 

use of the inflection point method was the Kittery tidal flow burst.  We hypothesize that 

the inflection point is indicative of a shift in flux contribution from small-scale turbulent 

eddies to large-scale advective flow.  The increase in correlation coefficient at longer 

filtering lengths beyond the inflection point is likely due to large-scale advection 

contributing to positive correlation.  Similarly, correlation plots that reach a local 

maximum and then begin to decline illustrate a negative correlation contribution by large-

scale advection.  By choosing the filter length at the inflection point or local maximum, 

we attempt to preclude this large-scale influence from the calculation of turbulent eddy 

flux.  We anticipate that in some instances, an inflection point as determined by the 

second derivative may not exist, so an alternative cutoff method would need to be 

established.   
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a. 

 

b. 

 

Figure 4.1. Typical plots of filter length vs. correlation: (a.) Plot for Kittery tidal ebb 

burst showing local maximum (•) at filter length of 337 s; (b.) Plot for Kittery tidal flow 

burst showing inflection point (•) at filter length of 174 s. 
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The resulting optimum averaging window lengths for each of the five bursts are 

reported in Table 4.3.  Lengths ranged from 100 s to 337 s, averaging 198 ± 87 s (mean ± 

SD), indicating high variability between bursts in the size of eddies contributing to flux. 

 

Table 4.3. Optimum averaging window lengths and resulting number of blocks for each 

burst. 

 

 

 

The averaging windows obtained for each burst were utilized to remove trends 

using linear regression and moving averages, as described in Section 3.5.  Plots of 

velocity and concentration, along with their corresponding trends are available in 

Appendix E.   

 

4.4. Flux calculation 

Following trend removal, cumulative flux was calculated for each data set.  

Figures 4.2-4.6 show cumulative fluxes calculated using linear regression and moving 

average techniques for each of the five bursts.   

 

  

Project Site Time Range (counts) Window Length (s) # of Blocks Length of Analysis (min)

Frankfort 76900-81700 100 5 8.3

Frankfort 88000-92800 207 1 3.5

Squamscott 103000-107800 170 2 5.7

Kittery 8700-37500 174 19 55.1

Kittery 127000-141400 337 4 22.5
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a. 

 

b. 

 

Figure 4.2. Plots of cumulative flux for Frankfort burst 1.  Flux is calculated using (a.) 

linear regression and (b.) moving average techniques.  The value reported at the end of 

each plot is the cumulative flux (mg m
-2

) for the duration of the burst. 
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a. 

 

b. 

 

Figure 4.3. Plots of cumulative flux for Frankfort burst 2.  Flux is calculated using (a.) 

linear regression and (b.) moving average techniques.  The value reported at the end of 

each plot is the cumulative flux (mg m
-2

) for the duration of the burst. 
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a. 

 
b. 

 
 

Figure 4.4. Plots of cumulative flux for Squamscott burst.  Flux is calculated using (a.) 

linear regression and (b.) moving average techniques.  The value reported at the end of 

each plot is the cumulative flux (mg m
-2

) for the duration of the burst. 
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a. 

 
 

b. 

 
 

Figure 4.5. Plots of cumulative flux for Kittery flow period burst.  Flux is calculated 

using (a.) linear regression and (b.) moving average techniques.  The value reported at the 

end of each plot is the cumulative flux (mg m
-2

) for the duration of the burst. 
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a. 

 
 

b. 

 
Figure 4.6. Plots of cumulative flux for Kittery ebb period burst.  Flux is calculated using 

(a.) linear regression and (b.) moving average techniques.  The value reported at the end 

of each plot is the cumulative flux (mg m
-2

) for the duration of the burst. 
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The cumulative flux values from each burst were extrapolated to obtain values of 

average daily flux, as reported in Table 4.4. 

 

Table 4.4. Average daily DOC flux estimates determined using eddy correlation. 

 

 

 

With the exception of the second Frankfort burst, the flux values calculated for each site 

using linear regression and moving average techniques are within about 20% agreement 

with one another.  In all cases, trend removal using the moving average technique led to 

lower flux estimates, either underestimating positive flux or overestimating the 

magnitude of negative flux.  Kuwae et al. (2006) noted that block averaging techniques 

can also lead to errors in flux by omitting low-frequency contributions.  The large 

discrepancy between values for the second Frankfort burst illustrates the inability of the 

moving average technique to adequately model trends over short blocks of data. 

The bursts from Frankfort and Squamscott resulted in net negative flux (Table 

4.4).  Negative flux, indicating transport of DOC from the water column into the 

sediment, could be indicative of a DOC sink at the sediment surface.  A potential 

mechanism for exchange of DOC from the water column into the sediment is adsorption 

to sediment iron oxide.  The data from Brown (2010) in Tables 3.1 and 3.2 show that iron 

Linear Regression Moving Average

Frankfort 76900-81700 100 -323.3 -352.7

Frankfort 88000-92800 207 -62.6 -304.7

Squamscott 103000-107800 170 -248.9 -299.7

Kittery 8700-37500 174 60.4 55.1

Kittery 127000-141400 337 174.3 143.6

Burton Bog no acceptable range - - -

Average Daily Flux (mg m
-2

 d
-1

)Window 

Length (s)
Time Range (counts)Project Site
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oxide was present at Kittery and Squamscott at the sediment surface and at depth.  Cores 

collected at Frankfort in 2006 by Merritt (2007) also showed iron oxide at the surface and 

at depth.  The photos in Figure 4.7 show the presence of iron oxide lining the burrows of 

macrofauna throughout the sediment profile. 

 

 

Figure 4.7. Sediment cores collected in Kittery showing rust-colored iron oxide 

throughout the core and in the burrows of macrofauna. 

 

 

It is evident from the plots of w and C in Appendix E that even though the three 

bursts of data from Frankfort and Squamscott were selected by visual inspection, they are 

not as stationary as the data from the two Kittery bursts.  This could lead to artifacts in 

the flux calculations if trends were not adequately calculated.  High variability of the 

measured DOC concentrations from these two sites exists directly before and after the 

selected bursts as well.  

As mentioned previously, the Frankfort and Squamscott deployment sites were 

characterized by a high degree of heterogeneity.  Extensive vegetation in the intertidal 

zone was inundated at high tide, releasing DOC into the water column.  Riverine flow 
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likely carried terrestrial DOC from upstream sources not indicative of sediment release.  

In addition, the Frankfort and Squamscott sites are characterized by significant sediment 

transport.  During preliminary Frankfort test deployments, substantial buildup of 

sediment occurred on the face of the fluorometer.  Beryllium-7 isotope data showed a 

high degree of sediment mixing at the Squamscott site (Brown, 2010). 

During the Kittery flow burst, there are distinct periods of both positive and 

negative flux within the hour-long burst, as evident from Figure 4.5.  To further analyze 

these trends, cumulative flux was plotted against time (in days) and was separated into 

five periods of either increasing or decreasing flux, ranging from about 4 min to 17 min.  

Using least squares linear regression, trend lines were fit to each of these periods (Fig. 

4.8).  The slope of each line is representative of flux (in mg m
-2

 d
-1

). 

 

 

Figure 4.8. Cumulative flux for Kittery flow period burst calculated using linear 

regression.  Trend lines are fit to periods of increasing and decreasing flux. 
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positive flux account for 75% of the entire burst, leading to a net positive flux over the 

length of the deployment burst.  A possible explanation for the changes between positive 

and negative flux is that the instrumentation is actually measuring the contribution to flux 

of different areas of sediment.  A previous study determined equations for estimating the 

upstream elliptical sediment surface area contributing to O2 flux based on sediment 

roughness, water depth, and the height of the instrument measurement volume (Berg et 

al., 2007).  It has been shown that both horizontal and vertical velocity change over time 

and space in estuarine systems during tidal cycles (e.g. Sylaios and Boxall, 1998).  

Changes in upstream conditions and flow direction would lead to changes in the 

contributing surface area over time.  In addition, Berg et al. (2007) showed that water 

depth has a significant influence on the size of the contributing footprint, especially at 

relatively shallow depths such as those present during the Kittery deployment.  Therefore, 

the continuous change in water depth due to tides would lead to a varying area of flux 

contribution.  The changes from positive to negative flux seen during the Kittery tidal 

flow period could be attributed to the contributing sediment surface area changing from 

net sources of DOC to net sinks. 

 There is some degree of high-frequency instrument noise recorded by both the 

ADV and fluorometer, which could lead to error in flux estimates.  According to Berg et 

al. (2009), high-frequency noise can be quantified as “the difference between two 

adjacent 8 Hz data points.”  Berg et al. (2009) reported that high-frequency noise was 

greater than the fluctuations of velocity and O2 concentration, but this did not negatively 

affect flux estimates because “the noise was randomly distributed around the means.”  To 

test the distribution of noise in DOC flux measurements, w and C noise were plotted in 
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histograms for each deployment burst and were fit with a Gaussian distribution (Fig. 4.9).  

Plots for each deployment burst are shown in Appendix F.  Linear regression was used to 

compare the Gaussian fit with the original histogram.  In addition, the percent difference 

between noise above the mean and noise below the mean was calculated to determine if 

noise skewed results in either a positive or negative direction.  Results show that high-

frequency noise has little effect (< 1%) on DOC flux calculations, provided that the noise 

is uncorrelated. 

 

a.                                                                      b. 

  
 

Figure 4.9. Typical distribution of high-frequency noise and Gaussian fit for (a.) vertical 

velocity and (b.) concentration. 

 

Kuwae et al. (2006) found that detrending can drastically change total O2 flux 

estimates.  Results of that study showed that in one case, detrending led to a 94% 

decrease in flux vs. removal of the statistical mean only.  In another case, net flux 

changed from negative to positive with trend removal.  The severity of these 

discrepancies suggests that not only is trend removal itself important, but the accuracy in 

establishing the trend for removal is just as crucial.  Sharp changes in DOC concentration 

that occur in the middle of a selected block may be caused by a change in mean 

w noise (m/s)

-0.015 -0.010 -0.005 0.000 0.005 0.010 0.015

D
is
tr
ib
u
ti
o
n

0

1000

2000

3000

4000

w noise

Gaussian fit

C noise (ppm)

-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15

D
is
tr
ib
u
ti
o
n

0

500

1000

1500

2000

2500

3000
C noise

Gaussian fit



59 

  

concentration, rather than turbulent fluctuations, and therefore will not adequately be 

removed by linear regression or a moving average.  This could lead to significant artifact 

in flux estimates.  As noted previously, mean velocity and concentration must be 

stationary in order for trends to be adequately removed (Tennekes & Lumley, 1972). 

DOC flux estimates captured using eddy-correlation are an order of magnitude 

higher than flux values calculated from porewater gradients (Brown, 2010).  As 

mentioned previously, porewater gradients are thought to underestimate the total flux, as 

they capture only diffusive flux.  The results illustrate the ability of eddy-correlation to 

capture contributions to total flux, such as bioturbation, bioirrigation, and porewater 

advection.  Due to the cohesive nature of the sediments at the three estuarine study sites, 

porewater advection was likely not a contributing factor to DOC release from between 

sediment grains.  However, advection-induced pressure changes may have led to DOC 

release from burrows at the sediment surface.  In addition, bioturbation and bioirrigation 

are likely large contributors to DOC release, as evidence of macrofauna was found 

throughout the sediment column. 

 

4.5. Spectral analysis 

 Some studies have used spectral analysis to examine aquatic flux measurements 

in the frequency domain (e.g. Brand et al., 2008; Kuwae et al., 2008).  For the purpose of 

this study, spectral analysis was performed on the data, and flux calculations were 

reassessed based on the resulting spectra.  Other studies generally show that frequencies 

higher than 1 Hz do not contribute significantly to flux.  However, spectral analysis of 
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DOC flux obtained in this study typically showed significant flux contribution above 1 

Hz.  Figure 4.10 shows a typical cumulative cospectrum for DOC flux. 

 

 

Figure 4.10. Typical normalized cumulative cospectrum (cumulated from the high-

frequency end) of w’ and C’ for a 174-s block of data from the Kittery tidal flow period 

in which mean values were removed via linear trending. 

 

The significant contribution above ~ Hz is indicative of high-frequency noise.  Further 

investigation of the frequency series of the individual components contributing to flux 

(w’ and C’) showed that the high frequency contribution was from C’, while the majority 

of frequency contribution from w’ was less than 1 Hz (Fig. 4.11).  
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a. 

 
b. 

 
 

Figure 4.11. Typical spectra for (a.) C’ and (b.) w’. 
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The high signal power in the high-frequency range of C’ indicates a 

contamination of the spectrum, likely due to particles in the fluorometer’s light path.  

Additionally, some contribution to signal power of both C’ and w’ at frequencies above ~ 

1 Hz could be indicative of high-frequency instrument noise, which was determined to be 

randomly distributed.  If the noise is also uncorrelated, it would not contaminate flux 

estimates.   

Kuwae et al. (2006) observed that most w’ contribution resided in a frequency 

band from 0.3-1.4 Hz, and w’C’ frequency had peaks in same band, while C’ had more 

even contribution throughout the spectrum, including frequencies above 1 Hz (Fig. 2.2).  

In DOC flux analysis, w’C’ frequency is more similar to C’. 

Another approach to examine the frequency domain of flux contribution is to 

perform spectral analysis on w and cospectral analysis on w and C, as per Brand et al. 

(2008) (Fig. 4.12).  These plots can then be modified to better illustrate the characteristics 

of turbulent transport.  The spectrum of w was filtered and plotted on a log-log scale to 

determine the frequency range corresponding with the inertial subrange (Fig. 4.13.a), and 

the cospectrum of w and C was cumulated from the high-frequency end (Fig. 4.13.b).  

The inertial subrange includes frequencies that represent eddies of intermediate length 

scales – smaller than energy-containing eddies and larger than viscous eddies (Glickman, 

2000).  Viscous stress is expected to be small in comparison with Reynolds stress at high 

Reynolds numbers (Tennekes & Lumley, 1972). 
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a. 

 
b. 

 
 

Figure 4.12. (a.) Power spectral density of w, shown with slope of inertial subrange; and 

(b.) power cospectral density of w and C.  
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a. 

 
b. 

 
 

Figure 4.13. (a.) Smoothed power spectral density of w, shown with slope of inertial 

subrange; and (b.) normalized cumulative cospectrum of w and C, cumulated from the 

high-frequency end. 
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The significant difference between cumulative cospectra for w’C’ (Fig. 4.10) and 

wC (Fig. 4.13.b) could illustrate a failure of linear regression to adequately remove trends 

from DOC concentration data, since spectra for w’ and w were similar to each other.  The 

inertial subrange of the velocity spectrum corresponds with the frequency range of ~ 0.2 

to 1.7 Hz.  The cospectrum of w and C shows the majority of contribution in a similar 

frequency range.  The peaks in the velocity spectrum occurring around 0.6 Hz and 1.1 Hz 

may be due to wave contamination (Gerbi et al., 2008).  Removing the points associated 

with these jumps greatly increased the correlation between the spectrum and the -5/3 

slope.  This wave contamination may have led to artifact in flux calculation. 

To remove the effects of particle-induced high-frequency noise, raw data was 

low-pass filtered, and flux values were recalculated using linear regression.  Since the 

cutoff of the inertial subrange for w’ and the beginning of high-frequency C’ noise both 

occurred at ~ 1.7 Hz, flux was calculated for data low-pass filtered to both 1 Hz and 2 

Hz.  Results are compared with flux obtained from unfiltered data (Table 4.5). 

 

Table 4.5. Values of average daily flux calculated from data at original sampling 

frequency and lower frequencies. 

 

 
 

 

8 Hz 2 Hz 1 Hz

Frankfort 76900-81700 100 -323.3 -252.3 -235.0

Frankfort 88000-92800 207 -62.6 -37.6 -66.8

Squamscott 103000-107800 170 -248.9 22.9 94.0

Kittery 8700-37500 174 60.4 -73.7 12.0

Kittery 127000-141400 337 174.3 33.3 118.6

Burton Bog no acceptable range - - - -

Window Length (s)Time Range (counts)Project Site

Average Daily Flux (mg m
-2

 d
-1

)                 

Calculated Using Linear Regression
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The flux calculated at 2 Hz is expected to include the influence of noise from ~ 

1.7 Hz to 2 Hz, which may be highly correlated judging from the considerable differences 

between flux values at each sampling rate.  The flux calculated at 1 Hz is likely omitting 

some true flux contribution in the 1 Hz to ~ 1.7 Hz range.  Plots of cumulative flux 

calculated using 1 Hz data are shown in Figures 4.14-4.18. 

Spectral analysis was also used to look for differences between corrected and 

uncorrected velocity.  Both corrected and uncorrected vertical velocity produced spectra 

with a similar range of frequencies in the inertial subrange.  In addition, the potential 

effects of the removal of outliers were tested for by computing cumulative cospectra for 

w’C’ with no outliers removed.  The removal of outliers appeared to have little effect on 

the cumulative cospectra.  
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Figure 4.14. Plot of cumulative flux for Frankfort burst 1 at 1 Hz calculated using linear 

regression.  The value reported at the end of the plot is the cumulative flux (mg m
-2

) for 

the duration of the burst. 

 

 
 

Figure 4.15. Plot of cumulative flux for Frankfort burst 2 at 1 Hz calculated using linear 

regression.  The value reported at the end of the plot is the cumulative flux (mg m
-2

) for 

the duration of the burst. 
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Figure 4.16. Plot of cumulative flux for Squamscott burst (low-pass filtered to 1 Hz) 

using linear regression.  The value reported at the end of the plot is the cumulative flux 

(mg m
-2

) for the duration of the burst. 

 

 

 
 

Figure 4.17. Plot of cumulative flux for Kittery flow period burst at 1 Hz calculated using 

linear regression.  The value reported at the end of the plot is the cumulative flux (mg m
-

2
) for the duration of the burst. 
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Figure 4.18. Plot of cumulative flux for Kittery ebb period burst at 1 Hz calculated using 

linear regression.  The value reported at the end of the plot is the cumulative flux (mg m
-

2
) for the duration of the burst. 
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Chapter 5 

SUMMARY A�D CO�CLUSIO�S 

 

In this study, the eddy correlation technique was utilized to quantify vertical 

benthic DOC flux in estuarine environments.  DOC is a concern in these systems due to 

its ability to mobilize contaminants and create disinfection byproducts during water 

treatment.  Methods were developed based on physical transport theories and previous 

aquatic eddy correlation studies.  Eddy correlation offers benefits over other DOC flux 

measurement techniques by providing a non-invasive, in situ technique for measuring 

continuous vertical benthic flux.  The results of this study demonstrate the potential of the 

eddy correlation technique for measurement of DOC flux from estuarine sediments. 

Results indicate that benthic DOC flux may vary considerably over short time 

scales.  Eddy correlation provides a method for monitoring short-term dynamics of flux, 

as well as variations on diurnal and seasonal scales.  The magnitudes of DOC flux 

calculated using the eddy correlation technique were an order of magnitude larger than 

those calculated from porewater gradients obtained from sediment core centrifugation.  

These values are reasonable, since porewater gradients, which only capture diffusive flux, 

are expected to underestimate total benthic flux. 

In heterogeneous environments such as the systems studied here, it is important, 

yet challenging, to decouple turbulent eddy flux from large-scale advective flux, as large-

scale advective flow carries DOC and freshwater into the instrument measurement 

volume.  Therefore, the instrumentation captures DOC inputs not only from sediment 

release, but also from upstream sources, which contaminate the eddy flux measurements.  
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This is especially the case in tidal systems, where inundation of estuarine vegetation can 

lead to increased production, which might not be indicative of sediment DOC release.  

The Kittery deployment site was characterized by less heterogeneity than the other 

estuarine sites, and DOC concentrations were relatively stationary over significant 

periods of time, making eddy correlation more feasible.  Flux estimates may also have 

been contaminated by suspended particles contributing to noise in CDOM fluorometer 

measurements. 

Since this is the first study to use eddy correlation for benthic DOC flux 

estimation, further development is necessary to improve methods and verify flux 

measurements.  Recommendations for future work are as follows: 

 

1. A large-scale laboratory chamber should be built for use in validating flux.  This 

chamber should include a sediment layer and overlying water in which turbulent 

fluctuations can be induced.  The eddy correlation instruments can be deployed in 

the chamber, and DOC concentration in the overlying water can be measured over 

time to obtain flux estimates for comparison. 

 

2. An alternative method should be developed for selecting usable bursts of data, 

utilizing statistical methods to determine the stationarity of w and C, rather than 

visual inspection. 

 

3. Since mean flows are not always steady in the environments studied here, there is 

high likelihood of wave contamination.  Therefore, separation of wave 
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contribution along with turbulent fluctuations from mean flows should be 

investigated.  This may be made possible by calculating flux directly from the 

spectra or via modeling techniques (Gerbi et al., 2008). 

 

4. The effects of particle attenuation on CDOM fluorometer readings should be 

investigated further to determine the influence on eddy flux estimates.  In 

addition, measurement techniques could be modified to reduce the influence of 

particles on CDOM readings.  Other studies have used flow-through meters with 

in situ filters to measure optical properties in aquatic systems (e.g. Downing et al., 

2009). 
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Appendix A: MATLAB code 

 

 

%flux_calc 
%Emmnuel Boss, U. of Maine, Dec. 2004 
%Modified version, M.P. Swett, April 2010 
  
%read in data 
clear all 
close all 
A=load('kitt_0903.txt'); 
  
%lowpass filter to 1 Hz 
for i=1:18 
    AA(:,i)=filtfilt(ones(1,8)/8,1,A(:,i)); 
end 
clear 'A' 
A=AA; 
  
%transform 'counts' column into continuous set 
B=size(A(:,2)); 
B=B(1); 
B=1:B; 
A(:,2)=B; 
  
A(:,19)=(A(:,6)+A(:,7)+A(:,8))/3; 
A(:,20)=10.^(0.043.*A(:,19)); 
A(:,20)=A(:,20)-10.^(0.043*min(A(:,19))); 
  
S=3; 
  
%identify count starting point 
C=9396; 
%identify count end point 
D=C+1392; 
  
START=C; 
BLOCK=D-C; 
  
%read in data 
mean_p=A(C:D,15)'; 
mean_amp=((A(C:D,6)+A(C:D,7)+A(C:D,8))/3)'; 
mean_CDOM=A(C:D,16)'; 
mean_CDOM=(mean_CDOM-133.6)/267.03; 
mean_u=A(C:D,3)'; 
mean_v=A(C:D,4)'; 
mean_w=A(C:D,5)'; 
mean_amp_lin=10.^(0.043.*mean_amp)-10.^(0.043.*min(mean_amp)); 
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%linear regression using least squares 
R1(:,1)=C:D; %counts 
R1(:,2)=mean_CDOM; %CDOM 
FitCoeff=polyfit(R1(:,1),R1(:,2),1); % c1, c2 
R1(:,3)=R1(:,1)*FitCoeff(1,1)+FitCoeff(1,2); % c bar 
R1(:,4)=R1(:,2)-R1(:,3); % c' 
  
%removes mean to get C', p', and amp' 
p_p=(A(C:D,15)-mean(A(C:D,15)))'; 
amp_p=((A(C:D,6)+A(C:D,7)+A(C:D,8))/3-
mean(A(C:D,6)+A(C:D,7)+A(C:D,8)))'; 
CDOM_p=R1(:,4)'; 
  
%finds the angle that maximizes the variance in one direction in the 
%horizontal 
phi=0.5*atan(sum(2*mean_u.*mean_v)/(sum(mean_u.^2)-sum(mean_v.^2))); 
mean_u_new=mean_u*cos(phi)+mean_v*sin(phi); 
mean_v_new=-mean_u*sin(phi)+mean_v*cos(phi); 
  
u_new=A(C:D,3)*cos(phi)+A(C:D,4)*sin(phi); 
v_new=A(C:D,4)*cos(phi)-A(C:D,3)*sin(phi); 
  
%finds the angle that minimizes the variance in the vertical 
theta=0.5*atan(sum(2*mean_v_new.*mean_w)/sum(mean_v_new.^2-mean_w.^2)); 
mean_w_new=-mean_v_new*sin(theta)+mean_w*cos(theta); 
mean_v_new_b=mean_v_new*cos(theta)+mean_w*sin(theta); 
  
w_new=-v_new*sin(theta)+A(C:D,5)*cos(theta); 
v_new_b=v_new*cos(theta)+A(C:D,5)*sin(theta); 
  
%finds the angle that minimizes the variance in the vertical 
theta2=0.5*atan(sum(2*mean_u_new.*mean_w_new)/sum(mean_u_new.^2-
mean_w_new.^2)); 
mean_w_new_b=-mean_u_new*sin(theta2)+mean_w_new*cos(theta); 
mean_u_new_b=mean_u_new*cos(theta2)+mean_w_new*sin(theta); 
  
w_new_b=-u_new*sin(theta2)+w_new*cos(theta2); 
u_new_b=u_new*cos(theta2)+w_new*sin(theta2); 
  
%rows to columns 
u_new=(u_new)'; 
v_new=(v_new)'; 
w_new=(w_new)'; 
v_new_b=(v_new_b)'; 
u_new_b=(u_new_b)'; 
w_new_b=(w_new_b)'; 
  
%velociy linear regression using least squares 
R1(:,5)=w_new_b; 
FitCoeff2=polyfit(R1(:,1),R1(:,5),1); % c1, c2 
R1(:,6)=R1(:,1)*FitCoeff2(1,1)+FitCoeff2(1,2); % w bar 
R1(:,7)=R1(:,5)-R1(:,6); %w' 
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%flux calculations 
u_p=u_new_b-mean(u_new_b); 
v_p=v_new_b-mean(v_new_b); 
w_p=R1(:,7)'; 
  
uu=(u_p.*u_p); 
vv=(v_p.*v_p); 
ww=(w_p.*w_p); 
uv=(u_p.*v_p); 
wv=(w_p.*v_p); 
wu=(w_p.*u_p); 
uCDOM=(u_p.*CDOM_p); 
vCDOM=(v_p.*CDOM_p); 
wCDOM=(w_p.*CDOM_p); 
uamp=(u_p.*amp_p); 
vamp=(v_p.*amp_p); 
wamp=(w_p.*amp_p); 
  
%remove bad w'C' data 
WCSP=mean(wCDOM)+std(wCDOM)*S; 
WCSM=mean(wCDOM)-std(wCDOM)*S; 
WCSUBP=0; 
WCSUBM=0; 
  
for n=1:BLOCK 
if wCDOM(1,n)>WCSP 
    wCDOM(1,n)=WCSUBP; 
elseif wCDOM(1,n)<WCSM 
    wCDOM(1,n)=WCSUBM; 
end 
end 
  
%final data matrix 
R(:,1)=C:D; %counts 
R(:,2)=(R(:,1)-R(1,1))/(8*3600*24); %time (days) 
R(:,3)=R(:,2)*1440; %time (min) 
R(:,4)=w_new_b; %corrected vert. vel. (w) 
R(:,5)=R1(:,6); %vert. vel. trend (w bar) 
R(:,6)=w_p'; %w' 
R(:,7)=mean_CDOM; %C 
R(:,8)=R1(:,3); %C bar 
R(:,9)=CDOM_p'; %C' 
R(:,10)=wCDOM*86400000; %w'c' flux 
R(:,11)=cumtrapz(R(:,2),R(:,10)); %cumulative flux (mg m-2) 
  
%spectral analysis using periodogram 
%w'C' cospectrum + cumulative 
P(:,1)=(1:(512/2+1))*4/(512/2+1); %frequency 
%P(:,2)=periodogram((R(:,6).*R(:,9)),[],'onesided',512,8); %Power/Freq 
P(:,2)=periodogram((R(:,10)/86400000),[],'onesided',512,8); %Power/Freq 
P(:,2)=flipud(P(:,2)); 
P(:,3)=cumtrapz(P(:,2)); 
P(:,2)=flipud(P(:,2)); 
P(:,3)=flipud(P(:,3)); 
P(:,3)=P(:,3)./P(1,3); %Normalized cum. cospectrum 
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%wC cospectrum 
P(:,4)=periodogram((R(:,4).*R(:,7)),[],'onesided',512,8); %Power/Freq 
P(:,4)=flipud(P(:,4)); 
P(:,5)=cumtrapz(P(:,4)); 
P(:,4)=flipud(P(:,4)); 
P(:,5)=flipud(P(:,5)); 
P(:,5)=P(:,5)./P(1,5); %Normalized cum. cospectrum 
  
%w spectrum 
P(:,6)=periodogram(R(:,4),[],'onesided',512,8); %Power/Freq 
P(:,6)=flipud(P(:,6)); 
P(:,7)=cumtrapz(P(:,6)); 
P(:,6)=flipud(P(:,6)); 
P(:,7)=flipud(P(:,7)); 
P(:,7)=P(:,7)./P(1,7); %Normalized cum. cospectrum 
  
%C spectrum 
P(:,8)=periodogram(R(:,7),[],'onesided',512,8); %Power/Freq 
P(:,8)=flipud(P(:,8)); 
P(:,9)=cumtrapz(P(:,8)); 
P(:,8)=flipud(P(:,8)); 
P(:,9)=flipud(P(:,9)); 
P(:,9)=P(:,9)./P(1,9); %Normalized cum. cospectrum 
  
%w' spectrum 
P(:,10)=periodogram(R(:,6),[],'onesided',512,8); %Power/Freq 
P(:,10)=flipud(P(:,10)); 
P(:,11)=cumtrapz(P(:,10)); 
P(:,10)=flipud(P(:,10)); 
P(:,11)=flipud(P(:,11)); 
P(:,11)=P(:,11)./P(1,11); %Normalized cum. cospectrum 
  
%C' spectrum 
P(:,12)=periodogram(R(:,9),[],'onesided',512,8); %Power/Freq 
P(:,12)=flipud(P(:,12)); 
P(:,13)=cumtrapz(P(:,12)); 
P(:,12)=flipud(P(:,12)); 
P(:,13)=flipud(P(:,13)); 
P(:,13)=P(:,13)./P(1,13); %Normalized cum. cospectrum 
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Appendix B: Water depth, DOC concentration, and velocity data 

 

 

 
Figure B.1. Water depth over time for entire Frankfort deployment (filtered to 1 Hz for 

clarity). 

 

 

 
Figure B.2. DOC concentration over time for entire Frankfort deployment (filtered to 1 

Hz for clarity). 
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Figure B.3. Vertical velocity over time for entire Frankfort deployment (filtered to 1 Hz 

for clarity). 

 

 

 
Figure B.4. Absolute horizontal velocity over time for entire Frankfort deployment 

(filtered to 1 Hz for clarity). 
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Figure B.5. Water depth over time for entire Squamscott deployment (filtered to 1 Hz for 

clarity). 

 

 

 
Figure B.6. DOC concentration over time for entire Squamscott deployment (filtered to 1 

Hz for clarity). 
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Figure B.7. Vertical velocity over time for entire Squamscott deployment (filtered to 1 

Hz for clarity). 

 

 

 
Figure B.8. Absolute horizontal velocity over time for entire Squamscott deployment 

(filtered to 1 Hz for clarity). 
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Figure B.9. Water depth over time for entire Kittery deployment (filtered to 1 Hz for 

clarity). 

 

 

 
Figure B.10. DOC concentration over time for entire Kittery deployment (filtered to 1 Hz 

for clarity). 
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Figure B.11. Vertical velocity over time for entire Kittery deployment (filtered to 1 Hz 

for clarity). 

 

 

 
Figure B.12. Absolute horizontal velocity over time for entire Kittery deployment 

(filtered to 1 Hz for clarity). 
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Figure B.13. DOC concentration over time for entire Burton Bog deployment (filtered to 

1 Hz for clarity). 
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Figure B.14. Vertical velocity over time for entire Burton Bog deployment (filtered to 1 

Hz for clarity). 

 

 

 
Figure B.15. Absolute horizontal velocity over time for entire Burton Bog deployment 

(filtered to 1 Hz for clarity). 
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Appendix C: CDOM calibration points 

 

 

 

Figure C.1. All points obtained in laboratory DOC calibration of ECO-FL. 
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Appendix D: Correlation coefficient vs. filter length 

 

 

 
 

Figure D.1. Correlation coefficient vs. filter length for Frankfort burst 1, shown with 

optimum averaging window (•). 

 
Figure D.2. Correlation coefficient vs. filter length for Frankfort burst 2, shown with 

optimum averaging window (•). 
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Figure D.3. Correlation coefficient vs. filter length for Squamscott burst, shown with 

optimum averaging window (•). 

 

 

Figure D.4. Correlation coefficient vs. filter length for Kittery tidal ebb burst, shown with 

optimum averaging window (•). 
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Figure D.5. Correlation coefficient vs. filter length for Kittery tidal flow burst, shown 

with optimum averaging window (•). 

 

 
 

Figure D.6. Second derivative of Fig. D.4 showing initial inflection point (•). 
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Appendix E: Velocity and concentration with trends 

 

 

 

 
Figure E.1. Vertical velocity and corresponding linear trend for Frankfort burst 1, block 

77300-78100 (filtered to 1 Hz for clarity). 

 

 
Figure E.2. DOC concentration and corresponding linear trend for Frankfort burst 1, 

block 77300-78100 (filtered to 1 Hz for clarity).  
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Figure E.3. Vertical velocity and corresponding linear trend for Frankfort burst 1, block 

78100-78900 (filtered to 1 Hz for clarity). 

 

 
Figure E.4. DOC concentration and corresponding linear trend for Frankfort burst 1, 

block 78100-78900 (filtered to 1 Hz for clarity). 
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Figure E.5. Vertical velocity and corresponding linear trend for Frankfort burst 1, block 

78900-79700 (filtered to 1 Hz for clarity). 

 

 
Figure E.6. DOC concentration and corresponding linear trend for Frankfort burst 1, 

block 78900-79700 (filtered to 1 Hz for clarity). 
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Figure E.7. Vertical velocity and corresponding linear trend for Frankfort burst 1, block 

79700-80500 (filtered to 1 Hz for clarity). 

 

 
Figure E.8. DOC concentration and corresponding linear trend for Frankfort burst 1, 

block 79700-80500 (filtered to 1 Hz for clarity). 
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Figure E.9. Vertical velocity and corresponding linear trend for Frankfort burst 1, block 

80500-81300 (filtered to 1 Hz for clarity). 

 

 
Figure E.10. DOC concentration and corresponding linear trend for Frankfort burst 1, 

block 80500-81300 (filtered to 1 Hz for clarity). 
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Figure E.11. Vertical velocity and corresponding moving average trend for Frankfort 

burst 1. 

 

 
Figure E.12. DOC concentration and corresponding moving average trend for Frankfort 

burst 1. 
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Figure E.13. Vertical velocity and corresponding linear trend for Frankfort burst 2, block 

88828-90484 (filtered to 1 Hz for clarity). 

 

 
Figure E.14. DOC concentration and corresponding linear trend for Frankfort burst 2, 

block 88828-90484 (filtered to 1 Hz for clarity). 
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Figure E.15. Vertical velocity and corresponding moving average trend for Frankfort 

burst 2. 

 

 
Figure E.16. DOC concentration and corresponding moving average trend for Frankfort 

burst 2. 
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Figure E.17. Vertical velocity and corresponding linear trend for Squamscott burst, block 

103680-105040 (filtered to 1 Hz for clarity). 

 

 
Figure E.18. DOC concentration and corresponding linear trend for Squamscott burst, 

block 103680-105040 (filtered to 1 Hz for clarity). 
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Figure E.19. Vertical velocity and corresponding linear trend for Squamscott burst, block 

105040-106400 (filtered to 1 Hz for clarity). 

 

 
Figure E.20. DOC concentration and corresponding linear trend for Squamscott burst, 

block 105040-106400 (filtered to 1 Hz for clarity). 

  

Time (min)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

w
 (
m
 s

-1
)

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

w

w
bar

Time (min)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

C
 (
p
p
m
)

4.70

4.72

4.74

4.76

4.78

4.80

4.82

4.84

C

C
bar



105 

  

 
Figure E.21. Vertical velocity and corresponding moving average trend for Squamscott 

burst. 

 

 
Figure E.22. DOC concentration and corresponding moving average trend for Squamscott 

burst. 
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Figure E.23. Vertical velocity and corresponding linear trend for Kittery tidal flow burst, 

block 9396-10788 (filtered to 1 Hz for clarity). 

 

 
Figure E.24. DOC concentration and corresponding linear trend for Kittery tidal flow 

burst, block 9396-10788 (filtered to 1 Hz for clarity). 
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Figure E.25. Vertical velocity and corresponding linear trend for Kittery tidal flow burst, 

block 10788-12180 (filtered to 1 Hz for clarity). 

 

 
Figure E.26. DOC concentration and corresponding linear trend for Kittery tidal flow 

burst, block 10788-12180 (filtered to 1 Hz for clarity). 
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Figure E.27. Vertical velocity and corresponding linear trend for Kittery tidal flow burst, 

block 12180-13572 (filtered to 1 Hz for clarity). 

 

 
Figure E.28. DOC concentration and corresponding linear trend for Kittery tidal flow 

burst, block 12180-13572 (filtered to 1 Hz for clarity). 
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Figure E.29. Vertical velocity and corresponding linear trend for Kittery tidal flow burst, 

block 13572-14964 (filtered to 1 Hz for clarity). 

 

 
Figure E.30. DOC concentration and corresponding linear trend for Kittery tidal flow 

burst, block 13572-14964 (filtered to 1 Hz for clarity). 
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Figure E.31. Vertical velocity and corresponding linear trend for Kittery tidal flow burst, 

block 14964-16356 (filtered to 1 Hz for clarity). 

 

 
Figure E.32. DOC concentration and corresponding linear trend for Kittery tidal flow 

burst, block 14964-16356 (filtered to 1 Hz for clarity). 
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Figure E.33. Vertical velocity and corresponding linear trend for Kittery tidal flow burst, 

block 16356-17748 (filtered to 1 Hz for clarity). 

 

 
Figure E.34. DOC concentration and corresponding linear trend for Kittery tidal flow 

burst, block 16356-17748 (filtered to 1 Hz for clarity). 
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Figure E.35. Vertical velocity and corresponding linear trend for Kittery tidal flow burst, 

block 17748-19140 (filtered to 1 Hz for clarity). 

 

 
Figure E.36. DOC concentration and corresponding linear trend for Kittery tidal flow 

burst, block 17748-19140 (filtered to 1 Hz for clarity). 
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Figure E.37. Vertical velocity and corresponding linear trend for Kittery tidal flow burst, 

block 19140-20532 (filtered to 1 Hz for clarity). 

 

 
Figure E.38. DOC concentration and corresponding linear trend for Kittery tidal flow 

burst, block 19140-20532 (filtered to 1 Hz for clarity). 
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Figure E.39. Vertical velocity and corresponding linear trend for Kittery tidal flow burst, 

block 20532-21924 (filtered to 1 Hz for clarity). 

 

 
Figure E.40. DOC concentration and corresponding linear trend for Kittery tidal flow 

burst, block 20532-21924 (filtered to 1 Hz for clarity). 
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Figure E.41. Vertical velocity and corresponding linear trend for Kittery tidal flow burst, 

block 21924-23316 (filtered to 1 Hz for clarity). 

 

 
Figure E.42. DOC concentration and corresponding linear trend for Kittery tidal flow 

burst, block 21924-23316 (filtered to 1 Hz for clarity). 
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Figure E.43. Vertical velocity and corresponding linear trend for Kittery tidal flow burst, 

block 23316-24708 (filtered to 1 Hz for clarity). 

 

 
Figure E.44. DOC concentration and corresponding linear trend for Kittery tidal flow 

burst, block 23316-24708 (filtered to 1 Hz for clarity). 
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Figure E.45. Vertical velocity and corresponding linear trend for Kittery tidal flow burst, 

block 24708-26100 (filtered to 1 Hz for clarity). 

 

 
Figure E.46. DOC concentration and corresponding linear trend for Kittery tidal flow 

burst, block 24708-26100 (filtered to 1 Hz for clarity). 
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Figure E.47. Vertical velocity and corresponding linear trend for Kittery tidal flow burst, 

block 26100-27492 (filtered to 1 Hz for clarity). 

 

 
Figure E.48. DOC concentration and corresponding linear trend for Kittery tidal flow 

burst, block 26100-27492 (filtered to 1 Hz for clarity). 
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Figure E.49. Vertical velocity and corresponding linear trend for Kittery tidal flow burst, 

block 27492-28884 (filtered to 1 Hz for clarity). 

 

 
Figure E.50. DOC concentration and corresponding linear trend for Kittery tidal flow 

burst, block 27492-28884 (filtered to 1 Hz for clarity). 
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Figure E.51. Vertical velocity and corresponding linear trend for Kittery tidal flow burst, 

block 28884-30276 (filtered to 1 Hz for clarity). 

 

 
Figure E.52. DOC concentration and corresponding linear trend for Kittery tidal flow 

burst, block 28884-30276 (filtered to 1 Hz for clarity). 
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Figure E.53. Vertical velocity and corresponding linear trend for Kittery tidal flow burst, 

block 30276-31668 (filtered to 1 Hz for clarity). 

 

 
Figure E.54. DOC concentration and corresponding linear trend for Kittery tidal flow 

burst, block 30276-31668 (filtered to 1 Hz for clarity). 
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Figure E.55. Vertical velocity and corresponding linear trend for Kittery tidal flow burst, 

block 31688-33060 (filtered to 1 Hz for clarity). 

 

 
Figure E.56. DOC concentration and corresponding linear trend for Kittery tidal flow 

burst, block 31688-33060 (filtered to 1 Hz for clarity). 
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Figure E.57. Vertical velocity and corresponding linear trend for Kittery tidal flow burst, 

block 33060-34452 (filtered to 1 Hz for clarity). 

 

 
Figure E.58. DOC concentration and corresponding linear trend for Kittery tidal flow 

burst, block 33060-34452 (filtered to 1 Hz for clarity). 
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Figure E.59. Vertical velocity and corresponding linear trend for Kittery tidal flow burst, 

block 34452-35844 (filtered to 1 Hz for clarity). 

 

 
Figure E.60. DOC concentration and corresponding linear trend for Kittery tidal flow 

burst, block 34452-35844 (filtered to 1 Hz for clarity). 
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Figure E.61. Vertical velocity and corresponding moving average trend for Kittery tidal 

flow burst. 

 

 
Figure E.62. DOC concentration and corresponding moving average trend for Kittery 

tidal flow burst. 
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Figure E.63. Vertical velocity and corresponding linear trend for Kittery tidal ebb burst, 

block 128348-131044 (filtered to 1 Hz for clarity). 

 

 
Figure E.64. DOC concentration and corresponding linear trend for Kittery tidal ebb 

burst, block 128348-131044 (filtered to 1 Hz for clarity). 
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Figure E.65. Vertical velocity and corresponding linear trend for Kittery tidal ebb burst, 

block 131044-133740 (filtered to 1 Hz for clarity). 

 

 
Figure E.66. DOC concentration and corresponding linear trend for Kittery tidal ebb 

burst, block 131044-133740 (filtered to 1 Hz for clarity). 
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Figure E.67. Vertical velocity and corresponding linear trend for Kittery tidal ebb burst, 

block 133740-136436 (filtered to 1 Hz for clarity). 

 

 
Figure E.68. DOC concentration and corresponding linear trend for Kittery tidal ebb 

burst, block 133740-136436 (filtered to 1 Hz for clarity). 
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Figure E.69. Vertical velocity and corresponding linear trend for Kittery tidal ebb burst, 

block 136436-139132 (filtered to 1 Hz for clarity). 

 

 
Figure E.70. DOC concentration and corresponding linear trend for Kittery tidal ebb 

burst, block 136436-139132 (filtered to 1 Hz for clarity). 
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Figure E.71. Vertical velocity and corresponding moving average trend for Kittery tidal 

ebb burst. 

 

 
Figure E.72. DOC concentration and corresponding moving average trend for Kittery 

tidal ebb burst. 
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Appendix F: �oise distributions 

 

 

 

a.                                                                     b. 

   
 

Figure F.1. Frankfort burst 1 noise distributions for (a.) w and (b.) C. 

 

 

 

 

 

 

a.                                                                     b. 

   
 

Figure F.2. Frankfort burst 2 noise distributions for (a.) w and (b.) C. 
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a.                                                                     b. 

   
 

Figure F.3. Squamscott burst noise distributions for (a.) w and (b.) C. 
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a.                                                                     b. 

   
 

Figure F.4. Kittery tidal flow period noise distributions for (a.) w and (b.) C. 

 

 

 

 

 

 

a.                                                                     b. 

   
 

Figure F.5. Kittery tidal ebb period noise distributions for (a.) w and (b.) C. 
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Appendix G: �ormalized cumulative cospectra of fluctuations of vertical velocity 

and concentration at 1 Hz 

 

 

 

 

 
Figure G.1. Normalized cumulative cospectrum of w’ and C’ for Frankfort burst 1, block 

77300-78100. 
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Figure G.2. Normalized cumulative cospectrum of w’ and C’ for Frankfort burst 1, block 

78100-78900. 

 

 
Figure G.3. Normalized cumulative cospectrum of w’ and C’ for Frankfort burst 1, block 

78900-79700. 
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Figure G.4. Normalized cumulative cospectrum of w’ and C’ for Frankfort burst 1, block 

79700-80500. 

 

 
Figure G.5. Normalized cumulative cospectrum of w’ and C’ for Frankfort burst 1, block 

80500-81300. 
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Figure G.6. Normalized cumulative cospectrum of w’ and C’ for Frankfort burst 2, block 

88828-90484. 

 

 
Figure G.7. Normalized cumulative cospectrum of w’ and C’ for Squamscott burst, block 

103680-105040. 
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Figure G.8. Normalized cumulative cospectrum of w’ and C’ for Squamscott burst, block 

105040-106400. 

 

 
Figure G.9. Normalized cumulative cospectrum of w’ and C’ for Kittery tidal flow burst, 

block 9396-10788. 
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Figure G.10. Normalized cumulative cospectrum of w’ and C’ for Kittery tidal flow burst, 

block 10788-12180. 

 

 
Figure G.11. Normalized cumulative cospectrum of w’ and C’ for Kittery tidal flow burst, 

block 12180-13572. 
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Figure G.12. Normalized cumulative cospectrum of w’ and C’ for Kittery tidal flow burst, 

block 13572-14964. 

 

 
Figure G.13. Normalized cumulative cospectrum of w’ and C’ for Kittery tidal flow burst, 

block 14964-16356. 
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Figure G.14. Normalized cumulative cospectrum of w’ and C’ for Kittery tidal flow burst, 

block 16356-17748. 

 

 
Figure G.15. Normalized cumulative cospectrum of w’ and C’ for Kittery tidal flow burst, 

block 17748-19140. 
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Figure G.16. Normalized cumulative cospectrum of w’ and C’ for Kittery tidal flow burst, 

block 19140-20532. 

 

 
Figure G.17. Normalized cumulative cospectrum of w’ and C’ for Kittery tidal flow burst, 

block 20532-21924. 
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Figure G.18. Normalized cumulative cospectrum of w’ and C’ for Kittery tidal flow burst, 

block 21924-23316. 

 

 
Figure G.19. Normalized cumulative cospectrum of w’ and C’ for Kittery tidal flow burst, 

block 23316-24708. 
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Figure G.20. Normalized cumulative cospectrum of w’ and C’ for Kittery tidal flow burst, 

block 24708-26100. 

 

 
Figure G.21. Normalized cumulative cospectrum of w’ and C’ for Kittery tidal flow burst, 

block 26100-27492. 
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Figure G.22. Normalized cumulative cospectrum of w’ and C’ for Kittery tidal flow burst, 

block 27492-28884. 

 

 
Figure G.23. Normalized cumulative cospectrum of w’ and C’ for Kittery tidal flow burst, 

block 28884-30276. 
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Figure G.24. Normalized cumulative cospectrum of w’ and C’ for Kittery tidal flow burst, 

block 30276-31668. 

 

 
Figure G.25. Normalized cumulative cospectrum of w’ and C’ for Kittery tidal flow burst, 

block 31688-33060. 
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Figure G.26. Normalized cumulative cospectrum of w’ and C’ for Kittery tidal flow burst, 

block 33060-34452. 

 

 
Figure G.27. Normalized cumulative cospectrum of w’ and C’ for Kittery tidal flow burst, 

block 34452-35844. 
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Figure G.28. Normalized cumulative cospectrum of w’ and C’ for Kittery tidal ebb burst, 

block 128348-131044. 

 

 
Figure G.29. Normalized cumulative cospectrum of w’ and C’ for Kittery tidal ebb burst, 

block 131044-133740. 
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Figure G.30. Normalized cumulative cospectrum of w’ and C’ for Kittery tidal ebb burst, 

block 133740-136436. 

 

 
Figure G.31. Normalized cumulative cospectrum of w’ and C’ for Kittery tidal ebb burst, 

block 136436-139132. 
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