
The University of Maine
DigitalCommons@UMaine

Electronic Theses and Dissertations Fogler Library

12-2008

Generating Contour Maps for Dynamic Fields
Monitored by Sensor Networks
Cheng Zhong

Follow this and additional works at: http://digitalcommons.library.umaine.edu/etd

Part of the Geographic Information Sciences Commons

This Open-Access Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Electronic
Theses and Dissertations by an authorized administrator of DigitalCommons@UMaine.

Recommended Citation
Zhong, Cheng, "Generating Contour Maps for Dynamic Fields Monitored by Sensor Networks" (2008). Electronic Theses and
Dissertations. 557.
http://digitalcommons.library.umaine.edu/etd/557

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Maine

https://core.ac.uk/display/217046608?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.library.umaine.edu?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F557&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.umaine.edu/etd?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F557&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.umaine.edu/fogler?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F557&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.umaine.edu/etd?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F557&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/358?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F557&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.umaine.edu/etd/557?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F557&utm_medium=PDF&utm_campaign=PDFCoverPages

GENERATING CONTOUR MAPS FOR DYNAMIC FIELDS MONITORED BY

SENSOR NETWORKS

By

Cheng Zhong

B.A. Beijing Institute of Technology, 2001

M.S. Peking University, 2004

A THESIS

Submitted in partial fulfillment of the

Requirements for the Degree of

Master of Science

(in Spatial Information Science and Engineering)

The Graduate School

The University of Maine

December 2008

Advisory Committee:

Michael F. Worboys, Professor of Spatial Information Science and Engineering, Advisor

Silvia Nittel, Associate Professor of Spatial Information Science and Engineering

Kate Beard-Tisdale, Professor of Spatial Information Science and Engineering

ii

© 2008 Cheng Zhong

All Rights Reserved

LIBRARY RIGHTS STATEMENT

In presenting this thesis in partial fulfillment of the requirements for an advanced degree

at the University of Maine, I agree that the library shall make it freely available for

inspection. I further agree that permission for “fair use” copying of this thesis for

scholarly purposes may be granted by the Librarian. It is understood that any copying or

publication of this thesis for financial gain shall not be allowed without my written

permission.

Signature:

Date:

GENERATING CONTOUR MAPS FOR DYNAMIC FIELDS MONITORED BY

SENSOR NETWORKS

By Cheng Zhong

Thesis Advisor: Dr. Michael F. Worboys

An Abstract of the Thesis Presented
In Partial Fulfillment of the Requirements for the

Degree of Master of Science
(in Spatial Information Science and Engineering)

December, 2008

Wireless sensor networks provide a new tool that enables researchers and scientists

to efficiently monitor dynamic fields. In order to extend the lifetime of the network, it is

important for us to minimize network data transmission as much as possible. Previous

work proposed many useful aggregation techniques to answer max, min and average

questions, and some of them have been employed in real applications. But we cannot get

spatial information from these aggregation techniques.

This thesis presents an efficient aggregation technique for continuous generation of

contour maps for a dynamic field monitored by a wireless sensor network. A contour map

is a useful data representation schema that provides an efficient way to visualize an

approximation to the monitored field. In this thesis, we discuss an energy-efficient

technique, which we call Isovector Aggregation, for generating such contours using an

in-network approach. Our technique achieves energy efficiency in two principal ways.

Firstly, only a selection of nodes close to contours are chosen to report, and each reported

message contains information about a part or all of the contours, rather than any single

node’s ID and value pair. Secondly, contours are progressively merged and simplified

along the data routing tree, which eliminates many unnecessary contour points from

contour vectors before they are transmitted back to the base station. Using Isovector

Aggregation, the base station receives a complete representation of the contours that

requires no further processing. Analysis shows that for region-related monitoring,

Isovector Aggregation is the only technique that has)(nO traffic generation and that

considers in-network traffic reduction at the same time. These two factors make Isovector

Aggregation highly scalable. Experimental results using simulations also show that

Isovector Aggregation involves considerably less data transmission compared to other

approaches, such as the no-aggregation approach and the Isolines Aggregation technique,

without compromising the accuracy of representations of the baseline maps.

iii

ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr. Michael F. Worboys for his encouragement,

guidance, and support for my research at all times. I also wish to acknowledge the

support and advice from other members of my thesis advisory committee, Dr. Silva Nittel

and Dr. Kate Beard.

I want to thank all fellow graduates in the Department of Spatial Information Science

and Engineering, especially to Jixiang Jiang, Qinghan Liang, Danqing Xiao who gave me

useful feedback on my thesis. I would like to acknowledge Dr. Ignacio Solis at Palo Alto

Research Center who gave me sample code and critical suggestions. Based on his code, I

designed and developed my work.

I would also thank Ms. Ellen Huff, Ms. Jane Morse and Ms. Hope Duncanson for the

English proof reading of this thesis.

Finally, I would like to thank all my family members and friends. This thesis could

not be finished without their continuous support and care.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. iii

LIST OF TABLES .. vii

LIST OF FIGURES .. viii

CHAPTER

1. INTRODUCTION .. 1

1.1 Wireless Sensor Networks ... 2

1.2 Research Challenges in Wireless Sensor Networks 4

1.3 Data Aggregation ... 4

1.4 Research Goal and Hypothesis .. 6

1.5 Contributions and Thesis Structure .. 7

2. RELATED WORK ... 10

2.1 General Aggregation Techniques .. 11

2.2 Contour Detection in the Network ... 12

2.3 Generating Contours at the Base Station ... 13

2.4 Generating Contours in the Network ... 16

2.5 Polyline Simplification .. 18

2.6 Continuous Contour Mapping (CCM) ... 19

2.7 Summary .. 23

v

3. OVERVIEW AND PRELIMINARIES .. 24

3.1 Scalar Dynamic Fields ... 25

3.2 Contour Maps... 25

3.3 Aggregation through Contours .. 26

3.4 Definitions.. 29

3.5 Message Types ... 31

3.6 Aggregation Time Model ... 33

3.7 Summary .. 35

4. ISOVECTOR AGGREGATION .. 36

4.1 Local Contour Generation .. 38

4.2 Reporting Node Selection .. 42

4.3 In-network Contour Simplificaiton .. 44

4.4 In-network Contour Merging ... 46

4.5 Updating with Temporal Suppression ... 51

4.6 The Base Station .. 54

4.7 Dealing with Packet Loss... 56

4.8 Summary .. 56

5. THEORETICAL ANALYSIS .. 58

5.1 Traffic Generation .. 58

5.2 In-network Traffic Reduction .. 59

5.3 Summary .. 62

vi

6. EXPERIMENTAL ANALYSIS ... 63

6.1 Simulation Setup .. 64

6.2 Scenarios and Evaluation Metrics .. 65

6.3 Detecting Static Contours .. 66

6.4 The Impact of Contour Node Ratios .. 70

6.5 Monitoring Moving Contours .. 71

6.6 Summary .. 74

7. CONCLUSIONS AND FUTURE WORK ... 75

7.1 Conclusions .. 75

7.2 Discussion .. 76

7.3 Work Published and Related .. 78

7.4 Future Work ... 79

BIBLIOGRAPHY ... 81

BIOGRAPHY OF THE AUTHOR ... 86

vii

LIST OF TABLES

Table 1. Message types ... 32

Table 2. Important variables and descriptions .. 37

Table 3. Comparisons of different techniques .. 62

Table 4. Contour map snapshot .. 69

Table 5. Moving contours ... 71

viii

LIST OF FIGURES

Figure 1.1. Sensor deployment around a volcano ... 3

Figure 2.1. The drawback of Isolines Aggregation ... 15

Figure 2.2. Illustration of the Douglas-Peucker algorithm ... 19

Figure 2.3. A CN-array representation ... 20

Figure 2.4. A dense contour case that the CCM approach cannot handle correctly 23

Figure 3.1. A temperature contour example of USA .. 26

Figure 3.2. A straight contour in a sub-routing tree .. 28

Figure 3.3. An Isovector Aggregation example .. 29

Figure 3.4. Node u ’s representation and the neighborhood ring 31

Figure 4.1. Node u ’s neighborhood ring and corresponding local contour vectors 40

Figure 4.2. Narrow contour 1 .. 40

Figure 4.3. Narrow contour 2 .. 41

Figure 4.4. Narrow contour 3 .. 41

Figure 4.5. Narrow contour 4 .. 42

Figure 4.6. Reporting node seletion .. 44

Figure 4.7. Comparison of two contours .. 45

Figure 4.8. Simplify a contour vector ... 45

Figure 4.9. Before merging ... 47

Figure 4.10. Correct merging .. 47

Figure 4.11. Wrong merging ... 48

Figure 4.12. Algorithm 1 .. 49

Figure 4.13. Algorithm 2 .. 50

ix

Figure 4.14. Algorithm 3 .. 51

Figure 4.15. Algorithm 4 .. 52

Figure 4.16. Process graph of Isovector Aggregation ... 54

Figure 4.17. Algorithm 5 .. 55

Figure 5.1. Traffic reduction in a binary tree structure ... 60

Figure 6.1. Baseline map snapshot ... 67

Figure 6.2. Map with no-aggregation ... 68

Figure 6.3. Map with Isolines Aggregation .. 68

Figure 6.4. Map with Isovector Aggregation .. 69

Figure 6.5. Data sent at different contour node ratios ... 70

Figure 6.6. Baseline map at 9s for moving contours .. 72

Figure 6.7. Map with no-aggregation for moving contours .. 72

Figure 6.8. Map with Isolines Aggregation for moving contours 73

Figure 6.9. Map with Isovector Aggregation for moving contours 73

Figure 7.1. A case that Isovector Aggregation cannot deal with 80

 1

CHAPTER 1

INTRODUCTION

The rapid development of electronic and engineering technology has made possible

the deployment of small, inexpensive, low-power, distributed devices, which are capable

of local processing and wireless communication. Such nodes are called sensor nodes

(Culler et al. 2004). Sensor nodes sense physical data of the area to be monitored. The

continual analog signal sensed by the sensors is digitized by an Analog-to-Digital

converter and sent to controllers for further processing. One of the most famous sensor

nodes is the Berkeley Mote (Zhao and Guibas 2004). It is a well-designed tiny, self-

contained, battery-powered computer with radio links, which enable the mote to

communicate and exchange data with one another.

Each sensor node is only capable of sampling in a limited range and has limited

processing abilities. But when collaborating with other nodes, we can construct a sensor

network that is able to measure a given physical environment in great detail.

In this chapter, we present some useful background of this thesis. First, wireless

sensor networks will be introduced and we discuss typical applications of wireless sensor

networks. Then we present existing research challenges of wireless sensor networks, in

which reducing data transmission is one of the most crucial topics in this area. Data

aggregation, as a useful approach to reduce data transmission, is described later. The

 2

research goal and hypothesis of the thesis are also presented. At the end of this chapter,

we list the contributions and the structure of the whole thesis.

1.1 Wireless Sensor Networks

Wireless sensor networks are one of the driving forces of current network research. A

wireless sensor network is a wireless network consisting of spatially distributed

autonomous devices using sensors to cooperatively monitor physical or environmental

conditions, such as temperature, sound, vibration, pressure, motion or pollutants, at

different locations.

It is expected that wireless sensor networks will play a key role in future research

work, offering researchers and application specialists unprecedented opportunities in

environmental sensing, monitoring and analysis. In contrast to other sensing technologies

(e.g., LIDAR), a wireless sensor network is not restricted to particular types of

phenomena: a wireless sensor network can detect any physical parameters, such as light

intensity or temperature or ozone – so long as the corresponding sensor has been

developed, and the device can withstand the deployment region’s environmental

conditions. Wireless sensor networks have a variety of applications (Xu 2004):

1) Habitat monitoring application: Cerpa et al. (2001) describe habitat monitoring as

an application for wireless sensor networks-habitat sensing for bio-complexity mapping.

As an example, in August 2002, researchers and scientists from University of Berkeley

and Intel Research Laboratory deployed a sensor network on Great Duck Island, Maine,

to monitor the behavior of storm petrels (Mainwaring et al. 2002).

 3

2) Environment forecasting system: A wireless sensor network could be used to

construct an environment observation and forecasting system. For example, in June 1991,

Mount Pinatubo on the island of Luzon in the Philippines erupted catastrophically after

about 600 years of dormancy. Layers of ash surround the crater and the effect of

mudflows in this previously heavily forested and agricultural region can be traced as

ribbons flowing downhill. Now, as shown schematically in figure 1.1, we have the

capability to cover such an area with a network of sensors, with the intention of collecting

data and monitoring changes in critical variables such as temperature.

Figure 1.1. Sensor deployment around a volcano

3) Health application: We can use a sensor network to tele-monitor human

physiological data, tracking and monitoring of doctors, patients and drug administrators

inside a hospital (Akyildiz et al. 2002). The idea of putting biomedical sensors into the

human body is a promising research area, although many challenges exist. Similar

applications include glucose level monitoring, organ monitoring and cancer detectors.

 4

1.2 Research Challenges in Wireless Sensor Networks

Though wireless sensor networks have already shown a promising future, there are

many obvious challenges in this research field (Tubaishat and Madria 2003):

1) Deployment: Most sensor nodes are deployed in regions, such as in forests which

have no infrastructure at all. We may have to toss sensor nodes from a plane to the

monitored area. In this situation, it is up to the sensor nodes to identify their connectivity

and distribution. Such deployments may also create topological holes and some regions

may not be monitored if there are no sensor nodes in such places.

2) Dynamic changes: Sensor nodes are small electronic devices that can easily fail.

For example, a heavy rain may cause some nodes deployed in the forest to be unworkable.

In some applications, it may be required that a sensor network should be able to change

connectivity and the routing structure dynamically.

3) Untethered: Each sensor node is not connected to any energy source. In other

words, sensor nodes are battery powered and the energy is limited. We must utilize such

energy efficiently in order to prolong the network lifetime. From some previous research,

node to node data transmission and communication consumes most of the energy and

dwarfs all other energy consumption factors (Pottie and Kaiser 2000, Shnayder and

Hempstead 2004). In order to make optimal use of energy, it is important to minimize

data transmission between sensor nodes as much as possible.

1.3 Data Aggregation

In wireless sensor networks, data is transmitted by wireless radio. Following a special

routing schema, each sensor node transmits its sensed value hop by hop until the base

 5

station receives all reports. A simple approach to monitoring a given physical field is to

continuously transmit all sensor values all the time. Another possible approach is the

value threshold approach (Abadi et al. 2005, Hellerstein et al. 2003a, Yao and Gehrke

2003). When a node’s value is higher than the predefined threshold, we deem this node to

be in a high activity region, and this is reported to the base station. Although the

continuous approach and the threshold-based approach are simple to implement,

sometimes they have to transmit too much data and may not be able to provide sufficient

information about the field. As discussed in section 1.2, one of the most important

characteristics of sensors is that each sensor is battery powered. Energy saving for sensor

networks is therefore one of the primary goals in wireless sensor network research.

While many researchers focus on designing new sensor hardware and efficient

protocols for communications, there is other work on the efficient algorithms for data

processing in the network. In most applications, we do not need every discrete value of

each sensor all the time. It is possible that we can compress the same or similar sensor

readings in the network. This technology is called data aggregation in wireless sensor

networks. The common goal of different in-network approaches is the same: reducing the

total data transmission so as to prolong the lifetime of the entire sensor network. The

basic idea of data aggregation is that rather than sending individual data items from

sensors to the base station, multiple data items are aggregated as they are forwarded by

the sensor network (Solis and Obraczka 2005a). Data aggregation is application

dependent, i.e., depending on the target application, the appropriate data aggregation

operator/aggregator will be employed. For example, suppose that in a controlled

temperature environment, the average temperature needs to be monitored. As sensors

 6

generate temperature readings periodically, internal nodes in the data collection tree

rooted at the base station average data received from downstream nodes and forward the

result toward the base station. Though data aggregation may decrease the accuracy, by

transmitting less data units, the net effect is that considerable energy savings can be

achieved.

1.4 Research Goal and Hypothesis

From the viewpoint of databases, standard queries, such as querying maximum

minimum, and average values from sensor nodes, are often required by database users.

These queries could be quickly answered using existing aggregation techniques (Madden

et al. 2002, Yao and Gehrke 2002). In addition to these standard queries, many users are

also interested in the region related questions: “Which region has values between 50 and

60?” and “What is the boundary of the phenomenon?” Traditional aggregation techniques

are not able to answer these questions easily. In many application scenarios, contour

maps can provide enough information to answer such questions, as they provide an

efficient way to visualize the field monitored by wireless sensor networks (Meng et al.

2004, Hellerstein et al. 2003b).

A contour or isoline is a line along which values of the field are equal to a constant.

This thesis is about generating contour maps for the dynamic field monitored by the

wireless sensor networks. The goal is to design and implement an aggregation technique,

Isovector Aggregation, which can continuously generate contour maps for the monitored

dynamic field. This thesis has the following hypothesis:

 7

It is possible to design an aggregation technique that generates contour maps with

better precision and less network communication cost than a well-known aggregation

technique-Isolines Aggregation (Solis and Obraczka 2005a, Solis and Obraczka 2005b).

1.5 Contributions and Thesis Structure

In this thesis, we describe a novel technique, Isovector Aggregation, which utilizes

energy efficient data collection from sensor nodes to generate contours in the network.

Energy efficiency is achieved by two approaches:

1) Instead of having all sensor nodes send their values to the base station, only a few

nodes near the contours need to report. Reporting data contains contours rather than

discrete values.

2) Instead of having all data transmitted directly, we remove redundant data, generate

contours in the network and transmit them to the base station.

Our major contributions include the following:

1) A data structure-neighborhood ring that is used to generate local contour vectors

between a node and its neighbors. The neighborhood ring designed in this thesis fully

utilizes the node neighbor cyclic information and it saves all neighbor values of a specific

node. Later, by comparing with the node values, each neighborhood ring will be used to

generate local partial contours between the node and its neighbors.

2) Isovector Aggregation technique for in-network contour merging and

simplification. In each sampling round, we generate local partial contours between nodes.

Each reporting message contains information about a part of or all the contours rather

than any single node’s ID and value pair. In the process of reporting, contours with the

 8

same values will be merged if they are near to each other. An in-network polyline

simplification algorithm is also applied to remove redundant points from contours.

Through all these techniques, the total report data size is greatly reduced, which leads to

significant energy saving, and the base station does not have to do any further

interpolation to generate contour maps.

3) Theoretical analysis which shows that for region related monitoring Isovector

Aggregation is the only technique that incurs)(nO traffic and that considers in-

network traffic reduction at the same time. We analyze Isovector Aggregation for both

traffic generation and traffic reduction. From Iso-map (Liu and Li 2007), we know that,

Isovector Aggregation only requires)(nO nodes to report, which promises less data

generation when the sensor network is huge. We analyze the traffic reduction in a

simplified binary tree routing structure. In the worst case, Isovector Aggregation still

performs better than a well-known aggregation technique-Isolines Aggregation. These

two factors make Isovector Aggregation very scalable for large applications in wireless

sensor networks.

4) Experimental comparison of Isovector Aggregation with existing methods,

including the no-aggregation technique and Isolines Aggregation. We simulate Isovector

Aggregation using the Network Simulator 2 (NS2) network simulator and compare it

with some baseline techniques. Data transmission and contour map accuracy are used as

the evaluation metrics. The simulations include detecting static contours, monitoring

moving contours and probing the relations between node densities and the data

transmission. In all simulations, Isovector Aggregation out-performs these methods by

 9

sending much less data than others. This energy efficiency is achieved without

compromising on the accuracy of representations of the baseline maps.

The rest of this thesis is organized as follows. In Chapter 2, we discuss related work,

which includes: general data aggregation techniques in wireless sensor networks,

boundary/contour detection and reporting techniques in wireless sensor networks,

polyline simplification techniques, and the CCM (Zhong and Worboys 2008) technique

which also utilizes neighbor cyclic order information. In Chapter 3, we describe the core

idea of Isovector Aggregation using a simple example. We give preliminary definitions,

including that of the contour neighborhood ring, message types that will be used, and the

data aggregation time model. In Chapter 4, we present Isovector Aggregation in detail.

Chapter 5 gives the theoretical analysis of Isovector Aggregation from the perspective of

network traffic generation and in-network traffic reduction. In order to verify the

usability of Isovector Aggregation, Chapter 5 shows experimental analysis of Isovector

Aggregation through extensive simulations. Finally, we conclude this thesis and discuss

future work.

 10

CHAPTER 2

RELATED WORK

In this chapter, we discuss previous work that uses suppression/aggregation

techniques. General aggregation techniques are discussed first and we then discuss

contour related aggregation techniques. One of the techniques (Isolines Aggregation,

Solis and Obraczka 2005a, Solis and Obraczka 2005b) will be used for comparison later.

Polyline simplification technology, as an important technology used in this thesis, is the

next topic that will be examined. At the end of this chapter, we look at the Continuous

Contour Mapping (CCM, Zhong and Worboys 2008) technique that is closely related to

this thesis.

In-network aggregation is extensively researched for data reporting, and many

aggregation approaches are proposed for different application scenarios. They all use

temporal suppression, spatial suppression, or the combination of both suppressions.

Silberstein et al. (2006) summarize the definitions of spatial and temporal suppression

and their possible combination:

1) Spatial suppression: A node suppresses its reading if it is identical to those of its

neighboring nodes.

2) Temporal suppression: If a node’s reading is not changed since the last

transmission, the node does not have to report to the base station. The base station can

use its previous reading as the current reading.

 11

3) Spatial-temporal suppression: It is possible to combine spatial and temporal

suppression. If readings do not change, they should not be reported. In addition, if they

do change, but the relationship between neighboring nodes remains the same, some

reports may be suppressed.

In the case of continuous contour mapping, one possible combination of spatial and

temporal suppression is that we only collect contour node information for reporting. We

also use such technology in this thesis. More details will be discussed in Chapter 4.

2.1 General Aggregation Techniques

Many environmental phenomena can be represented as dynamic spatial fields, in

that they are viewed as “signal” landscapes or surfaces (Gandhi et al. 2007). For example,

distributions of temperature, humidity and pollutant levels naturally fit this viewpoint. As

we discussed in Chapter 1, the lifetime of the wireless sensor network is determined by

the energy remaining in all nodes, and the wireless communication between nodes

consumes the most energy. Thus, algorithms that can reduce the data transmission in the

network are highly desirable.

Motivated by these considerations, there has been a great interest within the wireless

sensor network research area in the different data aggregation methods. It is reasonable to

view a wireless sensor network as a distributed database system. From the viewpoint of

databases, the most used aggregation operators are min (get the minimum value), max

(get the maximum value) and avg (get the average value). These traditional aggregation

operators are already efficiently implemented in the wireless sensor network (Madden et

al. 2002, Yao and Gehrke 2002). Moreover, some robust statistics, such as medians or

 12

quantiles (Greenwald and Khanna 2004, Shrivastava 2004) are also implemented. Clearly,

all these aggregation techniques focus on numerical statistics, not the spatial shape of the

phenomena. In many cases, users may want spatial-related information of the field, but

cannot get any spatial information using the above aggregation techniques. Some good

examples are: Which region has values between 50 and 60? What is the boundary of the

phenomenon? These questions could be answered by generating boundaries or contours.

2.2 Contour Detection in the Network

Local boundary/contour detection is the first step for contour generation. Many

previous works propose different solutions. We select some good ones and discuss their

approaches and drawbacks.

Chintalapudi and Govindan (2003) discuss three qualitative approaches for localized

edge detection namely statistical, image processing based and classifier based approaches.

These approaches mark some nodes near the boundary as boundary nodes. They do not

consider how to transmit boundary information back efficiently, and all data has to be

returned to the base station to construct an accurate boundary. In this situation, a great

deal of network energy will be consumed. Their edge detection approaches are limited

and may be only used for boundary estimation applications.

Ding et al. (2005) propose localized fault-tolerant boundary and fault sensor detection

using spatial data mining techniques. Like Chintalapudi and Govindan’s three approaches,

Ding et al. do not describe how to report these output nodes to the base station and do not

consider continuous boundary changes. They just locally calculate boundary nodes and

 13

fault-tolerant factors are considered in the computation process. If all boundary nodes

have to report, a large amount of data will be transmitted.

2.3 Generating Contours at the Base Station

After contours are detected, we need to generate and transmit them back to the base

station. Most previous papers on contour reporting do not consider how to generate

contours during the contour reporting process. These methods have to relay all or some

node information back to the base station, and later the base station uses such information

to generate contours with the help of external software packages. They are not energy

efficient because of the large data transmission and they cannot directly generate contour

maps.

The event contour is a method discussed by Meng et al. (2004). In this work, spatial

suppression and temporal suppression are combined. The event contour method does

spatial suppression based on averages, in which all nodes attempt to report their values at

different time slots during a logical timestamp. Nodes overhear reports from their

neighbors. When a node's slot comes up, it first computes the average of all values

overheard so far. If its value equals this average, its report is suppressed. The base station

fills in missing values with the average of the neighboring values. In addition, this paper

demonstrates that contour maps are useful for sensor network applications. There are

some drawbacks of the event contour method. First, this approach does introduce some

complications. To accurately derive a node's value, the base station must know which

neighbors were averaged, when suppression was triggered; the average of this subset may

be different from the average of all neighbors. Resolving this discrepancy requires a

 14

global reporting order of all nodes, maintained by the base station. Second, some nodes

that are far away from the contours need to report. The event contour method can never

suppress all readings in an area. Third, if their reading difference is above the average,

both nodes need to report, even though they are direct neighbors. Fourth, they still need

the help of external tools to generate contour maps.

Solis and Obraczka propose the Isolines Aggregation method. Energy efficiency is

achieved by having each node only report to the base station if it detects a contour

between itself and its one-hop neighbors; otherwise, no report is generated. Because the

detection is symmetric, Isolines Aggregation chooses half of contour nodes to report. The

drawback of Isolines Aggregation is that, in a sparse wireless sensor network, nearly half

of the nodes along both sides of each contour will report in each sampling round. This

may cause a great communication overhead. In order to reduce the data transmission,

Isolines Aggregation only reports contours that nodes detected between themselves and

their children or parents according to the existing data routing tree when nodes are

densely deployed. In other words, if some parts of a contour are between two sub-routing

trees, then the contour cannot be detected precisely. In figure 2.1, only nodes u and v

can detect the vertical contour. Nodes a and b cannot detect the contour even a is an

one-hop neighbor of b .

Isolines Aggregation is a good technique, which combines spatial suppression and

temporal suppression to a certain degree. Only some nodes near the isolines are chosen to

report. In the experiments, the Isolines Aggregation method is compared with the Isobar

Aggregation method (Hellerstein et al. 2003b). The contour map accuracy achieved by

the Isolines Aggregation method is better than the Isobar Aggregation approach and the

 15

bytes sent to the base station by the Isolines Aggregation method are also less than the

Isobar Aggregation method. For this reason, we will use it as one of the two baseline

techniques in Chapter 5.

Figure 2.1. The drawback of Isolines Aggregation

Silberstein et al. (2006) propose a method called COUCH that attempts to make full

use of spatial suppression and temporal suppression. The COUCH method collects

history and statistics for minimal cost spanning forest construction and continuous

optimization. Ideally, only one node on each side of the contour needs to report a change.

The COUCH approach shows good performance if the contours move regularly or the

contours seldom change. If the contours change irregularly, historical information may

become less useful for the min-cost forest construction and optimization. In the worst

case (a vertical contour changes to a horizontal contour), most contour nodes have to

report in the next round. What is more, the spanning forest has often to be updated, which

 16

will consume large amounts of energy. Again, the COUCH method has to generate other

nodes’ values at the base station.

In a recent paper, Liu and Li (2007) propose the Iso-map method, which shares

similar ideas with Isolines Aggregation. They argue that all previous approaches (except

Isolines Aggregation) require all nodes to report to the base station, leading to large

amount of traffic generation. Their Iso-map approach, an energy efficient protocol for

contour mapping, builds contour maps based solely on the reports collected from

intelligently selected “isoline nodes” near contours in wireless sensor networks. They

prove that only letting such contour nodes report will decrease network traffic generation

from)(nO to)(nO . They also conduct comprehensive trace-driven simulations to

verify this protocol, and demonstrate that the Iso-Map method outperforms previous

approaches in the sense that it produces accurate contour maps with significantly reduced

cost. Iso-map is similar to Isolines Aggregation, though only a few contour nodes are

required to report in each round; the authors do not consider how to reduce data

transmission in the network, and they still have to generate contours at the base station

using external software packages.

2.4 Generating Contours in the Network

Few papers consider how to generate contours using in-network approaches. They all

are associated with the polygon aggregation approach.

Hellerstein et al. propose a method called Isobar Aggregation (Hellerstein et al. 2003)

that uses spatially correlated data aggregation for mapping purposes. They realized that

contours could provide an important way to visualize sensor fields and may have

 17

applications in a variety of biological and environmental monitoring scenarios (Estrin

2002). Their method aggregates nodes with the same values into polygons, as the data

flows towards the base station. An approximate, lossy approach is also presented to

produce approximate contour maps. In short, the Isobar Aggregation approach tries to

reduce data transmission in the sense of in-network traffic reduction instead of traffic

generation. Each node has to participate in the aggregation by sending not only its ID and

value but also the location information, which makes the Isobar Aggregation method

send nearly 20% more data than the Isolines Aggregation approach. At the same time, the

Isobar Aggregation method does not achieve a better map accuracy than the Isolines

Aggregation approach.

Zhao et al. (2002) propose the EScan approach which uses the same approach as

Isobar Aggregation and has the same problems as Isobar Aggregation. The difference is

that this method constructs contour maps to monitor sensor residual energy instead of

monitoring physical events in the network. The resulting contour maps show the residual

energy distribution of the sensor network.

Xu et al. (2006) mention in-network contour generation for contour map matching,

which actually is an extension of polygon aggregation. After generating contours, they

use contour matching to detect events happening in the network and it is more reliable

than the threshold based approaches. In this approach, local location information from

each node still has to be transmitted before the aggregation, which causes huge data

transmission. Their method can generate regular polygons in the network.

Unlike all these approaches, Isovector Aggregation only focuses on the boundaries of

polygons and is not confined to regular polygons. In Isovector aggregation, such

 18

boundaries are called contours and a contour map is composed of many polygons. We

only use information on nodes that can detect contours to generate contour maps.

2.5 Polyline Simplification

Often a polyline has too high a resolution for an application, such as visual displays

of geographic map boundaries or detailed animated figures in games or movies. That is,

the points on the polylines representing the object boundaries are too close together for

the resolution of the application. In geographic information science, technology for

solving this problem is called polyline simplification and it has been an active research

area in the past.

Polyline simplification technology could bring many benefits. For example, by

reducing coordinates pairs, the vector time plotting speed is increased and the storage

space required is decreased. For the same reason, both the time needed for vector to raster

conversion and the time needed for processing vectors could be reduced.

The Douglas-Peucker algorithm (Douglas and Peucker 1973) is one of the well-

known and efficient algorithms for polyline simplification (White 1985). The Douglas-

Peucker algorithm defines a tolerance ε , and uses a recursive approach as follows:

1) The two extreme endpoints of the polyline are first connected with a straight line.

2) Distances from all intermediate polyline vertices to the straight line are calculated.

3) If all these distance are less than the tolerance ε , the approximation is good and all

intermediate points are removed. The algorithm ends here.

 19

4) If any of these distances is greater than the tolerance ε , the point that is furthest

away from the straight line is chosen as a vertex that divides the original polyline into

two shorter polylines (figure 2.2). Then the algorithm goes to step 1) using recursion.

Figure 2.2. Illustration of the Douglas-Peucker algorithm

2.6 Continuous Contour Mapping (CCM)

Zhong and Worboys propose the Continuous Contour Mapping (CCM) method

(Zhong and Worboys 2008) for continuous contour monitoring. A ring data structure is

designed to suppress neighborhood information that utilizes the cyclic order information

of neighbors. We will discuss the CCM contour monitoring first and then give the

drawbacks of this technique.

The ring data structure-contour neighbor array, in short, is a small bit array to store

one-hop neighbor information of a node. If a node reports to the base station, the message

 20

contains all one-hop neighbor information by using this structure. The definition of the

array is as follow:

Definition 2.1: Contour Neighbor Array (CN-array): Let u be a node and 1v ,

2v ,..., nv be the one-hop neighbors of u , sequenced in counterclockwise cyclic order

around u , where the starting node 1v is randomly assigned in advance. The CN-array

associated with u is an array of bits [,1b 2b ,..., ,nb h] where

⎩
⎨
⎧

≠
=

=
)()(1
)()(0

i

i
i vRangeuRangeif

vRangeuRangeif
b

for ni ≤≤1 .

h is set to 1 if all contour neighbors of u are in a higher value range than u . Otherwise,

if all contour neighbors of u are in a lower value range than u , h is set to 0.

From the value of h , the base station can know the contour value (higher or lower)

between a reporting node and its contour neighbors. For example, suppose the contour

values are defined using a contour interval of 10 (40, 50 etc.). If 47)(=uR and h of u is

1, then u detects a contour with value 50. Figure 2.3 is a contour node representation with

its corresponding CN-array.

Figure 2.3. A CN-array representation

 21

In the network initialization phase, after receiving a query message from the base

station, each node randomly chooses a neighboring node as its starting node and

initializes its CN-array by communicating with its neighbors. Then each node sends its

own ID, location, CN-array and corresponding NI-array (neighbor ID array) back along

the data routing tree. In this way, the base station knows the whole network topology and

the mapping information between each node’s CN-array and neighbors. Later the base

station can decompress each received CN-array correctly. A randomized timer algorithm

is designed and it only chooses a few nodes near contours to report and each reporting

message only includes the node ID, reading and the corresponding CN-array. Other nodes

are all suppressed. For each node, u performs an algorithm with the following three steps

in a sampling round:

 Step 1: u decides if it should participate in the reporting node selection in this round.

If it should not (u is not a contour node), u skips the following steps. Step 1 makes sure

that only nodes that can detect contours will participate in the reporting.

 Step 2: If u is a contour node and)(uRange and su' contour neighbors have not

changed since the last transmission, u only sends its ID back, broadcasts a ‘report sent’

message and skips step 3. Step 2 provides additional temporal suppression in each

sampling round. Only nodes with changed information are required to send all new

information back.

Step 3: u randomizes a timer for a time which is much shorter than the sampling

period. If u does not receive any ‘report sent’ message from its neighbors after the

timeout, u sends its ID, reading and CN-array back, and broadcasts a ‘report sent’

 22

message. This is a randomized algorithm for reporting node selection. All selected

reporting nodes are randomly distributed along each contour.

The above steps explain how the CCM approach reduces total data transmission and

saves the network energy: randomly selecting a few reporting nodes and each node

encoding other contour nodes information. The CCM algorithm is also optimized using a

probability based approach. Simulation results reported show that, depending on node

density, CCM provides an average reduction of 60% on the total amount of report data,

compared to the baseline spatial suppression algorithm.

Though the improvement is clear, the CCM approach has some obvious drawbacks:

1) A bit array is used to compress neighborhood data and suppress neighbors.

Because each bit only has two possible values: 0 and 1, many may be reduced when we

compose the array. The consequences are that, in many situations, contours are dense and

it is possible that some neighbors of a node are in a higher value range than the node and

others are in a lower value range than the node. The CN-array alone cannot deal with

such cases correctly. Figure 2.4 gives a good example. In short, CCM is good for

boundary monitoring, in which each sensor node only has two possible values: 0 and 1.

But it does not provide a generic solution for contour mapping.

2) Similar to the COACH and Isolines Aggregation methods, the CCM approach only

considers reducing data transmission from the traffic generation aspect. Although it uses

a bit array for data compressing, it does not consider traffic generation and in-network

traffic reduction at the same time. It has to interpolate values to other nodes at the base

station and then uses external tools to generate contour maps.

 23

Isoline

50

45
v

u

Isoline

50

45
v

u

Figure 2.4. A dense contour case that the CCM approach cannot handle correctly

2.7 Summary

In this chapter, we list some previous work that is related to this thesis. We first

discuss general aggregation techniques used in wireless sensor networks. We present

previous works for contour detection and contour generation, including generating

contours at the base station side and generating contours within the network. We then

focus on polyline simplification because it is directly related to this thesis. In order to

remove redundant data and reduce data transmission, the Douglas-Peucker polyline

simplification algorithm, will be used in this thesis.

The CCM approach is an energy-efficient technique for continuous mapping that

utilizes neighboring node cyclic order information to design the data structure for data

storage and data compressing. Though CN-array in CCM is different from the

neighborhood ring we propose in this thesis, CCM is the only previous work that unitizes

neighboring node cyclic order information, and the CN-array also saves some neighbor

information. The CN-array is used to compress neighbor information; whereas, the

neighborhood ring used in this thesis is used to generate local partial contours.

 24

CHAPTER 3

OVERVIEW AND PRELIMINARIES

Contour maps are used as the data representation tools of our data aggregation

method. In this chapter, we first briefly discuss contours and contour maps. After giving

the definition and characteristics of dynamic fields that will be monitored by wireless

sensor networks, we use a simple example to explain the basic idea of our Isovector

Aggregation method. In addition, we discuss other preliminaries of the thesis, including

the definition of neighborhood ring, the types of messages and the time model used by

Isovector Aggregation. The assumptions we make in this paper are that each node has a

unique ID and knows its own location through either a GPS or some GPS-less techniques

(Shang et al. 2003, Cheng et al. 2004). Then each node knows its neighboring nodes

locations and IDs by simple node-to-neighbor communication. We set the default contour

scale to 10 and the initial scale is 0 if not specified. We also call contours contour vectors

because each generated contour is composed of a series of points and it has a starting

point and end point. If the starting point and end point of a contour are the same, this

contour is called a ring. In the following chapters of this thesis, contour, vector, and

contour vector are interchangeable terms.

 25

3.1 Scalar Dynamic Fields

A scalar field (Duckham et al. 2005) is a spatial domain R, such that for each point

p∈R, there is a unique scalar value, sp, assigned to p. In this work, it is assumed that a

sensor node associated with point p detects sp with complete precision. For example, in

the case of forest fire monitoring, each point in the region of network deployment resides

in a scalar field where temperature is the scalar value.

A spatial scalar field represents the variation of some scalar property over a region of

space. Examples of the scalar properties include temperature, wind-speed, or the

concentration of a gas pollutant in the air. A spatial field is defined as a function from

space to a scalar property. In a dynamic field, phenomena change over time. Hence, it is

not adequate for us to only give one snapshot of the monitored field. This thesis also

takes such a requirement into consideration.

3.2 Contour Maps

A contour line in a scalar field (Meng et al. 2004) is a curve connecting points of the

same particular values. A contour map uses contour lines (often just called a “contour”)

to join points of equal values. Contours are often given specific names starting with the

prefix “iso-” according to the nature of the variable being mapped. Contour maps have a

scale value which separates two adjacent lines. For example, given a scale of 10, a

temperature contour map indicates regions that differ by 10 units of temperature. The

region between two adjacent lines is in the same temperature range. “Contour maps

present a simple way of fine tuning the trade-off between information and the cost of

obtaining it by adjusting the step values to suit situational requirements” (Meng et al.

 26

2004). There can be many contour maps, each corresponding to a different parameter,

(e.g., temperature, pressure and wind speed), with different scale values for each

parameter, thereby giving a clearer picture of the monitored field. In this thesis,

temperature monitoring will be used as an example.

In many research areas, especially in geographic information science, the contour

map is a widely used mechanism for data representation. As an example, figure 3.1 is a

ground temperature contour map of the USA (UNISYS, 2002).

Figure 3.1. A temperature contour example of USA

3.3 Aggregation through Contours

In order to generate a contour map, we have to define a suitable contour scale for

each application. The criterion is how much detail we require from maps. If we want

 27

detailed maps, a fine contour scale should be used. If we only require less detail maps

and energy is limited, we can set a coarser contour scale. It is a trade-off between map

accuracy and energy cost.

Once the contour scale is defined, we use neighboring node value differences to

detect contours at each sampling round. If two adjacent nodes are in different value

ranges, there is at least one contour between them and we want the two nodes to detect

the contour through communication. Our goal is to achieve energy efficiency and

therefore to minimize the number and size of messages sent in the network.

In order to introduce our aggregation technique, we begin with a simple straight

contour example. Consider a sub-routing tree of the network. Suppose a subset of nodes

attempt to detect a straight line contour (figure 3.2) between them. A few reporting nodes

3N , 4N , 5N and 6N are chosen to report. Isovector Aggregation follows steps shown in

figure 3.3: 3N detects the contour and generate three contour points 1P , 2P and 3P which

are the mid-points between 3N and the corresponding neighboring nodes. Based on the

three contour points, node 3N then produces a contour vector (1P , 3P) and reports it to

node 1N following the data routing tree. 2P is not contained in the vector because it is

removed by 3N as a redundant point. Nodes 4N , 5N and 6N work in the same way as

3N . After 1N receives the contour vector (1P , 3P) from 3N and (4P , 5P) from 4N , it

merges the two vectors to a new vector (1P , 10P). In this merging process, contour points

3P and 4P are removed as redundant points by node 1N . 1N then reports

 28

Figure 3.2. A straight contour in a sub-routing tree

the vector (1P , 5P) to 0N and 2N reports the vector (6P , 10P) to node 0N . Such a process

will be repeated along the data routing tree. Finally, node 0N will merge the vectors

(1P , 5P) and (6P , 10P) and generate the vector (1P , 10P) (figure 3.3). This vector is

sufficient to represent the straight line contour. 0N then only reports (1P , 10P) to the base

station. In this aggregation process, because redundant data is removed, the total data

transmitted is reduced, which decreases network energy consumption.

 29

Figure 3.3. An Isovector Aggregation example

3.4 Definitions

Definition 3.1: Network Model. The communication topology of the wireless sensor

network can be represented by a simple graph))(),((GEGVG = in the plane, where

=)(GV { 1v , 2v ,..., nv } is the set of sensor nodes in the wireless sensor network. An edge

ije (jiij ee =) exists for each pair of nodes iv and jv , if they are within communication

range of each other.)(GE is the set of all edges.

Definition 3.2: Neighborhood. Let u be a node. The neighborhood uN of u contains

as elements all nodes v such that there exists an edge uve . We call v a neighbor of u .

As specified above, some predefined thresholds are set which partition the value into

different value ranges for contour mapping. If a node and one of its neighbors are in

different value ranges, there exists contour(s) between them. Nodes in the same value

range have similar properties.

 30

We denote the value at node u by)(uR and its value range by)(uRange . Starting

from the initial scale 0, the ranges used in thesis are continuous intervals ()9,0[,)19,10[,

)29,20[, etc.). For any two nodes u and v , if u and v are in the same predefined value

range, we have)(uRange =)(vRange , otherwise,)(uRange ≠)(vRange (either

)(uRange >)(vRange or)(uRange <)(vRange). For example, if)(uR = 42 and)(vR

= 45, u and v are both in the value range 40-49 and)(uRange =)(vRange .

Definition 3.3: Contour Neighborhood. Let u be a node. The contour neighborhood

uCN of u is the subset of uN where for any node v in uCN ,)(uRange ≠)(vRange . For

simplicity, we call each member of uCN a contour neighbor of u . For any v ∈ uCN , we

have u ∈ vCN . | uCN | represents the number of element in uCN .

Definition 3.4: Contour Node. A contour node u is a node that has at least one

contour neighbor. It immediately follows that | uCN | > 0 if and only if u is a contour

node.

 Definition 3.5: Contour neighborhood ring. Let u be a node and 1v , 2v ,..., nv be the

one-hop neighbors of u , sequenced in counterclockwise cyclic order around u , where a

starting node 1v is randomly assigned in advance. The contour neighborhood ring

associated with u is a ring data structure [1n , 2n , ..., nn] starting from 1v where

⎩
⎨
⎧

=
≠

=
)()(
)()()(

i

ii
i vRangeuRangeifnull

vRangeuRangeifvR
n

for ni ≤≤1 . Figure 3.4 shows an example of a node representation with its

corresponding contour neighborhood ring. In figure 3.4, numeric numbers are values of

 31

nodes. The white nodes are neighbors that have the same value range of u ()49,40[) and

the black ones are neighbors with different value ranges from u .

Figure 3.4. Node u ’s representation and the neighborhood ring

In this thesis, we use an array to represent each neighborhood ring. It does not matter

which node is chosen as the starting node because we connect the head and the tail of the

array when we want to use it. For example, both the sequence of the form [37, 38, 56, 52,

null, null, 54, 53] and the sequence of the form [56, 52, null, null, 54, 53, 37, 38]

represent the same array associated with figure 3.4 where 1v is the starting node for the

first sequence and 7v is the starting node for the second sequence.

3.5 Message Types

Each message transmitted in a wireless sensor network consists of two fields; the

message header contains required information for communication, including the source

address, the destination address and the message type, and the data field. In this thesis, all

 32

messages have the same message header but contain different message type information.

The real differences among messages lie in data fields.

Type Description

Query Base station initiating fetching contours

Negotiation Node broadcasting ID, value and location

Notification Node broadcasting ID and value

Vector Response message to query

Updating Response message without contour information

Acknowledgement Response message to children

Table 1. Message types

We define six types of messages (table 1) as follows:

1) A query message is broadcast by the root at the network setup phase. The data field

includes the contour scale and sampling interval information that should be delivered to

every node in the network.

2) A negotiation message tells neighbors the node ID, initial value, and location of

the owner node. It is only broadcast after a node receives a query message. The data field

contains the node ID, the contour scale and the node location. This message will be sent

only once by each node during the network initialization phase. Each node saves

neighboring location information after receiving these messages from neighbors.

3) Notification messages will be sent when data changes cause a contour to appear or

disappear. The data field is composed of the node ID and value. Because each node

already has neighbors’ location information after network initialization, using the

notification message, we can save additional bytes when compared with a negotiation

message.

 33

4) A vector message contains the reporting node’s ID, contour vectors, and contour

values. This is the most frequently used message type in Isovector Aggregation and it is a

message type with variable length. Different vector messages may have different lengths

because they may contain different numbers of contour vectors.

5) An updating message is a kind of reporting message that only contains the sending

node’s ID. If a node receives an updating message from one of its children, it will use the

contours previously reported by that child as the current ones. In this way, nodes do not

have to send large amounts of contour vector data back at each round if some contours do

not change.

6) An acknowledgement message is used to deal with packet loss. A node can send

this message back after receiving a reporting message (updating message or vector

message) from a child.

3.6 Aggregation Time Model

There are many aggregation time models (Solis and Obraczka 2004(b)), including:

1) Periodic simple: nodes wait a predefined amount of time, aggregate all data

received in that period, and send out a single reporting message.

 2) Periodic per-hop: a node produces an aggregate message and sends it out after it

receives all reporting messages from its children.

 3) Cascading timers: similar to periodic per-hop, a node produces a single packet

and sends it out after it receives all reporting messages from its children. The difference

is that in each sampling round the timeout of each node is set based on the node’s

 34

position in the data routing tree. A child node’s timeout will happen before its parent’s

timeout.

The time model we use in this thesis is based on cascading timers. Cascading timers

is a mechanism designed to fit periodic data generation applications in which nodes

produce data at regular periods. It has an important property (Solis and Obraczka 2004b):

the cascading timers model does not require clock synchronization among nodes. In a

wireless sensor network, no matter how efficient clock synchronization mechanisms

become, they will require additional message exchange among nodes and thus incur

additional energy consumption. In Chapter 1, we stated that saving sensor network

energy is one of the most crucial goals of all wireless sensor network applications.

Additional message exchange should be avoided if possible.

The cascading timers model starts by having the base station broadcast a query

message to all nodes hop by hop. Upon receiving the query message, nodes send a reply

back to their parent to build the routing tree. According to the cascading timers model, in

each sampling round, a node’s reporting time is set based on the node’s position in the

data routing tree. The node that has most hops from the base station is the first one that

reports and all children of the base station report lastly. Thus, a node sends its report right

before its parent does. A given node aggregates data received from its children into a

single message, which is then forwarded to its parent. Using the cascading timers

mechanism, a node merges contour vectors after it receives all vector messages from its

children. In order to handle packet loss, we modify the time model slightly and set a

relatively longer time-out for those nodes near the base station.

 35

3.7 Summary

This chapter gives preliminaries of the thesis. The definition of a contour map is

explained and we show the core idea of Isovector Aggregation though a straight contour

line example. The thesis has two assumptions. The first assumption is that each node has

a unique ID. This is reasonable for most wireless sensor network applications. We also

assume that each node knows its location though a certain technology or by pre-input.

This assumption is the prerequisite of our work because contour points are calculated

based on nodes’ locations and values.

We give the definition of a contour neighborhood ring with explanations using an

example. This neighborhood ring is the most important data structure used to store

neighbor information and to generate contours in Isovector Aggregation. We define six

types of messages in the network for different purposes. The vector message is the most

important one and it has variable length. In order to do the aggregation in a wireless

sensor network, we choose the cascading timers mechanism as the aggregation time

model.

 36

CHAPTER 4

ISOVECTOR AGGREGATION

In this chapter we present our in-network Isovector Aggregation method which

includes four parts: local contour generation, reporting node selection, contour

simplification and contour merging. Additional temporal suppression for reducing

reporting message size is also discussed for phenomena whose rate of change is slow. We

assume the query for continuous contours monitoring is processed repeatedly over a

series of rounds, where each node generates a value at the beginning of each round. All

nodes collaborate together using the Isovector Aggregation in that round. At the end of

each sampling round, we generate a contour map snapshot at the base station that is

complete in-network.

As the first step of Isovector Aggregation, following the negotiation between all

neighboring node pairs, local contour generation refers to the process that generates

initial contours through the comparison between node values and the values saved in the

neighborhood ring. As we discussed in Chapter 2, the comparison is simple and

straightforward. If a node and one of its neighbors are not in the same value ranges, then

at least there is one contour between them and the contour value is between the two

nodes’ values. Though many nodes near the contours can generate such local partial

contours, in most cases, we only choose half of the nodes near contours to report.

 37

In order to achieve energy efficiency, such generated contours are progressively

merged and simplified in the network along the fixed data routing tree built in the

network initialization phase. If two contour lines with the same value are near to each

other (distance is less than a predefined tolerance), we connect them using a straight line.

In order to remove redundant contour points in a contour, the Douglas-Peucker polyline

simplification algorithm is also applied in each level of the data routing tree. In the best

cases, we only need two contour points to represent a straight contour. The repeated in-

network contour merging and simplification procedures significantly reduce total data

transmission.

After the base station receives all reports at the last step of each sampling round, it

runs the similar contour merging and simplification algorithms and then plots all final

contours.

This chapter develops several algorithms for the Isovector Aggregation method. As

an aid to the reader, table 2 lists important variables and their descriptions.

Name Description

Scale The contour scale value (the default value is 10)

headID (hID) The head ID of a contour vector

tailID (tID) The tail ID of a contour vector

vArr The array that saves contour vectors

tol The distance threshold for connecting two contour vectors

needReport The reporting flag of a node

Table 2. Important variables and descriptions

 38

4.1 Local Contour Generation

In order to report contours for a monitored dynamic field, first we have to detect

contours in each sampling round. The method we used for contour detection is

straightforward: a contour exists between any two neighboring nodes if they are in

different value ranges. In each round, right after a node senses a value from the physical

world, it broadcasts such information to neighbors using a notification message. Each

node, after receiving such messages, updates its neighborhood ring accordingly. Then the

node can compare its own value with the neighbors’ values stored in the neighborhood

ring. If the node and one of its neighbors are in different predefined value ranges, a local

contour is detected between them. We call the middle point between these two nodes a

contour point. Each node has saved all neighbors’ location information in the

initialization phase and it knows its own location. Let u and v be two neighboring nodes

and they are in different value ranges. Let (xu , yu) and (xv , yv) be the coordinate

locations of nodes u and v . We can easily calculate the coordinates of the middle point

location using the following equation.

MidPoint(x , y) = (
2

xx vu + ,
2

yy vu +
) Equation (1)

As we discussed in Chapter 3, if a data entry in the neighborhood ring of a node is

set to null, the corresponding neighbor must be in the same value range as the node and

no contour exists between them.

The null values saved in the neighborhood ring and the predefined contour scale work

as separators dividing the ring into several partitions. A local contour vector will be

generated for each partition by collecting all contour points in counterclockwise order in

that partition. Let Scale denote the contour scale a user defines. If a node u is chosen to

 39

report and it is in a higher value range than corresponding neighbors, the value of the

reporting contour vector v between this node and the neighbors is set as:

)(()(uRvValue = mod ScaleScale *) Equation (2)

where mod is the modulus operator. As an example, if)(uR , the value of the node u , is

45 and the Scale is 10,)(vValue will be 40.

Otherwise, if u is chosen to report and it is in a lower value range, the value of the

reporting contour vector v between this node and corresponding neighbors is set as:

)(()(uRvValue = mod Scale + 1 Scale*) Equation (3)

For example, if)(uR is 45 and Scale is 10,)(vValue will be 50.

Figure 4 shows an example of a neighborhood ring of a node and the corresponding

local contour vectors. Three partitions {37, 38}, {56, 52} and {53, 54} exist in the

neighborhood ring and local contour vectors (1P , 2P), (3P , 4P) and (7P , 8P) will be

generated for the three partitions. Here vector (1P , 2P) is a contour with value 40, vector

(3P , 4P) is a contour with value 50 and vector (7P , 8P) is a contour with value 50. Each

generated vector has a headID (hID) and a tailID (tID) which are equal to the reporting

node ID. Assume the ID of the node u is 100. Then in our example, vector (1P , 2P)’s hID

and tID are both 100. Vectors (3P , 4P) and (7P , 8P) have the same hID and tID as the

vector (1P , 2P). We can also see from figure 4.1, although contour point 2P is near to

contour point 3P , we do not connect 2P and 3P because they have different contour

values.

 40

Figure 4.1. Node u ’s neighborhood ring and corresponding local contour vectors

In practice, most reporting nodes only have one partition each, and hence each of

them only generates one local contour vector. In some rare cases, a reporting node near a

narrow contour will generate two or more partitions, which may indicate a narrow

contour exists. A contour is called a narrow contour if it could be detected by a node’s

diagonal neighbors. For example, in figure 4.2 the contour could be detected by u ’s three

Figure 4.2. Narrow contour 1

 41

pairs of diagonal neighbors, and this contour is a narrow contour. Besides differentiating

contours of different values, the partition can be used to identify narrow contours. For

the above narrow contour, our aim is that the final contour shape should be similar to the

one shown in figure 4.3.

Figure 4.3. Narrow contour 2

Suppose node u generates vector 1V (4P , 6P , 3P , 1P) (figure 4.4) and reports it through

node v , and the right part of the broken line also generates a vector 2V which starts at iP

and ends with jP . Suppose also that 2V is reported though node w . When 1V and 2V

meet at a common ancestor of v and w , it is not easy for this ancestor to merge 1V and

Figure 4.4. Narrow contour 3

 42

2V together to form a new vector similar to the one shown in figure 4.3. Suppose u

generates two vectors 0V and 1V and does not merge them. After the common ancestor

receives three vectors, it is straightforward to connect 3P to iP , and 6P to jP (figure 4.5),

because they are near to each other. Then the contour we get will be similar to the one

shown in figure 4.3. In order to ensure 0V and 1V are not merged before they meet 2V ,

one simple condition we have to define is that vectors sent by the same node should not

be directly merged in the network. This process is a part of the merging algorithm that

will be illustrated in detail in section 4.3.

Figure 4.5. Narrow contour 4

4.2 Reporting Node Selection

Local contour detection in each round is based on neighborhood information gathered

through node-to-neighbor communication. If the ranges of sensed values are changed, a

node broadcasts a notification message to neighbors at the beginning of each sampling

round. After receiving all notification messages from its neighbors, each node compares

its own value with neighbors’ values. Some neighbors’ values might be in the same value

range as the reporting node. As defined in Definition 3.5, the corresponding entries of the

neighborhood ring will be set to null and they, together with the scale value, act as

 43

separators to partition the contour ring. If some neighbor values are on different sides of a

contour, at least one contour exists. When the reporting timer expires, this node will

check if it should report. If it does, a vector message will be constructed and transmitted

to the parent.

The basic approach is to select all contour nodes to report. Besides bringing an

additional communication overhead, this approach will result in a potential problem; two

neighboring nodes may report an identical contour. Later when these two identical

contours meet, we need to design more complicated merging algorithms to deal with such

duplication. In fact, contour detection is symmetric. Not all contour nodes are required to

generate contour vectors and report. In most cases, letting contour nodes on one side of

the contours report is enough. We choose contour nodes in the higher value ranges to

report. Each vector has a headID and a tailID which are equal to the ID of the node(s)

that report(s) them. Therefore, by maintaining such information, the base station can

know which side of the contour is in a higher value range and which side of the contour is

in a lower range. In some cases, two adjacent nodes may not exist in consecutive value

ranges. In this situation, both nodes in the lower value range and the higher value range

will report. Figure 4.6 gives an illustration. In figure 4.6, Node u will report a contour

with value 40 between u and v and node v will report a contour with value 50 between

u and v .

 44

Figure 4.6. Reporting node seletion

4.3 In-network Contour Simplification

Different contour lines have different shapes. In Chapter 3, we use a straight contour

line as an example to show the idea of Isovector Aggregation. It can be seen that two

contour points (starting point, end point) are enough to represent it without losing any

information. If the contour line shape is irregular, we may need more points to represent

it. Isovector Aggregation is a progressive process through the data routing tree. After a

node receives all vector messages from its children, if some contours heads or tails are

near to each other and have the same contour value, they will be merged. Sooner or later,

a contour may contain a large amount of contour points and in many cases they are

redundant. We then need more bytes to represent them. Figure 4.7 shows two

representations of the same contour lines. Suppose each contour point needs 2 bytes to be

represented. Contour 1 needs 12 bytes (additional 2 bytes are required to store the

contour value), but contour 2 only needs 6 bytes.

 45

Figure 4.7. Comparison of two contours

Without losing contour fidelity, we consider how to weed out redundant points from a

contour vector (figure 4.8). This polyline simplification problem has been researched

over the years. In this paper, we use the Douglas-Peucker polyline simplification

algorithm for vector simplification because it was best at choosing critical points when

compared with others (White 1985). We should point out that although the Douglas-

Peucker approach is chosen, any other polyline simplification method can be adopted if it

can retain the shape of the original line.

Figure 4.8. Simplify a contour vector

 46

4.4 In-network Contour Merging

In-network contour merging is an important step to reduce the contour count. After a

node receives a vector message, it saves it in a local contour Vector-Array (vArr). If this

node is also a reporting node, local generated vectors will also be added to the array.

When the reporting time comes, the node tries to merge saved contour vectors in the vArr

and removes redundant points from all merged contour vectors.

Let hV . (short name of vector head) denote the first point in the vector and tV . (short

name of vector tail) denote the last point in a vector V . We define the distance D (1V ,

2V) between two vectors 1V and 2V as the minimal value of D (hV .1 , hV .2), D (hV .1 ,

tV .2), D (tV .1 , hV .2) and D (tV .1 , tV .2). If the distance D(1V , 2V) is shorter than a

predefined threshold, they should be connected together. The node continuously merges

each pair of adjacent contours until no two contour vectors are near enough to each other.

Though the merging algorithm is simple, there are two rules we must follow:

1) The rule for choosing the distance threshold is that it should be less than the

distance between two adjacent nodes. Each contour point in a contour is a middle point

between two adjacent contour nodes. When we define the distance threshold for merging,

the neighboring node distance is an essential factor. For simplicity, we only discuss the

situation in an evenly distributed network. Figure 4.9 illustrates this rule.

 47

Figure 4.9. Before merging

In figure 4.9, there are three partial contour vectors, 1V , 2V and 3V , with the same

contour value. By our local contour generation approach, the distance between 1V and 2V

will be less than d which is half of the distance between two adjacent nodes. The

distance between 2V and 3V is also less than d and the distance between 1V and 3V is

d2 which is the distance between two adjacent nodes. Ideally, we hope to connect 1V

with 2V and connect 2V with 3V . The final contour should be the one shown in Figure

4.10.

Figure 4.10. Correct merging

 48

If the distance tolerance is equal to or larger than d2 , it is possible that 1V and 3V are

merged first. Suppose the merging result of 1V and 3V is 4V , Later the merging algorithm

cannot merge 2V and 4V correctly and we cannot get the correct contour (Figure 4.11).

Figure 4.11. Wrong merging

2) In the merging process, any two vectors sent by the same child node will not be

merged, no matter how near the distance is between them. This restriction is also used to

avoid generating wrong contour shapes of narrow contour cases. More precisely, a vector

head (tail) cannot be connected to another vector head (tail) if they have the same headID

(tailID). From our merging algorithm, if two vectors sent by the same child should be

merged, they will be merged at that child node according to the distance threshold-based

algorithm (Algorithm 3, figure 4.14). The child node will transmit one merged contour

rather than two unmerged contour vectors to the parent node.

By calculating the distance between two contour vectors, Algorithm 1 (figure 4.12)

checks merging conditions.

 49

Figure 4.12. Algorithm 1

If the distance is less than a predefined tolerance and the merging parts are not

reported by the same node, Algorithm 1 returns a positive value which will be used by

Algorithm 2 (figure 4.13). Algorithm 2 merges two specific contour vectors. For

example, when mgValue is equal to 1, 1V head and 2V head will be connected together.

The new generated 3V then replaces 1V in the vArr structure.

 50

Figure 4.13. Algorithm 2

By calling Algorithms 1 and 2, algorithm 3 (figure 4.14) continuously checks the

merging status of two vectors and merges them if they meet the merging standard.

All new generated vectors are also stored in the local vArr (last line of algorithm 2)

structure. After the local time-out, Douglas-Peucker algorithm will be called for vector

simplification. Those simplified vectors will be added to the vector message and sent to

the parent. Each node along the data routing tree performs the same process until the base

station receives the final results.

 51

Figure 4.14. Algorithm 3

4.5 Updating with Temporal Suppression

In continuous contour monitoring, choosing only a few contour nodes to report is

already an approach that combines both spatial suppression and temporal suppression.

We try to explore more suppression for some rarely changed cases.

In some applications, contours do not change frequently because events are rare, and

most nodes’ values are unchanged or only slightly changed over time. In such situations,

nodes need not transmit vector messages to the base station along the data flow tree. In

each sampling round of Isovector Aggregation, each node saves a copy of the detected

and received contours before merging. In the next sampling round, if a node finds that

such information was not changed, it only sends an updating message to its parent. The

parent will use the node’s previous contours as the current ones. If a node only receives

updating messages from children in a specific round, it transmits an updating message to

its parent in the same way.

Combining local contour generation, reporting node selection, contour simplification,

contour merging, and temporal suppression together, our algorithm for Isovector

 52

Aggregation is shown as Algorithm 4 (figure 4.15). It follows the following steps in each

sampling round. (Note: a node always monitors incoming messages).

Figure 4.15. Algorithm 4

 53

1) At the beginning of a sampling round, if the value range of a node changes, the

node broadcasts a notification message to all neighbors.

2) If a node receives a notification message from its neighbors, it updates its

neighborhood ring.

3) If a node receives a vector message from a child, it saves the received contours and

sets the needReport flag true because it has to forward received information to its parent

at least.

4) If a node receives an updating message instead of a vector message, it marks the

corresponding contours saved in the last round. Such marked contours will be used for

merging. The needReport flag is also set to true.

5) After the cascading timers model timeouts the node, the node compares

neighboring values saved in the neighborhood ring. If the node is in a higher value range

of the generated contours or it is in a non-consecutive value range, it generates local

contours and saves them for future merging. The needReport flag is set to true because it

has to report detected contours back.

6) If a node only receives updating messages and all generated local contours are the

same as contours generated in the last sampling round, it only needs to compose an

updating message and send it out later. Otherwise, the Isovector Aggregation algorithm

calls the merging algorithm (Algorithm 3) to reduce the total contour vectors it saves.

Then the Douglas-Peucker line simplification algorithm is applied on all merged contours,

and all redundant contour points are removed. The node then composes a vector message

that contains all simplified contours in the data field.

The process graph shown in figure 4.16 illustrates steps for the Algorithm 4.

 54

Figure 4.16. Process graph of Isovector Aggregation

4.6 The Base Station

The base station is the root of the data routing tree and it has two functions.

1) In the network initialization phase, the base station broadcasts a query message to

build the data routing tree and disseminate such information to all nodes in the network.

 55

2) At the end of each sampling round, it will receive all reported contour vectors from

its children. Similar to other nodes in the network, it does merging operations, but there is

a slight difference. At the base station, contour vectors sent by the same node can be

merged together. Algorithm 2 is changed to Algorithm 5 (figure 4.17) and runs at the

base station side. When the base station merges contour vectors, it will not take vector

headID or tailedID into consideration. In this way, we ensure all contours can be merged

if they are near to each other to generate integrated contours. After getting these contours,

they can be drawn and we get the contour map for this sampling round.

Figure 4.17. Algorithm 5

 56

4.7 Dealing with Packet Loss

Vector messages sent by nodes near the base station may contain a great deal of

contour information and so their size is relatively large. If such a message is dropped by

the network, we may not obtain a good contour map at the base station. For the nodes

near the base station, we introduce an acknowledgement message which will be sent to

children by a parent node after receiving a vector message. Then such children can report

again if they do not receive such an acknowledgement message from parents after a short

timeout.

4.8 Summary

In this chapter, we describe our in-network Isovector Aggregation method. The

Isovector Aggregation algorithm includes four components: local contour generation,

reporting node selection, contour simplification and contour merging.

1) Local contour generation: In the previous chapter, we designed the neighborhood

ring data structure to store all neighboring values. By comparing the value differences

between a node and its neighbors, a node generates local contours in each specific

sampling round.

2) Reporting node selection: Contour detection is symmetric. If a contour exists

between two nodes, both nodes are able to detect it. If both of them report, the network

will send redundant data and incur undesirable network traffic. We only choose contour

nodes in the higher value ranges to report.

3) Contour simplification: We use the Douglas-Peucker polyline simplification

algorithm for contour vector simplification. The benefit of the contour simplification is

 57

obvious. It reduces the numbers of bytes required to represent contours without

significantly decreasing the contour precision.

4) Contour merging: A distance tolerance-based algorithm is used to merge contours

with the same value. The rule for choosing the correct distance threshold is discussed in

detail. The base station runs a similar merging process and then draws final generated

contours. No additional processing or interpolation is required. This is one of the most

different features between Isovector Aggregation and previous techniques.

In this chapter, we also consider contour updating with temporal suppression. If a

vector message is the same as the report of the last round, the node only needs to report a

small updating message to its parent. The parent will use its last report as the current one.

We use a retransmission mechanism to deal with possible package loss near the base

station.

 58

CHAPTER 5

THEORETICAL ANALYSIS

Intuitively, Isovector Aggregation should be more energy efficient than many

previous methods mentioned in Chapter 2 because it only chooses a few contour nodes to

report and progressively removes unwanted data along the data routing tree. In order to

verify this intuition, in this chapter, we do some theoretical analysis of our Isovector

Aggregation method, focusing on traffic generation and traffic reduction during

transmission.

Traffic generation refers to how many nodes are required to report before the

aggregation. For example, if there are n nodes in the wireless sensor network and each

node needs to report, the complexity of traffic generation is)(nO .

Traffic reduction means that we use any in-network aggregation technique to reduce

or compress generated data before the base station receives them or we report all data

directly without in-network processing.

5.1 Traffic Generation

As we can see from Chapter 2, previous techniques often require all nodes to generate

reports before aggregation. Suppose the network has n nodes, the complexity of traffic

generation for those techniques is)(nO .

 59

In Iso-map (Liu and Li 2007), Liu and Li report that their method selects)(nO

number of contour nodes. Then the total contour length is also)(nO in a wireless

sensor network with infinite density (∞→n and 0→d , where d is the communication

range of a node). Because we use mid-points to represent contours and we only choose

contour nodes to report, on average the number of points in contours is between)
2

(nO

and)(nO . Thus the complexity of traffic generation of Isovector Aggregation is also

)(nO . This result may indicate that, from the perspective of traffic generation,

Isovector Aggregation is more scalable than many techniques (COACH and Isobar

Aggregation). Isolines Aggregation and Iso-map have the same property.

5.2 In-network Traffic Reduction

In real applications, the amount of communication overhead that can be reduced by

Isovector Aggregation depends on contour shapes, contour locations, network topology

and the simplification ratio (the percentage of data reduced by a simplification method)

of each inner node. We analyze Isovector Aggregation and compare it with Isolines

Aggregation in a simplified m -level binary tree network topology. A contour exists

between leaf nodes and 1−m level nodes (figure 5.1). All 1−m level nodes are chosen

to report. So there are 12 −m reporting nodes in total that have to transmit data to the

root of this tree where the integrated contour will be generated. Suppose each inner node

can simplify the merged contour by a fixed k−1 ratio after receiving children’ reports,

the size of the new generated contour by an inner node is in ratio k to the total contour

 60

size received by the node. In this binary tree case, k is in the range [0.5, 1]. The packet

header size is usually a small constant and we omit it in the analysis.

Figure 5.1. Traffic reduction in a binary tree structure

In Isolines Aggregation, each reporting node contains its own data along with that of

its two children (ID, and Value) and this requires 12 bytes of storage. In Isovector

Aggregation, each reporting node contains a contour vector starting point location, end

point location, headID, tailID and the contour value, and this requires 10 bytes in total.

We can see that even when contour vectors are not simplified, a reporting node of

Isovector Aggregation requires fewer bytes than Isolines Aggregation, if there is more

than one neighbor on the other side of the contour.

Now we compare how much data are sent by Isolines Aggregation and Isovector

Aggregation. There is no in-network data reduction mechanism in Isolines Aggregation,

and each reporting message in Isolines Aggregation has to travel 1−m hops before

 61

reaching the root. So the total size of data transmission is:)1(212 1 −⋅⋅= − mS m
isolines . The

complexity of data transmission of Isolines Aggregation is always)2(mmO ⋅ .

In Isovector Aggregation, after a parent receives two reports from its children, it

merges them into one. Let the received contour size be s . After merging and

simplification, the new contour size will be sk2 . So, the total size of data transmission is:

)2...222(10 2121 −−−− ⋅++⋅+⋅= mmmm
isovector kkS

)...1(2.10 221 −− ++++⋅= mm kkk

When 1=k , all contours are not simplified after merging and we reach the upper

bound of Isovector Aggregation. This situation occurs when we want to keep all contour

points, in this case, we have)1(210 1 −⋅⋅= − mS m
isovector . We can see that data transmission

by Isovector is less than Isolines Aggregation but the complexity is also)2(mmO ⋅ . When

0.5 ≤ k < 1, contours are simplified and we have
k

S
m

m
isovector −

−
⋅⋅=

−
−

1
5.01210

2
1 .

In particular, when 5.0=k , we have)22(10
1

5.01210
2

1 −⋅=
−

−
⋅⋅=

−
− m

m
m

isovector k
S and

this is the lower bound of the Isovector Aggregation. The complexity is)2(mO . The total

data transmission is reduced by a factor of m compared to Isolines Aggregation. When

we remove all inner contour points of a contour, we can reach this bound.

What we show in the above is only a simplified situation. In a real application,

contour lines will not always be straight lines and they may not all exist in the lowest

level of the data routing tree. Depending on the different structures of data routing trees

and the real situation in the dynamic field, we may get different results. But Isovector

Aggregation has the same performance as Isolines Aggregation in the worst situation.

 62

5.3 Summary

In this chapter, we have developed theoretical analyses for Isovector Aggregation.

We have shown that Isovector Aggregation only incurs)(nO network traffic. The in-

network traffic reduction is also considered.

Comparison with other techniques given in table 3 shows the performance of

Isovector Aggregation.

Method Traffic generation Traffic reduction

No Aggregation)(nO No

IsoBar)(nO Yes

Iso-map)(nO No

Isolines)(nO No

Isovector)(nO Yes

Table 3. Comparisons of different techniques

 63

CHAPTER 6

EXPERIMENTAL ANALYSIS

In this chapter, we do experimental analyses of Isovector Aggregation through

simulation in the NS2 (Network Simulator 2) environment, and we make a comparison

with Isolines Aggregation. We do not implement Isobar Aggregation for comparison

because it has been shown that Isolines Aggregation performs significantly better than

Isobar Aggregation (Solis and Obraczka 2005). The simulation results are also compared

with the no-aggregation method in which nodes simply send their values to the base

station through the routing tree, and negotiations between different nodes are not

required. Basically, with the no-aggregation method the base station will get a value from

each node and generate the most accurate map. However, in most real wireless sensor

network applications the considerable network traffic caused by having all nodes report

will bring considerable packet loss, which means the base station cannot receive all

reporting messages. In the following simulations, Node ID and location information are

all two bytes long. Temperature information is also two bytes. The contour scale is set to

10 and the starting value is zero. Though we choose temperature as the measurand,

Isovector Aggregation can measure any sensed variable.

 64

6.1 Simulation Setup

We use a wireless sensor network consisting of 16×16 (256) nodes arranged in a

400m2 evenly spaced grid to monitor temperature. The distance between each adjacent

node pair is 25m, and the base station is placed in the center of the network. We should

point out that although in these simulations, nodes are placed according to a grid pattern,

similar to Isolines Aggregation, Isovector Aggregation is not specific to grid placement.

For medium access control, nodes use CSMA at 196Kbps. Their transmission range is set

to 40m so each node except outer layer nodes has 8 neighbors. FLIP (Solis and Obraczka

2004a) is used as the network protocol. The distance tolerance used for the Douglas-

Peucker algorithm is 6m, and the distance threshold for connecting two contour vectors is

14m that is less than the distance between any two adjacent nodes.

The tree-base routing scheme (Madden et al. 2002) is used for simulations. After the

startup of the network, the base station broadcasts a query message on its radio. All nodes

that hear the query message process it and rebroadcast it on to their neighbors. They keep

on broadcasting until all nodes in the network have heard the query message. In this

process, a routing tree is built. Then, each node broadcasts the negotiation message to

neighbors. Each node initializes its contour ring by means of the negotiation messages it

receives. The neighbor ID and location pair information are saved. Next time, nodes only

have to broadcast notification messages. Finally, the network is fully initialized, and each

node then starts reporting according to the query information it receives.

 65

6.2 Scenarios and Evaluation Metrics

There are three simulation scenarios for temperature monitoring. The first scenario

includes detecting two straight line contours with value 40 and 50 respectively, and

detecting irregular contours. This simulation scenario is used to see if the Isovector

Aggregation is adaptable to different contour shapes. In the second scenario we change

the contour node densities instead of increasing the node count of the network. The total

data transmission in different contour node ratios is recorded. This scenario will give us

an alternative view of the scalability of Isovector Aggregation. In a dynamic field,

phenomena change over time, and it is important that Isovector Aggregation should be

suitable for the continuous contour mapping. In order to verify the suitability for

generating contour maps in a continuous manner, we focus on continuous contour

monitoring in the third simulation scenario.

There are two criteria for evaluation:

1) Data transmission size: This reflects the energy consumption by different

approaches. For Isovector Aggregation and Isolines Aggregation, data transmission for

negotiation between nodes is also included. We have proved that Isovector Aggregation

is more scalable than many previous works because of the)(nO traffic generation and

the in-network traffic reduction. Counting the data transmitted will give us a clearer view

of the network traffic of different aggregation techniques. While this might seem to not

take energy consumption for receiving data into consideration, we should note that the

cascading timers model is well suited to any (MAC) protocols or external control

algorithms that switch idle nodes off to low-power radio mode because communication is

 66

not taking place (Solis 2005). This approach can save nodes’ receiving power. For the no-

aggregation method this mechanism is not applicable without additional modification.

2) Contour map accuracy: This corresponds to the query precision by different

approaches. The contour map accuracy is calculated as the percentage of points (80×50

points placed on the map) that are actually in correct value ranges when compared to the

baseline map generated using all node values. We use the ArcView GIS software package

(ArcView, ESRI) as the external tool for interpolation and visualization at the base

station side. We should point out that only the no-aggregation method and Isolines

Aggregation need interpolation by ArcView GIS. Isovector does not need to do this since

the contour generation is a part of the aggregation

6.3 Detecting Static Contours

We use a regular contour map for evaluation. This map includes two vertical contours

with value 40 and 50 respectively that go across the wireless sensor network from the top

to the bottom. The contour node ratio in this case is 25%. In other words, 256×0.25 = 64

nodes can detect contours.

By Isovector Aggregation, the base station only produces two contour vectors and

each contour vector only consists of two points. This implies that Isovector Aggregation

only uses a starting point and an end point to represent a straight line. An example of

received contour vector is 40:(99, 387):(99, 12). Here 40 refers to the contour value. (99,

387) is the start point coordinate and (99, 12) is the end point coordinate. In all 10 run

simulations, Isovector Aggregation produced exact contours. The data size transmitted by

 67

Isovector Aggregation is 3102 bytes with standard deviation (sd) 199 bytes; whereas,

5025 bytes (sd 494) are transmitted by Isolines Aggregation; and 12331 bytes (sd 429)

are sent by the no-aggregation method. Compared to Isolines Aggregation, Isovector

Aggregation sends 38% less data. Compared to the no-aggregation method, Isovector

Aggregation sends 74% less data. Since our Isovector Aggregation approach produces the

exact contour map all the time, it is not meaningful to compare the map accuracies with

other methods in this regular contour map case.

An irregular contour map is also used for evaluation. Because Isovector Aggregation

is compared with the Isolines Aggregation, the map we used in this scenario is similar to

the one used in Isolines Aggregation (Solis and Obraczka 2005a) and this ensures that the

simulation results are reliable. Figure 6.1 shows the baseline map generated from all

nodes’ values. Figure 6.2 shows the example of maps generated using the no-aggregation

Figure 6.1. Baseline map snapshot

 68

method. Figure 6.3 shows the example of maps generated using the Isolines Aggregation

method and figure 6.4 shows the example of maps generated using the Isovector

Aggregation method. Table 3 gives the simulation results.

Figure 6.2. Map with no-aggregation

Figure 6.3. Map with Isolines Aggregation

 69

Figure 6.4. Map with Isovector Aggregation

Method Accuracy Data sent (bytes)

No Aggregation 96.64 (sd 0.49%) 12111 (sd 534)

Isolines 94.94 (sd 1.16%) 6177 (sd 345)

Isovector 96.03 (sd 0.51%) 4775 (sd 263)

Table 4. Contour map snapshot

As we can see from table 4, after drawing contours generated by Isovector

Aggregation, we get a contour map similar to the baseline map. Isovector Aggregation

also sends much less data than Isolines Aggregation. For the no-aggregation method, we

find that nearly 30% of messages, including many messages sent by contour nodes are

automatically dropped by the network. Hence, the no-aggregation method does not

achieve 100% map accuracy.

 70

6.4 The Impact of Contour Node Ratios

In this scenario, we change the contour node percentage by changing the number of

contours. We query all existing contours and measure the total data sent by the no-

aggregation method, the Isolines Aggregation method, and the Isovector Aggregation

method. Figure 6.5 shows the result. From the figure we know that both aggregation

methods send more data as the contour node ratio increases, because more nodes can

detect contours when the contour node ratio is high. As more redundant points are

removed from the reports, Isovector Aggregation sends much less data in the case of a

high contour node ratio when compared to Isolines Aggregation. This implies that

Isovector Aggregation is scalable and it is applicable for mapping dense contours in

wireless sensor networks. Because the no-aggregation method lets all nodes report, the

contour node ratio has no impact on it.

Figure 6.5. Data sent at different contour node ratios

 71

6.5 Monitoring Moving Contours

In this dynamic mapping scenario, we simulate a front moving in from left to right.

Temperature increases from the thirties to the fifties in about 50 meters. The front moves

to the right in 9s (second). The starting value of all nodes is centered at 35 degrees. The

base station, which is placed at the center of the map, starts by initializing the network at

time 1s. From time 3s to 11s, nodes report their temperature values in each second. The

simulation is stopped at time 12s.

Method Accuracy (9s) Data sent (bytes)

No Aggregation 98.0 (sd 0.72%) 110994 (sd 03074)

Isolines 97.7 (sd 0.48%) 26855 (sd839)

Isovector 98.5 (sd 0.2%) 17417 (sd 807)

Table 5. Moving contours

We count the total data sent in this moving scenario and take map snapshots at the 9s

point for comparison. Figures 6.6, 6.7, 6.8 and 6.9 show examples of contour map

snapshots at 9s and table 5 gives the simulation result. From table 5 we know that

benefiting from contour vector merging and simplification, Isovector Aggregation sends

less data than Isolines Aggregation. Also, the contour map accuracy achieved by

Isovector Aggregation is better than Isolines Aggregation. The no-aggregation technique

sends much more data than Isovector Aggregation and Isolines Aggregation. This result

implies that Isovector Aggregation is appropriate for continuous contour mapping.

 72

Figure 6.6. Baseline map at 9s for moving contours

Figure 6.7. Map with no-aggregation for moving contours

 73

Figure 6.8. Map with Isolines Aggregation for moving contours

Figure 6.9. Map with Isovector Aggregation for moving contours

 74

6.6 Summary

In this chapter, we do experimental analysis for Isovector Aggregation though

simulations using the NS2 network simulator. The simulation results are compared with

the results of both the Isovector Aggregation method and the no-aggregation method. The

results report that Isovector Aggregation exhibits good map accuracy with significant

advantage in energy efficiency.

With the)(nO traffic generation and in-network traffic reduction mechanism,

Isovector Aggregation has better scalability than other methods. In the simulation, we

manually change the contour node rate by setting different contour numbers and

measuring the total data transmitted. Isovector Aggregation sends the least data when the

contours are dense in the network. This result accords well with the theoretical analysis.

We evaluate Isovector Aggregation using a dynamic mapping case. Contour map

snapshots are captured in the simulation. Similar to the results we get from the static

contour detection scenario, the total data transmitted by Isovector Aggregation in this

scenario is less than the other two baseline techniques. As well as this, it achieves the best

contour map accuracy.

It is important to mention that only the lossless no-aggregation method can achieve

total map accuracy under our map accuracy metric. In a real sensor network, especially in

a dense network the large amount of traffic caused by the no-aggregation method makes

perfect network transmission unrealistic. Because we use mid-points between nodes to

represent contours and the Douglas-Peucker polyline simplification algorithm is applied

to each contour, Isovector Aggregation will only rarely achieve 100% percent map

accuracy, even in a dense network.

 75

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

The rapid development of wireless sensor networks enables researchers and scientists

to monitor the physical world more efficiently. The continuous transmission approach

and the threshold based approach are the two basic monitoring approaches. These

approaches are simple and easy to implement, but they have an obvious problem. All or

most nodes will die quickly because each sensor node is battery powered and the energy

is limited. For this reason, the essential problem we have to solve is to save the network

energy as much as possible without sacrificing accuracy of the data. In-network data

aggregation holds promise as a technique that saves energy and does not significantly

lower accuracy.

7.1 Conclusions

This thesis describes a novel in-network data aggregation method, Isovector

Aggregation, which aggregates data into contours. We use a simple approach to detect

contours. If two adjacent nodes are in different value ranges, there must be at least one

contour between them. In order to detect contours, a ring data structure that fully utilizes

the neighbor cyclic order information is designed to store neighbors’ values. For different

communication purposes, we design six different types of messages. Because contours in

the dynamic physical field change over time, we want to apply dynamic monitoring and

 76

mapping instead of static contour detection. In order to achieve our purpose, we use

cascading timers as the data aggregation time model, which has many advantages

compared with others.

Isovector Aggregation consists of four components: local contour generation,

reporting node selection, in-network contour merging, and in-network contour

simplification. Contours are locally generated between nodes that are in different value

ranges. In most cases, we only choose half of the contour nodes to report, and this only

results in)(nO traffic, where n is the total number of sensor nodes. In-network

contour merging and simplification techniques are employed at each inner node to reduce

data transmission. In addition, we use a retransmission mechanism to deal with packet

loss in the network and temporal suppression can save more energy if contours do not

change frequently.

Both theoretical analysis and experimental analysis results are consistent with the

design purposes of the aggregation technique we proposed.

7.2 Discussion

As discussed in Chapter 1, the main goal of this thesis is to design an aggregation

technique that can save network energy without compromising the contour map accuracy.

We present Isovector Aggregation as the solution.

Theoretical analysis is conducted in this thesis on both traffic generation and traffic

reduction. The results show that Isovector Aggregation is the only technique that has

)(nO traffic generation and considers in-network traffic reduction at the same time.

These two factors make it scalable in large wireless sensor networks.

 77

Experimental analysis is also conducted in this thesis through simulations. There are

three simulation scenarios for temperature monitoring. In the first scenario, we use

Isovector Aggregation to detect both a regular contour map and an irregular contour map.

In the second scenario, we try to find the impact of contour node densities on the data

transmission. We also use a dynamic monitoring case for evaluation in the third scenario.

All simulation results show that Isovector Aggregation not only achieves high map

accuracies compared with baseline maps, it also sends significantly less data than the

Isolines Aggregation method and the no-aggregation method. Both theoretical analysis

and simulations show that Isovector Aggregation is scalable and could be applied to

many different mapping applications in wireless sensor networks.

In short, the main achievements of the thesis are as follows:

1) An aggregation technique, Isovector Aggregation, to generate contour maps using

in-network approaches. All contours are generated in the network.

2) Detailed theoretical analysis and experimental analysis. All results show that

Isovector Aggregation can save network energy compared to the Isolines Aggregation

and no-aggregation techniques. Also, Isovector Aggregation does not significantly

decrease the contour maps accuracy. In fact, in all simulations scenarios, Isovector

Aggregation achieves better map accuracy than Isolines Aggregation.

In conclusion, the research goal listed in Chapter 1 has been achieved using Isovector

Aggregation.

 78

7.3 Work Published and Related

This section presents work related to and derived from the approach developed in this

thesis that have been accepted and presented at conferences and workshops.

We have proposed the Continuous Contour Mapping (CCM) method (Zhong and

Worboys 2008) that has been presented at the fifth IEEE Consumer Communications and

Networking Conference. We have also proposed the Isovector Aggregation method

(Zhong and Worboys 2007) that has been presented at the fifth IEEE Upstate NY

Workshop on Communications, Sensors and Networking. These two papers are directly

related to the approach developed in this thesis.

With the combination of wireless sensor network technology and geographic

information science, many researchers may be interested in detecting different

topological changes using wireless sensor networks. The contour maps generated at

different specific time stamps tell users different snapshots of the entire monitored field.

If we want to know what topological changes happened between two timestamps, users

can compare the map snapshots at two different times. Furthermore, based on the thesis

work, we have developed a Detecting Topological Change (DTC) approach (Farah et al.

2008) to be presented at the 2008 International Conference on Geographic Information

Science. This approach can detect all topological changes in the network. Instead of

transmitting contours back to the base station, this approach transmits detected changes to

the base station directly.

The DTC approach (Farah et al. 2008) uses a similar data structure, the neighborhood

ring, which is developed based on this thesis work. Each neighborhood ring is also

partitioned into intervals. In order to determine which topological change has occurred, a

 79

node that has changed status will initiate a series of tests based upon the neighborhood

components of its neighborhood ring.

There are also differences between the DTC approach and the method reported in this

thesis:

1) The thesis focuses on detecting contours in the network. The proposed Isovector

Aggregation method can give a direct view of the monitored field in each sampling round;

whereas, the DTC approach is more concerned with detecting topological changes.

2) The approach developed in this thesis does not require any global broadcast;

whereas, the DTC approach cannot avoid global broadcast when detecting a self-split.

7.4 Future Work

This thesis presents an aggregation method which aggregates sensor data into

contours efficiently. There have been many paths that we have not had time to explore.

Some of the future research directions include:

1) There is a dense contour case that Isovector Aggregation cannot handle properly.

Between two neighboring nodes, Isovector Aggregation reports at most two different

contours. If two neighboring nodes have large value differences, some contours between

them will not be reported (figure 7.1). In figure 7.1, node u will report a contour with

value 40 between u and node v and node v will report a contour with value 60. But

neither u nor v will report a contour with value 50 between u and v . This is a problem

we need to address in the future.

 80

Figure 7.1. A case that Isovector Aggregation cannot deal with

2) We introduce the acknowledgement message to solve packet loss, but we did not

fully implement this mechanism in the simulations.

3) As we also emphasized in the thesis, energy saving is one of the most crucial goals

for wireless sensor applications. Chen et al. (Chen et al. 2001) show that the energy

consumption ratio of idle:receive:transmit is 1: 2: 2.5. Even an idle node consumes a

significant amount of energy. Hence, the greatest savings only result from deactivating

nodes. Some researchers have already looked into this problem (Xu et al. 2001, Liu et al.

2002, Zhang and Cao 2004). In our work, one possible approach is to make the wireless

sensor event-driven. If nothing happens in the network, all sensor nodes could deactivate

themselves. If only an event happens in a sub-region of the whole field, only sensor

nodes that are around that sub-region activate themselves to monitor the event. The

drawback of this event-driven approach is that it may decrease the responsiveness of the

network. In other words, events that happen in the network may not be detected promptly.

We are required to find a good balance between event detection and resource

economization. This is an interesting research direction for the future.

 81

BIBLIOGRAPHY

Abadi, D. J., Madden, S., and Lindner, W. (2005). Reed: Robust, efficient filtering and
event detection in sensor networks. In Proceedings of the International Conference
on Very Large Data Bases (VLDB), pp. 769–780.

Akyildiz, I. F., Su, W., Sankarasubramaniam, Y. and Cayirci, E. (2002). A survey on
sensor networks. IEEE Communications Magazine, vol.40, issue 8, pp. 102-114.

ArcView. ESRI. http://www.esri.com/software/arcview/

Cerpa, A., Elson, J., Estrin, D., Girod, L., Hamilton, M. and Zhao, J. (2001). Habitat
monitoring: Application driver for wireless communications technology. in
Proceedings of the 2001 ACM SIGCOMM Workshop on Data Communications, pp.
20-41.

Chen, B., Jamieson, K., Balakrishnan, H. and Morris, R. (2001). Span: An energy-

efficient coordination algorithm for topology maintenance in ad hoc wireless
networks. in Proceedings of the ACM/IEEE international conference on Mobile
Computing and Networking, pp. 481-494.

Cheng, X., Thaeler, A., Xue, G. and Chen, D. (2004). Tps: A time-based positioning
scheme for outdoor wireless sensor networks. in Proceedings of the 23nd
Conference of the IEEE Computer and Communications Societies(INFOCOM), pp.
2685-2696.

Chintalapudi, K. and Govindan, R. (2003). Localized edge detection in sensor fields. Ad
Hoc Networks, vol. 1, no. 2-3, pp. 273-291.

Culler, D., Deborah, E. and Mani, S. (2004). Guest Editors’ Introduction: Overview of
Sensor Networks. Computer, vol. 37, issue 8, pp. 41-49.

Ding, M., Chen, D., Xing, K. and Cheng, X. (2005). Localized fault-tolerant event
boundary detection in sensor networks. in Proceedings of the 24th Conference of the
IEEE Computer and Communications Societies(INFOCOM), pp. 902-913.

 82

Douglas, D. and Peucker, T. (1973). Algorithms for the reduction of the number of points
required to represent a digitized line or its caricature. The Canadian Cartographer,
vol. 10, pp. 112-122.

Duckham, M., Nittel, S. and Worboys, M. (2005). Monitoring dynamic spatial fields
using responsive geosensor network, in Proceedings of the 13th annual ACM
International Workshop on Geographic information systems, pp. 51-60.

Estrin., D. (2002). Embedded networked sensing for environmental monitoring. Keynote,
circuits and systems workshop. http://lecs.cs.ucla.eduestrin/talks/CAS-JPL-
Sept02.ppt

Farah, C., Zhong, C., Worboys, M. and Nittel, S. (2008). Detecting topological change
using wireless sensor networks, in Proceedings of Geographic Information Science
(GIScience), vol. 5266, pp. 55-69.

Gandhi, S., Hershberger, J. and Suri, S. (2007). Approximate Isocontours and Spatial
Summaries. in Proceedings of the Information process in sensor networks(IPSN), pp.
400-409.

Greenwald, M. and Khanna, S. (2004). Power-conserving computation of order-statistics
over sensor networks. in Symposium on Principles of Database Systems (PODS), pp.
275-285.

Hellerstein, J. M., Hong, W., Madden, S. and Franklin, M.J. (2003) (a). The design of an
acquisitional query processor for sensor networks. in Proceedings Of the 2003 ACM
International. Conference on Management of Data (SIGMOD), 2003, pp. 491-502.

Hellerstein, J. M., Hong, W., Madden, S. and Stanek, K. (2003) (b). Beyond average:
Toward sophisticated sensing with queries. in Proceedings of the Information
process in sensor networks (IPSN), pp. 63-79.

Intanagonwiwat, C., Govindan, R. and Estrin, D. (2000). Directed diffusion: A scalable
and robust communication paradigm for sensor networks. in Proceedings of the
International Conference on Mobile Computing and Networking (MobiCom), pp.
56-67.

Liu, J., Cheung, P., Zhao, F. and Guibas, L. J. (2002). A Dual-Space Approach to
Tracking and Sensor Management in Wireless Sensor Networks.in Proceedings of
the First ACM International Workshop on Wireless Sensor Networks and
Applications (WSNA), pp. 131-139.

 83

Liu, Y., and Li, M. (2007). Iso-map: Energy-efficient contour mapping in wireless sensor
networks. in Proceedings of the 27th IEEE International Conference on Distributed
Computing Systems (ICDCS), pp. 36-48.

Madden, S., Franklin, M. J., Hellerstein, J. M. and Hong W. (2002). Tag: A tiny
aggregation service for ad-hoc sensor networks. in Proceedings of the 2002 USENIX
Symposium on Operating Sysems Design and Implementation (OSDI), pp. 131-146.

Mainwaring, A., Polastre, J., Szewczyk, R., Culler, D. and Anderson, J. (2002). Wireless
sensor networks for habitat monitoring. in ACM International Workshop on Wireless
Sensor Networks and Applications (WSNA), pp. 88-97.

Meng, X., Li, L., Nandagopal, T. and Lu, S. (2004). Event contour: an efficient and
robust mechanism for tasks in sensor networks. Technical Report, UCLA, 2004.

Network Simulator 2. http://www.isi.edu/nsnam/ns/

Pottie, G. J. and Kaiser W. J. (2000). Wireless integrated network sensors.
Communications of the ACM, vol. 43, no. 5, pp. 51-58.

Shang, Y., Ruml, W., Zhang, Y. and Fromherz M. P. J. (2003). Localization from mere
connectivity. in MobiHoc, pp. 201-212.

Shnayder, V., Hempstead, M., Chen, B. R., Allen, G. W. and Welsh, M. (2004).
Simulating the power consumption of large-scale sensor network applications. in
Proceedings of the 2nd international conference on Embedded networked sensor
systems (SenSys), pp. 188-200.

Shrivastava, N., Buragohain, C., Agrawal, D. and Suri, S. (2004). Medians and beyond:
New aggregation techniques for sensor networks. in Proceedings of the 2nd
international conference on Embedded networked sensor systems (SENSYS), pp.
239-249.

Silberstein, A., Braynard, R. and Yang, J. (2006). Constraint chaining: on energy-
efficient continuous monitoring in sensor networks. in Proceedings Of the 2006
ACM International. Conference on Management of Data (SIGMOD), pp. 157-168.

Sinha, A. and Chandrakasan A. (2001). Dynamic Power Management in Wireless Sensor
Networks, IEEE Design & Test of Computers, vol. 18, no. 2, pp. 62-75.

 84

Solis I. (2005). Efficient Protocols for Power-Constrained Heterogeneous Wireless Ad-hoc
Networks, Ph.D. dissertation, University of California Santa Cruz.

Solis, I. and Obraczka, K. (2005) (a). Efficient continuous mapping in sensor networks
using isolines. in Proceedings of the 2005 MobiQuitous, pp. 325-332.

Solis, I. and Obraczka, K. (2005) (b). Isolines: Energy Efficient mapping in sensor
networks” in Proceedings of the IEEE Symposium on Computers and
Communications (ISCC), pp. 379-385.

Solis, I. and Obraczka, K. (2004) (a). I. Solis and K. Obraczka. Flip: A flexible
interconnection protocol for heterogeneous internetworking. ACM/Kluwer Mobile
Networking and Applications (MONET) Special on Integration of Heterogeneous
Wireless Technologies, vol. 9, no. 4, pp. 347-361.

Solis, I. and Obraczka, K. (2004) (b). The impact of timing in data aggregation for
sensor networks. in Proceedings of the IEEE International Conference on
Communication, vol. 6, pp. 3640-3645.

Tubaishat M. and Madria S. (2003). Sensor Networks : An Overview. IEEE Potentials,
vol. 22, pp. 20-23.

UNISYS. (2002). http://weather.unisys.com/surface/sfc_con_temp.html

White, E. (1985). Assessment of line-generalization algorithms using characteristic
points. The American Cartographer, vol. 12, pp. 17-27.

Xu, N. (2004). A survey of Sensor network Application. Technical report, Computer

Science Department, University of Southern California.

Xu, Y., Heidemann, J. and Estrin, D. (2001). Geography-informed energy conservation
for ad-hoc routing. in Proceedings of the Seventh Annual ACM/IEEE International
Conference on Mobile Computing and Networking, pp. 70-84.

Xue, W., Luo, Q., Chen, L. and Liu, Y. Liu. (2006). Contour map matching for event
detection in sensor networks. in Proceedings Of the ACM International Conference
on Management of Data (SIGMOD), pp. 145-156.

 85

Yao, Y. and Gehrke, J. (2003). Query processing in sensor networks. in Online

proceedings of the First Biennial Conference on Innovative Data Systems Research

(CIDR), pp. 201-212.

Yao, Y. and Gehrke, J. (2002). The Cougar approach to in-network query processing in

sensor networks. in SIGMOD Record, vol. 31, pp. 9-18.

Zhao, F., Guibas J. L. (2004). Wireless Sensor Networks: An information processing

approach. Morgan Kaufmann Press.

Zhao, J., Govindan, R. and Estrin, D. (2002). Residual energy scans for monitoring
wireless sensor networks. in IEEE Wireless Communications and Networking
Conference, 2002, pp. 145-156.

Zhang, W. and Cao, G. (2004). DCTC: Dynamic Convoy Tree-Based Collaboration for
Mobile Target Tracking. IEEE Transactions on Wireless Communications, vol. 3,
no. 5, pp. 1689-1701.

Zhong, C. and Worboys, M. (2007). Generating contours in a sensor network using

isovector aggregation. in Proc. of the 5th IEEE Upstate NY Workshop on
Communications, Sensors and Networking, pp.131-135.

Zhong, C. and Worboys, M. (2008). Continuous contour mapping in sensor networks. in

Proc. of the 5th IEEE Consumer Communications and Networking Conference
(CCNC), pp.152-156.

 86

BIOGRAPHY OF THE AUTHOR

Cheng Zhong was born in Sangzhi, Hunan, P.R.China on June 24, 1980. He attended

school in Sanzhi, and graduated from Sangzhi Number One High School.

He obtained a B.S. in Economics from Beijing Institute of Technology, P.R.China in

2001 and a M.S. in Computer Software and Theory from Peking University, P.R.China in

2004. During this time, he was a member of the Operating System Laboratory at Peking

University. His research interests included information retrieval, system component

repertory. He was involved in a national 863 project and invented a method patented “A

Correlation Based Query Method for Operating System Component Repertory” for

Peking University. His master thesis at Peking University was titled “The Design and

Implementation of the Sub-retrieval System for the Embedded Operating System

Component Repertory”. He also worked part-time at Microsoft Research Asia when he

was studying for his master degree. From 2004 to 2006, he worked for the Oracle

Corporation, China Development Center as a software developer. He finished Oracle

Japan Location Based Services 2.0 project and the Oracle MapViewer 11g Beta version

with other coworkers during that period.

After moving to Maine in August 2006, he was enrolled for graduate study at the

University of Maine and served as a graduate research assistant in the Department of

Spatial Information Science and Engineering. He is a candidate for the Master of Science

Degree in Spatial Information Science and Engineering from the University of Maine in

December 2008.

	The University of Maine
	DigitalCommons@UMaine
	12-2008

	Generating Contour Maps for Dynamic Fields Monitored by Sensor Networks
	Cheng Zhong
	Recommended Citation

	Microsoft Word - Master_Thesis_Cheng_Zhong_08

