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Biodegradation of wood by brown rot fungi is dependent upon a non-enzymatic 

system involving Fenton chemistry. Iron biochelators with molecular weights lower than 

1kD are important components in this process. Phenolate biochelators drive a hydroxyl 

radical generating Fenton reaction by reducing ferric iron. Biochelators may be 

mineralized or alternately, in some cases oxidized biochelators may be regenerated via a 

quinone redox cycle. Electron donors for this postulated regeneration have not been 

identified. Extracellular cellobiose dehydrogenase has also been found to drive the 

Fenton reaction by generating ferrous iron and hydrogen peroxide. This research 

compared the production of biochelators and the cellobiose dehydrogenase in white rot, 

brown rot and non-decay fungi to elucidate the brown rot mechanisms. The transplasma 

membrane redox system and intracellular quinone reductases were also characterized in 

the brown rot fungus GloeophyIIum trabeum. 

All the tested fungi produced iron chelating compounds and cellobiose 

dehydrogenase. The chemical characteristics and iron-reducing abilities of the 

biochelators produced varied, with the brown rot fungi producing biochelators showing 



significant higher iron reducing ability. The brown rot fungus Fomitopsis pinicola 

produced biochelators with the greatest iron reducing activity. 

Gloeophyllum trabeum mycelia showed 1,4-benzoquinone reducing ability. The 

transplasma membrane redox system was characterized based on its ferricyanide 

reduction kinetics. The fungus also produced constitutive intracellular NAD(P)H 

dependent 1,4-benzoquinone reductases. Reduction of 1,4-benzoquinone by intact 

mycelia and the intracellular enzymes showed different characteristics. An intracellular 

NADH dependent flavin mononucleotide containing 1,4-benzoquinone reductase was 

purified from G. trabeum. The phy.sica1 and catalytical properties of the purified enzyme 

were characterized. The enzyme was highly inducible by 2,6-dimethoxy-1,4- 

benzoquinone and had a high turn over number for multiple quinones, which indicated it 

functioned efficiently in quinone metabolism. Quinone reductases can play an important 

role in pH regulation, protecting hyphae against free radicals, and may in some cases act 

as one type of electron carrier potentially capable of transporting electrons from the 

intracellular NADH pool to the extracellular Fenton reaction. 

The research described here contributes to the understanding of brown rot 

degradative mechanisms and to an enhanced understanding of the biochemistry and 

physiology of the brown rot fungus G. trabeum. 
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Chapter 1 

INTRODUCTION AND LITERATURE REVIEW 

Wood Biode~radation 

Fungi are the major agents responsible for wood biodegradation. Different types 

of decay are recognized based on the way hngi attack cellulose, hemicellulose, and 

lignin (Zabel and Morrell, 1992; Eaton, 2000). White rot fungi attack all the cell wall 

components gradually and leave the wood bleached in color. The fungal hyphae are 

relatively p rolific in  the w ood c ell 1 umina. The wood c ell w all c lose t o  the h yphae i s 

eroded first (Eaton, 2000). The wood cell wall that is not in direct contact with hngal 

hyphae also becomes thinner and more porous (Blanchette, 1994). White rot fungi that 

will be  considered i n  this work a re: P hanerochaete c hrysosporium B urdsall, Trametes 

versicolor (Linnaeus : Fries) Pilat, Trichaptum abietinum (Dickson : Fries) Ryvarden, 

Phlebia brevispora Nakasone, and Irpex Iacteus Fries. 

Brown rot fungi depolymerize the polysaccharides rapidly. The wood exhibits a 

darkened color due to the preferential (although not exclusive) utilization of 

polysaccharides versus lignin. Typically, in laboratory soil block assays, wood blocks 

may be completely covered with fungal hyphae and fungi are well developed with the 

wood cell as well. However, it has been reported that, compared with wood degraded by 

white rot fungi, in the wood degraded by brown rot hngi the fungal hyphae are relatively 

sparse in the wood cell lumina (Jones and Worrall, 1993 and 1995; Eaton, 2000). Decay 

is highly difhsed (Eaton, 2000). Brown rot fungi that will be considered in this work are: 

GIoeophyIIum trabeum (Persoon : Fries) Karsten, GloeophyIIum striatum (Swartz : Fries) 



Murrill, Gloeophyllum sepiarium (Wulfen : Fries) Imazeki, Postia placenta (Fries) 

Larsen et Lombard, Fomitopsis pinicola (Swartz : Fries) Karsten, Coniophora puteana 

(Fries) Karsten, Neolentinus lepideus (Fries : Fries) Redhead e t Ginns, and Tyromyces 

palustris (Berkeley et Curtis) Murrill. 

There is also a group of wood-inhabiting non-decay hngi such as mold and stain 

fungi. They can colonize wood but do not cause significant wood degradation. Wood- 

inhabiting non-decay fungi that will be considered in this work are: Trichoderma viride 

Persoon : Fries, Trichoderma reesei Simmons, Trichoderma virens (Miller et al.) von 

Arx,  Phialocephala fusca Kendrick, Phialophora mutabilis (van Betma) Schol - 

Schwarz, Aureobasidium pullulans (de Bary) Arnaud, and Sclerophoma pityophila Funk. 

Brown rot hngi form an important group of organisms. They cause the most 

destructive type of decay in wood structures. The damage costs billions of dollars 

annually in the United States (Zabel and Morrell, 1992; Paszczynski et al., 1999). They 

are also essential contributors to biomass recycling and soil fertility in forest ecosystems. 

Cellulose is the most abundant natural polymer in the world (Sjostrom, 1993). 

Biodegradation of cellulose is an important step in the global carbon cycle (Kirk, 1987; 

Kerem et al., 1999). Translocation of metal elements by brown rot fungi can impact 

forest floor heterogeneity (Jellison et al., 1993; Connolly et al., 1996; Connolly and 

Jellison, 1995 and 1997). 

The cellulolytic systems of brown rot hngi can also play a role in the 

bioremediation of pollutants. The brown rot fungus G. trabeum has been found to 

degrade polyethylene oxide (PEO) efficiently via one electron oxidation. This organic 

compound cannot be degraded by white rot basidiomycetes that can depolymerize 



ligninocellulose and many other organic chemicals via the free radical based enzymatic 

combustion system (Kerem et al., 1998). The brown rot h g u s  G. striatum can degrade 

ciprofloxacin, an antibacterial drug that is not easily biodegraded due to its low water 

solubility and strong adsorption to the surrounding matrix. Analysis of the metabolites 

reveals the presence of oxidative decarboxylation or oxidation of the mine  moiety, 

which indicates a hydroxyl radical-based degradation mechanism (Martens et al., 1996; 

Wetzstein et al., 1999). Both G. trabeum and G. striatum can degrade 2,4-dichlorophenol 

and pentachlorophenol (Fahr et al., 1999; Goodell et al., 2001). The characterization of 

the metabolites also suggests the involvement of one-electron oxidants, such as hydroxyl 

radicals (Fahr et al., 1999). Brown rot h g i  also accumulate and translocate heavy metals 

from the surrounding environment (Doyle and Jellison, 1996; Fuller et al., 2000). 

Some brown rot h g i  may have potentially important impacts on the pulp and 

paper industry. When various species of Gloeophyllum are incubated with wood pulp, it 

has been found that the treated pulps show an incremental increase in brightness, 

although the degree of polymerization of cellulose also decreases substantially (Job-Cei 

et al., 1996). The endoglucanases from G. trabeum and G. sepiarium can efficiently deink 

xerographic and laser-printed papers (Guebitz et al., 1998). Short-time pinewood chip 

incubation with G. trabeum results in a 40% decrease of energy consumption during 

thermo-mechanical pulping and in improved fiberboard (Unbehaun et al., 2000). Qian 

and Goodell (Goodell et al., 2001) have shown that removal of ink in recycling processes 

can be enhanced by the catechol mediated Fenton reaction. 



Better understanding of brown rot mechanisms will help limit the destructive 

damage caused by these organisms and to broaden the application of brown rot 

cellulolytic systems in bio-remediation and bio-industry. 

Mechanisms of Wood Biode~radation 

Mechanisms of White Rot 

Both enzymatic and non-enzymatic processes are involved in white rot decay, 

which is recognized as a free radical based enzymatic combustion (Keyser et al., 1978; 

Kirk, 1987; Kirk et al., 1986; Schoemaker et al., 1989; Eriksson et al., 1990; Aust, 1995; 

Cameron and Aust, 1999). White rot h g i  produce both polysaccharide and lignin 

degrading enzymes. Extra-cellular ligninolytic enzymes such as lignin peroxidase, 

manganese peroxidase, and laccase are key components of the h g a l  ligninolytic system 

(Keyser et al., 1978; Erikson et al., 1990; Aust, 1995). Extracellular cellulases, such as 

endo-l,4-P-glucanase, exo-l,4-P-glucanase, and 1,4-P-glucosidase, are responsible for 

complete degradation of cellulose and hemicellulose (Schoemaker et al., 1989). The 

oxidative enzyme cellobiose dehydrogenase participates in both lignin and cellulose 

degradation. Highly reactive radicals are also produced enzymatically by the ligninolytic 

enzymes and by cellobiose dehydrogenase (Cameron and Aust, 1999). Free radicals 

oxidize the lignin, attack the cellulose microfibrils, and cause structural disruption, whch 

facilitates the enzymatic decay process (Kirk, 1987; Aust, 1995; Cameron and Aust, 

1999). The combination of enzymatic and non-enzymatic processes leads to gradual 

decomposition of both lignin and cellulose. 



Proposed Mechanisms of Brown Rot 

Mechanisms o f b rown rot d ecay are 1 ess w ell understood. Research has shown 

that brown rot fungi do not produce ligninolytic enzymes, such as lignin peroxidase and 

manganese peroxidase (Milstein et al., 1992; Freitag and Morrell, 1992), although some 

metabolism and modification of the lignin is observed. Brown rot fungi produce 

polysaccharide-degrading enzymes, such as endoglucanases, galactosidases and 

xylanases (Cotoras and Agosin, 1992; Ritschkoff et al., 1994; Green et al., 1995; Guebitz 

et a I., 1 998; M ansfield et a I., 1 998), but the enzymes are too 1 arge to  penetrate intact 

wood cell walls (Flournoy et al., 1991). Brown rot decay is characterized by extensive 

changes in the wood cell wall structure and rapid strength loss. At initial decay stages, 

brown rot fungi decrease the degree of polymerization (DP) of cellulose rapidly from 

about lo4 to 250; before measurable weight losses can be observed (I(lrk et al., 1991). It 

has been suggested that brown rot fungi possess a non-enzymatic oxidative pathway 

(Highley, 1977 and 1987; Enoki et al., 1989; Ritschkoff, 1996). 

Hydroxyl radicals have been proposed as causative agents in brown rot decay, and 

it has been established that brown rot decay is initiated as a non-enzymatic oxidative 

degradation p rocess b ased on the Fenton r eaction: H 2 0 2  + F e2+ + F e3+ + 0 H- + H 0. 

(Koenigs, 1974 and 1975; Kirk et al., 1991; Backa et al., 1992; Wood, 1993; Hirano et 

al., 1997). Multiple theories have been proposed to explain the generation of Fenton 

reagents (ferrous iron and hydrogen peroxide) by fungi and to elucidate the factors that 

mediate the Fenton reaction in vivo. 

Cellobiose Dehydrogenase - Driven Fenton Reaction. A cellobiose dehydrogenase - 

driven Fenton reaction theory has been proposed by Hyde and Wood (1997). Cellobiose 



dehydrogenase (CDH) is an extracellular cellobiose oxidase. It oxidizes cellobiose and 

other disaccharides by utilizing a large spectrum of electron acceptors, such as ferric iron, 

quinones and molecular oxygen. The enzyme is a flavohemoprotein produced by many 

cellulolytic fungi (Ayers et al., 1978; Dekker, 1980; Fahnrich and Irrgang, 1982; Coudray 

et al., 1982; Canevascini et al., 1991; Bao et al., 1993; Schou et al., 1993 and 1998; Fang 

et al., 1998; Dumonceaw et al., 1998; Temp and Eggert, 1999; Moukha et al., 1999; 

Subramaniam et al., 1999; Igarashi et al., 1999; Hallerg et al., 2000; Baminger et al., 

2001). CDH has been identified and purified from the brown rot hngus Coniophora 

puteana (Schimidhalter and Canevascini, 1993 (a) and (b)). In the proposed theory 

(Figure 1. I), C. puteana CDH reduces iron to form ferrous iron - oxalate complexes. The 

complexes then react with hydrogen peroxide to generate hydroxyl radicals (Hyde and 

Wood, 1997). A difficulty with the theory is that so far, cellobiose dehydrogenase has not 

been found ubiquitously in brown rot h g i  (Schimidhalter and Canevascini, 1993 (a) and 

(b)). The enzymatic ferric iron reduction rate is also very slow. 



Figure 1.1. Generation of extracellular ferrous iron and hydrogen peroxide by 
Coniophora puteana in the proposed cellobiose dehydrogenase - driven Fenton reaction 
(Schimidhalter and Canevascini, 1993 (a) and (b); Hyde and Wood, 1997; Cameron and 
Aust, 1999); Cellobiose dehydrogenase also has cellobiose dependent quinone - reducing 
activity. 

Oxalic Acid - Driven Fenton Reaction. Shimada (1997) has suggested an oxalic acid - 

driven Fenton reaction. In this model (Figure 1.2), oxalic acid serves as a difisible metal 

chelator to reduce ferric iron to ferrous iron (Schmidt et al., 198 1 ; Shimada et al., 1997). 

But the oxalate - driven ferric iron reduction has been found to be a very slow reaction in 

the dark. For rapid reduction, light irradiation, which does not exist inside wood cell 

walls, is necessary (Wood, 1993; Zuo and Hoigne, 1994). 



Fe 3+ Fe 2+ + H202 -+ Fe 3+ + OH- + 'OH 

Oxalic acid 

Figure 1.2. The hypothetical role of oxalic acid in oxalic acid - driven Fenton reaction 
(Schmidt et al., 198 1 ; Shimada et al., 1997). 

Glycopeptide Ferrous Iron Chelator - Driven Fenton Reaction. Enoki has proposed 

that extracellular glycopeptide ferrous iron chelators are produced by brown rot fungi to 

generate hydroxyl radicals via the Fenton reaction (Enoki et al., 1997). Glycopeptide 

ferrous iron chelators are extracellular substances with molecular weights between 1 and 

12 KD and with single-electron oxidation activity. Such substances have been isolated 

fiom the brown rot fungi G. trabeum and T. palustris (Enoki et al., 1992; Hirano et al., 

1995). In this one-electron oxidation system model, the extracellular glycopeptide 

chelators reduce ferric iron to ferrous iron and chelate the ferrous iron. The glycopeptide 

chelator - ferrous iron complexes then catalyze the redox reaction between molecular 

oxygen and unidentified electron donors to produce hydrogen peroxide. Then the 

glycopeptide chelator - ferrous iron complexes reduce hydrogen peroxide to produce 

hydroxyl radicals via the Fenton reaction (Figure 1.3). The validity of this proposed 

mechanism has not been established. When polyethylene glycol (PEG) was used as a 

model compound for cellulose, Gloeophyllum trabeum could not use the glycopeptide 
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ferrous iron chelators to establish an extracellular Fenton reaction that could cleave the 

PEG via one electron oxidation (Kerem et al., 1999). 

Unidentified small compounds 

? 
0 2  H202 'OH 

Fe *' - glycopeptide Fe 3' - glycopeptide Fe 2" - glycopeptide Fe 3' - glycopeptide 

F e x  Fe 3++-jL 

2 Glycopeptide .. Glycopeptide 2 Glycopeptide .. Glycopeptide ,,, 

Figure 1.3. Generation of ferrous iron and hydrogen peroxide by GIoeophyIIum trabeum 
in the proposed glycopeptide iron chelator - driven Fenton reaction (Enoki et al., 1997). 

Phenolate Biochelator - Driven Fenton Reaction. Goodell, Jellison, and colleagues 

have proposed a phenolate biochelator - driven Fenton reaction (Jellison et al., 1990 (a) 

and (b), 1991 (a) and (b), 1993, 1996, 1997; Goodell et al., 1996, 1997 (a) and (b), 1999 

(a) and (b), 2001; Goodell and Jellison, 1997, 1998 and 1999; Lu et al., 1994; Qian and 

Goodell, 1999). Both oxalate and phenolate biochelators with molecular weights lower 

than 1 KD produced by the brown rot fungi are implicated in brown rot decay (Goodell et 

al., 1996, 1997 (a) and (b), 1999 (a) and (b); Goodell and Jellison, 1997, 1998 and 1999). 

The oxalate is postulated to reduce pH, to solubilize ferric iron and to function as a pH 

dependent phase transfer agent. The oxalate could allow biochelators access to iron. Then 

biochelators reduce iron in an environment with a somewhat higher pH, where it is 

distant from the fungal mycelia. The phenolate biochelators can reduce ferric iron to 



ferrous iron by one-electron oxidizations. The one-electron oxidized biochelators, which 

are semiquinones, are postulated to catalyze the reduction of femc iron or molecular 

oxygen and to be further oxidized to quinones (Goodell et al., 1997 (a) and (b)). 

Oxalate production by brown rot fungi and the function of oxalate in pH 

regulation have been studied (Green et al., 1995; Micales, 1995; Connolly and Jellison, 

1995; Connolly et al., 1996). Biochelators are known to be produced by several white rot 

and brown rot fungi (Fekete et al., 1989). Phenolate biochelators have been isolated from 

the brown rot fungus G. trabeum grown in Highley's liquid media containing cellulose 

(Highley, 1973; Appendix A). The distribution of G. trabeum phenolate biochelators 

within the wood cell wall has been studied by imrnunolocalization. Their small size 

allows biochelators to penetrate microvoids in the wood cell wall that are too small for 

enzymes to enter (Jellison et al., 1991 (a)). The partially purified phenolate biochelators 

have been identified as hydroxylated phenylacetic acids, hydroxylated benzoic acids, 

hydroxylated benzene derivatives and dihydroxyphenyl pentanediol by GCMS and 

HPLCMS (Easwaran, 1994; Goodell et al., 1997 (a) and (b)). 

Two other phenolate compounds, 4,5-dimethoxy-l,2-benzenediol (4,5-dimethoxy 

catechol, 4,5-DMC) and 2,5-dimethoxy-1,4- benzenediol (2,5-dimethoxy hydroquinone, 

2,5-DMHQ), have also been isolated and identified from stationary cultures of G. 

trabeum grown in glucose mineral media (Appendix B, Tien and Kirk, 1988). These 

compounds can serve as iron chelating and reducing biochelators, and can participate in 

the reduction of oxygen to superoxide anion (Paszczynski et al., 1999). It has been found 

that 4,5-DMC and 2,5-DMHQ remain in the reduced hydroquinone form through out the 

fungal growth period. The presence of quinone reducing enzymes in G. trabeum, either 



extracellular, membrane - bound, or intracellular, have been proposed to explain the 

production of phenolate compounds by G. trabeum (Paszczynski et al., 1999). 

Another key metabolite, 2,5-dimethoxy-l,4-benzoquinone (2,5-DMBQ), is 

produced by G. trabeum grown in the glucose mineral media (Kerem et al., 1999). In the 

presence of this compound and femc iron, G. trabeum mycelia reduced 2,5-DMBQ into 

2,5-DMHQ. The direct non-enzymatic reaction between femc iron and the hydroquinone 

may lead to both femc iron reduction and hydrogen peroxide generation. The system can 

depolymerize the membrane impermeable PEG via one electron oxidization (Kerem et 

al., 1999). 

Research has demonstrated that a single mole of G. trabeum phenolate chelator 

can reduce multiple moles of femc iron (Goodell et al., 1996, 1997 (a) and (b), 2001). 

The non-stoichiometric reduction of iron has not been well elucidated. Two different 

theories, regeneration of biochelators and mineralization of biochelators, have been 

proposed (Figure 1.4) (Goodell et al., 1997 (a) and (b), 2001; Paszczynski et al., 1999; 

Kerem et al., 1999; Jensen et al., 2001; Pracht et al., 2001). Regeneration of biochelators 

via some kind of redox cycle was first suggested by Goodell and colleagues (1996, 1997 

(a) and (b)). A quinone redox cycle mediated by quinone - reducing enzymes was 

suggested later (Paszczynski et al., 1999; Kerem et al., 1999). Recent work by Jensen and 

colleagues (2001) has shown that 4,5-dimethoxy-l,2-benzoquinone (4,5-DMBQ) can also 

be reduced to 4,5-DMC by a quinone redox cycle mediated by 2,5-DMHQ. Alternately, 

mineralization of phenolate biochelators by reducing multiple equivalents of femc iron 

has been proposed by Goodell and colleagues (2001). Recent work by Pracht and 

colleagues (2001) has shown that catechols can be partially or completely mineralized to 



C02 while reducing femc iron contiouously. Consequently, the catechol fungal 

biochelators may undergo a similar pathway of mineralization and lead to the non- 

stoichiometric reduction of iron (Goodell et al., 2001). The relative importance of these 

two pathways in vivo has not been established. 
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Figure 1.4. Proposed pathways for generation of ferrous iron and hydrogen peroxide 
extracellularly by GIoeophyllum trabeum in the phenolate biochelator - driven Fenton 
chemistry (Mineralization pathway: Goodell et al., 1997 (a) and (b), 2001; Pracht et al., 
2001; Quinone redox cycle and quinone reducing enzymes: Kerem et al., 1999; 
Paszczynski, et al., 1 999; Jensen et al., 200 1). 4,5-DMC, 4,Sdimethoxy- l,2-benzenediol. 
2,5-DMHQ, 2,5-dimethoxy-l,4-benzenediol. 



Biochelators and Laccase Mediator Systems 

Biochelators might also be effective as laccase mediators, but as yet this had not 

been shown (Goodell, personal communication). Laccase is a copper oxidase produced 

by many white rot fungi. Laccases, lignin peroxidases and manganese-dependent 

peroxidases are three important enzymes in the white rot ligninolytic systems. Laccase 

oxidizes aromatic (phenolic) compounds that possess relatively low ionization potentials, 

producing phenoxy radicals. Non-phenolic compounds are not substrates for laccase. 

They are oxidized by the cation radicals produced enzymatically (D'Souza et al., 1996). 

But it has been found that in the presence of some mediators, laccases can also oxidize 

non-phenolic lignin model compounds. Thus the laccase mediator systems (LMS) extend 

the spectrum of substrates for laccases (Bourbonnais and Paice, 1990). LMS have 

received widespread attention for their potential biotechnological applications in 

bleaching haft  pulp. LMS have also been shown to oxidize various compounds, thus 

they might be useful in preparative synthesis and bioremediations (Johannes et al., 1996; 

Bourbonnais et al., 1998; Crestini and Argyropoulos, 1998; Majcherczyk and Johannes, 

2000; Johannes and Majcherczyk, 2000; Tsutsurni et al., 2001). More than 100 possible 

synthesized mediators have already been described (Johannes and Majcherczyk, 2000). It 

has been known that some of the synthetic mediators are hydroxamic acid type 

compounds (Goodell, personal communication). Johannes and Majcherczyk (2000) 

demonstrated that some natural compounds either produced by fungi or present during 

the biodegradation of lignocellulose could also mediate the laccase, such as phenols, 

aniline, bhydroxybenzoic acid and 6hydroxybenzyl alcohol. (Johannes and 

Majcherczyk, 2000). Hydroxylated benzoic acids have been identified as phenolate 



biochelators produced by the brown rot fungus G. trabeum (Goodell et al., 1997 (a) and 

(b)). Although production of laccase activity by the brown rot fungi has not been studied 

extensively, a laccase gene specific sequence has been isolated from G. trabeum by PCR 

utilizing degenerate primers corresponding to the consensus sequences of known laccases 

(D'Souza, 1996). The PCR product showed high similarity to the laccase genes of the 

white rot fungi T. versicolor, Coriolus hirsutus, C. versicolor, Lentinula edodes, L. 

tigrinus, Phlebia brevispora, P. rediata and Ganodema lucidum. The presence of 

laccase activity in G. trabeum (Mad-6 17-R) has also been demonstrated (D'Souza, 1996). 

Dissertation Overview 

The aims of this dissertation research are: 

1. To elucidate brown rot mechanisms by comparing metabolites proposed to play a 

role in degradation pathways by brown rot fungi with metabolites produced by 

white rot and wood-inhabiting non-decay fungi. The study examined metabolite 

production and modification of the growth environment by representatives from 

different categories of wood-inhabiting fungi. 

2. To elucidate possible pathways for quinone reduction in the brown rot fungus G. 

trabeum. A G. trabeum plasma membrane redox system with quinone - reducing 

ability and an intracellular benzoquinone reductase produced by G, trabeum were 

characterized. Fungal plasma membrane isolation was also performed as a 

preliminary experiment for future studies on fungal plasma membrane redox 

system and other membrane proteins. 



Metabolite Production 

Phenolate biochelators have been proposed as an integral part of the cellulolytic 

systems of brown rot fungi (Goodell et al., 1997 (a) and (b); Jellison et al., 1991 (a) and 

(b), 1993, 1996, and 1997). Both brown rot and white rot fungi produce low molecular 

weight, iron-reducing, siderophore-like, metal chelators (Fekete et al., 1989). The 

production of these biochelators by the wood-inhabiting non-decay fungi has not been 

completely studied. 

CDH has also been suggested to mediate the Fenton reaction in the brown rot 

fungus C. puteana (Schimidhalter and Canevascini, 1993 (a) and (b)). Phanerochaete 

chiysosporium CDH has been proposed to participate in cellulose and lignin degradation 

by this white rot fungus (Ander, 1994; Ander and Mazullo, 1997; Cameron and A ust, 

1999). The enzyme oxidizes cellobiose that is produced in cellulose biodegradation 

process (Fahnrich and Irrgang, 1982; Schou et al., 1993). It may potentially mediate the 

Fenton reaction by reducing femc iron and molecular oxygen, producing destructive 

hydroxyl radicals that attack ligninocellulose (Cameron and Aust, 1999). The enzyme 

also participates in lignin biodegradation via its quinone - reducing ability. Quinones are 

intermediates produced by the ligninolytic enzymes during lignin biodegradation. 

Quinone reduction is an essential step leading to complete lignin degradation 

(Schoemaker et al., 1989; Aust, 1995). 

Although cellobiose dehydrogenase has been purified from various white rot and 

soft rot fungi (Ayers et al., 1978; Dekker, 1980; Fahnrich and Irrgang, 1982; Coudray et 

al., 1982; Canevascini et al., 1991; Bao et al., 1993; Schou et al., 1993 and 1998; Fang et 

al., 1998; Durnonceaux et al., 1998; Temp and Eggert, 1999; Moukha et al., 1999; 



Subramaniam et al., 1999; Igarashi et al., 1999; Hallerg et al., 2000; Barninger et al., 

2001), Coniophora puteana is the only brown rot fungus from which CDH has been 

purified and characterized (Schimidhalter and Canevascini, 1993 (a) and (b)). CDH was 

not produced by G. trabeum grown in glucose mineral media (Kerem et al., 1999; 

Paszcynski et al., 1999). 

Some wood-inhabiting non-decay fungi, such as species of Trichoderma, can 

produce significant amounts of cellulase. Trichoderma reesei and T. viride have been 

used for the commercial production of cellulase (Samuels, 1996). Incubating pinewood 

fibers with T. reseei also reduces the energy consumption in the production of fiber 

sheets (Unbehaun et al., 2000). An understanding of why wood-inhabiting non-decay 

fungi do not cause significant wood degradation while successfully colonizing wood may 

help to understand the components that are essential for a fungus to attack and break 

down wood. Experiments were set up with fungal species representatives of white rot, 

brown rot and wood-inhabiting non-decay fungi. The modifications of the fungal growth 

environment were monitored. The production of the biochelators was characterized based 

on biochelator structural types. The production of CDH was characterized by its 

reduction of two different electron acceptors, 2,6-Dichloroindophenol (DCPIP) and 2,3- 

dimethoxy-5-methyl- 1,4-benzoquinone (coenzyme Qo). 

Plasma Membrane Redox System and Intracellular Ouinone - Reducing Enzymes 

Quinone reduction i s i nvolved i n b 0th w hite rot and b rown rot d egradation. In 

white rot decay, quinones are intermediates produced by the ligninolytic enzymes such as 

peroxidases and laccase during lignin biodegradation. Rapid metabolism of quinone 



products shifts the polymerization-depolymerization equilibrium towards degradation 

(Schoemaker et al., 1989; Ander and Marzullo, 1997). In brown rot decay, quinone - 

reducing enzymes along with mineralization reactions may mediate the generation and 

regeneration of phenolate biochelators, which may contribute, along with the 

mineralization process, to continuous production of Fenton reagents (Goodell et al., 1997 

(a) and (b), 2001; Paszczynski, et al., 1999; Kerem et al., 1999). Quinone reducing 

enzymes may also play vital roles in protecting mycelium against quinone toxicity. 

Quinone - reducing enzymes include extracellular cellobiose dependent quinone 

reducing cellobiose dehydrogenase (CDH) discussed above, intracellular NAD(P)H- 

dependent quinone reductases, and membrane-bound reductases (Ander and Marzullo, 

1997; Paszczynski et al., 1999). Intracellular NPLD(P)H dependent quinone 

oxidoreductases fiom the white rot fungus P. chrysosporium have been characterized 

(Buswell et al., 1979). Two intracellular NAD(P)H dependent 1,4-benzoquinone 

reductases from P. chrysosporium have been purified (Constarn, et al., 1991; Brock et al., 

1995; Brock and Gold, 1996). The gene encoding one of the intracellular quinone 

reductases in P. chrysosporium has been cloned and sequenced (Akileswaran et al., 

1999). A plasma membrane redox system (PMRS) of P. chrysosporium able to reduce 

quinones has been characterized (Fernando et al., 1990; Stahl and Aust, 1993 and 1995; 

Stahl et al., 1995). The PMRS and the intracellular quinone reductases of P. 

chrysosporium show different kinetics constant (K,) and optimal pH (Stahl et al., 1995). 

The presence of mycelial quinone - reducing activity in G. trabeum has been 

demonstrated (Paszcynski et al., 1999; Kerem et al., 1999). To elucidate the potential 

pathways for the quinone reduction in G. trabeum, experiments were set up to 



characterize the membrane-bound quinone reduction, and to purify and characterize the 

G. trabeum intracellular quinone reductases. The function of these reductases has not 

been established. 

Membrane Isolation 

The plasma membrane isolation and characterization is a pre-requisite step for 

characterization of the outer membrane proteins, such as the siderophore receptors on 

outer membranes, and the membrane-bound reductase system. 

Biochelators produced by wood decay fungi are siderophore-like compounds 

(Fekete et al., 1989; Jellison et al., 1991). Siderophores are low molecular weight, iron - 

chelating compounds produced by microorganisms grown under iron deficient 

conditions. Their function is to acquire iron for cells (Barton and Hemming, 1992). The 

ubiquitous production of multiple forms of biochelators by wood decay fungi may 

indicate that in addition to the role biochelators play in mediating the Fenton reaction, 

biochelators also play a role in general fimgal physiology. In the siderophore mediated 

iron uptake process, bacteria produce specific membrane receptors to uptake the iron- 

siderophore complex (Barton and Hemming, 1992). However, no siderophore receptors 

have been found in hngi (Huschka and Winklemann, 1989). 

The isolation of plasma membrane from filamentous fungi has been a technical 

challenge because of the difficulty in obtaining protoplasts fiom filamentous hyphae. 

Preliminary studies on the isolation and characterization of plasma membranes from the 

filamentous wood decay fimgus P. chrysosporium were performed. The research 



provided a basic protocol for future studies on siderophore receptors and the membrane 

bound reductase system in wood decay fungi. 

Importance of the Proiects 

This work contributes to a better understanding of the role of biochelator - driven 

Fenton reactions in wood biodegradation by brown rot fungi and leads to a better 

understanding of the biochemistry and physiology of the brown rot h g u s  G. trabeum. 

Areas of specific focus include characterization of metabolites produced by various h g i  

and the isolation and characterization of fungal reductases of potential physiological 

importance. This research makes a contribution in the general area of the physiology of 

wood decay organisms and may eventually be helpful in the development of specific, 

environment - friendly w ood preservation strategies based on the physiology of wood 

decay fungi and wood decay mechanisms. 



Chapter 2 

MODIFICATION OF THE GROWTH ENVIRONMENT BY WOOD- 

INHABITING FUNGI 

Abstract 

Multiple components have been postulated to be involved in the Fenton-based biological 

degradation of wood by brown rot fungi. Biochelators and cellobiose dehydrogenase 

have been implicated by different researchers in essential iron reduction steps. 

Biochelator production by three white rot fungi, three brown rot fungi and three wood- 

inhabiting non-degradative fungi was examined. All nine species produced chelating 

compounds. The chemical characteristics and iron-reducing ability of the chelators 

produced varied. However, the brown rot fungi produced predominately phenolate 

chelators. Of the species examined, the brown rot fungus Fomitopsis pinicola produced 

chelators with the greatest reducing ability. This fungus has also exhibited ability to 

accumulate high levels of iron in soil block assays. When liquid cultures of 

Phanaerochaete chrysosporium (white rot fungus), Gloeophyllum trabeum (brown rot 

fungus) and Trichodenna viride (non-degradative wood inhabitant) were examined over a 

four week period, all three replicates of the three fungi showed measurable levels of 

cellobiose dehydrogenase activity. Trichodenna was shown to produce iron-reducing 

chelators and cellobiose dehydrogenase. It has been previously reported that Trichodenna 

produces large amounts of cellulase and other degradative enzymes. Trichoderma viride 

did not cause weight loss in the 16-week soil block decay test, while both P. 

chrysosporium and G. trabeum caused a significant wood degradation. It is interesting 



that Trichoderma possesses many components of a cellulose degrading system, yet is not 

associated with the rapid strength losses seen when wood is attacked by brown rot hngi. 

Introduction - 

Biodegradation is one of the factors that limit the utilization of wood. The ability 

to biodegrade wood lignocellulose is limited to certain fungal species. The brown rot 

hngi can rapidly and preferentially attack wood cellulose and hemicellulose. They also 

modify wood lignin significantly. The white rot hngi are able to gradually attack and 

metabolize both the cellulose and the lignin of wood (Zabel and Morrell, 1992). Wood- 

inhabiting non-decay fungi do not cause a significant degradation of lignocellulose, 

although some non-decay hngi, such as Trichoderma species, do produce significant 

amounts of degradative enzymes (Samuels, 1996). What allows brown rot and white rot 

organisms to initiate and participate in breakdown the cellulose or both cellulose and 

lignin of the wood, while the wood-inhabiting non-decay microorganisms, which have 

many of the same degradative enzymes and metabolic pathways, can not, has not been 

elucidated clearly. 

Previous research has shown that low molecular weight, iron-reducing phenolate 

derivative metal chelators isolated fiom brown rot fungi are an integral part of the brown 

rot cellulolytic systems (Jellison et al., 1991 (a) and (b), 1993, 1996, 1997; Goodell et al., 

1997 (a) and (b); Paszczynski et al., 1999; Parra et al., 1998). These isolated phenolate 

derivative chelators not only have a high affinity for fenic iron but also can meditate the 

reduction o f femc i ron to ferrous iron i n r edox c ycling p rocesses a t  p H v alues b elow 

neutrality. The ferrous iron then reacts with oxidants such as hydrogen peroxide and a 



Fenton reaction, Fe2+ + H202 + Fe3+ + HO. + HO-, will occur to generate destructive 

hydroxyl radicals, which can depolymerize and oxidize lignocellulose compounds 

(Goodell et al., 1997 (a) and (b)). 

The structures, distribution and iron - reducing ability of phenolate biochelators 

produced by the brown rot hngus GIoeophyIIum trabeum have been studied (Jellison et 

al., 1991 (a); Easwaran, 1994; Goodell, et al., 1997; Paszczynski, 1999). Production of 

biochelators by other brown rot and white rot h g i  has been reported but not well 

characterized (Fekete et al., 1989). The G. trabeum phenolate biochelators are 

siderophore-like compounds. S iderophores are 1 ow m olecular w eight, i ron - c helating 

compounds produced by microorganisms grown under iron deficient conditions. Their 

hnction is to acquire iron for cells. Siderophores are classified as phenol-catecholates, 

hydroxamates, and carboxylates according to the main chelating groups (Barton and 

Hemming, 1992). Before the isolation of phenolate biochelators from G. trabeum, all of 

the fungal siderophores found and characterized were hydroxamates (Hofete, 1992). 

During the process of iron reduction, the phenolate biochelators themselves are 

oxidized to quinones and semiquinones. Quinone - reducing enzymes, such as 

extracellular cellobiose dehydrogenase (CDH), may be important in the recycling and 

metabolism of these oxidized biochelators andlor other reactive quinones (Paszczynski et 

al., 1999; Kerem et al., 1999). Alternately, mineralization processes may be dominant 

(Goodell et al., 2001; Pracht et al., 2001). CDH produced by the brown rot h g u s  

Coniophora p uteana and the white rot fungus Phanerochaete chrysosporium h as b een 

proposed to mediate the Fenton reaction by reducing ferric iron and molecular oxygen 

(Kremer et al., 1992; Hyde and Wood, 1997; Cameron and Aust, 1999). 



Cellobiose dehydrogenase, formally known as cellobiose oxidase (Ayers et al., 

1978), is a flavohemoprotein produced under cellulolytic conditions. It oxidizes 

cellobiose, cellodextrins and some other disaccharides using electron acceptors such as 

ferric iron, cytochromes, quinones, phenoxy radicals and even oxygen. Many cellulolytic 

fungi have been shown to produce cellobiose dehydrogenase. CDH has been isolated and 

characterized in the white rot fungi P. chrysosporium (Bao et al., 1993; Higham et al., 

1994; Raices et al., 1995; Lehner et al., 1996; Li et al., 1996 and 1997; Igarashi et al., 

1996, 1998 and 1999; Cohen et al., 1997; Henriksson et al., 1997 and 1998; Habu et al., 

1993 and 1997; Vallim et al., 1998; Cameron and Aust, 1999), Pycnoporus cinnabarinus 

(Temp and Eggert, 1999; Moukha et al., 1999), Schizophyllum commune (Fang et al., 

1998), and Trametes versicolor (Dumonceaux et al., 1998). CDH has also been isolated 

from soft rot fungi Sporotrichum thermophile (Coudray et al., 1982; Canevascini et al., 

1991; Subramaniam et al., 1999), Monilia sp. (Dekker, 1980), Chaetomium 

cellulolyticum (Fahnrich and Irrgang, 1982), Humicola insolens (Schou et al., 1993 and 

1998; Igarashi et al., 1999), and the plant pathogen Sclerotium rolfsii (Baminger et al., 

2001). To our knowledge, Coniophora puteana is the only brown rot fungus from which 

CDH has been purified and characterized (Schimidhalter and Canevascini, 1993 (a) and 

(b)) - 

In this study, w e m onitored the production and activities o f fungal m etabolites 

previously implicated in the degradation process, such as biochelators and CDH. To 

determine if different categories of fungi produce structurally and functionally similar 

chelators, we isolated low molecular weight compounds produced by brown rot fungi G. 

trabeum, Postia placenta, Fomitopsis pinicola, white rot fungi P. chrysosporium, T. 



versicolor, Trichaptum abietinum, and wood-inhabiting non-decay f h g i  Trichoderma 

viride, Phialocephala fusca, Phialophora mutabilis. The low molecular weight 

compounds were characterized based upon siderophore types and iron - reducing ability. 

Representatives of the white rot, brown rot and wood-inhabiting non-degradative fungi, 

G. t rabeum, P .  c hrysosporium, and T. v iride, respectively, w ere also examined over a 

four-week period in liquid media and over a 16-week period in soil block jars. The 

modification of the liquid media environment by these fungi, such as the change in pH, 

biochelator production and CDH production, was recorded. The percent weight loss in 

soil block jar decay assays was also monitored to confirm the absence of significant 

degradation in blocks colonized by non-decay fungi. 

Materials and Methods 

Organisms and Culture Conditions 

Brown rot fungi G. trabeum (ATCC11539), P. placenta (Mad 698R), F. pinicola 

(lab isolate, courtesy of J. H. Connolly); white rot hngi P. chrysosporium (ATCC 

24725), T. versicolor (Fp 10 1664-SP), T. abietinum (1 247 M5L); and wood-inhabiting 

non-decay fungi T. viride (ATCC 32630), P. fusca (ATCC 62326), P. mutabilis (ATCC 

42792) w ere m aintained on  D ifco8 m alt extract a gar s lants a t  4 O C. F our - w eek o Id 

cultures on malt extract agar plates grown at 24 OC were used for inoculations. 

Decay Test 

A modification of the ASTM soil block assay (ASTM, 1994) was canied out with 

the brown rot hngus G. trabeum, the white rot hngus P, chrysosporium, and the non- 



decay fungus i7 viride. The soil was composed of 1:l:l (dry volume) mixtures of 

Hyponexo Promix potting soil (Marysville, OH, USA), vermiculite, and sphagnum 

moss. Deionized distilled water was added to the soil mixture. The moist soil was left 

over night. The soil was then transferred into 500 mL, wide mouth mason jars to a 

volume of approximately 250rnL. The following day, the soil moisture was re-adjusted 

by adding deionized distilled water until a little free water could be seen in the bottom of 

jars. Two birch feeder strips were placed side by side on the surface of the soil in each 

jar. Jars were capped and autoclaved for 30 minutes at 121 "C. The jars were allowed to 

incubate 2 days at room temperature and then autoclaved again for 30 minutes at 121 "C. 

Four blocks of the fungus and growth media were laid on the feeder strips aseptically in 

each jar to initiate fungal growth. Twelve jars were set up for each fungus. Blocks of 

sterile medium were laid on the feeder strips aseptically in four jars as controls. 

After the jars were incubated for one month at room temperature, oven-dried (100 

"C), weighed, autoclaved spruce wood blocks (2.5 x 2.5 x 2.5 cm) were aseptically 

placed on the fungus covered feeder strips, one wood block per jar. 

At weeks two, four, eight and 16, one control jar and three treated jars per fungus 

were harvested. The blocks were taken out and the fungal mass on the block surface was 

gently scraped off. Then the blocks were oven-dried (100 "C) and weighed. 

Chelator Production bv Different Fun@ 

All glassware was acid washed with 37% HN03. The brown rot fungi G. trabeum, 

P. placenta, F. pinicola, white rot fungi P. chrysosporium, T. versicolor, i7 abietinum, 

and the non-decay fungi T. viride, P. fusca, P. mutabilis were grown in modified liquid 



media (Highly, 1973; Appendix A). The iron concentration was modified to 20 pM using 

ferrous iron sulfate. The carbon source consisted of 0.2% glucose and 1% cellulose. 

After 4 weeks, the mycelial mats suspended in the liquid media were collected 

carehlly, freeze dried (VirTis FreezemobilesB), and weighed. Low moleculk weight 

compounds in the liquid media were collected by vacuum filtration through WhatmanB 

No. 2 filters and ultrafiltration in an AmiconB ~ r o ~ l u x ~  M12 Tangential filtration 

system with a molecular weight cut of 1000 D. The filtrate was concentrated by 

lyophilization (VirTis FreezemobilesB) to about one fifih of the original culture volume. 

The concentrated culture filtrate was subsequently acidified to pH 3.0 with concentrated 

HCl, followed by two ethyl acetate extractions. Ethyl acetate extracts were combined and 

evaporated to dryness at room temperature. The dry materials were resuspended in 

deionized water to produce the ethyl acetate fraction. The aqueous solution after ethyl 

acetate extraction was referred to as the aqueous fraction (Jellison et al., 1991 (a)). 

The existence of the iron chelators in the original liquid culture and in each 

fraction was tested by the Chrome azurol S (CAS) assay (Schwyn and Neilands, 1987). 

CAS assay solution was prepared according to Fekete (Fekete, 1992) and was stored in 

the dark in a polyethylene bottle. A 0.5 mL of sample or standard was mixed with 0.5 mL 

of CAS assay solution. The absorbance was read at 630 nm after the color formation 

stabilized. The chelator standard was 2,3-Dihydroxybenzoic acid. 

Phenolate derived compounds were characterized by the Arnow test (Arnow, 

1937). The phenolate chelator standard was 2,3-Dihydroxybenzoic acid. The sample or 

the standard (0.5 mL) was mixed with 0.5 mL of 0.5 N HCl, 0.5 mL of a mixture 



containing 10% sodium nitrite and 10% sodium molybdate in water, and 0.5 mL of 1 N 

NaOH. Absorbance was measured at 5 15 nm. 

Hydroxamic acid derived compounds were characterized by the Csaky test 

(Csaky, 1948, Ishimaru and Loper, 1992 (a)). The hydroxamic acid standard was 

hydroxylarnine. The sample o r  the standard (0.2 m L) w as m ixed with 0.3 m L o f 6 N 

H2S04 in a glass test tube with a polypropylene cap and autoclaved for 30 minutes at 121 

"C. Samples were then cooled to room temperature, and 0.6 mL of 35% sodium acetate 

solution, 0.1 mL of sulfanilic acid solution (in 30% acetic acid), and 0.1 mL of iodine 

solution (in glacial acetic acid) were added. After 3 minutes, 0.2 mL of 2% NaAs02 was 

added. After the color cleared, 0.2 mL of 0.1% N-1-naphthylethylene diamine solution 

was added. Absorbance was measured at 520 nm. 

The iron reduction abilities of fungal isolates were characterized using the 

Ferrozine assay (Stookey, 1970). The assay was carried out in 200 mM pH 4.5 acetate 

buffer in the presence of 30 pM FeIII. Ferrozine reagent (2.5 mM) was added at the 

beginning of the reaction. The biochelator solution was added to initiate the reaction. The 

concentration of biochelators was 30 pM as determined by the Arnow test and was 

expressed as the concentration of 2,3-DHBA. The total reaction volume was 3 mL. The 

absorbance was monitored at 562 nm. 

Fractions fiom G. trabeurn were further characterized by HPLC on a Phenomenex 

Spherex 5 pM CIS 250 x 10 mm column at 30°C using a flow rate of 1.5 mumin by 

using the HP series 1050. The mobile phase was 20% methanol containing 1 mM oxalic 

acid and 1 mM oxalate. The sample (40 p1) was injected using a Hitachi AS-2000 



autosampler. Detection w as performed using a H itachi L -4500 D iode array detector at 

275,245 and 312 nrn. 

Chelator Production Versus Iron Concentration 

Highley's liquid media (Highely, 1973; Appendix A) with 4 different iron 

concentrations were prepared. Glucose (1%) was used in Highley's media as the carbon 

source in initial experiments. Ferrous iron concentration in Highley's media ranged fiom 

0, 20, 200 to 400 pM and was adjusted by addition of ferrous iron sulfate into iron-free 

media. Liquid media (200 mL) was distributed into each 500 mL PYREX@ flask. Five 

replicates were set up for each iron concentration. Fomitopsis pinicola growing on malt 

extract agar was used to inoculate flasks. The pH of the liquid media was recorded before 

and after the growth of the fungus. After 4 weeks, the liquid fraction of the culture was 

collected by filtration through Whatman@ No. 2 filters. The fungal biomass was 

measured. The iron concentrations of the filtrates were determined by inductively 

coupled plasma mass spectrometry (ICP). Concentrations of phenolate chelators and 

hydroxamic acid c helators w ere determined b y t he A mow a ssay a nd the C saky assay, 

respectively. 

Modification of the Liquid Media Environment by Fungi 

All glassware was acid washed with 37% HN03. The brown rot fungus G. 

trabeum, the white rot fungus P. chrysosporium, and the non-decay fungus T. viride were 

grown in modified Highley's liquid media (Highley, 1973; Appendix A) containing 0.2% 

glucose and 1% cellulose as the carbon source for 4 weeks at room temperature. At the 



end of each week, selected cultures were harvested and the liquid media were collected 

by vacuum filtration through Whatman@ No. 2 filters. Three replicates were set up for 

each hngus at each time point. 

The liquid fraction was characterized with regard to pH, protein concentration 

(Lowry e t  al., 1951), phenolate type chelator concentration (Rioux assay, Rioux et al., 

1983), hydroxamic acid type chelator concentration (Csaky assay), and cellobiose 

dehydogenase (CDH) activity. Electron acceptors 2,6-Dichloroindophenol (DCPIP) and 

2,3-dimethoxy-5-methyl-l,4-benzoquinone were used for the detection of CDH activity 

(Samejima and Eriksson, 1992). The Lowry assay was camed out using bovine serum 

albumin as the protein standard. 

The Rioux assay was carried out with 2.3 mL of deionized, distilled water, 0.2 mL 

of 20% sulfuric acid, 1.0 mL of sample or standard, 0.1 mL 1 % femc ammonium citrate 

in 0.009 N sulfuric acid, 0.4 mL of 2 M ammonium fluoride, 0.4 mL of 1% 1,lO- 

phenanthroline monohydrochloride monohydrate, and 0.6 mL of 3 M 

hexamethylenetetramine. The reaction mixture was incubated at 60 OC for 1 hour. 

Absorbance was measured at 5 10 nm. 

Cellobiose dehydrogenase catalyzed DCPIP reduction was canied out at 30 OC in 

1.9 mL of 50 mM sodium tartrate, pH 4.0 buffer containing 500 pM cellobiose and 75 

pM DCPIP. The reaction was initiated by adding 0.1 mL of the liquid fractions. Activity 

was measured as the decrease of absorbance at 600 nrn. The absorption coefficient for 

DCPIP was 1.6 mM-'cm" (Samejima and Eriksson, 1992). 

Cellobiose dehydrogenase catalyzed quinone reduction was carried out at 30 OC in 

1.9 mL of 50 mM sodium tartrate, pH 4.0 buffer containing 500 pM cellobiose and 250 



pM 2,3-dimethoxy-5-methyl-1,4-benzoquinone. The reaction was initiated by adding 0.1 

mL of the liquid fractions. Activity was measured as the decrease of absorbance at 375 

nm. The absorption coefficient for 2,3-dimethoxy-5-methyl-1,4-benzoquinone was 1.2 

m ~ " c m "  (Sarnejima and Eriksson, 1992). 

Results 

Decay Test 

Both P . chrysosporium and G . t rabeum caused significant w eight 1 oss after 1 6 

weeks of decay in the soil-jar assays. GIoeophyIIum trabeum caused much more weight 

loss in spruce wood blocks than P. chrysosporium did. The weight loss after 16 weeks 

was 68.5% (1.977 +/- 0.101g) and 26.7% (0.802 +/- 0.218 g), respectively (Figure 2.1). 

The non-decay hngus T. viride did not cause weight loss. The weight loss of the wood 

blocks after 16 weeks of incubation with T. viride was 1.5% (0.045 +/- 0.002 g), while 

the weight loss of control wood blocks was 1.3% (0.044 g) (Figure 2.1. A). 

Rapid w eight 1 oss was caused by  G. t rabeum. The m ajority o f t he w eight 1 oss 

occurred within the first m onth. At  the end o f week two, the a verage weight 1 oss p er 

block was 11.9% (0.354 +/- 0.143 g). At the end of week four, weight loss was 46.3% 

(1.433 +/- 0.371 g), which was more than four times the weight loss in the first two week 

period. The rate of weight loss slowed down after four weeks. At week eight and week 

16, the weight loss was 48.3% (1.669 +/- 0.395 g) and 68.5% (1.977 +/- 0.101 g), 

respectively (Figure 2.1). 
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Figure 2.1. Weight loss of spruce blocks caused by the white rot fungus Phanerochaete 
chrysosporium (P), the brown rot fungus Gloeophyllum trabeum (G) and the non-decay 
fungus Trichoderma viride (T) in the soil-jar decay test. "C", the control jars. Data 
represent the averages of triplicate samples. At the end of 16" week, i? viride did not 
caused significant weight loss, while G. trabeum and P. chrysosporium caused significant 
weight loss compared with the control treatment (T-test with P<0.05). Major weight loss 
caused by G. trabeum occurred within the first month, while major weight loss caused by 
P. chrysosporium occurred after the first month. 

Weight loss caused by P. chrysosporium occurred slowly at the beginning. The 

majority of the weight loss occurred after one month. At the end of week two and four, 

the weight loss was only 0.7% (0.021 +/- 0.005 g) and 1.7% (0.054 +/- 0.01 g), 

respectively. After eight weeks, the weight loss was 1 1.4% (0.341 +/- 0.1 81 g), which 

was about 7 times the weight loss observed after four weeks. The rate of weight loss was 



sustained in the following weeks. At week 16, the weight loss was 26.7% (0.802 +/- 

0.21 8 g) (Figure 2.1). 

M e r  eight weeks, the decay rate was similar for P. chrysosporium and G. 

trabeum, which was reflected by the near parallel lines in Figure 2.1 .B. 

The c onditions i n o ur d ecay t est, such as substrates and environmental factors, 

may not have been ideal for the growth of P. chrysosporium, since the growth conditions 

were originally optimized for the brown rot fungi. The lack of appropriate substrate may 

contribute to the low initial decay rate and the low weight loss percentage observed. 

Spruce blocks were used in our decay test. It is known that spruce is not preferred 

substrate of P. chrysosporium and other white rot fungi (Zabel and Morrell, 1992). The 

wood blocks were placed on the surface of soil instead of being buried in soil. Such 

growth environment also affects the decay process of P. chrysosporium (ASTM, 1994). 

Characterization of Chelator Production by Different Fungi 

The brown rot fungi and the white rot fungi displayed similar growth in modified 

Highley's liquid media. There was no significant difference between the unit dry weights 

of biomass produced. All the fungi tested produced iron biochelators. A positive CAS test 

indicated the presence of siderophores or other high affinity iron binding compounds 

(Table 2. 1). 



Table 2.1. Fungal growth and biochelator production in modified Highely's media. 

- - - . v---2 ---= - - ----.-,- -m-mw--?* -?-"". - ----- ------"--*--".-" --.----*-- 

Fungi Rot type Chrome Unit dry weight of biomass 
- -- azurol S test a (g/mL) -- 

Fomitopsis pinicola Brown + 0.0087 
Gloeophyllum trabeum Brown + 0.0099 
P ostia placenta Brown + 0.0095 
Trichaptum abietinum White + 0.0092 
Phanerochaete chtysosporium White + 0.01 15 
Trametes versicolor White + 0.01 15 
Trichoderma viride Non-decay + N 
Phialocephala jirsca Nondecay + N 
Phialophora mutabilis Nondecay + N 

--7 -.- -* ---,- " r  .--- x- -->.-- - *-*-- -". ---- '. --""-, - -*-- - ---- --" ---- -----'-----?-- --------- ---- 

a. u 3, + , positive 
b. "N', not measured due to technical difficulties. The non-decay fungi did not form 
mycelia mats that could be separated fiom the cellulose powder added into the liquid 
media. Data are averages of triplicate samples. 

The three brown rot fungi and the three non-decay fungi produced phenolate- 

derived compounds that were distributed both in the organic phase and the aqueous 

phase. Phanerochaete chrysosporium did not produce detectable levels of phenolate type 

iron chelating compounds as detected by the Arnow assay. The white rot fungi T. 

versicolor and T. abietinum produced phenolate type compounds that were only found in 

the aqueous phase (Figure 2.2). All of the fungi produced hydroxamic acid derived 

compounds, which mainly occurred in the aqueous phase, except for the hydroxamic 

biochelators produced by G. trabeum (Figure 2.2). 
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Figure 2.2. (A) The distribution of phenolate / mixed phenolate derivative compounds in 
different purification fractions. The biochelators were collected from 1L of h g a l  culture 
grown i n  modified H ighley's 1 iquid m edia with 0.2% glucose and 1 % cellulose a s  the 
carbon source. The amount of phenolate or mixed phenolate derivative compounds in 
some fractions from some fungi was too low to be shown clearly in the graph. Data are 
averages and standard deviations from triplicate samples. "B ,  the brown rot fungi. Bl ,  
Fomitopsispinicola. B2, Gloeophyllum trabeum. B3, Postia placenta. "W", the white rot 
fungi. W 1, Trichaptum abietinum. W2, Phanerochaete chrysosporium. W3, Trametes 
versicolor. "N", the non-decay fungi. N1, Phialocephala fusca. N2, Phialophora 
mutabilis. N3, Trichoderma viride. The amount of phenolate derivative compounds was 
expressed as the amount of 2,3-dihydroxybenzoic acid. The amount of hydroxamic acid 
derivative compounds was expressed as the amount of hydroxylamine. 
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Figure 2.2. (B) The distribution of hydroxamic acid derivative compounds in different 
purification fractions. The biochelators were collected from 1L of fungal culture grown in 
modified Highley's liquid media with 0.2% glucose and 1% cellulose as the carbon 
source. The amount of phenolate or mixed phenolate derivative compounds in some 
fractions from some fungi was too low to be shown clearly in the graph. Data are 
averages and standard deviations from triplicate samples. "B", the brown rot fungi. B1, 
Fomitopsis pinicola. B2, Gloeophyllum trabeum. B3, Postia placenta. "W", the white rot 
fungi. W1, Trichaptum abietinum. W2, Phanerochaete chrysosporium. W3, Trametes 
versicolor. "N", the non-decay fungi. N1, Phialocephala fusca. N2, Phialophora 
mutabilis. N3, Trichodenna vin'de. The amount of phenolate derivative compounds was 
expressed as the amount of 2,3-dihydroxybenzoic acid. The amount of hydroxamic acid 
derivative compounds was expressed as the amount of hydroxylamine. 



In the Ferrozine test, the iron reduction ability of each fraction is proportional to 

the increase in absorbance at wavelength 562nrn caused by the fraction. Culture filtrates 

fiom the brown rot fungi and the non-decay fungi caused a greater absorbance increase in 

the Ferrozine test than did the white rot fungi, indicating greater iron - reducing 

capacities. Phenolate compounds produced by T. abietinum in culture filtrate caused an 

increase in absorbance of only 0.217 after 24 hours (Table 2.2). For G. trabeum, P. 

placenta, and F. pinicola, the same amount of phenolate compounds in the culture 

filtrates caused 0.335, 0.929 and 1.639 absorbance increases respectively (Table 2.2, 

Figure 2.3). All the fractions fiom F. pinicola caused extremely high absorbance 

increases. The aqueous fraction from F. pinicola caused an absorbance increase as high 

as 2.1 32, even though it contained a very small amount of phenolate compounds (Table 

2.2, Figure 2.3, 2.4, 2.5). When the ethyl acetate extraction fractions (containing mainly 

phenolate derivatives) were examined, those from the non-decay fungi caused higher 

absorbance increases than did those from the other fungi (Table 2.2, Figure 2.4). 



Table 2.2. The increase in the absorbance caused by each biochelator fraction after 24 
hours in the Ferrozine assay*. The absorbance increase indicates iron reduction is 
occurring. The increase in the absorbance caused by water control was 0.01. 

Fungus Absorbance increase in the Ferrozine assay 
Culture filtrates I Ethvl acetate extract I Aaueous fraction 

F. pinicola 
G. trabeum 
P. placenta 
T. abietinum 

1.639 
0.335 

P. chysosporium 
T. versicolor 
T. viride 

* Bold numbers indicate the absorbance increase caused by 0.09pmol phenolate type 
compounds determined by the Arnow assay. Non-bold numbers indicate the absorbance 
increase caused by a lesser and unknown amount of the phenolate type compounds. 

0.929 
0.217 

P. fusca 
P. muta bilis 

0.428 
0.275 

0.252 
0.1 78 
1.489 

2.132 
0.344 

0.186 
0.152 

1.457 
0.41 

0.56 
0.3 

0.2 12 
0.234 
0.575 

0.355 
0.376 
1.205 

0.72 
0.471 

1 .055 
0.267 
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Figure 2.3. Ferrozine assays on fungal culture filtrates. Culture filtrates from the brown 
rot fungi and the non-decay fungi displayed higher iron - reducing ability than those from 
the white rot fungi. Culture filtrate fiom the brown rot fungus Fomitopsis pinicola 
showed the highest iron - reducing ability. The ferrozine assay for the culture filtrate of 
each fungus was carried out in the presence of 30 pM Fen1 with 2.5 mM ferrozine 
reagent in pH 4.5 acetate buffer. The concentration of low molecular weight compounds 
was 30 pM as determined by the Amow test and was expressed as the concentration of 
2,3-dihydroxybenzoic acid. The total reaction volume was 3 mL. The exception was 
fungus Phanerochaete chrysosponum. Because its production of phenolate derivative 
compounds could not be detected by the Amow test, the amount of low molecular weight 
compounds added into the reaction system was unknown and less than 30 pM. 
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Figure 2.4. Ferrozine a ssays o n t he e thy1 acetate e xtracts from fungal c ulture filtrates. 
Ethyl acetate fractions mainly containing phenolate derivatives fiom the brown rot fungi 
and the non-decay fungi also displayed higher iron - reducing ability than those from the 
white rot fungi. The ethyl acetate fraction from the non-decay fungus Phialocephala 
fusca had the highest iron - reducing ability. The ethyl acetate fractions from the brown 
rot fungus Fomitopsis pinicola and the non-decay fungi Trichoderma viride and 
Phialophora mutabilis displayed similar iron - reducing ability when standardized based 
upon uniform phenol content, and ranked znd. The ferrozine assay for the ethyl acetate 
extraction of each fungus was carried out in the presence of 30 pM FeIII with 2.5 mM 
ferrozine reagent in pH 4.5 acetate buffer. The total reaction volume was 3 mL. For F. 
pinicola, GloeophyIIum trabuem and all the non-decay fungi, the concentration of low 
molecular w eight c ompounds w as 3 0 p M phenolate d erivative c ompounds. F or P ostia 
placenta and all the white rot fungi, the amount of low molecular weight compounds 
added into the reaction system was estimated due to the low initial concentration. 
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Figure 2.5. Ferrozine assays on the aqueous residuals of fungal culture filtrates after ethyl 
acetate extraction. Aqueous residuals fiom the brown rot fungi and the non-decay fungi 
also displayed higher iron - reducing ability than those from the white rot fungi. The 
aqueous residual fiom the brown rot fungus Fornitopsis pinicola showed the highest iron 
- reducing ability. The ferrozine assay for the aqueous residual of each fungus was 
carried out in the presence of 30 pM FeIII with 2.5 mM ferrozine reagent in pH 4.5 
acetate buffer. The concentration of low molecular weight compounds was 30 pM 
phenolate derivative compounds. The total volume of each reaction system was 3 mL. 
The exception was Phanerochaete chrysosporium. Because its production of phenolate 
derivative compounds could not be detected by Amow test, the amount of low molecular 
weight compound added into the reaction system was unknown. 



The culture filtrate, ethyl acetate extraction and aqueous residue from G. trabeum 

and P. chrysosporium were analyzed by HPLC (Appendix D). In the ethyl acetate 

extraction from G. trabeum, major elution peaks appeared at 17.5 rnin at detection 

wavelength 275 nm, 244 nm and 3 12 nm. The peaks correspond to iron reducing DHBA- 

like compounds (Xu, personal communication). Lesser amounts of DHBA-like 

compounds were also found in the aqueous fraction from G. trabeum. Such peaks were 

not observed with P. chrysosporium fractions, which indicates biochelators produced by 

the two hngi  are different structurally. Another major type of compounds left in the 

aqueous fraction from G. trabeum was eluted at 22 minutes at 244 nrn. It was not 

determined if this type of compounds also have iron reducing ability. Other extraction 

methods should be utilized to further separate the compounds produced by G. trabeum in 

order to identify additional compounds with high iron reducing ability. 

Chelator Production Versus Iron Concentration 

Although ferrous iron was added into the modified Highley's liquid media at the 

final concentrations of 0,20,200, and 400 pM, most of the iron precipitated in the media. 

The soluble iron in the media before inoculation was 0, 2, 4, and 7 pM, respectively. In 

iron deficient Highley's media, 20pM of ferrous iron is generally added (Jellison et al., 

1991). Thus all the media were initially iron deficient media in terms of soluble iron 

(Table 2.3). 



Table 2.3. Biochelator production by Fomitopsis pinicola versus iron concentration in 
200 mL Highley's liquid media with 1% glucose as the carbon source. Data represents 
averages of three replicates. 

The addition of ferrous iron decreased the pH of the liquid media. The pH values 

of the media of 0,20,200 and 400 pM added iron before inoculation were 3.87,3.92,3.7, 

and 3.5 1, respectively (Table 2.3). 

The growth of F. pinicola decreased the pH of the liquid media. The pH values of 

the media after one month of fungal growth were 3.30,2.44,2.68, and 2.8 1, respectively. 

The fungus grew poorly in the media without added iron. It showed similar levels of 

growth in the media containing 20,200 and 400 pM additional iron (Table 2.3). 

The decreasing pH and the production of chelators and other fungal metabolites 

dissolved the precipitated iron. After the fungal growth, the iron concentrations were 5, 

16, 209, and 376 pM, respectively. The iron concentrations of 5 pM and 209 pM were 

higher than the original known iron concentrations of 0 pM and 200 pM. The small 

amount of extra iron may have come from iron contamination of chemicals used in media 

preparation (Table 2.3). 

Under iron deficient conditions (0-20 pM ferrous iron), more phenolate 

biochelators per gram of fungal biomass were produced than hydroxamic biochelators. 

Within this i ron concentration range, t he 1 ess i ron available, the higher t he a mount o f 

~ e ~ '  
added 
(m) 
0 
20 
200 
400 

Beforefungalowth After the fungal growth 
Soluble 
k2' (W) 

0 
2 
4 
7 

PH 

3.87 
3.92 
3.7 
3.51 

Soluble 
Fe2' (IW 

5 
16 
209 
376 

Chelator production pH 

3.30 
2.44 
2.68 
2.81 

Biomass 
(8) 

0.06 
0.26 
0.26 
0.24 

Phenolate 

pM 
8.10 
16.50 
18.30 
16.00 

Hydroxamic 
pmoVg 
27.00 
12.70 
14.10 
13.60 

pM 
0.05 
0.12 
12.50 
12.00 

pmoYg 
0.20 
0.10 
9.60 
10.20 



phenolate derivative biochelators produced by unit amount of cells (Table 2.3). However, 

the fungal biomass was very limited in the media without iron added. About double the 

pM/g of phenolate chelators were produced in the media with OpM of ferrous iron 

compared t o the o ther m edia w ith h igher i ron 1 evel. T his s uggests o nly a 1 imited iron 

repressibility exists in F. pinicola compared to the higher levels of iron repressibility 

existed in previous work (Chen, 1994; Barton and Hemming, 1992). 

Further increasing the amount of ferrous iron in the media to 200 pM did not 

significantly affect the production of phenolate type biochelators, while the production of 

hydroxamic acid derivatives increased significantly (Table 2.3). This may indicate that 

different regulation mechanisms exist for the production of these two types of 

biochelators. When the amount of iron was increased to 400 pM, the production of either 

type of biochelators did not change (Table 2.3). 

Fomitopsis pinicola grown in the modified Highley's liquid media (20 pM ferrous 

iron) with 1% cellulose and 0.2% glucose as the carbon source produced more 

hydroxamic acid derivatives (Figure 2.2). But most of the biochelators produced by F. 

pinicola grown in Highley's media (20 pM ferrous iron) with glucose as the sole carbon 

source were phenolate types (Table 2.3). 

Modification of the Liquid Media Environment 

Three representative fungi, P. chrysosporium, G. trabeum and T. viride, were 

selected for further examination (Figure 2.6). 

pH Change. The growth of all three fungi caused the media pH to decrease with time 

from an original value of pH 4.5. The white rot fungus P. chrysosporium and the brown 

rot fungus G. trabeum decreased the pH gradually w ithin the 4 weeks, while the non- 



decay h g u s  T. viride decreased the pH sharply within the first week. In the following 

weeks, the pH decreased slightly or remained unchanged. At the end of 4 weeks of 

growth, T. viride caused the greatest pH decrease. Phanerochaete chrysosporium 

decreased pH more sharply than G . trabeum did within the first week, but by week four 

the decrease in pH by P. chrysosporium and G. trabeum was almost the same, 1.18 and 

1.15 pH units respectively (Figure 2.6). In studies extending over longer periods, G. 

trabeum is usually observed to lower the pH to a greater extent than does P. 

chrysosporium (Jellison, unpublished). 

Change of Extracellular Protein Concentrations. For P. chrysosporium, the 

extracellular protein concentration was greatest at week one, then decreased with time. 

For T. viride, the protein concentration was greatest after two weeks, then decreased with 

time. For G. trabeum, the protein concentration also was greatest at week one, then 

decreased with time until week four. At its highest concentration, P. chrysosporium 

produced the highest amount of extracellular protein (0.038 pg/pl). GIoeophyllum 

trabeum ranked second (0.034 pg/pl) and T. viride was the third (0.023 pg/pl). Data were 

not shown in Figure 2.6. The higher protein concentration at early weeks might be 

experiment errors caused by the nitrogen source in the liquid media. Alternative methods 

for protein concentration determination should be used to repeat this experiment. 

Biochelator Production. Determined by the Rioux assay, Gloeophyllum trabeum. P. 

chrysosporium and T. viride all produced phenolate type chelators in this experiment. 

After grown in the modified Highley's liquid media for 4 weeks, G. trabeum produced 

the highest amount of phenolate chelator (26.99 pM) and P. chrysosporium produced the 



least amount (14.67 pM). Trichoderma viride produced an intermediate level of 

phenolate type chelators (18.09 pM) (Figure 2.6). 

When the phenolate biochelator production in modified Highley's liquid media 

was detected by the Amow assay (Figure 2.2), G. trabeum produced about 32 pM 

phenolate compounds. Trichoderma viride produced about 6 pM phenolate compounds. 

The amount of phenolate biochelators produced by P. chrysosporium was not detectable. 

It's known that the Rioux assay is more sensitive than the Arnow assay since it has a 

broader spectrum of substrates. The Rioux assay detects bothp-diol (hydroquinones) and 

o-diols (catechols), while the Arnow assay is specific for cis-diols (catechols) (Barton 

and Hemming, 1992). The amounts of phenolate biochelators produced by both P. 

chrysosporium and T. viride increased when the production was detected by the Rioux 

assay (Figure 2.2 and Figure 2.6), which can be easily explained by the property of the 

Rioux assay mentioned above. This implies P. chrysosporium and T. viride produce more 

hydroquinones than c atechols. The d ifferences b etween these two s ets o f e xperiments, 

such as culture temperatures, media compositions, ages of inoculums, and so on, can also 

contribute to the increasing production. The amounts of phenolate biochelators produced 

by G. trabeum decreased when the production was detected by the Rioux assay (Figure 

2.2 and Figure 2.6), which may be due to the differences between these two sets of 

experiments mentioned above. It has been reported that G. trabeum produced much more 

catechol compounds than hydroquinone compounds (Jensen et al., 2001). Consequently it 

is expected that the Rioux assay and the Amow assay should give similar results when 

used to detect the amounts of phenolate biochelators produced by G. trabeum. 



GIoeophyIIum trabeum, P. chlysosporium and T, viride all produced hydroxamic 

acid type chelators (Figure 2.6), which is consistent with the results obtained fiom the 

previous experiment shown in Figure 2.2. However, the amounts of hydroxamic 

biochelators produced by the same fungus varied in these two experiments (Figure 2.2 

and Figure 2.6). At week four, the amounts of hydroxamates produced by P. 

chlysosporium were about 5 pM (Figure 2.6) and 18 pM (Figure 2.2), respectively. The 

amounts of hydroxamates produced by T. viride were about 35 pM (Figure 2.6) and 10 

pM (Figure 2.2), respectively. The amounts of hydroxamates produced b y  G. trabeum 

were about 8 pM (Figure 2.6) and 17 pM (Figure 2.2), respectively. The reasons why the 

hydroxamate production was so different between these two experiments are not known. 

Shown in the time study, the phenolate biochelator production and the 

hydroxamic biochelator production by the tested fungi changed irregularly between 

weeks. The reasons are not known. But overall, the concentration of phenolate type 

chelators was greatest at week four for all three fungi tested. The higher level of 

production of phenolates by G. trabeum was particularly pronounced during the early 

weeks (Figure 2.6). For all fungi tested the hydroxamate production was greatest at week 

three (Figure 2.6). 

Cellobiose Dehvdroeenase ActiviW. By monitoring D CPIP r eduction, a 11 three tested 

fungi showed detectable CDH activity (Figure 2.6). Phanerochaete chlysosporium and 

G. trabeum displayed a similar trend; fiom week one to week three, the activity decreased 

with time, then it increased at week four. Phanerochaete chlysosporium displayed its 

greatest CDH activity at week four and G. trabeum at week one. For T. viride, the CDH 

activity increased fiom week one to week two, maximizing at week two then decreased. 



Ouinone - Reducing Activity. The extracellular cellobiose dependent quinone reducing 

ability of the three fungi was studied by monitoring 2,3-dimethoxy-5-methyl-1,4- 

benzoquinone reduction,. At week one, none of the three fungi tested showed 

extracellular quinone - reducing activity. However, activity increased with time, 

maximizing at week three, then decreased. The liquid media of T. viride showed the 

highest amount of quinone reduction of the fungi tested (Figure 2.6). Average levels of 

quinone reduction ranged from below 2 U for P. chrysosporium at 2 weeks to over 12 U 

for T. viride at 2 and 3 weeks and 6 U for G. trabeum at 3 weeks. 
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Figure 2.6. Changes of modified Highley's liquid media by fungal metabolites of a white 
rot, a brown rot and a non-decay fungus with time. "P", the white rot fungus 
Phanerochaete chrysosporium. "T", the non-decay fungus Trichoderma viride. "G", the 
brown rot fungus Gleophyllum trabeum. "W", the week. Cellobiose dehydrogenase 
activity was monitored by using two different electron acceptors, 2,6-Dichloroindophenol 
(DCPIP) and 2,3-dimethoxy-5-methyl-l,4-benzoquinone. 1 U = 1 pmoYmin. The values 
shown were the averages and the standard deviations of triplicate samples. 



Discussion 

The soil block decay test confirms previous observations concerning different 

types of wood degradation. The wood-inhabiting non-decay fungus T. viride colonized 

but did not significantly decrease the weight of spruce blocks. The brown rot fungus G. 

trabeum caused rapid weight loss. The white rot hngus P. chlysosporium degraded wood 

and caused weight loss gradually (Worrall et al., 1997). Apparent weight loss was 

monitored in our decay test (Figure 2.1). Measurements of apparent weight loss may 

underestimate actual weight loss by up to as much as 42%. Work by Jones and Worrall 

(1993 and 1995) has showed that when the fungal biomass in decayed wood is measured 

by using glucosamine as an indicator, after 12 weeks of decay, birch blocks contain 

31.3% T. versicolor fungal mass, and 9.0% G. trabeum fungal mass. Thus G. trabeum 

and P. chrysosporium actually cause more significant weight losses than what was 

observed in our decay test. Although it has not been studied, the T. viride inhabiting 

wood blocks might also contain certain amount of T. viride fungal mass. 

After grown in the modified Highley's liquid media for 4 weeks, Phanerochaete 

chlysosporium produced more hydroxamic acid type chelator than phenolate type 

chelators. The reverse was seen for G. trabeum. Trichoderma also produced more 

hydroxamates than phenolates (Figure 2.2 and Figure 2.6). Phanerochaete chrysosporium 

produced the highest amount of hydoxamic acid type chelators, while G. trabeum 

produced the highest amount of phenolate types (Figure 2.2 and Figure 2.6). 

GIoeophyIIum trabeum was characterized by an ability to produce much higher levels of 

phenolate chelators during the early weeks of growth than did either of the other fungi 

tested (Figure 2.6). 
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The phenolate compounds produced by different categories of fungi showed a 

differential partitioning in ethyl acetate extraction. Some phenolate type compounds 

produced by brown rot fungi could be extracted by ethyl acetate but none of those 

produced by the white rot fungi could (Figure 2.2). This may suggest some phenolate 

type compounds fiom the brown and white rot h g i  are different in polarity, structure, 

and possibly function. 

For most of the fungi, ethyl acetate extraction could efficiently exclude the 

hydroxyamate type compounds, and most of these compounds were left in the aqueous 

fiaction a fter e xtraction (Figure 2 -2). This c onfinns the s electivity o f t he e thyl acetate 

extraction. The only exception was G. trabeum (Figure 2.2 B). 

However, it can be observed that ethyl acetate fraction and the aqueous residue 

contained both phenolates and hydroxarnates. This is because phenolates with higher 

polarity will be more difficult to extract completely in the ethyl acetate phase and 

hydroxamates with 1 ower p olarity will tend t o  b e extracted i n the e thyl acetate phase. 

Consequently it is an artificial way to label the ethyl acetate extraction as phenolates and 

the aqueous ftaction as hydroxamates. 

The culture filtrates fiom the brown rot fungi showed higher iron reduction ability 

than the culture filtrates fiom the white rot fungi (Table 2.2 and Figure 2.3). This 

suggests again that there are differences in function and structure between iron-chelators 

produced by the white rot and the brown rot fungi. It is interesting to note that the mixed 

compounds produced by the non-decay fungi (Table 2.2 and Figure 2.3), especially the 

compounds extracted by ethyl acetate (Table 2.2 and Figure 2.4), also show very high 

iron - reducing ability. This suggests that these non-decay fungi also produce biochelators 



that can potentially play an important role in a chelator - driven Fenton reaction when 

other factors permit this to occur. 

The relevance of these observations on biochelator production to decay 

mechanisms is not entirely clear. The ubiquitous production of biochelators by all fimgi 

tested suggests that biochelators may play various roles in the physiology of fimgi. For 

example, biochelators may act as laccase mediators, or participate in iron uptake. 

We expected that biochelators extracted by ethyl acetate would have the highest 

iron reducing ability. This was only true for the non-decay fungus P. mutiabilis (Table 

2.2). For all the other eight fungi tested, the ethyl acetate fraction showed a lower iron - 

reducing ability than did the aqueous fraction (Table 2.2), probably indicating incomplete 

extraction. When the three fractions from G. trabeum were analyzed with HPLC 

(Appendix D), it was found that in the ethyl acetate extraction, most compounds were 

iron reducing DHBA-like compounds. Lesser amounts of DHBA-like compounds were 

also found in the aqueous fraction. Thus the ethyl acetate extraction was selective but not 

complete for DHBA-like phenolate compounds. Increasing the times of ethyl acetate 

extraction or utilizing other extraction methods would help to isolate more phenolate 

compounds with iron reducing ability from the aqueous fraction. 

Low levels of CDH activity were detected in P. chrysosporium, G. trabeum and 

T. viride by the reduction of DCPIP and 2,3-dimethoxy-5-methyl-1,4-benzoquinone 

(Figure 2.6). Presence of CDH activity in P. chrysosporium culture is consistent with 

previous research (Bao et al., 1993; Higham et al., 1994; Raices et al., 1995; Lehner et 

al., 1996; Li et al., 1996 and 1997; Igarashi et al., 1996, 1998 and 1999; Cohen et al., 

1997; Henriksson et al., 1997 and 1998; Habu et al., 1993 and 1997; Vallim et al., 1998; 



Cameron and Aust, 1999). This is the first report regarding the presence of CDH in G. 

trabeum and T. viride cultures. It has been reported that CDH was not produced by G. 

trabeum grown in glucose mineral media (Kerem et al., 1999). Our results, however, 

show CDH production in the presence of cellulose (Figure 2.6). The results confirm that 

CDH is a cellulose induced enzyme produced under cellulolytic conditions, and suggest 

that previous difficulties detecting CDH production (Kerem et al., 1999) may have been 

due to inappropriate culture conditions. 

The low level and irregular CDH production over time might be because most 

CDH was absorbed on the surface of the cellulose. Shake cultures have been shown to 

increase the production and release of the CDH into liquid media (Igarashi et al., 1996). It 

has also been reported that supplementing the liquid media with bovine calf serum 

increases the CDH production in P. chrysosporium (Habu et al., 1997). 

Genes encoding CDH in P. chrysosporium, P. cinnabarinus, T. versicolor, and S. 

thermophile have been cloned and characterized. The enzymes from different fungi 

showed high protein sequence identity (Raices et al., 1995; Li et al., 1996 and 1997; 

Vallim et al., 1998; Moukha et al., 1999; Dumonceaux et al., 1998; Subramaniam et al., 

1999). Thus, it should also be possible to characterize the CDH in the brown rot hngi 

and the non-decay fungi directly at gene level. 

CDH has been proposed to drive the Fenton reaction in white rot fungi (Cameron 

and Aust, 1999) and in the brown rot hngus C. puteana (Hyde and Wood, 1997) by 

reducing ferric iron and molecular oxygen. The quinone - reducing ability of CDH may 

contribute to the biochelator - driven Fenton reaction. It may also play a role in 

regenerating oxidized biochelators (Paszczynski et al., 1999; Kerem et al., 1999). 



Biochelators are oxidized to quinones by reducing femc iron (Goodell et al., 1997 (a) and 

(b); Paszczynski et al., 1999; Kerem et al., 1999). CDH may reduce the oxidized 

biochelators to corresponding hydroquinones/catechols by using cellobiose as the 

electron donor. Such a CDH mediated quinone redox cycle could be one possible 

pathway for the continuous iron reduction necessary to perpetuate the Fenton reaction. 

However, the electron donor of CDH, cellobiose, is a product of cellulases during 

enzymatic cellulose biodegradation, and the size of CDH is also too big for the enzyme to 

diffuse in the solid wood cell wall. As a result, regeneration of biochelators by the CDH 

mediated quinone redox cycle would be unlikely to occur at the early stage of brown rot 

decay. Alternate possibilities including biochelator mineralization may be more feasible 

(Goodell et al., 2001; Goodell, 2002; Pracht et al., 2001). 

CDH may also participate in the production of hydroxamic acid type biochelators. 

It has been reported that CDH oxidizes cellobiose resulting from cellulose degradation to 

cellobionolactone, determined as a hydroxamic acid derivative (Westermark and 

Eriksson, 1975; Higham et al., 1994). It was shown that the carbon source affected the 

production of biochelators by F. pinicola. When cellulose and glucose were used as the 

combined carbon source, the fungus produced about equal amounts of phenolate 

derivatives and hydroxamic acid derivatives in iron deficient media (20 pM ferrous iron) 

(Figure 2.2). However, phenolate types were produced mostly when glucose was the only 

carbon source in iron deficient media (20 pM ferrous iron) (Table 2.3). As noted in our 

work, CDH is a cellulose induced enzyme. Thus the presence of CDH under cellulolytic 

conditions might contribute to the increased production of hydroxamic acid derivatives 

by cultures grown on cellulose as a carbon source. 



In our study, the wood-inhabiting non-decay fungi tested produced moderate 

levels of both phenolate type and hydroxamic acid type chelators (Figure 2.2 and Figure 

2.6). The biochelators produced also showed iron - reducing ability, which was higher 

than the iron-reducing activity of the chelators produced by the white rot fungi and some 

of the brown rot fungi tested (Table 2.2, Figure 2.3, Figure 2.4 and Figure 2.5). 

Trichoderma v iride caused a rapid p H d ecrease during the t ime p eriod monitored and 

showed detectable CDH activity (Figure 2.6). 

Although not measured in this study, Trichoderma is known to produce large 

amounts of cellulase and other degradative enzymes. Trichoderma reesei and T. viride 

have been used for the commercial production of cellulase (Samuels, 1996). It has also 

been reported that when the ability of different fungi to penetrate micropores of various 

pore size in polycarbonate membranes was tested, the non-decay fungi A ureobasidium 

pullulans and Sclerophoma pityophila were able to penetrate micropores of very small 

dimensions (0.2 pm) rapidly and caused erosion. Neither G. trabeum nor P. 

chrysosporium could penetrate the membranes (Bardage and Geoffrey, 1998). However, 

as shown in the soil block decay test, Trichoderma viride did not degrade spruce blocks. 

The ability of a non-decay fungus such as Trichoderma to produce many of the 

components postulated to be involved in wood biodegradation is still not explained and 

clearly has implications for understanding wood degradation and preservation. 

It should be noted that in the pH change time study, Trichoderma decreased the 

pH s harply i n t he m odified H ighley's m edia a t  the first w eek and m ade the p H m uch 

lower than the pH detected in cultures of G. trabeum and P. chrysosporium at the same 

growth time. pH reduction may be one of the mechanisms used by Trichoderma during 



competitive growth to modify the environment for fast establishment of itself. In the dual 

agar cultures of Trichoderma virens with the white rot fungi: T. versicolor, Phlebia 

brevispora, Irpex lacteus, and the brown rot fungi, P. placenta, Neolentinus lepideus, and 

G. trabeum, Trichoderma rapidly overgrew and killed the decay fungi (Highley, 1997; 

Highley et al., 1997). Although the filter-sterilized filtrates from T. virens showed a 

similar fungistatic effect against the decay fungi in agar media, weight loss in wood 

blocks treated with such filtrates was only slightly reduced when exposed to decay fungi 

in soil-block tests. Thus, living T. virens was needed to inhibit wood decay. Trichoderma 

species have also been used in biological control of several plant diseases (Highley, 1997; 

Highley et al., 1997). 

In summary, all fungal species tested could produce iron chelators, but the 

patterns of production and iron - reducing abilities varied, which indicates biochelators 

produced by different categories of fungi may be different in structure and function. The 

ubiquitous production of biochelators by the fungi tested suggests biochelators may play 

a role in general fungal physiology, such as iron uptake. Biochelators from the brown rot 

fungi showed higher iron reduction ability than did those from the white rot fungi. The 

brown rot fungus Fomitopsis pinicola produced biochelators with the highest iron - 

reducing ability. These results support the theory that biochelator mediated Fenton 

reactions play a role in brown rot biodegradation of wood. 

In the presence of cellulose, all the fungi tested produced low levels of CDH 

activity in the media. The results are consistent with the observations that the enzyme is 

induced by cellulose but little of the activity is released into the media because the 

enzyme is bound to cellulose strongly via a cellulose - binding site. CDH might help 



mediate an extracellular quinone redox cycle by which oxidized biochelators can be 

reduced, but the absence of the electron donor ( cellobiose) a t  the e arly n on-enzymatic 

decay stage and the size of the enzyme suggest that a CDH mediated quinone redox cycle 

would not occur at the initial decay stage. 



Chapter 3 

PROPERTIES OF A TRANSPLASMA MEMBRANE REDOX SYSTEM OF THE 

BROWN ROT FUNGUS GLOEOPHYLLUM TRABEUM 

Abstract 

Ubiquitous transplasma membrane systems contribute to quinone reduction, 

which is an important reaction in fungal physiology. A transplasma membrane redox 

system of the brown rot fungus Gloeophyllum trabeum was characterized based upon its 

femcyanide reduction kinetics. Nitrogen deficiency did not statistically affect the 

femcyanide reduction rates, but carbon limitation decreased the reduction activity. 

Femcyanide reduction rates depended on initial femcyanide concentration and initial 

mycelial mass. Reduction rates were within linear range when the femcyanide 

concentration was up to 20 mM and when mycelial mass was up to 120 mg (dry weight) 

in 200 mM potassium phosphate buffer (pH 8.0). Specific activity of approximately 12 

nmoVmidmg of mycelia (dry weight) was obtained in potassium phosphate buffer (pH 

8.0,200 mM) with 10 mM femcyanide and 97 +I- 3 mg dry weight of mycelia. The rates 

increased with pH above the h g a l  physiological pH (pH 5). Femcyanide reduction was 

inhibited by carbonyl cyanide m-chloromethoxypheny1 hydrazone, 2,4-dinitrophenol 

(DNP-OH) and sodium azide at 100 nmoVmg mycelia (dry weight) but not by potassium 

cyanide. The femcyanide reduction rate was statistically lower in HEPES buffer (pH 8.0) 

than in potassium phosphate buffer (pH 8.0). The plasma membrane redox system of G. 

trabeum showed 1,4-quinone - reducing ability. The reaction had an optimum pH of 7.0, 

a Krn of 59 pM, and a V,, of 17.5 nmoVmidmg mycelia (dry weight). Gloeophyllum 



trabeum also produced intracellular NAD(P)H dependent 1 ,&benzoquinone reductases. 

Reduction of 1,4-benzoquinone by the crude intracellular enzyme extract had a pH 

optimum of 6.5, a Krn of 156 pM, and a V,, of 863 nmoYminImg protein. 

Introduction 

A m embrane-bound r edox system w ith q uinone - reducing ability ( Fernando e t 

al., 1990; Stahl and Aust, 1993 and 1995; Stahl et al., 1995) has been characterized in the 

white rot fungus Phanerochaete chrysosporium. The transplasma membrane redox 

system (PMRS) is the plasma membrane - bound electron transport chain or the plasma 

membrane - bound oxidoreduction system that is ubiquitous in all organisms. The 

enzyme activities associated with PMRS include fenireductase, NADHxbiquinone 

oxidoreductase, NADH:acceptor oxidoreductase and many others. The primary electron 

donors are cytoplasmic NADH and NADPH. The electron acceptors include molecular 

oxygen, fenic ions, ascorbate free radicals, and quinones. Quinones and non-heme iron 

have also been found as the cofactors of some systems (Medina et al., 1997). For 

example, animal PMRSs contain ubiquinone as an electron shuttle (Sun et al., 1992). The 

quinone vitamin K is in plant plasma membranes @arr et al., 1990). Several NAD(P)H- 

quinone oxidoreductases have been purified from the plasma membrane of higher plants 

(Berczi and Moller, 2000). Sodium transport NADH-quinone reductases have been 

purified from many bacteria (Unemoto and Hayashi, 1993). 

PMRSs contribute to many important cell functions, such as modulation of 

membrane potential, proton extrusion and control of internal pH, and iron uptake and cell 

defense (Medina et al., 1997). For example, a cytochrome system that directly drives iron 



uptake at the plasma membrane of plant cells (Lundegardh, 1945), an inducible Turbo 

system for iron reduction and uptake in plant root cells (Bienfait, 1985), and a membrane 

- bound ferrireductase system in yeast Saccharomyces cerevisiae (Lesuisse et al., 1996) 

have been studied. The PMRS in S. cerevisiae has also been proposed to drive potassium 

- proton and potassium - sodium exchange (Conway and Keman, 1955). The PMRS in 

the mold Dendryphiella salina has been suggested to be involved in the oxidation and 

reduction of polyols (Medina et al., 1997). The NAD(P)H-quinone oxidoreductases in 

plant PMRSs may act as antioxidants in cell defense (Medina et al, 1997). The NADH 

quinone reductases in bacterial PMRSs play an important role in bacterial energetics 

(Unemoto and Hayashi, 1993). The PMRS of the white rot fungus P. chrysosporium has 

been found to be able to reduce fiee radicals and several quinones (Stahl et al., 1995). It 

has been proposed that the P. chrysosporium PMRS plays an important role in 

extracellular pH regulation, bioremediation of highly oxidized contaminants, and cell 

protection against the extracellular free radical generating ligninolytic systems (Stahl et 

al., 1995). Traditionally PMRSs have been studied by using membrane impermeable 

electron acceptors such as ferricyanide on intact cells and characterized regarding the 

kinetics of ferricyanide reduction (Conway and Keman, 1955; Crane et al., 1982; Medina 

et al., 1997). 

The role of membrane bound redox systems in brown rot fungi has not been 

extensively studied. Intact hyphae of G. trabeum have been found to reduce 2,5- 

dimethoxy-l,4-benzoquinone (2,5-DMBQ) in sodium phosphate buffer (50 mM, pH 4.1) 

(Kerem et al., 1999). It has also been reported that intact G. trabeum hyphae can reduce 

2,3-dimethoxy- 5-methyl-l,4-benzoquinone added into a basal media, although 



extracellular quinone - reducing activity has not been detected on basal media alone 

(Kerem et al., 1999). Purification and fiuther characterization of this activity has not 

previously been attempted. 

In this study, the reduction of 1,Cquinone by intact G. trabeum hyphae and by the 

crude intracellular enzyme extract fiom G. trabeum (Brock et al., 1995) was studied and 

compared. The transplasma membrane redox system of G. trabeum was characterized 

based on the kinetics of ferricyanide reduction. The purpose of this work was to better 

understand the characteristics of G. trabeum PMRS and what role it might play in 

biodegradative processes and basic fungal physiology. 

Materials and Methods 

Oreanism and Culture Conditions 

Stock cultures of GIoeophyIIum trabeum ATCC 11539 were maintained on 

DifcoB malt extract agar slants at 4 OC. Cultures were grown on BBL@ potato dextrose 

agar (PDA) p lates (20 mL1plate) at 3 0 O C for a week. The P DA with the fungus was 

homogenized with sterile distilled water at the ratio of 1:4 (weight ratio) in a sterile 

Osterize* blender aseptically, three times in 15-second bursts with 1 minute between 

each burst. The resulting mixture was used to inoculate aseptically the stationary 4-liter 

PYREX@ flasks that contained 90 mL of basal growth media (Tien and Kirk, 1988). Ten 

mL homogenate was inoculated into each flask (Kerem et al., 1999). The nitrogen levels 

of the basal media were 1.1 mM (low - nitrogen) and 11 mM (high - nitrogen), 

respectively. Cultures were grown at 30 OC for one week. 



Collection of Mvcelia Mass 

The mycelia were collected by vacuum filtration through W h a t m a .  No. 2 filters 

and washed with an equal volume of 4 OC deionized distilled water. 

Determine Mycelial Wet Weight Versus Dry Weight 

Different amounts of fresh mycelia were dried by lyophilization using a VirTisB 

Lyophilizer. The dry weights were measured and plotted versus the wet weights. 

Ferricyanide Reduction 

In a typical reaction (Stahl and Aust 1995, Avron and Shavit 1963), washed 

mycelia (97 +I- 3 mg, dry weight) were incubated with fenicyanide (10 mM) in 200 mM 

potassium p hosphate b uffer (pH 8.0) for 5 minutes. The total v olume was 5 m L. The 

assays were carried out in 20 mL PYREXB beakers and run through Whatmano glass 

microfibre filters at the end of the reaction time. The ferrocyanide concentration was 

determined spectrophotometrically (Avron and Shavit, 1963) at 535 nrn. The molar 

absorbance coefficient of ferrocyanide was 10,800 M-'cm-'. The dry weight of the 

mycelia was determined via the standard curve prepared. 

Inhibition of Ferricvanide Reduction 

Washed mycelia (100 +I- 10 mg dry weight) were suspended in 65 mL potassium 

phosphate buffer (200 mM, pH 8.0) containing 200 pM of the inhibitor being tested. 

Potassium cyanide (KCN, 10 mM) and sodium azide (NaN3, 10 mM) were prepared in 

water. Carbonyl cyanide m-chlorophenyl hydrazone (CCCP, 10 rnM) and 2,4- 



dinitrophenol (DNP-OH, 10 mM) were prepared in acetone. Water or acetone alone 

added t o  t he b uffer represented the c ontrols. T he m ycelia - b uffer m ixtures w ere p re- 

incubated for 15 minutes with each inhibitor or control (Stahl and Aust, 1995). Potassium 

fenicyanide was subsequently added and the mixtures were further incubated for 5 

minutes. Fenicyanide reduction was detected as described previously. 

Effects of Buffers on Ferricvanide Reduction 

The assays were carried out with 35 +I- 2 mg of mycelia (dry weight) in 5 mL of 

200 mM, pH 8.0 potassium phosphate buffer, sodium phosphate buffer, or HEPES (N-[2- 

Hydroxyethyllpiperazine-N'-C2-ethanesulfoc acid) buffer as described previously. 

Effect of pH on Ferricvanide Reduction 

The assays were carried out with 97 +I- 3 mg of mycelia (dry weight) in 5 mL of 

200 mM phosphate buffer (pH 6 to 8) or 200 rnM sodium citrate buffer (pH 3 to 5) as 

described previously. 

Ouinone Reduction by Intact Hvphae or Lysed Hvphae 

Lysed mycelia were obtained by breaking mycelia in an OsterizerB blender with 

50 mM sodium phosphate buffer (pH 7.0), followed by centrifuging at 17,418 x g for 20 

minutes (Beckman J2-21 centrifuge with a JA-20 rotor). The pellet was collected. Fresh 

mycelia or lysed mycelia (27 to 30 mg, dry weight) was added into 5.0 mL pH 8.0 (unless 

otherwise noted) 200 mM potassium phosphate buffer with 80 @I 1,4 benzoquinone 

(Stahl e t  al., 1995). Theassayswerecamed out i n 2 0  mLPYREX@ beakers and run 



through Whatman@ glass microfibre filters at the end of the reaction time. The product 

1,4-hydroquinone was detected at 288 nm with extinction coefficient as 2670 M-'cm-'. 

The absorbance was corrected for the contribution by the reactant 1,4-benzoquinone at 

288 nm with extinction coefficient as 450 M-'cm-'. The reactant 1,4-benzoquinone was 

detected at 245 nm with extinction coefficient as 15600 M-'cm-'. Each reaction was 

canied out with three replicates. 

Effect of pH on Quinone Reduction by Intact Hyphae 

The assays were canied out with 27 +/- 3 mg of mycelia (dry weight) in 200 mM 

phosphate buffer (pH 6.5 to 8.7) or 200 mM sodium citrate buffer (pH 4.5 to 6) as 

described previously. 

Quinone Reduction by the Culture Filtrate 

Cellobiose dehydrogenase catalyzed quinone reduction was canied out at 30 OC in 

1.9 rnL of 50 mM sodium tartrate, pH 4.0 buffer containing 500 pM cellobiose and 250 

pM 2,3-dimethoxy-5-methyl-1,4-benzoquinone. The reaction was initiated by adding 0.1 

mL of the liquid fraction. Activity was measured as the decrease of absorbance at 375 

nm. The extinction coefficient of 2,3-dimethoxy-5-methyl-l,4-benzoquinone was 1.2 

mM-' cm" (Samejima and Eriksson, 1992). 

Preparation of Intracellular Enzyme Extract 

The protocol was modified from the procedure described by Brock and colleagues 

(1 995). Frozen mycelia were broken in an Osterizefi blender with extract buffer (50 rnM 



sodium phosphate pH 7.0, 1 mM EDTA, 0.004% phenylmethylsulfonyl fluoride), 

transferred to a VWRbrandB tissue grinder, and homogenized three times. The 

homogenate w as c entrifuged at 1 7,418 x g for 2 0 m inutes (Beckman J2 -2 1 c entrifuge 

with a JA-20 rotor) and the supernatant was collected. 

Quinone Reduction by the Intracellular Enzyme Extract 

Intracellular quinone - reducing activity was determined by following the 

oxidation of NADH at 340 nm (Brock et al., 1995). Standard reaction mixtures in 1 mL 

consisted of 50 mM sodiurn citrate buffer (pH 6.0), 100 p M  1,4-benzoquinone, and 0.01 

mL of enzyme extraction. Reactions were initiated by the addition of 200 p M  NADH. 

Reaction time was 10 minutes. Enzyme assays were carried out at room temperature with 

a Beckman DUB-64 spectrophotometer. 

Effect of pH on Ouinone Reduction by the Intracellular Enzyme Extract 

The assays were carried out with 0.01 mL of the intracellular enzyme extract in 

50 mM phosphate buffer (pH 6.5 to 8.7) or 50 mM sodium citrate buffer (pH 4.5 to 6) as 

described previously. 

Protein Concentration 

Protein concentrations were measured by the Lowry assay (Lowry et al., 1951), 

with bovine serum albumin as the protein standard. 



Results 

Nitrogen deficiency limited the growth of G. trabeum in the shallow basal media 

(Table 3.1). After one week of growth, the mycelial mass in nitrogen sufficient media (1 1 

mM of ammonium) was 0.9 mg/mL, while that in nitrogen deficient media (1.1 mM of 

ammonium) was only 0.3 mg/mL. 

The ferricyanide reduction rate of the G. trabeum PMRS was statistically the 

same for the mycelia grown in nitrogen deficient media and the mycelia grown in 

nitrogen sufficient media. However, the older mycelia fiom both media lost about half of 

their reduction capability (Table 3.1). The decrease of reduction capability may be 

because the older cultures contain a greater amount of inactive hyphae. 

The mycelial mass from nitrogen deficient media was used in this study in order 

to simulate the nitrogen deficient wood environment. 

Table 3.1. Effect of nitrogen deficiency on femcyanide reduction and growth of G. 
trabeum '. 

"' Femcyanide reduction rates were determined by using 76 +I- 15 mg (dry weight) 
washed mycelia. All data represent averages and standard deviations of triplicate 
samples. 
b. The femcyanide reduction rate of mycelia from the nutrient sufficient condition was 
statistically the same as that fiom the nutrient deficient condition at P < 0.05. 
'' The mycelia mass fiom the nutrient sufficient condition (1 1 mM nitrogen) was 
statistically higher than that fiom nutrient deficient condition (1.1 mM) at P < 0.05. 

Culture 
age 
(week) 
1 
2 

Fungal growth and femcyanide reduction 
1. lmM of ammonium 1 1mM of ammonium 

Ferricyanide 
reduction rate 
(nmoVmg/min) 
12 +I- 1.9 
5.5 +I- 2.46 

Femc yanide 
reduction rate 
(nmoVmg/min) 
10.9 +I- 2.1 
4.5+/- 0.95 

Mycelia mass 
(mg/mL, Wet weight) 

0.3 +I- 0.05 
0.3 +I- 0.03 

Mycelia mass 
(mg/rnL, Wet weight) 

0.9 +I- 0.03 
1.2 +I- 0.04 



To find out the linear range of the reaction, we studied the effects of reaction 

time, concentration of ferricyanide, and amount of mycelia on ferrycianide reduction 

(Figure 3.1). The reaction was within a linear range when the reaction time was less than 

or equal to 5 minutes, when the ferricyanide concentration was up to 20 mM, and when 

the mycelial amount was up to 120 mg (dry weight). The linear regression correlation 

coefficients were 0.9959, 0.9906, 0.9267, respectively. Specific activity of 12 

nrnol/minlmg (mycelial dry weight) was obtained with 10 mM ferricyanide and 97 +I- 3 

mg dry w eight o f m ycelia i n p H 8.0 p otassiurn phosphate b uffer a fter 5 m inutes. T he 

mycelial wet weight or dry w eight was estimated based on the standard curve (Figure 

3.1). 
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Figure 3.1. Reduction of ferricyanide by G. trabeum mycelia (A) at different reaction 
times, (B) at different amounts of mycelial mass, and (C) at different concentrations of 
ferricyanide. The reduction was linear when the reaction time was within 5 minutes, the 
ferricyanide concentration was up to 20 mM and when the mycelial mass was up to 120 
mg. (A) 89.5 +/- 1.5 mg (dry weight) washed mycelia were used for each reaction. R2 = 

0.9959. (B) Indicated amounts of washed mycelia (mg dry weight) were used for each 
reaction. R2 = 0.9267. (C) 97 +/- 3 mg (dry weight) washed mycelia were used for each 
reaction. (D) The plot of the wet weight versus the dry weight of G. trabeum mycelia. 
The mycelia were dried by lyophilization. R2 = 0.9961. 



The femcyanide reduction rate by G. trabeum mycelia increased with pH above 

5. The reduction rate was lnmol/minlmg at pH 3 ,4  and 5 (Figure 3.2). 

L 

L 2 3 4 5 6 7 8 9  

pH 

Figure 3.2. Effect of pH on femcyanide reduction by G. trabeum mycelia. The reduction 
rate increased with pH above pH 5. 97 +I- 3 mg (dry weight) washed mycelia were used 
for each reaction. 

The effects of inhibitors on ferricyanide reduction by G. trabeum were studied at 

the ratio of 100 nmoVmg (Table 3.2). At this ratio, ferricyanide reduction by G. trabeum 

was inhibited by sodium azide, carbonyl cyanide m-chlorophenyl hydrazone, and 2,4- 

dinitrophenol, but not by potassium cyanide. 



Table 3.2. Effect of inhibitors on femcyanide reduction rates by G. trabeum. The ratio of 
inhibitor / mycelia is 100 nmollmg. 

Inhibitors Ferricyanide reduction rate (nmollmglmin) 
Water 12.1 
KCN 10.7 
NaN3 8.6 
Acetone 11.8 
CCCP 7.5 
DNP-OH 8.7 

The effect of three different pH 8.0 buffers on ferricyanide reduction in G. 

trabeum were studied. The ferricyanide reduction rate was higher in potassium phosphate 

buffer than in HEPES buffer (Table 3.3). 

Table 3.3. Effect of buffers on femcyanide reduction and proton excretion by the plasma 
membrane redox system in G. trabeum. 

Buffer a Femcyanide reduction rate (nmollmglmin) 
KH2PodK2~04  9.3+/-0.7 
NaH2P04/Na2HP04 6.4+/-0.5 
HEPES 4.5+/-0.6 

a' Buffers are 200 mM, pH 8.0. 
b. Washed mycelia 35 +/- 2 mg were used for each reaction. 



Quinone reduction was studied by using one-week old nitrogen deficient cultures 

of G. trabeum with 1,4-benzoquinone as the substrate. The 14-benzoquinone was 

reduced by intact hyphae but not by lysed mycelia or the extracellular basal media. The 

intracellular enzyme extract required either NADH or NADPH for quinone - reduction 

(Table 3.4). 

Table 3.4. Reduction of 1,4-benzoquinone by the culture filtrate, hyphae, and 
intracellular enzyme extract of G. trabeum grown in the shallow basal media. 

Fraction 
Culture filtrate 
Washed mycelia 

Rate (nmoVmin/mg)* 
0 
17 +I- 4 

Lysed mycelia 
Intracellular enzvrne extract 

Quinone reduction by both the plasma membrane redox system and the 

0 
+NADH I +NADPH 

4 

intracellular enzyme extract was saturable, although the K, and V,, values are quite 

385 +I- 20 1 503 +I- 7 

different (Figure 3.3). Reduction of 1,4-benzoquinone by the G. trabeum PMRS had a 

* The non-enzymatic reduction of 1,4-benzoquinone was subtracted. 

Km of 59 pM, and a V ,, of 17.5 nmoWmidmg mycelia (dry weight). Since it required 

36 mg (dry weight) of mycelia to produce 1 mg intracellular protein (data not shown), the 

maximum reduction rate was 630 nmoYmidmg protein. Reduction of 1 ,4-benzoquinone 

by the crude G. trabeum intracellular enzyme extract had a Km of 156 pM, and a V ,, of 



concentration of 1,4-benzoquinone (uM) 

concentration of 1,4-benzoquinone (uM) 

Figure 3.3. Effect of 1,4-benzoquinone concentrations on quinone reduction by G. 
trabeum intracellular enzyme extract (A)  and G. trabeum mycelia (B). (A) The enzyme 
activity was based on nmole of NADH oxidized per mg of intracellular protein. In the 
Lineweave - Burk plot, R2 = 0.9984, V,, = 863 pM/min and K, = 156 pM. (B) The 
assay was performed with 30 +I- 1 mg (dry weight) washed mycelia. The reduction rates 
were based on nmole of 1,4 -benzoquinone reduced per mg dry weight of mycelia. In the 
Lineweaver -Burk plot, R2 = 0.9964, K, = 59 pM, Vm, = 17.5 nmol/min/mg. 



The optimum pH of the intracellular quinone - reducing activity was between pH 

6.0 to 8.0. The optimal pH of the PMRS was between pH 4.0 to 7.0 (Figure 3.4). 

i/ 1 - mycelia 
-+- intracellular enzyme extract 

Figure 3.4. Effect of pH on 1,4-benzoquinone reduction by G. trabeum mycelia and the 
intracellular enzyme extract. The reduction was measured with 27 +I- 3 mg (dry weight) 
mycelia or 0.1 mL of enzyme extract in the 200 mM potassium phosphate buffer at 
indicated pH, with 100 mM 1,4 - benzoquinone. Reduction rates of washed mycelia were 
based on nmol of 1,4 - benzoquinone reduced per mg dry weight mycelia. Specific 
activities of enzyme extracts were based on nmol of NADH oxidized per mg intracellular 
protein. 



Discussion 

In this study a transplasma membrane redox system fiom the brown rot fungus G. 

trabeum was characterized by the reduction kinetics of the membrane impermeable one - 

electron acceptor femcyanide. Ferricyanide reduction by intact hyphae of G. trabeum and 

P. chiysosporium (Stahl et al., 1995) displayed similar dependences on reaction time, 

mycelia mass, femcyanide concentration, and pH, although the G. trabeum mycelia were 

obtained fiom nitrogen deficient basal media, while P. chiysosporium mycelia were fiom 

nitrogen sufficient basal media (Table 3.1, Figure 3.1, and Stahl et al., 1995). Results also 

showed that the ferricyanide reduction rate of the G. trabeum PMRS was not affected by 

the nitrogen level in the media (Table 3.1). 

Ferricyanide reduction by G. trabeum and P. chiysosporium PMRSs was 

inhibited by sodium azide, carbonyl cyanide m-chlorophenyl hydrazone (CCCP), and 

2,4-dinitrophenol (DNP) (Table 3.2, and Stahl et al., 1995). Potassium cyanide did not 

inhibit the ferricyanide reduction (Table 3.2, and Stahl et al., 1995). Azide, CCCP, and 

DNP are all known inhibitors of membrane redox systems and electron transport chains 

(Blum et al., 1993). Sodium azide and potassium cyanide have been reported to inhibit 

flavoproteins (Brock and Gold, 1996). DNP, a non-specific uncoupler, has been reported 

to inhibit the FOFl ATP synthase molecule located in the inner wall of each 

mitochondrion (Bachs, 1999). CCCP is a protonophore and an effective uncoupler of 

oxidative phosphorylation (Cervinkova et al., 1998). 

Fenicyanide reduction by both G. trabeum and P. chiysosporium PMRSs (Figure 

3.2, and Stahl et al., 1995) was pH dependent and sensitive to the protonophore CCCP, 

suggesting a proton coupled reduction mechanism (Gear et al., 1999). In all the cells 



tested, the functioning of PMRSs is accompanied by acidification of the media. I t  has 

been known that an important function of PMRSs is proton extrusion and control of 

internal and excellular pH (Medina et al., 1997; Schafer and Buettner, 2000). Proton 

extrusion coupled PMRS activity has been observed for P. chrysosporium (Stahl et al., 

1995). It is known that wood decay fungi can decrease the extracellular pH significantly 

during growth (Chapter 2 and 5). The mechanisms utilized by fungi to decrease the 

extracellular pH have not been elucidated completely. Production of organic acids such 

as oxalic acids by h g i  has been studied widely and is considered as one of the important 

pH adjusting strategies. In environments with pH higher than the optimum pH for fungal 

growth, proton extrusion rate increases with increasing pH. This observation implies that 

extrusion of protons during PMRS activities may also contribute to the extracellular pH 

adjustment by fungi. 

Effects of buffers (pH 8.0) on the femcyanide reduction by G. trabeum, however, 

were different fiom those by P. chrysosporium. In P. chrysosporium, the femcyanide 

reduction rate was statistically the same in phosphate buffer (pH 8.0) as in HEPES buffer 

(pH 8.0) (Stahl et al., 1995). In G. trabeum, the femcyanide reduction rate was higher in 

potassium phosphate buffer than in HEPES buffer (Table 3.3). HEPES cannot cross the 

membrane, while phosphate can (Stahl et al., 1995). But the femcyanide reduction rate 

was similiar in sodium phosphate buffer and HEPES buffer (Table 3.3). Thus it is 

possible that the electron transport in G. trabeum PMRS may be coupled with potassium 

transport. This result is consistent with previous studies, in which the reduction of 

femcyanide was coupled with potassium - proton exchange in the yeast S. cerevisiae 

(Conway & Keman, 1955). It has also been reported that the reduction of methylene blue 



by S. cerevisiae cells was strongly inhibited by sodium ions added to the media (Ryan, 

1967). 

The intact hyphae of G. trabeum could reduce 1,4-benzoquinone (Table 3.4), 

which is consistent with previous observation with 2,5-dimethoxy-l,4-benzoquinone and 

2,3-dimethoxy- 5-methyl-l,4-benzoquinone (Paszczynski et al., 1999; Kerem et al., 

1999). The intracellular enzyme extract from G. trabeum also showed 1,4-quinone - 

reducing ability, which suggests that G. trabeum produces a certain level of constitutive 

intracellular quinone reductases (Table 3.4). 

The 1,4-quinone reduction by intact hyphae of G. trabeum and P. chrysosporium 

showed different optimal reaction pHs and substrate saturation levels (Figure 3.3 and 

Figure 3.4). Reduction of 1 ,&benzoquinone by P. chrysosporium PMRS had an optimum 

pH between 7.5 and 8.5, a Km of 11 pM, and a V,,, of 16 nmol/min/mg (dry weight 

mycelia) (Stahl et a., 1995). Although the maximum reaction rates with the two systems 

were similar, the redox system of G. trabeum required about 5 times more quinone to 

become saturated (Figure 3.3, Figure 3.4, and Stahl et al., 1995). This suggests that P. 

chrysosporium P MRS is p otentially m ore e fficient than G . t rabeum P MRS i n q uinone 

reduction. 

The intracellular enzyme extracts from G. trabeum and P. chrysosporium had 

similar optimal reaction pHs, substrate saturation values and maximum reaction rates 

(Figure 3.3, Figure 3.4, and Stahl et al., 1995). They both utilized NADH or NADPH as 

electron donors for quinone reduction (Table 3.4, and Stahl et al., 1995). For the 

intracellular enzyme extract from P. chrysosporium, the quinone reduction rate with 

NADH was approximately six times faster than that with NADPH. With NADH as the 



electron donor, it had a pH optimum between 6 and 7, a Km of 150 pM and a V,,, of 

800 nrnoYmin/mg (Stahl et al., 1995). For the intracellular enzyme extract from G. 

trabeum, the quinone reduction rate with NADH and NADPH was similar (Table 3.4). 

The extracellular basal media afier the growth of G. trabeum did not reduce 1,4- 

benzoquinone (Table 3.4). This result confirms the previous studies (Schimidhalter and 

Canevascini, 1993 (a) and (b); Qi and Jellison, 2000) in which it was concluded that the 

extracellular cellobiose dependent quinone - reducing ability was induced in the presence 

of cellulose but not glucose. 

Both the intact hyphae and intracellular enzyme extract fiom G. trabeum could 

reduce 1,4-benzoquinone, but the optimum reaction pH, Km, and V,, were different 

(Figure 3.3, and Figure 3.4). From this we conclude that two different systems both 

contribute to quinone reduction. Quinone reduction by the intracellular enzyme extract 

required added NADH or NADHP as electron donors (Table 3.4). The G. trabeum 

intracellular enzyme extract had a higher maximum reaction rate and higher kinetics 

constant compared with G. trabeum PMRS (Figure 3.3). This is consistent with what has 

been observed in P. ch~sosporium (Stahl et al., 1995). It has been found that the purified 

P. ch~sosporium intracellular quinone reductase has a much lower substrate saturation 

value than P. chyosporium crude intracellular enzyme extract and P. ch~sosporium 

PMRS. Thus, the intracellular quinone reductase was a much more efficient quinone - 

reducing mechanism (Brock et al., 1995). A G. trabeum intracellular quinone reductase 

has b een purified and characterized ( Chapter 4). The purified G . t rabeum i ntracellular 

quinone reductase also has a much lower substrate saturation value than G. trabeum 

crude intracellular enzyme extract and G. trabeum PMRS (Chapter 4). 



Although G. trabeum PMRS and P. chrysosporium PMRS could reduce quinones, 

the electron donors have not been identified. Quinone reaction by both PMRSs did not 

require added extracellular NAD(P)H and the addition of extracellular NAD(P)H did not 

affect the reduction rate (Stahl et al., 1995). Membrane - bound quinone reductases from 

plant cells utilize cytoplasmic NADH or NADPH as electrons donors (Berczi and Moller, 

2000). The bacterial membrane - bound quinone reductases utilize cytoplasmic NADH as 

electron donors (Unemoto and Hayashi, 1993). For further biochemical and biophysical 

studies, the isolation of the plasma membrane and the purification of the membrane- 

bound quinone reductase will be necessary. Isolation of membrane fractions from 

filamentous wood decay fungus is underway (Chapter 5). 

Catechols and hydroquinones have been proposed to drive the extracellular 

Fenton reaction in brown rot decay (Goodell et al., 1997 (a) and (b), 2001; Paszczynski et 

al., 1999; Kerem et al., 1999; Jensen et al., 2001). Catechols and hydroquinones are 

oxidized to quinones by reducing femc iron and molecular oxygen. The quinone - 

reducing ability of the PMRS suggests it could be capable of playing a role in the 

regeneration of catechols/hydroquinones that drive the Fenton reaction. But there are 

several unsolved difficulties for this mechanism to be significant in vivo. First, in the 

brown rot wood, the degree of polymerization of cellulose is decreased rapidly at the very 

early stage of decay, when little weight loss can be observed. In addition, the reaction is 

not associated with hyphae. Since hydroxyl radicals are destructive within a very limited 

spatial d istance, the h ydroxyl radical generating F enton reaction h as  b een proposed to  

occur inside the wood cell wall and initiate the attack on lignocelluloses in situ. Thus it is 

not likely that the mycelia in the wood cell lumen could directly participate in the 



quinone reduction happening within the wood cell wall. It has also been observed that the 

optimum pHs for fenicyanide reduction and quinone reduction by G. trabeum PMRS are 

higher than pH 5, while it is known that the pH in the G. trabeum hyphal vicinity is lower 

than pH 4 in vivo. The low pH also inhibits the iron reduction by catechols and 

hydroquinones (Jensen et al., 2001). The quinone reduction should also be inhibited. 

In summary, a better understanding of the plasma membrane redox system of G. 

trabeum has been obtained by examining the fenicyanide reduction kinetics. The proton 

extrusion ability associated with the PMRS activity might play a role in the ability o f  

fungi to quickly adjust the environmental pH and to maintain the cytoplasmic pH. 

Although the relationship between G. trabeum PMRS activity and alkali ions, such as K+ 

and ~ a + ,  is not clear, fenicyanide reduction by the PMRS was affected by the alkali ions 

in the media (Table 3.4). Gloeophyllum trabeum and some other wood decay fungi have 

been found to play important roles in ion translocation in forest ecosystems and in 

bioremediation of heavy metals (Jellison et al., 1993; Connolly et al., 1996; Connolly and 

Jellison, 1995 and 1997; Doyle and Jellison, 1996; Fuller et al., 2000.) PMRS activity 

might be also associated with the pathway of some ion uptake by G. trabeum. Quninone 

reducing ability of the PMRS implies that the system might play a role in regeneration of 

components of the biochelator - driven Fenton reaction. However, spatial separation of 

the mycelia and the extracellular quinone reduction would pose difficulties for the 

proposed mechanism to function in vivo. More research is needed to fully understand the 

functions of PMRS in fungal physiology and brown rot mechanisms. 



Chapter 4 

PURIFICATION AND CHARACTERIZATION OF AN 

INTRACELLULAR 1,CQUINONE REDUCTASE FROM THE BROWN ROT 

BASIDIOMYCETE GLOEOPHYLLUM TRABEUM 

Abstract 

The roles quinone - reducing enzymes may play in fungal physiology and 

biodegradative mechanisms have not been completely elucidated, but they may be 

involved in hyphal protection and in the quinine metabolism of brown rot h g i .  An 

intracellular 1,4-quinone reductase was purified from stationary shallow cultures of the 

brown rot h g u s  Gloeophyllum trabeum by ammonium sulfate precipitation, followed by 

hydrophobic interaction, ion exchange, and dye ligand affinity chromatographies. The 

native enzyme is a flavin protein with a molecular weight of 66 KD and a pI value of 4.2. 

Flavin mononucleotide (FMN) is the coenzyme. The ratio of the enzyme to the FMN is 

1:2.8. The subunit molecular weight is 22 KD. The enzyme is inducible by 2,6- 

dimethoxy-l,4-benzoquinone and 4-hydroxy-3-methoxybenzoic acid in both low nitrogen 

and nitrogen sufficient media at either 24 or 30 "C. The quinone reductase purified 

utilizes NADH as an electron donor and catalyzes the reduction of multiple quinones and 

other electron acceptors such as 2,6-dichloro-indophenol and potassium fenicyanide. For 

enzyme catalyzed 2,6-dimethoxy-l,4-benzoquinone reduction, the apparent K, is 6.8 pM 

and the K,, is 1 . 0 ~ 1 0 ~  S'. The pH optimum is between 5.5 and 7. The optimal 

temperature is between 24 and 40 "C. The stoichiometry of NADH oxidation versus 2,6- 

dimethoxy-l,4-benzoquinone is 1 : 1. Inhibition of 2,6-dimethoxy- l,4-benzoquinone 



reduction occurs at low NADH concentration. Dicumarol and cibacron blue are 

competitive inhibitors with Ki values of 0.5 and 0.2 pM, respectively. The relevance of 

this intracellular quinone reduction system to hyphal protection mechanisms and 

extracellular lignocellulose biodegradation processes has not yet been determined. 

Introduction 

Intracellular NAD(P)H dependent quinone reductases in manmals have been 

widely studied relative to their ability to protect against the toxicity of quinones, 

oxidizing agents, and reactive forms of oxygen (Lind et al., 1982; Wefers et al., 1984; 

Prochaska and Talalay, 1986; Prochaska et al., 1987; Schlaget and Powis, 1990; Foster et 

al., 1999; Dinkova-Kostova and Talalay, 2000), as well as their possible roles in cancer 

chemotherapy and carcinogenesis (Benson et al., 1980; Talalay and Benson, 1982; 

Talalay, 1989; Murphy et al., 1991; Li et al., 1995; Rauth et al., 1997). The most widely 

studied quinone reductase in mammals is the quinone reductase type 1 (DT-diaphorase), 

a highly inducible flavoprotein that can utilize both NADH and NADPH as electron 

donors and reduce multiple quinones. DT-diaphorase protects cells against quinone and 

semiquinone toxicity by mediating a two-electron reduction that results in the formation 

of hydroquinones instead of semiquinones (Lind et al., 1982; Horie, 1990; Merk and 

Jugert, 1991; Hasspieler et al., 1996; Beyer et al., 1996 and 1997; Galkin et al., 1999; 

Foster et al., 2000). 

Cytosolic quinone reductases fiom the white rot basidiomycete Phanerochaete 

chrysosporium h ave a lso b een w ell studied. This fungus p roduces s everal i ntracellular 

quinone reductases (Buswell et al., 1979; Schoemaker et al., 1989), two of which have 



been purified and characterized (Constam et al., 1991; Brock et al., 1995). Production of 

both enzymes is highly inducible by vanillic acid and 2-methoxy-l,4-benzoquinone. The 

NADH dependent enzyme purified by Constam (1991) is a polypeptide with a molecular 

weight of 69 KD. The pI values are 5.7, 5.9, 6.0 and 6.3. The NAD(P)H dependent 

quinone reductase purified by Brock (1995) has a molecular weight of 44 KD, subunit 

n~olecular weight of 22 KD, and pI of 4.3. It is a flavin mononucleotide (FMN) 

containing dimer, which is similar to the DT-diaphorase (Lind et al., 1982; Horie, 1990; 

Chen et al., 1994; L i e t al., 1995; Foster et al., 2000). The c DNA clone encoding the 

NAD(P)H dependent quinone reductase has also been isolated and sequenced 

(Akileswaran et al., 1999). Both of the enzymes fiom P. chrysosporium can reduce 

multiple 1,6benzoquinones and 1,2-benzoquinones (Constam et al., 199 1 ; Brock et al., 

1995). 

Cytosolic quinone reductases fiom P. chrysosporium have been proposed to have 

several physiological functions. They may participate in the metabolism of vanillic acid, 

which i s a n  i mportant m etabolite p roduced d uring 1 ignin b iodegradation ( Ander et a l., 

1980). Quinones are also lignin biodegradation products released by ligninolytic enzymes 

(Schoemaker et al., 1989). The uptake of quinones by cells and the subsequent reduction 

of those quinones can shift the ligninolytic reactions toward the direction of continuous 

degradation. Consequently, cytosolic quinone reductases fiom P. chrysosporium may 

play a role in complete lignin degradation (Schoemaker et al., 1989; Brock et al., 1995; 

Brock and Gold, 1996; Akileswaran et al., 1999). Since quinones and semiquinones are 

toxic to cells, cytosolic quinone reductases fiom P. chrysosporium may protect mycelia 

against quinone and semiquinone toxicity, as well (Wefers et al., 1984; Brock et al., 



1995; Brock and Gold, 1996; Akileswaran et al., 1999; Dinkova-Kostova and Talalay, 

2000). 

Catechol iron chelators, such as hydroxylated phenylacetic acids, hydroxylated 

benzoic acids, hydroxylated benzene derivatives and dihydroxyphenyl pentanediol, have 

been isolated from G. trabeum cultures (Jellison et al., 1991 (a) and (b); Easwaran, 1994; 

Goodell et al., 1996, 1997 (a) and (b)). Phenolate type compounds, 4,5-dimethoxy-1,2- 

benzenediol and 2,5-dimethoxyhydroquinone, as well as 2,5-dimethoxy-1,4- 

benzoquinone, have also been isolated and identified from the stationary cultures of G. 

trabeum (Paszcynski et al., 1999; Kerem et al., 1999). It has been found that phenolate 

iron chelators can play a role in brown rot non-enzymatic degradation of wood by 

mediating the extracellular hydroxyl radical generating Fenton reaction through the 

reduction of ferric iron (Goodell et al., 1996, 1997 (a) and (b), 1999 (a) and (b), 2001; 

Goodell and Jellison, 1997, 1998 and 1999; Lu et al., 1994; Qian and Goodell, 1999). 

In the phenolate biochelator - driven Fenton reaction observed in brown rot fungi, 

an interesting phenomenon is the ability of one equivalent of phenolate compound to 

reduce multiple equivalents of iron (Goodell et al., 1996, 1997 (a) and (b), 1999 (a) and 

(b), 2001; Qian and Goodell, 1999). Two different theories have been proposed to explain 

the non-stoichiometric iron reduction (Goodell et al., 1996, 1997 (a) and (b), 2001; Pracht 

et a 1.2 001; K erem e t a l., 1 999; Jensen e t a l., 2 001). A r edox c ycle had been initially 

suggested by Goodell (Goodell et al., 1996, 1997 (a) and (b), Qian and Goodell, 1999), 

through which oxidized phenolate biochelators could be regenerated. A quinone redox 

cycle driven by quinone - reducing enzymes was then proposed (Kerem et al., 1999; 

Paszcynski et al., 1999; Jensen et al., 2001). An alternative pathway proposed by Goodell 



(Goodell et al., 2001; Pracht et al., 2001) is complete or partial mineralization of catechol 

chelators when reducing multiple equivalents of ferric iron. The two pathways are not 

mutually exclusive and the relative importance of recycling versus mineralization may 

depend upon the microenvironment and metabolite inquisition. 

Gloeophyllum trabeum mycelia can reduce 2,Sdimethoxy- l,4-benzoquinone to 

2,s-dimethoxy hydroquinone in sodium phosphate buffer (50mM, pH 4.1) (Kerem et al., 

1999). Gloeophyllum trabeum has also been found to reduce 2,3-dimethoxy-5-methyl- 

1,6benzoquinone (coenzyme Qo) added into the media (Paszcynski et al., 1999). Studies 

in our laboratory have demonstrated that G. trabeum can produce constitutive 

intracellular q uinone r eductases. T he in v ivo relevance o f t hese enzymes has n ot b een 

established. The crude intracellular enzyme extract from G. trabeum can reduce 1,4- 

benzoquinone with NADH or NADPH as electron donors. The preliminary research 

indicated that the reaction had a pH optimum of 6.5, a Km of 156 pM, and a V, of 863 

nmollmidmg (Chapter 3). 

We report here the purification and characterization of an intracellular NADH 

dependent quinone reductase fiom G. trabeum. 

Materials and Methods 

Organism and Culture Conditions 

Stock cultures of Gloeophyllum trabeum ATCC 11539 were maintained on 

DifcoB malt extract agar slants at 4 "C. The fungus was grown on BBLB potato dextrose 

agar plates (PDA) (20 mL medialplate) at 30 OC for one week. The PDA with the h g u s  

was homogenized with distilled water at the ratio of 1 : 4 (weight ratio) in an OsterizerB 



blender, three times in 15-second bursts with one minute between each burst. The 

homogenate was used to inoculate stationary 500 mL PYREX@ flasks containing 9 mL 

of basal growth media (Tien and Kirk, 1988; Appendix B). One mL of the homogenized 

agar culture was inoculated into each flask (Kerem et a]., 1999). Cultures were grown at 

24 "C and 30 "C for one week. The inducer, vanillic acid (2 rnM) or 2,6-dimethoxy-1,4- 

benzoquinone (100 pM), was added to the cultures 3 days after inoculation (Brock et al., 

1995). 

Enzvme Extraction 

Mycelia were collected by vacuum filtration through Whatman@ glass micro- 

fiber filters, washed with an equal volume of 4 "C deionized distilled water, and stored at 

-70 OC. Frozen cells (15 gram) in 100 mL of 4 "C extraction buffer (50 mM sodium 

phosphate buffer, pH 7.0) were broken in a pre-chilled Osterizefi blender (Brock et al., 

1995). Fresh protease inhibitor cocktail (Bollag et al., 1996) was added into the extraction 

buffer before homogenization. The final concentrations of the protease inhibitors were 35 

pg/mL phenylmethylsulfonyl fluoride (PMSF), 0.3 mg/mL EDTA, 0.7 pg/mL pepstatin 

A, and 0.5 pg/mL Leupeptin. Cells were homogenized 3 times in 20-second bursts with 1 

minute between each burst. The homogenate was transferred to a VWR brand@ tissue 

grinder and hrther homogenized three times in an ice-air bath. The final homogenate was 

centrifuged at 17,418 x g for 20 minutes (Beckman J2-21 centrihge with a JA-20 rotor). 

The supernatant was hrther centrihged a t  105,000 x g for 30 minutes (Beckrnan L8- 

70M ultracentrifuge with a SW28 rotor) . 



Enzyme Purification 

The protocol was modified from the one described by Brock (Brock et al., 1995) 

and those described by Bollag (Bollag, 1996). All the following chromatographies were 

carried out using an ISCO chromatographic system. An ISCO Tris pump controlled flow 

rates, and created the linear buffer gradient with a gradient maker (C.B.S. Scientific Co). 

An ISCO Retriever 500 was used to collect column elution every 0.5 minute unless 

otherwise stated. The absorbance of column elution at 280 nm was monitored using an 

ISCO UA-6 UV-VIS absorbance detector. Ten volumes of the corresponding equilibrium 

buffer were run through each column after the column was packed unless otherwise 

stated. 

Ammonium Sulfate Precipitation. The enzyme extract was fractionated by ammonium 

sulfate precipitation (at 40% then 70% saturation), followed by centrifugation at 10,000 x 

g for 10 minutes (Beckman J2-21 centrifuge with a JA-20 rotor). The precipitate was re- 

dissolved in 10 mL of extraction buffer containing the protease inhibitor cocktail and 

20% glycerol. The resuspended ammonium sulfate precipitated fraction was stored at -70 

"C. 

Hvdrophobic Interaction. Phenyl sepharose CL-4B (3.9 mL) was equilibrated in 

equilibration buffer (50 mM sodium phosphate buffer containing 0.5 M ammonium 

sulfate, pH 7.0) and packed into a 0.7 cm x 10 cm Flex column at the rate of 1 mumin. 

All the buffers used in the hydrophobic interaction chromatography contained 0.7 pg/mL 

pepstatin A, and 0.5 pg/mL Leupeptin. The ammonium sulfate fraction was thawed and 

diluted in the equilibration buffer at a 1:4 ratio and applied to the CL-4B column at the 

rate of 0.75 mLImin. The proteins were eluted with a step reverse ammonium sulfate 



gradient and a step reverse sodium phosphate gradient (0.75 mumin). Active fractions 

were pooled and concentrated by Amicon Centricon plus-20 centrifugal filter units with 

PL- 10 membranes. The procedure was according to the manufacturer's 

recommendations. 

Ion Exchange. The resin Q s epharose fast flow ( 3.9 m L) w as e quilibrated i n 2 0 m M 

piperazine buffer (pH 5.2) and packed into a 0.7 cm x 10 cm Flex column using a pump 

speed o f 2.5 m Llmin. The c oncentrated C L-4B c olumn e lution w as diluted i n 2 0 m M 

piperazine buffer (pH 5.2) at a 1 : 1 ratio before being loaded onto the column. The 

proteins were eluted with a linear sodium chloride gradient (1 mL1min). Active fractions 

were pooled and concentrated by Amicon Centricon plus-20 centrifugal filter units with 

PM- 10 membranes. 

Dve Ligand Affinity. Blue-agarose (3.0 mL) was equilibrated in 10 mM sodium 

phosphate buffer containing 5 mM MgS04 (equilibration buffer) and packed into a 0.7 

cm x 10 cm Flex column at a rate of 1 mLImin. The concentrated ion-exchange column 

elution was loaded onto the column. The proteins were eluted using the equilibration 

buffer followed the equilibration buffer containing 0.5 mM NADH (0.75 mL1min). The 

active fractions were pooled, concentrated by Amicon Centricon plus-20 centrifugal filter 

units with PM- 10 membranes, freeze-dried using a VirTis lyophilizer and stored at 0 OC, 

or pooled and stored in the equilibration buffer containing 20% glycerol at -70 OC. 

Standard Enzvme Assavs 

Quinone r eductase activity was determined b y m onitoring the oxidation of 2 00 

pM NADH at 340 nm in 1 mL 50 mM sodium citrate buffer (pH 6.0) containing 100 pM 



2,6-dimethoxy-l,4-benzoquinone (Buswell and Eriksson, 1979; Brock et al., 1995). 

Reactions were initiated by the addition of 1 to 10 p 1 of the enzyme solution. Assays 

were performed at room temperature with a Spectronic ~ e n e ~ ~ s ~ ~  2 spectrophotometer. 

The extinction coefficient for NADH at 340 nrn is 6.22 mM-'cm-I. One unit of enzyme 

activity was defined as the amount of enzyme that oxidizes 1 pmol of NADH per minute. 

Non-enzymatic oxidization of NADH was recorded as the control and was deducted from 

sample measurements. 

Protein Measurements 

Protein concentrations were measured by Bradford (Sigma) micro-assay with 

triplicate samples for each measurement. Bovine serum albumin was used as the protein 

standard. 

Gel Filtration 

Sephacryl S-300 (16 mL) was equilibrated in gel filtration buffer (30 mM Tris- 

HCl, pH 7.0, containing 100 mM NaCl and 2% glycerol) and was packed into a CONTES 

Flex-column (0.7 x 40 cm) (1 mLImin for 2 hours, 2.3 mUmin for 1 hour). The purified 

quinone reductase (0.5 mg), and 2 mg of each protein standard (bovine serum albumin, 

ovalbumin and carbonic anhydrase) were dissolved in 1 mL gel filtration buffer and 

loaded onto the column. The proteins were eluted with gel filtration buffer at the rate of 

0.5 mumin. Fractions were collected every 2 minutes. The elution profile was monitored 

and recorded by the ISCO UA-6 UV-VIS absorbance detector. Quinone reductase 



activity analysis and SDS-polyacrylamide gel electrophoresis analysis were performed 

for the peak fractions to identify the eluted proteins. 

Electrophoresis 

All experiments were carried out with the Sturdier vertical slab gel system 

(Hoefer Scientific Instrument). Procedures were according to "Protein Methods" (Bollag 

et al., 1996). Sodium dodecyl sulfate - polyacrylamide gel electrophoresis was 

performed with 15% gel. Proteins were visualized using Coomassie Blue stain. Native 

isoelectric focusing in the range of pH 3 to 10 was performed with polyacrylamide gel 

(5% T and 3.3% C). Proteins were visualized using Coomassie Blue stain followed by 

silver stain (Bollag et al., 1996). The low pI marker proteins kit (pI 3.6 to 6.6, Sigma) 

was used to determine pI values. 

Flavin Identification 

The assay used for flavin identification followed Faeder and Siegel's protocol 

(1 973). F lavin adenine d inucleotide (FAD) and f lavin mononucleotide (FMN) ( Sigma) 

were used without further purification. All the solutions were prepared in 0.1 M 

potassium phosphate buffer (pH 7.7) containing 0.1 mM of EDTA. An excitation 

wavelength of 490 nm was used. The emission wavelength used was 535 nm. The 

fluorometer was blanked with phosphate buffer and was set at 1000 with 80 nM of FMN. 

The purified enzyme (6 pg/mL) was diluted with phosphate buffer at a 1 :3 ratio. Aliquots 

of 3.0 mL of the diluted sample were immersed in a boiling water bath for 3 minutes, 

cooled rapidly in an ice-water bath, and centrifuged at 10,000xg for 10 minutes. The 



supernatant (2 mL) was transferred to the cuvette for reading. The pH of the samples was 

adjusted fiom 7.7 to 2.6 with 0.1 N HC1. 

Steady-State Kinetics Measurements 

The one-electron acceptors femcyanide and 2,6-dichloro-indophenol (DCPIP), 

and all of the quinones except 2,5-dimethoxy-l,4-benzoquinone (2,5-DMBQ) were 

obtained fiom Sigma. The 2,5-DMBQ was obtained from TCI America. All the 

compounds were used without further purification. All solutions were prepared in 

deionized distilled water. Measurements were carried out at room temperature in 1 mL 50 

mM sodium citrate buffer (pH 6.0) with 6 pg of enzyme. Velocities were measured by 

monitoring the decrease of absorbance at 340 nm and calculated as described above 

(standard enzyme assay). Non-enzymatic oxidization of NADH was recorded as the 

control and was deducted from sample measurements. Experiments were carried out in 

triplicate. All kinetic constants were determined by Lineweaver-Burk plots (Appendix C). 

Stoichiometry of 2.6-DMBO Reduction 

Reaction mixtures contained 400 @I 2,6-DMBQ and 4 pg enzyme in 1 mL of 50 

mM pH 6.0 sodium citrate buffer. The reduction of 2,6-DMBQ was measured by 

monitoring absorbance decrease at 390 nm with a fixed amount of NADH (50, 100, 150, 

200 pM, respectively). The extinction coefficient for 2,6-DMBQ is 0.5 cm-'mM-'. 

Reactions were initiated by the addition of the enzyme. 



Temperature and pH Dependencv of the Purified Enzvme 

The temperature dependence of the purified enzyme was determined in 50 mM 

sodium citrate buffer (pH 6.0) with the presence of 200 pM NADH, 100 pM 2,6-DMBQ 

and 1 p1 purified enzyme solution at temperatures of 0 to 50 OC. Non-enzymatic 

oxidization of NADH was recorded as the control and was deducted fiom sample 

measurements. 

The pH dependence of the purified enzyme was determined in 50 mM sodium 

citrate buffer (pH 3 to 6.3) and 50 mM sodium phosphate buffer (pH 6.5 to 8) in the 

presence of 200 phi NADH, 100 phi 2,6-DMBQ and 1 p1 purified enzyme solution at. 

room temperature (24 OC). Non-enzymatic oxidization of NADH was recorded as the 

control and was deducted from sample measurements. 

Inhibition of the Purified Enzvme 

Inhibition of the purified quinone reductase by ZnS04, MgS04, CuS04, MnS04, 

EDTA, Na3N, and KCN was studied (Brock et al., 1995). Experiments were carried out 

in triplicate. Oxidization of NADH (200 pM) in the presence of 100 pM 2,6-DMBQ and 

1 mM inhibitor was monitored. 

Inhibition constants of cibacron blue 3GA and dicumarol were also determined 

(Brock and Gold, 1996). Experiments were carried out in triplicate. Oxidization of 

NADH (6.25 to 100 pM) was monitored in the presence of 12.5 pM 2,6-DMBQ and 

cibacron blue 3GA (0.25,0.5 and 1 pM) or Dicumol (1,2, and 4 pM). 



Results 

Induction and Production of Intracellular Quinone Reductases 

The effects of inducers, nitrogen levels, and temperatures on intracellular enzyme 

expression are summarized in Table 4.1. Both vanillic acid and 2,6-DMBQ increased 

intracellular quinone reductase production. After 7 days of incubation at either 24 or 30 

"C, intracellular quinone reductase activity was detected in both nitrogen sufficient and 

nitrogen deficient liquid media. When 2 rnM vanillic acid was added into the liquid 

cultures on the fourth day of incubation, specific activities of intracellular quinone 

reductases at the end of one-week incubation increased 1.52 to 3.85 fold, depending on 

the nitrogen level and growth temperature. When 100 pM 2,6-DMBQ was added, 

specific activities of intracellular quinone reductases increased 6.1 6 to 1 1.14 fold. 

Table 4.1. The effects of inducers, nitrogen levels, and temperatures on intracellular 
quinone reductase activity in G. trabeum a. 

Culture condition Inducer Activity (ub/rn~) Protein conc. Sp. Activity Induction Temp. Nitr. 
(m&'mL) ( U h )  (fold) (fold) (fold) 

Low nitrogen Control 0.490+/-0.193 0.52+/-0.06 0.950t/-0.374 
24OC Vanillic acid 0.225+/-0.023 0.15+/-0.00 1.531+/-0.154 1.61 

2,6-DMBQc 1.334+1-0.182 0.23+1-0.02 5.853+/-0.798 6.16 
Low nitrogen Control 0.8Wl-0.058 0.66+/-0.01 1.2 18+/-0.879 1.28 
30°C Vanillic acid 0.525+/-0.102 0.28+1-0.02 1.849+1-0.360 1.52 1.21 

2,6-DMBQ 3.51 el-0.643 0.26+/-0.02 13.574+1-2.484 11.14 2.32 
High nitrogen Control 0.1 23+1-0.033 0.1 0el-0.00 1.1 28+l-O.O35 1.38 
30°C Vanillic acid 0.573+1-0.226 0.1 2+1-0.00 4.943+1-1.947 3.85 2.67 

a' Fungal cultures were harvested 3 days after the addition of the inducers. The activities 
were measured with 0.01 mL of each enzyme extract. The induction fold was calculated 
based on specific activities. 
b. 1 U = 1 pmol of NADH oxidized min-'. 
c. 2,6-dimethoxy- l,4-benzoquinone 



Nitrogen levels in media affected the intracellular enzyme production in different 

ways. When enzyme production at 30 "C was compared, without inducers or with vanillic 

acid a s  the i nducer, cultures grown i n h igh nitrogen m edia p roduced higher ( 1.38 and 

2.67 fold, respectively) quinone reductase activity than did cultures grown in low 

nitrogen media. In contrast, if 2,6-DMBQ was added as the inducer, cultures grown in 

low nitrogen media produced higher (1.45 fold) quinone reductase activity than those 

growth under similar conditions in high nitrogen media. 

Temperature also affected the intracellular enzyme production. Cultures grown in 

low nitrogen media at 30 "C produced higher enzyme specific activities than did cultures 

grown in low nitrogen media at 24 "C (1.21 to 2.32 fold, depending on the inducers). The 

temperature effect was most evident for cultures induced by 2,6-DMBQ. 

A time study of intracellular quinone reductase induction by 2,6-DMBQ in low 

nitrogen media is shown in Figure 4.1. The specific activity increased little by day one 

after the inducer addition, but increased rapidly by day 2 and day 3, reaching a maximum 

at day 3. At incubation times greater than 3 days the specific activity decreased. 
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Figure 4.1. Induction of intracellular quinone reductase activity by 2,6-DMBQ in low 
nitrogen media at 30 OC. The inducer, 2,6-DMBQ was added 3 days after the inoculation. 
The enzyme specific activity reached the maximum (11.966 Ulmg) 3 days after the 
addition of 2,6-DMBQ, and 6 days after the inoculation. 

Total quinone reductase activity was greatest in 2,6-DMBQ induced, low 

nitrogen, 7-day cultures incubated at 30 OC. These conditions were used for enzyme 

preparation, with 2,6-DMBQ added on the fourth day of incubation. 

Purification of Ouinone Reductase 

The purification of quinone reductase from 15 g of mycelia is summarized in the 

purification table (Table 4.2). The protein profiles from each purification step were 

visualized by SDS-page (Figure 4.2). The overall yield and the purification fold were 

14% and 79 fold, respectively. 



Table 4.2. Purification of the intracellular quinone reductase from G. trabeum grown in 
nitrogen limited liquid media. 

Purification stage Tot. Protein Tot. Activity Tot. SP Yield Purification 
vol. conc. protein (UImL) activity activity (%) (fold) 

(ms!mL 6%) (u) (UImg) 
) 

Mycelial extract 1 0 0  0.65 65.20 7.702 770.200 11.813 100 . 1.00 

40-70% (NH&S04 10 3.90 39.00 56.720 567.200 14.544 74 1.23 
precipitation 

Phenyl Sepharose 20 0.20 40.00 11.552 231.040 57.760 30 4.90 
hydrophobic 
interaction 

Q Sepharose Fast 7 0.23 1.62 27.369 191.583 118.481 25 10.00 
flow Ion-exchange 

Cibacron Blue 3GA 9 0.013 0.11 12.130 109.170 933.070 14 79.00 
aearose 



Figure 4.2. SDS-PAGE of the protein profiles from G. pabeurn. The purified enzyme is 
shown in lane 5. Lanes 1 and 10, molecular weight marker; lane 2, crude intracellular 
enzyme extract; lane 3, after CL-4B hydrophobic interaction; lane 4, after Q Sepharose 
Fast Flow ion-exchange; lane 5, after Cibacron Blue 3GA agarose, which is the purified 
product; lanes 6 and 7, other protein fractions after the hydrophobic interaction column 
showing low level of quinone - reducing activities; lanes 8 and 9, other ion-exchange 
eluted fractions. Protein standards (2 yg of each), chromatography fractions (10 yg of 
each) and the purified quinone reductase (0.5 pg) were loaded. The experiment was 
performed with a 0.75 rnm 15% polyacrylamide gel (16 x 18 cm) subjected to the 
constant voltage (200 V) for 2 hours. The gel was stained with Coomassie Blue. The 
photo was taken by the ChemiImager low light digital imaging system. 



As shown in the phenyl Sepharose CL4B hydrophobic interaction 

chromatographic profile (Figure 4.3), 30% of quinone reductase activity was eluted in the 

4 rnM sodium phosphate buffer fraction with a 5-fold purification (Table 4.2). Part of the 

activity was also eluted in the 50 mM sodium phosphate buffer fraction and water 

fraction (Figure 4.2 and 4.3). The enzyme specific activities of these two fractions were 

much lower than that of the ammonium sulfate fraction (data not shown). 
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Figure 4.3. Phenyl Sepharose CL4B hydrophobic interaction affinity chromatography of 
the quinone reductase from G. trabeum. The first, second and third activity peak 
corresponds to lane 6, 3, and 7 of figure 4.2, respectively. The sample was eluted with a 
step reverse ammonium sulfate gradient and a step reverse sodium phosphate gradient. 0- 
20 mL, 0.5 M ammonium sulfate in 50 mM sodium phosphate buffer (pH 7.0); 21-40 
mL, 50 mM sodium phosphate buffer (pH 7.0); 41-60 mL, 4 mM sodium phosphate 
buffer (pH 7.0); 61-80 mL, water. 



Quinone reductase activity was eluted as a single peak in both Q Sepharose Fast 

Flow ion-exchange (Figure 4.4) and Cibacron Blue 3GA agarose dye ligand affinity 

(Figure 4.5) chromatographies. 

Elution volume (ml) 

Figure 4.4. Q Sepharose Fast Flow ion-exchange chromatography of the quinone 
reductase fiom G. trabeum. The sample was eluted with a linear gradient of NaC1. 0-8 
mL, equilibrium buffer (20 mM pH 5.2 piperazine buffer); 9-40 mL, the linear gradient 
(0 to 0.8 M) of sodium chloride in 20 mM piperazine buffer (pH 5.2). 
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Figure 4.5 Cibacron Blue 3GA agarose dye ligand affinity chromatography of the 
quinone reductase from G. trabeum. 0-8 mL: 10 mM sodium phosphate buffer containing 
5 mM MgS04; 9-25 mL: 10 mM sodium phosphate buffer containing 5 mM MgS04 and 
0.5 mM NADH. Both the eluted protein and the NADH in elution buffer contributed to 
the high absorbance at 280 nrn. 



Physical Properties 

The molecular weight of the native enzyme was 66 KD determined by Sephacryl 

S-300 gel filtration (Figure 4.6). The subunit molecular weight estimated by SDS-PAGE 

was 22 KD (Figure 4.7). The purified enzyme had a pI value of 4.2 (Figure 4.8). 

I I I I I I 

10 15 20 25 30 35 40 45 

Elution volume (ml) 

Figure 4.6 The molecular weight of the quinone reductase (a) determined by the gel 
filtration chromatography is 66 KD. The molecular weight standards (0) were bovine 
serum albumin (66 KD), ovalbumin (45 KD), and carbonic anhydrase (29 KD). The 
sample (1 mL) which contained 2 mg/mL of each protein standard and 0.5 mg/mL 
quinone reductase was loaded, and was eluted with gel filtration buffer at 0.37 mumin 
flow rate. 



Relative migration (Rf) 

Figure 4.7. (A) Purity confirmation of the quinone reductase by the SDS- PAGE. Lanes 
2, 3, and 4, Blue agarose fraction (the purified enzyme) from different purification 
batches; lane 5, blue agarose fraction recovered from the gel filtration experiment and 
concentrated by centrifugal filtration; lanes 1 and 6; molecular weight standards, bovine 
serum albumin (66 KD), ovalbumin (45 KD), carbonic anhydrase (29 KD) and a- 
lactalbumin (14.2 KD). Protein standards (2 pg of each) and 0.5 pg of the purified 
quinone reductase were loaded. The experiment was performed with a 0.75 mm 15% 
polyacrylamide gel (16 x 18 cm) subjected to the constant voltage (200 V) for 2 hours. 
The gel was stained with Coomassie Blue. The photo was taken with the ChemiImager 
digital imaging system. (B) Subunit molecular weight of the quinone reductase (e) was 
22 KD, determined by SDS-PAGE. The molecular weight standards (0) were as listed in 
(A). 
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Figure 4. ,)The quinone reductase (a) displayed a pI value of 4.2 determined by the 
isoelectric focusing with pI markers (0): Amyloglucosidase (3.6), Glucose oxidase (4.2), 
Trypsin Inhibitor (4.6), P-Lactoglobulin A (5.1), Carbonic anhydrase I1 (5.4 and 5.9), 
Carbonic anhydrase (6.6). (B) Purity confirmation of the quinone reductase by the native 
polyacrylamide gel isoelectric focusing. Protein standards (6 pg of each) and the purified 
quinone reductase (1.5 pg) were loaded. The experiment was performed with a 5% T, 
3.3% C polyacrylamide gel (16 x 18 cm) subjected to the constant voltage (200 V for 1.5 
hours, followed by 400 V for 1.5 hours). The proteins were visualized with Coomassie 
Blue followed by silver stain. The photo was taken with the ChemiImager low light 
digital imaging system. 



The purified enzyme showed an oxidized flavin spectrum with maximal 

absorbance at 375 nm and 450 nm. The flavin spectrum was changed by reduction with 

NADH (Figure 4.9). The enzyme bound flavin was determined by the fluorescence of the 

flavin extracted from the enzyme. The enzyme bound flavin showed a pH dependence 

similar to that of flavin mononucleotide (FMN) but very different from that of flavin 

adenine dinucleotide (FAD) (Table 4.3). Using a molecular weight of 66 KD, a 1:2.8 

ratio of native enzyme to FMN was obtained. 
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Figure 4.9. Wavelength scan of the native oxidized G. trabeum quinone reductase and 
NADH reduced enzyme. The oxidized enzyme showed maximum absorbance at 375 nm 
and 450 nrn, which is a typical flavin spectrum. 



Table 4.3. Determination of the nature of the enzyme-bound flavin by the pH dependency 
of the fluorescence. 

I Measured I 
Quinone reductase flavin 1 23 ] 64 1 0  1 793 1 458 1 0.578 

a' Protein concentration was determined by Bradford assay. 
b. Fluorescence was monitored at 23 "C with a Turner 450 spectrophotofluorometer. 
Excitation wavelength was 490 nm, and the emission wavelength was 535 nrn. Enzyme 
extract flavin concentration was calculated from the standard curve prepared from 
standard solution (std. sol.). Solutions were in 0.1 M potassium phosphate buffer 
containing 0.1 rnM EDTA. 

Flavin source 

Standard solution 
Standard solution 
Standard solution 
Standard solution 
Standard solution 
Standard solution 

Catalvtic Properties 

The quinone reductase utilized NADH as the electron donor and catalyzed the 

reduction of several quinones, such as 1,4-benzoquinone, 2,Sdimethoxy- 1,4- 

benzoquinone (2,5-DMBQ), 2,6-DMBQ, and 2,3-dimethoxy-5-methyl-1,4-benzoquinone 

(coenzyme Qo). It also reduced electron acceptors such as 2,6-dichloro-indophenol and 

2 -1 potassium ferricyanide (Table 4.4). The turn over number (Kat) ranged from 5 .3~10 S 

4 -1 for coenzyme Qo to 2 .2~10 S for DCPIP. NADPH oxidization was not detected when 

2,6-DMBQ was used as the electron acceptor. Of the several quinones tested, the highest 

quinone reductase activity was observed with 1,4-benzoquinone. The rate of NADH 

oxidization by the enzyme in the presence of femcyanide was 25% of that for 2,6-DMBQ 

(Table 4.5). 

Enzyme (nM) " Actual Fluorescence 
FMN 
(nM) 
80 
40 
20 

FAD 
(nM) 

60 
30 
20 

ratio 

0.664 
0.615 
0.569 
5.634 
6.528 
8.75 

pH 7.7 

1000 
462 
218 
82 
3 6 
12 

pH 2.6 

664 
284 
124 
462 
235 
105 



Table 4.4. Kinetic constants " for the quinone reductase fiom G. trabeum. 

Compound Apparent K, (pm) Apparent L, (S') &t Km 
1,4-benzoquinone 3.8 4 . 0 ~  lo3 1 . 1 ~ 1 0 ~  
2,5-DMBQ 5.8 1 . 1 ~ 1 0 ~  1 . 9 ~  lo2 
~ , ~ - D M B Q *  6.8 1 .OX lo3 1.5x102 
Coenzyme Qoe 16.2 5.3x102 3.3 x10 
DCPIP ' 17.2 2 . 2 ~ 1 0 ~  1 . 3 ~  lo3 
K3Fe(w,  215.8 2.6x103 1 . 2 ~ 1 0  
NADH 46.4 1 . 2 ~ 1 0 ~  2 . 6 ~  10 

". Enzyme assays were performed as described in materials and methods unless otherwise 
stated. 200 pM of NADH was used in determining the Km for the electron receptors. 100 
pM of 2,6-DMBQ was used in determining the Km for the electron donor NADH. 
Experiments were performed in triplicate. Raw data is listed in Appendix C. 
b. Concentration ranged from 3.13 to 100 pM. Prepared from 2 mM stock. 
'' 2,5-dimethoxy-l,4-benzoquinone. Concentrations ranged fiom 1.25 to 40 pM. Prepared 
fiom 200 pM stock. 
d. Concentrations ranged fiom 6.25 to 50 pM. Prepared from 2 mM stock. 
"' 2,3-dimethoxy-5-methyl-1,4-benzoquinone. Concentration range fiom 6.25 to 200 pM. 
Prepared fiom 2 mM stock. 
f. 2,6-dichloro-indophenol. Concentrations ranged fiom 3.13 to 200 pM. Prepared from 2 
mM stock. 
" Concentrations ranged fiom 100 to 1600 pM. Prepared from 10 mM stock. 
h. Concentrations ranged from 6.25 to 100 pM. Prepared fiom 1 mM stock. 
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Table 4.5 Relative efficiencies of electron acceptors in the quinone reductase reaction. 

Electron acceptors Specific activity (Ua/mg) Relative activity 
1,4-benzoquinone 363 8 388% 
2,5-DMBQ 1014 
2,6-DMBQ 93 8 
Coenzyme Qo 483 
Ferric yanide 235 
DCPIP 2034 

a. 1 unit = 1 pmol of NADH oxidized min -'. The NADH concentration was 200 pM in all 
experiments. Acceptor concentrations were 100 pM (1,4-benzoquinone, 2,5-DMBQ, 2,6- 
DMBQ, Coenzyme Qo, DCPIP) and 500 pM (ferricyanide). 

The stoichiometry of NADH oxidation versus 2,6-DMBQ reduction was 

determined spectrophotometrically (Figure 4.10). The plot of NADH added versus 2,6- 

DMBQ reduction has a slope of 1. The spectral analysis indicated one equivalent of 2,6- 

DMBQ was reduced for each equivalent of NADH oxidized. 
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Figure 4.10. The stoichiometry of the quinone reductase catalyzed reduction of 2,6- 
DMBQ. (A) Reduction of 100 pM 2,6-DMBQ was monitored in the presence of 
indicated concentration of NADH. 4 pg enzyme was used for each assay. (B) The 
stoichiometry of NADH added versus 2,6-DMBQ reduction. The plot of the moles of 2,6- 
DMBQ reduced versus the moles of NADH added (0, 50, 100, and 150 pM) has a slope 
of 1. The concentration of 2,6-DMBQ reduced was calculated using the Beer-Larnbert 
equation: Abs = ECl, in which Abs is the absorbance at 390nm, E is the extinction 
coefficient (see materials and methods), 1 is the cuvette pathlength (lcm in this study). 
The total volume of the reaction system was 1mL. Based on the concentration and the 

- volume, the amount of 2,6-DMBQ reduced could be obtained. 



pH and Temperature Dependency 

The pH optimum was between 5.5 and 7 (Figure 4.1 1). The optimal temperature 

was between 24 and 40 "C (Figure 4.12). Enzyme activity decreased sharply above pH 7 

or 40 "C (Figure 4.1 1 and 4.12 A). The activation energy for the NADH oxidization was 

43.7 kJ/mol calculated fiom the Arrhenius plot (Figure 4.12 B). 

Figure 4.1 1. The optimum reaction pH for the quinone reductase from G. trabeum is 
between 5.5 to 7. The effect of pH on activity was measured with sodium citrate-citric 
acid buffer (pH 3 to 6.3) and sodium phosphate buffer (pH6.5 to 8). Data represents the 
average and standard deviation of 5 samples. 
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Figure 4.12. (A) The optimum reaction temperature for the quinone reductase from G. 
trabeum is between 24 to 40 OC. Data represents the average and standard deviation of 5 
samples. (B) The activation energy for the oxidation of NADH was 43.7 kJ/mol 

EdRT calculated by the Arrhenius plot. It was based on the Arrhenius equation: k=Ae' , in 
which A is Arrhenius constant, k is the rate constant (k=V/[substrate]), Ea is the 
activation energy, R is the gas constant (8.317J/Kelvin.mol), T is the temperature in 
Kelvin degree (OK, OK = OC+273.15). Since [substrate] is constant during the initial rate 

- W R T  period, the equation can be written as V=[substrate] Ae or LnV=LnA[substrate]- 
EaJRT. Consequently the slope of a plot of LnV versus 1/T gives -EdR. 



Inhibition of Ouinone Reductase 

The enzyme was not inhibited by 1mM of ZnS04, MgS04, CuS04, MnS04, 

EDTA, or Na3N, but was inhibited by 1mM KCN (Table 4.6). 

Table 4.6. Enzyme activity levels in the presence of potential quinone reductase 
inhibitors a. 

Potential inhibitor Activity 
Control 0.906+/-0.090 
KCN 0.647+/-0.073 
Na3N 0.802+/-0.090 
ZnSO4 1.087+/-0.127 
MgS04 0.88+/-0.073 
CuS04 0.906+/-0.073 
M11so4 0.828+/-0.037 
EDTA 0.802+/-0.097 

a' Values which are statistically different fiom the control at P < 0.05 (based upon T-test 
analysis) are shown in bold. 
b. Data represent the average and standard deviation of triplicate samples. 

Dicumarol and cibacron blue competitively inhibited the reduction. The re-plots 

of Lineweaver-Burk slopes versus inhibitor concentrations give Ki values of 0.5 and 0.2 

pM, respectively (Figure 4.13). 
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Figure 4.13. Inhibition of G. trabeum quinone reductase by cibacron blue (A) and 
dicumarol (C). Experiments were carried out in triplicate. (A) Oxidization of NADH 
(6.25 to 100 pM) was monitored in the presence of 12.5 pM 2,6-DMBQ and Cibacron 
blue 3GA (0.25, 0.5 and 1 pM). (B) The replot of slope versus Cibacron blue 3GA 
concentration indicates the Ki value as 0.2 pM. (C) Oxidization of NADH (6.25 to 100 
pM) was monitored in the presence of 12.5 pM 2,6-DMBQ and Dicumol (1, 2, and 4 
pM). (D) The replot of slope versus Dicumol indicates the Ki value as 0.5 pM. 



In the Lineweaver-Burk plot of 2,6-DMBQ reduction catalyzed by quinone 

reductase under various concentrations of NADH (Figure 4.14), parallel lines were 

obtained when the NADH concentration was between 50 and 200 pM. The slope of the 

plot increased for the reaction in the presence of 25 pM NADH, indicating that inhibition 

of enzyme catalyzed 2,6-DMBQ reduction occurred at low NADH concentration. 

Figure 4.14. Enzyme inhibition at 25 @I NADH was observed in the steady state kinetic 
analysis of G. trabeum quinone reductase. 2,6-DMBQ concentrations ranged from 6.25 to 
25 @I. Experiments were carried out with triplicate samples. 



Discussion 

Expression of intracellular 1,4-quinone reductase activity in the brown rot fungus 

G. trabeum was studied. An inducible, NADH-dependent 1,4-quinone reductase has been 

isolated fiom low-nitrogen cultures of G. trabeum. Physical and catalytic properties of 

this enzyme were determined. 

Vanillic acid increased the intracellular quinone reductase activity in G. trabeum 

by 1.5 fold in low-nitrogen media, and 3.85 fold in high-nitrogen media 3 days after the 

addition of the inducer. Vanillic acid is a lignin decomposition model compound. It is an 

inducer of the ligninolytic enzyme system in the white rot fungi, and had been used to 

induce quinone reductase activity in the white rot fungus Phanerochaete chrysosporium 

(Sporotrichum pulverulentum). NAD(P)H : quinone oxidoreductase activity increased 5 

fold in S. pulverulentum when grown in the presence of vanillate (Buswell et al., 1979). 

Two and a half days after the addition of 1.5 mM vanillic acid, the quinone reductase 

activity increased by 4.1 to 4.5 fold in P. chrysosporium low-nitrogen cultures (Constam 

et al., 1991). Twenty hours after the addition of 1 mM vanillic acid into the high-nitrogen 

culture of P. chrysosporium, the intracellular quinone reductase activity had increased by 

13.9 fold (Brock et al., 1995). 

The intracellular quinone reductase activity in G. trabeum increased by 11.14 fold 

in low-nitrogen media, and 7.33 fold in high-nitrogen media 3 days after the addition of 

100 pM 2,6-DMBQ. The significant response of G. trabeum cells to added quinones 

implies that G. trabeum has a sensitive intracellular mechanism for quinone metabolism. 

Similar phenolate compounds, 4,5-dimethoxy- l,2-benzenediol, 2,5-dimethoxy- 1,4- 

hydroquinone, and 2,5-dimethoxy-l,4-benzoquinone, have been identified as metabolites 



produced by G. trabeum in liquid cultures (Paszcynski et al., 1999; Kerem et al., 1999). 

The compound 2,6-DMBQ was chosen as the inducer in this study for its relative stability 

and water solubility. The compound is also a product found in hngal wood degradation 

(Brock et l., 1995). It has been reported that in P. chrysosporium, the intracellular 

quinone reductase activity was increased 6.18 fold in high-nitrogen cultures 20 hours 

after the addition of 100 pM 2-methoxy-l,4-benzoquinone (Brock et al., 1995). 

Both vanillic acid and 1,4-benzoquinone increased the intracellular quinone 

reductase activity in G. trabeum. This is consistent with observations with P. 

chrysosporium. For P. chrysosporium, vanillic acid was a more effective quinone 

reductase inducer (Brock et al., 1995). For G. trabeum, 1,4-benzoquinone was a much 

more effective inducer. The difference might imply that the enzymes play different roles 

in the white rot fungi and the brown rot fungi. The quinone reductases in P. ' 

chrysosporium were not only significantly induced by vanillic acid, the regulation of the 

quinone reductases was also similar to that of vanillate hydroxylase (Buswell, et al., 

1981; Yajima et al., 1979). The P. chrysosporium quinone reductases were likely 

involved in vanillate metabolism (Ander et al., 1980; Brock, et al., 1995). Brown rot 

fungi do not produce ligninolytic peroxidases (Freitag and Morrell, 1992; Milstein et al., 

1992); it is not likely that the enzyme is naturally involved in vanillic acid metabolism. 

The significant induction of G. trabeum cytosolic quinone reductases by quinones 

indicates the quinone reductases may act as an efficient type of electron source for 

quinone redox cycles andlor a protective mechanism against bioactive quinones. 

The time study on enzyme production showed G. trabeum quinone reductase 

activity reached the maximum 3 days after the addition of 2,6-DMBQ. This result is in 



accordance with Constam's study on P. chiysosporium (Constam et al., 1991). Brock's 

study with P. chiysosporium showed that significant specific activity increases occurred 

20 hours after the addition of either vanillic acid or 2-methoxy-l,4-benzoquinone (Brock 

et al., 1995; Akileswaran et al., 1999). 

The quinone reductase activity was eluted irregularly as 3 different peaks (Figure 

4.2 and 4.3) during the phenyl sepharose CL4B hydrophobic interaction 

chromatography. This indicated the enzyme was adsorbed to the matrix at several sites. 

This is probably because hydrophobic interactions are relatively nonspecific (Bollag et 

al., 1996). Although phenyl sepharose is a less hydrophobic matrix, at some sites very 

strong hydrophobic interaction with the quinone reductase occurs, causing irrecoverable 

binding and lowering the recovery rate. Because the hydrophobic interaction becomes 

stronger as the salt concentration increases, the ammonium sulfate precipitated quinone 

reductase was diluted with loading buffer in our study to increase the recovery rate as 

well as the purification fold. 

The homogeneous enzyme has a molecular weight of 66 KD, a subunit molecular 

weight of 22 KD, and a pI value of 4.2. During the isoelectric electrophoresis, another 

very weak band at pH 5.1 was also observed. Whether this was an impurity or another 

protein with quinone - reducing ability has yet to be determined. The quinone reductase 

from P. chiysosporium isolated by Brock et al. (1995) had a molecular mass of 44 KD 

and was composed of two similar 22 KD subunits. The pI value was 4.3. The quinone 

reductase from P. chiysosporium isolated by Constam et al. (1991) was a single 

polypeptide chain of 69 KD with pI values of 5.7, 5.9,6.0, and 6.3. 



The G. trabeum quinone reductase contained FMN as the co-enzyme. This is 

consistent with studies of P. chiysosporium quinone reductase (Brock et al., 1995) and 

DT-diaphorase (Chen et al., 1994; Li et al., 1995; Foster et al., 2000). Using the 

molecular weight of 66 KD, the ratio of native enzyme to FMN determined by 

fluorescence was 1 :2.8. 

The purified quinone reductase utilizes NADH as the electron donor, as does the 

enzyme purified by Constam and colleagues (1991). The enzyme purified by Brock et al. 

(1995 and 1996) utilized both NADH and NADPH. Studies have shown that P. 

chiysosporium produced several intracellular quinone reductases (Shoemaker et al., 

1989; Constam et al., 1991). In our previous studies, the crude intracellular enzyme 

extract fiom G. trabeum could reduce 1,4-benzoquinone with either NADH or NADPH 

as the electron donor (Chapter 3). This suggests that G. trabeum may produce other 

quinone reductases that utilize NADPH or both NADH and NADPH'as electron donors. 

The purified quinone reductase catalyzed the reduction of several 1,4- 

benzoquinones. The broad substrate specificity is consistent with P. chiysosporium 

quinone reductases and DT-diaphorase. The compound 2,5-DMBQ has been identified as 

a potentially key G. trabeum metabolite (Paszcynski et al., 1999; Kerem et al., 1999). The 

purified quinone reductase had a high turn over number (Gat = 1 . 0 ~ 1 0 ~  S-') for this 

compound, which indicates that the fungus has an efficient mechanism for conversion of 

this metabolite. It has been reported that 50% of added coenzyme Qo is reduced within 1 

day by G. trabeum, even though extracellular cellobiose dehydrogenase (cellobiose 

dependent quinone reductase) has not been detected in this type of medium (Paszcynski 

et al., 1999; Kerem et al., 1999). The purified quinone reductase also had a high turn over 



3 -1 number (Gat = 0.5~10 S ) for coenzyme Qo. The highest quinone reductase activity was 

observed with 1,4-benzoquinone. This is consistent with the observation with the quinone 

reductase extract from P. chrysosporium (Buswell et al., 1979). The greatest activity of 

the p artially p urified q uinone r eductases from P. c hrysosporium w as observed w ith 2 - 

methoxy-5-methoxymethyl-2,5-cyclohexadiene (Constam et al., 1991). The greatest 

activity of the quinone reductase from P. chrysosporium purified by Brock was observed 

with 2,6-dichloro- l,4-benzoquinone (Brock and Gold, 1996). The quinone reductases 

from P. chrysosporium can reduce both 1,4-benzoquinone and 1,2-benzoquinone, 

forming hydroquinones and catechols, respectively (Buswell, 1979; Constam et al., 1991 ; 

Brock et al., 1995; Brock and Gold, 1996). The ability of the purified quinone reductase 

from G. trabeum to reduce 1,2-benzoquinone has not been studied. It has been reported 

that G. trabeum reduces 2,5-dimethoxy-l,4-benzoquinone to 2,5-dimethoxy 

hydroquinone much more rapidly than it reduces 4,5-dimethoxy-l,2-bezoquinone to 4,5- 

dimethoxy catechol (Jensen et al., 2001). 

As reported in Chapter 3, the reduction of 1,4-benzoquinone by the plasma 

membrane redox system of G. trabeum had a Km of 59 pM, and a V ,, of 17.5 

nmol/min/mg (dry weight mycelia), which was 630 nmol/min/mg (protein). While the 

reduction of 1,4-benzoquine by the purified intracellular quinone reductase had a Km of 

3.8 pM and a V ,, of 3638 pmol/min/mg. This suggests that the intracellular enzyme 

may be responsible for the majority of the cell-associated 1,4-benzoquinone reduction. 

As seen with the P. chrysosporium quinone reductase, purified G. trabeum 

quinone reductase could also reduce the non-physiological electron acceptors DCPIP and 

4 -1 3 -1 fenicyanide. The turn over numbers were 2 . 2 ~  10 S and 2 .6~10  S , respectively. 



The stoichiometry of the 2,6-DMBQ reduction catalyzed by G. trabeum quinone 

reductase was similar to that catalyzed by P. chrysosporium quinone reductase. One 

equivalent of the two-electron acceptor 2,6-DMBQ was reduced for each equivalent of 

NADH oxidized. The strict adherence to the 1:l ratio suggested a two-electron transfer 

mechanism (Li et al., 1995; Brock et al., 1995; Brock and Gold, 1996; Galkin et al., 

1999). 

Enzyme inhibition at low NADH concentrations was observed with G. trabeum 

quinone reductase. This is similar to results observed for P. chlysosporium quinone 

reductase (Brock et al., 1995; Brock and Gold, 1996) and DT-diaphorase (Hories, 1990). 

This indicates that the mechanism of the G. trabeum quinone reductase may be similar to 

that of P. chlysosporium quinone reductase and DT-diaphorase, in which quinones were 

reduced directly to hydroquinones by two-electron reduction and the semiquinones were 

not released from the enzyme active site (Hories, 1990; Li, et al., 1995; Brock and Gold, 

1996; Galkin et al., 1999). 

Dicumarol and cibacron blue were efficient inhibitors for the purified G. trabeum 

quinone reductase, as is true for the P. chlysosporium quinone reductase (Brock and 

Gold, 1996) and DT-diaphorase (Roberts et al., 1989; Prestera et al., 1992). This further 

suggests that the three quinone reductases have similar two-electron reduction 

mechanisms. The inhibition is competitive with respect to NADH. The competition 

constants Ki were 0.5 and 0.2 pM for dicumarol and cibacron blue, respectively. The 

corresponding K i v alues for t he enzyme fiom P. c hlysosporium w ere 2.1 and 0.3 pM 

(Brock and Gold, 1996). Gloeophyllum trabeum quinone reductase is more sensitive to 

both inhibitors than is the P. chlysosporium quinone reductase. These inhibitors could be 



used i n  v ivo t o study the role the enzyme p lays i n b 0th fungal p hysiology and fungal 

biodegradation. 

Gloeophyllum trabeum quinone reductase was not inhibited by 1 mM of ZnS04, 

MgS04, CuS04, MnS04, or EDTA. This implies that quinone reductase activity does not 

require transition metals (Brock et al., 1995). Na3N and KCN have been reported to 

inhibit the activities of other flavoproteins. The enzyme was not inhibited by 1 mM 

Na3N, but was inhibited by 1 mM KCN. The quinone reductase fiom P. chrysosporium 

was slightly inhibited by 1 mM MnS04 and 1 mM EDTA. But it was not inhibited by 

either 1 mM Na3N or 1 mM KCN (Brock et al., 1995). 

As it is true for P. chrysosporium quinone reductases and DT-diaphorase, a 

significant function of G .  trabeum quinone r eductase may be to protect the cells fiom 

quinone and semiquinone toxicity in the brown rot fungi. Quinones behave as 

electrophiles and represent one source of oxidative stress in cells (Lind et al., 1982; 

Wefers et al., 1984; Murphy et al., 1991; Hasspieler et al., 1996; Brock and Gold, 1996; 

Dinkova-Kostova and Talalay, 2000). Quinones can react deleteriously with proteins and 

nucleic acids. They readily form semiquinones enzymatically or non-enzymatically via 

one-electron reduction. Semiquinones can then react with molecular oxygen yielding 

reactive superoxide anion radicals that participate in the generation of hydrogen peroxide. 

Meanwhile, toxic quinones are regenerated spontaneously. The ability of the enzyme to 

reduce quinones directly to hydroquinones in the cell can function to prevent the release 

of semiquinones into the cytoplasm. 

The high induction of G. trabeum intracellular quinone reductase activity by 

benzoquinones and the low apparent K, values of the enzyme to benzoquinones indicates 



that the quinone reductase has critical physiological functions in quinone metabolism and 

may play a potentially important role in brown rot degradation. A possible function for 

the enzyme in the brown rot fungi could be that the hydroquinones produced drive the 

extracellular Fenton reaction. The hydroquinones generated could be released 

extracellularly and react with femc iron directly, producing ferrous iron and 

semiquinones. The semiquinones could react with molecular oxygen and participate in 

hydrogen peroxide generation, or also react with femc iron. Quinones would be 

generated at the same time. Ferrous iron would then react with hydrogen peroxide to 

generate destructive hydroxyl radicals that could participate directly in fungal 

lignocellulose biodegradation (Jellison et al., 1991(a); Goodell et al., 1997 (a) and (b), 

2001; Paszcynski et al., 1999; Kerem et al., 1999; Jensen et al., 2001). By releasing the 

hydroquinones extracellularly, the quinone reductase could function to transport the 

electrons fiom an intracellular NADH pool to the extracellular Fenton reaction. The 

generated quinones might be taken up by cells and be reduced to hydroquinones by the 

cytosolic quinone reductase. Hydroquinones could then again be released and mediate the 

Fenton reaction extracellularly. It has also been demonstrated that 2,5-demethoxy 

hydroquinone p roduced by G . t rabeum c an reduce 4,5-dimethoxy- l,2-benzoquinone to  

4,5-dimethoxy catechol extracellularly (Jensen et al., 2001). Thus, the catechol chelators 

produced by the brown rot fungi can also be regenerated extracellularly and non- 

enzymatically in the presence of hydroquinones. 

The intracellular location of this quinone reductase however, is inconsistent with 

current theories, which indicate that non-enzymatic biodegradation of wood is an 

extracellular process spatially separated fiom the fungal hyphae. Thus, the role that the 



quinone redox cycle mediated by the cytosolic quinone reductase may play in continuous 

production of Fenton reagents is significantly limited by the spatial separation. 

Recent research has shown catechols can be partially or completely mediated to 

carbon dioxide by reducing multiple equivalents of femc iron (Pracht et al., 2001). The 

catechol biochelators produced by brown rot fingi may undergo a similar pathway 

extracellularly to generate multiple equivalents of Fenton reagents (Goodell et al., 2001). 

The extracellular pathway for the regeneration of hydroquinone chelators remains 

unknown. Mineralization to carbon dioxide by reducing femc iron has not been observed 

with hydroquinones (p-diol) (Pracht et al., 2001). 

In summary, an intracellular quinone reductase was purified and characterized 

fiom the brown rot fungus G. trabeum. Although previously studies in white rot fungi, 

this is the first biochemical characterization of a brown rot intracellular quinine 

reductase. This enzyme represents an efficient mechanism in quinone metabolism and 

may be important in the generation of cytosolic hydroquinones. By mediating a two- 

electron quinone reduction, the enzyme prevents the production of cytosolic 

semiquinones and protects cells against quinone and semiquinone toxicity. Via releasing 

hydroquiones out of cells, the enzyme may also function in part, as a type of electron 

camer that transports electrons fiom an intracellular NADH pool to the extracellular 

biochelator - driven Fenton reaction. However, because of the spatial separation of fungal 

mycelia and the extracellular Fenton reaction, the role that the quinone redox cycle 

mediated by the quinone reductase could play in fungal wood degradation may be 

spatially limited. 



Chapter 5 

ISOLATION AND CHARACTERIZATION OF PLASMA MEMBRANES FROM 

THE WOOD DECAY FUNGUS PHANEROCHAETE CHRYSOSPORIUM 

Abstract 

Plasma membrane isolation is a prerequisite step for characterization of 

membrane proteins. Four membrane fractions were isolated from the filamentous white 

rot fungus Phanerochaete chrysosporium grown in shaking malt extract liquid media for 

24 hours. Snail digestive enzyme (P-glucoronidase type H-1) was used to weaken the cell 

wall and form the protoplasts. Membrane fractions were obtained by homogenization, 

followed by sequential centrifugation and ultra centrifugation. Each fraction was 

characterized based upon the activities of plasma membrane ATPase and mitochondria1 

ATPase. The fraction with relatively high plasma membrane ATPase activity and the 

lowest mitochondria ATPase activity was observed under the transmission electron 

microscope by negative staining. Plasma membranes were isolated in this study, although 

the yield was low and there was some contamination by mitochondria membranes. 

Introduction 

A range of wood decay fungi produce both hydroxamic acid derived and 

phenolate derived low molecular weight siderophore-like iron chelating compounds 

(Fekete et al., 1989; Jellison et al., 1991 (a) and (b); Qi and Jellison, 2000; chapter 2). 

The phenolate-derived biochelators are postulated to be an integral part of the non- 

enzymatic brown rot mechanism. They have been shown to drive the degradation- 



associated Fenton reaction by participating in iron reduction and hydrogen peroxide 

generation (Goodell et al., 1997 (a) and (b), 2001; Paszczynski et al., 1999). 

Siderophores are low molecular weight iron chelating compounds produced by 

microorganisms grown under iron deficient conditions. Their primary function is to 

acquire i ron for c ells. M ost knowledge a bout fungal i ron acquisition h as b een d erived 

primarily fi-om studies using the yeast Saccharomyces cerevisiae and the smut Ustilago 

(Burgstaller, 1997). Studies on Ustilago mainly concentrated on the synthesis of 

siderophores and the regulation of siderophore production (Leong and Winkelmann, 

1998). Saccharomyces cerevisiae did not produce siderophores and sequestered iron via 

the ferric iron reductase in the plasma membrane redox system (Askwith et al., 1996). 

Specific membrane receptors are produced by bacteria for the uptake of the iron- 

siderophore complex (Barton and Hemming, 1992). Comparison of outer membrane 

proteins in bacteria grown under iron sufficient and iron deficient conditions by using 

SDS-PAGE has been the traditional method used to identify bacterial siderophore 

receptors (Crosa and Hodges, 1981 ; Weger et al., 1986; Cody and Gross, 1987; Enard et 

al., 1988; Abash and Ferreira, 1990; Ishimaru and Lopper, 1992 (b); Rabsch et al., 1999). 

However, no siderophore receptors have thus far been detected in any fungi (Huschka 

and Winklemann, 1989). Studies on putative siderophore receptors in wood decay hngi 

could contribute to the understanding of the iron uptake process. 

An understanding of the plasma membrane redox system (PMRS) of the white rot 

fungus Phanerochaete chrysosporium and the brown rot fungus Gloeophyllum trabeum 

has been obtained by femcyanide reduction kinetics (Stahl and Aust, 1993; Stahl et al., 

1995; Chapter 3). The PMRS of P. chrysosporium has been found to be able to reduce 



several quinones and free radicals (Stahl et al., 1995). It has been proposed that the 

PMRS of P. chrysosporium plays important roles in regulating extracellular pH, 

bioremediation of highly oxidized contaminants, and cell protection against the 

extracellular fiee radicals generated by ligninolytic systems. The PMRS of G. trabeum 

can reduce quinones and has been proposed to play important roles in adjusting 

extracellular and cytoplasmic pH, and in ion translocation. It may also under some 

circumstances be a component of fungal degradative mechanisms by driving an 

extracellular quinone redox cycle (Chapter 3), although special constraints may limit this 

function in vivo. For better biophysical and biochemical understanding of the PMRS, 

isolation of the plasma membrane and purification of specific oxidoreductases are 

required. 

Intrinsic difficulties in isolating membrane fractions and membrane proteins from 

filamentous fungi explain the scarcity of studies of siderophore receptors and the PMRS. 

Few studies have been camed out on the isolation of plasma membranes fiom fungi, and 

most of the work has involved the yeast form of fungi (Labarere and Bonneu, 1982). 

Although plasma membrane fractions have been isolated fiom the filamentous fungus 

Neurospora crassa Shear et Dodge (Bowman and Slayman, 1981), reports on plasma 

membrane isolation fiom filamentous wood decay fungi are scarce. Phanerochaete 

chrysosporium i s the only wood rot fungus from which m embrane v esicles h ave b een 

obtained; cross-membrane transportation of glucose and protons has been studied by 

using these vesicles (Green et al., 1984). 

Here we report a preliminary study on the plasma membrane isolation and 

characterization fiom the filamentous wood decay fungus P. chrysosporium. The 



protocols used to isolate vesicles from P. chrysosporium (Green et al., 1984) and to 

isolate plasma membrane from N. crassa (Bowman and Slayman, 1981) were modified as 

noted and utilized. Plasma membrane ATPase was used as the plasma membrane marker. 

Mitochodrial ATPase was used as the marker indicating the contamination caused by 

mitochodrial m embrane fractions. P revious s tudies h ave shown that p lasma m embrane 

ATP.ase and mitochondria ATPase have different optimum pH values and different 

specific inhibitors (Bowman et al., 1978; Bowman and Slayman, 1979). The optimum pH 

of plasma membrane ATPase from N. crassa is 6.8. The specific inhibitors are vanadate 

and diethylstilbestrol. The optimum pH of mitochondria1 ATPase is 8.2. The specific 

inhibitors are azide, oligomycin, venturicidin, and leucinostatin. 

Materials and Methods 

Owanism and Culture Conditions 

Stock cultures of the white rot fungus Phanerochaete chrysosporium were maintained on 

Difcoo malt extract agar plates at 24 "C. The spores and mycelia on the surface of a one- 

week-old P. chrysosporium malt extract agar plate were collected and inoculated into 250 

mL liquid DifcoB malt extract broth. Cultures were grown with 200 rpm aeration at room 

temperature for 24 hours. 

Cell Collection 

The cells were collected by filtration through Whatmano No. 2 filters, and were washed 

by ice cold distilled water and ice cold media A (0.59 M sucrose, 5 rnM EDTA, 50 rnM 

NaH2P04, pH 6.5). 



Cell Lvsis 

After harvesting, cells were treated with snail digestive enzyme (Sigma P-glucoronidase 

type H-1). Two grams (wet weight) cells were suspended by gentle shaking in 20 mL 

media A, 70 p1 Mercaptoethanol and 200 mg powdered snail enzyme for 16 hours at 30 

O C .  Microscopic phase contrast observation (Leitz LABOFUUX S Microscope system) 

was used to detect the formation of the protoplasts. 

Plasma Membrane Isolation 

The protocol was modified from Bowman's procedure (Bowman and Slayman, 1981). 

The enzyme treated suspension was centrifuged at 4354 x g for 10 minutes. The pellets 

were washed with 20 mL of 0.68 M sucrose and centrifuged at 4354 x g for 10 minutes. 

The p ellets were suspended in  2 0 m L media B (0.33 M sucrose, 1 m M E GTA, 0.3% 

bovine serum albumin, pH 7.1), homogenized once, and centrifuged at 1,088 x g for 10 

minutes. The pellets were suspended in 20 mL of media B for a second homogenization 

and serial centrifugations (producing mito-2 and mem-2 fractions). The supernatant was 

centrifuged at 14,636 x g for 30 minutes. The pellets were fractions containing mainly 

mitochondria1 membrane fractions (mito-1) and were suspended in a small volume of 

media C (1 mM EGTA, pH 7.5). The supernatant was centrifuged sequentially at 12,096 

x g for 30 minutes, 39,191 x g for 40 minutes, and 100,000 x g for 60 minutes. The 12 k 

pellets, 40 k pellets and 100 k pellets were washed by suspension in 40 mL of media C 

and centrifuged at 39,191 x g (12 k and 40 k pellets) or 100,000 x g (100 k pellets). The 

washed pellets were pooled and suspended in a small volume of media C. The pellets 

contained mainly plasma membranes (mem-1). 



Protein Determination 

Protein concentrations of the membrane fractions were determined by the Lowry assay 

(Lowry et al., 195 I), with bovine serum albumin as the protein standard. 

Enzyme Assays 

ATPase activity was assayed at 30 OC by the liberation of inorganic phosphate (Dryer et 

al., 195 7; Bowman et al., 1978; Bowman and Slayman, 1979). Plasma membrane ATPase 

activity was assayed in 0.5 mL of the following reaction mixture: 5 mM NazATP, 5 mM 

MgC12, 5 m M  phosphoenolpyruvate, 2.5 p1 of pyruvate kinase, 5 mM sodium azide, and 

10 mM PIPES (pH 6.7). The reaction was started by the addition of membrane fractions 

and stopped afier 10 minutes by the addition of 0.1 mL of 50% trichloroacetic acid. The 

mixture was centrifuged at 2000 x g for 5 minutes. The inorganic phosphate was 

measured by Dryer's assay (Dryer et al., 1957). The clear supernatant (0.5 mL) was 

mixed with 0.1 mL of 0.008 M ammonium molybdate solution. One mL of semidine 

hydrochloride (50mg in 100 mL of 0.1% NaHS04) was added. After 10 minutes, 

absorbance was read at 350 or 770 nrn. A trichloroacetic acid solution of KH2P04 was 

run as a standard. Mitochodrial ATPase was assayed in the same reaction mixture except 

sodium azide was omitted. 

Transmission Electron Microscope Observation 

The membrane fraction m em-1 w as negatively stained with 1 % p hosphotungstate acid 

and observed by a Philips EM201 transmission electron microscope. 



Effects of pH on ATPase Activities of Isolated Membrane Fractions 

Effects of pH on plasma membrane ATPase activity were measured with membrane 

fraction mem - 1 in potassium phosphate buffer (5.5 to 7.5) as described previously. 

Effects of pH on mitochondria1 ATPase activity were measured with membrane fraction 

mito - 2 in potassium phosphate buffer (8 to 8.8) as described previously. 

Results 

When P. chrysosporium was grown in malt extract liquid media for 4 weeks, the 

iron concentration before and after fungal growth was 1pM. The pH of the media was 

decreased by hngal growth from 4.6 to 2.4. The concentrations of phenolate type and 

hydroxamic acid type chelators were 35.7 and 16.5 pM as measured by the Arnow assay 

and the Csaky assay, respectively. Liquid malt extract media was used for the growth of 

P. chrysosporium for membrane isolation, because of the relatively fast hngal growth 

rate and relatively high production of biochelators in this media. 

After the snail digestive enzyme treatment, swelling spores and hyphae were 

observed by phase contrast microscopy (Figure 5.1). 



Figure 5.1. Phase contrast photograph of hyphae and spores of P. chrysosporium after the 
treatment of snail digestive enzyme (P - glucuronidase type H-1, EC 3.2.1.3 1, 200 mg 
were used for 2 g of cells), taken under the Leitz Laborlux S microscope. Swelling spores 
and hyphae can be observed. Magnification: x 800. The fungal conidia and hyphae (2 g) 
from MEA plates were inoculated in MEA liquid media (200 mL), grown for 24 hours on 
Thermolyne type 72000 orbital shaker (200 rpm, room temperature), and were collected 
by vacuum filtration through Whatman 2 filter paper. Enzyme treatment was performed 
under 37 "C for 6 hours in 20 mL of 50mM sodium phosphate buffer (pH 6.5, with 5 mM 
EDTA and 0.59 M sucrose) (Bowman and Slayrnan, 1981). 



Two mitochondrial fractions, mito-1 and mito-2, and two membrane fractions, 

mem-1 and mem-2, were isolated from 2 gram (wet weight) of a 24-hour culture of P. 

chrysosporium. The yield of the membrane fraction was 0.5874 mg of protein per gram 

of wet weight cells. Both of the mitochondrial fractions showed higher mitochondria 

ATPase activity than plasma membrane ATPase activity. Both of the membrane fractions 

showed higher plasma membrane ATPase activity (Table 5.1). The optimum pH of each 

fraction was the same as the reported values (Figure 5.2). 

Table 5.1. Protein concentrations and ATPase activities of membrane fractions from a 24- 
hour culture of Phanerochaete chrysosporium. 

Protein Plasma membrane ATPase Mitochondria ATPase 
concentration activity " activity a 

Fraction (mg/mL) (pmoYmidmg) (pmoYmidmg) 
~ i t o - l b  1.854 0.624 1.341 
Mito-2 2.141 0.439 1.177 
Mem-1' 1.061 0.722 0.397 
Mem-2 0.326 1.494 0.795 

a' Plasma membrane ATPase and mitochondrial ATPase were used as the marker of 
plasma membranes and the marker of intracellular mitochondria membranes, 
respectively. ATPase activity was measured at 30 O C  by the liberation of inorganic 
phosphate (Bowman et al., 1978). 
b. Mito: fractions mainly consisting of mitochondrial membranes, isolated by sequential 
centrifugation by using Beckman 52-21 centrifuge with a JA-20 rotor (3 times at 4,000 x 
g, once at 1,000 x g, once at 12,000 x g). 
" Mem: fractions mainly consisting of plasma membranes, isolated by sequential 
centrifugation a s  described above, followed by sequential ultra-centrifugation by u sing 
Beckman L8-70M ultracentrifuge with a SW48Ti rotor (Once at 40,000 x g and once at 
100,000 x g). 



Figure 5.2. (A). The effect of pH on ATPase activity of the membrane fraction mem-1 
fiom Phanerochaete chrysosporium. The optimum pH 6.7 was similar to the reported 
optimum pH of plasma membrane ATPase (pH 6.8). (B). The effect of pH on ATPase 
activity of the membrane fiaction mito-2. The optimum pH 8.2 was the same as the 
reported optimum pH of mitochondria1 membrane ATPase. 



Membrane fragments could be observed in the membrane fraction under electron 

microscope (Figure 5.3). 

Figure 5.3. Phanerochaete chrysosporium membrane fraction mem-1 was negatively 
stained with 1% phosphotungstate acid and observed by transmission electron 
microscope Philips EM20 1. Magnification: x 4% The round/irregular structures lighter 
in color were membrane fragments. 

Discussion 

Plasma membranes were isolated from the wood decay fungus P. chrysosporium. 

The yield of the plasma membrane fractions was 0.587 mg proteinlg cell (wet weight). 

The plasma membrane fractions still contained some intracellular mitochondrial 

membranes. Modifying the current method may increase the yield and the purification of 

the membrane fraction. 

The inoculum for the liquid media included spores and old hyphae. Enzyme 

treatment was not effective on the old hyphae. The hyphae also stuck together, preventing 

exposure of germinated spores in the clump to the enzyme (Photos were not shown here). 



Clumps of hyphae also made it difficult to separate the protoplasts, since the protoplasts 

have a tendency to adhere to them (Wiley, 1974). In future studies, the inoculurn should 

be filtered to remove the old hyphae before use (Seanna Annis, private communication). 

Twenty-four hours after inoculation is too short a time for the growth of P. 

ch~sosporium. Most spores did not germinate in this time period (Photo was not shown 

here). Seven-day cultures have been used to isolate membrane vesicles from P. 

chgsosporium (Green et al., 1984). It was reported that protoplast yield was highest from 

mycelia in the exponential growth phase (Smith and Berry, 1975). 

The malt extract liquid media was reported as a nitrogen sufficient media and the 

adding of the malt extract into the liquid media decreased the yield of protoplasts from 

hpergillus niger. Low nitrogen glucose-salts-asparagine liquid media was reported to 

give the highest yield of protoplasts from A. niger (Smith and Berry, 1975). The low 

nitrogen liquid media used for P. ch~sosporium culture in membrane vesicle isolation 

contained 0.6mM asparagine and 0.6 mM NH4N03 as the nitrogen source (Green et al., 

1984). 

Gradient u ltra - c entrifugation c an i ncrease the purity o f t he p lasma m embrane 

fractions (Bowman and Slayrnan, 198 1 ; Labarere and Bonneu, 1982). 

Another approach for studying the siderophore receptors in wood decay fungi 

would be identifying the receptor genes directly. The sequences of 23 outer membrane 

femc siderophore receptors from gram-negative bacteria have been published and a 

phylogenetic study has been performed for 21 receptors. Some amino acid sequences of 

receptors are highly conserved (Helm, 1998; Baumler et al., 1998). At least 3 sets of 

different primers have been designed for PCR studies of siderophore receptor genes in 



bacteria (Koster et al., 1995; Levier and Guerinot, 1996; Baumler et al., 1997). This 

background information would be very helpful for studying the siderophore receptors of 

wood decay fungi. 

Developing methods to isolate and purify membrane fractions from wood decay 

fungi will contribute to research on the physiology of wood decay fungi, which will also 

help to elucidate the wood biodegradation process as utilized by these organisms. 



Chapter 6 

CONCLUSIONS 

Phenolate biochelators are believed to mediate a Fenton reaction responsible for 

wood biodegradation by brown rot fungi (Jellison et al., 1991 (a); Goodell et al., 1997 (a) 

and (b), 2001). Brown rot biodegradation of wood is characterized by rapid strength 

losses and diffused patterns of degradation (Zabel and Morel, 1992; Eaton, 2000). The 

brown rot fungi have been shown to produce iron - reducing phenolate biochelators 

(Jellison et al., 1991 (a) and (b)). In the presence of femc iron, the biochelators can 

reduce femc iron to ferrous iron. The ferrous iron reacts with hydrogen peroxide, leading 

to the generation of destructive hydroxyl radicals (Fenton reaction) (Koenigs, 1974 and 

1975; Jellison et al., 1991 (a) and (b), 1993, 1996, 1997; Goodell et al., 1997 (a) and (b), 

2001). The phenolate biochelators produced by the brown rot fungus Gloeophyllum 

trabeum have been isolated and identified as hydroxylated phenylacetic acids, 

hydroxylated benzoic acids, hydroxylated benzene derivatives and dihydroxyphenyl 

pentanediol (Easwaran, 1994; Goodell et al., 1997 (a)). Phenolate compounds 43- 

dimethoxy catechol(4,5-DMC) and 2,5-dimethoxy hydroquinone (2,5-DMHQ) have also 

been identified as key metabolites with iron - reducing activity produced by G. trabeum 

(Paszczynski et al., 1999; Jensen et al., 2001). 

It has been demonstrated that brown rot, white rot, and wood-inhabiting non- 

decay fungi all produce biochelators (Charlang et al., 1981 ; Fekete et al., 1989). To 

elucidate the effects of biochelators on the ability of a fungus to degrade lignocellulose, 

biochelators produced by brown rot fungi G. trabeum, Postia placenta, Fomitopsis 

pinicola, white rot fungi Phanerochaete chrysosporium, Trametes versicolor, Trichaptum 



abietinum, and wood-inhabiting non-decay fungi Trichoderma viride, Phialocephala 

fusca, Phialophora mutabilis were characterized based on the main chelating groups and 

iron reducing ability. As reported previously, all fungal species tested produced 

biochelators. The ubiquitous production of siderophore-like iron-chelating compounds by 

these fungi suggests that biochelators may play a role in general fungal physiology such 

as iron acquisition. 

The patterns of biochelator production by tested fungi varied. All species tested 

produced hydroxamic acid type biochelators. All three brown rot fungi and all three non- 

decay fungi produced phenolate type compounds that were distributed in both the organic 

phase and the aqueous phase. The white rot fungus P. chrysosporium produced very low 

levels of phenolate type compounds. The white rot fungi T. versicolor and T. abietinum 

produced phenolate type or mixed type compounds that were only distributed in the 

aqueous phase. HPLC analysis indicated that the brown rot fungus G. trabeum produced 

DHBA like phenolate compounds, which were not observed with the white rot fungus P. 

chrysosporium. Phanerochaete chrysosporium produced higher amount of hydroxamic 

acid type chelators than phenolate type chelators. The reverse was seen for G. trabeum. 

Among the fungi tested, P. chrysosporium produced the highest amount of hydoxamic 

acid type chelators, while G. trabeum produced the highest amount of phenolate type 

chelators. 

The iron - reducing ability of biochelators produced by tested fungi also varied. 

Biochelators from the b rown rot fungi s howed higher i ron - reducing ability than did 

comparable amounts of biochelators £tom the white rot fungi. Of the fungi examined, the 

brown rot fungus F. pinicola produced biochelators with the highest iron - reducing 



ability. The high iron - reducing ability of biochelators produced by the brown rot fungi 

supports previous observations. That is, the brown rot fungi, unlike the white rot fungi, 

utilize a non-enzymatic, FeII dependent, free radical based process in lignocellulose 

breakdown (Koenigs, 1974 and 1975; Kirk et al., 1991 ; Backa et al., 1992; Wood, 1993; 

Hirano et al., 1997). The brown rot fungi would therefore need not only siderophore-like 

compounds for iron acquisition, but also additional iron-chelating compounds capable of 

catalyzing extracellular iron reduction. 

An extracellular cellobiose dependent quinone - reducing enzyme, cellobiose 

dehydrogenase ( CDH), has b een p roposed t o m ediate the Fenton reaction i n w hite rot 

fungi and in the brown rot fungus Coniophora puteana by reducing femc iron and 

molecular oxygen (Schimidhalter and Canevascini, 1993 (a) and (b); Cameron and Aust, 

1999). CDH has been purified from various white rot and soft rot fungi (Ayers e t  al., 

1978; Dekker, 1980; Fahnrich and Irrgang, 1982; Coudray et al., 1982; Canevascini et al., 

1991; Bao et al., 1993; Schou et al., 1993 and 1998; Fang et al., 1998; Dumonceaux et 

al., 1998; Temp and Eggert, 1999; Moukha et al., 1999; Subramaniam et al., 1999; 

Igarashi et al., 1999; Hallerg et al., 2000; Baminger et al., 2001). To our knowledge, 

Coniophora puteana is the only brown rot fungus from which CDH has been purified and 

characterized (Schimidhalter and Canevascini, 1993 (a) and (b)). Production of CDH by 

G. trabeum in glucose mineral media has been studied and no CDH activity was detected 

(Kerem et al., 1999). 

In this study, the production of CDH by the white rot fungus P. chrysosporium, 

the brown rot fungus G. trabeum, and the non-decay fungus T. viride grown under 

cellulolytic conditions was monitored. In the presence of cellulose, all the fungi tested 



produced low levels of CDH activity in the media. The results are consistent with the 

observations that the enzyme is induced by cellulose, but little of the activity is released 

into the media because the enzyme is bound to cellulose strongly via a cellulose - binding 

site (Henriksson et al., 1997). Cellobiose dehydrogenase has been purified from P. 

chlysosporium (Bao et al., 1993; Higham et al., 1994; Raices et al., 1995; Lehner et al., 

1996; Li et al., 1996 and 1997; Igarashi et al., 1996, 1998 and 1999; Cohen et al., 1997; 

Henriksson et al., 1997 and 1998; Habu et al., 1993 and 1997; Vallim et al., 1998; 

Cameron and Aust, 1999). Production of CDH by G. trabeum and T. viride has not been 

previously reported. To efficiently purify CDH from G. trabeum and T. viride, increasing 

the release of CDH into liquid media would be required. Shake cultures have been shown 

to increase the production and release of the CDH into liquid media (Igarashi et al., 

1996). It h as also b een reported that supplementing the 1 iquid media with bovine c alf 

senun increases the CDH production in P. chrysosporium (Habu et al., 1997). Genes 

encoding CDH in P. chlysosporium, P. cinnabarinus, T. versicolor, and S. thermophile 

have been cloned and characterized. The enzymes from different fungi showed high 

protein s equence i dentity (Raices e t a l., 1 995; L i e t a l., 1 996 and 1 997; V allim e t a l., 

1998; Moukha et al., 1999; Dumonceaux et al., 1998; Subrammiam et al., 1999). This 

suggests that it will be possible to characterize the CDH in G. trabeum and T. viride 

directly at the gene level. 

A new role played by CDH was proposed in our study. It has been shown that 

CDH oxidizes cellobiose to cellobionolactone, determined to be a hydroxamic acid 

derivative (Westermark and Eriksson, 1975; Higham et al., 1994). Increased production 

of hydroxamic acid biochelators in the media containing cellulose was observed in our 



study. We suggest that CDH may be involved in the pathway generating hydroxamic 

acid biochelators. 

The non-decay h g i  examined in this work produced moderate levels of both 

phenolate type and hydroxamic acid type chelators. The biochelators produced also 

showed iron reduction ability, which was usually higher than the ability of the chelators 

fkom the white rot fungi and from some of the brown rot h g i .  The non-decay h g u s  

Trichoderma viride also produced detectable CDH activity. However, T. viride did not 

degrade the spruce wood blocks in the soil block decay test. The ability of a non-decay 

h g u s  such as Trichoderma to produce many of the components postulated to be 

involved in wood biodegradation but still not decay wood has not been explained, and 

clearly has implications for understanding wood degradation and preservation. 

The presence of extracellular, membrane - bound, or intracellular quinone - 

reducing enzymes in G. trabeum, has been first proposed by Paszczynski and colleagues 

(1999). The enzymes have been suggested to play a role in the generation of phenolate 

compounds, such as 2,5-DMHQ and 4,5-DMC (Paszczynski et al., 1999). In the proposed 

phenolate biochelator mediated Fenton reaction, the biochelators are oxidized to quinones 

by reducing ferric iron andlor molecular oxygen. Through in vitro studies, it has been 

found that one equivalent of biochelator can reduce multiple equivalents of ferric iron 

(Goodell et al., 1997 (a) and (b)). Possible biochelator regeneration via a redox cycle was 

first proposed by Goodell and colleagues (1997). A quinone redox cycle mediated by 

either extracellular, or membrane-bound, or intracellular quinone - reducing enzymes was 

proposed subsequently (Paszczynski et al., 1999; Kerem et al., 1999; Jensen et al., 2001). 



Spatial and other constraints suggest that the utility of such a redox system in vivo 

may be limited. Recent research highlights the role mineralization may play in the ability 

of biochelators to reduce multiple iron equivalents (Goodell et al., 2001; Pracht et al., 

2001). To determine the role of reductive systems in the physiology of decay organisms, 

quinone - reducing systems of G. trabeum, such as the extracellular cellobiose dependent 

quinone - reducing activity, the plasma membrane redox system (PMRS), and the 

intracellular quinone - reducing enzymes, were studied. 

The G. trabeum PMRS was characterized based upon fenicyanide reduction 

kinetics and l74-quinone reduction. For comparison, 1,4-quinone reduction by the crude 

intracellular enzyme extract from G. trabeum was also characterized. 

For G. trabeum, the fenicyanide reduction rates depended on initial fenicyanide 

concentration and initial mycelial mass. The reduction rates were within linear range 

when the fenicyanide concentration was up to 20 mM and when the mycelia mass was up 

to 120 mg (dry weight) in 200 mM potassium phosphate buffer (pH 8.0). Specific activity 

of 12 nmol/min/mg (mycelia dry weight) was obtained in pH 8.0 potassium phosphate 

buffer (200 mM) with 10 mM fenicyanide and 97 +/- 3mg dry weight of mycelia. The 

rates increased with pH above the physiological pH. Fenicyanide reduction was inhibited 

by carbonyl cyanide m-chloromethoxypheny1 hydrazone, 2,4-dinitrophenol and sodium 

azide, all of which are known inhibitors for membrane redox systems, at 100 nmoVmg 

(dry weight) mycelia. Fenicyanide reduction was not inhibited by potassium cyanide. 

Reduction of l,&benzoquinone by the G. trabeum PMRS had an optimum pH 

between 5.0 and 7.0, a Krn of 59 pM, and a V , of 17.5 nmol/min/mg (dry weight 

mycelia). The intracellular enzyme extract from G. trabeum utilized NADH or NADPH 



as the electron donor for quinone reduction. The quinone reduction rates with NADH and 

NADPH were similar. With NADH as the electron donor, it had a pH optimum of 6.5, a 

Km of 156 pM, and a V,, of 863 nmol/min/mg. 

Both the intact hyphae and the intracellular enzyme extract fiom G. trabeum 

could reduce 1,4benzoquinone. The optimum reaction pH, Km, and Vmax were different, 

from which we conclude that G. trabeum produces a certain level of constitutive 

intracellular quinone reductases, and both of the PMRS and intracellular quinone 

reductases contribute to quinone reduction in G. trabeum. An intracellular quinone 

reductase fiom G. trabeum was purified and characterized. 

The native enzyme purified from G. trabeum was a flavin protein with a 

molecular weight of 66 KD and a pI value of 4.2. The subunit molecular weight was 22 

KD. The coenzyme determined by visible spectrum and fluorescence was flavin 

mononucleotide. The ratio of the enzyme to the FMN was 1:2.8. The enzyme was 

inducible by 2,6-dirnethoxy-l,4-benzoquinone and 4-hydroxy-3-methoxybenzoic acid in 

both low nitrogen and nitrogen sufficient media at either 24 or 30 "C. It utilized NADH 

as an electron donor and catalyzes the reduction of multiple quinones and electron 

acceptors such as 2,6-dichloro-indophenol, and potassium ferricyanide. For enzyme 

catalyzed 2,6-dimethoxy-l,4-benzoquinone reduction, the apparent Km was 6.8 pM and 

3 -1 the La, was 1 . 0 ~ 1 0  S ; the pH optimum was between 5.5 and 7; the optimal temperature 

was between 24 and 40 "C. The stoichiometry of NADH oxidation versus 2,6-dimethoxy- 

1,4-benzoquinone was 1 : 1. Inhibition of 2,6-dimethoxy-l,4-benzoquinone reduction 

occurred at low NADH concentration. Dicumarol and cibacron blue were competitive 

inhibitors with Ki values of 0.5 and 0.2 pM, respectively. 



CDH, the PMRS and the intracellular quinone reductase fiom G. trabeum all 

showed q uinone-reducing ability. T hey m ay participate i n  the p roduction o f p henolate 

compounds. However, they are spatially separated fiom the biochelator driven Fenton 

reaction occurring in the wood cell wall. Consequently it may be difficult for these 

enzymes to mediate the proposed quinone redox cycle in vivo. 

CDH catalyzes cellobiose dependent quinone reduction, but the electron donor, 

cellobiose, is a product fiom enzymatic degradation of cellulose. It will not exist at the 

early stage of brown rot decay, which is believed to be a non-enzymatic oxidation 

process. As an enzyme, the ability of CDH to diffuse in the intact wood cell wall would 

also be limited at the early stage of degradation. As a result, CDH would not be expected 

to contribute much to the quinone redox cycle at initial degradation stages. 

Spatial separation of the mycelia and the extracellular quinone redox cycle would 

prohibit the mycelial quinone - reducing systems, such as the plasma membrane redox 

system and the intracellular quinone reductase, fiom functioning directly. In brown rotted 

wood, the degree of polymerization of cellulose decreases rapidly at a very early stage of 

decay, when little weight loss has been observed. The reaction is not associated with 

hyphae and is highly diffusible. Since hydroxyl radicals are highly destructive but short 

lived within very limited spatial distances, the hydroxyl radical generating Fenton 

reaction has been proposed to occur inside the wood cell wall and to initiate attack of 

lignocellulose in situ. As a result, it is not likely for the hyphae in the wood cell lumen to 

participate directly in a quinone redox cycle that is expected to occur inside the wood cell 

wall. For the intracellular quinone reductase to function, quinones produced by catalyzing 

the extracellular Fenton reaction would have to be taken up by the fungal cells for 



reduction. Then the hydroquinones would be released out of the cells and difhse away 

into the wood cell wall. For the membrane redox system, the low pH conditions in the 

hyphal vicinity also need to be considered. It has been observed that the optimum pHs for 

femcyanide reduction and quinone reduction by the PMRS are higher than pH 5, while it 

has been known that the pH in the G. trabeum hyphal vicinity is often lower than pH 4 in 

vivo. Thus the reduction of femcyanide and quinones, as well as associated activities, are 

expected to be inhibited at least at later stages of wood colonization and degradation. The 

low pH also inhibits the iron reduction by catechols and hydroquinones. Thus, if the 

quinone reduction by PMRS did play a role in the quinone redox cycle in the biochelator 

- driven Fenton reaction brown rot mechanism, it is more likely to occur at the very early 

stage when the fungus is decreasing the environmental pH. The reduction would also be 

expected to occur near the hyphae. 

Recent research has shown that catechols can be partially or completely mediated 

to carbon dioxide by reducing multiple equivalents of femc iron, while such 

mineralization was not observed with hydroquinones (p-diol) (Pracht et al., 2001). It has 

also been demonstrated that 2,5-demethoxy hydroquinone produced by G. trabeum can 

reduce 4,5-dimethoxy-l,2-benzoquinone to 4,Sdimethoxy catechol extracellularly 

(Jensen et al., 2001). As a result, the catechol chelators produced by the brown rot fungi 

could be either mediated to carbon dioxide or regenerated by a hydroquinone mediated 

quinone redox cycle extracellularly, while the extracellular pathway for the regeneration 

of hydroquinone chelators remains unknown. 

Although there exist spatial difficulties limiting the mycelial quinone - reducing 

system ability to participate in the extracellular quinone redox cycle, it has been found 



that G. trabeum mycelia are necessary for the depolymerization of polyethylene glycol by 

the extracellular Fenton reaction system containing 2,5-demethoxy-l,4-benzoquinone, 

ferric iron and hydrogen peroxide (Kerem et al., 1998). It has also been found that 2,5- 

dimethoxyl hydroquinone is more effective than 4,5-dimethoxy catechol in driving the 

extracellular Fenton reaction to degrade polyethylene glycol. The rate of 2,5-DMBQ 

reduction by G. trabeum mycelia is much higher than the rate of 4,5-DMBQ reduction, as 

well (Jensen et al., 2001). Consequently, 2,5-dimethoxy-l,4-benzoquinone would be 

more likely to be reduced to 2,5-dimethoxy hydroquinone by mycelial quinone - reducing 

activities (Jensen et al., 2001). Both redox cycling pathways and mineralization pathways 

may exist in G. trabeum. The relative importance of 2,5-DMBQ and 4,5-DMBQ versus 

other more ubiquitous phenolates has not been established. 

Gloeophyllum trabeum PMRS and intracellular quinone reductase have been 

proposed to have other functions. The proton extrusion ability associated with the PMRS 

activity might play a role in the ability of fungi to both quickly adjust the environmental 

pH and to maintain the cytoplasmic pH. PMRS activity might be also associated with the 

pathway of some ion uptake pathways in G. trabeum. The high induction of G. trabeum 

intracellular quinone reductase activity by benzoquinones and the low apparent K, values 

to benzoquinones indicate that quinone reductase may play critical roles in the quinone 

metabolism of brown rot fungi. A significant function of the intracellular quinone 

reductase from G. trabeum may be protecting the cells from quinone and semiquinone 

toxicity. 

Although the PMRS can reduce 1,4-benzoquinone, the electron donors have not 

been identified. For further biochemical and biophysical studies, isolation of the plasma 



membrane and purification of the membrane-bound quinone reductase will be necessary. 

Isolation of the plasma membrane is also important to many other studies of fungal 

physiology, such as studies on siderophore receptors. Isolation and characterization of 

membrane fractions from P. chrysosporium were performed but additional work is 

required. The study is meaningful for further studies of the physiology and biochemistry 

of wood decay fungi. 

In summary, the present research has characterized the production of biochelator 

and CDH by different fungi. All the tested fungi (white rot, brown rot and wood- 

inhabiting non-decay) produced iron-chelating compounds. The brown rot fungi 

produced more phenolate biochelators than hydroxamic acid type biochelators. 

Biochelators produced by the brown rot fungi also show higher iron - reducing activity. 

The results support the theory that a biochelator mediated Fenton reaction is involved in 

brown rot biodegradation. Biochelators were ubiquitous in the tested fungi indicating 

they may also play roles in general fungal physiology such as in iron acquisition. 

All fungi tested also produced detectable level of CDH in the presence of 

cellulose. Previous reports on the lack of CDH production by G. trabeum (Kerem et al., 

1999) may have been due to inappropriate culture conditions. Cellobiose dehydrogenase 

has been reported to oxidize cellobiose and drive the Fenton reaction enzymatically. 

Cellobiose dehydrogenase may participate in the pathway that generates hydroxamic acid 

biochelators. The quinone - reducing activity of CDH suggests it might play a role in the 

phenolate biochelator mediated Fenton reaction. But limited by the availability of 

cellobiose and by the diffusibility of the enzyme at the initial decay stage, a CDH 

mediated quinone reduction is not likely to occur in vivo at the initial decay stages. 



An intracellular NADH dependent quinone reductase from G. trabeum has been 

purified and characterized. The enzyme is a constitutive enzyme, but the expression is 

highly induced by methoxy benzoquinone. It is also induced by vanillic acid at a lower 

induction fold. The quinone reductase has low substrate saturation values toward 1,4- 

benzoquinones. It reduces multiple quinones by a two-electron reduction. The 

characteristics of the enzyme indicate that G. trabeum has a sensitive mechanism for 

quinone metabolism. An important function of the enzyme would be to protect cells fiom 

quinone and semiquinone toxicity. As an important enzyme in the pathway generating 

catechols, hydroquinones and other phenolate compounds, the intracellular quinone 

reductase may also play an indirect role in the biochelator - driven Fenton reaction brown 

rot mechanism. By mediating the intracellular quinone reduction and releasing the 

catechols/hydroquinones produced externally, the intracellular quinone reductase would 

act as a type of electron carrier that transports the electrons from the intracellular NADH 

pool to the extracellular environment. The spatial separation of fungal hyphae fiom the 

extracellular Fenton reaction however, limits the role the PMRS and intracellular quinone 

reductase could potentially play in the brown rot degradation process. And as noted 

earlier, mineralization of catechol biochelators may be a significant pathway in some 

cases for continuous production of Fenton reagents. 

A method to isolate and characterize the plasma membrane fractions fiom wood 

decay h g i  has been developed. It will be helpful for further study of fungal physiology 

and biochemistry. 

The present study contributes to the understanding of the brown rot decay 

mechanism and to some aspects of the physiology and biochemistry of wood decay fungi. 



Significant questions still remain encompassing the role of biochelators and reductive 

enzymes in physiological and biodegradative processes ranging from pH regulation, to 

hyphal protection, ion uptake and quinone recycling. Studies on the decay mechanisms 

and the physiology of wood decay fungi will eventually help in the development of 

environmentally - friendly wood preservation methods and the utilization of 

biodegradative mechanisms for remediation and bioprocesses. 
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Appendix A 

HIGHLEY'S LIQUID MEDIA 

Ingradien ts 

NH4NO3 2.0g/l H3B04 * 0.57 mg/l 

KH2po4 2.0 g/l MnC12.4H20 * 0.036 mg/l 

MgS04.7H20 0.5 g/l ZnS04.7H20 * 0.31 mg/l 

CaC12.2H20 0.1 g/l CuS04.5H20 * 0.039 mg/l 

Cellulose 10 g/l (NI&)6M07024.4H20 * 0.0 18 mg/l 

Glucose 2g/l FeS04.7H20 ** 5.56 mg/l 

* Stock solutions: 

H3B04: 0.57 mg/rnL, use 1 mL per liter media. 

MnC12.4H20: 0.36 mg/mL, use 100 ul per liter media. 

ZnS04.7H20: 0.31 mg/mL, use 1 mL per liter media. 

CuS04.5H20: 0.39 mg/mL, use 100 ul per liter media. 

(NI&)&lo7O24.4H2O: 0.1 8 mg/mL, use 100 ul per liter media. 

** Prepare fresh solution (55.6 mg/mL) each time before use. Use 100 ul per liter media. 

Preparation 

Add 2 g of cellulose powder into one 500 mL flask. Then add 200 mL of liquid 

media into the flask. Autoclave for 20 minutes at 15 PSI. If only glucose is used as the 

carbon source, 10 gram of glucose is used for 1 liter of media. 



Appendix B 

BASAL MEDIA 

Media Composition 

Basal LII solution, 100 mL 

Trace elements solution, 60 mL 

10% glucose, 100 mL 

0.1 M 2,2-dimethylsuccinate, pH 4.2, 100 mL 

1 00 mgA Thiamin, 10 rnL 

8 g/l ammonium tartrate, 25 mL 

0.4 M Veratryl alcohol, 100 mL 

deionized distilled water, 405 mL 

Stock Solutions 

Trace elements solution (per liter) 

MgS04: 3 g 

MnSO4: 0.5 g 

NaC1: 1.0 g 

FeS04.7H20: 0.1 g 

CoCI*: 0.1 g 

ZnS04.7H20: 0.1 g 

cuso4:  0.1 g 

A1K(S04)2. 12H20: 1 0 mg 

H3BO3: 10 mg 



Na2M004.2H20: 10 mg 

Nitrilotriacetate: 1.5 g 

Filter sterilized. 

Basal 111 solution (per liter) 

KH2P04: 20 g 

MgS04: 5 g 

CaC12: 1 g 

Trace elements solution: 100 rnL 

Filter sterilized. 

10% glucose, autoclave for 20minutes at 121 OC 

0.1 M 2,2-dimethylsuccinate, pH 4.2, autoclave for 20 minutes at 121 OC 

100 mg/l Thiamin, autoclave for 20 minutes at 121 OC 

8 g/l ammonium tartrate, autoclave for 20 minutes at 121 OC 

0.4 M Veratryl alcohol, filter sterilized. 



Appendix C 

LINEWEAVER-BURK PLOTS DETERMINING KINETIC CONSTANTS 

Figure C.1. Lineweaver-Burk plot of NADH oxidization by the G. trabeum quinone 
reductase. 

Figure C.2. Lineweaver-Burk plot of 1,4-benzoquinone reduction by the G. trabeum 
quinone reductase. 



Figure C.3. Lineweaver-Burk plot of 2,S-dimethoxy-1,4-benzoquinone reduction by the 
G. trabeum quinone reductase. 

Figure C.4. Lineweaver-Burk plot of 2,Mimethoxy-1,4-benzoquinone reduction by the 
G. trabeum quinone reductase. 



Figure C.5. Lineweaver-Burk plot of 2,3-dimethoxy-5-methyl-1,4-benzoquinone 
reduction by the G. trabeum quinone reductase. 

Figure C.6. Lineweaver-Burk plot of potassium femcyanide reduction by the G. trabeum 
quinone reductase. 



Figure C .7. Lineweaver-Burk plot of 2,6-dichloro-indophenol reduction by the G. 

trabeum quinone reductase. 



Appendix D 

HPLC ANALYSIS OF BIOCHELATOR FRACTIONS 

FI le : DHBA132.DAD 
Blank: 
Tine :17.35 
UL : 275.4 

File : DHB13132. m D  
Blank: 
Tire : 17.35 
UL :244.5 

Figure D.1. HPLC analysis of the culture filtrate from G. trabeum at 275.4, 244.5 and 
3 1 1.9 nm, where the characteristic absorbance peaks of DHBA are expected. 



F i l e  : DHIW13Q. DnD 
B l a n k :  
T i r e  : 17.35 
YL :275.4 

Fi I P  : DNBA13O. DnD 
B l a n k :  
T a r e  :17.35 
UL :244.5 

ABS 

F i l e  : DHIW13O.D&D 
B l  an%:  
T i e  : 17.35 
UL : 311.9 

ABS 

Figure D.2. HPLC analysis of the ethyl acetate extract from the G. trabeum culture 
filtrate at 275.4,244.5 and 3 1 1.9 nm, where the characteristic absorbance peaks of 
DHBA are expected. 



Figure D.3. HPLC analysis of the aqueous residual from the G. trabeum culture filtrate at 
275.4,244.5 and 31 1.9 nm, where the characteristic absorbance peaks of DHBA are 
expected. 



Figure D.4. HPLC analysis of the ethyl acetate extraction from the P. chrysosporium 
culture filtrate at 275.4,244.5 and 31 1.9 nrn, where the characteristic absorbance peaks of 
DHBA are expected. 



Fi lo : b n M t 2 8 . o A D  
Dl a d :  
T i r e  :t?.85 
UL :a44.5 

Figure D.5. HPLC analysis of the aqueous residual from the P.chrysosporium culture 
filtrate at 275.4,244.5 and 3 1 1.9 nm, where the characteristic absorbance peaks of 
DHBA are expected. 
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