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This thesis describes the development of analytical and computational techniques 

for systems far from equilibrium and their application to three model systems. Each 

of the model systems reaches a non-equilibrium steady state and exhibits one or more 

phase transitions. 

We first introduce a new position-space renormalization-group approach and il- 

lustrate its application using the one-dimensional fully asymmetric exclusion process. 

We have constructed a recursion relation for the relevant dynamic parameters for 

this model and have reproduced all of the important critical features of the model, 

including the exact positions of the critical point and the first and second order phase 

boundaries. The method yields an approximate value for the critical exponent v 

which is very close to the known value. 



The second major part of this thesis combines information theoretic techniques for 

calculating the entropy and a Monte Carlo renormalization-group approach. We have 

used this method to study and compare infinitely driven lattice gases. This approach 

enables us to calculate the critical exponents associated with the correlation length v 

and the order parameter /3. These results are compared to the values predicted from 

different field theoretic treatments of the models. 

In the final set of calculations, we build position-space renormalization-group re- 

cursion relations from the master equations of small clusters. By obtaining the prob- 

ability distributions for these clusters numerically, we develop a mapping connecting 

the parameters specifying the dynamics on different length scales. The resulting flow 

topology in some ways mimics equilibrium features, with sinks for each phase and 

fixed points associated with each phase boundary. In addition, though, there are 

added complexities in the flows, suggesting multiple regions within the ordered phase 

for some values of parameters, and the presence of an extra "source" fixed point 

within the ordered phase. 

Thus, this study illustrates the successful applicability of position-space renor- 

malization-group and information theoretic approaches to driven lattice gases in one 

and two dimensions. These methods provide new insights into the critical properties 

and ordering in these systems, and set the stage for further development of these 

approaches and their application to additional, more realistic models. 
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CHAPTER 1 

INTRODUCTION 

In this work we study the critical properties of three stochastic non-equilibrium lattice 

gases using position-space renormalization-group methods. The exploration of criti- 

cal phenomena has always been fascinating to researchers because of its complexity 

and difficulty. In nature, the number of cases of collective behavior of the constituent 

elements of a system seem to outnumber the cases in which we observe simple uncorre- 

lated behavior between elements. Pressure, temperature and concentration gradients 

keep subsystems of living organisms out of equilibrium. The biological realm is full 

of examples of collective behavior in which the individual "particles" move in concert 

with each other producing stable patterns in time and space. The same elements of 

behavior occur in many physical systems close to their critical points. 

The nature of the second order phase transition involves huge fluctuations, which 

are even macroscopically observable, and correlation lengths between the particles 

spanning the size of the system. It is common for open systems to  maintain their 

highly correlated state for long periods of time, evolving only within a small volume 

of the parameter space without decaying into an uncorrelated state. The search for 

solutions that model this behavior has been one of the most active areas in science. 

In this work we concentrate on models that have steady states which are not close to  

some equilibrium state, i.e. models far from equilibrium. To explore the critical region 

of these model systems, we have developed methods which are natural extensions 

of the well known analytical and computational methods of equilibrium statistical 

mechanics. The usual Hamiltonian formulation of the equilibrium statistical models 

allows the definition of appropriate functionals, such as the free energy functional, 



by which we define the location of the transition points in the model's parameter 

space. Analogous approaches can be designed for systems in a general steady state 

by designing functionals from which the steady state can be obtained. A subtle 

difference exists, though, between equilibrium and non-equilibrium models: the total 

independence of the critical properties for equilibrium models from the underlying 

dynamics. This independence is not the case for systems far from equilibrium, for 

which the dynamics plays a crucial role in determining their critical properties. 

Our work is focused on model systems kept in a steady state far from equilibrium. 

The models discussed in this thesis undergo first and second order phase transitions 

and show many typical characteristics of the complex behavior in non-equilibrium 

phenomena. They are non-Hamiltonian systems for which the dynamics is defined by 

stochastic rules. One conventional approach is to define a master equation and then 

try to find its solutions, which is an almost insurmountable task (Oppenheim et al., 

1977). In some of the methods that we develop we use the properties of the solutions 

of the master equation when the system reaches its steady state. 

Chapter 2 provides a background discussion of the different methods that will be 

used for studying the critical properties of the models. We conduct our investigations 

using the more intuitive position-space renormalization-group approach, working in 

the phase space spanned by the set of the relevant parameters of the model. In 

Chapter 3 we show our analytical results for a one-dimensional stochastic model with 

open boundaries (Krug, 1991; Derrida et al., 1992, 1993). Because the solution in 

terms of the probability distribution over the possible configurations is known exactly, 

this simple model is a valuable testing ground for different approaches to systems 

out of equilibrium, analogous to the two dimensional Ising ferromagnet without a 

magnetic field for equilibrium processes. This one-dimensional model has a rich phase 

diagram with first and second order phase transitions. We construct a position- 

space renormalization-group mapping by using the knowledge of the general form of 



the steady state probability distribution and the steady state particle current. The 

method captures all of the relevant features of the model and an estimate of the 

correlation length critical exponent is obtained. 

We present in Chapter 4 our results for two-state two-dimensional driven lattice 

gases (Katz et al., 1984). Inspired by the possibility of calculating the entropy density 

for stationary processes, we develop a Monte Carlo renormalization-group method 

from which we estimate the correlation length critical exponents. This work involves 

two basic steps: the first is the calculation of the Shannon entropy for small clusters of 

sites on the lattice, from which we obtain the entropy density of the lattice; the second 

step is to use this entropy to find the critical temperature and the correlation length 

critical exponents by a suitably designed Monte Carlo renormalization procedure. 

Our main goal is to show how one can apply these methods to study the criticality 

of the driven lattice models. We also contribute some information related to the long 

standing controversy of the universality class of different driven lattice models. The 

main emphasis of this investigation is the information theoretic techniques employed, 

which prove to be extremely useful when applied here, for the first time, to driven 

lattice gases. 

The last model, considered in Chapter 5 of this thesis, is the two-dimensional 

three state driven lattice gas (Schmittmann and Zia, 1995). We work with a small 

closed set of parameters that control the dynamics of the system. Based on the 

simplicity of the interactions between the particles, we are able to construct a mapping 

between the parameters (in the renormalization-group sense) of the model from the 

steady state probability distributions of clusters of sites on the lattice. The results 

that we report show the flow diagram in different regions of the whole parameter 

space. The success of the method relies on the accuracy of the approximation of 

the probability distribution for small clusters obtained via Monte Carlo simulation. 

We use a multi-spin algorithm which has two advantages: (i) it is extremely fast 



compared to a conventional algorithms that  need to  be run many times with different 

initial random seeds to yield the same statistics; (ii) by using i t ,  we collect da ta  from 

32 different lattices yielding probability distributions for the clusters involved in the 

calculation tha t  satisfy the requirement of translational invariance. In the last chapter 

we summarize the results obtained from this work and provide suggestions for future 

work. 



CHAPTER 2 

POSITION-SPACE AND MONTE CARL0 

RENORMALIZATION-GROUP APPROACHES 

IN STATISTICAL MECHANICS 

The renormalization-group formalism developed by Kenneth Wilson is now one of the 

basic theoretical tools in equilibrium statistical mechanics (Wilson, 1971, 1975). We 

briefly review in this chapter the basic ideas and methods behind the renormalization- 

group procedure, which has been developed to explain the critical properties of matter 

and is going to be useful for our investigation of non-equilibrium models. 

2.1 Second order phase transitions and scaling phenomena 

Since the year 1869 when Andrews reported to the Royal Society about his observa- 

tions of carbon dioxide in a tube of glass, there have not been any explanations why, 

above the temperature of e 31.04" C, the transition from liquid to gaseous phase 

becomes continuous. The observed critical opalescence suggests that there are huge 

macroscopic fluctuations in the local density of the substance. The same applies for 

the Ising ferromagnet at the critical point, where one observes clusters of aligned spins 

of all sizes. These features shift the problem to a rather new area of the physics, an 

area where the fluctuations are dominant and where one cannot start with something 

that is "well defined" and then consider the fluctuations as a small perturbation. 

The conceptual foundation of the renormalization-group approach lies in the idea 

of self-similarity at  the critical point. Let's consider the Ising ferromagnet on an 

infinite lattice. At the critical point (the Curie temperature) there are long wavelength 



Figure 1: Two-dimensional Ising ferromagnet a t  the critical point. On the left is 
shown a 256 x 256 lattice and on the right the coarse-grained 128 x 128 one, where 
the majority rule has been used for the coarsening. The dark pixels represent down- 
spins and the light ones up-spins. 

fluctuations of the magnetization. Clusters of all kinds of shapes and sizes are present 

and the whole lattice looks like a self-similar random fractal (see left picture on Fig. 

1). One can "zoom-out" and still see the same picture of clusters on the lattice. In the 

following discussion we will use the two-dimensional Ising ferromagnet as a prototype 

for our reasoning (for more details see Binney et al. (1992); Creswick et al. (1992)). 

Each spin on the lattice is addressed by a composite index i = (i,, i,), where i, and 

i, are the coordinates along the two axes. The spin can be up (ai = 1) or down 

(ai = -1). 

Self-similarity of the system provides a natural way to explain the power law 

behavior of thermodynamic quantities close to the critical point observed experimen- 

tally and by simulations. If the correlation function between two spins a t  sites i and 

j, which are separated by distance r ,  is G(r) = (aiaj), then two other spins separated 

by distance Xr would have correlation 

Here $(A, r )  is a rescaling function. At the critical point $ cannot depend on r .  

The reason for this is that $ and X are dimensionless while r has a dimension of 

length. Therefore $ can only depend on the ratio of r and some other length J. This 



quantity J cannot 

sites), because we 

be L (the dimension of the lattice) or a (the distance between the 

consider an infinite lattice and the microscopic properties should 

be irrelevant as well. At the critical point, by the assumption of self-similarity, there 

is no other characteristic length J to  be used, therefore 4 cannot depend on r. One 

can see that ,  for the scaling function 4 in Eq. (2.1), the following equality holds: 

Assuming that 4 is differentiable we can get 

d Q ( W  d ( W  = d 4 ( ~ )  
d ( W  d p  dP  ' 

(2.3) 

Then, by setting p = 1 one gets the solution d(X) = Ax where the power x is usually 

written so that:  

$(A) = X- (d-2+11) (2.4) 

where d is the dimension of the space and rl is the critical exponent for the correlation 

function (usually called the anomalous dimension). Therefore by choosing X = a/r 

and substituting in Eq. (2.1) we get the following expression for the correlation func- 

tion a t  the critical point: 

G ( ~ )  rn r - ( d - 2 + ~ )  (2.5) 

Close to the critical point there is another characteristic length built naturally into 

the system, namely the correlation length J which is the average size of the correlated 

fluctuations on the lattice. It depends on the reduced temperature t = 1 - TIT, 

where T, is the critical temperature. Therefore we can write 

and, by the same arguments, treating t as the length in the discussion above for the 

correlation function, one can prove that  



Figure 2: Formation of correlated domains. Regions of correlated fluctuations are 
shown with typical volume of cd on the left. On the right hand side, the regions are 
a t  a temperature a little bit closer to  the critical point (<' = A< for X > 1 ). 

We can assume the following form of the correlation function in the vicinity of the 

critical point: 

From it ,  one can get the power law behavior of the susceptibility x defined by x = 

& ( (m2)  - (m)2)  where m = & xi oi is the order parameter for the model. The 

susceptibility can be found by integrating the correlation function over the volume of 

the system 

After a change in the variable r'+ r'/[ one obtains 

from which one calculates the critical exponent of the susceptibility y = v(2 - 7 ) .  

In order to  find the critical exponent ,b of the order parameter m, we consider the 

the system a t  some reduced temperature t > 0 (Patashinskii and Pokrovskii, 1979; 

Diinweg, 1996). Then we can characterize the domains of correlated fluctuations by 

the correlation length < a t  that temperature (see Fig. 2). If we take two spins a; and 

uj in these regions that  are separated by a distance r >> < their correlation (up j )  will 

(g ig j )  = (mImJ) , where r n ~  = <-d oi. (2.11) 
i E I  

Here I and J are the indices of the two domains under consideration. If we get closer 

to  the critical point we observe correlated domains with a typical size of <' = A< 



( A  > 1) which is the correlation length at that new temperature t' < t. If we 

characterize the fluctuations in terms of the correlation length only, then we should 

get the same fluctuation picture of domains for the two temperatures. Therefore we 

move the domains to a distance r' = Ar so that the ratio r/J remains a constant. 

The correlation function will rescale as G -+ X - ( ~ - ~ + V ) G  and, for consistency, we 

should rescale the magnetization in the domains as r n ~  -+ The total 

magnetization rescales as the domain magnetization, so we have 

and, after setting A = a/<, we get 

from which one gets /3 = u(d - 2 + 77)/2. 

The basic idea of the renormalization-group theory is to reduce iteratively the 

degrees of freedom of the system, leaving the physics of the model unchanged. This 

procedure for lattice gases is most conveniently done by the blocking procedure (see 

Fig. 3) .  

Figure 3: Blocking procedure for lattice models. Blocks of 2 x 2 spins on the original 
lattice (left) are mapped to a single spin on the coarse-grained lattice (right) according 
to some rule. 

One divides the original lattice into b x b blocks, where b > 1 is an integer, and 

maps each block into a single site on the coarse-grained lattice. Mathematically this 



can be written as: 

ort1) = f ({o!")}) , where i is in the block. (2.14) 

Here n is the iteration number of the blocking procedure. The original lattice is 

assumed to be the zeroth iteration. There are many choices for the mapping function 

f and not all of them provide good results. Obviously for spin models the mapping 

function f has to generate either -1 or 1 from the spins in the block. For spin 

systems, the most commonly used are the majority rule and the decimation map (see 

Fig. 1). For particles choosing a rule is a little bit trickier because one has to keep 

the number of the particles constant. We propose a modification of the majority rule 

later on for this purpose. 

The probability distribution will follow the recursion relation: 

which shows how the weight of the block-spin microscopic configuration a t  the (n + 1) 

iteration is calculated from the probability distribution of the previous iteration (all 

time dependences are ruled out by considering only systems in steady state). By us- 

ing the fact that the steady state probability distribution for systems in equilibrium 

is related to the Hamiltonian of the model through the usual Boltzmann factor, one 

can generate an iterative mapping in the space spanned by the parameters of the 

Hamiltonian. For the Ising model, these parameters are the external magnetic field, 

the strength of the interaction between nearest-neighbors, the next nearest-neighbors 

interaction strength, etc. This iterative procedure generates a flow in the parameter 

space of the system. The attractors (trivial fixed points of this flow) and their basins 

in the flow diagram correspond to different thermodynamic phases. These regions 

are divided by separatrices associated with relevant fixed points from which one can 



get the critical exponents and determine the universality class of the model. Addi- 

tional attractors on the critical surface, unstable to points off of the surface, usually 

correspond to multicritical points. 

The topology of the flow in the parameter space generated by the renormalization 

group yields qualitative information about the critical behavior of the system. Alter- 

natively, one can work in momentum space, in which case techniques from quantum 

field theory can be used, i.e. perturbative schemes like the E-expansion can be very 

successful (Wilson and Fisher, 1972; Bellac, 1991). For this study, we have chosen 

to work directly in position space (Burkhardt and van Leeuwen, 1982; Niemeijer and 

van Leeuwen, 1973; Burkhardt and van Leeuwen, 1976). 

2.2 Properties of general non-equilibrium models 

Systems in thermal equilibrium are much harder to find in nature than non-equilibrium 

systems. However, systems "close" to equilibrium are pretty common and for such 

systems the so called local equilibrium approximation can be used successfully. In 

these systems the intensive thermodynamic quantities (such as temperature, pressure, 

chemical potential, etc.) become inhomogeneous functions in the physical space. In 

this thesis we do not consider these models. Our research is focused on systems far 

from equilibrium, which are also common in nature. 

The exact solution of equilibrium processes uses two assumptions: the detailed 

balance condition and the ergodicity condition. The first one simply assumes that 

the flow from one state a to another state b of the system is equal to the flow from 

b to a .  In other words w(a + b) Pa = w(b + a)  Pb, where w is the transition 

rate between the states and P is the equilibrium probability distribution. From this 

condition we can see that the transition probability must be a self adjoint operator on 

the space of the configurations of the system with an inner product weighted by the 

equilibrium probability distribution. The ergodicity condition requires that any two 



states are connected with nonzero probability and that there are no sub-spaces in the 

configuration space that are visited cyclically. In an ergodic system, time averages 

taken during one long run are equivalent to those obtained from shorter runs done on 

a collection of systems in the ensamble, begun with different initial conditions. For 

models far from equilibrium, the detailed balance condition is not generally satisfied. 

As a consequence of this, its steady state is characterized not only by the steady state 

probability distribution but also by the probability currents in the configuration space 

that are required to maintain the steady state. 

Usually non-equilibrium systems evolve in time from some initial state toward 

their steady state in a way that depends not only on the interactions between the 

particles but also on the dynamics of the model. Therefore the usual techniques from 

equilibrium statistical mechanics cannot be used. Generally one needs to solve the 

master equation of the model, which is usually much harder than finding, for exam- 

ple, the solution for the partition function of equilibrium models. As in equilibrium 

models, systems that undergo phase transitions are very interesting to study, showing 

collective behavior over long distances. In order to observe scale-invariant behavior 

in equilibrium models, one has to adjust the parameters of the system to their crit- 

ical values. This is not the case for many systems far from equilibrium that have 

reached a steady state. They can exhibit scale-invariant states over a broad range 

of parameters. Thus the power law behavior in many characteristics of the systems 

(correlations in space or time, power spectra fluctuations, etc.) is abundant in nature, 

but its explanation remains a difficult and nontrivial task still to be accomplished. 

The concept of universality classes can be applied to non-equilibrium systems as 

well (Hinrichsen, 2000; odor, 2002), although the experimental evidence is very pre- 

liminary, partially due to the larger diversity in the properties of the system governed 

by various symmetries in the underlying dynamics. For models far from equilibrium 

one can only rely on Eq. (2.15) to design constructive renormalization-group schemes 



for generating a flow in the parameter space. In the next section we outline a general 

theory tha t  can be used when trying to  calculate the critical exponents of general 

stochastic models. 

2.3 Critical exponents, general theory 

Let us formalize the approach for a general stochastic model controlled by a set of pa- 

rameters (K1, K2, . . . , K,) which is called the K-space. For equilibrium systems this 

set is usually the set of all interactions and fields tha t  are present in the Hamiltonian 

of the model. For a general stochastic model, these are the parameters that  enter 

the microscopic master equation governing the time evolution of the system. Let's 

denote by K '  = ({K,!)r='=,) and K = ({Ki)y=,) two vectors whose elements are the 

parameters for the rescaled and the original systems respectively. We assume tha t  

K' is a function of K via the renormalization-group transformation defined by the 

blocking procedure, i.e. 

Then the critical points are associated with the fixed points of the map defined by 

Eq. (2.16). Around these points we can linearize the map t o  obtain 

which can be re-written in matrix format as 

where the matrix M, with elements M~~ = (aK,!/aKj)lK*, specifies the topology 

of the fixed point. Usually one aims to  determine the matrix M because, from it ,  

critical exponents can be calculated in the following manner. Assume tha t  M can be 

diagonalized by a transformation Q so that  QMQ-I is a diagonal matrix. Then by 

transforming the parameters K'  and K to x' = Q(K' - K*) and x = Q(K - K*)  we 



obtain 
A 

x' = A X ,  

where the matrix is a diagonal matrix with elements equal the eigenvalues of the 

matrix M. Standard notation is used for classifying the new parameters x according 

to the value of their Xi's ( xi = Xixi ). Those xi's that grow under the renormalization 

flow (i.e. Xi > 1) are called relevant variables. Irrelevant variables are those that get 

smaller (A < 1) and marginally relevant are those that do not change to linear order 

(A = 1) under the flow generated by the matrix M. 

The correlation length diverges at the critical point. So 

defines the critical exponent vi. We can see that only the relevant parameters con- 

tribute to the divergence in the correlation length, i.e only for them do we obtain the 

corresponding vi to be positive: 

The number of relevant parameters is equal to the number of independent critical 

exponents and varies depending upon the model. 

2.4 Monte Carlo renormalization 

Another approach for calculating the critical exponents is the Monte Carlo renormalization- 

group method developed by Swendsen for equilibrium models (Swendsen, 1979,1982). 

The basic idea is pretty simple and we review in this section the important steps, us- 

ing again the Ising ferromagnet as an example (Newman and Barkema, 1999; Landau 

and Binder, 2000). 

One performs a Monte Carlo simulation of the model generating microstates with 

the correct frequencies, namely proportional to the corresponding Boltzmann factor. 



There is a constantly growing number of different algorithms by which this can be 

achieved, but we will keep this discussion general by not specifying the underlying 

"generator-of-states". The reduction of the degrees of freedom comes again from the 

blocking procedure. We divide the original L x L lattice into blocks of b x b squares. 

The distance between the spins on the coarse-grained lattice, measured in new lattice 

constants, is divided by b, i.e. r + r lb.  All lengths must be rescaled this way. 

Thus one generates a corresponding microstate on the smaller Llb  x Llb lattice by 

using some sort of decision formula ( Eq. 2.14) which provides with some probability 

a spinlparticle on the coarse-grained lattice from the spins or particles within the 

block on the original lattice. 

The major assumption that we are going to  make here is as follows: the only 

difference between the states generated on the coarse-grained lattice of Llb x Llb 

sites and the states generated on a lattice originally with Llb  x Llb  sites is the values 

of the parameters controlling the evolution of the system. For the Ising ferromagnet 

in the absence of an external field, this is the temperature (or more precisely the ratio 

J/lcBT which enters in the Hamiltonian of the system). In other words, we assume 

that the sequence of states on the coarse-grained lattice is generated with frequencies 

proportional to the correct (Boltzmann) factor but for a different set of parameters 

(different temperature T' as opposed to T which is the temperature on the original 

lattice). 

It is this assumption that makes the estimation of the error of the results hard. 

This method has produced excellent results for some equilibrium models and less 

spectacular ones for others (a notable example of the latter is the Potts model). In 

this chapter, we provide further investigation and clarification of the method applied 

to the Ising ferromagnet with nearest neighbor interactions and conserved particle 

number. As far as we know this approach has not been applied to this model and we 



use it here as a test for our investigations on driven diffusive two-dimensional models 

discussed later in this thesis. 

We have performed a Monte Carlo simulation of the two-dimensional Ising model 

with conserved particle number using the usual Metropolis algorithm for generating 

a sequence of states on small lattices with dimensions 64 x 128 and 32 x 64. The 

Hamiltonian of the model is (J > 0): 

where each site can be occupied (ni = 1) or vacant (ni = 0) and the usual notation (ij) 

is used to  indicate that  the sum is over the nearest neighbors only. For density 0.5 it 

is well known tha t  this model exhibits a second order phase transition a t  temperature 

To z 2.2692J/kB (Onsager's critical temperature). We have simulated the 64 x 128 

lattice and have coarse-grained it to  a 32 x 64 lattice using a modified version of the 

majority rule which we have introduced to  keep the number of particles exactly equal 

to  half of the sites on the lattice under rescaling. 

The rule (which describes the function f in Eq. (2.14)) is as follows: 

0 From each configuration on the original system we cast the 2 x 2 block-spins 

into three classes according to  the number of particles in each block. One class 

consists of the set of all blocks that  have more particles than holes, i.e. these 

that  contain 3 or 4 particles; another class is the set of blocks tha t  have exactly 2 

particles and 2 unoccupied sites; and the last class of blocks is the set containing 

only blocks tha t  have 1 or 0 particles; 

0 We fill in our coarse-grained lattice of 32 x 64 sites with holes only, i.e. all 

iir = 0; 

0 We choose randomly blocks from the set of blocks having 3 or 4 particles and 

generate a particle on the corresponding site of the coarse-grained lattice until 



the number of particles generated becomes exactly half of the number of the 

sites on the lattice (in which case we are done generating a state on the small 

lattice and quit the procedure), or we have exhausted the blocks that are in this 

set; 

We choose randomly blocks from the second set of blocks that have exactly 2 

particles and generate a particle on the lattice until we have reached the state 

with exactly half of the sites occupied (and quit) or we do not have more blocks 

on the big lattice that have exactly 2 particles in them; 

0 We choose blocks from the last set of blocks, having 1 or 0 particles in them, 

and generate particles until the density of the lattice becomes 0.5 (This case is 

needed only for very low temperatures, far away from the critical point) and 

then quit; 

For the newly generated state on the coarse-grained lattice, we calculate properties 

such as the order parameter, the energy, the entropy density, etc. In our example, 

we determine the entropy density sl(T) of the system (see section 4.3 ). Then we 

compare the entropy density of the coarse-grained lattice with the entropy density 

s(T) of a model that has originally been simulated on a 32 x 64 lattice. The results 

are shown in Fig. 4. 

Our basic assumption is that, close to the critical point, the only difference between 

the states generated on the coarse-grained 32 x 64 lattice compared to the states 

obtained from a simulation on a 32 x 64 lattice is that they appear to be generated 

from a simulation on a 32 x 64 lattice but at different temperature. At the point 

where the two curves cross each other, the system is scale invariant, signaling the 

critical point. We would like to mention here that we have tried to reduce the finite 

size effects by comparing two lattices that have the same dimensions and therefore 

finite size effects should in principle be reduced. 
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Figure 4: The entropy calculation for the Ising model with conserved number of 
particles on two lattices: a 32 x 64 and a 64 x 128 which has been coarse-grained to 
a 32 x 64 lattice. The temperature is in units of Onsager's critical temperature and 
the entropy density is in bitslsite. 

Close to the critical point (where the two curves cross each other) we can fit a 

regression polynomial for the two curves, thus obtaining the functional dependence 

sl(T) and s(T) for the coarse-grained and the original entropy density respectively 

(see Fig. 5) 

At the critical point the correlation length diverges, therefore the above mentioned 

rule should produce microstates on the coarse-grained lattice with the same frequen- 

cies as the Metropolis algorithm on a system with the same dimension. Precisely 

speaking this is true only for infinite lattices where we can expect scale-invariance 

a t  all length scales. For finite systems we can observe scale-invariance over just few 

decades but nevertheless it appears to work well enough to determine the critical prop- 

erties of the model. At the critical point, any observable function of the microstate 

should have the same value on both lattices, i.e. we should have s1(TC) = s(Tc) a t  



Figure 5: Fitted regression polynomials close to the critical point. 

the critical point. Also, mathematically the requirement that the states produced by 

the blocking procedure look like those generated by a Monte Carlo algorithm but at 

a different temperature can be written as: 

from which we get the mapping T -+ TI: 

The above formula is useful for calculating the correlation length critical exponent v. 

We know that 

< , (2.25)  

where t  is the reduced temperature defined by t  = 1 - TIT,. For our blocked system 

we have a similar relation 

J 1  O; It1(+' . (2.26) 



Dividing Eq. (2.25) by Eq. (2.26) yields 

All of these equation are expected to be valid only close to the critical temperature, 

where we can assume that t and t' are small. In this region, we can expand the 

functional dependence T1(T) (from Eq. (2.24)) around the fixed point Tc to get 

Substituting into Eq. (2.27) we obtain for the critical exponent v, 

For our test model, after performing numerical differentiation, we obtain a critical 

temperature value very close to the exact number: T z 0.989 To. This calculation 

gives a correlation length critical exponent v z 1 .O6 (where the exact value is v = 1.0). 

The obvious drawback for the numbers reported is that no error can be estimated, a 

general characteristic of this method as stated earlier. 

The calculation of the order parameter critical exponent ,B follows similar steps, 

and one has m cr ltls cr <-Dlu and m' cr It'la cr ('-sl" for the order parameter of the 

original and the rescaled systems respectively. These equations yield 

After using 11H6pital's rule at the critical temperature (because for infinite lattices 

both m and m' are zeros above the critical temperature) we finally get 

In the same manner one can obtain the rest of the critical exponents a,  y, etc. 

There are more accurate Monte Carlo renormalization methods for systems in equi- 

librium for which the fluctuation dissipation theorem applies, but we are not going to 



review them here because the driven diffusive systems, which we are going to study, 

do not satisfy the fluctuation-dissipation theorem (Schmittmann and Zia, 1995). 



CHAPTER 3 

THE ONE-DIMENSIONAL ASYMMETRIC 

EXCLUSION PROCESS 

Among non-equilibrium models, a special place is reserved for the asymmetric simple 

exclusion model. It is a simple stochastic one-dimensional model for an open system. 

Its steady state probability distribution is known exactly and it exhibits first and 

second order phase transitions, which is an amazing feature for a one-dimensional 

system. In this chapter we review the basic properties of the model, give an overview 

of the methods from which one can obtain the steady state solution, describe our new 

position-space renormalization-group approach, and show how it can be applied to 

this model. 

3.1 Definition of the model, master equations 

Stochastic models are constructed to exhibit the complex behavior of real systems 

while keeping only their essential properties. These models are usually designed to 

be simple enough to be tractable while capturing the behavior and complexity of the 

real process. In lattice models, there are important strong site-to-site fluctuations, 

which are usually "smoothed-out" when continuous approaches are applied, making 

realistic solutions hard to find. There are a few lattice models which have known 

exact solutions, in terms of their probability distribution functions. One such model 

is the asymmetric simple exclusion process (ASEP) in one dimension, which is one of 

the simplest models for a driven diffusive system (Krug, 1991; Derrida et al., 1992, 



Figure 6: The ASEP model: one-dimensional chain with open boundaries. At each 
time step, one of the following can happen: a particle enters the chain with probability 
a from the left boundary provided the leftmost site is empty, a particle leaves the chain 
from the right with probability ,B or, in the bulk, a particle hops to  its unoccupied 
neighbor. 

1993). The model is a stochastic gas on a one-dimensional chain with N sites and 

open boundaries (Fig. 6). Each site i can be occupied (ri = 1) or empty (ri = 0). 

A particle can hop to its right neighbor provided that the neighboring site is empty. 

The simplest interaction is used, hard-core exclusion, which forbids two particles from 

occupying the same site a t  any time. The dynamics are sequential: a t  each time step 

dt, we choose a t  random a pair of sites (i, i + 1) and, if site i is occupied and site i + 1 

is empty, then the particle a t  the ith site will jump to the right with probability p dt: 

ri(t  + dt) = 1, with probability xi = ~ i ( t )  + [ ~ i - l  ( t ) ( l  - ~ i ( t ) )  - ~ i ( t )  (1 - ~ i + l  ( t ) ) ] ~  dt 

ri(t  + dt) = 0, with probability 1 - xi, where i E (1, ..., N - 1). (3.1) 

All of the other sites do not change at this time step. The boundary sites are treated 

in the following way: when the chosen pair is (0, I ) ,  where site 0 represents the left 

source of particles, a particle is injected into the chain with probability ad t  if the first 

site of the chain is empty: 

r1 (t + dt) = 1, with probability xo = r1 (t) + a[l - rl (t)]dt 

r l ( t  + dt) = 0, with probability 1 - xo. (3.2) 

When the chosen pair is (N, N + I ) ,  where the N + 1 site represents the right sink 

of the chain, the particle at site N ,  if it is occupied, will flow out of the chain with 

probability pdt : 

rN (t + dt) = 1, with probability X N  = (1 - P)rN (t)dt 

rN( t  + dt) = 0, with probability 1 - XN. 



By opening the boundaries of the one-dimensional chain, we break the transla- 

tional invariance of the system which is usually encountered when periodic boundary 

conditions are used. Taking such a step produces so-called boundary induced phenom- 

ena. This simple stochastic gas has been used as a model for traffic jams, occurrence 

of shocks in driven diffusive media and many other applications (Privman, 1997). 

Applying an external bias in the jump rates of the local dynamical rules drives the 

system out of reach of the methods suitable for equilibrium systems. The bias is not 

a small one so perturbative methods suitable for small deviations away from equilib- 

rium are not applicable; thus we are facing a true non-equilibrium one-dimensional 

problem. The local stochastic rules are specified and we can write the master equation 

for the system. Also we can simulate the system on a computer mimicking its time 

evolution but no suitable Monte Carlo procedure exists that samples the different 

microstates of the system with the correct frequencies. There are natural extensions 

of the model such as allowing possibilities for backward jumps, annihilating and cre- 

ating particles in the bulk of the chain, allowing particles to flow in (out) from the 

right (left) end of the chain, etc (Sandow, 1994). This study concentrates on the 

fully asymmetric exclusion process (FASEP) for which the bulk bias p in Eq. (3.1) 

equals unity and the only parameters are the two rates a and P and the number of 

sites in the lattice N. The work described below is also presented in Georgiev and 

McKay (2003). 

To understand this system's properties, we want to calculate the steady state 

probability distribution of all possible microstates. Averaging Eq. (3.1) over the 

events that may occur in one time step dt and over the histories up to time t ,  one 

obtains (Derrida and Evans, 1997): 



d 
(7) = ( ~ i - 1  (1 - ri)) - ( ~ ~ ( 1  - T ~ + ~ ) ) ,  for z € {1, ... , N - 1) 

for the one-site probability distributions and: 

d 
- ( T ~ T ~ + ~ )  = ( ~ i - ~ ( l  - ri)ri+1) - ( ~ ~ r i + ~ ( l  - ri+2)), for i E (1, ..., N - 1). (3.5) dt 

for the two-site probability distributions. In the same way, one can obtain any other 

correlation function ( r i r j .  . .). We should emphasize that the above equations are 

exact and give the time evolution of any correlation function. To solve Eq. (3.4) for 

the one-site probability function (7,) one needs the knowledge of ( T ~ T ~ + ~ )  (two-site 

probability distribution) which in turn requires the knowledge of three-site probabil- 

ity functions and so on, making the problem an N-body problem, i.e. to find one 

correlation function you need to know all of the other correlation functions. 

Since the dynamic rules conserve the number of particles in the system, we can 

use the continuity equation: 

where stationary current Ji between sites (i, i + 1) equals: 

The average current is a constant in the steady state and does not depend on the 

lattice site so we drop the index in our further discussions. 

3.2 Mean field approach 

One of the most used methods in statistical mechanics is the mean field approx- 

imation. In applying this method, one neglects all fluctuations by factoring the 



Ic-point correlation function into a product of Ic one-site correlation functions, i.e. 

( ~ ~ 7 ~ 7 ~  . . .) = (T~) (T~) (T , )  . . .. If we denote (7i) by ti we obtain the following equa- 

tions: 

where C is a constant equal to the current of particles in the chain. It defines a simple 

mapping between the ti's: 

This recursion has two fixed points for C < 114: 

The larger one is a stable fixed point while the smaller one is unstable. For C = 114, 

there is only one marginal fixed point and we have no fixed points for C > 114 

(Derrida et al., 1992). All these simple observations suggest that a transition point 

exists when the steady state current J equals 114. We can think of it as a boundary  

induced transition. I t  is well known that, for equilibrium systems, the mean field 

treatment can predict a transition which is destroyed in low dimensions by fluctuations 

in the system. Therefore other approaches are required to check whether the predicted 

transition for this one-dimensional non-equilibrium system does indeed occur. In the 

next two sections we describe some exact methods for solving this model involving 

operator algebra and discuss the approximate methods that we have developed using 

scaling approaches and position-space renormalization-group techniques. 



3.3 Exact solutions and phase diagram 

One of the exact approaches uses a clever trick, namely a mapping between the 

master equation of the system and the Schrodinger equation in imaginary time. Then 

the asymmetric exclusion model is re-written in a pseudo-spin language where the 

evolutionary operator plays the role of the quantum spin Hamiltonian. From there 

one can use the techniques available for one-dimensional quantum spin chains (Essler 

and Rittenberg, 1996; Grynberg et al., 1994; Grynberg and Stinchcombe, 1995). 

Another approach is the operator algebra method which represents any microstate 

of the model as a string of operators. In other words our microstate of particles and 

holes is represented by a string of symbols D (for particles) and E (for holes). The 

main idea of the method is to seek the steady state probability for a microstate as an 

expectation value of the corresponding string of operators. For example: 

( W I D E . .  . D D E D E . .  . EEIV) 
(10. .  .11010.. .OO) = 

( W l C . .  . ClV) 

Here W and V are vectors, D ,  E and C - D +  E are operators and the brackets on 

the left-hand side indicate that this is the average value for this particular microstate 

while the ones on the right-hand side have the standard bra-ket meaning in quantum 

mechanics. It can be shown that, in all cases except the case when a + ,6 = 1, the 

operators D and E (and their corresponding matrices) are infinite dimensional. The 

algebra of the operators is generated by the bulk dynamics and the operators do not 

usually commute. For the FASEP, if we choose the operators to obey 

1 
DlV) = -1V) 

P 
1 

( W J E  = - (WJ 
a 

D E  = D + E z C  



then the steady state probability for a microstate (rl, 7-2,. . . , rN) can be written as 

(for proof see Derrida and Evans (1997)): 

With this result, it becomes very easy to obtain any correlation function. For 

example, if one wants to compute the average value for the spin/particle at position 

i, ri, the following expression has to be calculated: 

Here N indicates that we consider a finite chain of N sites. The formula for the 

two-site correlation function between particles a t  sites i and j (i < j) is: 

As shown in the next section, to construct our position-space renormalization 

scheme we need the formula for the steady state current: 

which is of course independent of i as expected in the steady state. Now we consider 

how to extract the asymptotic behavior for the current in the thermodynamic limit, 

N -+ oo. For large N we find that: 

I N-3/24N , for a > and p > $, 

(WICNIV) [ a ( l  - a)]-" , for a < 1 and p > a, (3.17) 

1 - ) I N  , for p < $ and a > p. 

The case when a = ,D < 1/2 is treated specially and one gets ( w ( c ~ \ v )  o; 

N [ a ( l  - a)] -N.  Using the asymptotic limit and Eq. (3.15) we obtain: 

I 1 
4 , for a 2 i and p > 5, 

J =  a(1 - a )  , for a < $ and p > a, 

(@(I  - 8) , for ,f? < i and a > 8 .  



Figure 7: The phase space diagram of the FASEP model (See, for example, Schiitz 
and Domany (1993)). The low density phase A is divided into two phases AI and AII, 
and the high density phase B into BI and BII (see the text). The maximum current 
phase is labeled C. The bulk densities in the regions A, B, and C are respectively: a, 
1 -P, and 112. The lines a = 0.5 and ,L3 = 0.5 indicate second order phase transitions. 
The solid line a = P < 0.5 is a first order phase transition. 

Three different phases are clearly seen from this equation and the phase diagram 

is summarized in Fig. 7. These values of J can also be derived exactly using a mean 

field treatment. 

Phase A is the low density region. The injection rate a is smaller than the removal 

rate p so the steady state is established when there is a relatively small population 

of particles in the bulk. In Phase B, which is the high density region, the opposite 

takes place, i.e. there are more particles coming into the chain than going out of it 

and the bulk density is established a t  a relatively high value. The maximum current 

phase is the region C. The line a = P < 112 is a first order boundary line, while the 

lines a = 112 and P = 112 are the second order phase transition lines. The regions 

(AI, AII) and (BI, BII) are new phases in the low and high density regions that  are 



not found by mean field considerations. For more details see Schiitz and Domany 

(1993). 

In the more general case when one considers the rate of the forward jump in the 

bulk to be p < 1, the phase diagram does not change substantially. As one can 

easily verify, for this model the phase diagram is the same as in Fig. 7 with the only 

difference being that,  on the axes, we should plot a l p  and ,B/p instead of a and ,B. In 

the next section we investigate how a position-space renormalization-group approach 

can be applied to this model. We chose this model as a test case for our approach 

since it has such a rich phase diagram for a one-dimensional system. 

3.4 Position-space renormalization-group approach 

For many models, scaling methods are the only ones from which one can get infor- 

mation about the universality class of the model studied. This situation is even more 

common in the case of non-equilibrium systems, where no general theoretical frame- 

work has yet been established. For this reason, we think it is important to develop 

scaling approaches for non-equilibrium systems such as the asymmetric exclusion 

model. The position-space renormalization-group approach combines an inflation of 

length scale and reduction of the degrees of freedom of the system while maintaining 

the configuration on a coarser scale. For our model, this transformation requires that 

the stochastic rates must rescale. In this way, a mapping between the parameters of 

the original model and the coarse-grained one (see Fig. 8) occurs. 

Here we illustrate the general rescaling procedure with a length rescaling factor 

of three. Using a larger length rescaling factor would be expected to yield more 

accurate results, but also leads to substantially more involved algebra in the recursion 

relations. The set { T ~ ,  7-2, ..., r N )  maps into the set {TI, T2, ..., T R ) ,  where we have used 

the majority rule to determine the state (empty or occupied) of the coarse-grained 

site and N = N / 3 .  We assume that the matrix algebra remains the same after the 



Figure 8: The majority rule for ASEP: from configuration (7) = (rl, 7 2 ,  . . . , rN)  
we generate a configuration T = (Tl, T2, .  . . , TN/3) by dividing the chain into blocks 
of length 3 and generating a particle in the coarse-grained chain if there are more 
particles in the corresponding block than holes. We assume that  the state generated 
by this procedure corresponds to  a system with rescaled parameters a' and P'. 

blocking procedure prohibiting any expansion of the parameter space. In other words 

we expect tha t  the blocking procedure generates states tha t  can be considered as 

an output of dynamics that  has different values for the rates only. This assumption 

produces good results for equilibrium systems that  are very close to  a critical point 

and it is natural to expect it to  produce good results for our non-equilibrium model 

close t o  its critical point(s). The rates a and P evolve under rescaling while the rate 

for the forward jump p = 1 is held constant. It  might look strange and arbitrary t o  

keep the bulk forward jump a t  unity after the rescaling but,  since the parameter p 

establishes only the time scale for the model and actually the ratios a l p  and ,B/p are 

the only relevant parameters for its steady state, this assumption is valid. From Eq. 

(3.4) it follows that:  



Therefore, for the rescaled parameters & and ,6 of the coarse-grained system we should 

expect to have: 

The one-site and two-site probability distributions in the coarse-grained chain can be 

expressed in terms of three-site and six-site probability distribution functions of the 

original chain as follows: 

The sub-indices T and T indicate the system on which the average is calculated. 

Working out each of these distributions, using the algebra represented by Eq. (3.13), 

we find that the rescaled values depend on the expression: 

where a is a natural number. In the thermodynamic limit, each of the ratios on 

the right-hand side becomes 

rewritten as: 

the steady state current J, and this expression can be 

After some algebra (see Appendix A), one obtains, from Eq. (3.20) using the oper- 

ator algebra and Eqs. (3.21, 3.23), the final recursion relations between the parameters 

on the rescaled and original chains: 

These relations yield the flow diagram shown in Fig. 9. 



Figure 9: Flow diagram for the fully asymmetric exclusion model. Points start from 
the vicinity of the repulsive fixed point a, = PC = 0.5. There are fixed points at: 
(0, O ) ,  (0, l), (1, O), (0.5,2.929), (2.929,0.5) and (2.929,2.929). The flow diagram 
captures exactly all of the major features of the model: the first and second order 
lines and the fixed point a t  (0.5,0.5). 



From Eq. 3.24 the flow diagram displayed in Fig. 9 is generated as follows. First 

we select initial values of a and /3. These values determine the current J, which has 

different values in the a - /3 plane as specified by Eq. 3.18. Plugging the values of 

a, /3, and J into Eq. 3.24 yields the rescaled values Li and p. The rescaled current is 

obtained again from Eq. 3.11, using the rescaled values of a and /3. This process is 

done iteratively to generate the full flow diagram. 

The flow diagram shown in Fig. 9 captures the exact critical point and phase 

boundaries separating the high and low current and high and low density regions. 

Attractive fixed points occur at a = /3 = 0.0, the zero current fixed point, and at 

a = /3 = 2.929, which attracts all points within the maximum current phase. The 

maximum current phase (C in Fig. 7) is separated from the high and low density 

phases by second order phase boundaries, corresponding in the flow diagram to the 

two separatrices, each originating at the a = P = 0.5 fixed point, with one attracted 

to the fixed point (0.5,2.929) and the other attracted to (2.929,O.s). If one increases 

the length rescaling factor, these fixed points and the attractor for the maximum 

current phase should move toward their correct locations, i.e. the value 2.929 should 

approach infinity. 

An interesting closed subspace of the flow diagram is the line connecting ( 0 , l )  

and ( l , O ) ,  all contained within the low current region. This line, a + /3 = 1, has 

always been treated separately because its steady state solution becomes trivial. One 

can choose one dimensional matrices (scalars) D = /3-' and E = a-' to solve the 

problem. The flow diagram clearly captures this feature, with this line occurring as 

a closed subspace. 

The basins of attraction corresponding to the high and low density regions are 

separated by a first-order boundary, evidenced in the flow diagram by the line from 

the unstable critical fixed point to the attractive fixed point a t  a = /3 = 0.0. Thus, 

the flow diagram reproduces'all of the phase boundaries and the critical point. A 



similar flow diagram was obtained by Stinchcombe and Hanney by coarse graining 

the operators D and E and using them to calculate the system properties (Stinch- 

combe and Hanney, 2002). Our results combined with their treatments indicate that 

a reliable qualitative picture, and sometimes exact quantitative agreement, can be 

obtained with these position-space rescaling approaches using small length rescaling 

factors. 

We see that the critical point a, = p, = 112 is a repulsive one as expected.The 

linearized recursion relations around this fixed point can be written as: 

/3=1/2 

The above matrix has two eigenvalues X1 and X2 from which we can calculate the 

critical exponent of the correlation length. From the ratio of the distances between 

consecutive points in the renormalization-group flow (see Fig. 10)' we obtain the 

numerical values for these eigenvalues 

Thus the eigenvalue matrix is proportional to the identity matrix with a propor- 

tionality coefficient of 312. The correlation length < diverges as < N ( 6 ~ ) ~ "  (w in our 

case is either a or p), where the critical exponent v = In b/ In X equals: 

From the exact solution (Schiitz and Domany, 1993), a length scale <, can be 

defined: 

where a can be either a or p and the length scale <-' = - cB-l governs the 

decay of the density profile. When a tends to 112, this length scale diverges as: 



Figure 10: Numerical calculation of the eigenvalues of the renormalization matrix for 
the FASEP model.The ratio r of the length between successive points, which provides 
the eigenvalues of the matrix. The ratio of 1.5 occurs in the critical region. The other 
ratio occurs near the attractor located a t  (2.929,2.929). 



which gives the critical exponent v = 2.00, so our result is in good agreement with 

the exact value. 

The same procedure can be applied to the more general system with probability 

p d t  for a jump to  an  empty site on the right. In this case Eqs. (3.4) become: 

In terms of new variables 8 = a l p  and = P/p, the steady state Eqs. (3.28) 

become identical to  the equations for the system with p d t  = 1. The critical point 

moves t o  a, = PC = p/2, in agreement with results obtained using other methods 

(Sandow, 1994), and the critical exponent stays the same. 

An interesting related question is whether the linearized recursion matrix Eq. 

(3.25) remains proportional to  the identity matrix when larger rescaling factors are 

used (see Fig. 11). This conjecture can easily be proven. The  general recursion 

relations between (Ci,B) and (a ,  ,f?), because of the particle-hole symmetry, would be 

of the form: 

The function f (u, J )  would be different for different scaling parameters (here u can 

be either a or p ) .  I t  is easy to check that  the matrix would become: 



Figure 11: Flow diagram in the vicinity of the critical point for the FASEP model. 
Dots indicate the flow occurring a t  successive iterations away from the unstable fixed 
point. 

where Eqs. (3.18) are used to calculate the necessary derivatives in the different 

regions. Therefore the matrix remains proportional to the identity matrix with pro- 

portionality coefficient (d  f /&) evaluated at  the critical point. The renormalization- 

group flow does not distinguish between the high density regions AI and AII (or 

between the low density regions BI and BII) reported in Schiitz and Domany (1993). 

These areas differ only in the way in which the bulk density is approached com- 

ing from the boundary site, and thus have identical macroscopic properties in the 

thermodynamic limit. 

We have also tested another approach for constructing the recursion equations, one 

that imposes the requirement that the current remains invariant under the rescaling, 

i.e. J = J. Applying this approach to the system with p dt # 1, again with a length 



rescaling factor of three, we obtain: 

and, with the matrix algebra changed to  p D E  = D + El the recursion equations 

become: 

This approach yields the same value for the critical exponent v = 2.710. Here 

the parameters tha t  change during the rescaling are a, ,8 and p. The general case 

of the Fock representation of the quadratic algebra involves twelve parameters that  

control the flow of the gas in the bulk of the chain. (Essler and Rittenberg, 1996) 

The general steady state solution for this case is not known yet. As in the equilibrium 

case, in order to obtain more accurate calculations, we would have to include in the 

system after rescaling new dynamical rules, t o  add more allowed transitions between 

states. In other words, the rescaled dynamics, with appropriate generality, should 

include possibilities for the following transitions: 

Diffusion to the right: 1 + 0 + 0 + 1, ( rate I'iy) 

Coagulation a t  the right: 1 + 1 + 0 + 1, ( rate I'i;) 

Decoagulation a t  the right: 1 + 0 + 1 + 1,  ( rate I':;) 

Birth a t  the right: 0 + 0 + 0 + 1,  ( rate I'ty) 

Death a t  the right: 1 + 0 + 0 + 0, ( rate FA:) (3.35) 

where l (0 )  means we have a particle(ho1e) a t  some particular site. Allowing the 

possibility of proliferation in parameter space would improve the value for the critical 

exponent v but is not a straight-forward task. 



There have been recent papers on position-space renormalization for reaction- 

diffusion systems that successfully studied these models (Hooyberghs and Van- 

derzande, 2000; Hooyberghs et al., 2001). These studies take advantage of the fact 

mentioned above that these models can be related to the ground state of a suitably 

defined quantum Hamiltonian and then employ methods available for quantum spin 

systems. Another study investigates mainly the asymmetric exclusion model, as we 

did, by developing a position-space renormalization procedure involving the density 

and the current in the chain and calculating the dynamical critical exponent of the 

model (Stinchcombe and Hanney, 2002). 

The results that we have presented in this section illustrate the applicability of 

scaling and renormalization schemes to systems out of equilibrium. The method that 

we have developed uses the knowledge of the form of the steady state probability 

distribution of microstates, the operator algebra of the model and the behavior of 

the current in the different regions of the phase diagram. A similar method can be 

applied to the exclusion model when one considers possibilities of forward and back- 

ward jumps. The extension to this model is not trivial though, and one faces more 

computational efforts working with the corresponding algebra of the operators. An- 

other obvious improvement would be the use of a larger rescaling factor as mentioned 

above. The computational task grows exponentially but it is a straight-forward and 

mechanical application, and the use of a clever computer program that computes 

terms as shown in Appendix A would greatly reduce the overall effort. 

To apply this approach to models for which the current and probability distri- 

bution of microstates are not known, one could use the mean field results for these 

quantities as an approximation. Thus, the method illustrated here provides a general 

position-space renormalization-group approach for a variety of model systems. 



CHAPTER 4 

TWO-DIMENSIONAL DRIVEN DIFFUSIVE 

LATTICE GASES: A MONTE CARL0 

RENORMALIZATION-GROUP STUDY USING 

INFORMATION THEORETIC TECHNIQUES 

In this chapter we consider a two-dimensional lattice gas which has been used exten- 

sively in the past decade for modeling driven diffusive systems. We develop a Monte 

Carlo renormalization-group approach by calculating, from computer simulations, the 

measure entropy of the model. In order to do this, we apply some information the- 

oretic approaches, which prove to be very useful when one wants to calculate the 

entropy of a process with a translationally invariant (in space) stationary probability 

distribution. 

4.1 Properties of driven lattice gases 

Two-dimensional lattice models have proven to be a valuable testing ground for new 

ideas, and their study can lead to a better understanding of the general theory of 

steady states in systems far from equilibrium. In equilibrium models, one has the 

usual Boltzmann factor, which specifies the weight of any configuration on the lattice. 

It seems natural to extend the Boltzmann factors, in a sense that will become clear a 

little bit later, to be able to make a model that simulates a process out of equilibrium 

and which continuously maps into an equilibrium model when the non-equilibrium 

forces vanish. 



Driven lattice gas (DLG) models were first introduced in a paper of Katz and 

co-workers (Katz et al., 1984) and they are probably the most straight-forward 

extension of the equilibrium Ising model with conserved number of particles. The 

non-equilibrium features arise due to the inclusion of an external driving field that 

biases the jumps of the particle along one direction. Here we briefly review their 

basic properties (for more details see Schmittmann and Zia (1995)). Consider a 

system of particles on a simple hyper-cubic lattice zd in d dimensions with hard- 

core exclusion interactions (no more than one particle per site a t  any moment). The 

particles are subject to a driving field E along one of the directions (which will be 

denoted the 11-direction) and are confined in a hyper-box B C zd with periodic 

boundary conditions. Each particle interacts with its nearest neighbors only, and 

the whole lattice is thermally activated by a heat reservoir at inverse temperature 

,D = l /kBT. The external field produces net current in the system and the Ohmic 

power produced by the field relaxes through the heat bath. The topology of the model 

makes it unlikely for exact physical realization and one can think of it as a generic 

mathematical model for a system far from equilibrium. It has been used to model 

fast ionic conductors in a strong electric field and has been surprisingly successful in 

capturing many of their features (Marro and Dickman, 1999). 

The microstate of the system is a set of all possible configurations a = {ai : i E B), 

where ai is the occupation number for site i in the lattice: 

1 if i E B is occupied, 
ai = 

0 if i E B is empty. 

The dynamics is stochastic and is given by the exchange rates WE(ol + a) between 

two configurations o' and a that differ at most by a one particle jump into one of 

its unoccupied nearest neighbor sites. Then, the time evolution of the probability 



distribution P(a; t) is given by the master equation: 

dP (a ;  t) 
dt 

= C {WE(O' -+ a)P(d; t) - WE(u + d)P(g; t ) }  , 
u' 

( 4 4  

where the sum is over configurations that differ by at most one single particle move. 

The Hamiltonian of the model is 

where J > 0 is the strength of the nearest neighbor interaction (the multiplier of 4 

comes from the mapping between the particle ai and the spin si = 2ai - 1 represen- 

tations). The (ij) notation indicates a sum of the nearest neighbor interactions as 

usual. By switching the driving field off (E = 0) one recovers the standard Ising fer- 

romagnet with dynamics that conserves the number of particles. For this equilibrium 

case we have 

which is the usual detailed balance condition that implies the stationarity and re- 

versibility of the Gibbs measure p,,(~) cx e-BHbl, where p is the inverse temperature. 

The most important assumption for the DLG relates to local detailed balance : 

which includes a term proportional to the work done by the driving field, where in 

the above equation 

[ 
I if a' and a differ by a move of a particle along the E direction , 

Eu1,u = -1 if a' and a differ by a move of a particle against the E direction , 

0 if a' and a differ by a move of a particle in the I subspace . 

(4.6) 

With one more assumption (mathematically this is the assumption of large devia- 

tions (Ellis, 1985)), one can prove that the model in the thermodynamic limit has 



a stationary measure for all densities, a fact that  is straightforward to establish for 

finite B E zd. Also the stationary distribution must reflect the symmetries of the 

dynamics that  are inherent in the rate coefficients W(a' -+ a). For example, the 

stationary distribution of the ensemble has to be invariant under spatial translation 

(modulo B ) .  This invariance of the steady state distribution is an important fact that 

we are going to use for the calculation of the measure entropy of the model. 

4.2 Phase transitions of driven lattice gases 

From now on, we will concentrate on the two-dimensional DLG, a rectangle with 

dimensions (LII ,  L*). When there is no field and the density is p = 0.5, the model 

exhibits a second order phase transition a t  temperature To z 2.2692J/kBT (the 

Onsager value). DLG models have been studied with various types of driving fields, 

namely: 

0 the infinite driving limit (IDLG) with E = oo; 

0 the finite driving case (FDLG); 

0 the random field model in the infinite case (RIDLG); 

the oscillatory model in the infinite case (OIDLG). 

In the last two models, the driving field takes values E = f oo randomly or with some 

period in time respectively but uniform in space . The first two models produce a net 

current along the driving field while the last two generate anisotropy in the lattice 

but no overall current. Our investigation will consider only two of these models, the 

IDLG and RIDLG models. 

For the order parameter we use: 

1 + = - sin (L) / C s ( 3  expar.' 1 ,  
2Ll1 L* 



Figure 12: Typical configurations for different phases of DLG: disordered (left) and 
ordered (right). The driving field is along the horizontal axis. The dark pixels are 
empty sites and the light ones are particles and T, is the critical temperature which 
is z 1.41To for the IDLG model. 

where H = (0,2r/LL) and s(F) = 1 - 2o(F). Monte Carlo simulations show that 

these models undergo a second order phase transition (for p = 0.5) a t  a temperature 

higher than To. The ordered phase consists of a single strip along the 11-direction (see 

Fig. 12). From simulations, it has been observed (Schmittmann and Zia, 1995) that 

the critical temperature depends strongly on the applied field a t  low and intermedi- 

ate field magnitudes. For large driving fields, the value of the critical temperature 

saturates and does not change much when one increases the magnitude of the ex- 

ternal driven field E further. Field theoretic investigations based on the symmetries 

and conservation laws predict for the critical exponents in two dimensions the val- 

ues shown in Table. 1 (Leung and Cardy, 1986; Janssen and Schmittmann, 1986; 

Schmittmann and Zia, 1991; Praestgaard et al., 2000). 

As we can see, these values are quite different from the exponents of the Ising 

ferromagnet and put these models into a different universality class. Another feature 



Table 1: Field-theoretical values for the critical exponents. 

of the DLG models is the power law decay of the two-site correlation function a t  all 

finite temperatures (Garrido et al., 1990). As discussed earlier, this feature is in 

contrast with the usual case for equilibrium models, where generally the correlations 

decay exponentially at temperatures different from the critical temperature and ex- 

hibit power law decay only at the critical point. This phenomenon is most likely due 

to the dynamics which conserves particle numbers, the non-equilibrium steady state, 

and the spatial anisotropy associated with the dynamics. 

There have been recent reports claiming that the two models IDLG and RIDLG 

are in the same universality class (Garrido et al., 2000; Archahbar et al., 2001; Al- 

ban0 and Saracco, 2002). These reports have produced some discussion about the 

different field theories for these models (Schmittmann et al., 2000). Our research was 

inspired by this controversy on the subject, which led us to look at how one can cal- 

culate the critical exponents by other methods, namely Monte Carlo renormalization. 

To apply the Monte Carlo renormalization-group approach, one needs to calculate 

some observable (a function of the microstate) and to design a mapping between the 

parameters on the coarse-grained and original systems. Natural choices would be 

the order parameter and the internal energy of the system. While the former has a 

well established meaning for both models the latter, we think, is inappropriate for 

these models since there is a constant external flux of energy that keeps the particles 

moving. That is why we decided to look for some other well defined function of the 

microstates and we selected the entropy density of the lattice. 

IDLG : 
RIDLG : 

P = 112 
/3 = 0.33 

y = 1 
y z 1.17 

vll = 312 
vll z 1.22 

v l  = 112 
v l  z 0.63 



4.3 Information theoretic approach 

There are different ways to quantify the ordering of the output of a process. Imagine 

that we have a process described by a state which can be coded into a finite binary 

string with length L: 

For example, the state can be a one-dimensional chain of spins where l(0)  means spin 

up(down) ; or some "yes-no" experiment for events, like "sunny-cloudy" at particular 

time of the day during a one-year period of time, etc. There are 2L different binary 

words that can be generated by the process, but in some systems only some of them 

might be considered as accessible because, for some processes some strings might not 

occur a t  all, i.e. they are forbidden by the dynamics of the process (which translates 

into zero probability of occurrence). By recording the frequency of each string's 

occurrence we can approximate their probability distribution, i.e. the microstate 

probability distribution. The Shannon entropy of a process X is defined by : 

2 L  

where pi is the probability for the ith microstate to occur (the numbering of the 

different microstate is not important and we usually use the lexicographical ordering). 

The units of H ( X )  are bits and we will continue to use the same units even in 

the cases of lattice gases (in these situations we will assume that the Boltzmann 

constant kB  = 1). The entropy H ( X )  measures the uncertainty associated with the 

outcome of X .  It contains all of the intuitive notions of uncertainty. H ( X )  has its 

maximum value of 1 when all of the outputs are equally likely to occur (the most 

uncertain process, i.e. the totally random case), and becomes zero when only one 

output occurs, i.e. the deterministic case. As we can see from this definition, in order 

to calculate the entropy of a process we need to  know the macrostate of the system. 



Here we will call a macrostate of a process the probability distribution over its set 

of allowed microstates. In order to make our models closer to real systems, we need 

to make their sizes larger and larger, approaching infinite size or the thermodynamic 

limit. Therefore, the above formula is not very useful for computations because the 

number of the microstates grows exponentially with the size of the system and it 

would require enormous computational power to sample the space of the possible 

microstates. Also, the Shannon entropy is an extensive quantity, i.e. it approaches 

infinity in the thermodynamic limit. 

For these reasons it is more convenient to consider the entropy density which 

serves as a good indicator of the complexity of binary sequences that are generated 

by a stationary stochastic process (Lindgren, 1988; Zhvonkin and Levin, 1970). The 

entropy density or the measure entropy h, of a process X is: 

h = lim H ( X )  
'" - dim(X)+co dim(X) ' 

where dim(X) is just the number of microstates which the process X can possibly 

generate (in our one-dimensional example it equals 2=). 

Another useful quantity in our treatment is the conditional entropy. If we have 

a stochastic process X that generates states in some set X and another process Y 

whose outcome is in the set Y, the conditional entropy H ( X ( Y )  of the process X 

given the outcome of process Y is defined by : 

where p(x, y) is the joint probability that the process X generates an output x E X 

and the process Y has an output y E Y. The conditional probability of X given Y 

is denoted by p(x1y) p(x, y)/p(y). The conditional entropy tells us how uncertain 

the output of X is, given the output of Y 

For a stochastic variable X with outcome in set X, which has been observed 

at different times ( t l ,  t2, . . . , tN-l) to have values (xl, x2,. . . , X N - ~ ) ,  the conditional 



entropy of the output of the process X at  time t N  is: 

In this notation, the measure entropy (or the entropy rate) is just: 

h - lim H ( x N , .  . . , X I )  

- N t o o  N 

Another quantity related to the measure entropy is : 

- 
h - lim H ( X N ~ X N - ~ ,  . . . , X I ) ,  
- N+w 

(4.13) 

defined whenever the limit exists. The two quantities h, and h, are two different 

notions of the entropy rate of a process. The first one is the entropy per symbol, 

while the second one gives the entropy of the last output of the process given the past 

outcomes. It  is quite a remarkable fact that these two limits exist and are equal for 

stationary stochastic processes (Cover and Thomas, 1991) 

h = lim H(xN' ' ' 7 xl) = lim H ( X ~ J X ~ - ~ ,  . . . , XI)  -- h,. (4.14) 
- N t w  N N-tw 

Let us use the notation H(L)  -- H ( x L ) .  . . , x l ) .  Fig. 13 shows the typical behavior 

of H ( L )  vs. L (for more examples, see Crutchfield and Feldman (2003)). The sub- 

extensive part of H(L)  is called the excess entropy of the random variable and is 

defined by: 

H(L)  = E +  h,L. (4.15) 

The excess entropy proves to be a very useful quantity for measuring the complexity of 

a process. For a recent review see Feldman and Crutchfield (2002). It  is not necessary 

for the excess entropy to be finite and usually it is not at the phase transition points. 

Now we turn to the application of these quantities to stochastic lattice systems. 

The premise for validity of Eq. (4.14) is that we have a stationary stochastic process. 



Figure 13: Typical graph for H(L)  vs. L. The lower dashed line is the asymptote of 
H(L)  when L -+ oo. The intercept E of the upper dashed line is called the excess 
entropy. (from Crutchfield and Feldman (2003)) 

In other words, the probability distribution for N consecutive outputs of a stochastic 

process X ,  p(xN, . . . , xl ) ,  must satisfy: 

p(xN, . . . , xl)  = p(xNSi,. . . , x ~ + ~ ) ,  for any integer z,  (4.16) 

which usually is called the time translational invarzance (TTI). Generally, in the past 

development of this approach, one is talking about temporally sequenced events, so 

the indexes are the outputs of X at times t N  > tN-l > . . . > t l .  Alternatively, 

we can think of the indexes as spatial coordinates of the sites, in a one-dimensional 

infinite spin chain for example, and then the condition for stationarity is equivalent 

to a condition of spatial translational invariance (STI) of the steady state probability 

distribution of a cluster (geometrical collection of sites on the lattice) with N sites. 

This condition for invariance of the probability distribution for an ensemble of systems 

is true for all lattice models with translationally invariant interactions between the 



particles or dynamics in the more general case. We use this notation 

to  indicate the Shannon entropy of a cluster of N consecutive sites on a finite one- 

dimensional lattice with periodic boundary conditions. It is not necessary to specify 

the indices because we have assumed that the system has reached a steady state, 

characterized by a translationally invariant measure. With this assumption, Eq. (4.14) 

can be translated into the following equivalent picture: 

t L 4  
t L 4  t L-1 4 

h - lim H[ml  = lim [ ~ [ r r r r ~ m ~ i ]  - H[-I] = k ,  
- L 4 o o  L L 4 o o  

(4.18) 

Here we use the fact that the conditional entropy of a site on the lattice, given the 

sites on the right(or left) of it, can be written as: 

where the crossed box indicates the site on which we are conditioning. 

The next step is to  develop a corresponding approach to  calculate the measure 

entropy of two-dimensional lattices. Again, if the dynamics are such that the steady 

state probability distribution is translationally invariant (modulo the dimensions of 

the lattice), then the entropy for a d-dimensional system is given in terms of the 

entropy of a (d - 1)-dimensional system (Goldstein et al., 1990). For the case of 

nearest neighbor and next nearest neighbor interactions only, the shapes shown in 

Fig. 14 can be used to estimate the measure entropy (Schlijper and Smit, 1989; 

Schlijper, 1985; Feldman and Crutchfield, 2002). 

For nearest neighbor interactions, the Lth approximation for the measure entropy 

h,(L) is obtained by calculating the difference between the Shannon entropy H(L)  

for the upper cluster shown on Fig. 14 that has L = 2m + 1 sites (two wings of m 

sites and the crossed site on which we condition) and the Shannon entropy H ( L  - 1) 



Figure 14: Two-dimensional shapes for estimating the measure entropy. The upper 
one is for a lattice gas with nearest neighbor interactions, and the bottom one is for 
a lattice with next nearest neighbor interactions. 

of a cluster made of the two wings only. Graphically this can be shown as: 

Therefore, in the limit as m -+ oo, one would reach the exact value for the measure 

entropy. It should be noted here that, for any L, we have h, 5 h,(L), i.e. we are 

approximating the exact value from above. 

For lattice gases with next nearest neighbor interactions one has to  include one 

more layer of lattice sites as shown in the bottom shape of Fig. 14. Again, by condi- 

tioning on the crossed shape, one can obtain an approximation of the entropy density 

for the model. The general rule is that one needs to include as many layers of sites in 

one of the directions (in the examples discussed above this is the vertical direction) 

as the length of the interaction range between the particles. 

Here we try to provide an intuitive picture of why we should expect that the 

conditional entropy for the upper shape on Fig. 14 gives the exact entropy density for 

a stochastic lattice gas with nearest-neighbor interactions (see Fig. 15). The crossed 

site on the picture interacts only with its nearest neighbors. The shape includes its left 

and bottom neighbors. Because of the assumed symmetries of the interactions, the 

steady state probability distributions will be translationally invariant, so the impact 

of the rightmost and the uppermost neighbors on the state of the target (crossed) 



Figure 15: Illustration of intuitive reasoning for calculating the measure entropy. The 
conditioning on the crossed site gives the exact value for the measure entropy when 
the wings of the shape become infinite. (See text for discussion.) 

spin will be the same as the impact of the ones already included in the shape. If we 

take a spin located at  site A on the picture, we see that it can propagate its state to 

the target spin (the crossed one) by many different paths, two of which are pictured. 

We see that at some point all of these paths cross the shape, which extends to infinity 

in both directions. Therefore the influence of the spin at site A will be captured by 

some spin in the shape. The influence of a spin located at  site B on the lattice will be 

the same as from a spin which is the symmetrical from the crossed site and therefore 

will not generate new information on the targeted spin. ( An added discussion of this 

point is given in Appendix B). 

An important piece of the derivation is that the shape has to be constructed 

with infinite wings. Although there are recent papers of algorithms about how one 

can tackle computations with shapes containing millions of sites (see Allegrini et al. 

(2002)), we will concentrate on small finite shapes with up to twenty sites. For equilib- 

rium models, this method of estimating the entropy density gives remarkable results 

(Schlijper and Smit, 1989; Mierovitch, 1984, 1999; Kenneway et al., 2003). In these 

studies, the length of the shape used has been 10 - 15 sites, yet the approximation 



0 

0 
0 
0 

Figure 16: The interaction cluster for DLG. At each time step, we pick randomly a 
site (the dark one) and a direction, up or across, which defines either the horizontal 
bond or the vertical one. Then we try to exchange the occupation numbers on the 
two sites of the bond according to the rules described in the text. 

of the thermodynamic entropy differs from the true value by less than a fraction of 

a percent a t  the critical temperature, where one would expect that  the finite length 

of the shape would make the method incapable of capturing the macroscopic fluctu- 

ations in the system. Based upon these excellent results for equilibrium models, we 

start our investigation of the criticality of driven diffusive systems. 

4.4 Monte Carlo renormalization for the driven lattice gas 

We use the Metropolis algorithm to generate a sequence of microstates starting from a 

random initial configuration on the lattice. The system equilibrates into a steady state 

after typically 1 - 5 x lo5 Monte Carlo steps per site (MCS). This initial equilibration 

time depends upon the size and temperature of the system. Since we have dynamics 

that  conserves the number of particles we basically have diffusion occuring which is 

very slow and takes many MCS for the system to reach the steady state. The number 

of total MCS that we have used a t  each temperature varies from 2 x lo6 to  lo7 and 

data  is taken every 10 - 25 steps. At each time step, we pick randomly one bond on 

the lattice, horizontal or vertical, as shown in Fig. 16. We consider an exchange of 

the occupation numbers (given that  they are different) between the sites on the bond 

based on the factor (see Eq. (4.5)): 



where ,B is the inverse temperature, A H  is the change of the energy between mi- 

crostates if the jump occurs, E ( t )  is the value of the driving field at time t (it is a 

constant in time and space for IDLG model and random in time but constant in space 

for RIDLG model), and E is: 

E = (-1,0, +1) for jumps (along, perpendicular, against) the direction of E .  (4.22) 

The models that we have studied here are the IDLG and the RDLG, which both 

have a driving field of infinite magnitude and therefore the jumps in the horizontal 

direction are independent of the occupation numbers of the other nearest neighbors 

of the horizontal bond. For example, if the driving field is from the left to the right, 

then a particle on the left site of the horizontal bond will jump to an unoccupied right 

site of the bond regardless of the nearest neighbors with which it interacts according 

to Eq. (4.4). For jumps in the transverse direction (the vertical bond on Fig. 16), the 

usual Ising ferromagnetic change in the energy takes place. 

The rate functions in Eq. (4.5) are chosen to be the standard Metropolis rates 

w (x) = min (1, exp(-x) ) , where x is the factor from Eq. (4.2 1). Every 10 - 30 MCS 

data is collected and the relevant observables of the system are calculated based 

upon the current microstate of the system. We have used a very fast multi-spin 

coding algorithm (described in Appendix C) that speeds up the collection of data by 

a factor of sixteen compared to a conventional algorithm. 

To calculate the entropy density we have used shapes (see Fig. 14) with 13 or 15 

sites in our simulations. Shapes with a total length of 17 sites have been used for 

checking the convergence of the measure entropy with the length of the shape. At 

each time step, when we make a snapshot of the configuration on the lattice, we put 

the target site of the shape (the crossed one on Fig. 14) on every lattice site as shown 

on Fig. 17. Thus, we collect LII x LI binary words from the current state on the 

lattice. If we use a shape with length L then the maximum number of binary words 

that can be coded with this shape is 2L. By collecting the histogram of all of these 



Figure 17: Horizontal and vertical shapes on a lattice. We move the horizon- 
tal/vertical shape (shown in black) at  every lattice site and collect the histogram 
of the binary words appearing with the shape. 



binary words we approximate their probability distribution from which we calculate 

the Shannon entropy using Eq. (4.20). 

The order of the binary words is taken to be in the lexicographical order, i.e. 

00 . .  .OO is the first word, 00. . .O1 is the second word , etc. Different coding schemes 

can be used to map the state of a cluster into a binary word. All of them are equivalent 

in terms of obtaining the entropy. Therefore, we have used the most efficient ones 

to minimize the computation time. We have used two mappings for the shape into a 

binary word of length L shown on the following picture 

Here the target site (the crossed block) on the upper shape represents the lowest 

order bit in the word (the right most bit) and the other bits follow the numbers of the 

sites on the picture. This coding method is particularly efficient for calculating the 

excess entropy and studying the convergence of h,(L) (see Eq. 4.20). The method 

shown on the bottom shape has been used for calculating the entropy using Eq. (4.20). 

Fig. 18 shows a typical probability distribution of the binary words generated 

from a shape with 13 sites for the IDLG model a t  a temperature above the critical 

2L temperature. From this spectrum, we calculate H ( L )  = - CiZ1 pi log2 pi and H ( L  - 
2L- 1 

1) = - x i = ,  pi log2 pi for the binary words generated from the shapes used in Eq. 

(4.20). Fig. 19 shows the convergence of h,(L) with the length of the shape. At high 

temperatures one can obtain an excellent approximation for the entropy, even with 

shapes of only 5 - 6 sites. For the perpendicular shape, this observation remains 

true even for temperatures approaching the critical temperature from above. We 

see considerable decrease in the convergence rate of the entropy estimated by the 



Figure 18: Example of the histogram of binary words. The shape used has a length 
of 13 sites (i E (0 , .  . . , 213 - 1)) and the model is the IDLG simulated at temperature 
T = 1.5 To. 

Figure 19: The convergence of h,(L) for shapes oriented parallel and perpendicular 
to the field for high ( T  = 2.0) and close to the critical point ( T  = 1.41) temperatures 
(the temperature is in units of the Onsager's temperature). 



shapes in the parallel direction. Considering large shapes is extremely difficult with 

the our algorithms because it would require approximately 4GB of RAM for a shape 

with a length of 21 sites. As mentioned earlier, new algorithms involving adapting 

dictionaries could be applied in order to study longer shapes (Allegrini et al., 2002). 

The difference between the values for limL,, h,(L) along the two directions is a 

result of the strong anisotropy in the system. It is not hard to understand that differ- 

ence quantitatively. Indeed, the quantity that we calculate is the conditional entropy 

of the target site given the state of its neighbors. In the parallel case we condition on 

the evidence of spins in the shape along the driving field, while for the perpendicular 

shape we build our knowledge for the target spin given the evidence of the state of 

the sites in the shape perpendicular to the field. Given the strong anisotropy of the 

model we would expect those two conditional entropies to be different even for infinite 

shapes and finite temperatures. 

Fig. 20 shows the advantage of using the multi-spin algorithm. By using this 

algorithm, we simulate 32 lattices simultaneously, using the 32-bit architecture of 

our computers, at the same temperature and build the histograms for the different 

shapes from the snapshot configurations on these 32 lattices. Apart from the obvious 

difference in the speed of algorithms the results obtained by using one or the other 

algorithm agree for any temperature. From the same graph one can gain information 

about the statistical error in the estimation of the entropy density. The different runs 

are obtained from different random initial configurations on the lattices starting with 

different random seeds. Thus, we treat the end results from the different runs as 

statistically independent and use the usual statistical methods to estimate the error 

of the entropy density. However, as mentioned in Chapter 2, this error in determining 

the entropy density can hardly be used to estimate the errors in the critical exponents 

obtained by the Monte Carlo renormalization. In all of the graphs that follow, the 

error bars for the entropy estimate are smaller than the plotting symbols used. 



time [ 20 MCS ] 

Figure 20: Comparison between the usual Metropolis algorithm (above) and multi- 
spin algorithm (below). As seen from the time coordinate by using the multi-spin 
coding one can get the same statistics for from 10 to 16 times less MCS. The three 
sets of lines on both figures correspond to runs at the same temperature for the two 
algorithms with different initial random seeds. 



Figure 21: The entropy for the uniformly and randomly driven models. The simu- 
lations were done on a 128 x 128 lattice with a shape comprised of 15 sites oriented 
parallel to  the driving field. 

The two models, uniformly and randomly driven gases, have almost the same 

order parameter, internal energy and structure factor for all temperatures. This is 

a surprising fact because, theoretically, it has been argued that  these models should 

be in different universality classes and thus have different critical exponents (see Eq. 

(1)). It is naturally t o  expect that the two models are in different universality classes 

because they have different symmetries. The steady state of the uniformly driven 

model is invariant under any two of the following transformations: 



implying a symmetry under s + -s, rll + -rll , while the steady state for the 

randomly driven model is symmetrical under 

Fig. 21 shows a comparison of the entropy density calculated by using shapes 

with a total of 15 sites oriented along the driving field on a 128 x 128 lattice. Unlike 

other macroscopic properties discussed above, the entropy density is different for the 

two models, which strengthens our expectations that this quantity is appropriate for 

exploring the criticality of the models by Monte Carlo renormalization. 

It should be noted here that if we take the derivative of the entropy density with 

respect to  the temperature numerically and multiply this quantity by the temperature 

(this is the specific heat capacitance for equilibrium systems) the maximum for this 

quantity is located at a lower temperature than the temperature obtained by Monte 

Carlo renormalization. This maximum has strong dependence on the size of the lattice 

studied. The dependence of the entropy density on the size of the lattice is shown on 

Fig. 22. As expected, on larger lattices the curve become steeper closer to the critical 

point. 

Fig. 23 shows a typical graph of the behavior of the entropy density on the orig- 

inal and coarse-grained lattices, from which we obtain the correlation length critical 

exponent. Regression polynomials (from a fourth to a tenth power) have been used 

close to  the crossing point of the two data sets to  draw a smooth line (not shown on 

the figure). The point where these polynomials cross we report as the critical tem- 

perature. The same procedure has been followed for a set of simulations done with 

the shape oriented perpendicular to the driving field. A comparison of the entropy 

on the original and the coarse-grained lattice for shapes along and perpendicular to  

the field is shown on Fig. 24. 

The results for vl, and vl are shown in Table 2 and Table 3 respectively. In 

the last column we show the ratio of the slopes of the entropy curves at the critical 



Figure 22: The entropy density calculated on different lattices for the uniformly driven 
model with the shape parallel to  the driving field. 

point (see Eq. (2.29)). In all simulations the rescaling factor b is 2. For calculating 

the correlation length critical exponents we have used the natural assumption for a 

strongly anisotropic system that  we have two distinct correlation lengths diverging 

with different critical exponents : 

Then, by the same reasoning as for the derivation the Eq. (2.29)' and the geometrical 

fact that  G (t') = t i  (t) /b  and (1 (t') = tI(t)/b7 we obtain 

log b log b 
V I I  = and vI = 

log (5) d T ~ ~  Tc 
log (%) ' 

d T ~  T, 

where the indexes 1 )  or I indicate which pair of curves to be considered (see Fig. 24). 
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Figure 23: The entropy density for the original 128 x 128 lattice and the coarse- 
grained 256 x 256 lattice using 2 x 2 rescaling blocks. Results are for the IDLG using 
a shape with 15 sites oriented parallel to the driving field. 
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Figure 24: The entropy for parallel and perpendicular shapes. Comparison between 
the entropy of the original and the coarse-grained system on a 128 x 64 lattice for 
shapes parallel and perpendicular to  the driving field for the IDLG model, with a 
shape comprised of 15 sites. 



Table 2: The results for ull for different lattices. 

model L I I  x LI Tc [To] 9, slope ratio 

64 x 64 1.396 0.91 1.56410.7324 

uniformly driven 

128 x 64 1.394 0.84 1.958/0.860 

randomly driven 128 x 64 1.390 0.96 1.301/0.631 

From the results we see that  the fixed point obtained for shapes perpendicular to  

the field is less than the one calculated from shapes along the field. This difference 

is most probably due t o  the fact tha t  when the shape is aligned perpendicular t o  the 

field for T 5 Tc i t  will be perpendicular t o  the interface between the low and high 

density regions. The size of the shape is comparable t o  the size of LI, from 11% up t o  

46% of LI for the lattices and shapes that  we have used. Shapes tha t  frequently are 

positioned accros the interface introduce additional randomness when calculating the 

histograms for the perpendicular case, which in turn shifts the transition temperature 

to  a lower value. This effect is present in the parallel case as well, but the 11-shape 

extends over just 2 sites in the perpendicular direction, which makes the impact of 

the interface negligible. 



Table 3: The results for v l  for different lattices. 

model Lli x LI T, [To] v l  slope ratio 

uniformly driven 64 x 64 1.380 0.63 2.45610317 

randomly driven 

4.5 Analysis of the results for vll and v l  

Compared to the theoretical values (Table I ) ,  the values for vll that we report here 

differ substantially. This discrepancy is not too surprising though, because there is 

currently no consensus regarding which is the correct mesoscopic equation to describe 

most effectively the criticality of the DLG (Santos and Garrido, 1998; Garrido and 

Marro, 2000; Archahbar et al., 2001; Schmittmann et al., 2000). Within the limits 

of applicability of the Monte Carlo renormalization method for DLG, our results 

match most closely the early results (see Zhang et al. (1988)) obtained from a direct 

estimation of the correlation length. In these studies, the two-site correlation function 

along the principle direction on the lattice C l l ( r )  = (axax+,) is written as 

which serves as a phenomenological definition for the correlation length ill. From 

these assumptions it has been concluded that vll = 0.7 f 0.3. No reliable data for 

vl has been found, due to the negative correlation in the transverse direction. Based 

upon the YII = 0.7 value and a square lattice finite size analysis, an excellent collapse 



on a single curve has been obtained for the order parameter of IDLG model (Marro 

et al., 1996). It has been argued further that a t  the critical point only one relevant 

correlation length, and therefore one correlation length critical exponent, plays an 

essential role. As mentioned above, recently new continuum theory for the IDLG 

has been proposed essentially casting the IDLG and RIDLG models into the same 

universality class. 

The method that we have used to calculate the entropy density is general and 

applicable to any lattice gas with translationally invariant dynamics. The general 

applicability of Monte Carlo renormalization in the form that we use it here is a 

more subtle issue and merits further study, particularly for anisotropic systems. Our 

combined approach has the advantage of measuring the correlation length exponents 

in a direct way, and also the results from it have a much smaller dependence on the 

size of the system under consideration. The values for vll that we report in Table 2 

for the IDLG and RIDLG do not differ by much, although we believe hat the small 

difference is not due to statistical errors. 

We have determined separately a vll and v l ,  calculated from the same shape with 

parallel and perpendicular orientaion. It  is not clear to what extent the interface 

between the phases affects the data for the perpendicular shape. Further insight 

can be gained by considering different shapes for calculating the conditional entropy. 

We used the angle-like shape "G" shown in Appendix B in a simulation on a small 

64 x 32 lattice for the two, IDLG and RIDLG, models. The shape has a total of 15 

sites - 9 along the \)-direction and 6 in the I-direction. Thus it is designed to probe 

correlations in both directions simultaneously. 

As shown on Fig. 25 the difference in the conditional entropy for the two models 

changes. In this case, the conditioning in the directions to the right and below the 

targeted site makes the RIDLG more ordered (less entropy) than the IDLG. The 



Figure 25: Results from shape "G" on a 64 x 32 lattice. The dotted lines are for 
the original and coarse-grained lattice on the IDLG and the solid lines are for the 
RIDLG. 

results for the critical temperature and critical exponent v are 

model TJT,  v slopes ratio 

IDLG 1.395 0.78 1.42510.588 

RIDLG 1.396 0.79 1.325/0.554 

thus making the two models almost indistinguishable. It is also worth mentioning 

here that the entropy curves for this angled shape are very close to the ones obtained 

from the shape used previously in the parallel direction, rather than somewhere in 

the middle between the entropy from the parallel and perpendicular shapes. This 

result suggests that either (1) the system has one relevant correlation length exponent 

v = 0.8 or (2) the parallel orientation of the shape "H" (see Appendix B) samples an 

average of vll and v l ,  which is also x 0.8. 

For completeness we have calculated the excess entropy (see Eqn. (4.15)) from the 

shape "H" (see Appendix B) with a total of 11-sites on a small 64 x 32 lattice for 

the two models (see Fig. 26). As mentioned above, the excess entropy is essentially 



Figure 26: The excess entropy on a 64 x 32 lattice for the two models. Shapes with 
11 sites have been used oriented along the parallel direction. 

the sub-extensive part of the entropy of a system, a quantity usually neglected in 

thermodynamics. It is one way to  define and quantify the complexity of a system. 

The results show no significant difference in complexity between the two models, 

although more data from larger lattices and longer shapes is needed to prove or 

disprove this conclusion. We believe that small differences can be found, as suggested 

already in Fig. 26 in the critical region. 

4.6 Critical exponent ,O for the IDLG model 

For calculating the order parameter of the IDLG model, we need to take into ac- 

count the strong anisotropy of the system and modify Eq. (2.31) accordingly. These 

modifications can be done in the following manner. We assume that there are two 

relevant lengths and consequently we assume two different correlation length expo- 

nents vll # vl. Standard finite size scaling analysis suggests for the order parameter 

the following homogeneous function (Privman, 1990): 



Thus, Eq. (2.31) modifies to 

Fig. 27 shows the results from the Monte Carlo simulations for the order parameter 

(see Eq. (4.7)). Typically, runs from lo7 to 3 x lo7 MCS have been performed and 

data is taken every 10 MCS. The initial configuration of the lattice is random and 

the temperature is reduced in steps of 0.01 (0.005 close to  the critical point). The top 

graph in Fig. 27 shows the order parameters for isotropic rescaling using 2 x 2 blocks. 

One simulation uses a 128 x 64 lattice and a 256 x 128 lattice that is rescaled down to  

128 x 64. The point where the two curves cross yields the critical temperature. On 

the bottom graph, the result of the simulations using anisotropic rescaling of 8 x 2 (a 

512 x 64 lattice rescaled to  a 64 x 32 one) and 4 x 2 ( a  256 x 64 mapped to  64 x 32 

) blocks. Table 4 summarizes the results. The critical temperature is very close to  

Table 4: The results for the ratio P/vll  for the IDLG model. 

the one obtained from the entropy analysis. If we assume that vll % 0.8 then for the 

three rescalings we obtain: 



Figure 27: The order parameter of the IDLG model vs. the temperature on different 
lattices. The top graph shows the case of isotropic 2 x 2 rescaling on a 256 x 128 
lattice. On the bottom graph two anisotropic rescalings, 4 x 2 and 8 x 2, are shown. 



The conclusion from these results is that, if one assumes an anisotropic rescaling as 

in Eq. (4.29), the numbers that we obtain are a little too high with the exception 

of the last result, which is close to the field theoretic prediction of P = 112. Thus, 

alternative anisotropic rescaling functions need to be explored in order to understand 

better this issue and more data from larger lattices would also be useful. 

4.7 Summary and general remarks 

In this chapter we have developed a general method using a Monte Carlo renormalization- 

group and entropy density analysis that is applicable to any stochastic model that has 

a translationally invariant measure. We find the critical temperatures for the IDLG 

and RIDLG are in excellent agreement with other studies of these models that use the 

more "traditional" finite size scaling approach. From the entropies of the model we 

have estimated their correlation length critical exponents. The values we obtain agree 

best with the early estimation obtained from the direct observation of the correlation 

length from simulations for different temperatures (Zhang et al., 1988). The method 

that we have developed is computational and high accuracy of the data is important 

for obtaining good results. 

From our data we can conclude that the IDLG and RIDLG models do not differ 

much, if a t  all, a t  the critical point. Their critical exponents are so close to each 

other that the suggestion that they are in the same universality class is very plausible. 

While our results are not the final word on the universality classes of these models, 

they contribute some understanding to the complex picture of the criticality for DLG 

models. Planned future work includes the development of algorithms that are able to 

study larger shapes, so that more quantitative answers can be given. More qualitative 

understanding of the role that the interface between the phases plays a t  the critical 

region is needed and we believe that the entropy estimation and comparison from the 

different shapes will be very useful in understanding criticality and comparing the 



ordering in these models. Application of these different shapes to other anisotropic 

systems about which more is known will also provide additional insights. 



CHAPTER 5 

THE THREE-STATE DRIVEN LATTICE GAS: 

A POSITION-SPACE 

RENORMALIZATION-GROUP STUDY BASED 

UPON THE MICROSCOPIC MASTER 

EQUATION 

In this chapter we study a simple two-dimensional driven diffusive lattice gas without 

interactions between the particles. We present a scheme for a general position-space 

renormalization-group approach based upon the possibility of a closed form repre- 

sentation of the parameters of the system in terms of the steady state probability 

distribution of small clusters. 

5.1 Definition of the model and its properties 

The model is a two-dimensional lattice gas with two species (positively and negatively 

charged particles) that are driven by an external field along one of the axes of the 

lattice (the horizontal axis in Fig. 28) and vacancies. This model is a natural extension 

of the two-state model, studied in the previous chapter, formed by introducing an 

additional species with the opposite charge driven in opposite direction by the external 

field (Schmittmann and Zia, 1995; Korniss et al., 1997; Korniss, 1997). We consider 

a periodic L, x L, lattice each site of which can be empty or occupied by one of the 

two kinds of particles. The numbers of positive and negative particles are the same, 

so the total charge of the system is zero. The only interaction is the hard-core volume 



Figure 28: Typical configurations for the 3-state model: disordered (left) and ordered 
(right) phases. The driving field is along the horizontal axis as shown by the arrow. 
The black pixels are the positive particles and the gray ones are the negative ones. 

exclusion. We can define occupation numbers at each site r = (x, y) on the lattice by 

1 if the site is occupied by a positive particle 
n,S = 

( 0  otherwise 

- 
1 if the site is occupied by a negative particle 

n, = 

(0  otherwise 

The dynamics are stochastic and governed by three parameters: the magnitude of 

the driving field E, the rate at which a particle jumps into a nearest neighbor unoccu- 

pied site in the direction perpendicular to the field 6, and the parameter controlling 

the rate of exchange for the two kinds of particles y. Without the bias produced 

by the field, the model yields simple diffusion of two non-interacting species on a 

lattice, a model that has no phase transitions. When the driving field is present, 

the jumps are biased, with the positive (negative) particles favoring jumps in the 

direction of (opposite to) the field. This simple model produces a rich phase diagram 

with both first and second order phase transitions. Typical ordered and disordered 

configurations are shown in Fig. 28. 



At each step we choose a bond, either parallel or perpendicular to the field (in 

our simulations the parallel direction is along the horizontal axis). If the bond has a 

particle and a hole (particle-hole exchange) in the sites the probability for a jump of 

the particle is given by: 

min (1, exp(qE)) for a jump in the (I-direction, 
W p h  = i s  (5.2) 

for a jump in the I-direction, 

where q = 1 if a positive particle jumps along the field or negative one jumps against 

the field, and q = - 1 if a positive particle jumps against the field or a negative one 

along the field. If the bond has particles of both kinds (particle-particle exchange) in 

its sites, the rate is: 

y min (1, exp(2 q E)} for a jump in the /(-direction, 
WPP = (5.3) 

for a jump in the I-direction, 

where q = 1 if the positive and the negative particles switch positions in the favorable 

direction, and q = -1 if the exchange of the two particles happens in the unfavorable 

direction. The factor of 2 in the exponent comes from the fact that two oppositely 

charged particles exchange their positions. 

The "blocking" parameter y is very important for the ordering shown on Fig. 28. 

Usually we will limit our considerations to the case when b = 1, so the jumps of a 

particle into an unoccupied site in the transverse direction always occur. The order 

parameter is defined through the quantities: 

and their Fourier transforms 
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Figure 29: The phase diagram for the model. Simulations were performed on a 40 x 40 
lattice. The dashed lines indicate a first order phase transition and the solid line is a 
second order phase transition. Inside of each "U" we observe the ordered phase and 
outside is the disordered region. 

where k = (kll,  k l )  Thus, these order parameters are amplitudes of the longest 

wavelength longitudinal Fourier component, i.e. 

The phase diagram of the model is shown in Fig. 29 where data for different values 

of the parameter y are shown. 

For low y and low densities we observe a first order phase transition. If we keep, 

for example, the value of the driving field fixed and change the density of the system 

by adding only two particles (one from the two kinds) we observe an abrupt change 

in the order parameter (see Fig. 30). We can also find the typical hysteresis for a 

first order phase transitions by conducting simulations when the density is increased 

first and then, after the change into the ordered phase, decreased. For high values 

of y only a second order phase transition occurs. Fig. 31 shows the typical behavior 

of the order parameter @ as a function of the density, with the driving field and the 



density 

Figure 30: The order parameter for y = 0.02 and E = 2.0 on a 60 x 60 lattice. 
The change of the order parameter is sharp indicating the occurrence of a first order 
phase transition. 

densily 

Figure 31: The order parameter for y = 0.02 and E = 0.5 on a 60 x 60 lattice. The 
change of the order parameter is gradual indicating the occurrence of the two second 
order phase transitions. The insets show the data close to the transition points. 



density 

Figure 32: The order parameter Q for y = 0.4 and different fields on a 40 x 40 lattice. 

parameter y fixed. Hysteresis does not occur in this case and the curves obtained by 

increasing the density and by decreasing the density coincide within the error bars. 

In our Monte Carlo simulations, we have again used a fast multi-spin algorithm 

that allows us to simulate 32 lattices simultaneously (see Appendix ). We have worked 

on small lattices with sizes from 40 x 40 up to 80 x 80 and the results that we present 

for the phase diagram are thus only qualitatively correct. The locations of the phase 

boundaries exhibit substantial shifts as the lattice sizes are increased. 

5.2 Master equations for small clusters 

The master equation for the time evolution of the probability distribution P(3; t )  

where 3 = {n,),=(,,,), is 

The rates W for a transition between two configurations are given by Eqs. (5 .2)  and 

(5 .3) .  In that form they are suitable for computer simulation; below we will retain 



their general form for the development of our renormalization-group treatement. The 

particle-hole and particle-particle exchange rates are: 

cp(q E) for jump in the 11-direction, 
w p h  = 

for jump in the I-direction, 

y 4 2  q E) for jump in the 11-direction, 
W P P  = 

for jump in the I-direction. 

The meaning of 77 (q = f 1) is the same as before and cp(x) is an analytical function 

describing the bias produced by the driving field. Standard choices for cp(x) are 

Metropolis p(x) = min (1, exp(-x)) 

Kawasaki 2 4 4  = (5.9) 

Van Beijeren-Schulman cp(x) = exp(-x/2) 

where x = f E .  The dynamics therefore depends on this set of quantities: 

The largest term in the set determines the time scale of the dynamics. Since we are 

interested in the steady state properties of the model we usually consider it to be 

unity in the Monte Carlo simulations. Our main idea is to express the above set in 

terms of stationary probability distributions of small clusters. 

Let A c Z* be a small compact cluster on a two-dimensional lattice. The state 

of this cluster will be denoted by a'(A) = {nr)rEA . The steady state probability 

distribution for this cluster is given by 

where the notation 13- dA) indicates the summation over all of the sites of the lattice 

that do not belong to the cluster. For spatially invariant rates, as in our case, we 



Figure 33: An example of cluster A, the triplet along the horizontal direction on the 
top. Its A,-clusters are show below. 

should expect the steady state measure to  be translationally invariant (in space) as 

well. Therefore we will have 

for two clusters A and A' of the same shape that are in different locations. The time 

dependent master equation for the probability distribution P A ( Z ( ~ )  ; t )  can be found 

after "integrating" Eq. (5.7) over the degrees of freedom not included in the cluster: 

It  is not hard to see that the sum on the right hand 

where each one is in the form w P ( ~ ( ~ C ) ) .  Here w is 

side reduces to  a sum of terms, 

one of the rates and the cluster 

A, is either the same cluster A or one made of A plus one nearest neighbor (see Fig. 

33). This simple form is possible because the particles do not interact, except the 

excluded volume interaction. Fig. 33 shows the clusters A, that  contribute to  the one 

time step evolution of the probability distribution of cluster A (in this example just a 

triplet of sites in the ([-direction). The arrows indicate the possible change affecting 

PA. 

We have chosen the simplest nontrivial cluster for further investigation, i.e. a 

pair of neighboring sites along the 11-direction. To simplify the notation, we use a 

notational convention for the different probability distributions as shown on Fig. 34. 

Since we can have three states on each site of a cluster with a total of N sites, we have 



Figure 34: Notational convention for the probability distributions of different clusters. 

3N different states available for the cluster to sample. We denote a positive particle 

as 1, a negative particle as 2 and a hole as 0. The state of the cluster is coded into 

a trinary word ordered lexicographically. The highest bit in the word corresponds to 

the site above or below the pair, if present, and the rest of the bits in the word are 

ordered from left to right along the cluster. For example: 

where the brackets denote the time average for the state of the cluster. The master 

equations for probability distributions of pairs ? = {To, T I , .  . . , T8) can be written in 

this symbolic form: 

h 

where @ is a (9 x 9) dimensional transition matrix; Wi for i = (2,3,4,  ) are (81 x 9) 

matrices; p, e, and $ are 81-component vectors. The symbols with a tilde in the 

equation are for the clusters symmetrical to the ones shown on Fig. 34 with respect 

to the horizontal axis. Appendix D shows Eq. (5.14) written in components. 

As expected, the time evolution of a two-site cluster involves a hierarchy of three- 

site clusters, whose states need to be known in order to solve the master equation for 

the two-site cluster. Our goal here is not to solve these equation, but to use them in 

order to express the parameters of the dynamics ( E l  y, 6) as functions of the steady 

state probability distributions of the clusters presented in Eq. (5.14). 



5.3 Expression for the dynamical parameters 

According to Eq. (5.10) we can define our parameter space ,LL to be the set 

and for the function cp we choose the Metropolis rate (see Eq. (5.9)). We simplify our 

dynamics further by assuming that the particle-hole exchange rate 6 is 1. Thus, we 

continue our investigation in a two-dimensional parameter space ,LL = {El y}. 

We can write the master equations for the T-cluster as 

for any i E {0,1,.  . . ,8). Here the components of the W's are from the set (see 

Appendix D): 

{ l l  0, 7, exp(-E), V X P ( - ~ E )  ) (5.17) 

Therefore, for any of the nine master equations for the components of the T-cluster 

we have: 

where by Fi we have denoted the right-hand side of Eq. (5.16). When the system 

reaches its steady state, the left-hand side of the above equation is zero. Consequently, 

we get a system of 9 equations for two (y and E) unknowns 

We can always choose two (independent) equations and try to find an expression for 

y and El but in this way the numerical errors are substantial and this approach does 

not work well over the whole parameter space. The reason is that,  in the different 

regions of the phase space, some clusters will have small probability of occurrence, 

and thus more computational time will be needed to get reliable statistics for them. 

We don't know a priori where in the phase space we will move in the next iteration, 



so it is very difficult to choose a pair of equations that will give good results for our 

unknowns y and E over the whole parameter space. 

In order to determine the dynamical parameters from Eqs. (5.19) we have trans- 

formed the problem into an optimization task. Namely, we try to find the minimum 

We have F ( y ,  E) 2 0 for any y and E with equality for those parameters satisfying 

Eqs. (5.19). 

Fig. 35 shows the accuracy of the minimization method for the important regions of 

the phase space. Runs on a 40x40 lattice have been performed for different values of y, 

E and the particle density. The first 5 x lo5 MCS are discarded and are usually enough 

for this lattice to reach its steady state. Then, for the next 5 x lo5 MCS the histograms 

for the different components for the clusters T, P, L, L, N, and N are collected every 

100 MCS. From the histograms we approximate the probability distribution for the 

different clusters and use these numbers to minimize the function in Eq. (5.20) for y 

and E .  Typically, the average of 10-20 independent runs is compared to the values 

used to simulate the lattice. We obtain very good results in the whole phase space 

and in most of the cases the error is less than a percent with the worst case of about 

2%. Obviously, one can improve the results by considering more independent runs 

and taking their average. 

As we can see from the plots in Fig. 35, this minimization method has one more 

good feature, i.e. the results from it are self-correcting. This means that we can 

obtain the minimum at some point such that, say y, is far away from the real value 

but then the value for E is going to be also far away from its real value in such a way 

that we will stay in the same phase. It is clearly visible on the plots that the points 

tend to order on a line rather than scatter randomly around the true value. 



Figure 35: Obtaining values for y and E from the minimization procedure discussed 
in the text. The circles are the exact values and the x 's  are the values obtained from 
the minimization method from 10-20 independent runs. On the bottom graphs are 
shown the worst cases, but even for them the average of 10 independent runs is only 
a maximum of N 2% off from the exact values. The simulation is done on a 40 x 40 
lattice, each run is lo6 MC steps, the first half discarded and data is taken every 100 
MCS. 



The way we designed the function F ( y  , E) in Eq. (5.20) makes i t  a paraboloid 

around its minimum, so we can use some very efficient optimization algorithms, such 

as the Powell's TOLMIN method, which solves linearly constrained optimization prob- 

lems (Powell, 1989). The constraints for the optimization task are 0 5 E 2 oo and 

0 $ y 5 1.0. We have assumed that  E = 40.0 approximates the case E = oo 

sufficiently because, for the time of our simulation, an  event with probability of 

exp(-40.0) = 10-l8 will never occur, so the backwards jumps, for example will never 

happen, reflecting infinite field behavior. 

The "worst" region for this method is the area close to the completely random 

case, i.e y = 1.0 and E = 0.0. In this case, as one can easily verify from Eqs. (D.l) ,  

the coefficients in function F ( y ,  E) of Eq. (5.20) theoretically are approaching zero, 

so the method would yield enormous errors. Therefore we limit our simulations to  

other regions of the parameter space. 

5.4 Flow diagrams for the model 

In this section we present the main results obtained using this Monte Carlo renormalization- 

group approach. We have followed the same steps as in Chapter 4 to design a mapping 

between the parameters p = {y, E) -+ pt = {y', El) of the original and the coarse 

grained lattices, done with a rescaling factor b of 2. Initially we simulated a lattice 

of 80 x 80 sites a t  fixed density and p. The first 5 x lo5 MCS were discarded and 

in the next 5 x lo5 steps a t  every 100 MCS we took the current configuration on 

the lattice and remapped this configuration into a configuration on a 40 x 40 lattice 

using a blocking procedure similar t o  the one in Section 2.4. Because we now have 

three states per site (vacancy, positive particle and negative particle) we modified the 

procedure as follows: (i) we divide the original lattice into 2 x 2 blocks and classify 

each block into a class depending upon the states of the sites in the block; (ii) we start 

generating particles on an initially empty 40 x 40 lattice by choosing randomly blocks 



from the class with the largest number of the same kind of particle until we generate 

as many particles of this type as needed to maintain the same density, or exhaust 

this class and continue on the next one according of the number of that particle. At 

the end we have a microscopic state on the coarse-grained lattice that has the same 

density of the particles as on the original lattice and which "looks similar" to the 

state on the original lattice. 

We are going to make the same general assumption about the configurations gen- 

erated on the smaller lattice, namely that they appear as if they were generated from 

a Monte Carlo simulation that is running with a different set of values of the param- 

eters p'. We prohibit any expansion of the parameter space, and assume that the 

particle-hole rate in the I-direction w,h = 1 on the coarse-grained lattice. 

Next, we collect the histograms for the appropriate shapes mentioned above and 

approximate their probability distributions. From Eq. (5.20) we find those y' and E' 

that minimize the function. This procedure is done 10 times and the average of the 

values yields the next point of the trajectory, p' = (y', E'). To continue further, the 

original values of the parameters on the larger, (80 x 80), lattice are replaced with the 

ones just found. The next 5 x lo5 MCS are usually needed for the system to reach a 

new steady state and the remapping occurs again. The step in which we continue the 

simulation on the bigger lattice with the parameters obtained from the minimization 

procedure on the coarse-grained lattice certainly introduces errors due to finite size 

effects. We discuss this issue later in this chapter. 

Fig. 36 shows the results for the flow in the subspace of density=0.4. In Fig. 

40, two iterations of the flow are shown closer with the 10 independent runs needed 

to obtain their positions more accurately. On the graphs, the arrows indicate the 

direction of the flow and the x's are the different estimations of the parameters from 

10 independent runs. 



Figure 36: Flow diagram for density=0.4. The top graph shows the data for the flow 
from the renormalization-group procedure with a density of 0.4 . On the bottom 
graph is the continuous schematic flow in this subspace. The arrows indicate the 
direction of the flow and the filled circles are the fixed points. The phases AI and 
AII are the ordered phases and B is the disordered phase. 



Figure 37: Flow diagram for density=0.6. The top graph shows the data for the flow 
from the renormalization-group procedure with a density of 0.6. On the bottom graph 
is the continuous schematic flow in this subspace. The arrows indicate the direction 
of the flow and the filled circles are the fixed points. The phases AI and AII are the 
ordered phases and B is the disordered phase. 



density = 0.95 

Figure 38: Flow diagram for density=0.95. B is the disordered phase and A is the 
ordered one, separated by a phase boundary denoted by the bold line. 



Figure 39: Flow diagram for density=0.98. B is the disordered phase and A is the 
ordered one, separated by a phase boundary denoted by the bold line. 



Figure 40: An example of the flow for two iterations. 

On the schematic graph in Fig. 36 we have labeled the different phases by AI 

and AII for the ordered region and B for the disordered phase. The thin dashed 

lines are the flow lines and the filled circles are the fixed points of the mapping. The 

thick dashed line separates the two phases. If we start in the disordered phase the 

consecutive iterations will remain in this phase and will converge to the fixed point 

d = (0.0, 1.0), the sink for the disordered phase. The fixed point a = (0.37, 0.0) 

indicates that on the segment for y = 0 and E < 0.37 we have only the disordered 

phase. 

The flow in the ordered phase behaves a bit unexpectedly. The regions AI and 

AII  are separated by a boundary indicated by the bold line on the graph and ending 

a t  E = m with a fixed point b = ( m ,  0.07). The flow lines in the region AI do not 

leave this region and the sink for this phase is c = (m, 0.04). The point ( m ,  0.0) is 

an isolated fixed point. The flow in the second region AII has the property that it 

"escapes" the ordered phase by jumping into the disordered phase as shown by the 

two short long-dotted lines ending with arrows. If we start in this region from some 

relatively small field then the flow will eventually make a jump into the disordered 

phase for some finite field. If we start with a large value of E the flow will reach the 

E = m boundary and will make few iterations straight up until it enters into the 

disordered phase and continues from there towards the fixed point d. 



The flow diagram in the subspace of density=0.6 is shown on Fig. 37 and it is 

similar to the flow in the cross section of density=0.4 . The labels and meaning of 

the symbols on the graph are the same. The fixed points now are at: 

Both flow diagrams for densities 0.4 and 0.6 are on the left-hand side of the "UV's on 

the phase diagram in Fig. 29. Possible explanations for the "escaping" flows from the 

ordered phase AII, ordered in decreasing plausibility according to us, could be these: 

(i) The region AII is actually a new distinct phase which, from the order parameter, 

should be classified as the ordered phase. Though this phase is indistinguishable 

from phase AI by the order parameter, it could have some other unique fea- 

t u r e ( ~ ) .  The method we apply shows that phases AI and AII are distinct phases 

by the flow and the phases AII and B are distinct by the order parameter. This 

viewpoint suggests that the phase AII is a less stable ordered phase; 

(ii) Only the region AI is the true ordered phase for the infinite lattice. The bold 

line on the graphs which ends a t  the fixed points a and b is the phase boundary 

between the ordered and the disordered phase; 

(iii) The "escaping" flow from the ordered phase AII that we observe is due to finite 

size effects. The width of the "U" shapes on the general phase diagram (see 

Fig. 29) tends to become bigger on bigger lattices, i.e. the left boundaries would 

move toward lower density and the right ones toward fully filled lattice. Thus, 

points for y and E that lead to disordered phase on the (80 x 80) lattice will 

lead to ordered phase on the smaller lattice; 

The flow diagrams change dramatically for high densities as shown in Fig. 38 for 

the density a t  0.95. The bold line separates the ordered phase A from the disordered 

B. The sinks for the ordered and the disordered phases are the points c and d 



respectively. The coordinates for the fixed points are: 

a = (0.09, 0.0), b = (m, 0.44), c = (m, O.O42), d = (0.0, 1 .O) and e = (1.44, 0.39) . 

The region around the fixed point e has an unusual spiral topology. The line e - b 

separates the flow in the ordered phase and appears to be a closed subspace of the 

flow, analogous to the a + = 1 line for the FASEP. Fig. 39 shows the flow for the 

density of 0.98 with its fixed points located at:  

a = (0.07, 0.0), b = (5.1, 0.002), and d = (0.0, 1.0) 

The flow has changed again and now the point in the bulk of the ordered region (point 

b) is an attractive point. 

The method that we apply here, captures correctly the general features of the 

model's phase diagram and suggests some new features that are not found by stan- 

dard mean field or mesoscopic Langevin treatments. Our approach relies upon com- 

putational determination of the cluster probability. For better quantitative accuracy, 

aditional simulations on larger lattices are needed. The sink for the ordered phase is 

located a t  approximately (y = 0.04, E = m) for the cases that we have checked. In 

all cases the point (y = 0.0, E = m) is a trivial fixed point of the flow. 

Runs at a density of 0.95 on a 120 x 120 lattice, rescaled to a 60 x 60 lattice, show 

that the spiral topology around the fixed point e in Fig. 38 is still present. However, 

the location of the fixed point moves toward smaller values of E and y. The position 

of the sink for the ordered phase, the point c on Fig. 38, stays a t  the same place 

within the error bars. 

Suggested future work includes simulations on larger lattices and parameter esti- 

mation from different larger shapes, i.e. a triplet along the parallel direction. The 

simplicity of the model allows another approach to be tested, namely the maximum 

entropy method (Jaynes, 1957). One can work with the same shapes used here and 

express the righthand side of the master equation in terms of only one cluster. For 



the shapes used in this chapter, that would be the cluster "Q" in Fig. 34. Then, the 

number of unkowns (81 for this shape) can be reduced greatly by the symmetries of 

the system. The rest of the unknowns are obtained from the maximization of the 

quantity S (Q)  = - c:!., Qi logQi constrained by the symmetry relations between 

the Qi7s, the master equations and the normalization c::, Qi = 1. Preliminary work 

whithin this approach shows that it is a promising direction to pursue. 



CHAPTER 6 

CONCLUSIONS AND SUGGESTIONS FOR 

FUTURE WORK 

In this thesis, we have developed and tested new methods for the treatment of systems 

far from equilibrium. At the same time, we have explored the criticality of stochastic 

models for driven lattice gases using these methods. The models chosen provide in- 

tricate phase diagrams and, a t  the same time, are simple enough to be tractable. For 

one-dimensional systems, we have developed a position-space renormalization-group 

approach and applied it to the fully asymmetric exclusion process. The method yields 

the known critical fixed point and the first and second phase boundary locations ex- 

actly. Even with a length rescaling factor of only three, a good approximation for the 

correlation length exponent is obtained. These results show that for non-equilibrium 

systems, as in equilibrium statistical mechanics, renormalization-group ideas are very 

powerful for studying critical phenomena. The critical exponent results could possi- 

bly be improved by using a larger length rescaling factor, and the applicability of this 

approach to other models is certainly a fruitful direction for future work. 

In the second part of this research, we have combined Monte Carlo renormalizaion- 

group and information theoretic approaches to study the criticality of two-dimensional 

driven lattice gases. Our study has specifically compared the behavior of two infinitely 

driven cases, one in which the field is always in the same direction and the other in 

which the direction switches randomly, but is always uniform throughout the lattice. 

Since these two models have different symmetries, one would expect them to be 

in different universality classes. Field theoretic treatments support this intuition, 



predicting different critical exponents in the two cases. To our knowledge, our study 

is the first application of a Shannon entropy calculation to driven lattice gases and 

to anisotropic systems. Our experimentation with different cluster shapes leads to 

two possible interpretations of the correlation length exponents obtained. One is that 

there are two separate correlation length exponents, describing behaviors parallel and 

perpendicular to the field, and the shapes tend to find the average of the two. The 

perpendicular positioning of the shape is less reliable since it often crosses the phase 

interface. In the thermodynamic limit, the interface effect would become negligible. 

The second interpretation is that there is in fact only one correlation length exponent 

describing the system's behavior. Our value for the correlation length exponent is 

consistent with that obtained by a very different approach measuring correlations 

directly from a Monte Carlo simulation. The surprising result that a straight shape 

aligned parallel to the field and an angle-bended shape sampling both directions yield 

approximately the same value for the correlation length exponent can be explained by 

either of these two possiblities. Further exploration of anisotropic systems, especially 

those with known properties, will help clarify the interpretation of these results. Two 

additional areas for future study are finite size scaling in highly anisotropic systems 

and the optimization of block transformations in these cases. 

The last part of this research shows how a length rescaling transformation can 

be developed from the system's master equations for small clusters. This approach, 

introduced for the three-state, two-dimensional driven lattice gas, shows an intricate 

flow topology as a function of density, field, and ease of particle-particle exchange. 

In addition to the usual fixed points appearing as sinks for each phase and phase 

boundary, a new "source" fixed point occurs within the ordered phase for some pa- 

rameter values. Also, the ordered phase shows two distinct regions, one clearly more 

stable than the other. Future work will focus on determining the quantifiable differ- 

ences between these two regions within the ordered phase and experimenting with 



the efficiency of using different types of clusters in the construction of the master 

equations. 

To summarize, this thesis explores the application of new statistical mechanical 

approaches to systems far from equilibrium. The methods that we have developed are 

inspired by effective strategies from equilibrium statistical mechanics and information 

theory: position-space renormalization group, Monte Carlo renormalization group, 

and calculation of the measure entropy from small clusters. Our applications of these 

methods provide additional insight into the ordering and criticality of one- and two- 

dimensional model systems and suggest that these methods can be applied more 

broadly to better understand systems that reach a steady state far from equilibrium. 
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APPENDIX A 

RECURSION RELATION COMPUTATION 

Here we show the details for obtaining Eq. (3.17). Using the algebraic rules: 

and the obvious consequences of them: 

D = C - E  

D2 = C 2 - E C - C  

D3 = C3 - 2C2 - E C ~  + EC, etc ... 

one can calculate the expressions: 

In an  analogous way, one can derive the formulas involving E and P. For example, 

below we show how the calculation for the expression in the denominator in Eq. (3.13) 



is done. 

(OOO), = 
( w I E ~ c ~ - ~ ~ V ) ,  

(WICNIV)T 

In order to  calculate the average in the numerator for (loo), we rewrite DE2CN-3 

Now the ratio can easily be calculated using Eqs. (-4.3) to give: 

In the same way we obtain the rest of the averages: 

( w I E ~ C ~ - ~ ~ V ) ,  1 
(ooo), = = - J 3 .  

(WICN 1V)T a 3  

1 J  Combining these expressions leads to the result for (1 - Sl)T - (1 + + 2 + 2) J2. 

The rest of the calculations are done using the same techniques. Here we show the 

results one can get after a substantial amout of algebra: 



and the correlations on the right-hand side equal: 

from wich one obtains the recursion relations for the rates a and p. Here, to simplify 

the notation, we have used short-hand abbreviations, for example (000100) represents 

(w(E~DE~C~-~IV)/(WIC~IV). The case of p # 1 can be handled in the same 



manner, with modified algebra for the operators: 

(A.  10) 

We can simplify our calculation a little bit by observing that  ( 1  11000) + ( 1  10000) = 

( D D C E E E ) ,  etc. Then one needs to calculate only 

( D E D E ~ C )  

( D E D E D E )  

( D E D ~ E ~ )  

( E D ~ E ~ C )  

( E D ~ E D E )  

(ED3E2)  

= (1 /ap2)  J3 - ( l / a2p2)  J4;  

= (1/ap2)  J3 - (1/a2p2) J4 + (1/ap4 - l /a2p3)  J5 + 

(1/a3P3)J6 , (A.  11 )  

in order to get Eq. (3.35). 



APPENDIX B 

CLUSTER-VARIATION METHOD 

In this Appendix we explain more rigorously why, in thermodynamic limit, we can 

successfully approximate the measure entropy of the model by a combination of the 

entropy of small clusters. One of the methods is the cluster-variation method, which 

usually generates a lower bound approximation to the entropy density and the other, 

elaborating on the Markov property of the entropy, uses conditional entropy which 

generates an upper bound to the entropy density (discussed in the text). 

The cluster variation method (CVM) is an approximate method often used in 

statistical mechanics for calculating the phase diagram of complex systems (Kikuchi, 

1951; Burley, 1972; MorAn-L6pez and Sanchez, 1996). For systems in equilibrium, 

one can define the exact variational principle for the free energy density f for the 

infinite system (Ruelle, 1978). We will call a macroscopic state p for an infinite 

system on Z 2  a positive linear functional on C(O), where O = ( R ~ ) ' ~  and O0 = {0,1} 

(assuming we have a system for which the state of any site can be coded in one bit). 

It is normalized, i.e. p(1) = 1, and its restriction on C(OA),  A is finite, defines a 

probability measure. Also we will focus our attention on the set of translationally 

invariant states only that are induced by the natural translational symmetry on Z 2 .  

This set is denoted by I. 

The Hamiltonian for a finite subset A C Z 2  is: 

where @[XI is the potential energy of a cluster X c A. For the case of nearest 

neighbor interactions, the above sum is over clusters made of a site plus its, say, right 



and upper neighbors. Then, the variational principle says that  the free energy density 

is: 

f = minim - s ( d l  , 
~ € 1  

(B.2) 

where 

and 

Therefore the equilibrium state is the one that minimizes the free energy functional 

above. After minimization, one obtains the well known Boltzmann factor. This 

formalism is exact and general for all equilibrium models. 

Another variational method that still gives the exact result is obtained by finding 

the state that minimizes (Schlijper, 1984): 

where 

b(p) = lim Sp(Dn) - Sp(Ln) 
n-+co n 

D is a rectangular infinite in one direction and extends as much as the interaction 

length between the particles in the other direction. For the case of nearest neighbor 

interactions, it is a infinite stripe with height of two lattice sites. Dn and Ln are 

respectively a double line and a line of n sites in one direction and two sites in the 

other, as illustrated below. ID denotes the set of translation invariant functionals p 

on C(RD) .  The advantage is that we reduce dimensionality by one having a cluster 

of sites that extends to infinity in only one of the directions. The problem in this case 

is to  find the p that  minimizes the above functional, which will be the exact solution. 



Note that we have to modify the expression of the entropy term b(p) in order to find 

the exact solution. 

The CVM is based upon the idea of approximating the configurational entropy 

density of the system by the entropy contributions of finite clusters. There is a very 

elegant proof of the CVM using Mobius inversion (An, 1988). Along these lines, we 

can start approximating the exact functional b(p) by 

The later expression converges faster and, therefore, is better suited for computer 

simulations. In the figure below we show some of the shapes mentioned here and in 

the text 

Figure B.l: Different shapes. 

It is noteworthy that the nth approximation of the entropy density using Hn always 

overestimates the true entropy while the applications of the D and L shapes in Eq. 

(B.8) underestimate it. Thus, studies combining pairs of shapes can yield both upper 

and lower bonds on the entropy. 



APPENDIX C 

MULTI-SPIN CODING 

We show here the code used for the simulations of DLG utilizing the whole machine 

word on a computer to produce a very fast and efficient algorithm, i.e. the so-called 

multi-spin coding technique. The basic idea is to use each bit of the computer word 

(our computers have 32-bit word) to represent the state of a single site on the lattice. 

Of course this can be used only if the state on a single lattice site can be coded by a 

single bit, like spin-up (spin-down) or particle(ho1e). We show below how to extend 

the algorithm when the state on a site cannot fit into one single bit, the case for the 

three-state model of a driven diffusive system. 

Usually one uses this code 

#define Lx 100 
#define Ly 100 
#define DIM (Lx*Ly) 
unsigned long Data [DIM] ; 

for a declaration of a lattice. Each element of the array Data will be used as a storage 

for the current value on some site of the lattice. In the case of spins (or a single kind 

of particles) we need only the values 0 and 1 to represent its current state and the 

rest (232 - 2) values of this unsigned long variable will not be used at all. It is an 

obvious waste of computer memory that one would generally like to avoid. Also, it 

is known that the computers do bit-wise operations much faster than anything else. 

These are the two reasons for trying to recode our algorithms into a bit-wise mode 

(for simple examples see Newman and Barkema (1999)). 



The two-state model 

The numbering of the sites in the cluster involved in one MCS is shown on this picture: 

Figure C. l :  Naming convention for the interaction cluster. 

The code shown below simulates 32 lattices simultaneously a t  the same temper- 

ature. At each time step we pick a random s i t e  on the lattices. Then we pick a 

direction u for attempting a jump (1 is for a horizontal jump and 0 is for a vertical 

jump). Note that  u is an unsigned long variable with each of its bits a random 

variable, so on the different lattices different attempts will be made. 

#def ine  ZERO 0x00000000 

double JProb [4] ; / /  lookup t a b l e  
double T=1.6; / /  t h e  temperature 
double J = 1 .0 /  (0.5673*T) ; / /  t h e  i n t e r a c t i o n  cons tan t  
JProb[l l  = exp(-1 .0*J) ; 
JProb [2] = exp (-2. O* J )  ; 
JProb C31 = exp (-3. O* J )  ; 

................................ 
/ /  This  f u n c t i o n  makes DIM = Lx*Ly a t tempts  t o  update t h e  
/ /  l a t t i c e .  The l a t t i c e  i s  s t o r e d  as one-dimensional a r r a y  
/ /  of unsigned i n t e g e r s  with dimensions Lx and Ly. 
/ /  IrandomO i s  a random number gene ra to r  f o r  b i t s ,  
/ /  i . e .  it gene ra t e s  a machine word which b i t s  a r e  random. 
............................... 

void S tep ( )  

{ 
s t a t i c  unsigned 
s t a t i c  unsigned 
s t a t i c  unsigned 



static unsigned long i, u, rl, r2, r3; 

for(i=O; i<DIM; i++) { 
site = DIM*drandomo ; 
X = site%Lx; 
Y = site/Lx; 
u = lrandom 0 ; 

if (drandom0 < 2.0*JProb [I] ) rl = 1randomO ; 
else rl = ZERO; 
if (drandom () < 2. O* JProb [2] ) r2 = lrandom (1 ; 
else r2 = ZERO; 
if (drandom()< 2.0*JProb [3] ) r3 = lrandom0 ; 
else r3 = ZERO; 

Q1 = (q & q3 & "q0 & "ql & "q2 & "q4 & -q5 & "q6) 
(q & q4 & "q0 & "ql & "q2 & "q3 & "q5 & "q6) 
(q & 95 & "q0 & "ql & "q2 & -q3 & "q4 & "q6) 
(q & q3 & q4 & ql & "qO & "q2 & "q5 & "q6) I 
(q & q3 & q4 & q2 & "qO & "ql & "q5 & "q6) I 
(q & q3 & q4 & q6 & "q0 & "ql & "q2 & "q5) I 
(q & q3 & q5 & ql & "q0 0 "q2 & "q4 & "q6) I 
(q & q3 & q5 & q2 & "q0 & "ql & "q4 & -q6) I 
(q & q3 & q5 & q6 & 'q0 & "ql & "q2 & "q4) 
(q & q4 & q5 & ql & -qO & "q2 & "q3 & "q6) 
(q & q4 & q5 & q2 & "q0 & "ql & "q3 & "q6) 
(q & 94 & q5 & q6 & -qO & "ql & "q2 & "q3) 
(q & ql & q2 & q3 & q4 & q5 & "q0 & "q6) I 
(q & ql & q6 & q3 & q4 & q5 & "q0 & 'q2) I 
(q & q2 & q6 & q3 & q4 & q5 & "qO & "ql) I 
(q0 & ql & "q & "q2 & "q3 & -q4 & "q5 & "q6) I 
(q0 & q2 & "q & -ql & "q3 & "q4 & "q5 & -q6) I 
(q0 & q6 & "q & "ql & "q2 & "q3 & "q4 & 'q5) I 
(q0 & ql & q2 & q3 & "q & "q4 & "q5 & "q6) I 
(q0 & ql & q2 & q4 & "q & "q3 & "q5 & "q6) I 



(q0 & q l  & q2 & q5 & "q & "q3 & "q4 & "q6) 1 
(q0 & q l  & q6 & q3 & "q & "q2 & "q4 & "q5) I 
(qO & q l  & q6 & q4 & "q & "q2 & "q3 & "q5) I 
(q0 & q l  & q6 & q5 & "q & "q2 & "q3 & "q4) I 
(q0 & q2 & q6 & q3 & "q & "ql  & "q4 & "q5) I 
(qO & q2 & q6 & q4 & "q & "ql  & "q3 & "q5) I 
(q0 & q2 & q6 & q5 & 'q & "ql  & "q3 & "q4) I 
(q0 & q l  & q2 & q3 & q4 & q6 & "q & "q5) I 
(q0 & q l  & q2 & q3 & q5 & q6 & "q & "q4) I 
(q0 & q l  & q2 & q4 & q5 & q6 & "q & "q3) ; 

Q2 = (q & q l  & q3 & q4 & q5 & "q0 & "q2 & "q6) I 
(q & q2 & q3 & q4 & q5 & "qO & "ql  & "q6) I 
(q & q3 & q4 & q5 & q6 & "q0 & "ql  & "q2) I 
(q & q3 & q4 & "q0 & "ql  & "q2 & "q5 & "q6) 
( q  & q3 & q5 & "qO & "ql  & "q2 & "q4 & "q6) 
(q & q4 & q5 & "qO & "ql  & "q2 & "q3 & "q6) 
(qO & q l  & q2 & q3 & q6 & "q & "q4 & "q5) I 
(qO & q l  & q2 & q4 & q6 & "q & "q3 & "q5) 1 
(q0 & q l  & q2 & q5 & q6 & "q & "q3 & "q4) I 
(qO & q l  & q2 & "q & "q3 & "q4 & "q5 & "q6) I 
(qO & q l  & q6 & "q & "q2 & "q3 & "q4 & "q5) I 
(q0 & q2 & q6 & "q & "q l  & "q3 & "q4 & "q5); 

43 = (q & "q0 & q3 & q4 & q5 & "ql  & "q2 & "q6) I 
("q & q0 & q l  & q2 & q6 & "q3 & 'q4 & "q5) ; 

Datahitel  -= (u & q & "qH) I ("u & 40 & (q  qO)) I 
(-u & Q 1  & rl) I ("u & Q2 & 1-2) I 
("u & 43 & r 3 )  ; 

An obvious improvement would be to simplify the expresions for Q1, Q2, and Q3 

by using Karnaugh's maps. 



Three-state model 

The multi spin code for the three-state model is little bit more complicated because 

now we have three possibilities for the occupation number a t  each site: a hole, a 

positive charge or a negative charge. We have used the convention that (0,O) will 

represent a hole, ( 0 , l )  is a positive particle and ( 1 , O )  a negative particle. So we need 

2 bits in order to code the state on a single lattice. The source code should change 

like this: 

void Step0 

{ 
static unsigned long ql, qR1, qU1, q2, qR2, qU2, u;  
static unsigned site, siteR, siteU; 
static unsigned i, X, Y; 
static unsigned long r2, r3, r4; 

for(i=O ; i<DIM ; i++) { 
site = DIM*drandomo ; 
X = site%Lx; 
Y = site/Lx; 
siteR = Y*Lx + (X+l)%Lx; 
siteU = ((Y-l+Ly)%Ly)*~x + X; 
u = IrandomO ; 

if (DeltacO. 5) 
if (drandomo < 2.0*Delta) r2 = IrandomO ; 
else r2 = ZERO; 

else if (Delta>0.5) 
if (drandomo < (2.0-2.0*Delta) ) r2 = IrandomO ; 
else r2 = BIGONE; 

else r2 = lrandomo; 

if (e-Ec0.5) 
if (drandomo < 2. O*~-E) r3 = IrandomO ; 
else r3 = ZERO; 

else if (e-E>0.5) 
if (drandomo < (2.0-2.0*e-E) ) r3 = lrandomo ; 
else r3 = BIGONE; 



e l s e  r 3  = lrandom() ; 

i f  (Delta-2Ec0.5) 
i f  (drandom0 < 2.0*Delta-2E) r4  = 1randomO ; 
e l s e  r 4  = ZERO; 

e l s e  i f  (Delta-2E>0.5) 
i f  (drandom0 < (2.0-2.0*Delta-2E) ) r 4  = 1randomO ; 
e l s e  r 4  = BIGONE; 

e l s e  r 4  = IrandomO; 

q l  = Datal [ s i t e ]  ; 
qR1 = Datal CsiteR1 ; 
qU1 = Datal [siteUl ; 
q2 = Data2 [ s i t e ]  ; 
qR2 = Data2 [siteRl ; 
qU2 = Data2 CsiteU] ; 

DatalCsitel = (u & "ql & "q2 & qU1 & "qU2 ) I 
(U & "ql  & q2 & qU1 & "qU2 & r2)  1 
(U & q1 & "q2 & 'qU1 & qU2 & "1-2) I 
(u & q l  & "q2 & qu1 & "qU2) I 
("u & q l  & "q2 & "qR1 & qR2 & '1-4 )I  

("u & "91 & "q2 & qR1 & "qR2 ) I 
("u & "ql & q2 & qR1 & "qR2 & r 2  ) I 
("u & q1 & "q2 & qR1 & "qR2 ) 1 
("u & q l  & "q2 & "qR1 & "qR2 & "1-3 ) ;  

Data2Csitel = (u & "ql & "q2 & "qU1 & qU2 )I  
(u & "ql  & q2 & "qU1 & qU2) I 
(U & "ql & q2 & qU1 & "qU2 & "r2) I 
(u & q l  & "q2 & "qU1 & qU2 & r2)  I 
("u & "91 & "q2 & "qR1 & qR2 & r 3  ) I 
("u & "ql  & q2 & "qR1 & qR2) I 
("u & q1 & "q2 & "qR1 & qR2 & r 4  )I  
("u & "ql & q2 & qR1 & 'qR2 & "1-2 ) ;  

DatalCsiteU] = (u & "ql & q2 & qU1 & "qU2 & "1-2) I 
(u & q l  & "q2 & 'qU1 & "qU2 ) I 
(u & q l  & "q2 & "qU1 & qU2 & r2) I 
(u & q l  & "q2 & qu1 & "qU2 ) I 
("u & q u o ;  

Data2CsiteUl = (u & "ql & q2 & "qU1 & "qU2) I 



(u & "ql & q2 & "qU1 & qU2) I 
(u & "ql & q2 & qU1 & -qU2 & r2) I 
(U & q1 & "q2 & "qU1 & qU2 & "r2 1 I 
("u & qU2); 

Datal[siteRl = ("u & ql & "q2 & "qR1 & qR2 & r4) I 
("u & q1 & "q2 & qR1 & "qR2) I 
("u & ql & "q2 & "qR1 & "qR2 & r3) I 
("u & "ql & q2 & qR1 & "qR2 & "r2) I 
(u & qR1); 

Data2 [siteRl = ("u & "ql & "q2 & "qR1 & qR2 & "r3 ) 1 
("u & "91 & q2 & "qR1 & qR2) I 
("u & ql & "q2 & "qR1 & qR2 & "r4 ) I 
("u & "ql & q2 & qR1 & -qR2 & r2 )I 
("u & "ql & q2 & "qR1 & "qR2) I 
(u & qR2) ; 

The other difference is that the cluster involved in one single Monte Carlo exchange 

consists of only three sites: the site we randomly choose and its upper and right 

nearest neighbors. 



APPENDIX D 

MASTER EQUATIONS FOR PAIRS 

Following the same notations as in Section 5.2, we write down explicitly the master 

equations for pairs along the driving field. The symbols with the tilde above are for 

the symmetrical cluster from the horizontal axis to the clusters shown in Fig. 34. 





Similar equations can be writen for any shape. For the selected shape, one must 

include, for each state of the cluster, the appropriate states on the shapes contributing 

to its one-step time evolution. 
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