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As part of an ongoing multi-university research study on student understanding

of concepts in thermal physics at the upper division, I identified several student

difficulties with topics related to heat engines (especially the Carnot cycle), as well

as difficulties related to the Boltzmann factor. In an effort to address these dif-

ficulties, I developed two guided-inquiry worksheet activities (a.k.a. tutorials) for

use in advanced undergraduate thermal physics courses. Both tutorials seek to im-

prove student understanding of the utility and physical background of a particular

mathematical expression. One tutorial focuses on a derivation of Carnot’s theorem

regarding the limit on thermodynamic efficiency, starting from the Second Law of

Thermodynamics. The other tutorial helps students gain an appreciation for the

origin of the Boltzmann factor and when it is applicable; focusing on the physi-

cal justification of its mathematical derivation, with emphasis on the connections

between probability, multiplicity, entropy, and energy.

Student understanding of the use and physical implications of Carnot’s theorem

and the Boltzmann factor was assessed using written surveys both before and after



tutorial instruction within the advanced thermal physics courses at the University

of Maine and at other institutions. Classroom tutorial sessions at the University of

Maine were videotaped to allow in-depth scrutiny of student successes and failures

following tutorial prompts. I also interviewed students on various topics related to

the Boltzmann factor to gain a more complete picture of their understanding and

inform tutorial revisions.

Results from several implementations of my tutorials at the University of Maine

indicate that students did not have a robust understanding of these physical prin-

ciples after lectures alone, and that they gain a better understanding of relevant

topics after tutorial instruction; Fisher’s exact tests yield statistically significant

improvement at the α = 0.05 level. Results from other schools indicate that dif-

ficulties observed before tutorial instruction in our classes (for both tutorials) are

not unique, and that the Boltzmann factor tutorial can be an effective replacement

for lecture instruction. Additional research is suggested that would further examine

these difficulties and inform instructional strategies to help students overcome them.
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Physics education research (PER) is the study of how people think about, learn,

understand, and teach topics in and related to physics. One goal of PER is to iden-

tify student difficulties with a particular topic and to develop curricular materials to

address these difficulties. Results in PER show that guided-inquiry worksheet activ-

ities (a.k.a. tutorials) can be effective supplements to traditional lecture instruction

in introductory physics classes. Recent research suggests that tutorials can also be

useful within upper-division courses.

I developed two tutorials for use within advanced undergraduate thermal physics

courses. One tutorial improves students’ understanding of the relationship between

heat engines (especially the Carnot cycle), entropy, and the Second Law of Ther-

modynamics. Heat engines are an integral part of many thermodynamics courses,

as they provide a practical scenario in which all three laws of thermodynamics must

be considered. Carnot’s theorem is, in essence, a statement of the Second Law in



the context of heat engines, but my results indicate that students do not make this

connection. My tutorial helps students by guiding them through a derivation of

Carnot’s theorem starting from a standard statement of the Second Law.

My second tutorial helps students gain an appreciation for the physical and

mathematical origin of the Boltzmann factor and when it is applicable. The Boltz-

mann factor is a mathematical expression for the probability that a thermodynamic

system has a certain energy. The Boltzmann factor may be used to determine

many properties of the system and is, therefore, a cornerstone of statistical thermal

physics. My results indicate that students often do not recognize situations in which

the Boltzmann factor is appropriate, nor do they understand where this particular

mathematical expression comes from.

Results from implementing my tutorials within the advanced thermal physics

courses at the University of Maine indicate that students gain a better understanding

of relevant topics after tutorial instruction, compared to lectures alone. Results from

other schools indicate that difficulties observed before tutorial instruction in our

classes are not unique, and that the Boltzmann factor tutorial can be an effective

replacement for lecture instruction.
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Chapter 1

INTRODUCTION

The field of physics education research (PER) was born from a desire of university

physics faculty to develop instructional strategies specifically for physics classes, and

to better understand how people learn and think about physics concepts. Similar

to other discipline-based forms of educational research, PER is primarily conducted

by those who are knowledgeable in the specific content area: physicists and physics

teachers. This allows the study of content-specific topics that may not be well

understood by those outside the discipline.

The majority of the work that has been conducted in PER has focused on intro-

ductory physics students’ understanding of basic topics in mechanics and electricity

& magnetism.[2] A small fraction of PER studies have examined how upper-division

physics students (primarily physics majors) reason about and understand concepts

in advanced physics courses.[3–16] An even smaller fraction has looked at student

understanding of topics in upper-division thermal physics courses.[17–23] This dis-

sertation builds on the work that has been done in advanced thermal physics courses

by identifying specific student difficulties and reporting on the development of cur-

riculum materials designed to address these difficulties and enhance instruction in

these courses.

The student population under investigation is particularly interesting, as they

have completed several university-level physics courses and are beyond the level of

entering introductory students, who may be considered novices; they are not, how-

ever, as advanced as professional physicists, who may be considered experts. They

are somewhere in the middle: journeymen, as described by Bing and Redish.[24] Re-

search in educational psychology has explored the differences between experts and
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novices in terms of their behaviors and reasoning strategies in various contexts.[25–

29] Advanced undergraduate physics students provide a glimpse of physicists on

their way to expertise. The examination of this journeyman population is enhanced

by studying student understanding of thermal physics topics, as most of the stu-

dents have not studied the field before. As I discuss in later sections, my research

has identified situations in which these advanced undergraduate students display

novice-like behavior, and situations in which they engage in expert-like reasoning

Previous studies have been conducted on student understanding of thermal

physics topics both at the introductory and the advanced levels.[18–20, 30–32] Stud-

ies within the realm of classical thermodynamics have typically focused either on

students’ understanding of the First Law of Thermodynamics, state variables (in-

ternal energy, volume, pressure, temperature, etc.), and process variables (heat and

work);[30, 31, 33] or on students’ understanding of the Second Law of Thermody-

namics and entropy.[18, 34] Little research has been conducted on student under-

standing of physical scenarios in which both the First and Second Laws of Ther-

modynamics are necessary for a full understanding. One such scenario is that of

heat engines: devices that convert thermal energy into usable mechanical energy.

The amount of mechanical energy that can be obtained per unit of thermal energy

is restricted by all three laws of thermodynamics. Because a robust understanding

of heat engines and Carnot’s efficiency involves synthesizing the First and Second

Laws of Thermodynamics appropriately — and because research shows that under-

standing either law by itself is not trivial (cf. Refs. 18, 32, & 35) — this seemed like

a useful place for curriculum development efforts.

Studies within the realm of statistical mechanics have focused on student un-

derstanding of probabilities of discrete outcomes: coin flips, energy eigenstates,

etc.[19, 20, 22] Little research has been conducted on student understanding of

probability as it relates to continuous quantities.[21] The Boltzmann factor is a
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mathematical expression for probability as a function of energy, which can be either

a discrete or a continuous quantity. An investigation of student understanding of

the the Boltzmann factor, therefore, provides a natural extension to the work that

has been conducted so far in the realm of statistical mechanics.

Other notable studies have examined students’ (often lacking) understanding

of the connections between physical processes and mathematical formalisms.[1, 36]

Results from these studies indicate that the transition from using mathematics in a

mathematics class to using it in a physics class is not trivial. This provides a rich

area for research, as an understanding of the physical principles that underly math-

ematical formalism becomes more and more important in upper-division courses.

The goals of this dissertation are to identify and address student difficulties in

two areas of thermal physics. In the realm of classical thermodynamics I examine

student understanding of heat engines as they relate to both the First and Second

Laws of Thermodynamics. In particular I investigate how students relate the Carnot

efficiency and Carnot’s theorem to the Second Law of Thermodynamics and its re-

strictions on changes of entropy. In the realm of statistical mechanics I examine

student understanding of the applicability and origin of the Boltzmann factor. In

particular I investigate students’ use (or lack of use) of the Boltzmann factor in

physically applicable situations as well as students’ understanding of and apprecia-

tion for the physical reasoning and implications behind the mathematical expression

for probability that is the Boltzmann factor.

With this research I attempt to answer several questions:

1. What specific difficulties do students display when answering questions and/or

engaging in activities related to heat engines and the Carnot cycle?
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2. What specific difficulties do students display when answering questions and/or

engaging in activities related to the Boltzmann factor and the canonical par-

tition function?

3. To what extent does instruction using guided-inquiry worksheet activities (tu-

torials) address these difficulties?

4. What difficulties persist after tutorial instruction, and what additional instruc-

tion may be necessary to address these difficulties?

The unifying theme of my research (apart from focusing on student understand-

ing of topics in thermal physics) is the investigation of how students use particular

mathematical expressions within relevant physical scenarios, as well as how they

utilize the physical ideas embedded within those expressions in situations that do

not require explicit use of the mathematics. The tutorials I have developed guide

students through the mathematical derivations of two such expressions: Carnot’s

limit on thermodynamic efficiency, and the Boltzmann factor as an expression for

probability. Starting from basic laws of physics and various definitions, I emphasize

the physical connections between, and justification for, subsequent steps within a

derivation.

Chapter 2 presents the basic physics relevant to heat engines and that relevant

to the Boltzmann factor; more details are presented in Chapters 5 and 6 when they

become an integral part of the research presented. Chapter 3 contains a review of

relevant research that forms the basis for and background of my study. As mentioned

above, little research exists on students’ understanding of topics that relate to both

the First and Second Laws of Thermodynamics or on students’ understanding of

the statistical treatment of complex systems. I present the work that has been

previously conducted to identify student difficulties as well as that related to efforts

made to address these difficulties.
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Chapter 4 details the courses at the University of Maine in which my research was

conducted, as well as several tutorials, previously developed by other researchers,

that are used within those courses. These tutorials include student activities de-

signed to enhance understanding of the First and Second Laws of Thermodynamics

as well as tasks related to basic ideas of probability. I also discuss two courses at

other universities where data were collected for my study. Chapter 4 also presents an

overview of the research methods I used to conduct my study. Data were collected

using written questions, videotaped classroom observations, teaching experiments,

and clinical interviews. Data were examined using the framework of identifying spe-

cific student difficulties in order to develop instructional materials to address these

difficulties.[37]

Chapter 5 presents evidence for the identification of several specific student dif-

ficulties with heat engines, as well as the details of the development of instructional

materials (the Heat Engines tutorial) designed to improve student understanding of

these concepts. While participating in the Heat Engines tutorial, students are led

to recognize the need for an upper limit for thermodynamic efficiency based on the

Second Law of Thermodynamics, and they derive Carnot’s limit starting from the

limit on changes in entropy dictated by the Second Law. Data suggest that students

do not, in fact, gain a complete understanding of the importance and uniqueness

of the Carnot cycle after lecture instruction alone, but that this understanding is

enhanced by participating in the Heat Engines tutorial.

Similarly, Chapter 6 presents evidence for the identification of several specific

student difficulties related to the Boltzmann factor, as well as the details of the

development of the Boltzmann Factor tutorial, designed to improve student under-

standing of this mathematical expression. Within the tutorial students are guided

through one derivation of the Boltzmann factor as it relates to multiplicity and,

therefore, probability. Emphasis is placed on the connections between each mathe-
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matical step of the derivation rather than the final result; in this manner students

are encouraged to develop a deeper physical understanding of the exponential rela-

tionship between energy and probability that is the Boltzmann factor. Data suggest

that many students either do not use the Boltzmann factor when presented with rel-

evant physical situations or that they do not recognize the physical meaning of the

mathematical expression after lecture instruction. Evidence suggests, however that

students gain an appreciation for when to use the Boltzmann factor, why it’s useful,

and its physical significance after engaging with the Boltzmann Factor tutorial.

Chapter 7 concludes by summarizing the findings of both halves of my disser-

tation, and discusses the results common to both halves. One such result is the

usefulness of video data from classroom observations. These data provide evidence

for the identification of several specific difficulties that were not evident from either

written responses or student interviews; moreover, they provide evidence for which

parts of the tutorials are useful for addressing student difficulties as well as areas

that would benefit from revisions. Another common result was the instructional

benefit of assigning a homework assignment to be completed before each tutorial.

As I discuss in Chapters 5 and 6, these homework assignments were extremely ben-

eficial in terms of cueing appropriate background information that is foundational

to the derivations used in the tutorials. Moreover, data suggest that the advanced

undergraduate population studied in my research differs from either the novice in-

troductory student population or the expert physicist population. Suggestions are

also discussed for future research related to difficulties identified from classroom ob-

servations and interviews that are not addressed by either the Heat Engines tutorial

or the Boltzmann Factor tutorial.
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Chapter 2

RELEVANT PHYSICS

The unifying theme of my research (apart from focusing on student understand-

ing of topics in thermal physics) is the investigation of how students use particular

mathematical expressions within relevant physical scenarios as well as how they

utilize the physical ideas embedded within those expressions in situations that do

not require explicit use of the mathematics. The tutorials I developed guide stu-

dents through the mathematical derivations of two such expressions, starting from

basic laws of physics and various definitions. I emphasize the physical connections

between, and justification for, subsequent steps within a derivation. The two math-

ematical expressions I focused on are the limit on thermodynamic efficiency of heat

engines (as it relates to the Carnot efficiency),

η ≤ ηC = 1− TL

TH

, (2.1)

and the Boltzmann factor as an expression of probability,

P (E) ∝ e
−E

kBT . (2.2)

This chapter presents the basic physics underlying each of these expressions. A

more complete presentation is given in Chapters 5 and 6, as it becomes necessary

to understand the physics as it relates to my research. I begin this chapter with a

discussion of the basic laws of thermodynamics and their relation to heat engines.

I then present the underlying ideas of statistical mechanics and how they relate to

probability and the Boltzmann factor. A basic understanding of these principles is

necessary to realize the implications of my results and those previously reported by

other researchers.
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2.1 Classical Thermodynamics

Classical thermodynamics is the study of the bulk properties of a system (pres-

sure, volume, temperature, etc.) and how they change under various conditions.

These changes are governed by the three laws of thermodynamics. The First Law

of Thermodynamics (1st Law) is a statement of energy transfer between different

systems and is often considered a thermodynamic statement of energy conservation

(provided one defines a “system” that includes all relevant and interacting bodies).

The mathematical statement of the 1st Law is given by,

∆U = Q−W, (2.3)

where U is the internal energy of the system, Q is the heat transfer to the system,

andW is the work done by the system.1 The differential form of the 1st Law may be

written in terms of inexact differentials of Q andW or in terms of exact differentials

of various state functions:

dU = d–Q− d–W, (2.4)

dU = TdS − PdV + µdN + . . . (2.5)

where the exact differentials (d ) indicate that internal energy (U), entropy (S),

volume (V ), and number of particles (N) are all state functions of the system under

investigation,2 i.e., they are bulk properties of a system in thermodynamic equi-

librium. The inexact differentials (d– ) indicate that heat and work are not state

functions but rather depend on the specific process that is undergone to take the

system from one thermodynamic state to another. Heat and work are, in fact, dif-

ferent types of energy transfer: heat being due to temperature differences between

systems and work being due to a change in the external parameters (volume, number

1The 1st Law may alternately be written as ∆U = Q+W , with W defined as the work done
on the system. I will exclusively define W as the work done by the system.

2As are temperature (T ), pressure (P ), and chemical potential (µ).
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of particles, magnetization, etc.) of a system. The 1st Law essentially states that

the change in internal energy of any thermodynamic system must be accounted for

in one of these two ways and must be coupled to an equivalent change in energy of

some other thermodynamic system.

The Second Law of Thermodynamics (2nd Law), on the other hand, allows for

the conservation and creation of entropy, but not its destruction. Entropy is a ther-

modynamic state function that quantifies, in a sense, a system’s disorder. Rudolph

Clausius coined the term from the latin entrepein meaning “turning” or “changing”

and proposed the definition,

∆S ≡
∫

reversible

d–Q
T
, [38] (2.6)

where ∆S is the change in entropy of a system due to a particular process, d–Q is

the differential of the heat transfer during that process, and T is the temperature

of the system. One additional factor is that the heat transfer in Eq. 2.6 must occur

due to a reversible process for the definition to hold; in any spontaneous, irreversible

process, the change in entropy will be greater than that described. One of the most

interesting aspects of entropy is that even though it is defined by heat transfer, it is

a state function of the system, i.e., the change in entropy only depends on the initial

and final states of the system, not the process itself. The 2nd Law is embodied in

the principle of maximizing entropy:

The entropy of an isolated system increases in any irreversible [naturally oc-

curring] process and is unaltered in any reversible [ideal] process;[38, p. 96]

or mathematically from the entropy inequality,

∆Suniverse ≥ 0, (2.7)
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where Suniverse is the total entropy of the universe, and the equality only holds for

ideal reversible processes.3 Eq. 2.7 may be expanded to consider the entropy changes

of a thermodynamic system and its surroundings:

∆Ssystem + ∆Ssurroundings = ∆Suniverse ≥ 0. (2.8)

A canonical application of the 1st and 2nd Laws is a device that converts one

form of energy into another, such as a heat engine or a refrigerator. A heat engine

is a device that converts thermal energy into usable work. To accomplish this, a

heat engine requires three things: a high-temperature (TH) thermal reservoir, a low-

temperature (TL) thermal reservoir, and a working substance (e.g., a gas in a cylinder

with a piston). The reservoirs are needed to energy with the working substance

without being affected themselves (ideally, infinite heat capacity, no temperature

change). The working substance is the stuff that actually does the work. A heat

engine operates in a cycle so that the working substance repeatedly returns to its

original thermodynamic state. In the course of this cycle, an amount of energy (QH)

is transferred from the TH-reservoir to the working substance; the working substance

transfers energy to its surroundings by doing work (W ); and some energy (QL) is

transferred from the working substance to the TL-reservoir. After one cycle the heat

engine is essentially right back where it started, ready to do more work. If the

working substance is considered to be the “system,” then for each complete cycle

the 1st Law becomes,

∆Uws = Qnet −Wnet = QH +QL −W = |QH| − |QL| −W = 0, (2.9)

since the working substance returns to its original state (defined by equilibrium

values of U , V , P , T , S, etc.). This implies that,

Qnet = Wnet, and |QH| − |QL| = W. (2.10)

3In principle any isolated system could be chosen, but the universe is a natural choice as it is
by definition isolated.
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For this generic heat engine the change in entropy of the “universe” after one

complete cycle will be the combination of the changes in entropy of the two reservoirs

(the entropy of the working substance does not change after one complete cycle since

entropy is a state function). Since the temperature of a thermal reservoir remains

constant, Eq. 2.6 becomes,

∆Sreservoir =
Qto reservoir

Treservoir
, (2.11)

and the total entropy change of the universe will be,

∆Suni = ∆SL + ∆SH =
|QL|
TL

− |QH|
TH

. (2.12)

Combining Eqs. 2.7 & 2.12 one gets an expression of the of 2nd Law for heat engines,

|QL|
TL

− |QH|
TH

≥ 0, (2.13)

or,
|QL|
TL

≥ |QH|
TH

. (2.14)

A refrigerator, in its simplest form, is a heat engine that is run backwards. The

work W is done on the working substance to transfer the energy QL away from the

TL-reservoir and deliver the energy QH to the TH-reservoir.

For any mechanical device, one typically wants to evaluate its cost-effectiveness,

generally in the form of “what you get” ÷ “what you pay for.” For the case of heat

engines, “what you get” is the work (W ), and “what you pay for” is the energy, QH,

from the TH-reservoir. This yields the definition of thermodynamic efficiency,

η ≡
∣∣∣∣WQH

∣∣∣∣ . (2.15)

According to the 1st Law, 0 ≤ η ≤ 1, since more energy cannot be extracted from

the working substance than was put in. As will be discussed below, however, the
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2nd Law imposes a stricter upper limit on thermodynamic efficiency. An analogous

quantity for a refrigerator is called the coefficient of performance:

ζ ≡
∣∣∣∣QL

W

∣∣∣∣ (2.16)

where “what you get” is the energy (QL) removed from the TL-reservoir, and “what

you pay for” is the work (W , often supplied by an electric outlet). A heat pump is a

device that is identical to a refrigerator with the exception that the desired quantity

is the energy, QH, delivered to the TH-reservoir. The “coefficient of performance” for

a heat pump is then

ξ ≡
∣∣∣∣QH

W

∣∣∣∣ . (2.17)

One of the more elusive aspects of the 2nd Law is that it was first formulated

before Clausius proposed his definition of entropy. This formulation is presented in

several independent statements about the effect of the 2nd Law on heat engines and

refrigerators, including Clausius’ original statement:

It is impossible to construct a device that operates in a cycle and whose sole

effect is to transfer heat from a cooler body to a hotter body;[38, p. 90]

and the Kelvin-Planck statement (credited independently to Lord Kelvin and Max

Planck):

It is impossible to construct a device that operates in a cycle and produces

no other effect than the performance of work and the exchange of heat with a

single reservoir;[38, p. 90]

and Carnot’s theorem:

No heat engine operating between two reservoirs can be more efficient than

a Carnot engine [defined by alternating reversible isothermal and adiabatic

processes] operating between those same two reservoirs.[38, p. 91]
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One can work out the consequences of applying each of these three statements of the

2nd Law to Eq. 2.13. The device proposed in the Clausius statement would require

QH = −QL > 0. Defining, Q ≡ |QH| = |QL|, Eq. 2.13 becomes,4

−Q
TL

+
Q

TH

= Q

(
1

TH

− 1

TL

)
≥ 0, (2.18)

which is not true since TH > TL, by definition. The device proposed in the Kelvin-

Planck statement would require |QH| > 0 and |QL| = 0 in Eq. 2.14, which is plainly

false.

To realize the connection between Carnot’s theorem and the entropy inequality

form of the 2nd Law one must also consider the limits on thermodynamic efficiency

alluded to above. Referring to Eq. 2.9 one may rewrite Eq. 2.15 as

η =
|QH| − |QL|
|QH|

= 1− |QL|
|QH|

. (2.19)

To maximize this efficiency one must look at the limits imposed by the 2nd Law via

Eq. 2.14 by obtaining the relationship,

|QL|
|QH|

≥ TL

TH

, (2.20)

which indicates that,

1− |QL|
|QH|

≤ 1− TL

TH

, (2.21)

so that,

η ≤ ηC = 1− TL

TH

. (2.22)

The right-hand-side of Eq. 2.21 (and Eq. 2.22) is defined as Carnot’s efficiency

(ηC) due to the fact that Carnot proposed a heat engine that consists of taking a

working substance through an alternating sequence of reversible isotherms (constant

temperature processes) and reversible adiabats (processes with no heat transfer) that

4Note, the signs have switched because heat transfer is now toward the TL=reservoir and away
from the TL-reservoir.
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achieves precisely this efficiency. Carnot did not have the benefit of our modern

definition of entropy, but his proposed theoretical cycle allows the entropy of the

universe to remain unchanged by using only ideal reversible processes. More on

Carnot’s formulation of this cycle is presented in Chapter 5.

It is clear from Eq. 2.21 that the only way to change the maximum efficiency

of a Carnot cycle is to either lower the temperature of the TL-reservoir or raise the

temperature of the TH-reservoir. The Third Law of Thermodynamics may now be

applied which states that the entropy of a system is zero only when its absolute

temperature is zero (i.e., S(0 K) = 0 J/K), and that it is impossible to achieve this

temperature. The 3rd Law is not directly applicable to my research as I do not

ask students to lower the temperature of the TL-reservoir while answering questions

regarding heat engines.

2.2 Statistical Mechanics

Statistical mechanics is the probabilistic study of thermodynamic systems in

terms of their constituent parts. The main premise is that, when examining a col-

lection of particles, one may use information about the microscopic interactions of

the individual particles to make claims about the probability that the macroscopic

system is in a particular thermodynamic state. To explore this claim, consider the

iconic binary example of flipping coins. The probability of flipping one coin and

getting heads (or tails) is 50%. The probability of flipping two coins and getting

two heads is the joint probability, or the product of the individual probabilities:

P (HH) = P (H)P (H) = 1
2
× 1

2
= 1

4
. This is of course the same probability as each

of the other three possible combinations: H-T, T-H, and T-T. More interesting con-

clusions may be drawn if one groups several of these combinations together, e.g., the

H-T and T-H combinations will both be considered “one head, one tail.” Grouping
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these outcomes together, one defines the “macrostate” by the number of heads (or

tails) obtained from a series of coin flips. Each individual combination of flips is

called a “microstate,” and there are often many microstates for a given macrostate.

The number of microstates that make up a particular macrostate is known as the

“multiplicity,” denoted by ω. Looking at the two-coin example, there are three dif-

ferent macrostates (zero, one, or two heads), but four distinct microstates (H-H,

H-T, T-H, T-T), and the multiplicity depends on the macrostate: ω(0) = ω(2) = 1,

ω(1) = 2. The probability for any given macrostate is simply the multiplicity of

that macrostate divided by the total number of microstates,

P (i) =
ω(i)∑
j

ω(j)
. (2.23)

The results get more interesting as the sample size increases. For example, in

the case in which five fair coins are flipped, one possible macrostate is the out-

come of getting three heads and two tails, one microstate that would yield this

macrostate is the sequence H-H-T-H-T; nine other microstates would give the same

macrostate. The fundamental assumption of statistical mechanics states that, “all

accessible microstates are equally probable” for an isolated system in thermal equi-

librium; this is equivalent to assuming all of the coin-tosses to be independent of one

another (i.e., the exact sequence H-H-H-T-H is just as likely as the exact sequence

T-H-H-T-T).[39] Consequently a macrostate that can be realized with relatively

many different microstates (e.g., three heads: ten microstates) is more probable

than a macrostate that can only be realized with relatively few microstates (e.g.,

five heads: one microstate), i.e., probability is proportional to multiplicity as indi-

cated in Eq. 2.23. If the number of particles within the system is sufficiently large

these probabilities become certainties, and one enters the realm of classical thermo-

dynamics. In statistical mechanics a macrostate is defined by the thermodynamic
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properties of the system, and a microstate is defined as one of the ways in which

the constituent parts of the system can be arranged to achieve that macrostate.

One difficulty with the transition from statistical mechanics to classical thermo-

dynamics is that, as the number of particles in a system increases, the multiplicity

increases exponentially (e.g., flipping N coins yields 2N distinct microstates). More-

over, since classical thermodynamics does not consider the constituent parts of a

system, there is not an obvious connection between multiplicity and any of the ther-

modynamic properties discussed above. Thankfully, Ludwig Boltzmann provided

us with the iconic connection between classical thermodynamics and statistical me-

chanics,

S = kB ln(ω), (2.24)

where S is of course entropy, ω is multiplicity, and kB is a factor that provides the

correct units and is known as Boltzmann’s constant (1.381×10−23J/K). The loga-

rithmic relationship depicted in Eq. 2.24 implies one of the most important aspects

of statistical mechanics: since the total multiplicity of two independent systems is

the product of the two individual multiplicities (ωtotal = ω1ω2), the total entropy is

the sum of the two individual entropies (Stotal = S1 + S2). In this case “indepen-

dent” means that the microstate of one system is independent of the microstate of

the other system, but the macrostate of one may still depend on the macrostate

of the other. One example of this is two interacting many-particle thermodynamic

systems: the total combined energy of the two systems may be fixed so that the

energy of one system depends of the energy of the other (E1 = Etotal−E2), but how

that energy is distributed amongst the particles within each system is completely

arbitrary. In this way the combined macrostate of the two systems will be defined by

the same information that defines each of the macrostates of the individual systems

(e.g., the values of E1 and E2 in the example). Eq. 2.24 also provides a more rea-
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sonable quantity by virtue of the logarithm; entropy is proportional to the number

of particles, N , rather than an exponential of N , e.g., for the coin flips the total

entropy is S = kB ln
(
2N
)

= kBN ln(2). This expression, however, assumes that

the macrostate is only defined by the number of particles or events (N), not by the

number that are in a particular state (e.g., “heads”).

Two of the main questions in statistical mechanics are: How does one define

“macrostate” and “microstate” within a particular physical context? and How does

one calculate the multiplicity of each macrostate based on known quantities? The

second of these questions is often more difficult to answer. In the context of coin

flipping (or any other two-state system), the binomial distribution (discussed further

in section 3.3.2) provides a mechanism for calculating the number of arrangements

for a given number of heads. If instead one considers the physical context of a

small thermodynamic system in equilibrium with a large energy reservoir, then the

macrostate is defined by the energy of the system, and the microstate is defined

by the energy distribution amongst all of the particles in both the system and the

reservoir. The parameters of this scenario dictate that the small system of interest

and the reservoir have the same constant temperature; that small energy transfers

may occur across the boundary between the two; and that the number of particles

in the system is fixed. Since the reservoir is so much larger than the system (by

definition) the probabilistic effect of the multiplicity of the reservoir overshadows

that of the system, and one need only be concerned with the microstates of the

reservoir.5

The Boltzmann factor (right hand side of Eq. 2.2) is a mathematical expression

of the multiplicity of the reservoir in terms of the energy of the system. Since

5In other words, since the system is so small, its multiplicity changes very little between
different energy macrostates, but the multiplicity of the reservoir changes significantly because it
is so much larger.
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the probability of a macrostate is proportional to the corresponding number of

microstates, the probability of the system being in a specific microstate, which has

a particular energy, is proportional to the Boltzmann factor for that energy. More

details on the derivation and origin of the Boltzmann factor are included in Chapter

6.
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Chapter 3

RELEVANT RESULTS FROM PHYSICS EDUCATION RESEARCH

Physics education research (PER), broadly speaking, is the study of how people

of all ages and all experience levels think about, understand, and learn topics in

and related to physics. Much of the research in PER has consisted of examining

physics students’ responses to various written and/or verbal prompts, analyzing

these responses for common themes, and attempting to improve the accuracy and

consistency of students’ statements.[2] As mentioned previously, my research fits well

within this genre as I identify student difficulties within advanced thermal physics

courses and develop materials to address those difficulties.

In this chapter I present my motivation for studying advanced thermal physics

students: these students are neither novices who have never encountered a physics

class before, nor experts who have mastered the field; they are somewhere in be-

tween. Furthermore, thermal physics is a novel subfield for many of students that

provides an opportunity for both expert and novice behavior to be made manifest.

I continue by giving an overview of student difficulties that have been previously

identified by other researchers, some of the methods that they used to identify these

difficulties, and the steps they have taken to address the various difficulties.

3.1 Advanced Physics Students: A Fascinating Population

The advanced undergraduate physics student population (typically within their

third or fourth year of physics instruction) provides a fascinating opportunity for

educational research. Considerable research over the past several decades has been

dedicated to the study of expertise and the differences between experts and novices

within particular domains.[25–29] In physics, introductory students may be consid-
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ered novice physicists who have been previously exposed to very little of the field.

On the other hand, professional physicists, physics professors, and even students

nearly the end of their graduate studies may be considered expert physicists. But

where do advanced undergraduate students fit in?

Expert physicists were all, at one time, advanced undergraduate students; and

these advanced undergraduate students were all, at one time, novice introductory

students. Due to the in-between status of these advanced undergraduate students,

Bing and Redish have described them as “journeyman physicists”: displaying some

of the same behaviors as novices in certain situations, and the same behaviors as

experts in other situations.[24] Their work examines students’ problem-solving abil-

ities within various upper-division undergraduate courses. They find that advanced

students are much more fluid in their choice of problem-solving strategy than intro-

ductory students.[24] While introductory students stubbornly stick to one solution

strategy (even in the face of utter failure), upper-division students switch strategies

and justifications when their original line of reasoning seems to breakdown or come

to a dead end. Most students in their study, however, failed to come to a satisfactory

final solution, indicating that they have not yet mastered the material and cannot

be considered expert physicists.

Within the context of thermal physics, Meltzer has identified some similarities

and differences between upper-division and introductory students.[40] He provides

evidence that upper-division students have the capacity for greater learning gains

than their counterparts in introductory courses but admits that it is difficult to

determine whether this potential comes from a transfer of knowledge or learning

skills from previous courses, or the application of skills students have always pos-

sessed. Meltzer also warns that upper-division students have as much difficulty with

unfamiliar topics as their introductory fellows.[40]
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My research examines the behavior of advanced undergraduate, journeyman

physicists in thermal physics courses. In particular, I identify specific difficulties

that these students have with thermal physics topics. The following sections de-

scribe work that has previously been conducted by other researchers to identify

student difficulties with thermal physics and related topics (at both the novice and

journeyman levels) and efforts that have been made to address these difficulties.

3.2 Identifying Specific Student Difficulties

When discussing the ways in which students learn and the ways they think

about their world, two well-known schools of thought repeatedly show up: con-

cepts (conceptions,[41] conceptual frameworks[42]) and primitives (phenomenologi-

cal primitives – p-prims,[43] facets,[44] resources,[45, 46] knowledge in pieces). Both

of these frameworks for analyzing student performance in various situations involve

attempting to describe mental structures that students apply in certain situations.

The stability, applicability, and relevance of these structures varies greatly depend-

ing on the particular framework used.

Heron, however, has proposed a third framework for analyzing student perfor-

mance: that of specific difficulties.[37] Heron describes specific difficulties as “incor-

rect or inappropriate ideas expressed by students, or flawed patterns of reasoning.”[37]

The identification of specific difficulties is driven by the goal of curriculum devel-

opment: one lesson can be developed to address one difficulty. Difficulties may de-

scribe what a student does in a particular situation, why the student does it, or both,

with the emphasis on describing a phenomenon before interpreting it. Furthermore,

Heron emphasizes that her descriptions of students’ “beliefs” are an assumption on

the part of the researcher.[37]
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Several researchers in PER have (either implicitly or explicitly) used the spe-

cific difficulties framework to analyze student performance.[30–32, 47] Identification

of specific student difficulties has been especially useful for developing curricular

materials that improve student understanding of a particular topic. As one of my

main goals is the development of curricular materials for use in upper-division ther-

mal physics courses, I analyze written and video data with an eye toward identifying

specific difficulties that advanced undergraduate students have with thermal physics

topics. Consistent with this perspective is the description of student responses with

the “reasoning” used to back up a particular response.[37] There is some debate in

the literature as to the cognitive implications of ascribing reasoning to students,

rather than post-hoc justifications of the intuitive response.[48] However, this liter-

ature is referring primarily to introductory-level students with limited prior content

knowledge, rather than the journeymen studied here. It is reasonable that advanced

undergraduates will have specific ways of thinking about the concepts based on

their prior learning in physics (and math, and other sciences). Furthermore, in

this study I have been able to probe student understanding of topics with multiple

instruments, using multiple methods, across multiple weeks for the same students.

I present evidence across multiple questions suggesting that students at this level

have consistent reasoning about a particular concept, supporting the notion that

students are reasoning about the concepts in order to answer the question rather

than justifying an intuitive response post-hoc.

A more detailed description of my analysis methods is included in Chapter 4. The

following sections discuss some specific student difficulties that have already been

identified in introductory and/or upper-division thermal physics contexts. These

sections are meant to provide a foundation for my research by presenting the dif-

ficulties that have already been identified and suggesting topics that have not yet

been fully explored.
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3.2.1 Identification of Student Difficulties in Thermodynamics

Relatively few studies in PER have focused on students’ understanding of topics

related to thermal physics, but they shed light on many student difficulties at the

pre-college, introductory undergraduate and advanced undergraduate levels. In this

section I examines the work that has been conducted in the context of topics related

to energy and the First Law of Thermodynamics, and topics related to entropy and

the Second Law of Thermodynamics. I begin, however, by presenting a summary of

the literature on pre-college students’ understanding of thermal physics concepts.

Many studies report students’ confusion between the basic concepts of heat and

temperature. From a physicist’s perspective, temperature is a measure of the average

energy per particle of an object or substance, and heat is a measure of energy transfer

due to a temperature difference between two objects or substances. Research shows,

however, that students often do not make this distinction. As a summary report,

Arons discusses the “well known” phenomenon that students do not discriminate

between the concepts of heat and temperature and attributes this to their use in

everyday language as “primitives” whose meaning is obvious.[49, p. 118] Harrison,

Grayson, and Treagust, on the other hand, have directly identified several difficulties

in high school students’ ideas about heat and temperature including: 1) that heat

and temperature are the same thing, and 2) that two objects in thermal equilibrium

with each other could have different temperatures.[50]

Jasien & Oberem studied college students’ and in-service teachers’ ideas about

heat and temperature.[51] They found that in-service middle and high school science

teachers typically displayed higher levels of understanding in elementary concepts

(compared to college students who had taken between one and four semesters of

physical science courses), but even they were no more than 70% correct on the

survey questions. Jasien & Oberem reported what they considered to be the most
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notable confusions found in their work: “1) the meaning of thermal equilibrium, 2)

the physical basis for heat transfer and temperature change, and 3) the relationship

between specific heat, heat capacity and temperature.”[51] Yeo & Zadnik used the

results from these and other studies to create a conceptual survey (similar to the

Force Concept Inventory or Force and Motion Conceptual Evaluation) to assess

students’ understanding of basic concepts in heat and temperature.[52–54] They

list possible student difficulties in four categories: 1) Students’ conceptions about

heat, 2) Students’ conceptions about temperature, 3) Students’ conceptions about

heat transfer and temperature change, and 4) Students’ conceptions about “thermal

properties” of materials.[52] They also report the ways in which their survey assesses

students’ ideas and diagnoses their difficulties based on the various survey items.

These studies represent a small fraction of the total work that has been done to

investigate students’ ideas about heat and temperature, but they provide a general

basis for work in more advanced areas of thermal physics that is discussed below.

3.2.1.1 Difficulties with Energy and the First Law of Thermodynamics

Loverude, Kautz, and Heron report on physics students’ ideas related to, and dif-

ficulties applying, the 1st Law. In particular they are interested in students’ abilities

to reason about temperature differences due to work in adiabatic processes (i.e., no

heat transfer, ∆S = 0).[32] Loverude et al. found that only between 10% (introduc-

tory) and 50% (upper-division) of students correctly used the 1st Law (∆U = Q−W )

and the definition of thermodynamic work (W =
∫
PdV ) to predict the tempera-

ture change of an ideal gas due to an adiabatic process. Many students instead used

the ideal gas law (PV = nRT ) to reason about temperature changes even though

insufficient information was provided to determine relative changes in pressure and

volume.[32] Loverude et al. also report on students’ tendency to discuss thermo-

dynamic properties and changes in those properties interchangeably (e.g., P and
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∆P ). This is often accompanied by students making statements about the “change

in heat” or the “change in work” even though these are nonsensical terms, as heat

and work themselves merely represent different types of energy transfers.[32] Addi-

tionally, up to 45% of students incorrectly state that the work done by a system

depends only on the beginning and ending states, rather the specific process the

system goes through.

As a follow-up to students’ inappropriate use of the ideal gas law discussed

above, Kautz, Heron, Loverude, and McDermott report on students’ difficulties

interpreting and applying the ideal gas law from both a macroscopic and a mi-

croscopic perspective.[30, 31] Kautz et al. identify several trends within student

responses including the assumption that P ∝ 1/V or the assumption that P ∝ T

for any process. They also identified several specific difficulties that students exhib-

ited when discussing the concepts of pressure, temperature, and volume.[30] Kautz,

Heron, Shaffer, and McDermott report on students’ difficulties applying a micro-

scopic perspective to ideal gas law scenarios as well. They found that as few as

10% of students gave correct answers using correct reasoning on questions requiring

a microscopic model of an ideal gas.[31] Some common student errors identified by

Kautz et al. include “assuming that lower (greater) particle density implies lower

(greater) temperature,” “assuming that molecular collisions generate kinetic energy,”

and “not recognizing the substance independence of the ideal gas law.” Based on

these findings Kautz et al. created a tutorial to help students better understand the

implications of the ideal gas law (discussed further in section 3.3.1).[30, 31]

Monteyne, Gonzalez, and Loverude discuss difficulties that some chemistry stu-

dents display while attempting to connect microscopic and macroscopic models of

ideal gases. In particular they notice an asymmetry of sorts in that “students are

more successful in linking the [microscopic] to macroscopic realms than the macro-

scopic to [microscopic] realms.”[55]
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Meltzer reports on students’ understanding of heat, work, and the 1st Law when

answering questions using P -V diagrams.[33] Graphs that show pressure on the

ordinate and volume on the abscissa (P -V diagrams) are particularly prevalent

and useful in classical thermodynamics. One benefit of this representation is that

integrating pressure with respect to volume (
∫
PdV ) gives the thermodynamic work

done during a particular process. Meltzer asked students to compare the work done,

heat transfer, and change in internal energy for two different processes on a P -V

diagram that had the same initial states and the same final states. The correct

answer is that the change in internal energy must be the same for both since U is a

state function, but the work done and heat transfer depend on the particular process,

i.e., the different paths taken through the diagram represent different functions,

P (V ). In particular, the process represented by a higher path on the P -V diagram

generates more work since the area under the curve (representing the integral of

the function) is greater. The comparisons of heat transfer may be determined by

considering the work done in each process and the fact that the change in internal

energy must be the same by applying the 1st Law.[33]

One prevalent difficulty that Meltzer reports is students’ apparent belief that

work and heat are state functions.[33] Up to 22% of students explicitly mention the

path independence of work, and up to 44% mention the same for heat. Moreover,

approximately a third of students who recognized that work is not a state function

explicitly stated that heat transfer is path independent. Meltzer also found that

up to 56% of students indicated that the net work done and the net heat transfer

over a cyclic process would be zero. Furthermore, only 11% of students gave written

explanations with their answers that indicated a correct use of the 1st Law; and

only 22% of interview participants correctly generated a P -V diagram for a given

scenario.[33]
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3.2.1.2 Difficulties with Entropy and the Second Law of Thermodynamics

Studies to investigate children’s understanding of concepts related to entropy

have been conducted with students as young as kindergarten. Shultz and Codding-

ton report that children as young as six years old have begun to develop intuitive

ideas related to entropy when presented with a physical system that starts very far

from equilibrium and asked to predict the state of the system after a given amount of

time.[56] By age 15 most students correctly predict the physical system’s tendency

toward the equilibrium state; moreover, 15-year-olds display significantly more sur-

prise when presented with a “trick” experimental outcome, in which equilibrium is

not obtained, than their younger counterparts. Shultz and Coddington also report

that students of all ages are better able to understand and articulate entropic con-

cepts when relating to an experiment using discrete quantities (marbles of different

colors being shaken together in a box) than when relating to those using continuous

quantities (the water level in two different beakers connected by a thin tube).[56]

Kesidou and Duit also report that 15-year-olds have an intuitive sense of the

Second Law of Thermodynamics (2nd Law) and entropy as it relates to equilibra-

tion and irreversible processes.[57] They elaborate, however, that the framework on

which these students base their claims is “much vaguer” than a physicist’s and that

“most students did not learn physics conceptions that would facilitate a deeper un-

derstanding of their conviction.”[57, p. 97] In particular, students’ frameworks often

centered around a cause-and-effect scheme in which real processes are irreversible

because causes do not exist to reverse them (e.g. a stone that falls to the ground

does not spontaneously return to its initial height because there is no upward force

present).[57] It is clear from these studies that students entering university physics

courses without having been previously instructed regarding entropy and the 2nd

Law have some intuitive ideas about equilibration and irreversibility; these ideas
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are not, however, based on a robust understanding of the concept of entropy as a

physicist would define it.

Several studies in recent years have focused on student understanding of entropy

and the 2nd Law in both introductory and upper-division undergraduate physics

courses.[17, 18, 35] Christensen, Meltzer, and Ogilvie investigated introductory un-

dergraduate physics students’ ideas regarding entropy in the context of real, spon-

taneous processes.[18] One focus of their study was students’ abilities to arbitrarily

define a thermodynamic “system” and its “surroundings” within a given problem.

In thermodynamics the term “system” is merely shorthand for “the system of in-

terest at the moment.” The definition of what is considered the “system” may be

different for each problem encountered and may change in the middle of a solution

depending on the calculations being performed. One difficulty they found was an

over-generalization of the 2nd Law statement, “During a spontaneous process, the

entropy of an isolated system must always increase,” in which the incredibly im-

portant designator “isolated” is ignored by some students, leading to the conclusion

that the entropy of a system always increases. Christensen et al. report that more

than a quarter of students in their introductory physics course stated that the en-

tropy of some thermodynamic system would increase when insufficient information

was given to determine the direction of heat transfer between the system and its

surroundings (compared to 9% who said the entropy would decrease).[18] Another

major finding of Christensen et al. was students’ tendency to treat entropy as a

conserved quantity. That is, many students prior to instruction believed that the

total entropy of a system and its surroundings could not be changed during a real

process, when in actuality the combined entropy of a system and its surroundings

must always increase during a real process according to the 2nd Law.

Cochran & Heron report on student difficulties in introductory physics in the

context of heat engines.[35] They found that many students did not apply the 2nd
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Law correctly to determine whether or not a proposed device (e.g., heat engine or

refrigerator) was physically possible. As discussed in section 2.1, for a heat engine

(or a related device) to function, it must obey the three laws of thermodynamics,

and the working substance must operate in a complete cycle (to repeatedly return

to its initial state).

Cochran & Heron report that 25% of introductory students only used the 1st Law

to determine the feasibility of various devices after lecture instruction. Another 15%

of students claimed that a heat engine would function if the efficiency was less than

100%, and other students used arbitrary limits that were not explicitly related to the

Carnot efficiency. They also report that some students seemed not to realize that

Eq. 2.10 is derived from the 1st Law for a cyclic process.[35] The results reported by

Cochran & Heron are directly applicable to my work, as I identify upper-division

students’ difficulties with heat engines.

Bucy, Thompson, and Mountcastle discuss students’ understanding of entropy

changes in upper-division thermal physics courses.[17] In particular they find that

students have great difficulty applying the state function property of entropy to

physical systems. They asked students to compare the change in entropy of two

samples of an ideal gas due to two different processes: an isothermal expansion and

a free expansion. The students are told that the two samples start in the same initial

thermodynamic state and are given enough information to determine that they must

end in the same final state as well, yielding the same entropy change for each gas.

One incorrect idea expressed by students is that the change in entropy due to a free

expansion is zero because no heat transfer occurs. Another incorrect idea was that

the change in entropy of the gas due to the isothermal expansion was zero since it

is a reversible process, and that due to the free expansion was positive because it

is an irreversible process. These findings agree with Christensen’s data indicating

introductory students’ over-generalization of the entropy inequality statement of the
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2nd Law.[17, 18] Bucy et al. also report that many students relate changes in entropy

(correctly or incorrectly) to other more familiar thermodynamic quantities, such as

temperature, work, and/or heat transfer.[34]

3.2.2 Identification of Student Difficulties in Statistical Mechanics

Woefully little research has been conducted on student understanding of topics

in statistical mechanics. This lack is mostly due to the fact that statistical mechan-

ics is necessarily an upper-division course and the lack of research on upper-division

students’ understanding of physics in general. Mountcastle, Bucy, and Thompson

investigated student understanding of probability and uncertainty in upper-division

statistical mechanics and laboratory courses.[21] Using several written questions,

students were asked about the most likely outcome of an experiment as well as the

uncertainty related to the number of experimental trials. In the context of coin flips,

fewer than half of the students correctly predicted that increasing the number of

trials (n) would reduce the relative uncertainty (∆a
a
) of the most probable outcome

(reported as a±∆a, where a = n
2
). Up to 33% of students indicated that the relative

uncertainty would not change as n increased, and 62% of them stated that it would

cover all possible outcomes (∆a = n
2
). In contrast, Mountcastle et al. found that all

students correctly indicated that more experimental measurements reduced experi-

mental uncertainty in the context of measuring rainfall during the same pretest.[21]

This indicates that students are familiar with the concept of minimizing experi-

mental uncertainty but do not necessarily apply this to the case of flipping coins.

Finally, Mountcastle et al. report that students answer a corresponding coin toss

uncertainty question correctly after instruction on probability within a statistical

mechanics context.[21]

Loverude has conducted several studies on students’ understanding of statistical

topics within a one-semester thermal physics course that combines classical thermo-
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dynamics and statistical mechanics.[19, 20] In the first of these studies, Loverude

investigated students’ understanding of probability distributions within a binary

system (flipping coins, gender of children, spin-1
2
Ising model, etc.) as well as their

abilities to distinguish a microstate from a macrostate in a given context. He found

that up to 45% of students were unable to correctly determine the probability of

obtaining all heads in a series of coin flips. Loverude also found that up to 37%

of students gave answers to free-response questions that indicated a confusion be-

tween microstates and macrostates (e.g., stating that all macrostates are equally

probable).[19]

In a subsequent study Loverude looked at students’ abilities to reason about two

interacting thermodynamic systems. He used the contexts of balls placed in boxes

as well as interacting Einstein solids.[20] The Einstein solid is a model of a solid

substance in which each atom in a simple cubic lattice is connected to its six nearest

neighbors by identical springs. In the scenario in which two Einstein solids are in

thermal contact, a macrostate is defined by the amount of energy within each solid

(which is quantized in units based on the frequency of oscillation of the springs),

and the microstate is defined by the way in which the energy is distributed among

the individual oscillators in each solid. This physical system is more complicated

than the binary system discussed above, as each atom may have no energy, one unit

of energy, or many units of energy. The amount of energy any single oscillator can

have is only limited by the total amount of energy in the two solids combined.

Loverude found that many students have difficulty determining the combined

multiplicity of the two solids together based on each of their individual multiplicities.[20]

Up to 60% of students added the multiplicities of constituent parts rather than mul-

tiplying them. Loverude also found that students often state that the most probable

macrostate is the one in which each solid has the same amount of energy. This is

true of two solids that are the same size but incorrect when discussing two interact-
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ing solids of different sizes. What these students didn’t attend to is the fact that

the total energy must be distributed evenly among all oscillators within the solids,

not between the solids themselves.[20] Loverude’s results provide the foundation for

studies into students’ understanding of the statistical treatment of systems whose

states are defined by continuous (rather than discrete) quantities. Another such

study that builds on this foundation is my investigation of students’ understanding

of the Boltzmann factor, presented in Chapter 6.

3.2.3 Identification of Student Difficulties in Mathematics

Along with identifying specific student difficulties with thermal physics topics,

researchers have investigated student understanding of several related topics. As

seen in Chapter 2, a full description of many interesting physics principles is im-

possible without mathematics accompaniment. In the following sections, I present

some of the results from studies into student understanding of mathematics that are

relevant to my research. First, I describe results from investigations into students’

understanding of the mathematics underlying much of the physics in the upper-

division courses. Second, I present some results from studies of pre-college students’

reasoning about rational numbers. These results are relevant for the analysis of one

of the questions that I have asked students during my research.

3.2.3.1 Difficulties with the Math-Physics Connection

Several studies document observations regarding student difficulty connecting

physical intuition and interpretation in thermodynamics to appropriate mathemati-

cal formalism.[1, 58, 59] Thompson, Bucy, and Mountcastle discuss student successes

and difficulties with partial differentiation in the context of the Maxwell relations.

They report that students often succeed on problems in which only an algorithmic

understanding is required but tend to fail when more conceptual understanding is
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needed.[59] Many students can produce various Maxwell relations but do not in-

dicate that they understand the physical significance behind them. Furthermore,

students are more likely to be able to give a verbal interpretation when presented

with a particular mathematical expression of a partial derivative than to generate

an appropriate derivative given a verbal description of a physical scenario.[59]

As part of a follow up study, Bucy, Thompson, and Mountcastle discuss further

student difficulties with partial differentiation in the context of isothermal com-

pressibility (κ) and thermal expansivity (β); in particular, students displayed great

difficulty employing mixed second-order partial derivatives.[58] Since β and κ are

defined using partial derivatives of volume (with respect to temperature and pres-

sure, respectively) their derivatives are by definition second-order partial derivatives

of volume. A common student difficulty in this context was stating that the mixed

second-order partial derivatives (i.e.,
(
∂β
∂P

)
T
and

(
∂κ
∂T

)
P
) are identically zero, “since

P has already been held constant for β and T has already been held constant for

κ.”[58] This difficulty was not observed in the context of Maxwell relations, how-

ever, a fact that Bucy et al. attribute to Maxwell relations (e.g.,
(
∂T
∂V

)
S

= −
(
∂P
∂S

)
V
)

being seen as first-order partial derivatives of thermodynamic variables (V , S, P ,

and T ) rather than mixed second-order partial derivatives of the thermodynamics

potentials (U , H, F , and G).[58]

Pollock, Thompson, and Mountcastle reexamined Meltzer’s investigations of stu-

dent understanding of the 1st Law and P -V diagrams by removing the physical

context (examples shown in Figure 3.1).[1] The purpose of their study was to deter-

mine whether students’ difficulties reasoning about the 1st Law using P -V diagrams

were a result of their lack of understanding of the physical implications or a fail-

ure to correctly interpret the graph. Pollock et al. report several notable results.

First, significantly more students answered the math-only question correctly when

the two paths of the graph were labeled as two different functions (e.g., f(y) and
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Figure 3.1. Physics and Math versions of a P -V diagram.[1]

g(y)). Second, correct mathematical understanding of the relationship between a

graphed function and its integral seems to be a prerequisite to understanding the

physics. And third, some students answer the math-only question correctly but in-

appropriately apply state function reasoning to the physics questions dealing with

work.[1] More recent investigations by Thompson and Christensen have provided

further evidence of the need for a robust understanding of the mathematics to fully

appreciate the physical significance of P -V diagrams.[23, 36]

3.2.3.2 Difficulties with Rational Numbers

As mentioned above, students’ understanding of mathematics concepts may have

a profound impact on their abilities to understand related physics.[36] As I discuss in

later sections, students’ understanding of concepts related to rational numbers are

particularly important to my research on their understanding of advanced thermal

physics topics.

Many studies have been conducted on middle and high school students’ under-

standing of rational numbers (cf. Refs. 60, 61, &62). Of particular interest to my

research are those pertaining to students’ understanding of order and equivalence

of rational numbers. Smith reports that students who are competent in their abil-
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ities to reason about, use, and compare fractions use a variety of strategies to do

so.[63] The use of these strategies is highly dependent on the salient features of

the fractions in question, and students rarely use the same strategy in all contexts.

The Numerator Principle is appropriately applied when two fractions have the same

denominator and states that the fraction with the larger numerator is bigger (e.g.,

3/14 > 2/14). The Denominator Principle, on the other hand, is appropriately

applied when two fractions have the same numerator and states that the fraction

with the larger denominator is smaller (e.g., 7/11 > 7/13). Smith reports that some

competent students correctly apply the Denominator Principle in situations in which

two fractions have numerators that are approximately equal (e.g., 8/11 > 7/15).1

Smith also reports that students use the Compare Numerator-Denominator Dif-

ferences strategy (in which the within-fraction difference between the denominator

and the numerator is used as a comparative measure) when they feel appropriate.[63]

One student applied this method to originally determine that 3/5 = 5/7 since the

difference between the denominator and the numerator for each fraction is 2. He

later corrected this error by considering the fact that 2/3 > 1/2 even though the

difference between the denominator and the numerator in each of these fractions

is 1. Another student stated that 14/24 > 7/12 since 10 > 5 but quickly realized

that they were equivalent by multiplying 7/12 by 2/2. In each of these cases the

student was led astray by comparing Numerator-Denominator Differences but was

able to answer correctly by considering additional pieces of information available to

them.[63, p. 30] It is unclear, however, how successful these students would have

been if this additional information had not be available to them (e.g., in a situation

in which the fractions were comprised of variables rather than numbers). In later

1Admittedly, however, the majority of students interviewed used 1/2 as a reference point to
compare to each fraction for this problem, i.e. 7/15 < 1/2, 8/11 > 1/2.[63, p. 30]
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sections, I show that advanced undergraduate physics students compare fractions

and ratios in a manner consistent with the strategies described by Smith.

3.3 Addressing Specific Student Difficulties

Once a specific difficulty has been identified, a natural subsequent goal is the

creation of curricular materials to help eliminate this difficulty. Results from studies

in educational psychology give several general suggestions for effective instructional

strategies. Piaget’s theory of assimilation and accomodation describes the need to

account for students’ prior knowledge base and recognize the difficulty of altering

an already held idea; Vygotsky’s theory of social learning suggests that learning

occurs best when students work together with each other and that teachers must

provide learning opportunities that are neither too mundane nor too challenging.[64]

Consistent with these theories of learning, many researchers have developed curric-

ular materials that are based on, and validated by, the results of physics education

research.[65–73] These curricula are often characterized by students working to-

gether in an inquiry-based learning environment to answer questions and complete

tasks.[2]

The Physics Education Group at the University of Washington has been particu-

larly prolific in creating curricular materials based on the results of PER. They have

published two sets of curricular materials for use in introductory physics courses:

Physics by Inquiry and Tutorials in Introductory Physics.[66, 67] Physics by Inquiry

(PBI) is a curriculum that suggests eliminating lectures and demonstrated problem-

solving and replacing them with guided explorations and laboratory work. Students

work in small groups (three or four students) to complete a series of experiments

designed to help students guide their own learning of physics topics. Instructors act

as facilitators, asking questions of students to probe their understanding and reveal
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specific difficulties with the material. PBI is meant to be used as a professional

development tool for preservice and/or inservice teachers and focuses on the nature

of science as an exploratory and explanatory process.

Instruction using PBI is very student-centered and progresses only as quickly as

the students can properly work through the activities and explorations. As such, PBI

is ill-suited as a replacement for many university courses, which demand fairly strict

topical guidelines for each semester. Thus, the Tutorials in Introductory Physics

were developed for just this purpose; as supplements for university physics courses.

Tutorials are worksheets that implement guided-inquiry methods to encourage stu-

dents to discover various physical principles for themselves. The tutorials act as

a substitute for traditional recitations; their intent is to accomplish many of the

same cognitive goals as PBI, without requiring additional time or course restruc-

turing. The Tutorials in Introductory Physics were specifically designed for use in

a calculus-based introductory physics course for scientists and engineers. Tutorials

may also occasionally be used in place of lecture instruction if no formal recitation

session exists. The goal is for students to complete each tutorial within a typical

50-minute class period.

Research at the University of Washington has verified the effectiveness of their

curricular materials. Published results indicate that student success on conceptual

survey questions typically improves by ∼ 50% after interactive instruction (i.e.,

using tutorials or PBI) compared to lecture instruction alone.[30–32, 35, 74–76] Sec-

ondary implementations of the Tutorials in Introductory Physics and PBI have been

successfully implemented at many institutions. In particular, the University of Col-

orado at Boulder has documented conceptual gains comparable to those reported

at the University of Washington when using tutorials to supplement their introduc-

tory calculus-based physics courses.[77] Implementation at other institutions within

both calculus-based and algebra-based introductory physics courses, however, has
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not been as successful.[78, 79] This suggests that tutorials may be an effective supple-

ment to traditional lecture and laboratory instruction, but that student population

is not a trivial concern when developing specific curricular materials. Additionally,

the proper preparation of graduate teaching assistants (who are often the primary

facilitators of tutorial instruction) is essential to the success of tutorial sessions and

must not be overlooked.

Researchers at the University of Maryland, College Park have also developed

many tutorials for introductory physics.[69, 72, 73] These tutorials, however, em-

ploy slightly different instructional methods than those utilized in the University

of Washington varieties. The Activity-Based Tutorials use hands-on experimenta-

tion and computer-based data taking techniques to allow the students to demon-

strate the principles of physics for themselves while engaging in guided-inquiry

activities.[72, 73] Many of these activities are based on the Tools for Scientific Think-

ing materials created by Thornton and Sokoloff.[70] Students working on Activity-

Based Tutorials often use force and motion sensors to take data while encountering

various physical phenomena. The Activity-Based Tutorials also emphasize mathe-

matics and calculation more than the Tutorials in Introductory Physics.

The Maryland Open-source Physics Tutorials employ yet another instructional

strategy.[69] Based on the work of Hammer and Elby,[48] these tutorials use an

epistemological basis of confronting students intuitions and beliefs about their sur-

roundings. The Maryland Open-source Physics Tutorials treat students’ intuitions

about their world as valuable observations that may have been misinterpreted by the

students themselves. An example from the tutorial for Newton’s third law begins

by asking students about a situation in which a heavy truck collides with a small

car. The majority of students immediately respond that the truck exerts more force

because the car “reacts” more. The tutorial guides the students through the process

of recognizing that their intuitions and practical observations apply to the difference
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in acceleration of each of the vehicles, not necessarily the force. The students use

Newton’s second law (Fnet = ma) to determine that the mass difference offsets the

difference in acceleration and that the two objects exert the same amount of force on

each other. The Maryland Open-source Physics Tutorials are the least well known

of those mentioned, but they are growing in popularity. Both the Activity-Based

Tutorials and the Maryland Open-source Tutorials have been shown to be effective

supplements to traditional lecture-based instruction for introductory physics.[69, 80–

86] Moreover, research suggests that the Maryland Open-source Physics Tutorials

may be more effective than either the Activity-Based Tutorials or the Tutorials in

Introductory Physics for helping students understand some topics in introductory

physics.[87]

In addition to being useful in introductory courses, tutorials have been shown

to be effective supplements to traditional lecture in upper-division undergraduate

physics courses. Researchers have developed tutorials for use in classical mechanics,[3–

7, 9–13, 16] quantummechanics,[15] electricity & magnetism,[8] and thermal physics.[17,

19, 20, 22, 34] The following sections describe several tutorials that have been created

to address many of the specific difficulties in thermal physics described in section

3.2. Some of these tutorials are intended to be used in introductory courses, and

some are meant for advanced undergraduate courses.

3.3.1 Addressing Student Difficulties in Classical Thermodynamics

Kautz et al. describe a tutorial designed to address the difficulties they found

with introductory students’ understanding of the ideal gas law from both a macro-

scopic and a microscopic perspective.[30, 31] The first three parts of the tutorial

help students to realize the connection between pressure and other aspects of an

ideal gas (e.g., temperature, volume, the piston that contains it). After tutorial

instruction, 50%–70% of students correctly answered questions requiring an under-
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standing of the macroscopic aspects of the ideal gas law.[30] The fourth part of the

tutorial uses the microscopic perspective to highlight the fact that the ideal gas law

is not substance-specific (provided the substance is an ideal gas), i.e., the ideal gas

law works for hydrogen gas as well as nitrogen gas.[31] Kautz et al. also report on

the creation of a tutorial activity designed to help students consider the idea that

intermolecular collisions within gases have no effect on the average kinetic energy

of the particles and, therefore, have no effect on the temperature of the gas. After

tutorial instruction, 70%–90% of students correctly answered questions requiring

the application of a microscopic perspective of the ideal gas law.

To address many of the difficulties students have with entropy and the 2nd Law

discussed in section 3.2.1.2, Christensen et al. developed the Entropy Spontaneous

Process (2-Blocks) tutorial to improve students’ understanding of entropy and the

2nd Law.[18] In particular, the purpose of this tutorial is to address students’ dif-

ficulty arbitrarily defining a thermodynamic “system” and the documented over-

generalization that entropy always increases. The 2-Blocks tutorial asks students to

consider heat transfer between two massive metal blocks (V ∼ 1m3, no appreciable

temperature change) at different temperatures. Given the thermodynamic defini-

tion of entropy (Eq. 2.6), students are asked to calculate the total change in entropy

of the two blocks for spontaneous heat transfer from the high-temperature block

to the low-temperature block. They are also asked to calculate the total change in

entropy in the limit that the blocks are the same temperature and for a hypotheti-

cal situation in which heat transfer spontaneously occurs from the low-temperature

block to the high-temperature block. Combining the results from the three thought

experiments, the students come to the realization that the entropy of the universe

would decrease during an impossible process (heat transfer from the low- to the

high-temperature block) and thus derive the 2nd Law: ∆Suni ≥ 0. Students also
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find that for any spontaneously occurring real process the entropy of the universe

increases.

Another focus of the 2-Blocks tutorial is the arbitrary nature of the definitions

of “system” and “surroundings” often used in thermodynamics texts.[18] Through-

out a series of questions, students are first asked to define the “system” to be the

low-temperature block, then the high-temperature block, and finally both blocks

together. They are also asked to identify what the “surroundings” would be in

each case. The goal is to help the students realize that the definition of a “system”

depends on the question being asked and the calculations one wishes to perform.

The Entropy State Function (2-Processes) tutorial was also developed by Chris-

tensen et al. in an effort to address some of the difficulties with entropy identified

by Bucy et al.citeChristensen2009Student,Bucy2006 The 2-Processes tutorial fo-

cuses on helping students gain a deeper appreciation for the state function property

of entropy by comparing the changes in pressure, volume, temperature, and entropy

of an ideal gas due to an isothermal expansion to the changes due to a free expan-

sion. By realizing that both the initial and the final values of pressure, volume, and

temperature of the gas are the same for each process, the students are guided to

recognize that the change in entropy must be the same as well. This reinforces the

idea that the change in entropy of a substance undergoing a thermodynamic process

only depends on the initial and final states of that process.

Cochran & Heron developed two versions of the Heat engines and the second law

of thermodynamics tutorial based on the difficulties discussed in section 3.2.1.2.[35]

Both versions begin by motivating the need to consider more than the 1st Law (since,

e.g., the 1st Law doesn’t prohibit spontaneous heat transfer from a low-temperature

object to a high-temperature object). Both versions also use heat engines as the

context for investigating the 2nd Law. In the “Carnot version,” students are given

Carnot’s theorem (that no heat engine can operate at an efficiency greater than that
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of a Carnot engine) and asked to apply it in various contexts. From an application

of Carnot’s theorem students are presented with the Kelvin-Planck statement of the

2nd Law: that it is impossible for a device to exist that operates in a cycle and

whose sole effect is the conversion of heat from a single reservoir into usable work

(η = 100%). The “entropy version” of the tutorial takes a different approach by

asserting the entropy inequality form of the 2nd Law shown in Eq. 2.7 and asking

students to calculate changes in entropy of various parts of a heat engine (i.e., the

working substance, and both reservoirs). The students are told that the Kelvin-

Planck statement as well as Carnot’s theorem may be derived from the entropy

inequality but not shown those derivations. After tutorial instruction with either

version, 70%–75% of students in a sophomore-level thermal physics course answered

questions about heat engine functionality correctly using correct reasoning (com-

pared to ∼ 30% after lectures alone). Furthermore, some evidence suggests that

the method students chose for applying the 2nd Law on post-tutorial assessments

(comparing η to Carnot’s efficiency or calculating ∆Suni) was affected by the version

of the tutorial they had experienced. It is unclear, however, the extent to which stu-

dents appreciate the connections between the Kelvin-Planck and entropy inequality

statements of the 2nd Law and Carnot’s theorem that were presented in the two

tutorial versions.

Given the success of tutorials for students studying both introductory and ad-

vanced thermodynamics, I decided to use a tutorial as an instructional strategy to

improve student understanding of heat engines and the Carnot cycle. As I discuss

in later sections, my tutorial differs in several meaningful ways from those created

by Cochran & Heron for use in introductory physics courses.
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3.3.2 Addressing Student Difficulties in Statistical Mechanics

Loverude has created several tutorials for use in upper-division statistical physics

courses that address many of the difficulties discussed in section 3.2.2; he has re-

ported on results from the Counting States tutorial and the States in the Einstein

Solid tutorial.[19, 20] The Counting States tutorial asks students to consider the

definitions of macrostate and microstate within the context of flipping coins. Stu-

dents must also wrestle with concepts related to distinguishability (can we tell the

coins apart?) and how to count microstates.[19] While going through the tutorial,

students derive the binomial distribution,
(
n
m

)
= n!

m!(n−m)!
, as the expression for the

number of microstates in which m out of n total elements in a binary system have a

desired characteristic (e.g., m heads out of n coin flips; themth macrostate). Prelim-

inary results show that almost all of the students who participated in the Counting

States tutorial answered a qualitative exam question requiring a distinction between

micro- and macrostates correctly.[19] Only 50% of students, however, correctly ap-

plied these definitions in a quantitative case in which they were asked to determine

the probability of a particular sequence of coin flips (a microstate).

The States in the Einstein Solid tutorial is in many ways a continuation of the

Counting States tutorial in a different context, that of the Einstein solid.[20] The

goals of the tutorial include being able to clearly define what constitutes a macrostate

vs. a microstate in this context and to calculate the number of microstates within

each macrostate. The States in the Einstein Solid tutorial uses a particular symbolic

representation of each of the oscillators and units of energy (which is used in the

course text, Ref.39) to draw an analogy between the oscillator-energy relation in the

Einstein solid and the head-tail relation in coin flipping. In this manner students

are guided to derive a method for computing the number of microstates for a given
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macrostate within the Einstein solid based on the concepts from the Counting States

tutorial.[20]

An additional focus of the States in the Einstein Solid tutorial is the procedure

for combining multiplicities of interacting systems. One of the final portions of the

tutorial asks students to consider how the distribution of energy among the oscilla-

tors in one solid would affect the distribution in a connected solid (it wouldn’t) to

realize that the multiplicities must be multiplied to obtain the total. Preliminary

results from tutorial implementation show mixed results. Students performed much

better on tasks involving the calculation of joint multiplicities after tutorial instruc-

tion (90% correct), but many students still had difficulty on questions regarding

the most probable distribution of energy between two interacting solids of unequal

size (40% expressed the notion that the energy would split evenly between the two

solids, implying an uneven distribution of average energy per particle).[20] Loverude

suggests that additional attention may be needed to help students connect the par-

ticulate model of an Einstein solid with the concept of macroscopic thermodynamic

equilibrium. These results indicate that the learning and teaching of statistical me-

chanics is a content area ripe for more research. The success of tutorials within

advanced statistical mechanics courses has influenced my decision to use a tutorial

as an instructional technique to improve student understanding of the Boltzmann

factor.

3.4 Summary of Previous Results

Advanced undergraduate physics students provide an interesting population for

investigation as they are neither novice nor expert physicists; they may be consid-

ered journeyman physicists, on a trajectory toward expertise. Several researchers

have previously identified specific student difficulties that may be observed in both
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introductory and advanced thermal physics courses. Of particular interest is the

result from Cochran & Heron that students do not appropriately apply the 2nd Law

when answering questions about heat engines and related devices.[35] In Chapter

5, I present the results of my research into upper-division students’ understanding

of and difficulties with heat engines and the 2nd Law. Another noteworthy result

is Smith’s description of students’ strategies for comparing rational numbers.[63]

In Chapter 6, I present results from my research indicating that advanced ther-

mal physics students compare ratios in a manner consistent with Smith’s described

strategies.

Tutorials have been shown to be effective supplements to traditional lecture in-

struction in both introductory and advanced courses. They have also been shown

to successfully improve student understanding of topics in thermal physics as well

as other areas. Of particular interest is the success of tutorials within advanced

thermodynamics and statistical mechanics courses.[19, 20, 34] Given this success,

I developed two tutorials to address several specific student difficulties within ad-

vanced thermal physics courses. Chapters 5 and 6 describe the difficulties I have

identified and discuss the success of my tutorials with regard to addressing these

difficulties.
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Chapter 4

RESEARCH SETTING AND METHODS

Each of the tutorials I developed are intended for use in an upper-division ther-

mal physics course. I assume that students in these courses will have gained a

sufficient understanding of several underlying ideas before they attempt to engage

in the tutorials. In the first part of this chapter I discuss this assumed background

understanding in the context of describing the measures that are taken in the ther-

mal physics courses at the University of Maine to ensure that students do, in fact,

understand these prerequisite ideas.

In the second part of this chapter I describe the data gathering and analysis

techniques that I used during this study. Three primary types of data were gath-

ered: students’ responses to written questions, videotaped classroom observations

of students engaging with the tutorials, and student interviews on topics related to

the Boltzmann factor. Each of these sources of data provided invaluable information

regarding students’ understanding of, and difficulties with, both heat engines and

the Boltzmann factor, as well as insight into the effectiveness of the tutorials (both

while students are engaging with the tutorial and after the fact).

4.1 Research Setting

The purpose of this section is to present my expectations about what students

understand about thermal physics before encountering my tutorials, and to provide

a brief description of the use of guided-inquiry tutorials at the University of Maine

(UMaine) to ensure that students have this understanding. I begin, however, by

presenting a few details about the thermal physics courses at UMaine and the stu-
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dent population who participated in this study. I also briefly describe the courses

and student populations at two other universities where data were gathered.

The Department of Physics & Astronomy at UMaine offers two semester-long

upper-division thermal physics courses. No thermal physics topics are included

within the curriculum of the introductory sequence for scientists and engineers. The

Physical Thermodynamics course (Thermo) is devoted entirely to classical, macro-

scopic thermodynamics and is offered every fall semester. I developed the Heat

Engines tutorial for use in Thermo. The Statistical Mechanics course (Stat Mech)

examines many of the same topics as Thermo from the microscopic (particulate)

perspective and is offered every spring semester.1 I developed the Boltzmann Factor

tutorial for use in Stat Mech. Most students take Thermo during the fall semester

of either their junior or senior year and take Stat Mech the following semester;

however, some students (∼5–10%) take Stat Mech the spring before taking Thermo.

The populations of Thermo and Stat Mech are mostly undergraduate physics majors

in their junior or senior year. Other undergraduate students include engineering,

mathematics, chemistry, and computer science majors. Occasionally physics grad-

uate students will take Thermo and/or Stat Mech as a review of or supplement to

their undergraduate education. Both courses meet for three 50-minute class periods

each week. Most instruction uses lectures, but tutorials are used in place of lecture

for between five and seven class periods each semester. Most students in Thermo

and/or Stat Mech have previously participated in tutorial instruction within their

intermediate mechanics course.[3–7, 9–13, 16]

Data were also gathered at two other universities: Rensselaer Polytechnic Insti-

tute (RPI, a private engineering university), and California Polytechnic State Uni-

1Course information was obtained from classroom observations and communication with the
instructor.
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versity, San Luis Obispo (Cal Poly, a four-year, comprehensive public university).2

A written survey regarding heat engines (the engine entropy question described be-

low) was administered to RPI students after all (lecture) instruction on heat engines

in the Thermodynamics and Statistical Mechanics course: a single-semester upper-

division lecture course (meeting for two 110-minute session per week) that combines

topics in both classical thermodynamics and statistical mechanics; no tutorials are

used during the course (N = 38). The course textbook is Carter’s Classical and Sta-

tistical Thermodynamics.[38] The engine entropy question was administered at RPI

during Year 2 of my research, after it had been implemented five times at UMaine.

Students at Cal Poly participated in the Boltzmann Factor tutorial and were

given a related written survey both before and after tutorial instruction (the prob-

ability ratios question described below, N = 32). At Cal Poly, the probability

ratios question was given as a true pretest, before any instruction on the Boltzmann

factor, and the Boltzmann Factor tutorial was used in place of lecture in the Ther-

mal Physics I course: the first of two semester-long upper-division lecture courses

(meeting for three 50-minute sessions per week) that combines topics in both clas-

sical thermodynamics and statistical mechanics; the Boltzmann Factor tutorial was

the only tutorial used in the course. The course textbook is Schroeder’s Thermal

Physics.[39] This is different from the treatment at UMaine in which both the prob-

ability ratios question and the Boltzmann Factor tutorial were given after lecture

instruction on the Boltzmann factor. Both the Boltzmann Factor tutorial and the

probability ratios question were administered at Cal Poly in Year 2 of my research;

the Boltzmann Factor tutorial had previously been used once at UMaine and the

probability ratios question had previously been asked six times at UMaine. More

2Information on courses and tutorial implementation was obtained through personal commu-
nication with the instructors.
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detailed descriptions of these schools and the data gathered at each are included in

Chapters 5 and 6.

4.1.1 Student Preparation for the Heat Engines Tutorial at

the University of Maine

Topics of study in the Thermo course at UMaine include the first, second, and

third laws of thermodynamics; phases of matter; definitions of heat, work, internal

energy, entropy, etc., as they pertain to macroscopic thermodynamics; reversibil-

ity and irreversibility; heat engines; and thermodynamic potentials and Maxwell

relations. Particular emphasis is placed on distinguishing between thermodynamic

quantities that are and are not state functions, as well as distinguishing between

those that are extensive and those that are intensive; connections between mathe-

matical processes and physical interpretations; and the arbitrary but crucial nature

of the definition of a thermodynamic “system.” The textbook for the course is

Carter’s Classical and Statistical Thermodynamics.[38] The prerequisite courses for

Thermo include Calculus III (multivariable and vector calculus) and introductory

mechanics.

Before engaging with the Heat Engines tutorial, I expect that students under-

stand several ideas: the difference between state functions and process variables and

the importance of this distinction; the 1st Law and definitions of heat and work; and

the 2nd Law, the thermodynamic definition for changes in entropy (Eq. 2.6), and the

distinction between reversible and irreversible processes. Due to the difficult nature

of these topics, as described in section 3.2.1, several tutorials are used in Thermo to

ensure that students develop a full understanding of these topics.

The 2-Blocks tutorial, described in section 3.3.1, gives students the opportunity

to use both the 1st Law and the definition for changes in entropy to derive the

limitation on entropy changes due to the 2nd Law (i.e., ∆Suni ≥ 0).[18] The 2-Blocks
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tutorial also gives students experience calculating changes in entropy due to different

processes and reinforces the arbitrary nature of the definitions of a thermodynamic

“system” and its “surroundings.”[18] The 2-Processes tutorial helps students develop

a further understanding of entropy as a state function and the implications inherent

therein.[18] Students spend time during the 2-Processes tutorial negotiating the

difference between quantities that depend on a particular process (heat and work)

and those that only depend on the state of the system (internal energy, entropy,

volume, etc.).

In later years the 2-Processes tutorial was replaced by an activity developed at

UMaine in which students calculate the changes in, and/or magnitudes of, various

thermodynamic quantities of an ideal gas as it is taken from a single initial state

(a) to a single final state (b) via three different thermodynamic processes shown on

a P -V diagram.3 By calculating the internal energy, enthalpy, and entropy of the

gas at various states on the P -V diagram, and the heat transferred and work done

over each path, students see that the former quantities are state functions (and that

changes in these variables are path-independent), and that heat and work depend

on the particular process, represented by the path taken on the P -V diagram. By

participating in both the 2-Blocks tutorial and either the 2-Processes tutorial or

the 3-Paths activity, students are given the opportunity to gain an understanding

of entropy including its state-function property and its limitations based on the 2nd

Law. As will be discussed in Chapter 5, an understanding of these entropy concepts

is necessary for a complete understanding of heat engines.

3This activity was inspired by Figure 4-8 in Thermodynamics, Kinetic Theory, and Statistical
Thermodynamics by Sears & Salinger.[88, p. 117]
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4.1.2 Student Preparation for the Boltzmann Factor Tutorial at

the University of Maine

Topics of study in Stat Mech include the connection between multiplicity and

probability, and how they relate to particulate models of thermodynamic systems;

the statistical definition of entropy; density of states and quantum degeneracy; the

canonical probability distribution and the Boltzmann factor; blackbody radiation;

and properties of fermions and bosons. The textbook for the course is Baierlein’s

Thermal Physics.[89] The prerequisite courses for Stat Mech include Differential

Equations and Introductory (Sophomore) Quantum Physics. The Thermo course is

not a prerequisite for Stat Mech, but most students take them in sequential order.

In order for students to successfully complete and engage with the Boltzmann

Factor tutorial, I expect them to understand several key topics: the difference be-

tween a microstate and a macrostate and how to define each for a given system;

the fundamental assumption of statistical mechanics, which states that all acces-

sible microstates are equally probable; and the resulting connection between the

multiplicity (number of microstates) of a particular macrostate and the probability

that the system occupies that macrostate. Due to the difficult nature of these ideas

discussed in section 3.2.2, several guided-inquiry tutorials are used in Stat Mech to

ensure that students gain a good understanding of these ideas. Within each tutorial,

particular emphasis is placed on the definitions of microstate and macrostate for a

particular physical system, as well as the calculation of multiplicity based on other

known properties of the system.

Loverude’s Counting States tutorial (described in section 3.3.2) uses the con-

text of flipping coins to allow the students to derive the binomial distribution.[19]

One important focus of this tutorial is the distinction between a microstate and

a macrostate and how each is defined for a given physical scenario. As statistical
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mechanics is the probabilistic study of thermodynamic systems, this distinction is

extremely important: a macrostate that contains a large number of microstates will

be more probable than a macrostate that consists of relatively few microstates.

Two additional tutorials, which were developed at UMaine, are used in Stat Mech.

In the Binomial Distribution tutorial, students examine the effects of sample size

on probability distributions.[22] In particular it helps students examine the claim

that, as sample size increases, the most likely outcome becomes “overwhelmingly

probable.”[38, 89] In actuality, the probability for the single most likely binomial

macrostate decreases with increased sample size (e.g., in the binomial distribution

P (N/2) = N !
2N (N/2)!(N/2)!

; 2N > N !
(N/2)!(N/2)!

, for N > 0; where N is the number of

experimental trials). If, however, one defines the most probable “outcome” to include

all values within 1% of the most probable macrostate, then the probability of that

“outcome” does, in fact, tend toward unity as N increases.[89, p. 26] The point that

is often glossed over is that by including values within 1%, the textbook authors

are, in essence, redefining the term “macrostate” to be a range of possible values,

not just one (e.g., around 500 heads out of 1,000 flips). The Binomial Distribution

tutorial helps highlight this distinction of what is considered to be a macrostate and

encourages students to gain a deeper appreciation of the need for explicit definitions

of microstates and macrostates.

The Density of States tutorial was developed at UMaine by Bucy to help students

gain an appreciation for how the density of states function relates to multiplicity

and probability.[34] The density of states function is an expression of microstate

density (i.e., the number of microstates per unit energy) as a function of the energy

of some thermodynamic system. By integrating the density of states function over

a small range of energies, one obtains the number of microstates within the (rede-

fined) macrostate defined by that energy range. The probability of a macrostate is

then found by dividing by the total number of microstates (integral of density of
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states over the entire energy range). The Density of States tutorial helps students

navigate what is meant by the term “macrostate” in this sense and motivates why an

integral over a small range of energy values is needed. The Density of States tuto-

rial is particularly relevant to my study, as an understanding of both the density of

states function and the Boltzmann factor is necessary to make sense of our everyday

observations of real-world phenomena (see section 6.7 for further discussion).

All three of the tutorials used in Stat Mech help students deal with two of the

most fundamental questions in statistical mechanics: how do you define a microstate

and a macrostate for a given thermodynamic system? and how do you count the

number of microstates to determine the probability of a given macrostate? As is

discussed in Chapter 6, an understanding of these topics is essential for students’

preparation for, and success with, the Boltzmann Factor tutorial, as students begin

to answer these same questions for interacting thermodynamic systems.

4.2 Research Methods

Throughout my investigation into student difficulties in thermal physics topics

I employed several methods, both qualitative and quantitative, for collecting data

on students’ ideas. Data were primarily gathered using written surveys, videotaped

classroom observations, and individual or group interviews. My main goal for col-

lecting data in this manner was research oriented: to learn more about what students

understood about the specific content of either heat engines and the Carnot cycle

or the Boltzmann factor. A secondary goal was curriculum-development-oriented:

to monitor the ways in which students engaged with the tutorials I created. Using

videotaped classroom observations and interviews, I was able to observe whether

or not students struggled when I wanted them to struggle and/or succeeded easily
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when I wanted them to succeed. This section contains a description of the methods

I used for both collecting and analyzing data.

Preliminary versions of both the Heat Engines tutorial and the Boltzmann Factor

tutorial were critiqued by members of the Physics Education Research Laboratory

(PERL) at UMaine before being administered in class. Revisions after each class-

room implementation were also critiqued by PERL members to ensure that they

were intelligible to people not directly involved in tutorial development.

4.2.1 Written Questions

One of the primary data sources for my research was written questions adminis-

tered either as homework, in class as ungraded surveys, or on a course examination

in both Thermo and Stat Mech. Three primary questions were used to gather data

on students’ understanding of heat engines and the Carnot cycle in Thermo: the fi-

nite reservoirs question (Figure 5.1) assesses students’ understanding of heat engines

that operate between reservoirs that have finite heat capacity (not constant tem-

perature) and was given as part of a graded homework assignment in six years; the

engine entropy question (Figure 5.2) assesses students understanding of the Carnot

cycle as a limiting case related to the 2nd Law and was given as an ungraded in-class

survey both before and after tutorial instruction in three years; the engine feasibility

question (Figure 5.6) assesses students’ understanding of how the 1st and 2nd Laws

restrict the energy transfers that occur during the operation of a heat engine and

was given as part of a course examination in three years.

Three primary questions were also used to study students’ understanding of

the Boltzmann factor and related topics. The probability ratios question (Figure

6.2) and its analog (Figure 6.5) assess students’ ability to recognize a situation in

which the Boltzmann factor is applicable; they were given both as ungraded in-class

surveys before tutorial instruction and as part of course examinations after tutorial
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instruction in two years. The Taylor series pretest (Figure 6.8) assesses students’

ability to interpret the Taylor series of a function, given a graph of the function,

and was given as an ungraded in-class survey before tutorial instruction in two

years. The density of states question (Figure 6.9) assesses students’ understanding

of the graphical forms of the Boltzmann factor, the density of states, their product,

and the canonical partition function and was given on a course examination after

tutorial instruction in one year. The purpose of asking these questions is to identify

specific difficulties that students have when answering questions about either heat

engines or the Boltzmann factor. By asking several questions about similar topics,

I had the opportunity to examine students’ difficulties from different perspectives

and add depth to my results. The identification of these specific difficulties focused

the development of tutorials to help improve students’ understanding of these topics

and address these difficulties. Several of these surveys were chosen for use in my

study because their use had been established within the Thermo and Stat Mech

courses in years before tutorial development; others were developed during tutorial

development to gain a fuller perspective of student understanding. Full details of

the use of these questions and the results from their implementations are presented

in Chapters 5 and 6.

Data for my study were collected over several years both before and during tu-

torial development. (A tabular form of this timeline is included in Tables 5.5 &

6.5.) The first set of written data consisted of two written questions spanning both

Thermo and Stat Mech (the finite reservoirs question and the probability ratios

question) and was collected three years before tutorial development began. These

questions were asked every year before tutorial development, as well as every year

during tutorial development. The Heat Engines tutorial was implemented in Thermo

in three years during which the engine entropy question and engine feasibility ques-

tion were administered. The engine entropy question was also administered at RPI
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in one year without tutorial instruction. The Boltzmann Factor tutorial was imple-

mented in two years in Stat Mech; the Taylor series pretest was administered both

years, and the density of states question was only administered the second year.

The probability ratios question was also given at Cal Poly before tutorial instruc-

tion, and the analog question was given after tutorial instruction. All written data

were photocopied and/or scanned to an electronic document before grading, and

analysis was conducted without instructors’ comments or grades. Each time a tuto-

rial was used at UMaine, either the tutorial itself or the assessment questions were

modified to some degree. I will, therefore, discuss each year separately in Chapters

5 and 6.

All of the above questions had one of two basic forms: multiple-choice with re-

quired explanation, or free-response. The multiple-choice questions all have a similar

form in that students are presented with a physical scenario and asked to determine

whether a particular quantity is positive, negative, or zero.4 Furthermore, students

were often given the option to state that the answer couldn’t be determined using the

given information.5 For all multiple-choice surveys, students were asked to explain

how they determined their answer. These explanations became a valuable source

of data as some students gave incorrect responses using physically correct reasons

and some students gave correct responses using incorrect ideas (see discussions in

Chapters 5 & 6).

The free-response questions presented the students with a physical scenario and

asked them to find an expression for a particular quantity (in terms of given vari-

ables and constants) or answer a more general question requiring mathematical

4Some questions ask students to determine whether a physical quantity increased, decreased,
or remained the same after a particular process; or to determine whether one physical quantity
was greater than, less than, or equal to another. I consider these answer sets to be isomorphic as
each spans the space of relevant responses.

5Some students were explicit about not being able to answer a question even when not specif-
ically given a “not determinable” option.
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calculations to some extent. These free-response questions gave students the oppor-

tunity to express ideas and lines of reasoning that may not have been evident within

multiple-choice questions. More details of the goals and use of both multiple-choice

and free-response questions are presented in Chapters 5 and 6; all written surveys

are included in the appendices.

Students’ responses to written surveys were categorized in two ways: first by their

answer chosen from one of the provided options (on multiple-choice questions), and

second by the explanations that students provided. Analyzing these explanations,

I used a grounded theory approach in which the entire data corpus was examined

for common trends, and all data were reexamined to group them into the defined

categories.[90, 91] One goal of my analysis was to focus on describing rather than

interpreting students’ explanations while defining the categories. As an example

from a question regarding heat engines: students who explicitly stated that a heat

engine was “reversible,” were categorized into the Reversible reasoning category; no

students who did not use the word “reversible” were placed in this category. In

this way my analysis stays as true to the data as possible by limiting researcher

biases and interpretations. This is consistent with Heron’s identification of specific

difficulties discussed in section 3.2.[37] More details of this categorization process

are contained in Chapters 5 and 6.

Once students’ responses had been categorized and counted, different data sets

(e.g., pre- vs. post-tutorial instruction) were compared using a Fisher’s exact test,

a statistical test used with categorical data. The Fisher’s exact test is similar to

a χ2-test for independent samples in that the distribution of responses within one

population is compared to the combined distribution from all populations.[92–94] If

both individual populations differ from the combined distribution in terms of the

percentage of students occupying each category, then the populations are considered

statistically different. The Fisher’s exact test is more appropriate than the χ2-test
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when the sample size is small (i.e., any categories with fewer than five occupants),

which is the case for all of my data. The output statistic for the Fisher’s exact test

is the p-value, which ranges from 0 (completely different) to 1 (identical). Using the

Fisher’s exact test allowed me to make claims about whether or not the reasoning

students used to answer a specific question changed after participating in one of my

tutorials; as well as whether or not students from different universities give similar

justifications for their responses. When testing two populations for differences (e.g.,

comparing pre- and post-instruction assessments), the threshold for significance was

set at α = 0.05, i.e., populations are considered significantly different with a result

of p < 0.05. When testing two populations for similarities (e.g., pre-instruction data

from two different universities), the threshold for significance was set at α = 0.10,

i.e., populations are considered statistically similar with a result of p > 0.10. Values

of 0.05 < p < 0.10 are considered an indication of approaching significance, i.e., not

statistically significant but worth mentioning.

4.2.2 Classroom Observations

As mentioned previously, the focus of my data gathering and analysis was to

examine ideas that student had regarding the content of the tutorials developed

and to monitor their ability to efficiently and productively complete each of the

tutorials. With this in mind, data from classroom observations were gathered by

videotaping classroom episodes (one or two each semester) of students working in

groups to complete one of my tutorials. Segments from these classroom episodes

were selected for transcription and further analysis based on the content of student

discussions. Given my focus on investigating students’ understanding of particular

topics, my methods of gathering video data align with Erickson’s description of

manifest content approaches, in which particular classroom sessions are selected

to be videotaped based on the content being discussed.[95] I chose to videotape
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classroom sessions in which students were engaging in one of the tutorials that I had

developed because I was primarily interested in their ideas about content related

to the tutorials. During each tutorial session I videotaped one or two groups, each

with three or four students working together, for a total of nine groups containing 27

students (about nine hours of video from five different semesters). To analyze video

data, I watched each video in its entirety and made note of conversations that seemed

interesting; I later watched these seemingly interesting segments many times and

recorded both what was discussed and why I thought it was interesting. The results

from these records are presented in sections 5.4.4 and 6.5.3. Quotations included

in these sections were often selected for their uniqueness. Several students made

comments and statements that indicated difficulties that were not expected and

have not been previously documented. Data do not exist to verify the pervasiveness

of these difficulties, but I feel their existence is noteworthy. In cases where more

than one student displayed a similar difficulty, I have included multiple quotes to

allow the reader to evaluate the similarities and differences between the data.

During analysis of classroom observations, attention was paid more to the physics

content expressed during students’ discussions than the broader social interactions

evident within the video. While the data obtained could certainly be analyzed us-

ing existing literature on gestures and interpersonal interactions (cf. Ref. 96 and

references therein), the focus of this overarching project, and my own interest in the

data, lies in students’ ideas regarding the conceptual and mathematical content of

my tutorials and students’ ability to negotiate tutorial prompts in an efficient and

productive manner. For my purposes a “productive” student interaction is one in

which they discuss topics related to the tutorial in a way that helps them progress

through the tutorial tasks while seeming to gain a better understanding of those

topics (discussing relevant concepts, synthesizing information, engaging with the

connection between the mathematics and the physics, etc.). An “efficient” interac-
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tion is once that allows the students to complete the tutorial within the intended

50-minute class period. In some respects the categorization of student interactions

is done with an eye toward the end justifying the means: an interaction cannot nec-

essarily be considered productive or efficient without knowing the conversations that

take place after that interaction. Other researchers at UMaine have used some of

these videos to investigate group dynamics within upper-division physics courses;[97]

however, I have limited my analysis of video data to that necessary to meet my goals.

More details about the analysis of these videos is presented in sections 5.4.4 and

6.5.3. As is discussed in these sections, video data were instrumental in my investiga-

tion of students’ understanding of tutorial concepts and their ability to successfully

complete each of the tutorials.

4.2.3 Interviews

In an effort to delve further into students’ ideas regarding concepts related to the

Boltzmann Factor tutorial I conducted interviews with students both as individuals

and in pairs. I conducted two rounds of interviews, each with a different goal. In one

round my goal was to test instructional strategies used within the Boltzmann Factor

tutorial; I therefore conducted interviews with four students in the style of a teaching

experiment.[98, 99] It should be noted that the goal of the teaching interviews was

not to determine students’ understanding of the Boltzmann factor, but rather to ex-

amine how well they could complete instructional tasks based on previous knowledge

related to the Boltzmann factor. As is discussed in Chapter 6, these teaching inter-

views were used after the initial tutorial implementation to inform tutorial revisions

and improve instruction in subsequent years. According to Steffe and Thompson, “a

teaching experiment involves a sequence of teaching episodes. . . [including] a teach-

ing agent, one or more students, a witness of the teaching episodes, and a method

of recording what transpires during the episode.”[99] For my purposes I alternated
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roles as both teaching agent and witness during each interview. In a sense, the

tutorial activities used during the interview may also be seen as a teaching agent as

they asked students to perform tasks, and students interacted with the document

in an intellectual manner. One of the unique aspects of a teaching experiment as an

approach to interview procedures is that “it is an acceptable outcome. . . for students

to modify their thinking” during the course of the interview.[98] My goals during

these interviews were two-fold: to see how successful students would be at working

through tutorial tasks; and, when difficulties arose, to see what interventions were

necessary to help students succeed. Interviews were conducted in a think-aloud

style in which students were encouraged to verbalize their thought processes while

completing interview tasks. Additionally, these interviews were a valuable source

of data on students’ understanding of content presented within the tutorial. Field

notes were taken during the interviews, and students’ written work was collected

afterward and examined in a manner consistent with my treatment of students’ re-

sponses to written questions. A more detailed description of the teaching interview

tasks and their results is presented in Chapter 6.

In other interview tasks, I was interested in investigating students’ ideas about

Taylor series expansions and the density of states (two topics that are closely related

to the Boltzmann factor) without influencing them. With that in mind I used a

clinical interviewing technique similar to those described by Piaget and Inhelder to

examine five students’ ideas about these topics.[98, 100] My goal in these interviews

was to examine students’ understanding of topics related to my tutorials more deeply

than I could using either written surveys or classroom observations. In the clinical

interview setting the students were asked a series of specific questions related to

the concepts under investigation. Based on their responses to the original prompts,

additional questions were asked to further probe their thought processes. A main

goal of the clinical interview (and the primary difference between clinical interviews
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and teaching experiments) is to ascertain information about the student’s ideas

without altering those ideas during the interview. As such the interviewer must

be careful when responding to student remarks so as not to encourage or oppress

student ideas. The students must be given the opportunity to take up or put aside

ideas based on their own criteria, not the interviewer’s.

As with written surveys, I used a grounded theory approach for analyzing all of

my video data (teaching interviews, clinical interviews, and classrooms observations)

in an attempt to find interesting and common trends.[90, 91] With a data set so

small (about 5 videos for each interview or tutorial), however, trends were not often

apparent. As such, many videos are treated as case studies, and emphasis is placed

on describing the data before interpreting them. The results from these case studies

are presented in Chapters 5 and 6. A more detailed description of the interview tasks

and their results is included in sections 6.6 and 6.7. Both the interview protocol

used during the clinical interviews and the tutorial activity used during the teaching

experiments are shown in Appendix C.
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Chapter 5

THE HEAT ENGINES TUTORIAL

In this chapter I describe efforts made toward identifying specific difficulties that

students display when responding to questions regarding the topic of heat engines,

as well as efforts made to develop a tutorial for use in an upper-division thermal

physics course to help address these difficulties. As discussed in previous chapters, a

full and complete understanding of heat engines requires students to synthesize ideas

relating to the 1st and 2nd Laws, as well as the definitions of various thermodynamic

quantities and the properties and importance of quantities that are and are not state

functions. Some of the difficulties relating to these underlying topics and efforts

made to address them are included in Chapters 3 and 4. With these previously

reported difficulties in mind, much of my effort was put toward identifying students’

specific difficulties related directly to heat engines.

I begin by describing the physics of heat engines, emphasizing the various con-

cepts that must be synthesized to gain a robust understanding. I present data from

written surveys that indicate that few students gain a full understanding of the

physical principles behind heat engines from lecture instruction alone. This result is

consistent across two different universities. Using these data, I present the rationale

for developing the Heat Engines tutorial as well as the details of the tutorial itself.

Data from written surveys given after tutorial instruction provide interesting and

somewhat mixed results: students’ answers to some questions do not change over-

all after tutorial instruction, but, as I discuss in section 5.4.2, the reasoning they

use to support their answers becomes more selective and sophisticated. Finally, I

present the results from analysis of videotaped classroom observations of students

working through the Heat Engines tutorial and describe how these results shed light
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on students’ difficulties and successes, as well as inform tutorial revisions to improve

instruction. I conclude with some implications for future research and curriculum

development.

5.1 The Physics of Heat Engines

In order to discuss and appreciate student understanding of and difficulties with

heat engines, one must first understand the physics underlying heat engines. As

discussed in Chapter 2, a heat engine is a device that converts thermal energy

into usable work. To accomplish this, a heat engine requires three things: a high-

temperature (TH) thermal reservoir, a low-temperature (TL) thermal reservoir, and a

working substance (e.g., a gas in a cylinder with a piston). The reservoirs are needed

to exchange energy with the working substance without being affected themselves

(ideally, no temperature change). The working substance is the stuff that actually

does the work. A heat engine operates in a cycle so that the working substance

repeatedly returns to its original thermodynamic state. In other words, after one

complete cycle, all of the (equilibrium) state properties of the working substance —

volume, pressure, temperature, internal energy, entropy, etc. — will return to their

original values. In the course of this cycle, an amount of energy (QH) is transferred

from the TH-reservoir to the working substance; the working substance does work to

transfer energy (W ) to its surroundings; and some energy (QL) is transferred from

the working substance to the TL-reservoir. The efficiency of a heat engine is defined

as the ratio of the work energy out to the heat energy in (η ≡ W
QH

). After one cycle

the heat engine is essentially right back where it started, ready to do more work.

Heat engines are an integral part of the Physical Thermodynamics (Thermo)

course at UMaine and are arguably one of the more practical applications taught

in classical thermodynamics. From a historical perspective, the generic heat engine
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was the basis for the steam engine, the internal combustion engine, and any electri-

cal power plant that burns fossil fuels or uses nuclear energy; it is therefore largely

responsible for the industrial revolution. From a teaching perspective, heat engines

provide a practical example in which all three laws of thermodynamics must be

used together to solve problems in real-world scenarios. Today’s engineering chal-

lenges include designing heat engines that achieve greater efficiencies while reducing

harmful effects to the environment. The theoretical principles behind maximizing

thermodynamic efficiency, however, have not changed in almost 200 years.

5.1.1 A Historical Perspective

In 1824 N. L. Sadi Carnot published a manuscript entitled “Reflections on the

Motive Power of Fire, and on Machines Fitted to Develop that Power,” which, at

the time, was quite obscure, but has become one of the most influential writings

on thermodynamics.[101] Carnot described a particular mechanism for operating

a heat engine to obtain the most usable work under the constraint of two fixed-

temperature thermal reservoirs. This mechanism consisted of taking the working

substance through a four-step sequence of processes: an isothermal expansion (at

the temperature of the higher temperature reservoir), an adiabatic expansion (to

lower the temperature), an isothermal compression (at the temperature of the lower

temperature reservoir), and an adiabatic compression (to raise the temperature back

to its original state).[101, p. 74–75] Carnot’s argument for this four-step process

is best articulated in his claim that, “any change in temperature that is not due

to a change in volume of [the working substance] is necessarily one in which the

equilibrium of [heat] is restored profitlessly. Hence the necessary condition for the

achievement of maximum effect is that the bodies used to produce [work] should

undergo no change in temperature that is not due to a change in volume.”[101, p. 70,

original emphasis] In other words, a change in temperature of the working substance
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must be the result of a change in volume rather than a temperature gradient (i.e., the

process must be adiabatic). Carnot also posits that the material used as a working

substance must be inconsequential for the creation of work, using a perpetual motion

machine as a counter-example.1 He also proposes that greater differences between

the temperatures of the two reservoirs will yield a higher capacity to perform work

(and that this temperature difference is the only determining factor in the amount

of work that could possibly be performed)[101, p. 103] but does not mention the

importance of the ratio of the two temperatures.

Carnot’s treatise, however, is not without its problems. Lacking much of the

theoretical background we have since come to accept (e.g., the constancy of the

ratio cP
cV

= γ for a particular material,2 and the definition of entropy), he uses

the experimental results on heat capacities of his contemporaries (e.g., Gay-Lussac,

Dalton, etc.) to derive specific examples of how much work could be performed for a

given working substance operating between two reservoirs at specified temperatures

to which a particular amount of heat had been supplied. He also abundantly uses the

term “caloric” which can be interpreted alternately as “entropy” or “heat” depending

on the context.[101, p. 121–122] Carnot does not mention thermodynamic efficiency

(as the modern definition had not yet been proposed), but his “theoretical results”

agree to within 60% of modern theoretical treatments of his proposed scenario.3

1Two identical heat engines with different working substances operating between the same two
reservoirs (one as an engine, one as a refrigerator) must have the same efficiency (unit work energy
out per unit heat energy in), otherwise an infinite supply of energy would be available while the
reservoirs are unaffected.

2Carnot ascribed to contemporary assertions that the difference, cP − cV, is, in fact,
constant.[101, p. 80]

3Carnot claims to yield 1.112 units of work for 1000 units of input heat (η = 1.112× 10−3) for
an engine operating between reservoirs at 100◦C and 99◦C (ηC = 2.681× 10−3).[101, p. 98–99]
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5.1.2 A More Modern Treatment

A full presentation of the physics related to heat engines from a contemporary

perspective is included in Chapter 2. I present a cursory review here for readers

familiar with thermodymanics. Our modern definitions of internal energy, entropy,

and other thermodynamic variables help to streamline Carnot’s arguments. As

mentioned above, heat engines (like all devices) are subject to the three laws of

thermodynamics. The First Law of Thermodynamics (1st Law) may be written in

terms of the energy transfers to and from the working substance of a heat engine to

get

∆U = |QH| − |QL| −W. (5.1)

The entropy inequality statement of the Second Law of Thermodynamics (2nd

Law) is given by,

∆Suni ≥ 0, (5.2)

and changes in the entropy of any system are given by,

∆S ≥
final∫

initial

d–Q
T
. (5.3)

The equalities in Eqs. 5.2 & 5.3 hold only for reversible (ideal) processes. For the

case of heat engines, the “universe” is considered to be comprised of only the working

substance and the two reservoirs, and the total change in entropy of the universe is

given by,

∆Suni =
|QL|
TL

− |QH|
TH

. (5.4)

Thermodynamic efficiency for a heat engine is defined as,

η ≡
∣∣∣∣WQH

∣∣∣∣ . (5.5)

Combining Eqs. 5.1, 5.2, 5.4, and 5.5 one obtains the relationship:

η = 1− |QL |
|QH|

≤ 1− TL

TH

= ηC , (5.6)
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where ηC is Carnot’s efficiency, and the equality holds only in the reversible case

where the working substance goes through Carnot’s four-step cycle of alternating

isotherms and adiabats, during which the entropy change of the TL-reservoir per-

fectly negates the entropy change of the TH-reservoir. Conversely, an efficiency

greater than Carnot’s effieciency (η > ηC) would imply that the entropy of the uni-

verse would have to decrease (∆Suni < 0), violating the 2nd Law. Thus our modern

definitions of entropy and thermodynamic efficiency have allowed a direct connec-

tion between what we now know to be the 2nd Law and a succinct formulation of

Carnot’s theorem: No heat engine operating between two reservoirs can be more

efficient than a Carnot engine operating between those same two reservoirs.

5.2 Identifying Student Difficulties with the Physics of Heat Engines

Because a robust understanding of heat engines and Carnot’s efficiency involves

synthesizing the 1st & 2nd Laws appropriately — and because research shows that

this is not a trivial task (cf. Refs. 18, 32, & 35) — this seemed like a useful place

for curriculum development efforts. Data exist that indicate that students do not,

in fact, gain a complete understanding of the importance and uniqueness of the

Carnot cycle after lecture instruction. In this section I present the evidence from

analyses of student responses on several written questions assigned as homework, in

ungraded in-class assessments, and/or on course examinations that suggest several

specific difficulties.

5.2.1 Probing Student Understanding of (Ir)Reversibility in the Con-

text of Heat Engines: The Finite Reservoirs Question

The finite reservoirs question (FRQ, shown in Figure 5.1) was developed by

Donald Mountcastle, based on problems in both Carter’s and Baierlein’s texts, and

included in course homework for several years in both Thermo and Stat Mech af-
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The context is that of heat engines; in each case we wish to model the system as the
working substance which is repeatedly taken through a very specific cycle used to
convert energy absorbed in the form of heat into energy spent in the form of work.
Heat is exchanged between the system and two finite thermal reservoirs, while the
work is delivered somewhere else in the surroundings. During any one engine cycle,
assume any change in temperature of the finite reservoirs is negligible.

Suppose you have four similar finite reservoirs, each of mass m and specific heat
capacity cP. Two of the reservoirs are initially at temperature T1, the other two are
initially at T2 , where T2 > T1.

a) Devise and describe two different heat engines [name them Ralph (R) and Irv (I)],
each to operate between a T1 and a T2 reservoir, until all deliverable energy has been
exhausted; i.e., all heat flow ceases when thermal equilibrium of the two reservoirs is
attained. Design Ralph to be the world’s most efficient heat engine, and Irv to be
the world’s least efficient engine.

b) Prediction: Describe the final equilibrium state of each engine-reservoir pair (include
the working substance and its pair of reservoirs), after each engine ceases opera-
tion. Do you expect all of the reservoirs to arrive at the same final temperature?
Write down your prediction for the reservoir final temperatures along with a brief
explanation.

c) For each engine-reservoir pair, calculate (in terms of m, cP, T1 , and T2 )

i) the final temperature (Tfinal),

ii) the total work delivered, and

iii) the ∆Suni, the entropy change of the universe.

d) Are the final temperatures for both engine-reservoir pairs the same or different?
Compare with your prediction in part (b) above, and briefly explain.

Figure 5.1. The Finite Reservoirs Question (FRQ). Designed by Donald Mountcastle
based on Carter’s problem 7.8 and Baierlein’s problem 3.6.[38, 89]. Given as a
homework assignment in Thermo and Stat Mech.

ter lecture instruction on the Carnot cycle.[38, 89] The question asks students to

consider two different heat engines operating between pairs of identical thermal

reservoirs (all with mass, m, and finite specific heat capacity, cP). Student difficul-

ties with the FRQ were the strongest motivating factor in my decision to further

investigate their understanding of heat engines and, subsequently, design the Heat

Engines tutorial to address their difficulties. In the remainder of this section, I

describe the FRQ and present the results that provided this motivation.
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The solution to part (a) of the FRQ involves students recognizing that for “Ralph”

to be the most efficient heat engine, it will have to be the reversible Carnot engine;

and for “Irv” to be the least efficient heat engine, it will do no work (η = 0). Part

(b) only requires the students to make predictions which, while informative, are not

directly related to this study.

The key to part (c) of the FRQ is students recognizing that Irv has constant

total internal energy, and Ralph has constant total entropy. The solution is that,

since no work is done, no energy leaves Irv’s two-reservoir system, and thus the total

internal energy of the two reservoirs remains constant,

∆U1 + ∆U2 =

TIf∫
T1

mcP dT +

TIf∫
T2

mcP dT = 0,

∴ (5.7)

2TIf − T1 − T2 = 0.

This gives a final temperature of TIf = 1
2
(T1 + T2). The entropy change of the

universe, ∆Suni, for Irv can be determined using the fact that any energy gained by

the TL-reservoir must have been lost by the TH-reservoir; ∆Suni = mcP ln
(

1
4

(T1+T2)2

T1T2

)
.

Ralph, on the other hand is the reversible Carnot cycle and will, therefore, have

∆Suni = 0,

∆S1 + ∆S2 =

TRf∫
T1

mcP

T
dT +

TRf∫
T2

mcP

T
dT = 0,

∴ (5.8)

ln

(
TRf

T1

)
+ ln

(
TRf

T2

)
= 0.

Solving for TRf
one obtains TRf

=
√
T1T2, which is lower than TIf . The total work

is then the difference between the initial and the final internal energy of the R

reservoirs (U = 2mcPTRavg); and since the initial internal energy of the R reservoirs
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(and the I reservoirs) is the same as the final internal energy of the I reservoirs:

W = 2mcP(TRavg,i
− TRavg,f

) = 2mcP(TIf − TRf
) = 2mcP(T1+T2

2
−
√
T1T2).

In total, about half of the students for which data exist (20 out of 38) successfully

completed the FRQ or a related question after lecture instruction alone. During the

first years of implementation in Thermo, a preliminary version of the FRQ was

used that only looked at the least efficient (Irv) engine (N = 13; Carter’s problem

7.8).[38, p. 124] Examining students’ written responses to this version of the FRQ,

eight students successfully determined the final temperature of the reservoirs as

well as the total change in entropy; the other five students had varying degrees of

difficulty determining the changes in entropy due to this process. These difficulties

ranged from including terms to calculate the entropy change of the surroundings

outside of the reservoirs, to writing nonsense on the page (seemingly in a vain effort

to get partial credit).

In later implementations in Thermo and all implementations in Stat Mech, the

full FRQ was used as described above (N = 25).4 Examining students’ written

responses in these years, 12 students successfully answered all parts of the question.

Three other students successfully determined the final temperatures of all reservoirs

as well as the total change in entropy of the universe in each case but made errors

while calculating the total work done by Ralph. The remaining ten students made

major errors that prohibited their successful calculation of either the final temper-

atures of the reservoirs or the total changes in entropy. One of the most glaring of

these errors is a failure to use the fact that the entropy change of the universe for

Ralph will be zero within their calculations: four students made this error. Another

four stated that ∆Suni = 0, but did not use it productively to determine TRf
. These

errors are particularly noteworthy, as the uniqueness of the Carnot cycle (and the

4Some implementations of Stat Mech used a modified version of Baierlein’s problem 3.6 that
included all parts of the FRQ shown in Figure 5.1.[89, p. 72]
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basis of its importance in thermodynamics) is that it is the only reversible heat

engine that operates between two thermal reservoirs; this means that by definition,

the entropy of the universe cannot change due to the operation of a Carnot cycle

between any two reservoirs.

Possibly the most significant result is that even students who realized that Ralph

would be the Carnot cycle did not necessarily recognize that the change in entropy of

the universe would have to be zero. One student based his response on the relation-

ship, TH−TL
TH

= QH−QL
QH

, along with the premise that TH = T2− QH
mcP

t and TL = T1+ QL
mcP

t,

where “t” is the time since the process started. He then solved for the time at which

TH = TL, assuming that the same amount of energy, QH and QL, was transferred

during each cycle (a false assumption, since less heat transfer will occur during each

cycle as the temperatures get closer together). His final result for ∆Suni,R was ac-

tually the negative of his (correct) result for ∆Suni, I : ∆Suni,R = mcP ln
(

4T1T2

(T1+T2)2

)
.

In a later section in which numerical values were supplied for T1, T2, m, and cP, this

student seemed to realize that his result was impossible and wrote, “This can’t be

right since [∆Suni] is negative, but I don’t know why.” Even though this student

assumed that Ralph is the Carnot engine (as indicated by equating efficiency with

Carnot’s efficiency), he did not connect this to the fact that the entropy of the uni-

verse could not change due to the reversibility of this engine. Students’ failure to

relate the Carnot engine with a constant entropy of the universe was a strong moti-

vating factor in the development of the Heat Engines tutorial, which emphasizes the

connections between Carnot’s theorem and the entropy inequality statement of the

2nd Law. In light of students’ failures to use this connection to answer the FRQ and

their difficulty determining the final temperatures of the reservoirs, other assessment

tasks were created to evaluate their understanding of heat engines in different ways.
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5.2.2 Probing Student Understanding of Entropy as a State Function

and the Reversibility of the Carnot Cylce: The Engine Entropy

Question

The engine entropy question (EEQ, shown in Figure 5.2) was developed by War-

ren Christensen while a postdoctoral researcher at UMaine to assess students’ un-

derstanding of the connection between Carnot’s theorem and the 2nd Law. The EEQ

asks students to consider the change in entropy of various “systems” for two heat

engines, first as the result of one complete cycle of a Carnot engine, and second as

a result of one complete cycle of a heat engine that is hypothetically more efficient

than the Carnot engine. The students are asked about the change in entropy of

the universe (working substance and both reservoirs) and then about the change in

entropy of the working substance alone.5

To fully comprehend the correct answer, the students must understand and apply

two ideas: 1) entropy is a state function, and 2) the Carnot cycle is reversible. The

fact that entropy is a state function along with the fact that the working substance

ends the cycle at the same thermodynamic state as it began (by definition of a

cycle) indicate that the entropy of the working substance must be unchanged after

one complete cycle. This statement is true for any heat engine regardless of its

efficiency. The fact that the Carnot cycle is reversible means that the equality must

hold in Eq. 5.2, so the entropy of the universe must also remain the same after one

complete cycle of a Carnot engine. The fact that the Carnot cycle is reversible also

indicates that to obtain a heat engine with an efficiency greater than the Carnot

efficiency, the 2nd Law must be violated. One may conclude that the entropy of the

universe must decrease for this better-than-Carnot engine. Thus the correct response

pattern for the EEQ is: same-same-decrease-same. At this point I should explain

5In later versions students were asked about the working substance before being asked about
the universe.
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For the following questions consider one complete cycle of a heat engine operating
between two thermal reservoirs. The heat engine operates using an appropriate working
substance that expands and compresses during each cycle.

For questions a) and b) consider (i.e.,
imagine) this engine to be a Carnot en-
gine.

For questions c) and d) consider (i.e.,
imagine) a heat engine that is more ef-
ficient than a Carnot engine.

a) As a result of one complete cycle of
the Carnot engine, will the entropy
of the universe increase, decrease, re-
main the same, or is this not deter-
minable with the given information?
Explain your reasoning.

b) As a result of one complete cycle of
the Carnot engine, will the entropy of
the working substance increase, de-
crease, remain the same, or is this not
determinable with the given informa-
tion? Explain your reasoning.

c) As a result of one complete cycle of
this new heat engine, will the entropy
of the universe increase, decrease, re-
main the same, or is this not deter-
minable with the given information?
Explain your reasoning.

d) As a result of one complete cycle of
this new heat engine, will the entropy of
the working substance increase, de-
crease, remain the same, or is this not
determinable with the given informa-
tion? Explain your reasoning.

Figure 5.2. The Engine Entropy Question (EEQ). Developed by Warren Christensen
and administered after lecture instruction and again after tutorial instruction.

that when I use terms like “correct response” or “correct answer,” I intend this to be

a shorthand for, “the answer one would give to the posed question if the solution was

carried out correctly” (e.g. “same” to part (a) of the EEQ). I do not intend to imply

that this short (usually single-word) answer is sufficient for determining whether or

not a student understands the material or has any difficulties; for this, I also consider

the reasoning that students give for their responses. Considering both the response

and its reasoning provides a more complete picture of students’ understanding and

difficulties. I make this distinction between response and reasoning throughout this

dissertation.
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Figure 5.3. Response Frequencies: EEQ Pretest, UMaine. Data are the combination
of those collected in Stat Mech in the spring before Year 1 and in Thermo in the
fall of Years 1, 2 and 3. (N = 26)

5.2.2.1 Student Responses

The EEQ was first given in the spring of one year to students in the Stat Mech

class, all of whom had previously completed Thermo (N = 5).6 Several lectures had

been spent on heat engines in Thermo, and emphasis was placed on the reversibility

of the Carnot cycle. Student responses to the EEQ from this semester indicate that

these students, who had completed an entire course on classical thermodynamics, did

not have a good understanding of the connection between thermodynamic efficiency

and changes in entropy: only two students correctly answered all four parts of the

EEQ and provided appropriate reasoning for each.

To establish a baseline for tutorial instruction, the EEQ was administered in

Thermo after all lecture instruction on heat engines for three consecutive years that

the tutorial was administered (N = 21). After lecture instruction alone, none of

the students used completely correct reasoning for their responses on all four parts

6Information about students and course content was provided by the course instructor.
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Figure 5.4. Response Frequencies: EEQ Pretest, RPI. Data collected in the spring
of Year 2. (N = 38)

of the question. Figure 5.3 shows the response frequencies for the combined data

corpus of all four semesters (spring before Year 1, and fall of Years 1, 2, and 3).

The square-patterned bars (green) show the number of students who used correct

reasoning for their response on each question.

The EEQ was also administered at Rensselaer Polytechnic Institute (RPI) in the

Thermodynamics and Statistical Mechanics course in the spring of Year 2 (N = 38)

after all (lecture-based) instruction on heat engines. Figure 5.4 shows the response

frequencies from RPI. The data from RPI appear visually similar to that from

Table 5.1. Fisher’s Exact Test: UMaine vs. RPI. Results are p-values from Fisher’s
Exact Test, α = 0.10. Tests were done on the entire distribution of responses as
well as on the distribution if all incorrect responses were combined.

Carnot Better
Test Uni WS Uni WS

Response 0.95 0.001 0.78 0.34
Correct 1 0.01 0.34 0.15

76



UMaine, and a Fisher’s exact test shows that the two populations are statistically

similar in their response patterns for each sub-question (p > 0.10, see Table 5.1),

with one exception. On part (b), which asks students about the change in entropy

of the working substance of a Carnot cycle, the two populations are statistically

significantly different (p = 0.001). The most salient difference between the two dis-

tributions is the large proportion of RPI students (11 compared to 0 at UMaine)

who claimed that there is not enough information to answer the question (“other”).

In fact, a post-hoc Fisher’s exact test with the students who answered “other” re-

moved yields a result that approaches significance (p = 0.07). This shows that the

relative distribution of “increase,” “decrease,” and “stay the same” responses is ap-

proximately similar and that the difference between the two populations can almost

entirely be attributed to some of the RPI students claiming that not enough infor-

mation existed to answer the question. In the next section I discuss the reasoning

that these students used for why they stated this.

The second row in Table 5.1 shows the results of a Fisher’s exact test for which

all incorrect answers have been combined (including those that gave the “correct”

answer but did not use correct reasoning). The results of this test are the same in

that the only significant differences are found when students are asked about the

change in entropy of the working substance of the Carnot engine. Figure 5.5 shows

the combined data from all semesters at UMaine and RPI (N = 64).

An interesting aspect of the RPI data is that while 16 students (42%) stated

that the entropy of the working substance would remain the same for one complete

cycle of a Carnot engine on part (b), only two of these students cited the state

function property of entropy in their reason. Almost half of them (7 students)

used the fact that the Carnot cycle is reversible to come to the correct conclusion

while using inappropriate reasoning. This lack of using the fact that entropy is a

state function to justify their response is evident in the dramatic drop (from 16
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Figure 5.5. Response Frequencies: EEQ Pretest, All. Data are the combination of
those collected at UMaine and RPI. (N = 64)

to 8) in “same” responses when asked about the entropy of the working substance

of the better-than-Carnot engine on part (d). For this part only three students

answered correctly using correct state function reasoning (two of whom are those

that answered part (b) correctly using correct state function reasoning).

5.2.2.2 Student Reasoning

Shifting focus to examine more of the reasoning students used when answering

the various parts of the EEQ pretest at UMaine and RPI, I have identified ten pri-

mary types of reasoning, described in Table 5.2. As described in Chapter 4, these

categories were developed using a grounded theory approach in which I examined

the data for common trends and then categorized the data based on these trends.

These categories were not suggested by previous research into student understanding

of heat engines but derived from the data themselves. My primary goal in devel-

oping these categories was to describe the data rather than to interpret students’

thoughts. Examples of student responses that were categorized as each of the reason-
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ing strategies are shown in Table 5.3. These reasoning schemes include considering

the (ir)reversibility of a heat engine, the state function property of entropy, and tac-

itly or explicitly mentioning violations of the 1st and/or 2nd Laws. Some students

used more than one of these reasoning types to answer various sub-questions of the

EEQ; other categories were created for statistical analyses that indicate combina-

tions of reasoning strategies. Along with those described, one type of response that

is closely related to the Statement type of reasoning is the statement that the en-

tropy of the universe always increases. This idea was expressed most often (5 out of

64 students) when answering part (a) of the EEQ, and all of these students used the

same reasoning or simply stated their answer on part (c). The ∆S = Q
T

reasoning

was also accompanied by two related types of reasoning: one case where students

Table 5.2. Reasoning on the EEQ Pretest. Categories determined by an open
analysis of students’ written responses to the EEQ pretest at UMaine and RPI.

Label Description
Reversible Cite the reversibility of a heat engine
Irreversible Cite the irreversibility of a heat engine
State Function Entropy is a state function
Violate the 1st Law Energy is not conserved
Violate the 2nd Law Cite a violation of the 2nd Law

Direction The direction in which the device is operated (as
a heat engine or a refrigerator) makes a difference

Balance The change in entropy of a system must counter-
act that of its surroundings

∆S = Q
T

Cite that entropy is related to a ratio of heat
transfer to temperature

Comparison Compare to another heat engine (usually the
Carnot engine)

Statement No reasoning given; student merely stated an an-
swer

79



related changes in entropy to heat only (∆S ∼ Q), and one in which students re-

late changes in entropy to changes in temperature (∆S ∼ ∆T ). These reasoning

strategies are similar to those seen by Bucy, in which students reason about changes

in entropy by discussing either changes in temperature or heat transfer.[34] These

comparisons may or may not be valid methods for determining entropy change in a

particular situation. The reasoning strategies that are considered correct for each

sub-question are: a) Reversible, b) State Function, c) Violate the 2nd Law, and d)

State Function. While it is true that the Carnot cycle is reversible and that entropy

is a state function, only the former of these explains why the change in entropy of

the universe is zero (part a), while the latter explains why the change in entropy of

the working substance is zero (part b).

Table 5.4 shows the numbers of students at each institution who used each

of these lines of reasoning and combinations of reasoning strategies on each sub-

question. Many categories, however, are only occupied by a handful of students,

as indicated by Table 5.4. Moreover, the distribution of the reasoning used differs

between UMaine and RPI on some sub-questions. Using a Fisher’s exact test to

compare these distributions I found that students at both UMaine and RPI used

similar reasoning on part (a) as well as on part (c). On part (a) this reasoning is

most often the correct Reversible reasoning, but on part (c) students were most likely

to simply state their answer without justifying it in any way (although mentioning

violations of the 1st and 2nd Laws come in a close second, along with Comparison

reasoning).

Results from a Fisher’s exact test also show that students’ responses to parts

(b) and (d) were statistically different at UMaine and RPI (p = 0.004 for (b), and

p = 0.02 for (d)). Examining Table 5.4 one may see that on part (b) students at

UMaine most commonly used either the State Function (possibly combined with

Reversible) or the ∆S = Q
T
lines of reasoning, while students at RPI are most likely
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Table 5.3. EEQ Pretest Reasoning: Student Examples. Sample responses that were
categorized as each of the reasoning strategies.

Label Example

Reversible The entropy. . . will stay the same because the pro-
cess is reversible.

Irreversible As the Carnot cycle is a real process, the entropy
of the universe will increase.

Rev. + Irr. I need to know if the processes are reversible. If
anything is irreversible then ∆Suni > 0.

State Function
Remain the same because S is a state variable
and after one cycle the working substance is not
changed.

Rev. + SF Entropy will remain the same because it is a com-
plete cycle of a reversible process.

Violate the 1st Law You get more work out than input.
Violate the 2nd Law This is contradictory to the 2nd Law.

Direction
The answer is not determinable because depend-
ing on the direction the. . . cycle takes the ∆ en-
tropy could be positive or negative.

∆S = Q
T dS = d-Q

T

∆S ∼ Q Decrease, giving off heat.

∆S ∼ ∆T
The working substance is probably going from TH

to TL so entropy will be decreasing.

Comparison
Because a less efficient engine increases entropy,
it follows that a more efficient engine decreases
entropy.

Statement Decrease.

to use the ∆S = Q
T
, ∆S ∼ Q, or Direction reasoning. The Direction reasoning is

particularly interesting as it is quite common at RPI (for both parts (b) and (d)),

but it is not observed at all at UMaine. In fact the same seven students at RPI

used this reasoning on both parts (b) and (d) to say that there was not enough

information to determine the change in entropy of the working substance for either

engine, indicating consistency across sub-questions, if not correctness. This use of
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Table 5.4. Response Frequencies: EEQ Pretest Reasoning. The correct reasoning is
shown in bold for each sub-question; the most common reasoning for each population
is italicized.

Carnot Better
Reasoning a) Uni b) WS c) Uni d) WS

UM RPI UM RPI UM RPI UM RPI
Reversible 10 12 3 6 1 1 0 1
Irreversible 2 0 0 0 0 0 0 0
Rev. + Irr. 1 0 0 0 0 0 0 0
State Function 1 0 6 2 0 0 7 3
Rev. + SF 1 0 4 0 1 0 0 0
Violate the 1st Law 0 0 0 0 5 1 2 2
Violate the 2nd Law 0 1 0 0 5 7 0 2
Direction 0 0 0 7 0 0 0 8
∆S = Q

T
3 3 4 6 1 0 2 1

∆S ∼ Q 1 3 1 7 1 0 1 3
∆S ∼ ∆T 0 1 1 1 0 1 1 0
Comparison 0 0 0 0 1 8 1 3
Statement 1 5 3 3 6 10 6 3

Direction reasoning is largely responsible for the comparatively high percentage of

students at RPI claiming that there is not enough information to answer part (b)

of the EEQ (mentioned above).

5.3 Tutorial Development and Implementation

To help students understand the connection between limits on thermodynamic

efficiency, entropy, and the 2nd Law, I developed a tutorial to help address these

issues. The primary goal of the Heat Engines tutorial is to help students develop

an understanding of why the expression in equation 5.6 is the upper limit for ther-

modynamic efficiency and the conditions under which this efficiency is achieved. As
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mentioned in Chapter 4, the students are expected to have a sufficient (but not

necessarily complete) understanding of several elements of thermodynamics before

tutorial instruction, including:

• the 1st Law: ∆U = Q−W , and definitions of U , Q, and W ,

• the entropy inequality statement of the 2nd Law (Eq. 5.2),

• the arbitrary nature of the definitions of “system” and “surroundings,”

• definitions for calculating changes in entropy (Eq. 5.3),

• the state function property of energy and entropy,

• the fact that reversible heat transfer can only occur between two systems at

the same temperature, and

• the definition of the “universe” being limited to a thermodynamic system and

its surroundings of interest.

Students must apply these ideas in the context of heat engines to develop a better

understanding of the Carnot cycle and Carnot’s efficiency. To ensure that stu-

dents have the appropriate prerequisite understanding, the 2-Blocks tutorial, the

2-Processes tutorial, and/or other activities described in Chapter 4 are used earlier

in the course.

5.3.1 Content & Design

While first thinking of writing a tutorial on heat engines, I spent more time than

I care to admit discussing exactly why the Carnot cycle is the most efficient heat

engine with one of my collaborators. A simple statement of reversibility proved

wholly unsatisfying. After all, any function on a P -V diagram that is integrated
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to find the work done and heat transfer during a specific process is necessarily re-

versible. Why must the process be an alternating series of isotherms and adiabats?

The answer lies in Carnot’s theorem itself. One of the key aspects of Carnot’s theo-

rem is that it applies to heat engines operating between only two specific reservoirs.

Limiting the heat engine to having just two reservoirs makes all the difference, since

reversible heat transfer only occurs between two objects/substances at the same

temperature. An isochoric (constant volume) cooling process, for example, can be

modeled as being reversible by imagining a series of reservoirs whose temperatures

are infinitesimally close together. The process of the contents of a piston undergoing

an isochoric cooling while in contact with a thermal reservoir of significantly differ-

ent temperature, however, is inherently irreversible and will cause the entropy of the

universe to increase. Restricting the thermal reservoirs to being two (significantly)

different temperatures means that the only way to have reversible heat transfer to

or from the working substance is by isothermal processes. This also means that

the only way to reversibly change the temperature of the working substance is by

adiabatic compression or expansion.

The tutorial begins by defining the quantities QH, QL, andW as stated in section

5.1. The students are asked to consider the changes in various properties of the

working substance (all of which are state functions) as a result of one complete cycle

of the heat engine. (In later implementations this task was included in a pre-tutorial

homework assignment along with a discussion of the definition of thermodynamic

efficiency. A discussion of the rationale for and content of this homework assignment

can be found in section 5.4.4.)

The first part of the Heat Engines tutorial asks students to consider two extreme

cases of heat engines. Cycle 1 is defined as doing no work (W = 0); Cycle 2 is defined

as having no exhaust heat (QL = 0). The students use the 1st Law and the given
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information to calculate the thermodynamic efficiency (Eq. 5.5) of the two engines

(η = 0 for Cycle 1, η = 1 for Cycle 2).

Students next use the expression for the change in entropy of a thermal reservoir

given in Eq. 2.11 and the state function property of entropy to calculate ∆Suni

for Cycle 1 and Cycle 2 (∆Suni = Q( 1
TL
− 1

TH
), and − |QH|

TH
, respectively, where

|QH| = |QL| = Q for Cycle 1). Given these values for ∆Suni, students then invoke

the entropy inequality form of the 2nd Law (Eq. 5.2) to determine whether or not

each heat engine is physically possible. Since the combined entropy of the two

reservoirs — and thus the universe — decreases for Cycle 2, students realize that it

is impossible, effectively deriving the Kelvin-Planck statement of the 2nd Law (see

section 2.1).

Part III of the tutorial asks the students to combine the entropy inequality with

Eqs. 2.11 and 5.5 to derive the constraint on thermodynamic efficiency due to the

2nd Law found in Eq. 5.6. In this way my tutorial differs greatly from either of

Cochran & Heron’s versions.[35] Instead of presenting various forms of the 2nd Law

and having students practice using them in the context of heat engines to show that

they give the same results, I ask students to directly derive one statement of the

2nd Law from another. I feel that this provides a stronger connection than merely

demonstrating that two principles yield the same results in a particular context.

Part IV has students examine the condition under which the equality in Eq. 5.6

holds, determining that a reversible cycle is needed that can only be created using

an alternating sequence of isothermal and adiabatic processes. By completing the

Heat Engines tutorial, students derive the maximum possible efficiency (equality in

Eq. 5.6) as well as the processes necessary to create a heat engine to achieve this

efficiency. It should be noted that the terms “Carnot engine,” “Carnot cycle,” and

“Carnot efficiency” are not used in the tutorial worksheet until after the students

have derived the maximum efficiency and the corresponding cycle. Some readers
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may also be interested in the fact that no pictorial or graphical representations of

heat engines are used during the tutorial.

For homework, the students consider the P -V diagram for a Carnot cycle in

which the working substance is an ideal gas and calculate the efficiency using ap-

propriate expressions for W and QH. This problem is meant as an extension to the

tutorial as it provides computational confirmation of the expression for efficiency

in Eq. 5.6. The FRQ is also given as homework after completing the Heat Engines

tutorial. In the second implementation, an additional homework problem was added

that asks students to construct the T -S diagram for the Carnot cycle correspond-

ing to the P -V diagram in the first problem. They are then asked to compare the

physical interpretations of integrating
∮
PdV vs.

∮
TdS over the complete cycle —

the former being the total work done, and the latter being the total heat transferred

— and to discuss the generality of each of the diagrams (i.e., whether they are still

useful if the working substance is some material other than an ideal gas).

5.3.2 Implementation

The Heat Engines tutorial was administered after lecture-based instruction on

heat engines in Thermo in three consecutive years. The class in Year 1 consisted

of ten students (primarily junior and senior physics majors and minors), six of

whom completed the Heat Engines tutorial. The EEQ pretest was administered at

the beginning of the tutorial session, and the homework consisted of the FRQ and

direct calculations of Carnot’s efficiency from the P -V diagram of a Carnot engine

using an ideal gas. Students were given two 50-minute class periods to complete

the tutorial. The EEQ was given again several weeks after tutorial instruction as

part of an ungraded quiz. Furthermore, the engine feasibility question (described

below) was included on a course examination. Table 5.5 summarizes the timeline of

implementation as well as changes made in each year.
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Table 5.5. Heat Engines Tutorial Implementation & Research Timeline. Entries
show the changes that occurred each year.

Before Year 1
• FRQ given as homework assignment in Thermo
and Stat Mech in four years after lecture instruc-
tion

• EEQ given in Stat Mech in one year after lecture
instruction on heat engines

Year 1
• EEQ given at the beginning of the tutorial period
(after lecture instruction)

• Tutorial: students given two 50-minute periods
• FRQ given as homework after tutorial instruction
• EEQ given as an ungraded quiz
• EFQ given on course exam

Year 2

• EEQ given class before tutorial
• Pre-tutorial HW included questions on state vari-
ables and definitions of efficiency

• Tutorial: students given one 50-minute period plus
25 additional minutes

• P -V diagram question moved to homework, added
T -S diagram question

• Additional engine added to EFQ
• EEQ quiz given in following spring during Stat
Mech

Year 3
• Pretest, pre-tutorial HW, and post-tutorial HW
same as Year 2

• Tutorial: students given one 50-minute period
• EFQ included refrigerator question
• EEQ ungraded quiz given at the end of Thermo

In Year 2, ten students completed the Heat Engines tutorial. The EEQ pretest

was administered one class period before the tutorial, and the students were given

the pre-tutorial homework assignment to complete before the next class. Students

were given one 50-minute class period and an additional 25 minutes in the next class

to complete the tutorial. The T -S diagram homework question described above was

added in Year 2, and the EEQ was given as an ungraded quiz in the first part of
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Consider the following heat engine. The high
temperature and low temperature reservoirs are at
600 K and 400 K, respectively. The heat transfer from
the high temperature reservoir to the working
substance during one complete cycle is 600 J. The heat
transfer from the working substance to the low
temperature reservoir during one complete cycle is
350 J. The work done by the working substance during
one complete cycle is 250 J. A diagram of this heat
engine is shown at the right.

Determine whether or not the engine could possibly
function. Explain your reasoning.

H

H

I

600 K

400 K

600 J

350 J

250 J

Figure 5.6. Engine Feasibility Question (EFQ). Adapted from Cochran & Heron;[35]
used on course examinations after tutorial instruction.

Stat Mech the following spring.7 The only change in Year 3 was that students were

only given one 50-minute class period to complete the tutorial, and the EEQ was

once again given at the end of Thermo as an ungraded quiz. Two groups of students

(2–3 students per group) were videotaped each year as they worked through the

Heat Engines tutorial.

5.3.3 Post-Tutorial Assessment Tools

Both the finite reservoirs question (FRQ) and the engine entropy question (EEQ)

were administered after tutorial instruction to assess the effectiveness of the tutorial.

As mentioned above, the FRQ was given as part of the tutorial homework, and the

EEQ was given as an ungraded in-class quiz. In the interest of comparing my results

with those of other researchers, the engine feasibility question (EFQ, Figure 5.6)

was included as part of a course examination after each implementation of the Heat

Engines tutorial as an additional measure of tutorial effectiveness. The EFQ, which

asks students to determine whether a given heat engine is physically possible based

7Most students who had participated in the Heat Engines tutorial in Thermo were also in Stat
Mech.
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on the heat transfers and work done, was modeled after those developed by Cochran

& Heron.[35] Using similar questions, Cochran & Heron found that only 30%–35%

of introductory students were able to correctly determine whether or not a proposed

heat engine would function after lecture instruction on heat engines and tutorial

instruction on other aspects of thermodynamics.8 They report that 25% used only

the 1st Law to check heat engine feasibility, and 15% stated that an engine would

function as long as the efficiency did not exceed 100%.[35] Other students seemed

to use arbitrary thresholds for efficiency that were not explicitly connected with the

Carnot efficiency. Cochran & Heron showed evidence of marked improvement in

terms of student success on these types of questions after tutorial instruction on

heat engines that focused on the equivalence of the various forms of the 2nd Law

(Clausius Statement, Kelvin-Planck Statement, entropy inequality, etc.).

The correct answer to the EFQ in Figure 5.6 is that the heat engine will not

function as described: the efficiency of the engine is greater than the Carnot ef-

ficiency for these reservoirs, and the entropy of the universe would decrease as a

result of this heat engine. In Year 2, a second part was added to the EFQ that

proposed a heat engine that is possible (η < ηC , ∆Suni > 0), and asked students

to determine its feasibility. In Year 3 an additional part was added to the EFQ

that asked students if either of their answers to parts (a) or (b) would change if

all of the energy transfers were reversed, i.e., if these devices were instead run as

refrigerators with the same magnitudes of QH, QL, and W . The correct answer is

that the device in part (a) that would not function as a heat engine would function

as a refrigerator, and the device in part (b) that would function as a heat engine

would not function as a refrigerator. In fact, the only device that will operate as

8I feel that comparisons between introductory students and our upper-division students are
justified due to the similarities reported between various student populations in terms of their
difficulties reasoning about questions about topics relating to entropy and the 2nd Law.[18, 40]
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both a heat engine and a refrigerator (under a reversal of all energy transfers) is a

Carnot engine (that’s why it’s “reversible”). The motivation for adding questions in

Years 2 and 3 comes from the particular reasoning that students used in Year 1 to

determine that the original engine would not function. These lines of reasoning and

how they influenced the addition of questions is presented in section 5.4.3.

5.4 Results

We have many sources of data with which to assess the effectiveness of the Heat

Engines tutorial at improving students’ understanding of heat engines and (in par-

ticular) their connection to changes in entropy. These include the finite reservoirs

question (FRQ): included on homework assignments after tutorial instruction; the

engine entropy question (EEQ): given as an ungraded survey both before and after

tutorial instruction; and the engine feasibility question (EFQ): administered as part

of a course examination after each implementation of the Heat Engines tutorial. I

begin by presenting the results that most closely address the stated instructional

goals of the Heat Engines tutorial: students’ understanding of the connections be-

tween heat engines, entropy, and the 2nd Law, as indicated by their responses to

the FRQ homework question and the EEQ ungraded quiz. I then present the re-

sults from the engine feasibility exam question. I conclude this section by discussing

in-class observations of tutorial sessions and their implications for tutorial revisions

and success at generalizing and promoting productive student discussions about the

physics. Data indicate that students gain a deeper understanding of the connection

between entropy and heat engines after participating in the Heat Engines tutorial

than after lecture instruction alone.

One of the strongest results from my study is that the number of students who

answer the EEQ correctly does not significantly change after tutorial instruction;
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however, the reasoning that students who participated in the tutorial use for each

response is more selective and sophisticated than that given by students who had

only had lecture instruction. This result is discussed more fully in section 5.4.2.

5.4.1 Finite Reservoirs Revisited: Tutorial Homework

After tutorial instruction, seven students completed the FRQ as part of the

accompanying tutorial homework assignment. All seven students recognized that

the total internal energy would not change (∆U = 0) for the “Irv” cycle (Cycle 1 from

the Heat Engines tutorial) and that the total entropy would not change (∆S = 0)

for the “Ralph” cycle (Carnot cycle); they also used this information to determine

the final temperatures of all four reservoirs. Six of the students correctly calculated

the final temperatures, and the remaining student made mathematical errors using

dS to set up the integral in Eq. 5.8. It should be noted that all seven students

correctly predicted that the Irv reservoirs would have a higher final temperature,

citing the fact that all internal energy would be conserved. This success rate is much

higher than the approximately 50% of students who correctly answered all parts of

the FRQ after lecture instruction alone.

5.4.2 Engine Entropy Quiz Results

The response frequencies for the EEQ post-tutorial ungraded quiz are shown in

Figure 5.7 (N = 16; once again the green bars indicate the students who gave the

correct answer and used correct reasoning). Comparing to Figure 5.5, it seems clear

that a greater fraction of students answer the various parts of the EEQ correctly

with correct reasoning after tutorial instruction than after lecture instruction alone.

A Fisher’s exact test between the combined pre-tutorial data from UMaine and RPI

and the post-tutorial data from UMaine, however, gives mixed results. As seen in Ta-

ble 5.6, the only significant difference in the distribution of responses occurs in part
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(d) when students are asked about the change in entropy of the working substance

for the better-than-Carnot engine.9 Another Fisher’s exact test was performed by

combining all of the incorrect responses into a single category; the results of this test

indicate that students give the correct answer using correct reasoning significantly

more often on parts (c) and (d), which ask about the better-than-Carnot engine

(44% correct with correct reasoning after tutorial vs. 17% and 14%, respectively,

after lecture alone). The decision to group the data in this manner for statistical

analyses was motivated by the visual differences between Figures 5.7 and 5.5 and

that fact that the differences between the populations were not statistically differ-

ent. The “Correct” rows in Table 5.6 were created in an effort to say more about the

differences between pre- and post-tutorial results than that the post-tutorial results

look better.

9Statistical tests were not performed between the combined pre-tutorial data and the post-
tutorial data for part (b) of the EEQ because the pre-tutorial UMaine and RPI response distribu-
tions were not similar.
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Figure 5.7. Response Frequencies: EEQ Post-test, UMaine. Data is the combination
of those collected in Years 1, 2, and 3. (N = 16)
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Table 5.6. Fisher’s Exact Test: EEQ Post-test. Conducted using the full response
pattern with the combined “pre-tutorial” data set from both RPI and UMaine as well
as only using the data from UMaine, α = 0.05. Significant differences are bolded.
Tests were also conducted with all incorrect answers grouped together for both data
sets. Tests were not conducted with the entire data set for part (b) (Carnot: WS)
since the pre-tutorial populations are not statistically similar.

Carnot Better
Test Uni WS Uni WS
Response 0.21 — 0.08 0.03
Correct 0.56 — 0.04 0.02
Response (UM) 0.29 0.20 0.08 0.34
Correct (UM) 0.74 0.06 0.19 0.19
Response (Matched) 0.23 0.008 0.11 0.43
Correct (Matched) 1 0.009 0.07 0.37

Similar tests were conducted between the pre-tutorial data at UMaine alone and

the post-tutorial data. These results (also in Table 5.6) do not show any statisti-

cally significant differences (although p = 0.06 and p = 0.08 may be considered as

approaching significance), but going from 31% to 68% correct with correct reason-

ing on part (b) is certainly noteworthy. I also conducted similar tests using only

the matched data from students who participated in both the EEQ pretest and un-

graded quiz at UMaine (N = 12, results in Table 5.6). These results are similarly

discouraging in that only the post-tutorial data from part (b) is statistically different

than the pre-tutorial data.

Looking at the reasoning that students used to answer the EEQ, one again finds

mixed results. Figure 5.7 and Table 5.7 both seem to indicate that more students are

using correct reasoning after instruction than before. A Fisher’s exact test, however,

does not show statistically significant differences between the reasoning used before

and after the tutorial. Looking only at the students who participated in the Heat
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Table 5.7. Response Frequencies: EEQ Post-test Reasoning. The correct reasoning
is shown in bold for each sub-question; the most common reasoning is italicized.

Carnot Better
Reasoning

a) Uni b) WS c) Uni d) WS
Reversible 6 1 0 0
Irreversible 0 0 0 0
Rev. & Irr. 1 0 1 0
State Function 1 9 0 7
Rev. & SF 2 2 0 0
Violate the 1st Law 0 0 2 1
Violate the 2nd Law 0 0 3 0
Direction 0 0 0 0
∆S = Q

T
0 0 0 0

∆S ∼ Q 0 1 1 1
∆S ∼ ∆T 0 0 0 0
Comparison 0 0 3 1
Statement 1 1 5 3

Engines tutorial in class and for whom there exist matched pre- and post-tutorial

data (N = 12), there are still no statistically significant differences (p > 0.05, data

shown in Table 5.8).

The interesting result is not, however, the difference between the reasoning used

before and after instruction on a single sub-question; it is in fact the differentiation

in the types of reasoning used by these students on each part of the EEQ. To fully

examine this result, the remainder of this section considers only those students who

participated in both the EEQ pretest before tutorial instruction and the ungraded

quiz after tutorial instruction (N = 12). Consider an example of this differentiation

of reasoning strategies: before tutorial instruction students were just as likely to

use Reversible or ∆S = Q
T

reasoning on part (a), and no clear dominant reasoning

existed on part (b); after instruction, however, students were more likely to use
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Table 5.8. Response Frequencies: EEQ Pre/Post Reasoning (Matched: N = 12).
Data are that from students who participated in both the pretest and the ungraded
quiz. The correct reasoning is shown in bold for each sub-question; the most common
reasoning for each population is italicized.

Carnot Better
Reasoning Uni WS Uni WS

Pre Post Pre Post Pre Post Pre Post
Reversible 3 4 1 0 1 0 0 0
Irreversible 0 0 0 0 0 0 0 0
Rev. & Irr. 1 1 0 0 0 1 0 0
State Function 1 1 2 7 0 0 2 5
Rev. & SF 1 2 2 2 1 0 0 0
Violate the 1st Law 0 0 0 0 2 1 1 1
Violate the 2nd Law 0 0 0 0 1 3 0 0
Direction 0 0 0 0 0 0 0 0
∆S = Q

T
3 0 2 0 1 0 2 0

∆S ∼ Q 0 0 1 0 1 0 0
∆S ∼ ∆T 0 0 1 0 0 0 1 0
Comparison 0 0 0 0 1 2 1 1
Statement 0 0 2 0 3 3 4 1

Reversible on part (a) and State Function on part (b), the correct reasoning for

both. A Fisher’s exact test showed that the distribution of reasoning strategies was

statistically similar on parts (a) and (b) before tutorial instruction (p = 0.56) but

statistically different after tutorial instruction (p = 0.01).

A similar trend existed between parts (a) and (c) (p = 0.17 before tutorial, and

0.003 after tutorial), where after tutorial instruction students were more likely to

justify their responses by using Reversible on part (a) and Violate the 2nd Law on

part (c).10 Similarly, the distributions of reasoning strategies given were statistically

10Students still had a tendency to merely state their answers to part (c) without justification
after tutorial instruction.
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different between parts (c) and (d) after tutorial instruction (p = 0.84 before tutorial,

and p = 0.03 after), with most students using State Function reasoning on part

(d). The distributions of reasoning strategies for parts (b) and (d), however, were

statistically similar both before (p = 0.84) and after (p = 0.33) tutorial instruction;

but this result is not undesirable. In fact both parts (b) and (d) should be answered

using State Function reasoning, the most common reasoning used after tutorial

instruction.

These data indicate that after lecture instruction alone these students were not

differentiating between the universe and the working substance or between a Carnot

engine and a better-than-Carnot engine in terms of the reasoning they used to answer

questions about changes in entropy. After tutorial instruction, however, they used

different reasoning to answer questions about the Carnot cycle (universe vs. working

substance), the universe (Carnot vs. better-than-Carnot), and a better-than-Carnot

engine (universe vs. working substance). The only comparison that didn’t show

significant difference after tutorial instruction was looking at the reasoning used on

entropy changes of the working substance (Carnot vs. better-than-Carnot). This is

good, however, since students should answer these questions in the same way. In

fact, after tutorial instruction, the most common reasoning on working substance

questions was to cite the state function property of entropy. Additionally, a Fisher’s

exact test was performed by combining the distributions from parts (b) and (d) from

the pre-tutorial data and comparing it to the combined distribution from the post-

tutorial data. This test yielded a p-value of 0.02, indicating that the reasoning used

after tutorial instruction is significantly different than after lectures alone. Before

tutorial instruction, students were more likely to talk about the reversibility of the

Carnot cycle or to give no explanation, while after tutorial instruction, they were

more likely to justify their responses using the state function property of entropy.

96



5.4.3 Engine Feasibility Exam Results

As mentioned above, the engine feasibility question (EFQ) was included on

course exams after tutorial instruction in an effort to facilitate comparisons be-

tween my results and those reported by Cochran & Heron, who found that many

students do not invoke the 2nd Law (either by calculating changes in entropy or by

comparing an engine’s efficiency to the Carnot efficiency) when answering questions

about heat engines and related devices.[35]

5.4.3.1 Impossible Engine

Looking first at students’ successful completion of the task, 12 out of 20 students

who participated in the Heat Engines tutorial (all three years) correctly determined

that the heat engine in Figure 5.6 would not function using correct reasoning, and

three other students used correct reasoning but came to incorrect conclusions. Ex-

amining student explanations on the EFQ yielded three main lines of reasoning used

for determining if heat engines are feasible:

• Compare Efficiencies – Students calculate the efficiency of the engine and

compare it to the efficiency of a Carnot cycle operating between the same two

reservoirs.

• Calculate ∆Suni – Students calculate the change in entropy for each of the

reservoirs to determine if the inequality, ∆Suni ≥ 0, is satisfied.

• Compare Ratios – Students calculate the ratios of heat transfers, |QL |
|QH| , and

temperatures, TL
TH

, and make a comparison.

In fact, all three of these reasoning strategies are appropriate ways to answer the

question. One student correctly determined the efficiency of the engine in Figure

5.6 to be, “η = W
QH

= 250 J
600 J

= 5
12
,” and the efficiency for a Carnot engine operating
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between the same reservoirs to be, “ηC = 1− TL
TH

= 1− 2
3

= 4
12
.” He then used Compare

Efficiencies to determine that the engine is “in violation of Carnot’s theorem” and

“cannot function as described.” Another student correctly determined that the

entropy change of the TH-reservoir is, ∆SH = −|QH|
TH

= −1 J/K, and that the entropy

change of the TL-reservoir is, ∆SL = −|QL|
TL

= 0.875 J/K. He then used Calculate

∆Suni to make the conclusion that, since ∆Suni = −0.125 < 0, the “2nd Law [is]

violated” and that the engine “cannot operate.” In the case of Compare Ratios, the

inequality, |QL |
|QH| ≥

TL
TH

, must be met for a heat engine to function. For the engine in

Figure 5.6, |QL |
|QH| = 350 J

600 J
≈ 0.58, and TL

TH
= 400 K

600 K
≈ 0.67; therefore, |QL |

|QH| <
TL
TH

, and the

engine could not function. Of tutorial participants in all three years (N = 20), 11

students used Compare Efficiencies (seven correctly), nine students used Calculate

∆Suni (six correctly), and only one student used Compare Ratios (incorrectly). The

frequency of each line of reasoning is displayed in Figure 5.8 for all three parts of

the EFQ.11

As suggested above, each of these strategies, while appropriate, can also be used

incorrectly. Three students (15%) who used Compare Efficiencies stated that each

engine would function if its efficiency was less than 100%, and one other student

used an incorrect definition for efficiency (W+QL
QH

; the ratio of all energy out to all

energy in). Two students (10%) attempted to calculate the change in entropy of the

universe, but used incorrect signs for the heat transfer to each of the reservoirs; one

of these students also did not recognize that the change in entropy of the working

substance would be zero (he also answered parts (b) and (d) of the EEQ incorrectly

on the ungraded quiz). Despite various computational errors and difficulties with

the definition of efficiency (one student, Arthur mentioned below, used η = W+QL
QH

),

17 out of 20 students (85%) recognized that the 2nd Law must be invoked in some

11One student gave no explanation as he could not answer the question, and two students are
counted twice because they each used both Compare Efficiencies and Calculate ∆Suni.
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Figure 5.8. EFQ Reasoning Frequencies. Distribution of reasoning used by tutorial
participants on each part of the EFQ. The green (cross-hatched) bars show the
number of students who used each reasoning correctly to get the correct answer.

manner (either citing Carnot’s efficiency or calculating ∆Suni). No one used only the

1st Law and energy considerations to answer the EFQ. These results are comparable

to those from Cochran & Heron’s study after students participated in one of their

tutorials and superior to their results based on lecture instruction alone.

All three students who used Compare Ratios in Year 1 (only one of whom had

completed the tutorial) did so incorrectly by claiming that the heat engine would

function only if the two ratios were equal (which is the case only for a Carnot

engine, though none of them explicitly mentioned Carnot). The student who had

participated in the tutorial wrote, “ |QL|
|QH| = TL

TH
⇒ 350

600
= 400

600
, not OK,” implying that

the engine would only function if this equality was satisfied. This reasoning yielded

the correct answer (that the engine would not function) but for incorrect (or at least

incomplete) reasons. This phenomenon of getting the correct answer for incorrect

reasons prompted the addition of a second engine feasibility exam question in Year

2.
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5.4.3.2 Possible Engine

A second question was added in Year 2 in which students were meant to deter-

mine that a proposed heat engine would function as described. The values of TH,

TL, and QH were the same as in Figure 5.6, but new values were assigned for W

and QL: W = 175 J, QL = 425 J. For this new engine: η ≈ 29% < ηC ≈ 33%,

∆Suni = 0.1875 J/K > 0, and |QL |
|QH| ≈ 0.79 > TL

TH
≈ 0.67; therefore, each line of rea-

soning (if properly applied) yields a result indicating that the engine could function

. The goals of this addition were to determine if students who used Compare Ratios

for the first engine would do so appropriately for the engine that would function and

to determine if any students would use different reasoning for each engine. Unfor-

tunately no students used Compare Ratios while answering either part of the EFQ

in Years 2 and 3, so the first of these questions is yet unanswered. Data indicate,

however, that nearly all students (13 out of 14) in Years 2 and 3 used the same line

of reasoning on both parts of the EFQ. The other student used Calculate ∆Suni for

both parts but also used Compare Efficiencies on part (b) as a check of his result

that the engine would operate as described. Nine out of 14 students (in Years 2 and

3) answered this second question correctly using correct reasoning (all of whom had

done so on the first question as well), and two students still used correct reasoning

to come to incorrect conclusions.

5.4.3.3 Refrigerators

A third part of the EFQ was added in Year 3 to investigate students’ under-

standing of refrigerators as well as heat engines. Students were asked to determine

whether or not each of the proposed heat engines could operate as a refrigerator, i.e.

under a reversal of all energy transfers. If students used Calculate ∆Suni correctly

to determine if each of the heat engines was feasible, then they should have little

trouble reversing the energy transfers to see that, ∆Suni,HE = −∆Suni,Ref and real-
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ize that any device that functions as a heat engine (other than the Carnot engine)

cannot function as a refrigerator, and vice versa. No students in Year 3, however,

successfully used Calculate ∆Suni on either of the first two parts of the EFQ; all

used Compare Efficiencies (with varying success). In fact, only one student (out

of four) correctly determined that the impossible heat engine could operate as a

refrigerator by reversing all energy transfers and that the feasible heat engine could

not operate as a refrigerator.

Two students (who, on the first two parts, determined that both heat engines

were feasible since η < 1) failed to correctly determine that only the first device

would operate as a refrigerator: one said that both would work, and the other

calculated the coefficients of performance for each without commenting on feasibility.

The other two students (who correctly determined that the first heat engine would

not function and that the second would) both gave correct responses to this third

question that were not as complete as those for which I had hoped. One student

correctly calculated the coefficient of performance for each proposed refrigerator

and compared it to that for a Carnot refrigerator between the same reservoirs; he

correctly determined that the first device would function as a refrigerator and that

the second would not. The other student stated that, “Only a reversible cycle can

be reversed and run as a refrigerator with a simple reversal of the cycle.”12 Between

the two of them, these students have given a wonderfully complete answer to this

question. The first gave a completely correct answer, but did not comment on the

generality of his findings (which was not required but would have been appreciated).

The second provided the general restriction on devices that could be used as both a

refrigerator and a heat engine (that they must be the reversible Carnot cycle), but

failed to realize that, since one of the proposed devices could not have operated as

12His response to parts (a) and (b) of the EFQ made it clear that he equates reversibility with
the Carnot cycle by indicating that “if cycle were rev. then η = TH−TL

TH
,” the Carnot efficiency.
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a heat engine, it could have operated as a refrigerator. It is possible that the first

student also had this understanding of reversibility, but evidence only exists for his

correct (yet not generalized) response.

5.4.4 Classroom Observations and Tutorial Revisions

In an effort to gain more information on student difficulties with heat engines,

and the success of the tutorial at addressing these difficulties, I videotaped all tu-

torial sessions. The goals for videotaping the tutorial sessions were: a) to identify

previously undocumented difficulties, b) to determine student success negotiating

tutorial prompts, and c) to determine which aspects of the tutorial should be modi-

fied to better address students’ difficulties with heat engines. In particular I wanted

to document whether or not students had productive conversations while engaging

with the tutorial.13 Two groups of students were videotaped each year, for a total

of 17 students.

This section is organized by difficulties that are defined by observations of the

data. Each subsection discusses a particular difficulty — supported by evidence from

student statements or discussions — and efforts that have been made to address it.

One example of how these difficulties were addressed is the creation of a homework

assignment to provide students with the opportunity to justify the definition of

thermodynamic efficiency described in section 5.4.4.1.

The quotes presented in this section were chosen primarily for their uniqueness

and the evidence they provide for previously undocumented difficulties. Many of

these difficulties were only documented with one student, but with such a small

sample size, data do not exist to comment on the prevalence of these difficulties. If,

however, more than one student expressed the same (or a similar) difficulty, I present

13See section 4.2.2 for a description of what counts as either a “productive” or an “efficient”
interaction.
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all relevant quotes to allow the reader to evaluate the similarities and differences

between the students in terms of the difficulties they express.

5.4.4.1 Thermodynamic Efficiency

During the first implementation of the Heat Engines tutorial, several students

engaged in conversations that indicate difficulties with topics within the tutorial.

One of these difficulties was with the definition of thermodynamic efficiency. The

second day of tutorial implementation began with the students attempting to de-

termine an expression for thermodynamic efficiency using only the quantities QH

and QL (see the left-hand-side of Eq. 5.6; part III.A.1 of the tutorial). One student

(Arthur)14 proposed the difference of the two heat quantities as a plausible expres-

sion, but changed his mind when another student pointed out that this expression

could easily be greater than 1 (100%). After several minutes of conversation in

which the students did not come to a conclusion, the instructor intervened to ask

them about their decision on part III.A.1. Arthur gave a response that seems to

indicate a confusion between heat, internal energy, and temperature:15

Arthur – The most energy you could get into the working substance would

be whatever the difference is between the two heat reservoirs.

Like, . . . if there’s a high temperature and a low temperature the

most you could warm up the working substance would be; the

biggest change you could get in the working substance would be

the difference between the high one and the low one.

I – The biggest change in temperature?

Arthur – Yeah, in temperature or in internal energy.

14All names are pseudonyms.
15For all transcripts, “I” stands for the Instructor.

103



I – Well, which?

Arthur – In internal energy.

It seems clear from this excerpt that Arthur is not distinguishing quantities of tem-

perature from internal energy. It is also noteworthy that Arthur would give this

response, which never mentions heat transfer, after indicating that thermodynamic

efficiency would be determined by a difference of heats (QH −QL).

The instructor proceeded to ask the students what the definition of thermody-

namic efficiency is, expecting the expression from Eq. 5.5. Another student (Gary)

spoke up (correctly) saying, “What you get divided by what you pay,” and the third

student in the group (Craig) added that this would be the “work over the heat” and

clarified that the heat in question would be QH. At this point Arthur suggested

that efficiency is the work divided by the net heat transfer (η = W
|QH|−|QL|), and

Gary agreed. Craig was also easily swayed to this position. The instructor then

engaged the students in a conversation about the energy transfers over an entire cy-

cle of the working substance with the goal of having the students realize that their

proposed definition of efficiency would be identically unity for all engines provided

that energy is conserved. The fourth student of the group (Jake, who arrived in

class at the end of the efficiency conversation) offered that “d-bar Q equals d-bar

W (d–Q = d–W ),” since “over a cycle dU would be zero.” Arthur then proposed the

relationship, W = QH − QL, and Gary and Craig realized that their expression for

efficiency would be 100%, but they then attribute that to having the most efficient

heat engine with QL = 0. Only after the instructor’s explanation that their expres-

sion would be unity regardless of the heat engine did Craig propose the definition,

η = |QH|−|QL|
|QH| , which was the desired response.16

16Unfortunately this discussion did not benefit all students in the long term as evidenced by
Arthur’s use of η = W+QL

QH
on the exam.
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Since the students had used the definition of thermodynamic efficiency to answer

part I of the tutorial, I expected part III.A.1 (which asks students to write an

expression for η in terms of |QH| and |QL| alone) to be relatively easy and take the

students approximately one minute to complete. Instead, these students needed

25 minutes to answer the question. I do not, however, consider this wasted time.

These students obviously needed to consider other expressions for efficiency to be

able to understand why the convention of η = W
QH

exists. In light of this evidence,

I created a pre-tutorial homework assignment that asks students to think about

an alternative expression for efficiency (η = W
|QH|−|QL|) and determine why it would

not be appropriate in the context of a cyclic process. The first part of the Heat

Engines tutorial from Year 1 was also moved into this pre-tutorial homework. This

section defines the quantities of heat, work, and temperature that are considered

during the tutorial and asks the students to determine the changes in various state

functions of the working substance as a result of one complete cycle. During tutorial

implementation in Year 1, students were able to answer these questions with little

difficulty. Due to the fact that they only completed through part II (of IV) on

the first day of the tutorial, I decided that moving the first section into the pre-

tutorial homework would help prepare the students to progress through the tutorial

more quickly. Video data from Years 2 and 3 indicate that the completion of the

pre-tutorial homework assignment helped to streamline tutorial implementation and

allow the students to complete more of the tutorial successfully within one 50-minute

period.

5.4.4.2 Impossible Cycles

Another unexpected difficulty occurred on the first day of tutorial implementa-

tion in Year 1. Jake (who was working with Gary and Moe) had great difficulty

answering questions about Cycle II (in which QL = 0). This difficulty was particu-
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larly prevalent when attempting to answer part II.C, which asks about changes in

entropy due to this cycle. Moe proposed the desired response, that the change in

entropy of the working substance would be zero, and that the change in entropy

of the reservoirs (and the universe) would be − |QH|
TH

, which violates the 2nd Law.

Jake, however, did not agree that the change in entropy of the working substance

would be zero because he claimed that, in order to to convert all of the heat from a

single reservoir into work, one cannot use a cyclic process. In this Jake is absolutely

correct, which Moe acknowledged by stating (after a very heated discussion in which

Moe repeatedly tried to explain his point of view), “I’m thinking, if it’s a cycle then

it can’t change all the energy to work. You’re thinking, if it’s changing all of the heat

to work, then it can’t be a cycle. We’re thinking the same thing for different rea-

sons.” To which Jake replied, “Yeah, alright. I don’t know, whatever. Not possible.

I don’t get this.” A similar opinion is observed in Jake’s response to parts (c) and

(d) of the EEQ pretest which ask about changes in entropy for a better-than-Carnot

heat engine: “I don’t know. I thought the Carnot cycle is the most efficiency.” Af-

ter participating in the Heat Engines tutorial, however, this same student correctly

used the reversibility of the Carnot cycle to state that the entropy of the universe

would remain the same for the Carnot engine and decrease for a better-than-Carnot

engine. He also used the state function property of entropy to claim that the entropy

of the working substance does not change for either engine after one complete cycle.

In this way, participating in the Heat Engines tutorial helped this student engage

in the expert-like behavior of considering impossible scenarios.

Jake’s intuition about situations that can and cannot exist appears to be very

strong. In fact, his conviction that Cycle II in the Heat Engines tutorial could

not exist is exactly the Kelvin-Planck statement of the 2nd Law. Unfortunately this

inability to consider hypothetical and impossible situations may hinder his reasoning

abilities in situations in which his intuition is not as well developed. One of the tools
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that a physicist uses to support a proposition is to show that a counter-example

violates known laws of physics. Bing and Redish suggest that using imagined (and

impossible) situations to gain information about our physical world is a trait of

expertise, but that many advanced undergraduate students may not have developed

the capacity for this kind of reasoning.[24] Having students consider the implications

of a heat engine that violates the Kelvin-Planck statement of the 2nd Law encourages

this behavior and reasoning skill that is vital for physicists. To assist students in

this, I added the term “imagine” to the EEQ: “consider (i.e., imagine) a heat engine

that is more efficient than a Carnot engine.” My hope is that students like Jake

may be able to suspend their disbelief long enough to be able to think about why a

particular process is impossible.

5.4.4.3 Differential vs. Net Change

Further difficulties were observed during tutorial implementation in Year 2. In

particular two students (Jonah and Bill) engaged in a particularly interesting con-

versation when answering part I.A, discussing Cycle I (W = 0), the 1st Law, and

efficiency:17

Jonah – What must be true to satisfy the first law, then?. . . [Bill – uh. . . ]

well. . . uh

Bill – dQ has to be equal to dU .

Jonah – Has to be. dU . . . must. . .

Bill – so dQ has to be [Jonah – equal d-bar Q (d–Q)] zero.

Bill – and dU is zero, so . . . dQ has to be zero. . . . . . That’s the only

thing I can think of.

17All transcriptions of differential vs. total change notation (d vs. d– vs. ∆ ) is directly
from the video. For example a transcription of “d–Q” resulted from a verbal utteranced of “dee bar
queue” from a student.

107



Jonah – Yeah, I mean, cause dU in a closed cycle, if it’s not zero, then

you’re not conserving energy, so. . . [Bill – right] that’s a problem.

[Bill – yeah]

Bill – It’s not a cycle if dU is not zero.

Jonah – Yeah.

Bill – So, dQ has to be zero

Jonah – Yeah. But thennnn. . .

Bill – No. Maybe, maybe it’s QH, or TH is equal to T-low, TL.

Jonah – Yeah

Bill – Because then there’d be no Q, no, be heat, no heat transfer.

Jonah – Yeah, but isn’t, now isn’t the efficiency the work over the heat

transfer or something?

Bill – Yeah, so it’d be zero.

Jonah – Well actually it would kinda be zero over zero wouldn’t it?

. . . Undefined?

Bill – Yeah, I guess.

In this discussion Jonah and Bill have correctly related the heat transfer to the

working substance and the change in its internal energy (d–Q = dU , since d–W = 0),

but they have incorrectly determined that there would have to be no heat transfer,

requiring the reservoirs to have the same temperature. This has also lead to the

enigmatic formulation for efficiency: η = W
QH

= 0
0

=??. The main problem in their

reasoning seems to be the lack of distinction between dU and ∆U and between

d–Q and Qnet. This is indicated in Bill’s statement, “It’s not a cycle if dU is not

zero.” It is absolutely true that for a cycle ∆U =
∮

dU = 0, but if dU = 0, then

Bill and Jonah’s assertion would be correct in this case, and there would be no

heat transfer. This assertion, however, goes against the stated situation that heat
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transfer QH occurs from the TH-reservoir to the working substance, and that heat

transfer QL occurs from the working substance to the TL-reservoir. What Bill and

Jonah apparently do not realize is that since d–Q = dU , then
∮

d–Q = |QH|−|QL| = 0,

and therefore, |QH| = |QL|. After much discussion the instructor was able to get

Bill, Jonah, and Paul (the third group member who was silent during the above

exchange) to realize that the total change in internal energy was equal to zero, and

that they had to consider the net heat transfer, not just the differential, d–Q.

The use of imprecise language in terms of differentials and net quantities was

not unique to Jonah and Bill. As mentioned above, Jake (Year 1) stated that,

“over a cycle dU would be zero.” Furthermore, other students in Year 2 use similar

language. One student (Sam) stated that, “. . . dU is zero for the cycle, so d-bar Q

equals d-bar W (d–Q = d–W ), which I took it as the net heat is equal to the net work.”

Using this reasoning, Sam discussed the pre-tutorial homework question proposing

the alternate definition of efficiency mentioned above to correctly argue that η would

be unity for all engines in that case. When asked by the instructor to articulate his

reasoning again Sam clarified that “from the 1st Law, we know there’s no change in

energy for the cycle, so dU is zero, so d-bar Q equals d-bar W (d–Q = d–W ), for the

whole cycle; so the net heat is equal to the net work.” In this case Sam is incorrectly

stating that dU=0, but his meaning is clear to his groupmates (as was Jake’s): that

the total change in internal energy over a cycle is zero. The use of precise language

clearly would have benefitted Jonah and Bill, but apparently it was not necessary

for Jake or Sam.

Jake did, however, express an insufficient understanding of why Q is not written

as ∆Q since it is a form of energy transfer, and in the 1st Law Q is opposite ∆U

across an equals sign. The instructor explained that, notationally, integrating an

inexact differential yields a process-dependent quantity (e.g.,
∫

d–Q = Q), while

integrating an exact differential yields a change in a state function (e.g.,
∫

dU =
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∆U); furthermore, the reason that heat has no “∆” symbol is that heat only exists as

a process quantity, not as an equilibrium property of a thermodynamic system. This

explanation seemed to satisfy Jake, but one may wonder how many other students

are disturbed by (or even recognize) this apparent lack of symbolic symmetry and

are either unwilling or unable to express their discomfort.

Another interesting point is that Sam’s group (in Year 2) was able to successfully

negotiate part II.C of the Heat Engines tutorial, which caused Jake so much trouble,

by first considering the fact that the total change in internal energy of the working

substance over one complete cycle is zero.

I – [to Dave] So you were trying to relate the change in internal

energy to the change in entropy.

Dave – Right, which is not going to work.

I – But could you say anything. . .

Dave – [unintelligible]

Sam – Didn’t we say the change in entropy for a cycle is zero because

it’s a state...function...? On that one over there? [Points to

homework assignment]

Dave – Yeah, we did.

Sam – Yeah, so can’t we say for the substance that it goes through a

cycle so it has zero change in entropy?

Dave – Yeah, that applies for every cycle. . . Yeah.

Sam – Yeah.

Rick – For the state functions.

Sam – [to Rick] Are you buying that?

Rick – For state functions or [Sam – Yeah] for a complete cycle. . . ?
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Sam – Well entropy’s a state function so we do a full cycle on the

substance and we’re back where we started.

Dave – I suppose, but before we’ve always done one leg of a cycle, but

if we’re doing it for the whole cycle it would be zero.

Sam – Yeah, for the substance, not for. . . [Dave – Right, yeah] I like

that argument.

They go on to correctly determine the change in entropy of the reservoirs (and

the universe) to be, − |QH|
TH

, and that this violates the 2nd Law. In this excerpt

the students use their completed pre-tutorial homework to progress through the

tutorial, indicating that it is a worthwhile use of their time outside of class. The

students are also able (with instructor support) to fairly quickly apply the state

function property of entropy to determine that the change in entropy for the working

substance in Cycle II (and all other cycles) is zero. This is not, however, easy for

all students: Bonnie and Claude had great difficulty expressing this idea as they

worked through the Heat Engines tutorial in Year 3. When asked about the change

in entropy of the working substance, Claude indicated that ∆Sws = |QH|−|QL|
T

, but

did not have a quick response as to which temperature “T ” represented. After some

intervention by the instructor, they agreed that “T ” was the temperature of the

working substance and that it changed throughout the process (and therefore that

their expression couldn’t be correct). The instructor proceeded to ask them what

it meant for the working substance to complete a cycle. Bonnie volunteered that

it would return to its original state, and Claude determined that its total change

in entropy would have to be zero, because the heat flow would be zero (“d-bar Q

(d–Q) would be zero”). Bonnie and Claude only acknowledged the importance of the

state function property of entropy and its implications for the working substance

after direct instructor intervention. So, even though they eventually ended up at
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the same point as Sam, Dave, and Rick, their path was much more arduous and

obviously frustrating, indicated by low voices, sighs, and holding their heads in their

hands. Based on Bonnie and Claude’s video data and generally poor performance on

parts (b) and (d) of the EEQ pretest (which ask about the change in entropy of the

working substance for each engine), it is clear that students struggle with the state

function property of entropy and how it relates to cyclic processes even after the

direct active-engagement instruction on state functions described in section 4.1.1.

5.4.4.4 An Unproductive Aside

The other three students in Year 3 worked very productively in a group together.

They managed to get through parts I and II of the Heat Engines tutorial in about

25 minutes (twice as fast as anyone in Year 1, and on par with Sam’s group in Year

2). When they got to the mock student discussion at the end of part II, however,

their progress came nearly to a halt. The mock student discussion brings up issues

of conservative vs. dissipative work; it was intended to help students who were

struggling with the premise that the work done by either of the heat engines (Cycle

I or Cycle II) did not increase the entropy of the surroundings. In all three years of

tutorial implementation, no student has spontaneously expressed concern that this

might be the case. In fact this group in Year 3 was discussing all of the changes

in entropy for each cycle very well without worrying about the work causing any

change in entropy. Once they read the mock student discussion, they were mired

in a conversation about dissipative vs. conservative work for the better part of ten

minutes, the results of which did not appear to benefit their understanding of heat

engines or entropy and severely hindered their progress through the tutorial. By the

end of the period, these students had already derived Carnot’s efficiency and were

discussing the last questions in part III that ask them to consider the conditions

under which a heat engine would achieve this efficiency (reversibility). It seems clear
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that the time spent discussing dissipative and conservative work would have better

been spent considering the implications of reversibility and giving these students

the chance to discuss the processes that must comprise a cycle that would operate

at the upper limit of thermodynamic efficiency. Students in previous years did not

get as bogged down with the mock student discussion as these students in Year 3,

but I believe this portion of the tutorial is unnecessary as no students in any year

have expressed concern or confusion at not considering entropy changes due to the

work done by a heat engine. The mock student discussion regarding dissipative

and conservative work will be omitted from all future implementations of the Heat

Engines tutorial.

5.5 Discussion

The results from implementations of the Heat Engines tutorial show many good

trends. On the engine feasibility exam question (EFQ), all students recognized

the need to invoke the 2nd Law in some capacity rather than relying only on the

restrictions of the 1st Law. On the finite reservoirs homework question (FRQ), even

in years before tutorial instruction, most students were able to correctly determine

the final temperature of the reservoirs for the least efficient heat engine (which does

no work). In years including tutorial instruction, all students correctly determined

the changes in temperature for the reservoirs of both the least efficient and the most

efficient (Carnot) engines. They also correctly determined the total entropy change

of the universe for each engine and calculated the work done by the Carnot engine.

Along with these successes, however, student difficulties emerged, many of which

were reduced after tutorial instruction.

Examining the data, I have identified several specific difficulties that students

display (even after lecture instruction) when answering questions about or discussing
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topics related to heat engines. First, students don’t recognize that, since entropy

is a state function, the entropy change of the working substance after one complete

cycle of any heat engine is unequivocally zero. This difficulty is most noticeably

observed in students’ responses to two parts of the engine entropy question (EEQ)

which ask about the change in entropy of the working substance for two different

heat engines: fewer than 20% of all students answered these questions correctly using

correct reasoning after lecture instruction. This is especially noticeable in student

responses that claim that the direction in which a cycle is operated (as a heat

engine or a refrigerator) determines the entropy change of the working substance.

This difficulty is also observed within videotaped classroom observations of tutorial

sessions. Bonnie and Claude tried to calculate the entropy of the working substance

using the net heat transfer and an ill-defined temperature. One student also tried

to calculate the entropy change of the working substance for the first part of the

engine feasibility exam question. Additionally, student reasoning for responses on

the EEQ indicate that they do not discriminate between whether to consider the

state function property of entropy or the reversibility of the Carnot engine when

answering questions about the entropy change of either the working substance or

the universe. This result indicates that students do not typically appreciate the

implications of the state function property of entropy or the ramifications of the

reversibility of the Carnot cycle. The Heat Engines tutorial helps address this issue

as indicated by 40%-65% of students answering the working substance parts of the

EEQ correctly using correct reasoning after tutorial instruction. The reasoning

students used to answer the Carnot portion of the EEQ also indicates that they

are using more sophisticated ways of discriminating between relevant and irrelevant

information. After tutorial instruction students generally recognize that the state

function property of entropy ensures that the entropy of the working substance

114



doesn’t change after one full cycle, and that the reversibility of the Carnot cycle

ensures that the entropy of the universe stays the same.

A related difficulty (observed after lecture instruction) is that students do not

universally equate the Carnot cycle with reversibility. Student responses to the finite

reservoirs homework question in several years before tutorial development indicate

that they do not recognize that the Carnot cycle is (by definition) a reversible

set of processes, and that, therefore, the entropy of the universe will not change

whether it is operated once or many times: only half of the students correctly applied

this logic to come to a correct conclusion. This trend is seen again in the EEQ

pre-tutorial survey in which some students cited the irreversibility of the Carnot

engine (or that the Carnot engine is a real engine) to justify their claims about the

entropy change. Some students also claimed that the entropy of the universe always

increases, which completely misses the important distinction between processes that

are reversible and those that are irreversible. Two of these students also claimed

that the entropy of the universe for the hypothetically more efficient engine would

increase as well, indicating a failure to recognize the importance of the Carnot

cycle as a reversible engine and a limiting case. In general, these difficulties were

reduced after tutorial instruction: no students claimed that the Carnot cycle was a

real engine on the EEQ post-tutorial survey, and all students recognized that the

entropy of the universe would not change due to the “Ralph” (Carnot) cycle on the

FRQ tutorial homework. One possible exception to this success is two students

who claimed that the impossible engine in the EFQ exam would, in fact, function

because its efficiency was less than 100%. This does not necessarily indicate a failure

to recognize that the Carnot engine is reversible, but it does indicate a failure to

realize that the Carnot engine is a limiting case, even after tutorial instruction.

A third difficulty that was observed several times was students’ use of an inappro-

priate definition of thermodynamic efficiency. This was first observed in videotaped
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classroom observations of students participating in the Heat Engines tutorial, in

which some students proposed the expression, η = W+QL
QH

, which is the ratio of the

total energy out of the working substance to the total energy in. This difficulty

was again observed in students’ responses to the EFQ exam; one student claimed

that the engine could not function (which is the correct answer) because it had an

efficiency of 100%, which “is not possible unless the low-temperature reservoir is at

0 K.” Later implementations of the Heat Engines tutorial included a pre-tutorial

homework assignment which asked students to consider an alternative definition of

thermodynamic efficiency and justify its rejection based on considerations of energy

conservation and the 1st Law. Videotaped observations from these years indicate

that students successfully completed this homework assignment before class and

were able to use it within the tutorial session to justify and use the conventional

definition of efficiency. No students in later years used inappropriate definitions of

efficiency on the EFQ exam. These data indicate that the pre-tutorial homework

assignment is a productive use of students’ time outside of the classroom environ-

ment.

A fourth difficulty was observed primarily within classroom observations and

consisted of students being sloppy about their use of differentials (both exact and

inexact) and net changes or quantities. Some students in all years used “d–Q” to

represent the total heat transfer. In most cases this did not hinder students’ discus-

sions, but (as discussed above) one group of students erroneously concluded that, if

an engine does no work, then no heat transfer can occur, and the reservoirs must

have the same temperature. In this case the students confused the infinitesimal heat

transfer (d–Q) with the total heat transfer (Q =
∫

d–Q). Students in another year

had a similar difficulty understanding why the expression “∆Q” is inappropriate

and, in fact, redundant. The subtle notational differences between Q =
∫

d–Q and

∆U =
∫

dU were not clear to these students without explicit instruction. Addi-
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tionally, students often casually use the term “dQ” rather than “d–Q” within their

conversations, indicating a lack of rigor when discussing state variables (which use

exact differentials) and process variables (which use inexact differentials).

5.6 Summary and Implications for Future Research

Research indicates that students do not develop a robust understanding of the

connection between the 2nd Law and heat engines after lecture instruction alone.

This has been shown by Cochran & Heron in introductory physics courses, and I

have reported the same result within upper-division thermal physics courses at two

different institutions.[35] Student performance on ungraded surveys at both schools

indicate that lecture instruction is insufficient for students to gain a complete under-

standing of the Carnot cycle and its implications. Results from student performance

on written questions indicate that their understanding of the connection between the

Carnot cycle and the 2nd Law improves if students participate in the Heat Engines

tutorial.

Some students demonstrate an improvement in their understanding of entropy

and heat engines on the engine entropy question after tutorial instruction. The

most notable improvement is in students’ use of different reasoning to answer ques-

tions about changes in entropy. After lecture instruction alone, students often do

not discriminate between strategies that are useful when making conclusions about

the change in entropy of the universe, and those that are useful for considering the

working substance. After tutorial instruction, students are more likely to use the

reversibility of the Carnot cycle to determine that the change in entropy of the uni-

verse does not change after one of its cycles, and to use the state function property

of entropy to determine that the entropy of the working substance does not change

after one complete cycle of any heat engine. Students also discriminate between
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appropriate lines of reasoning more after tutorial instruction when answering ques-

tions about the Carnot engine as compared to a better-than-Carnot engine. These

increases in discrimination between reasoning strategies are statistically significant

at the α = 0.05 level.

Results from student performance on the finite reservoirs homework question

support my claim that the Heat Engines tutorial benefits students’ understanding

of heat engines. All students who completed the homework following tutorial partic-

ipation correctly used the fact that the entropy of the universe does not change due

to the Carnot cycle to answer questions about a heat engine operating between real,

finite-heat-capacity reservoirs. After lecture instruction alone only 50% of students

correctly answered all parts of the question, and as many as a third of them did not

realize that the entropy of the universe would remain the same or how this fact im-

pacts that final temperature of the reservoirs. It seems clear that completion of the

Heat Engines tutorial helps students gain a better understanding of the connection

between Carnot’s theorem and the entropy inequality of the 2nd Law than lecture

instruction alone.

Student performance on the engine feasibility exam question also indicates that

the majority (85%) of students recognize the need to consider the 2nd Law in some

fashion to determine whether or not a device could function as described. Other

students still considered the efficiency of the proposed heat engine, but stated that

anything less than 100% was possible. In contrast to the students in Cochran &

Heron’s study who only received lecture instruction, no one who participated in

the Heat Engines tutorial used only the 1st Law to determine the feasibility of a

heat engine.[35] Student understanding of the connection between heat engines and

refrigerators in terms of feasibility still remains unclear. Only one student correctly

determined that the device that could not function as a heat engine could function

as a refrigerator (and vice versa), but his response was largely algorithmic with no
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comment on this apparent flip in feasibility. It is, therefore, impossible to determine

how deeply he understands this relationship. One other student commented that

only the reversible Carnot cycle could be operated as both a heat engine and a

refrigerator, but he failed to articulate that a device that could not be operated as

a heat engine could be operated as a refrigerator without violating the constraint of

reversibility.

Video data from in-class tutorial sessions provide evidence for student difficulties

with the terminology used in thermodynamics. A lack of specificity between dU ,

U , and ∆U , and between d–Q and Q was observed in all three years of tutorial im-

plementation. The mixed usage of these terms may go unnoticed by some students,

and may not cause problems (as with Sam, Dave, and Rick), but not being clear

about their distinction could lead to misunderstandings and ludicrous conclusions

(as with Jonah and Bill). Other in-class observations indicate that students do not

necessarily understand the need for the “∆” symbol when talking about changes in

state functions, and its absence when discussing heat and work as types of energy

transfer.

Video data also provide valuable information as to the logistical aspects of ad-

ministering the tutorial. Student discussions during the tutorial in Year 1 indicate

difficulties with understanding the definition of thermodynamic efficiency as well as

its applicability. This difficulty manifested itself within the exam data when one

student used an incorrect definition for thermodynamic efficiency (η = W+QL
QH

) while

solving the engine feasibility question. Giving students the chance to wrestle with

this definition before coming to the tutorial session seems to have alleviated this

problem as no students in Years 2 or 3 displayed difficulty using the standard defini-

tion of efficiency either during the tutorial session or on the exam. The pre-tutorial

homework assignment also provides students with the opportunity to refresh their

knowledge of relevant background topics (including state functions) before coming
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to class. Doing this ahead of time seems to provide students with extra classroom

time needed to progress through the tutorial in 50 minutes.

One avenue for further research would be an investigation into students’ un-

derstanding of the distinction between exact (d ) and inexact (d– ) differentials

and their use. Much research has been conducted on student understanding of the

path dependence of Q and W and the path independence of ∆U (cf. Ref.33), but

little to no studies exist that investigate student understanding of their respective

differentials and how and why they are used. This is obviously a difficulty for some

students, who confused a differential change in a variable with the net change of

that variable over a given process. It is also interesting to note that most students

(during tutorial conversations) seem to be able to use differential and total change

language interchangeably. Further studies may be necessary to determine whether

these students merely used a wrong word or if they really have conceptual difficulties

with differentials.

Another interesting investigation would be student understanding of reversibility

in the context of heat engines and refrigerators. As mentioned above, no students

in Year 3 completely recognized the importance of the Carnot cycle as the divider

between devices that could operate as heat engines and devices that could operate as

refrigerators. This could prove to be a valuable instructional opportunity to provide

students with a concrete example of a reversible process being the only one of its

kind that can literally be reversed and still obey all the laws of physics.

120



Chapter 6

THE BOLTZMANN FACTOR TUTORIAL

In this chapter I present evidence that suggests that students express several

specific difficulties when answering questions and completing tasks related to the

Boltzmann factor. Some of these difficulties are conceptual and/or related to math-

ematical concepts; others have to do with less tangible issues, but issues that are

more important for developing expertise. Results from written survey questions

indicate that students do not recognize situations in which the Boltzmann factor

is appropriate to use, even after lecture instruction. Moreover, when students do

not recognize that the Boltzmann factor is relevant, they often resort to novice-like

behaviors to solve the problem in a manner consistent with children’s treatment of

mathematics.[63]

The motivating premise for a tutorial on the Boltzmann factor derivation is that

guiding students through the derivation in peer groups will help them appreciate the

physical significance of the Boltzmann factor more than relatively passive lecture

instruction, and thus improve student recognition of appropriate situations for use of

the Boltzmann factor. Videotaped classroom observations have been instrumental

in my investigation of student difficulties as well as their successes with my tutorials.

I present several examples from these observations and discuss how they informed

curricular revisions.

In addition to my research into students’ understanding of the Boltzmann factor

and the effect of the Boltzmann Factor tutorial, I have conducted several related

studies that serve as extensions to this work. First, I have used written surveys and

clinical interviews to study students’ understanding of the Taylor series. The Tay-

lor series is a mathematical tool that is used in the Boltzmann Factor tutorial; my

121



research suggests that many students are familiar with the Taylor series, but that

they do not use it fluently in physical contexts. Results from teaching interviews and

several years of tutorial implementation suggest that a pre-tutorial homework as-

signment provides students with the necessary opportunity to refresh their memory

of what exactly a Taylor series is and how to use it in physical contexts.

Second, I have conducted a preliminary investigation of students’ understanding

of the density of states function and how it relates to the multiplicity of a ther-

modynamic system as well as the probability that the system occupies a particular

macrostate. As mentioned in Chapter 4, an understanding of the density of states

function, the Boltzmann factor, and how they relate to one another is critical for

a robust understanding of the statistical underpinnings of real-world observations.

Results from clinical interviews suggest that, by the end of the Stat Mech semester,

many students have all of the information necessary to develop this understand-

ing, but that they have not synthesized this information into a coherent framework

of how the density of states and the Boltzmann factor complement each other to

accurately predict known observations.

I conclude the chapter with a summary of the work that I have conducted regard-

ing student understanding of the Boltzmann factor and related topics and suggest

several avenues for future research in this area.

6.1 The Physics of the Boltzmann Factor

The Boltzmann factor is a mathematical expression for the probability that a

system at a fixed temperature is in a particular energy state given the energy of

that state,

P (Ψj) ∝ e−Ej/kT , (6.1)
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where Ψj denotes the energy eigenstate with eigenvalue Ej, k is Boltzmann’s con-

stant (1.381×10−23J/K), and T is the temperature of the system. The underlying

assumption of the Boltzmann factor is that the “system” under investigation is very

small with respect to a thermal energy reservoir with which it is in thermal contact

(free to exchange energy but not particles). The canonical partition function (Z) is

the result of the normalization constraint that the sum of P (Ψj) over all j must be

unity:

∑
j

P (Ψj) =
∑
j

e−Ej/kT

Z
= 1

∴ (6.2)

Z =
∑
i

e−Ei/kT ,

where Z is a constant with respect to energy. For systems for which the energy of

the system is a continuous quantity over some range, {E}, the Boltzmann factor

and the canonical partition function become,∫
{E}

P (E) dE =

∫
{E}

D(E) e−E/kT

Z
dE = 1

∴ (6.3)

Z =

∫
{E}

D(E) e−E/kT dE,

whereD(E) is the density of states function, which accounts for all of the eigenstates

that have the same particular energy.

The Helmholtz free energy of a system may be written as a function of Z,

F = kT ln(Z), (6.4)

and derivatives of F yield information about the system’s entropy, pressure, magne-

tization, and many other thermodynamic variables. Moreover, the average energy
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 �	
Figure 6.1. Sample system for the Boltzmann factor instructional sequence. An
isolated container of an ideal gas is separated into a small system (C ) and a large
reservoir (R ). The label “C ” is used to avoid confusion with entropy.

of a system may be expressed as a derivative of the natural logarithm of the Boltz-

mann factor. In this way the canonical partition function and the Boltzmann factor

are cornerstones of statistical mechanics, and a thorough understanding of when

they are useful (i.e., when examining a small system in thermal contact with a large

reservoir) is essential to the study of the field.

To understand the mathematical form of the Boltzmann factor, consider the

interactions between the system under investigation (I call this C to avoid confusion

with entropy, S ) and the thermal reservoir (R; see Figure 6.1).1 Recall from section

2.2 that the probability of finding the system in a particular state will depend on

the total multiplicity of the system-reservoir combination (P (EC) ∝ ωtot), and that

this is the product of the individual multiplicities of the system and the reservoir

(ωtot = ωC ωR). In fact, if one considers a small enough system (perhaps a single

particle) the energy of the system may only occupy a handful of discrete, non-

degenerate energy levels (EC ∈ {Ej} = {E1, E2, . . .}). The system would therefore

have a constant multiplicity, ωC = 1. The total multiplicity of the system-reservoir

combination will then be exactly equal to the multiplicity of the reservoir:

ωtot = ωRωC = ωR. (6.5)

1The derivation presented here follows that in many thermal physics textbooks, cf. Refs. 89
&102.
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The challenge now is to determine an expression for ωR in terms of EC (the defining

parameter of the macrostate). To accomplish this one must first relate EC to the

properties of the reservoir.

It is reasonable to assume that the system-reservoir combination is isolated from

the rest of the universe such that its total energy,

Etot = EC + ER, (6.6)

remains constant. The energy of the system, however, may fluctuate about some

average value,

EC = 〈EC〉 ± δE. (6.7)

The magnitude of these energy fluctuations (δE) may be relatively large compared

to 〈EC〉, but insignificant compared to 〈ER〉, thus we are justified in considering R

a reservoir as its energy does not change appreciably. Qualitatively, by conservation

of energy, as the energy of the system decreases, the energy of the reservoir must

increase, increasing ωR and ωtot, yielding a higher probability; therefore, lower energy

states are more probable than higher energy states.

One must now be concerned with the precise mathematical form of multiplicity

as it relates to energy, but while energy is an extensive variable, multiplicity is

neither extensive nor intensive. This dilemma is solved by the immortal equation

carved on Boltzmann’s tombstone,

S = k ln(ω), (6.8)

where S (entropy) is an extensive variable which may also be written as a function

of other extensive variables (e.g., SR(ER)).2 Since the system is so much smaller

than the reservoir, it is clear that ER ≈ Etot, and that a Taylor series expansion is

2As discussed in section 2.2 this logarithmic relationship allows us to consider both the additive
nature of entropy (and energy) and the multiplicative nature of multiplicity (and probability).
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appropriate to approximate SR(ER) about the point ER = Etot:

SR(ER) = SR(Etot)−
∂SR
∂ER

Etot

EC + . . . ≈ SR(Etot)−
EC
T
, (6.9)

where
(
∂S
∂E

)
V,N

= 1
T
from the differential form of the 1st Law (Eq. 2.5) and ER = Etot−EC .

Thus one obtains an expression for SR as a function of EC and constants. Revisiting

Eq. 6.8 one obtains,

ωR ∝ e
−EC
kT ∴ P ∝ e

−EC
kT , (6.10)

giving the desired result of P (EC), from Eq. 6.3.

It should be noted, however, that the above derivation is not the only method for

obtaining the Boltzmann factor. Schroeder, for example, uses an approximation of

what he calls the “thermodynamic identity” (1st Law, Eq. 2.5) rather than a Taylor

series expansion to determine an expression for SR in terms of EC .[39] Carter, on

the other hand, uses the method of Lagrange multipliers to maximize ln(ω) with the

constraints that the average energy and number of particles in the system are both

fixed; this derivation does not require the assumption of a large thermal reservoir as

the multiplicity of the reservoir is never used.[38] The derivation presented in this

section was chosen for use within the Boltzmann Factor tutorialas it is presented in

the course textbook (Ref. 89) as well as several other commonly used texts (cf. Ref.

102 & 103).

6.2 Student Recognition of When to Use the Boltzmann Factor

One desired result of teaching students about the Boltzmann factor is that they

will recognize applicable situations and use it to make claims about probabilities.3

The probability ratios question (PRQ, shown in Figure 6.2) probes their ability to

3See sections 2.2 & 6.1 for descriptions of situations in which the Boltzmann factor is applicable
as well as an explanation of its connection to probability.
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Consider a particle (Particle A) in a system with three evenly spaced

energy levels, as seen in the figure at right. The probability that

Particle A is in the nth energy level is PA(n).

A. Is the ratio of the probabilities PA(3)
PA(2) greater than, less than, or equal to the ratio of the

probabilities PA(2)
PA(1)? Please explain your reasoning.

n = 3
n = 2
n = 1

0.10 eV
0.05 eV
0.00 eV

B. Consider a second single particle, Particle B, that can also
only be in three states. The energies of the three states of each
system are listed in the table at right. Both systems are in equi-
librium with a reservoir at temperature T . Is the ratio of the
probabilities PB(3)

PB(2) for Particle B greater than, less than, or equal to the ratio of the proba-

bilities PA(3)
PA(2) for Particle A? Please explain your reasoning.

n Particle A Particle B
1 0.00 eV −0.05 eV
2 +0.05 eV 0.00 eV
3 +0.10 eV +0.05 eV

Figure 6.2. Probability Ratios Question (PRQ).

do this. The correct solution to the PRQ requires students to recognize three pieces

of information:

• The probability of the particle being in each state is proportional to the Boltz-

mann factor for that state

• A ratio of exponential functions is the exponential of the difference of their

exponents

• The energy difference between the states for each given ratio is the same

(∆En,n−1 = 0.05 eV)

The first two items indicate that each ratio of probabilities will be an exponential

function of the energy difference between the two states. The third item reveals that

both pairs of ratios in the PRQ are equal.
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6.2.1 Student Use of the Boltzmann Factor

The PRQ was given to students in the Statistical Mechanics course (Stat Mech)

at UMaine after they had completed all lecture instruction on the Boltzmann factor

and the canonical partition functionin five years.4 The PRQ was also given once in

the Thermal Physics I course at California Polytechnic State University, San Luis

Obispo (Cal Poly) as a true pretest, before any instruction on the Boltzmann factor

had occurred.5 Student responses were coded in two ways: first by the response

given (equal to, greater than, less than, or other), second by whether or not the

Boltzmann factor was used. Figure 6.3 shows the response frequencies for the entire

five-year data corpus from UMaine, and Figure 6.4 shows the response frequencies

from Cal Poly. Green bars (dark cross-hatch) indicate students who gave the cor-

rect answer (equal to) and included correct reasoning; teal bars (light cross-hatch)

4See Section 4.1.2 for course details.
5Information on courses and tutorial implementation was obtained through personal commu-

nication with the instructors.
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Figure 6.3. PRQ results: UMaine pre-tutorial. After lecture instruction on the
Boltzmann factor in five years (N = 32).
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Figure 6.4. PRQ results: Cal Poly pre-tutorial. Before any instruction on the
Boltzmann factor in one year (N = 32).

indicate students who gave an incorrect answer but recognized that the Boltzmann

factor was needed to answer the question.6

The data represented in Figures 6.3 and 6.4 suggest several questions: 1) What

percentage of students at each school use the Boltzmann factor, whether or not

they get the right answer? and 2) What are students doing if they’re not using the

Boltzmann factor? To answer the first of these questions, I define four categories of

responses:

• Correct response (equal to) with correct Boltzmann factor reasoning

• Correct response without correct Boltzmann factor reasoning

• Incorrect response with correct Boltzmann factor reasoning

• Incorrect response without correct Boltzmann factor reasoning

6This color scheme will be used for all presentations of response frequency data for probability
ratio tasks.
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By reducing to this coding scheme I am able to highlight the number of students

who are and are not using the Boltzmann factor to answer the PRQ. A natural

question associated with this coding scheme is, what does it look like for someone

to use the Boltzmann factor but get an incorrect response? The answer to this

question has several facets. On one hand, this person could have made a math error

in computing ratios of exponentials. On the other hand, this person could have

compared the wrong ratios, but done so correctly using the Boltzmann factor. Data

exist that also indicate that some students impose degeneracy terms when using the

Boltzmann factor to answer the PRQ. Basically, if a student wrote that probability

is related to a decaying exponential of the energy, he was given credit for using the

Boltzmann factor no matter what answer he got in the end.

Table 6.1 shows the percentages of students who occupy each of these categories

at each school for both parts of the PRQ. From this presentation of the data it is

clear that students at UMaine are using the Boltzmann factor more than students

at Cal Poly on the PRQ pretest. In fact, a Fisher’s exact test shows that this

is a statistically significant difference (see Table 6.2), although not a surprising

one: students at UMaine had had some instruction on the Boltzmann factor while

students at Cal Poly hadn’t had any. One the other hand, only 37% of students at

Table 6.1. PRQ results: Combined. Tabulated results from the PRQ pretest at
both UMaine (N = 32) and Cal Poly (N = 32).

Part A Part B
Correct Incorrect Total Correct Incorrect Total

Used Bf 25% 12% 37% 50% 6% 56%
UMaine

No Bf 9% 54% 63% 6% 38% 44%
Used Bf 9% 3% 12% 16% 0% 16%

Cal Poly
No Bf 13% 75% 88% 22% 63% 84%

130



Table 6.2. Pretest Comparison – UMaine vs. Cal Poly: Fisher’s Exact Test. Num-
bers shown indicate the p-value for each comparison (significance set at p < 0.05).

Total Distribution BF Use > vs. <
Part (A) 0.02 0.06 0.05
Part (B) 0.001 0.001 0.03

UMaine are using the Boltzmann factor on part A and only 56% on part B. These

are certainly not numbers to celebrate.

Going back to the question of what the students do when they don’t use the

Boltzmann factor, the reader may notice that the most common incorrect response

at UMaine for both parts of the PRQ is the idea that, P (0.10eV )
P (0.05eV )

< P (0.05eV )
P (0.00eV )

(“less than”

for part A and “greater than” for part B). These answers are considered consistent

since the second and third energy levels in particle B have the same numerical values

as the first and second energy levels in particle A. A Fisher’s exact test shows the

distribution of “less than” and “greater than” responses to be significantly different

on part A as compared to part B (p = 0.02).

The results from Cal Poly, shown in Figure 6.4, appear quite different from

those at UMaine. In fact a Fisher’s exact test for independence shows that the two

Table 6.3. Pretest Comparison: UMaine vs. Cal Poly. Numbers shown indicate the
percentage of incorrect responses at each of the two schools.

Part A Part B
greater than less than greater than less than

UMaine 21% 42% 56% 13%
Cal Poly 55% 24% 26% 44%
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populations are significantly different for both parts of the PRQ (p < 0.05, see Table

6.2). The first noticeable difference is that there are fewer correct responses to either

part at Cal Poly than at UMaine. This is not surprising, as the UMaine students had

received some instruction on the Boltzmann factor while the Cal Poly students had

not. The more interesting difference between the populations (summarized in Table

6.3) is the relative distribution of “greater than” and “less than” incorrect responses.

While at UMaine 42% of incorrect responses to part A were “less than,” 55% of

incorrect responses were “greater than” at Cal Poly. A similar trend exists in part

B, where UMaine students were more likely to give the “greater than” response,

and Cal Poly students were more likely to give the “less than” response. These

results are reported as percentages of incorrect responses only. This is necessary

since significantly more students answered the PRQ correctly at UMaine than at

Cal Poly. Only by looking at the percentages of incorrect responses can meaningful

comparisons be made.

Table 6.2 shows the results from six Fisher’s exact tests used to compare the

response distributions from UMaine to those from Cal Poly on each part of the

PRQ. These results indicate that the distribution of responses at Cal Poly is sta-

tistically significantly different than the distribution of responses at UMaine. Since

the students at these two schools had received different levels of instruction before

answering the PRQ, several different Fisher’s exact tests were completed to get a

fuller picture of the similarities and differences between the populations. The “To-

tal Distribution” column takes into account all eight categories (based on response

and correctness of explanation). The “BF Use” column groups the data into two

categories: one in which students used the Boltzmann factor correctly, and one with

everyone else. The “> vs. <” column only looks at the students who answered either

“greater than” or “less than” and compares their relative distribution across schools.
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Table 6.2 shows that the results of almost all of these comparisons are statistically

significant (p < 0.05). The comparison of Boltzmann factor use between UMaine

and Cal Poly for part A is not significant at the α = 0.05 level, but at p = 0.06 I

feel comfortable asserting that the students at UMaine used the Boltzmann factor

more after lecture instruction than the Cal Poly students did before any instruction.

Two Fisher’s exact tests were also performed between the populations at UMaine

and Cal Poly by correlating individual students’ responses across parts A and B.

The first of these tests compared the distribution of all nine different response pairs

(=, >, or < for each part) and yielded a nearly significant result (p = 0.06).7 The

second additional Fisher’s exact test only looked at the response pairs in which both

responses are either “greater than” or “less than” (pairs: >,>; >,<; <,>; and <,<).

This second test also yielded a nearly significant result (p = 0.06), providing further

evidence that the distribution of responses given by students at UMaine are different

from that given by students at Cal Poly.

Figure 6.3 also shows that students at UMaine are more likely to answer part B

correctly (which discusses an effective shift in the ground state energy of a system)

than part A (comparing two different sets of probabilities for states within the same

system). One student at UMaine justified his response for part B in stating that,

“. . . it does not matter what the ‘baseline’ is, just the amount of energy added.” This

apparent increase in correctness could be a result of the coding scheme used in that

explanations which involve comments about the arbitrariness of the ground state

energy were considered correct for part B regardless of the student’s response to part

A. A Fisher’s exact test looking at the distribution of correct and incorrect responses

at UMaine was inconclusive (p = 0.21) as to whether a significant difference exists

between the responses to parts A and B. I would be remiss, however, not to point

7The “other” responses were omitted during analyses using correlated responses, as one stu-
dent’s “other” response may have been completely different than another’s.
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out a difference of 25% correct with a correct reasoning on part A compared to 50%

on part B. This phenomenon is not significantly observed at Cal Poly (see Figure

6.4, Fisher’s exact test yields p = 0.45).

6.2.2 Incorrect Reasoning on the PRQ

The reasoning that students use when answering can be sorted into several cate-

gories; as described in Chapter 4, these categories were developed using a grounded

theory approach in which I examined the data for common trends and then catego-

rized responses based on those trends. At UMaine 12 students used the Boltzmann

factor within their explanation of their answers to the PRQ. Only four students at

Cal Poly used the Boltzmann factor. Of the remaining students 12 (out of 20) at

UMaine and 13 (out of 28) at Cal Poly used a ranking of probabilities as their pri-

mary line of reasoning (e.g., PA(1) > PA(2) > PA(3)). An additional five students

at Cal Poly used a similar line of reasoning by stating that the lowest energy is most

probable, but they did not make claims about the relative probabilities of energy

states 2 and 3. This use of an explicit or implied probability ranking is the most

common incorrect reasoning at both schools. Additionally, six of the students at

UMaine who used a probability ranking, and seven students at Cal Poly (half of

all students who used explicit rankings) made claims about the relative difference

in probability between states 1 and 2 and between states 2 and 3. These claims

were made in either sentence form, as one student from Cal Poly wrote, “. . . it is

more likely that the system will have less energy so the difference between [state] 3

& [state] 2 is less than [between states] 2 and 1;”8 or as a mathematical expression

such as given by a student at UMaine, “PA(1) − PA(2) > PA(2) − PA(3).” Both of

these statements lead to the idea that PA(1)� PA(2) > PA(3).

8Students’ emphasis.
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It should be noted that the probability rankings discussed above are completely

accurate, and that the difference in probability between states 1 and 2 is in fact

greater than that between states 2 and 3, but this information is not sufficient to de-

termine the relationship between the probability ratios. The more interesting result

is how students answer the question about probability ratios based on this reasoning.

All seven students at Cal Poly who expressed the idea that PA(1)� PA(2) > PA(3),

used it to claim that PA(3)
PA(2)

> PA(2)
PA(1)

, which is not necessarily true. This reason-

ing seems reminiscent of the Compare Numerator-Denominator Differences (NDD)

strategy discussed in section 3.2.3.2.[63] Three students at UMaine also appear to

use the NDD strategy although they come to three different conclusions:

PA(1)� PA(2) > PA(3)→ PA(3)

PA(2)
>
PA(2)

PA(1)
; (6.11)

PA(1) > PA(2)� PA(3)→ PA(3)

PA(2)
<
PA(2)

PA(1)
; (6.12)

PA(1)� PA(2)� PA(3)→ PA(3)

PA(2)
=
PA(2)

PA(1)
. (6.13)

Interestingly, the third of these students uses this strategy to justify a correct re-

sponse, possibly indicating a more sophisticated understanding of ratios and multi-

plicative vs. additive relationships than some of his classmates. Additionally, three

students at UMaine compared the differences between the probabilities of adjacent

states but came to conclusions that do not seem to follow from their reasoning

via the NDD strategy for comparing ratios. For example, one student justified his

claim that, “ PA(3)
PA(2)

< PA(2)
PA(1)

” by stating that, “PA(1) − PA(2) > PA(2) − PA(3), and

PA(1) > PA(2) > PA(3).” Using the NDD strategy with this ranking, however,

would yield a “greater than” response rather than the “less than” that was given.

Two other students used the ranking shown in Eq. 6.12 to justify a “greater than”

response to part A of the PRQ. The exact thought process used by each of these

students is unclear, as their conclusions do not logically follow from their claims.
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It seems that without knowing an exact relationship between the numerators and

denominators of the ratios in question (as the students did in Smith’s study, Ref.

63 discussed in section 3.2.3.2), the students who used the NDD strategy to answer

the PRQ were not able to recognize that their conclusions were not logically sound.

It seems as though these advanced undergraduate students resorted to novice-like

methods for comparing fractions when they did not have a well-defined expression

for probability as a function of energy. An external evaluator used my categories

to independently classify the data from Cal Poly. We initially agreed on 72% of

students; after discussion and negotiation, we completely agreed on 91% of students

and at least partially agreed on 97% of students (one person placed students simul-

taneously in two categories, the other person only agreed on one of the categories).

While only three students (two from UMaine, and one from Cal Poly) explicitly

ranked the differences in probabilities of adjacent states, I will reasonably assume

that the responses of all students who indicated that the probabilities were not evenly

spaced may be classified as using the NDD strategy. The remaining students who

justified their responses using the first-order probability ranking, PA(1) > PA(2) >

PA(3), seemed to use a mixture of either the Numerator Principle, the Denominator

Principle or Larger Components to come to their conclusions. No student, however,

admitted to exclusively using either the numerator or the denominator of each ratio

to compare the two; therefore, I cannot conclude that students used these strategies,

only that the students’ final responses are consistent with their use.

The key difficulty identified so far is that many students do not use the Boltz-

mann factor when it is appropriate to do so, even after lecture instruction. Instead,

these students revert to novice-like behavior for comparing fractions. The following

sections describe the Boltzmann Factor tutorial, which was designed to help students

understand the criteria for determining when the Boltzmann factor is appropriate

to use by recreating its derivation.
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6.3 Tutorial Development and Design

Given students’ apparent inabilities to properly use the Boltzmann factor, I

created a tutorial to guide students through its derivation and encourage deep con-

nections between the physical quantities involved. The derivation chosen for use in

the Boltzmann Factor tutorial is found in many widely used textbooks, including

the one used at UMaine.[89] The Boltzmann Factor tutorial begins by asking stu-

dents to consider an isolated container of an ideal gas. They are guided to recognize

that the container will have a fixed internal energy (Etot) and that all microstates

are equally probable.9

Once the properties of the isolated container have been established, the students

are presented with a scenario in which the container of ideal gas is separated into

relatively small and large sections (shown in Figure 6.1). The system of interest (C )

is said to be in thermal equilibrium with the reservoir (R ), and the students are

asked to compare the values of various thermodynamic properties of C to those of R

to highlight the fact that the intensive properties (e.g., temperature, pressure) will

have the same value for both C and R, but the values of the extensive properties

(e.g., volume, number of particles, internal energy) of C will be much smaller than

those of R.

The third section of the tutorial uses the fact that the multiplicities of C and R

are so different (ωC � ωR) to justify a single-particle toy model in which ωC = 1

(ωtot = ωC ωR = ωR), and the energy of C can only take on a handful of discrete

values, EC ∈ {Ej} = {E1, E2, . . . } (see Table 6.4). The students are asked to

determine which macrostate (denoted by j) is most probable and which is least

probable. The desired solution is that the macrostate in which R has the largest

number of microstates (multiplicity) would be the most probable (E4 below) since

9The entire Boltzmann Factor tutorial is included in Appendix B.
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all microstates are equally likely. Careful consideration of the relative probabilities

of each macrostate leads to the proportionality between the probability of the jth

macrostate and the multiplicity of the reservoir (P (Ψj) ∝ ωR(Ψj)).

Table 6.4. Sample energy & multiplicity values for toy model system. Presented
within the tutorial (see Figure 6.1).

EC ωC ER ωR
E1 1 Etot − E1 3× 1018

E2 1 Etot − E2 5× 1019

E3 1 Etot − E3 4× 1017

E4 1 Etot − E4 1× 1020

E5 1 Etot − E5 7× 1018

The final section of the Boltzmann Factor tutorial is the derivation of the Boltz-

mann factor itself. The students are asked to perform a Taylor series expansion

of SR(ER) about the value ER = Etot to obtain the expression for SR as a linear

function of EC given in Eq. 6.9. They are explicitly asked to consider the physical

significance of each term and to determine the final linear expression on their own.

Then, using the relationship between entropy and multiplicity (S = k ln(ω)), they

derive an expression for ωR as being proportional to a decaying exponential of the

energy of C (the Boltzmann factor):

ωR = eSR/k ≈ eSR(Etot)/k−EC/kT (6.14)

and, since SR(Etot) is a constant,

ωR ∝ e−EC/kT . (6.15)

Students have now found that P (Ψj) ∝ ωR(Ψj) and that ωR(Ψj) ∝ e−Ej/kT , leading

to the proportionality in Eq. 6.1. Finally, they are asked to normalize the probability,

thus deriving Z (see Eq. 6.2).
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The post-tutorial homework assignment is an application of the Boltzmann factor

to a three-state system with unevenly spaced energy levels. Students are asked

various questions about the ratios of probabilities of the system being in a particular

state. These questions are similar to the PRQ but the students are given specific

values for T and N and asked to determine numerical values for the probability

ratio rather than compare two different ratios. They are also asked to determine an

expression for the generic ratio between the probabilities of any two energy levels.

This homework assignment was used as a continuation of the tutorial, not as an

assessment or research tool. A full recreation of the tutorial and all pre- and post-

tutorial assignments and assessments can be found in Appendix B.

6.4 Tutorial Implementation

The Boltzmann Factor tutorial was administered in Stat Mech after all lecture

instruction on the Boltzmann factor in two consecutive years. Students were given

one 50-minute class period to complete the Boltzmann Factor tutorial. The course

instructor and one TA were available during the tutorial session as observers and

facilitators. No course credit is offered for the tutorial itself, but the course grade

includes in-class participation. In tutorial sessions, two groups were videotaped, and

written data were collected in the form of pre-tutorial assessments and post-tutorial

exam questions.

During the first year of tutorial implementation, students only completed about

half of the tutorial; therefore, I conducted individual interviews with four students

after classroom instruction to determine their familiarity with the Boltzmann factor,

its applications, and its origin. The interviews were conducted in the style of teach-

ing interviews (as discussed in Section 4.2.3) and consisted of asking students to

complete the second half of the Boltzmann Factor tutorial starting with looking at
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Table 6.5. Boltzmann Factor Tutorial Implementation Timeline

Before Year 1 · PRQ given after lecture instruction at UMaine in three
years

· PRQ given after lecture instruction at UMaine
· Tutorial administered at UMaine – included pre- and
post-tutorial homework assignmentsYear 1
· Teaching interviews conducted at UMaine as follow-up
to the tutorial
· PRQ given on course exam after tutorial

UMaine
· PRQ given after lecture instruction
· Tutorial administered after lecture
· PRQ Analog given on course exam after tutorial

Year 2 · Clinical Interviews conducted on related topics

Cal Poly
· PRQ given before any instruction
· Tutorial administered instead of lecture
· PRQ Analog given on course exam after tutorial

how probability relates to multiplicity in the divided container (C-R ) scenario (see

Figure 6.1). The goal of the interviews was not to determine students’ understand-

ing of the Boltzmann factor but rather to examine how well they could complete

instructional tasks based on previous knowledge related to the Boltzmann factor.

Students worked individually, and I solicited explanations for their work and gave

assistance when required. Two interview participants had participated in the first

half of the Boltzmann Factor tutorial during class, and the other two had not seen

the first half. Field notes were taken during the interviews, and students’ written

work was collected afterward.
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Systems A and B are both at the same temperature T .

System A has N identical particles, each of which must

be one of the three energy levels shown. In thermal

equilibrium, the numbers of particles in the three levels
are n1, n2, and n3. System B, with M identical particles, also has three
energy levels, as shown. The numbers of particles in each of the three levels
of system B are m1, m2, and m3.

System A: N Particles

3

2

1

0.10 eV

0.06 eV

0.00 eV

System B: M Particles

3

2

1

0.00 eV

−0.06 eV

−0.10 eV

Which is the true statement?
I. The ratio n3/n2 in system A is greater than the ratio m2/m1 in system B.
II. The ratio n3/n2 in system A is equal to the ratio m2/m1 in system B.
III. The ratio n3/n2 in system A is less than the ratio m2/m1 in system B.
IV. There’s not enough information to compare n3/n2 in system A to m2/m1 in system B.
Explain your reasoning. If you answer IV, also say what additional information you would need.

Figure 6.5. PRQ Analog. Administered on a course exam at UMaine in Year 2 and
at Cal Poly. Question developed by instructor at Cal Poly.

In Year 2, the Boltzmann Factor tutorial was also administered in the Thermal

Physics I course at Cal Poly in place of lecture instruction in one quarter. Students

were given one 50-minute class period and an additional 20 minutes during the next

period to complete the tutorial.10 Written data were collected in the form of pre-

tutorial assessments and post-tutorial exam questions. The PRQ was administered

as a pretest at both institutions before tutorial instruction. Table 6.5 shows the

timeline of tutorial implementation at both UMaine and Cal Poly.

The PRQ was given on a course examination after the first implementation of

the Boltzmann Factor tutorial at UMaine. A similar question was developed by the

instructor at Cal Poly and asked on a course exam in Year 2 at UMaine and at Cal

Poly. This second question, referred to as the PRQ Analog (shown in Figure 6.5),

requires students to apply the same knowledge as is used to correctly answer the

10Personal communication with course instructor.

141



Table 6.6. Comparison of pre- and post-tutorial performance at UMaine. Number
correct on probability ratios assessments; percentages shown in parentheses.

N Pre-tutorial Post-tutorial
Undergrad w/ tutorial 6 1 (17%) 5 (83%)

Undergrad w/ tutorial, no pretest 5 n/a 4 (80%)
Grad w/ tutorial 4 3 (75%) 4 (100%)

Undergrad no tutorial 5 2 (40%) 3 (60%)

PRQ, but it involves comparing ratios between systems that have unevenly spaced

energy levels.

6.5 Results

I begin by presenting the results that most closely address the stated instruc-

tional goals of the Boltzmann Factor tutorial: students’ use of the Boltzmann factor

on applicable exam questions. I will then discuss in-class observations of tutorial

sessions and their implications as well as the results from teaching interviews con-

ducted to supplement tutorial instruction in Year 1.

6.5.1 Exam Results

As mentioned above, the PRQ (Figure 6.2) was administered on a course exami-

nation in Year 1 at UMaine, and the PRQ Analog (Figure 6.5) was administered on

a course examination in Year 2 at UMaine and at Cal Poly. From the two implemen-

tations at UMaine there are 15 sets of matched (pre-/post-tutorial) data: six under-

graduate physics majors and four graduate students in physics who participated in

the Boltzmann Factor tutorial, and five undergraduates who did not participate in

the Boltzmann Factor tutorial. Additionally, five undergraduate students who par-

ticipated in the Boltzmann Factor tutorial and/or the teaching interviews did not

complete the PRQ pretest but did answer the exam question. Table 6.6 shows how
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Figure 6.6. Ratio Questions Results: UMaine. Post-tutorial results from PRQ and
PRQ Analog, administered during course examinations. Green bars indicate the
fraction of “correct” responses that included correct explanations.

many students in each of these groups answered correctly with correct reasoning

either before or after tutorial instruction. Figure 6.6 shows the exam data from all

students who participated in the tutorial broken down by year. These data provide

evidence that the Boltzmann Factor tutorial helps students recognize the utility of

the Boltzmann factor and how to apply it properly in the context of these questions.

The most striking feature of Figure 6.6 is that all seven students in Year 1

gave the correct answer with appropriate reasoning on both parts of the PRQ. In

Year 2, seven out of the eight tutorial participants gave the correct answer to the

PRQ Analog, and six of them gave appropriate explanations. This is a marked

improvement over lecture instruction alone. A Fisher’s exact test shows that the

exam results do not differ significantly between the two years (p = 1).11 In order

to perform statistical analyses to compare the exam results with the pretest results,

data were grouped into the four categories discussed in section 6.2.1.

This reduced coding scheme is necessary because, since I essentially asked three

questions at various times (PRQ parts A and B, and the PRQ Analog), the “greater

11Since the results from parts A and B in Year 1 are identical, these were combined into one
result for statistical analyses. All UMaine exam data is combined for further statistical tests.
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Figure 6.7. Ratio Questions Results: Cal Poly & UMaine. Post-tutorial results from
PRQ Analog administered during a course examination. Data from UMaine are the
combination of results from the PRQ and PRQ Analog used on course examinations
after tutorial instruction. Green bars indicate the fraction of “correct” responses
that included correct explanations.

than” responses to the various questions (for example) cannot necessarily be consid-

ered the same response. As such, the only categories available for grouping responses

are either the correct response or one of the incorrect response; along with this we

have the dimension of whether or not a student used the Boltzmann factorappro-

priately to justify their response, yielding the four categories above. These general

categories do not allow claims to be made about how reasoning patterns differ within

the incorrect responses, but they do allow comparisons of the frequency with which

students use the correct Boltzmann factor reasoning and whether or not it yields

a correct response. Using these categories, a Fisher’s exact test showed that the

results from the exams at UMaine are statistically significantly better than the re-

sults on part A of the PRQ pretest at UMaine (p = 0.0003) and nearing statistical

significance on part B (p = 0.06).
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Table 6.7. PRQ results: Combined. Tabulated results from the PRQ and PRQ
Analog exam questions at both UMaine (N = 15) and Cal Poly (N = 29).

Correct Incorrect Total
Used Bf 87% 0% 87%

UMaine
No Bf 7% 7% 13%

Used Bf 69% 21% 90%
Cal Poly

No Bf 10% 0% 10%

Results from tutorial implementation at Cal Poly are similarly promising. Fig-

ure 6.7 shows the response frequencies from the PRQ Analog at Cal Poly as well as

the combined results from Years 1 and 2 at UMaine. Table 6.7 shows these data

categorized by either correct or incorrect response and by whether or not the Boltz-

mann factor was used. A total of 90% of the students at Cal Poly and 87% of the

students at UMaine recognized the need for the Boltzmann factor and used it appro-

priately on the exam question, though some of these students made mathematical

or other procedural errors. In fact, a smaller percentage of students at Cal Poly an-

swered completely correctly with correct reasoning than at UMaine, but a number

of students used the Boltzmann factor appropriately to come to alternative conclu-

sions. For example, two students used the Boltzmann factor correctly to compare

the wrong pair of ratios. Another three students made math errors while using the

Boltzmann factor. Comparing Figure 6.7 to Figures 6.3 & 6.4 and Table 6.7 to Ta-

ble 6.1, the differences are substantial: from 32% consistently using the Boltzmann

factor after lectures to nearly 90% after tutorial instruction. Furthermore, a Fisher’s

exact test (using the categories described above) shows that the exam results from

Cal Poly are not significantly different from those at UMaine (p = 0.37) and that

the exam results at Cal Poly are statistically significantly better than the results

of both part A (p = 9 × 10−10) and part B (p = 2 × 10−8) of the PRQ pretest at
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Cal Poly. These results suggest that the Boltzmann Factor tutorial helps improve

student understanding of how and when to use the Boltzmann factor when it is used

instead of lecture instruction (Cal Poly) as well as when it is used in addition to

lecture instruction (UMaine).

6.5.2 Understanding the Origin of the Boltzmann Factor

Results from the teaching interviews conducted at UMaine in Year 1 provide

further evidence of the need for the Boltzmann Factor tutorial, especially with re-

gard to the origin of the Boltzmann factor itself. One student (Joel,12 who had

participated in the second and third sections of the Boltzmann Factor tutorial in

class) was very familiar with the applications of the Boltzmann factor and seemed

to be just as familiar with its origin.13 When asked to determine the most proba-

ble macrostate in Table 6.4, Joel wanted to use the Boltzmann factor rather than

thinking about multiplicities, even though no information had been given about the

relative energy values.14 The interviewer asked Joel to show where the Boltzmann

factor came from before applying it to this situation, at which point Joel quoted the

textbook derivation of the Boltzmann factor practically verbatim. The final portion

of Baierlein’s mathematical derivation is as follows, [89, p. 92]15

P (Ψj) = const×
(
multiplicity of reservoir
when it has energy Etot−Ej

)
(6.16)

P (Ψj) = const× exp

[
1

k
SR(Etot − Ej)

]
(6.17)

P (Ψj) = const× exp
1

k

SR(Etot) +
∂SR
∂ER

Etot

× (−Ej)

 (6.18)

P (Ψj) = (new constant)× exp (−Ej/kT ) . (6.19)

12All names are pseudonyms.
13Teaching interviews were not audio or video recorded so as to provide a more informal atmo-

sphere. Analysis is based on interviewer fields notes and students’ written work.
14Joel had also provided this reasoning during the in-class tutorial session.
15Eq. 6.18 is not explicitly shown in Ref. 89, but Joel wrote it during his interview.
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When asked how the multiplicity of the reservoir relates to the Boltzmann factor,

however, Joel was at a loss. During his replication of the derivation of the Boltzmann

factor he had implicitly written that it was proportional to ωR (connecting Eqs. 6.16

and 6.19), but without explicit help from the interviewer, Joel could not recognize

that the multiplicity of the reservoir when it has energy, Etot−Ej (RHS of Eq. 6.17),

is proportional to the exponential function, e(Ej/kT ) (RHS of Eq. 6.19). Furthermore,

Joel had great difficulty relating the physical example used in the text (a “bit of

cerium magnesium nitrate. . . in good thermal contact with a relatively large copper

disc”[89, p. 91]) to the ideal gas example used during the interview. He was unable

to recognize and articulate the important physical characteristics of each scenario

that make the Boltzmann factor applicable. Joel’s failure to make these connections

suggests an incomplete understanding of the physical reasoning used to derive the

Boltzmann factor, even after memorizing the textbook derivation.

Data from videotaped in-class observations of tutorial implementation at UMaine

in Year 2 provide evidence that students gain an appreciation for the origin of

the Boltzmann factor while participating in the Boltzmann Factor tutorial. Two

students (Sam and Bill, who worked in a group on their own) participated in several

conversations throughout the tutorial session that indicate their contemplation of

relevant physical ideas. During the Boltzmann Factor tutorial they discussed which

macrostate (from table 6.4) will be most probable:

Bill – Probably the one with more microstates

Sam – Yeah. . . the one with the highest multiplicity

. . .
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Bill – “Give a general expression for the probability of the system”. . . so

probably just use omega R (ωR), so we’d say omega R j (ωRj
)

over the sum of all of them.

Sam – Yeah, that’s what I said: omega R j over the sum of omega R j

(
ωRjP
ωRj

).

Later in the tutorial, after completing the Taylor series expansion (with instruc-

tor intervention), interpreting the physical quantities involved, and relating their

expression for multiplicity to the Taylor series of entropy, Sam and Bill had a real-

ization:

Sam – That’s cool. Look, see, you get the Boltzmann factor. You solve

for omega (ω): e to the minus E over k T (e−E/kT ).

. . .

Bill – I guess that’s where it comes from.

Sam – ’Cause I didn’t know where it came from.

Bill – I had no idea.

Sam – I was just like, “OK.”

These excerpts indicate that Sam and Bill are discussing relevant physical quantities

and principles and gaining an appreciation for the origin of the Boltzmann factor as

a result of the Boltzmann Factor tutorial. In particular they are correctly relating

the Boltzmann factor of the system with the multiplicity of the reservoir as an

indicator of probability. It should be noted that before tutorial instruction, Sam

answered both parts of the PRQ correctly using correct reasoning, and Bill used the

Boltzmann factor correctly but made errors in his calculations. These data indicate

that students who are able to successfully use the Boltzmann factor after lecture
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instruction may not have a good understanding of the conceptual meaning behind

the mathematics they are using; furthermore, these same students can gain an

appreciation for the physical significance of the Boltzmann factor after participating

in the Boltzmann Factor tutorial.

6.5.3 Tutorial Observations and Revisions

Data from videotaped classroom tutorial sessions and teaching interviews at

UMaine provide valuable information on students’ abilities to complete tutorial

tasks. The tutorial sessions at Cal Poly were not videotaped, so detailed analy-

ses of student conversations and time-on-task data are not possible. The instructor,

however, provided detailed feedback on students’ abilities to perform tutorial tasks

as well as specific places where they had particular difficulty. All of these data were

used to inform tutorial revisions and modifications.

It should be noted that data do not exist to determine the precise effect that

each of these tutorial modifications has on student learning and understanding of

the Boltzmann factor. Data are presented, however, indicating increased student

efficiency in completing tutorial tasks during later implementations, allowing them

to complete more of the tutorial in the time allotted. Increased efficiency benefits

students by giving them the opportunity to get to the “punchline” of the Boltzmann

Factor tutorial: the derivation of the Boltzmann factor itself.

During the in-class tutorial session in Year 1 at UMaine several unanticipated

difficulties were observed. The first occurred while students completed the first

page of the tutorial on which it asked them to “estimate (to order of magnitude)

how many microstates (molecular configurations) exist such that the total energy

of the gas [in the isolated container] is Etot.” This language cued the students to

attempt to find a formula for calculating the multiplicity of the gas based on its

149



energy.16 The intent of the task, however, was for the students to recognize that

there would be many many molecular configurations that would have a total energy

of Etot and to just write down any appropriately large number. Students spent four

minutes on this task before asking the instructor for help. (This wasn’t expected to

take very long; a rigorous calculation was neither intended nor possible, and thus it

should only have taken about a minute.) The wording of the question was therefore

altered in subsequent implementations to ask the students, “How many microstates

(molecular configurations) would you estimate exist such that the total energy of

the gas is Etot: 1, 1000, 10N?” Data from the second tutorial implementation at

UMaine indicate that students found this order-of-magnitude estimate much easier

than the year before.

One observation noted during the teaching interviews was that some students

focused strongly on a relationship between multiplicity and energy (ω ∝ V NE
3
2 N+1

)

that was given in an introductory paragraph of the interview (and the tutorial

section). The intent of the statement was to connect the Boltzmann Factor tutorial

to the density of states function, D(E), which they had recently learned about and

motivate the notion that ωC � ωR (since VC � VR and EC � ER). Students tried

to use this expression, however, to relate the multiplicities given in Table 6.4 to

the energies. One student (Jake, who had participated in the first three sections

of the tutorial in class) even stated that since the EC = E3 macrostate has the

lowest multiplicity (ωR = 4×1017, rightmost column in Table 6.4), E3 lowest energy

(of C ) and, therefore, be the most probable. What he failed to consider is that

the multiplicity of the reservoir is the lowest, making ER the lowest, and E3 the

highest value (by conservation of energy). Jake’s reasoning, in fact, reached the

exact opposite conclusion of what was intended.

16Discussions centered around trying to remember the density of states function and the bino-
mial distribution.
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The intent of the tutorial section is to motivate the connection between mul-

tiplicity of the reservoir and probability of the system being in the corresponding

macrostate. The students were meant the see that the EC = E4 macrostate is the

most probable since it has the largest corresponding multiplicity for the reservoir

and later conclude that E4 must be the lowest energy of the system because ER

must be at its highest value. Two other interview participants displayed this ten-

dency to latch onto the given expression relating mulitiplicity to energy, and it was

observed during the in-class tutorial session to a lesser extent. The statement re-

minding students about the connection between multiplicity and energy mentioned

above was removed from later implementations of the Boltzmann Factor tutorial

along with most of the original introductory paragraph. Data from the implemen-

tation at UMaine in Year 2 indicate that the information originally included in this

introductory paragraph is not needed for successful completion of the Boltzmann

Factor tutorial.

Results from teaching interviews motivated several revisions to the tutorial doc-

ument (including the removal of the explicit relationship: ω ∝ V NE
3
2 N+1

). Data

from the implementation in Year 2 show that these revisions (along with those mo-

tivated from in-class observations) helped students navigate the Boltzmann Factor

tutorial more efficiently (as determined by time on task and correctness of responses)

without any adverse effects evident in post-tutorial assessments.

Other in-class observations indicated that students did not always refer to their

own work from previous sections of the tutorial when answering more difficult ques-

tions later. In particular, when answering questions about multiplicity concerning

the divided container (see Figure 6.1), students did not necessarily refer to the

conclusions they had made about the original undivided container. Specific refer-

ences to previous tutorial sections were added to encourage students to make these

connections and build on knowledge they had previously constructed.
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The instructor at Cal Poly reported that students were quite confused by the

double-subscript notation used in the tutorial (e.g., EC1 to denote the value of EC

when C is in the j = 1 state). This notation was used in place of that found in

Table 6.4 in an effort to be explicit about which energy (that of C or R ) was being

discussed. A short interview study may be necessary to determine the notation that

would be most transparent and informative for students.

The most evident observation from all implementations of the Boltzmann Factor

tutorial is that students could not complete the tutorial in the 50-minute session

allotted. As a result of poorly worded questions and some distracting information,

the students at UMaine in Year 1 were only able to complete the first three sections

of the tutorial, ending in an expression indicating, P (Ψj) ∝ ωR(Ψj). They did not

have the opportunity to even begin the Taylor series expansion that would lead to

the derivation of the Boltzmann factor (the portion of the tutorial that I expected to

be the most difficult). After revising the tutorial to address the specific difficulties

discussed above, students at UMaine in Year 2 were able to successfully complete the

first four sections of the tutorial, culminating with the derivation of the Boltzmann

factor. They did not, however, have sufficient time to complete the normalization

of probability to determine an expression for the canonical partition function. A

similar result was reported at Cal Poly in that six out of seven groups of students

(≈ 4 students per group) were able to derive the Boltzmann factor after the entire

70 minutes allotted,17 but only 1-2 groups had enough time to derive Z as well.

Based on the overwhelming majority of students not finishing the entire tutorial

during all three implementations, I removed the fifth section from the tutorial, in

which students derive the canonical partition function, and added it as the first

question in the post-tutorial homework assignment. Students at Cal Poly (and

17Students at Cal Poly were given an additional half of a class period to complete the tutorial.
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during the teaching interviews at UMaine) who got to that portion of the tutorial

had little trouble normalizing their expression for probability to get Z. It seems

likely, therefore, that students will be able to perform this task on their own as

part of the homework. The tutorial now ends with the derivation of the Boltzmann

factor as well as a comment on the term “Boltzmann factor” and a reference to

the homework assignment in which they will determine an exact expression for the

probability rather than just a proportionality.

6.6 Related Difficulties — The Taylor Series

Before the first implementation of the Boltzmann Factor tutorial I expected

students to have difficulty with some aspects of the derivation. In particular I

expected that students might not be able to generate a Taylor series expansion of

entropy as a function of energy. This concern led to the use of a pretest on the

graphical interpretation of a Taylor series expansion and a pre-tutorial homework

assignment for the students to complete at home on their own and bring to class on

the day of the tutorial.

In the Taylor series pretest, developed by Warren Christensen while a postdoc

at UMaine and based on a suggestion by Andrew Boudreaux (Western Washington

Figure 6.8. Graph used in the Taylor series pretest at UMaine.
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University), students interpret the terms of a Taylor series expansion based on a

given graph of a function, f(x), shown in Figure 6.8.[104] The Taylor series expansion

about the point x = x1 is given to the students as,

f(x) = a1 + b1(x− x1) + c1(x− x1)2, (6.20)

and they are asked to determine whether each of the quantities a1, b1, and c1 are

positive, negative, or zero and explain their reasoning based on the graph with x1

clearly marked. The same question is asked of two other locations on the graph, x2

and x3. The correct solution requires students to recognize that a is the value of the

function at the specified point, b is the slope of the function (corresponding to the

first derivative), and c is proportional to the concavity (corresponding to the second

derivative). In two years that this question was given at UMaine before tutorial

instruction, 9 students out of 16 correctly determined the signs of the various quan-

tities and gave appropriate reasons. This suggests that about half of the students in

Stat Mech are familiar with the meaning of the various terms in the Taylor series.

The pre-tutorial homework assignment (shown in Appendix B) asks the students

to write a Taylor series expansion of entropy as a function of energy (including no

more than five terms) about the value E = E0,

S(E) = S(E0) +
∂S

∂E
E0

(E−E0) +
1

2!

∂2S

∂E2

E0

(E−E0)2 +
1

3!

∂3S

∂E3

E0

(E−E0)3 + . . . (6.21)

The homework assignment also asks the students to give an interpretation of how

each of the terms in the Taylor series relates to a given graph of S vs. E. The goal

of the pre-tutorial homework assignment was to give the students the opportunity

to look up the generic form of the Taylor series and have it with them in class

to facilitate the application of the Taylor series to the specific physical situation

presented in the tutorial. The graphical interpretation question was included to
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encourage students to think about the meaning of the terms in the Taylor series

rather than copying down abstract symbols devoid of meaning.

6.6.1 Student Use of Taylor Series

During the teaching interviews conducted at UMaine in Year 1 Joel (mentioned

above) was unique in that he was the only student interviewed who successfully

spontaneously generated a Taylor series expansion of entropy as a function of energy

as it relates to the given physical scenario, the necessary step to go from Eq. 6.17

to Eq. 6.18. Unfortunately the interviewer did not probe Joel’s understanding

of the Taylor series further; it therefore remains unclear whether or not this was

another case of Joel successfully memorizing the text without developing a complete

understanding of its meaning or implications (as he did for the derivation of the

Boltzmann factor). Jake and one other student were able to generate the appropriate

expansion when given the generic mathematical expression for a Taylor series (Eq.

6.21), but the final student (of four) was unable to make any connections between the

generic Taylor expansion and the physical scenario without explicit instruction from

the interviewer. These results indicate that student understanding of the motivation

for a Taylor series expansion (a crucial part of this derivation of the Boltzmann

factor) cannot be taken for granted. When combined with the data from the Taylor

series pretest discussed above, these results indicate that many students will be able

to interpret and apply a Taylor series that is given to them, but they may not be able

to generate an appropriate expansion in a novel context. This underscores the need

for the pre-tutorial homework assignment in which students are asked to generate

the Taylor expansion in Eq. 6.21. Along with several other researchers at UMaine,

I have found this pre-tutorial homework strategy to be worthwhile, even necessary,

for implementing tutorials in upper-division physics courses. This marks a distinct

difference from typical tutorial implementation within introductory courses, as far
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more prerequisite knowledge is assumed at the upper division, including a robust

understanding of concepts in both physics and mathematics.

One unexpected difficulty observed during the tutorial session in Year 2 at

UMaine is that two students (Sam and Bill, discussed above) did not correctly

construct the Taylor series expansion asked for in the pre-tutorial homework assign-

ment. Instead of constructing the appropriate expansion as seen in Eq. 6.21, they

used the terms “S1” and “S2” (constant entropy terms) in place of the “(E − E0)”

and “(E − E0)2 ” terms, respectively (i.e., S = S0 + S1S
′ + 1

2
S2S

′′ + . . . , where S0,

S1, and S2 were said to be constants), making it impossible to obtain entropy as

a function of energy. These students did, however, recognize that their expression

lacked an energy term, and once the instructor intervened to discuss the appropriate

form of the Taylor series with them, they were able to use it correctly to complete

the derivation of the Boltzmann factor. This is further evidence that the successful

completion of the pre-tutorial homework assignment is crucial to student success

with the tutorial, but that the assignment itself is not trivial, as some students may

not be successful in completing the task.

As reported by the instructor at Cal Poly, many students in this course had

great difficulty using the Taylor series expansion in the tutorial context even after

having completed the pre-tutorial homework. The instructor assigned specific study

of Taylor series between the two class periods, and reported that a short lecture

on the use of Taylor series expansion was necessary at the beginning of the second

tutorial period to allow students to successfully complete the tutorial.

6.6.2 Further Investigation into Student Understanding of the Taylor

Series

After the tutorial implementation at UMaine in Year 2, I conducted clinical

interviews with four students who had participated in the tutorial, one of whom
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was accompanied by a student who had not participated in the tutorial. One of the

goals of the interview was to determine how familiar the students were with Taylor

series expansions in terms of when they are applicable and how they are used. Some

common uses of Taylor series include numerical computations, evaluations of definite

integrals and/or indeterminate limits, and approximations.[105] Approximations are

particularly useful in physics at times when a solution in its exact form is unnecessary

or too difficult; in situations where information is known about various derivatives of

a function at a specific point, but nothing more is known about the function itself;

or in situations in which one is investigating small fluctuations about an average

value.

All students interviewed had a reasonable understanding of situations in which

the Taylor series is an appropriate tool. All students spontaneously used terms

like “approximation” and “estimation” when describing how to use a Taylor series

expansion, and all students were able to list one or more specific areas of physics in

which Taylor series expansions are useful. One interesting aspect of the interviews

is that all students at some point during the interview spontaneously referred to the

kinematic equation (x = x0+v0t+
1
2
at2) as a Taylor series. This had been mentioned

during lecture as an example of a Taylor series expansion with which everyone

would be familiar (even if they had never thought of it as a Taylor series). Their

acknowledgment of the kinematic equation as a Taylor series seemed to influence

their responses to various interview prompts.

One of the main questions the interviewees were asked about the Taylor series

was how they knew when to truncate the series. A common response involved

knowledge about the functional form of any higher order derivatives; i.e., if one of

the derivatives is constant, then all higher derivatives will be identically zero. One

student (Malcolm, a graduate student in physics) used this reasoning to justify why

the kinematic equation has only three terms: “Usually acceleration’s constant, so
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we don’t have a jerk. If we had a jerk running around messing things up, we’d need

more terms.” When prompted about situations in which no information was known

about the derivatives, however, Malcolm said that he would use different “rules of

thumb” depending on the application. If only a “ballpark” estimate was needed, for

example, only one or two terms would be necessary, but he indicated more terms

would be needed as desired precision increased (e.g., to 16 decimal places). Malcolm

also expressed the idea that looking very close to the value about which he was

expanding would require fewer terms than if he were to try to examine a value far

away from the expansion point. Finally, Malcolm stated that he would examine the

deviation between the Taylor series expansion and any experimental data available

and keep enough terms to have a reasonable fit (although he did not specify how

close he would require the expansion to match experimental data). This relation

to experimental data was echoed by Jayne (another graduate student in physics)

who initially had trouble articulating a good rationale for truncating a series but

eventually referred to different needs for different experimental tasks. Jayne also

cited a threshold for truncation of three or four orders of magnitude, i.e., terms that

are 3–4 orders of magnitude smaller than the linear term are not necessary.

Two undergraduate physics majors who were interviewed together (Paul, who

participated in the Boltzmann Factor tutorial, and Jonah, who did not) also cited

constant acceleration as the reason why the kinematic equation only has three terms

and knowledge of constant derivatives as the primary reason to truncate a Taylor

series. After several prods and questions about series truncation they started using

“estimation” language to discuss the possibility of starting with a “ballpark” estimate

and keeping terms until the results were close enough (using a guess-and-check type

of method). Paul also argued that the purpose of a Taylor series is to estimate

something that is more complex and that the first few terms must be the most

significant while the higher order terms die out.
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All students interviewed were able to list some areas of physics in which Taylor

series might be useful other than the kinematic equation (examples in quantum

mechanics, solid state physics, statistical mechanics, etc.), but no one elaborated on

how exactly a Taylor series would be useful in these various situations. Malcolm

came closest by citing the use of Taylor series to approximate a potential in quantum

mechanics as a harmonic potential, a task he implied he had completed in the past.

It is still unclear, however, what (if anything) would motivate these students to

spontaneously use a Taylor series expansion in a given physical situation. I do not

have evidence that they are able to generalize their knowledge to state the general

conditions under which a Taylor series is appropriate, and when to terminate one.

It seems as though their past experience has been based on various instructors

and texts indicating when a Taylor series is appropriate and how many terms are

necessary.

6.7 The Boltzmann Factor and its Relationship to The Density of States

An additional portion of the post-tutorial interview sessions in Year 2 asked the

students to relate graphs of the density of states (D(E)) and the Boltzmann factor

as functions of energy to the probability of various energy levels. The graphs (shown

in Appendix C) were presented one at a time (with D(E) given first), and students

were asked to determine which values of energy, if any, were more probable and which

were less probable. They were also asked to articulate how these graphs related to

probability. I was looking for evidence of student understanding of three pieces of

information that could be synthesized to gain a picture of total probability in this

context: 1) thatD(E) is related to the multiplicity of the system, based on the energy

of the system; 2) that the Boltzmann factor is proportional to the multiplicity of

the reservoir for a particular energy of the system; and 3) that the total multiplicity
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Figure 6.9. Graph of the Boltzmann factor and the density of states. Graph also
shows the product of the two as a function of energy. Taken from Figure 5.4 in Ref.
89, p. 100. Figure used without “e−E/kT ” and “D(E)” labels on final exam in 2010
(see Appendix C).

needed to determine probabilities is the product of the multiplicities of the system

and the reservoir, and therefore qualitatively shown by the product of D(E) and

the Boltzmann factor.18

Students in all four interviews were able to articulate how D(E) determines the

multiplicities and, therefore, the relative probabilities of various energy levels, but

Paul and Jonah were not very confident in this relationship. Students in three out

of the four interviews also indicated in some fashion that the Boltzmann factor

is related to the multiplicity of the reservoir, but only one, Kyle, seemed to have

a robust understanding of this relationship. All students had an understanding

that combining multiplicities requires multiplication. Several students articulated

this fact by stating that “multiplicity is multiplicative,” a succinct and memorable

expression. Moreover, all students recalled a figure from Baierlein which overlays

the Boltzmann factor on a graph of D(E) as well as graphing the product of the

two (recreated in Figure 6.9).[89, p. 100] Several students referred to this figure even

before the graph of the Boltzmann factor was introduced, often discussing the “bell-

18This is an extension of the situation used in the tutorial (described in section 6.3); now ωC 6= 1,
and one must calculate it using D(E) in order to find ωtot = ωR ωC .
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Figure 6.10. Student work – Boltzmann factor vs. D(E): Bill. Incorrect interpre-
tation of Z. Accompanied by the explanation, “The partition function, Z, . . . is the
peak gaussian shaped curve.”

curve” shape. Paul had a particular fixation on this graph. He could not remember

the details of what the various curves represent or the paragraph explaining why it

was important, but he mentioned the figure almost as soon as the graph of D(E)

was first presented, and he continued to refer to it throughout the interview (often

lamenting his lack of memory).

Out of all of the interviewees, Kyle seemed to have the best overall understanding

of the material based the time it took him to answer questions and the accuracy

of his responses. He was confident in both how D(E) may be used to determine

the multiplicity of the system and that the Boltzmann factor is proportional to the

multiplicity of the reservoir. He was articulate about the multiplicative nature of

multiplicities; he had good intuitions regarding practical limits on energy values; and

he spontaneously reflected on topics with which he was and was not comfortable and

confident. With all of these desireable cognitive and metacognitive traits, however,

Kyle still had not synthesized all of the information that was available to him to

articulate that the bell-curve shape in Figure 6.9 results from considerations of the

multiplicity of the entire system-reservoir combination and, therefore, requires the

product of the two functions that give the multiplicities for each constituent part.
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The weakest interviewees by far were Paul and Jonah. Between the two of them

they expressed many good ideas about thermodynamics and statistical mechanics

that were relevant to the interview scenario. Their confidence in any of these ideas,

however, was extremely low. Every time a new piece of information seemed to

contradict what they had previously said, they would dismiss one or the other as

incorrect or try to reconcile them without concern for factors which they had previ-

ously expressed (e.g., appropriate units). In fact the only fact they were completely

sure about was that the Boltzmann factor is proportional to probability. After much

prodding Paul expressed the need to maximize the entropy of the system-reservoir

combination as a whole to determine the most probable state, indicating that all of

the necessary information to succeed was available to them, and that their lack of

confidence in the physical meaning of the various terms and functions is what most

hindered their understanding of the combined probability distribution.

These interview results indicate that with an understanding of how both the

density of states function and the Boltzmann factor relate to the multiplicities of

different systems and a remembered image of a graph of the product of the two, one

may still not have synthesized this information to gain a robust understanding of

the physical reasoning behind taking the product of the two functions to determine

the total probability.

As a follow-up and broadening of the interview task, a question on the final

exam in Year 2 at UMaine presented the graph from Figure 6.9 without any labels

(see Appendix C). Students were also given expressions for the canonical partition

function (e.g., Z =
∫
e−E/kTD(E) dE) and asked to indicate what aspects of the

graph corresponded with various items in the equations. Ten out of 12 students

correctly labeled the graphical representation of both the Boltzmann factor and the

D(E), and eight of these students related the gaussian-shaped curve to the product

of the two. Only one student (Kyle) correctly interpreted Z as the area under
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Figure 6.11. Student work – Boltzmann factor vs. D(E): Jayne. Incorrect interpre-
tation of Z. Accompanied by the explanation, “. . . the ‘hump’ is the product of the
two [D(E) and Boltzmann factor], otherwise known as Z, the partition function.”

the curve of the graph of the product. Two students indicated that the gaussian-

shaped graph would be Z (shown in Figures 6.10 & 6.11), while eight students made

no mention of Z in their response. These exam results strengthen the claim that

students recognize graphs of the Boltzmann factor, D(E), and their product, but

may not have a robust understanding of the physical implications (as evidenced

by their failure to properly interpret the graph to represent Z). This failure to

recognize an integral as represented by the area under a graph of a function has

been documented by several researchers in thermal physics education.[1, 23, 33, 36]

6.8 Summary and Implications for Future Work

Preliminary research shows that students often do not use the Boltzmann factor

when answering questions related to probability in applicable physical situations

after lecture instruction on the Boltzmann factor and the canonical partition func-

tion. These results have been replicated over several years. Students instead tend

to use statements about a ranking of the relative probabilities to make claims about

probability ratios, consistent with literature in math education. This is a common

error among students at UMaine who had received lecture instruction and among
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students at Cal Poly who had received no instruction on the Boltzmann factor. To

address students’ failure to appropriately apply the Boltzmann factor, I created the

Boltzmann Factor tutorial to improve their understanding of situations in which the

Boltzmann factor is appropriate by providing them with the opportunity to engage

in the physical reasoning behind the derivation of the Boltzmann factor.

Results from tutorial implementation indicate that students are far more likely

to use the Boltzmann factor properly after tutorial instruction than after lecture in-

struction alone. I’ve shown that the Boltzmann Factor tutorial could be an effective

supplement to (as at UMaine) or replacement of (as at Cal Poly) lecture instruction.

Further investigation into students’ understanding of the Boltzmann factor has re-

vealed that even a student who takes the time to memorize the derivation of the

Boltzmann factor from a textbook may not gain a full appreciation of the physical

implications of the mathematical formalism. I have also shown, however, that by

participating in tutorial instruction, students can gain this appreciation and make

connections between the physical situation and mathematical expressions that had

previously eluded them.

Additional studies on student understanding of Taylor series expansion as it ap-

plies to physics have provided mixed results. Many students display the ability to

interpret a Taylor series of a function given the graph of that function. Results from

interviews and classroom observations, however, indicate that many students strug-

gle with generating a Taylor series expansion using physical quantities (i.e., entropy

and energy). Once provided with a generic Taylor series using physical quantities

most students are able to apply it to a specific situation, but this does not appear to

be a trivial task for them. Results from further interviews on student understanding

of the applicability of Taylor series expansions show that many students recognize

that Taylor expansion is a relevant mathematical tool in various areas of physics, but

they often lacked a sense of when its use is appropriate. Students also did not have
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rigorous criteria for determining how many terms should be kept (except when one

of the derivatives is a constant, resulting in all higher derivatives being identically

zero).

A follow-up study on student understanding of the Boltzmann factor and how

it relates to the density of states function has shown several things. Students often

have a good understanding of how both the Boltzmann factor and the density of

states function relate to probability; they may also be able to relate how the density

of states function relates to the multiplicity of a thermodynamic system. Students

often cannot, however, articulate how or why these two expressions for probability

should be combined. Several students interviewed mentioned a graph from the

textbook that showed the product of the two but had difficulty explaining why the

product was necessary. Results from an exam question asking students to interpret

an unlabeled graph of the Boltzmann factor, the density of states, and their product,

indicate that many students recognize these graphs and label them appropriately,

but most do not correctly determine the graphical representation of the canonical

partition function. This result suggests that students do not understand the physical

rationale for multiplying the Boltzmann factor and the density of states to determine

probability. This result may also suggest difficulty with the idea of an integral being

represented by the area between the graph of a function and the horizontal axis.

The results from my research suggest several avenues for future studies. The

first of these pertains to student understanding of Taylor series expansion. While

my research shows that many students are able to graphically interpret a Taylor

series expansion and that many recognize that Taylor series is appropriate in spe-

cific physical contexts, it is still unclear what factors would motivate students to

spontaneously use a Taylor expansion to solve a particular problem. In other words,

under what conditions do students choose to use a Taylor series expansion with-

out instructor intervention? And, what aspects of a physical scenario should be
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highlighted to encourage its use? The answers to these questions may benefit in-

structional sequences (such as the Boltzmann Factor tutorial) in which students’

use of Taylor series expansion is desired.

Another continuing study that could benefit statistical mechanics instruction

would be on student understanding of the physical connection between the Boltz-

mann factor and the density of states. In virtually all physically interesting systems

one must consider the interactions between a system and its surroundings and how

the entropy and multiplicity of each affects thermodynamic equilibrium. Though

a necessary first step toward understanding more complex systems, the Boltzmann

factor on its own is only applicable in a handful of cases; otherwise one needs knowl-

edge of the multiplicity (or degeneracy) of the system that may be obtained from the

density of states function. It is unclear at this point how well students understand

the physical connection between these two mathematical expressions. It is also un-

clear how well they understand why the product of the two (rather than the sum or

any other combination) yields an expression for the probability of a system having a

particular energy. The bell-shaped curve that is the graph of this product, however,

is virtually the definition of thermodynamic equilibrium, with the vast majority of

particles in a system being within a small ranges of values of an average energy.

A robust understanding of the product of the Boltzmann factor and the density of

states and why they are physically relevant is, therefore, vital to the understanding

of statistical mechanics.
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Chapter 7

CONCLUSIONS

I have identified several specific difficulties that student express in the context of

either heat engines and the Carnot cycle or the Boltzmann factor. Furthermore, I

have developed two guided-inquiry tutorial activities that address these difficulties

and are intended for use within advanced thermal physics courses. The decision to

identify specific difficulties rather than classify student understanding in some other

way is consistent with Heron’s description of the utility of the specific difficulties

framework for the development of instructional materials.[37] My use of tutorials

as an instructional strategy is consistent with many other researchers who have

studies student difficulties in thermal physics at both the introductory and advanced

levels.[17–20, 22, 30–32, 34]

Advanced thermal physics students provide an interesting population of journey-

man physicists who are no longer novice but have not reached full expertise.[24] My

results indicate that, when faced with an unfamiliar situation, these upper-division

students display novice-like behavior (see section 6.2.2). This result is consistent

with Meltzer’s comparison of upper-division and introductory students.[33] Further-

more, engaging in either the Heat Engines tutorial or the Boltzmann Factor tutorial

promotes expert-like skills (e.g., appropriately using mathematics and understand-

ing the physical implications of the results, and using impossible situations as a

counterexample in a proof).

Data from multiple sources (e.g., the finite reservoirs question and the engine

entropy question) indicate that similar difficulties may be observed across different

contexts. This suggests that these difficulties may not be instinctual responses, but

the result of semi-stable beliefs that some students have about thermal physics.
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Discussions of the major results from both halves of my dissertation are included

in sections 5.5 and 6.8. In this chapter I summarize those discussions and present

common themes from both. In particular I highlight three common themes: the

benefits of using classroom video data from a research perspective; the benefits of

using pre-tutorial homework assignments from an instructional perspective; and the

aspects of the advanced undergraduate population that separate them from both

novice introductory students and expert physicists. I conclude with a summary of

the implications of my research on future studies within advanced thermal physics

courses.

7.1 Identifying and Addressing Specific Difficulties with Heat Engines

Data from written questions and videotaped classroom observation provide ev-

idence for several specific student difficulties with heat engines. One of these (the

one that the Heat Engines tutorial was designed to address) is students’ failure to

use the fact that the Carnot cycle is reversible (and that, therefore, the entropy

of the universe does not change) to answer questions about heat engines. On the

finite reservoirs question (given at UMaine after lecture instruction), a third of stu-

dents (8 out of 25) did not use the reversibility of the Carnot cycle to correctly

determine the final temperature of the reservoirs. Four of these students even wrote

that ∆Suni = 0, but did not use this fact appropriately to determine the final tem-

perature. On the engine entropy question (given at UMaine and RPI after lecture

instruction), less than a third of students (18 out of 64) correctly used the reversibil-

ity of the Carnot cycle to determine that the entropy of the universe doesn’t change

after one complete cycle of a Carnot engine. The most common incorrect answer

of this part was the claim that the entropy of the universe would increase; these

answers were usually accompanied by statements about the Carnot engine being a
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real engine and/or that entropy always increases. Observing this difficulty within

both data sets suggests that some students consistently have trouble with the idea

that the Carnot engine is the only ideal, reversible heat engine. Furthermore, in-

structional activities that encourage students to derive Carnot’s efficiency, and the

steps necessary for the Carnot cycle, starting from the constraint of reversibility

(like those found in the Heat Engines tutorial) could be of great benefit to these

students.

Data from pre- and post-tutorial assessments indicate that the Heat Engines

tutorial helps students gain an understanding of how Carnot’s theorem relates to

and can be derived from the entropy inequality statement of the 2nd Law. Data

also indicate that students become more selective with their reasoning on questions

pertaining to heat engines and entropy after tutorial instruction. Before tutorial

instruction, students were just as likely to use Reversibility reasoning as they were

to use State Function reasoning when answering questions about the entropy change

of the working substance during one complete cycle of the Carnot engine. After

tutorial instruction, students are much more likely to use Reversibility reasoning

when answering questions about the change in entropy of the universe and use

State Function reasoning when answering questions about the change in entropy of

the working substance. Students’ failures to properly recognize the implications of

Carnot’s theorem and the state function property of entropy in the context of heat

engines are evident across several years of data-taking and at two different schools.

On the engine feasibility question, all students invoked the 2nd Law: either ex-

plicitly, by calculating ∆Suni and checking if it is positive, or implicitly, by either

calculating the efficiency of the engine and comparing it to the Carnot efficiency for

the same two reservoirs, or by comparing the ratios of
∣∣∣QL
QH

∣∣∣ and TL
TH

. No students

used only the 1st Law to determine whether or not a device could function. Students’

abilities to determine whether or not a proposed device will function as described are
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comparable to introductory students’ achievement after instruction using a different

tutorial reported by Cochran & Heron.[35] Additionally, the Heat Engines tuto-

rial gives students the opportunity to directly show that Carnot’s theorem and the

Kelvin-Planck statement may both be derived from the entropy inequality statement

of the 2nd Law.

Data from videotaped classroom observations suggest several additional difficul-

ties related to heat engines and the Heat Engines tutorial. One is students’ use of

improper definitions of thermodynamic efficiency. Students in Year 1 used the ratio

of net output energy ÷ net input energy as a definition for efficiency (η = W
|QH|−|QL|)

while working through the Heat Engines tutorial. After instructor intervention,

these students realized that this ratio would be exactly unity for all heat engines

satisfying the 1st Law and, therefore, that it is not useful. One of these students,

however, used an inappropriate definition of efficiency of the engine feasibility ques-

tion after tutorial instruction. This indicates that students’ difficulties with the

definition of thermodynamic efficiency are robust in that they persist over time and

after direct instructional intervention. By asking students in Year 2 to consider why

this is an inappropriate expression for efficiency before the tutorial session, I gave

them the opportunity to wrestle with this dilemma and consequently work through

the tutorial more efficiently. In fact, when one student expressed the desire to use

this ratio in Year 2, one of his group-mates referred to the homework assignment to

explain why it would be inappropriate.

Two additional difficulties were identified using data from classroom observations

but are not explicitly addressed by the Heat Engines tutorial. The first of these is

some students’ difficulty imagining impossible situations. In Year 1, one student

had great difficulty considering a heat engine that operated in a cycle to convert

heat from only one reservoir into work (an impossible process that violates the 2nd

Law). Even with explicit help from his group-mate, who seemed to understand
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his dilemma, this student had trouble considering this impossible process. Bing and

Redish suggest that the ability to use impossible situations to gain information about

our physical world is a trait of an expert physicist that upper-division students may

not have yet acquired.[24] By asking students to engage in this type of reasoning, I

hope to help develop their skills as physicists.

The second difficulty that has not yet been addressed is students’ failure to

articulate (and confusion surrounding) the difference between differential change

and net change. For some students, this difficulty seems to be nothing more than

sloppy language: they use terms like “d–Q” to mean the “net heat,” seemingly without

difficulty. Other students, however, seem to become confused when this distinction

is not articulated. Jonah claimed that, since the net heat transfer to the working

substance over one cycle of a particular heat engine is 0, then there is not heat

transfer; he then concluded that the reservoirs must be the same temperature if no

heat transfer occurs. This difficulty is not addressed by the Heat Engines tutorial,

and more investigation may be needed to inform appropriate instructional strategies.

7.2 Identifying and Addressing Specific Difficulties with the Boltzmann

Factor

Data from written surveys, videotaped classroom observations, teaching inter-

views, and clinical interviews provide evidence for several specific student difficul-

ties with topics related to the Boltzmann factor. The primary difficulty that the

Boltzmann Factor tutorial was designed to address is students’ failure to use the

Boltzmann factor to determine the probability of a particular macrostate in a canon-

ical ensemble, i.e., a system at constant temperature and occupying one of several

possible energy states. Data from pre- and post-tutorial assessments indicate that

students who participate in the Boltzmann Factor tutorial are significantly more
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likely to use the Boltzmann factor when answering probability ratio questions that

require its use than students who receive lecture instruction alone. After lecture in-

struction, only 25% (8 out of 32) of students at UMaine used the Boltzmann factor

to answer the probability ratios question. Others students used a ranking of the

probabilities to come to a conclusion about the ratios using strategies consistent

with those reported by Smith.[63] After tutorial instruction, nearly 90% of students

used the Boltzmann factor to answer similar exam questions. These post-tutorial

results have been replicated over three implementations at two different institutions.

Results from Cal Poly suggest that the Boltzmann Factor tutorial may be used suc-

cessfully as a replacement of (rather than a supplement to) lecture instruction on

the Boltzmann factor.

Participation in the Boltzmann Factor tutorial also helps students gain an ap-

preciation for the origin and derivation of the Boltzmann factor even if they were

able to use it correctly after lectures alone. Results from teaching interviews high-

light the importance of giving students the opportunity to engage in mathematical

derivations of physical expressions within the classroom, as one student had memo-

rized and could recite the textbook derivation of the Boltzmann factor but had very

little understanding of the relationships between the various equations he wrote.

Data from classroom observations suggest that students who use the Boltzmann

factor appropriately to answer the probability ratios question after lecture instruc-

tion might not appreciate its conceptual meaning; these students may gain a better

understanding of the physical significance of the Boltzmann factor by engaging with

the derivation in the Boltzmann Factor tutorial.

Several difficulties have again been identified that are not explicitly addressed

by the tutorial. The first of these is students’ inability to use the Taylor series

appropriately in physical contexts. Data from teaching interviews indicate that only

one out of four participants could generate a Taylor series of entropy as a function
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of energy for a particular situation (and this one may have only memorized the

Taylor series from the course textbook as he had the entire derivation); however, all

students could use a generic Taylor series (provided by the interviewer) to create the

situation-specific variety, with varying degrees of interviewer assistance. Data from

classroom observations at both UMaine and Cal Poly, however, indicate that some

students who complete the pre-tutorial homework and bring the generic Taylor series

with them to class still have trouble using it in the tutorial. Additionally, data from

clinical interviews suggest that many students know that Taylor series is a relevant

mathematical tool in physics but have not developed sophisticated heuristics for

when it should be used.

A second difficulty observed during clinical interviews is students’ failure to syn-

thesize the information they already knew about the Boltzmann factor and the

density of states function into a complete model of how they compliment each other

to predict real-world observations. The most noteworthy result of this aspect of the

interviews is that all of the interview participants possessed the necessary pieces of

knowledge to develop this understanding (i.e., the relationship between the Boltz-

mann factorand multiplicity of a reservoir, the relationship between the density of

states and the multiplicity of the system, and the fact that the product of the mul-

tiplicities of constituent parts determines the total multiplicity of the whole), but

they did not assemble them appropriately without interviewer prompts. This may

be indicative of novice-like behavior as experts are more likely to perceive large

meaningful patterns than novices.[27]

7.3 Research Benefits of Videotaped Classroom Observations

From a methodological point of view, data from videotaped in-class tutorial ses-

sions were immensely beneficial to my study of the effectiveness of tutorials. Written
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surveys were useful to see a snapshot of student understanding as evidenced by their

responses to various written prompts, but video data afforded me the opportunity

to revisit how students engaged with the tutorials and identify areas that were dif-

ficult for them and areas that were unproductively easy in more detail than simply

observing and taking field notes.

In addition to providing evidence for the difficulties described above, video data

provided evidence that the mock student discussion portion of the Heat Engines tu-

torial is unnecessary since no students worry about the consequences of work on the

entropy of the universe until asked to do so (a topic which is not needed for the suc-

cessful completion of the tutorial). With respect to the Boltzmann Factor tutorial,

video data provided evidence that students who recognized when the Boltzmann

factor is appropriate and used it properly after lecture instruction alone had not,

in fact, developed an understanding or an appreciation of what the mathematical

expression of the Boltzmann factor represents physically; moreover, there is some

evidence that these same students realized the physical significance of the Boltz-

mann factor after participating in the Boltzmann Factor tutorial. Without video

data, these and other incredibly valuable observations would have eluded me and

been lost as fleeting moments in time. Analyzing classroom video data has allowed

me to uncover student difficulties that had been previously undocumented (based on

written data); to confirm whether or not students engaged with tutorial prompts as

they were intended; and to demonstrate the benefits of tutorial participation beyond

the original intent.

7.4 Instructional Benefits of Pre-tutorial Homework Assignments

One of the most striking results from both halves of my research is the benefit

of assigning a homework activity to be completed by the students and brought to
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class on the day of the tutorial. In Year 1, before the creation of the pre-tutorial

homework assignment, students got stuck working through the Heat Engines tutorial

when they did not understand the justification for defining thermodynamic efficiency

in the conventional way (η =
∣∣∣ WQH

∣∣∣). Students in later years had the chance to

ponder this definition before the tutorial and were, therefore, not encumbered by

long discussions about the definition of efficiency in class. In fact, one student used

his pre-tutorial work to explain to another student why the conventional definition

is the most appropriate. Students were also able to refer back to the pre-tutorial

homework while working through the Heat Engines tutorial to help answer questions

about the change in entropy of the working substance due to a complete cycle of a

heat engine.

As mentioned above, results from teaching interviews indicate that most students

could not spontaneously generate a Taylor series expansion of entropy as a function

of energy when asked to do so in the Boltzmann Factor tutorial. Giving students

the chance to refresh their memory of Taylor series before coming to class helped

alleviate this problem, as most students were able to refer to their homework and

generate a Taylor series for the tutorial situation. Some students, however, had

trouble creating the necessary Taylor series even after completing the pre-tutorial

homework; it is clear that more research is needed to understand students’ thought

processes regarding Taylor series and to design appropriate instructional materials

that help them to recognize situations in which Taylor expansion is useful, and to

apply the mathematics appropriately.

7.5 Advanced Undergraduates: Journeyman Physicists

As mentioned above, several pieces of evidence suggest that the advanced un-

dergraduate physics students who were the research subjects of this study are not
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novices, but neither are they expert physicists. My research suggests that, if these

students do not recognize the appropriate physical concepts that apply in a par-

ticular situation (e.g., not using the Boltzmann factor to determine probability for

a canonical ensemble), they may resort to novice-like behavior (e.g., using general

strategies for comparing fractions observed in middle and high school students).[63]

Another example of novice-like behavior is students’ failure to refer to their own

work while engaging in later parts of the Boltzmann Factor tutorial.

Video data from classroom observations of students engaging in the Heat Engines

tutorial suggest that some advanced students have not developed the expert-like skill

of using impossible situations as counterexamples in order to gain more information

about reality.[24] This claim is strengthened by the evidence that before tutorial

instruction, one of these students (Jake) did not answer the parts of the engine

entropy question that ask students to consider an engine that was more efficient

than the Carnot engine. His only response was that this engine was impossible, and

he did not make any claims about the change in entropy of either the universe or

the working substance due to this engine. After engaging in this process during the

tutorial, however, this same student correctly used the reversibility of the Carnot

cycle to state that the entropy of the universe would remain the same for the Carnot

engine and decrease for a better-than-Carnot engine. He also used the state function

property of entropy to claim that the entropy of the working substance does not

change for either engine after one complete cycle. In this way, participating in

the Heat Engines tutorial helped this student engage in the expert-like behavior of

considering impossible scenarios.

The display of non-expert-like behavior, however, does necessarily mean that

advanced undergraduate students are novices. I treat upper-division students as

more advanced than their introductory counterparts. I expect that they have the

mathematical sophistication to be able to productively engage in the derivations
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that are presented in the tutorials. Teaching interviews and classroom observations

suggest that they are able to engage with these derivations successfully if given

the proper background cues. I also trust upper-division students to have the in-

tellectual integrity and work ethic to complete homework assignments in time to

use them during the tutorial sessions. These pre-tutorial homework assignments

represent a deviation from the typical tutorial model used in introductory physics

classes, but they are, I feel, a very beneficial addition to tutorials in upper-division

courses. In introductory physics courses, tutorials typically ask students to rely

only on their own everyday experiences or on observations made during the tutorial

session. Upper-division students, on the other hand, are expected to have a wealth

of knowledge and understanding gained from years of physics and/or mathematics

instruction. They may not, however, have developed sophisticated heuristics for

selecting the appropriate background knowledge needed within a specific physical

scenario (as would be expected of expert physicists)[27]; therefore, it is the instruc-

tor’s responsibility to help students sort through their vast understanding to find

the needed nugget of knowledge. Within the tutorial setting, in which students

progress through the class period with minimal instructor intervention, this cueing

may be possible through a pre-tutorial homework assignment in which students are

asked to apply certain pieces of background knowledge to answer relatively sim-

ple problems, i.e., problems that do not require much cognitive thinking, but that

may require more time than would be available within the classroom. My use of

pre-tutorial homework assignments has greatly benefitted student understanding of

relevant topics as well as their abilities to progress through the tutorials in an ef-

ficient and effective manner. This is particularly important as the desired learning

result is achieved by completing the last section of the tutorial.
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7.6 Implications for Future Research

The results of my research suggest several avenues for continuing studies. Video

data from student participation in the Heat Engines tutorial indicate that students

often do not understand (or at least articulate) the distinction between exact (d )

and inexact (d– ) differentials and their use. Much research has been conducted

on student understanding of the path dependence of Q and W and the path inde-

pendence of ∆U , but few to no studies exist that investigate student understanding

of their respective differentials and how and why they are used.

Another interesting investigation would be student understanding of reversibil-

ity in the context of heat engines and refrigerators. Exam data indicate that no

students in Year 3 articulated the importance of the Carnot cycle as the divider

between devices that could operate as heat engines and devices that could operate

as refrigerators. This unique aspect of the Carnot engine may be overlooked by

many students who do not recognize the literal meaning of the Carnot cycle being

“reversible.”

Student understanding of the connection between the density of states function

and the Boltzmann factor is another area that could benefit greatly from further

research. My preliminary interview results indicate that students often possess all

of the necessary components to develop a complete understanding of this relation-

ship, but they do not synthesize these pieces of information into a coherent whole

without explicit intervention and/or guidance. Exam results show that many stu-

dents have difficulty representing the partition function graphically when given a

graph the product of the density of states and the Boltzmann factor. Additional

research on students’ understanding of how each of these expressions relates to the

multiplicity of either a thermodynamic system or its accompanying reservoir, as well

as how they in turn relate to the probability of of the system occupying a partic-
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ular macrostate. A study of students’ understanding of the Boltzmann factor and

the density of states would also be quite interesting as students attempt to connect

discrete quantities (e.g., quantum energy eigenstates used to calculate the Boltz-

mann factor) with continuous quantities (e.g., the continuous energy spectrum of

the density of states). This connection between discrete and continuous quantities

is vitally important in modern physics, as properties of subatomic particles that

must be treated quantum mechanically are being used to predict phenomena that

are observed at the macroscopic level and can be described classically.

Finally, an investigation into student understanding of Taylor series expansion

could be incredibly beneficial. This has not been documented from a physics per-

spective, even though the Taylor series is a mathematical tool that is used extensively

in many branches of physics (including statistical and classical mechanics). Of par-

ticular interest would be an examination of expert physicists’ spontaneous use of the

Taylor series. By learning when expert physicists choose to use Taylor series and how

they make that decision, one could (in principle) design an instructional sequence

that could enhance student understanding of physics and useful mathematical tools

within many different courses typically taught in the undergraduate sequence. This

would be an excellent stepping stone for undergraduate physics majors on their way

to expertise.
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For the following questions consider one complete cycle of a heat engine operating between two
thermal reservoirs.  The heat engine operates using an appropriate working substance that
expands and compresses during each cycle.

For questions a) and b) consider (i.e. imagine) this heat engine to be a Carnot engine:

a) As a result of one complete cycle of the Carnot engine, will the entropy of the working
substance increase, decrease, remain the same, or is this not determinable with the given
information?  Explain your reasoning.

b) As a result of one complete cycle of the Carnot engine, will the entropy of the universe
increase, decrease, remain the same, or is this not determinable with the given
information? Explain your reasoning.

For questions c) and d) consider (i.e. imagine) a heat engine that operates between two thermal
reservoirs and conserves energy but is more efficient than a Carnot engine:

c) As a result of one complete cycle of this new heat engine, would the entropy of the
working substance increase, decrease, remain the same, or is this not determinable with
the given information? Explain your reasoning.

d) As a result of one complete cycle of this new heat engine, would the entropy of the
universe increase, decrease, remain the same, or is this not determinable with the given
information? Explain your reasoning.
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The concept of a heat engine is to use some working substance to transform heat energy from a thermal
reservoir (at temperature TH) into mechanical work to perform a task, such as lifting a weight.  Some
energy in the working substance will also be released into a different thermal reservoir (at temperature
TL < TH) as exhaust heat energy.  In order to complete this process without compromising the integrity of
our heat engine the process must be cyclic, i.e. the working substance returns to its original state defined
by pressure, volume, temperature, etc.  For our purposes we can imagine the working substance as being
an ideal gas contained within a piston.  Heat energy may be transferred to or from the working substance
by placing the piston in contact with the TH or TL reservoir, respectively.  As a matter of sign convention,
|QH| is the magnitude of the heat transfer from the higher temperature reservoir to the working substance,
|QL| is the magnitude of the heat transfer from the working substance to the lower temperature reservoir,
and W is the work done by the working substance.

A. Will the value of each of the following properties of the working substance increase,
decrease, or return to its original value after the completion of one full cycle?

1. Pressure

2. Temperature

3. Internal energy

4. Entropy

The effectiveness of a heat engine is determined by how much of the energy extracted from the
thermal reservoir can be used to do work.  We must, however, be very clear what we mean by
“effectiveness.”  How well a heat engine operates is quantified by the thermodynamic efficiency,
defined as the ratio of the work done by the working substance to the heat transfer from the high
temperature reservoir (η = W/|QH|).

B. Some would suggest that efficiency would be better defined as the ratio of the work done by
the working substance to the net heat transfer to the working substance (η = W/(|QH|-|QL|)).
Do you agree with this suggestion?  Why or why not?
(Hint: consider the first law of thermodynamics.)
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I. The First Law and Thermodynamic Efficiency
Consider the following proposed heat engines.  For our purposes any work done by the working
substance will be conservative and stored outside the engine as potential energy (gravitational, spring,
etc.) for later use.

A. The first heat engine (Cycle I) transfers heat energy, |QH|, from the TH reservoir but does no
work (W = 0).

1. What must be true for this heat engine to satisfy the First Law for a complete cycle?

2.  Determine the efficiency of this engine.

B. The second heat engine (Cycle II) transfers heat energy from the TH reservoir but does not
transfer any heat energy to the TL reservoir (|QL| = 0).

1. What must be true for this heat engine to satisfy the First Law for a complete cycle?

2. Determine the efficiency of this engine.

II.  The Second Law and Entropy
In a previous tutorial we considered heat transfer between two massive blocks and found that
processes that are impossible (e.g. spontaneous heat transfer from a lower temperature reservoir to a
higher temperature reservoir) could still satisfy the First Law.  We concluded that considerations of
entropy and the Second Law of Thermodynamics could be used to validate the possibility of a
proposed process.  We will now use the Second Law to discuss Cycle I and Cycle II from above.
Recall that, ΔSuniverse ≥ 0 and ΔS = ∫dQrev./T.

A.  In general, what must be true about a process for the entropy of the universe to stay the same
(ΔSuniverse = 0)?

In general, what must be true about a process for the entropy of the universe to increase
(ΔSuniverse > 0)?
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B. Give an expression for the change in entropy during the completion of one cycle of Cycle I
for each of the following parts of the heat engine.  Explain your reasoning in each case.

1. The working substance

2. The thermal reservoirs

3. Determine the total change in entropy of the universe.  According to the Second Law,
is this cycle possible?

C.  Give an expression for the change in entropy during the completion of one cycle of Cycle II
for each of the following parts of the heat engine.  Explain your reasoning in each case.

1. The working substance

2. The thermal reservoirs

3. Determine the total change in entropy of the universe. According to the Second Law,
is this cycle possible?

D. Consider the following student discussion about the work done by the working substance:

Leslie: “What about the fact that the second engine does some work on the outside
environment?  Isn’t that going to increase the entropy of the surroundings?”

Janice: “But the work isn’t dissipative.  It’s just lifting a block or something.  It’s not going
to make the block more disordered or make it hotter, it’s just going to lift it higher.”

Do you agree with either of these two students?  Why or why not?
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III.  Limitations on Efficiency
In II.C.3 we concluded that, according to the Second Law, a heat engine cannot possibly operate at
100% efficiency.  This result is generally credited (independently) to Lord Kelvin and Max Planck
and is summarized by the Kelvin-Planck statement of the Second Law: “It is impossible to construct a
device that operates in a cycle and produces no other effect than the performance of work and the
exchange of heat [energy] with a single reservoir.”  It may now seem obvious that a heat engine of
100% efficiency is unattainable. So let’s investigate the maximum efficiency we could obtain while
satisfying both the First and Second Laws.

A.  Determining the upper limit on efficiency

1. First, write an expression for efficiency solely in terms of the heat transfer between
the working substance and the two reservoirs (|QH|, |QL|).

2. Based on your answers to parts II.B and II.C derive a relationship between the heat
transfer during one cycle of an arbitrary heat engine and the temperature of the
reservoirs (TH, TL) based on the Second Law (ΔSuniverse ≥ 0).

3. Combine the results from III.A.1 and III.A.2 to determine an inequality for the
efficiency of a heat engine operating between two thermal reservoirs with
temperatures TH and TL.

Under what condition(s) will a heat engine operate at the upper limit of efficiency?

 Check your results with an instructor before proceeding to the next section.
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B. We now want to design a heat engine (Cycle III) that will operate at the upper limit of
efficiency.  We saw in a previous tutorial that any heat transfer between two objects at
(discernibly) different temperatures will be spontaneous and inherently irreversible
(ΔSuniverse > 0).  We’ll now consider how we could design a cyclic process that restricts heat
transfer to occur reversibly between each of the two thermal reservoirs and the working
substance.

1. First, what kind of process will allow reversible heat transfer from the TH reservoir to
the working substance?

What kind of process will allow reversible heat transfer from the working substance
to the TL reservoir?

2. What needs to happen to the working substance to complete a thermodynamic cycle
while including the two processes described in part 1 above?

What condition(s) must be placed on the working substance during the remainder of
the cycle for the engine to operate at the upper limit of efficiency?

What kind of process(es) would accomplish this?

3. Using these ideas, determine how many processes we need to complete Cycle III.
List each of them.

The cycle you’ve just developed is known as the Carnot cycle (or Carnot engine) after
Nicolas Léonard Sadi Carnot who first derived the upper limit of efficiency that you found in
part III.A.3.  The formal statement of this result is known as Carnot’s Theorem:  “No engine
operating between two reservoirs can be more efficient than a Carnot engine operating
between those same two reservoirs.”
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1) The Carnot Cycle for an Ideal Gas:  The P-V diagram for a Carnot cycle
in which the working substance is an ideal gas is shown at the right.  Use
the Ideal Gas Law and the First Law of Thermodynamics to derive an
expression of the efficiency of a Carnot cycle.

A.  First, derive an expression for the efficiency of a Carnot cycle
operating between thermal reservoirs at temperatures TH and TL in
terms of the temperatures of the reservoirs, the volumes at the
beginning and end of each process, and constants.

B.  Now, use the known result that PV
γ
 = constant for an ideal gas going through an adiabatic process

to show that the ratios of the volumes at the beginning and end of the isothermal processes are

equal, i.e. 
4

3

1

2

V
V

V
V

= .

C.  Use the relationship between these ratios of volumes to simplify your expression for efficiency in
part A so that it does not depend on volume.

D.  Compare your calculated efficiency from part C to the upper limit you found in III.A.3 of the
tutorial.  Resolve any discrepancies.

V1 V4 V2 V3

P

V

T = TH

Q = 0

Q = 0

T = TL

1

3

4

2
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2) A. See the P-V diagram for the Carnot heat engine on
p. 1.  Sketch the appropriate temperature-entropy
(T-S) diagram for the Carnot engine here, labeling
the isotherms as TH and TL, and the process
intersection points (“nodes”) as 1, 2, 3, 4  to
correspond to the P-V diagram (p. 1).

B. Evaluate ∫ TdS for the full cycle (12341)
on your T-S diagram in A above.

What is the physical interpretation of the value of ∫ TdS for each complete cycle of the working
substance?

Show the graphical representation of that integral on the T-S diagram.

C. Consider the quantity ∫ PdV for the full cycle (12341) as shown in the P-V diagram.

What is the physical interpretation of the value of ∫ PdV for each complete cycle of the working
substance?

Show the graphical representation of that integral on the P-V diagram.

How do the magnitudes, signs, and dimensions of ∫ PdV and ∫ TdS compare?  Explain how you
know.

D. See the  P-V  diagram for the Carnot cycle on p. 1.  Does that diagram represent a Carnot cycle
for any working substance in addition to an ideal gas?  Explain.

E. See your  T-S  diagram in part A above.  Does that diagram represent a Carnot cycle for any
working substance in addition to an ideal gas?  Explain.
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3) Real Reservoirs (FRQ):  Now we change the context; the least efficient heat engine (Cycle I from the
tutorial) and the most efficient heat engine (Cycle III from the tutorial, the Carnot cycle) are each now
set up to operate between identical pairs of real (finite) thermal reservoirs, rather than the ideal,
constant-temperature reservoirs used in ideal engines.  In each case the higher temperature reservoir is
initially at temperature TH, and the lower temperature reservoir is initially at temperature TL.  All four
reservoirs have mass m and specific heat capacity cP.  (What is the heat capacity of an ideal thermal
reservoir?)  During any one cycle, we may assume that any change in temperature of the reservoirs is
negligible.  The cumulative change in temperature due to many cycles, however, will not be
negligible.  Consider the situation in which each heat engine operates for many cycles until all
available energy has been exhausted, and each pair of reservoirs has come to thermal equilibrium.
Use additional sheets of paper if necessary.

A. Without doing any calculations!  Will the final temperature of the working substance and both of
its reservoirs in Cycle I be greater than, less than, or equal to the final temperature of the
working substance and both of its reservoirs in Cycle III?  Explain your reasoning.

B. For the least efficient heat engine, calculate the following quantities in terms of m, cP, TH and TL.
1.  The total work done by the working substance
2.  The final equilibrium temperature of the heat engine
3.  The change in entropy of the working substance, reservoirs, and universe for the entire process

C. For the most efficient heat engine, calculate the following quantities in terms of m, cP, TH and TL.
1.  The change in entropy of the working substance, reservoirs, and universe for the entire process
2.  The final equilibrium temperature of the heat engine
3.  The total work done by the working substance

D. Compare your answers to parts B.2 and C.2 with your prediction from part A.  If your prediction
was incorrect, qualitatively describe what you didn’t initially consider.

E. How do the arithmetic mean temperature Ta and the geometric mean temperature Tg of TH and TL

relate to your answers for parts B.2 and C.2 above?
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Adapted from Cochran, M. J. and Heron, P. R. L., Am. J. Phys., (2006)

Consider two heat engines that operate between the same two high-temperature and low-temperature
reservoirs, at 600 K and 400 K, respectively.

a) For the first engine: The heat transfer from the high temperature
reservoir to the working substance during one complete cycle is 600 J.
The heat transfer from the working substance to the low temperature
reservoir during one complete cycle is 350 J.  The work done by the
working substance during one complete cycle is 250 J.  A diagram of
this heat engine is shown at the right.
Determine whether or not this engine could operate as described.
Explain your reasoning.

b) For the second engine: The heat transfer from the high temperature
reservoir to the working substance during one complete cycle is 600 J.
The heat transfer from the working substance to the low temperature
reservoir during one complete cycle is 425 J.  The work done by the
working substance during one complete cycle is 175 J.  A diagram of
this heat engine is shown at the right.
Determine whether or not this engine could operate as described.
Explain your reasoning.

c) Determine whether each of the devices above could operate as a refrigerator (all energy
transfers reversed).
Explain your reasoning.

600 J
250 J

350 J

600 J
175 J

425 J
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1. Consider a particle (Particle A) in a system with three
evenly spaced energy levels, as seen in the figure at
right.  The probability that Particle A is in the nth energy
level is PA(n).

A. Is the ratio of the probabilities 

€ 

PA 3( )
PA 2( )  greater than, less than, or equal to the ratio of

the probabilities 

€ 

PA 2( )
PA 1( )?  Please explain your reasoning.

B. Consider a second single particle, Particle B, that can
also only be in three states.  The energies of the three
states of each system are listed in the table at right.
Both systems are in equilibrium with a reservoir at
temperature T.

Is the ratio of the probabilities 

€ 

PB 3( )
PB 2( )  for Particle

B greater than, less than, or equal to the ratio of the probabilities 

€ 

PA 3( )
PA 2( )  for

Particle A?  Please explain your reasoning.

n Particle A Particle B

1 0.0 eV –0.05 eV

2 +0.05 eV 0.0 eV

3 +0.10 eV +0.05 eV

n = 1

n = 2

n = 3

0.0 eV
0.05 eV

0.10 eV

Energy
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2. Below is a sketch of the function f(x).

The function f(x) is expanded in a Taylor series about x = x1, x=x2 and x=x3. For each point,
state whether the given coefficients are positive, negative, zero, or not determinable with the
given information. Explain how you determined your answers using words and/or sketches
on the graph above.

x = x1  f(x) = a1 + b1(x-x1) + c1(x-x1)2

a1:

b1:

c1:

x = x2  f(x) = a2 + b2(x-x2) + c2(x-x2)2

a2:

b2:

c2:

x = x3  f(x) = a3 + b3(x-x3)  + c3(x-x3)2

a3:

b3:

c3:

x1

x2

x3

f(x)

x
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Date (Pre-tutorial Homework)

© 2009 – 2010 Physics Education Research Laboratory, University of Maine 

Complete and bring to next class period.

Taylor expansion of entropy:  Use the fact that entropy is a function of energy to write a Taylor
series expansion (include at least three terms) about the point E = E0 i.e. S(E) = S(E0) + …

Give an interpretation for each of the terms in your Taylor series expansion as it relates to the
graph of entropy vs. energy shown below.  Give as much graphical detail as possible.

E0

E

S
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I.  An Isolated Container

Consider a container of gas molecules that is isolated from its surroundings and has a uniform
spatial density.  The total internal energy of the gas is initially Etot.

A. After a long time, what is the probability that the total internal energy of the gas will still be
Etot?  Explain your reasoning.

B. How many microstates (molecular configurations) would you estimate exist such that the
total energy of the gas is Etot? 1, 1000, 10NA?  In contrast, how many macrostates exist such
that the total energy is Etot?

C. What is the probability of finding the gas in a particular microstate?  Is there any reason to
expect that one microstate would be more probable than another?
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II. A Divided Container

Looking again at the container, we realize that it is actually divided into a very small section
(with variable energy EA) and a relatively large section (with variable energy EB).  The two
sections are divided by a partition that allows heat transfer but keeps the particles in each section
separated.  As such, the gas in both sections will be in thermal equilibrium with each other.

A. If the variable energy EA is measured and found to have the value EA1, what would a
measurement of EB yield?

How will this value of EB compare to EA1?

B. If the energy EA is measured later and found to be a slightly different value (EA2), what will a
measurement of EB yield now and how will it compare with EA2?

C. For each of the following thermodynamic properties determine whether the value for section
A is greater than, less than, or equal to the value of the same property for section B.  If there
is not enough information to answer, state so explicitly.  Explain your reasoning for each.

1. Volume 3. Temperature

2. Number of Particles 4. Pressure

D.  Consider a different small section that is in an arbitrary location within the container and has
an arbitrary size and shape.  Explain why your answers to part II.C. will not change if you
consider how section C  compares to section B.

A

B

C
B
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III. Systems and Reservoirs

Since section B is so much bigger than section C we may consider B to be a thermal reservoir
designated by R, and C will be our system of interest. We may also conclude that the multiplicity
of R will be very much larger than the multiplicity of C (i.e., ωR >> ωC).  As such, we will make
the approximation that ωR/ωC ≈ ωR which leads to ωC ≈ 1.  For the remainder of this section we
will investigate a model in which ωC = 1 and EC can be a handful of discrete values.

The table at right shows a scenario in which
there exist only 5 possible values for EC, each
with corresponding values for ER, ωC, and ωR.
Each value for EC has a corresponding index j,
where 1 ≤ j ≤ 5.

A. What is the total number of microstates for
the entire container (system + reservoir) in
our scenario?  How do you know?

B. Are any of the microstates more probable than any other?  Consider your answer to part I.C.
on the first page.

C. Using your answer to part III.B. which of the above macrostates is most probable?  Why?

Which macrostate is least probable?

D. Give a general expression for the probability of the system being in macrostate j designated
by energy ECj.

EC ωC ER ωR

EC1 1 Etot – EC1 3 × 1018

EC2 1 Etot – EC2 5 × 1019

EC3 1 Etot – EC3 4 × 1017

EC4 1 Etot – EC4 1 × 1020

EC5 1 Etot – EC5 7 × 1018
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IV. Energy, Entropy, and Probability

You should see from your answer to part III.D. that the probability of the system C having
energy ECj, P(ECj), is proportional to the multiplicity of the reservoir for that state, labeled ωRj.
We now want to find an expression for ωRj in terms of the properties of C.
A. First write an expression for the entropy of the reservoir (SRj) in terms of ωRj.

B. Now use a Taylor series expansion and the fact that the entropy of the reservoir is a function
of the energy of the reservoir (SRj = SRj(ERj)) to write an approximation for SRj as a linear
function of ECj.  (See your homework for reference.)
Consider: About what value of energy should we expand?

What is the physical interpretation of the first term in the Taylor expansion?  Does this fit
with what you know about Taylor series?  Rename the first term to reflect this interpretation.

What is the physical interpretation of the partial derivative in the second term?  Consider the
Thermodynamic Identity (the differential form of the First Law of Thermodynamics).

D. Equate your two expressions for SRj from parts IV.B. and IV.C. to get an expression for ωRj
in terms of the other variables and constants.

Which of these quantities will change with different values of j?

 Check your results with an instructor before proceeding to the next section.
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V. The Canonical Partition Function

A. Now that you have an expression for ωRj determine an expression for the probability of
finding the system in state j, labeled P(ECj).

B. Consider the constraint on the sum of all probabilities. Does your expression fulfill this
constraint?

The denominator in your expression is often called Z, for the German Zustandsumme meaning
“sum over states.”

C. Is your new expression for Z a constant?  (i.e. does it depend on the state of the system?)
How does your expression for Z compare with the normalizing factor for the binomial
distribution (2N)?
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Comparing Probabilities – Consider a system in which the temperature and
the number of particles are held fixed (T = 300K, N = 103), but the internal
energy is allowed to fluctuate between three discrete values.  The allowed
energy levels are shown in the table at right.

a) Which energy state is the most probable?  What is the probability of finding the system in
this state?

b) How does the probability of finding the system in state 1 compare to the probability of
finding the system in state 2?  (i.e. calculate the ratio P(E1)/P(E2))

c) How does this ratio compare with the ratio P(E2)/P(E3)?

d) Give a general expression for the ratio of probabilities between two energy states
P(Ei)/P(Ej).

Describe in words how the ratio P(Ei)/P(Ej) depends on the energies Ei and Ej.

e) Under what conditions is P(Ei)/P(Ej) greater than 1?  Less than 1?

f) Under what condition(s), if any, will this ratio be the same for any two adjacent levels?
Can you think of any physical situations that meet this (these) condition(s)?

E1 5 eV
E2 10 eV
E3 20 eV
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Systems A and B are both at the same temperature T.  System A has N identical particles, each of
which must occupy one of the three energy levels shown.  In thermal equilibrium, the numbers of
particles in the three levels are n1, n2, and n3.  System B, with M identical particles, also has
three energy levels, as shown.  The numbers of particles occupying each of the three levels of
system B are m1, m2, and m3.

  – 0.060 eV

  – 0.100 eV

Is the ratio  n3/n2  in system A greater than, less than, or equal to the ratio  m2/m1  in system B?
If there is not enough information, what else would you need to know?  Explain your reasoning.
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Systems A and B are both at the same temperature T. System A has N identical particles, each of
which must be one of the three energy levels shown. In thermal equilibrium, the densities of the
particles in the three levels are n1, n2, and n3. System B, with M identical particles, also has three
energy levels, as shown. m1, m2, and m3 are the densities of the particles in the three levels of
system B.

  – 0.060 eV

  – 0.100 eV

Which is the true statement?
I. The density ratio n3/n2 in system A is greater than the density ratio m2/m1 in system B.
II. The density ratio n3/n2 in system A is equal to the density ratio m2/m1 in system B.
III. The density ratio n3/n2 in system A is less than the density ratio m2/m1 in system B.
IV. There’s not enough information to compare n3/n2 in system A to m2/m1 in system B.
Explain your reasoning. If you answer IV, also say what additional information you would need.
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Systems and Reservoirs

Consider a container of an ideal gas isolated
from its surroundings (shown at right).  The
container is divided into two sections: a
relatively small section (C) that will be our
system of interest and a relatively large
section (R).  The two sections are in thermal equilibrium and have uniform spatial density, and
the combined energy is equal to Etot (i.e., EC + ER = Etot).  Since R is so much larger than C we
will treat R as a thermal reservoir.  We know from chapter 4 and the density of states tutorial that
the energy of a system in thermal equilibrium may fluctuate around an average value
(EC = EAve ± δE).  We also know that the multiplicity of an ideal gas is related to the volume of
the gas, its internal energy, and the number of particles (ω ∝ VNE3N/2).  Therefore we may
conclude that the multiplicity of R will be very much larger than the multiplicity of C
(i.e., ωR >> ωC).  As such, we will make the approximation that ωR/ωC ≈ ωR which leads to
ωC ≈ 1.  For the remainder of our discussion we will investigate a model in which ωC = 1 and the
fluctuations in EC will yield a handful of discrete values (EAve ± δE = Ej = E1, E2, E3, …).  The
table below shows a scenario in which there exist only 5 possible values for EC, each with
corresponding values for ER, ωC, and ωR.

EC ωC ER ωR
E1 1 Etot – E1 3 × 1018

E2 1 Etot – E2 5 × 1019

E3 1 Etot – E3 4 × 1017

E4 1 Etot – E4 1 × 1020

E5 1 Etot – E5 7 × 1018

A. What is the total number of microstates for the entire container (system + reservoir) in our
scenario?

B. Are any of the microstates more probable than any other?

C. Using your answer to part B, which of the above macrostates is most probable?  Why?

Which macrostate is least probable?

D. Give a general expression for the probability, P(Ej), of EC = Ej.

C
R
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Energy, Entropy, and Probability

You’ve now determined that the probability of the system C having energy Ej, P(Ej), is
proportional to the multiplicity of the reservoir for that state, labeled ωRj.  (Compare this to the
probability you’ve found previously for getting M heads from flipping N coins.)  But what if we
don’t explicitly know ωRj, as will often be the case in real systems?  In this case, we need an
expression for ωRj that depends on properties of C (i.e., ωRj = ωRj(Ej, TC, VC, …)).

A. Is state j a macrostate or a microstate?  How do you know?

B. Write an expression for the entropy of the reservoir (SRj) in terms of ωRj.

C. Now use Taylor series expansion and the fact that entropy is a function of energy
(SRj = SRj(ERj)) to write an approximation for SRj as a linear function of Ej.

What is the physical interpretation of the first term in the Taylor expansion?  Does this fit
with what you know about Taylor series?  Rename the first term to reflect this interpretation.

What is the physical interpretation of the partial derivative in the second term?  Consider the
differential form of the first law of thermodynamics.

D. Equate your two expressions for SRj from parts B and C to get an expression for ωRj in terms
of the other variables and constants.

Which of these quantities will change with different values of j?
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E. Since P(Ej) ∝ ωRj we can group any constant coefficients together.  Write an expression for
P(Ej) as a function of Ej eliminating any constant terms and dividing by a normalizing term Z.
(Remember, a function of a constant is a constant.)

F. Determine an expression for Z and rewrite your expression for P(Ej).  Consider the constraint
on the sum over all probabilities P(Ej).

G. Is your new expression for Z a constant?  (i.e., does it depend on the state of the system?)
How does your expression for Z compare with the normalizing factor for the binomial
distribution (2N)?

The normalizing factor for the probability is known as the canonical partition function.  The
symbol Z comes from the German Zustandsumme meaning “sum over states.”
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Taylor Series
1. What do you know about the Taylor series? That is, when I say “Taylor series,” what

comes to mind?
2. Can you write out a Taylor series for position as a function of time? (provide one if they

can’t)
a. What are each of your terms? Do they have physical significance?
b. What are the units of each term? Each item in each term?
c. Are there any terms or items that can be considered constants?

3. How do you know how many terms to write?
4. Why do we even care about the Taylor series? Is it applicable in physics?

a. If so, when?
b. How does it relate to perturbation theory?
c. Can you think of an instance in which your approximation of x(t) above would be

useful?

Density of States vs. Boltzmann Factor
1. These are graphs of probability distributions due to the density of states and the

Boltzmann factor for a many-particle system of a monatomic ideal gas in thermal
equilibrium with a large reservoir.

a. According to the density of states graph, which energy value(s) are more
probable?

b. According to the Boltzmann factor graph, which energy value(s) are more
probable?

2. So, the probability distribution due to the density of states seems to indicate that higher
energy values are more probable. But the corresponding graph of the probability
distribution due to the Boltzmann factor seems to indicate that lower energy values are
more probable. [Is this a problem? Is it OK?] [What do you make of this?]

a. Are they both applicable in the same situations?
 i. What factors would make one more applicable than the other?

b. In order to know the probability that a system is in a particular state, do these
individual probability distributions help?  How?”

 i. (If they say multiply) Why do you multiply them together?
1. What would the resulting distribution look like?
2. Which energy/energies would you expect to have the highest

probability? (proceed to c.)
 ii. (If they say add) Why do you add them together?

1. What would the resulting distribution look like?
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2. Which energy/energies would you expect to have the highest
probability?

3. In this case, the very high and the very low energy states are
equally probable; can you explain the physical meaning of that
result [or “how can you make sense of that result?”]?

4. How else could we combine them? (go to c. if they don’t know)
 iii. (If they have no clue) proceed to c.

c. Where do the density of states and Boltzmann factor come from? Why are they
related to probability?

 i. How does the density of states D(E) relate to the probability of a
thermodynamic system occupying a state with a particular value of
energy?

 ii. How does the Boltzmann factor relate to the probability of a
thermodynamic system occupying a state with a particular value of
energy?
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