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The study of operations on representations of objects is well documented in 

the realm of spatial engineering. However, the mathematical structure and formal 

proof of these operational phenomena are not thoroughly explored. Other works 

have often focused on query-based models that seek to order classes and instances 

of objects in the form of semantic hierarchies or graphs. In some models, nodes 

of graphs represent objects and are connected by edges that represent different 

types of coarsening operators. 

This work, however, studies how the coarsening operator "simplification" can 

manipulate partitions of finite sets, independent from objects and their attributes. 

Partitions that are "simplified first have a collection of elements filtered 



(removed), and then the remaining partition is amalgamated (some sub-collections 

are unified). 

Simplification has many interesting mathematical properties. A finite 

composition of simplifications can also be accomplished with some single 

simplification. Also, if one partition is a simplification of the other, the simplified 

partition is defined to be less than the other partition according to the simp 

relation. This relation is shown to be a partial-order relation based on 

simplification. Collections of partitions can not only be proven to have a partial- 

order structure, but also have a lattice structure and are complete. 

In regard to a geographic information system (GIs), partitions related to 

subsets of attribute domains for objects are called views. Objects belong to 

different views based whether or not their attribute values lie in the underlying 

view domain. Given a particular view, objects with their attribute n-tuple codings 

contained in the view are part of the actualization set on views, and objects are 

labeled according to the particular subset of the view in which their coding lies. 

Though the scope of the work does not mainly focus on queries related 

directly to geographic objects, it provides verification for the existence of 

particular views in a system with this underlying structure. Given a finite attribute 

domain, one can say with mathematical certainty that different views of objects 

are partially ordered by simplification, and every collection of views has a 

greatest lower bound and least upper bound, which provides the validity for 

exploring queries in this regard. 
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Chapter 1 

INTRODUCTION 

A computer system capable of assembling, storing, manipulating, and displaying 

geographically referenced data is called a Geographic Information System (GIs). The 

data is often used to study challenging planning and management issues and to try to 

generate solutions. A user analyzes data in the GIs by aslung queries and selecting the 

appropriate results. Data is often represented visually and has direct application to real 

world geo-spatial scenarios. Representations like maps or graphs can be generated by 

data in the system, and can be manipulated to reflect the desired goals of someone 

studying the information. 

One such goal is to have the ability to study the data representations according to 

different levels of detail. If a person desires to find out information on a topic, he or she 

may want a more generalized representation of the data then they are given. Depending 

on the query, a person may want to see more of the general trends or patterns of a 

geographic region, or conversely, to view that same region with more specific semantics 

in mind. 

For example, think about a map showing all of the mountains higher than 1000 ft in 

the state of Maine. We may not be interested in every individual mountain's name and 

location that satisfies this condition, but we might desire to see groupings of different 



regions. There could exist a number of individual mountains in the Acadia and Katahdin 

regions, but we might group all the mountains regionally together by showing them as 

two symbols labeled, the "Acadia Region" and the "Katahdin Region". 

The resulting representation would be termed has having lower "granularity", or level 

of detail, and would be a semantic generalization of the individual mountains (Stell and 

Worboys 1999). Instances of objects (mountains), were grouped together into classes 

according to regional containment (Ramalingam 2002). 

Thus, our main interest lies in this idea of generalization, and how we can formally 

capture the concept mathematically. To do this, we must create the framework in which 

objects (e.g. Mt. Katahdin, Mt. Cadillac) could be described according to important 

semantics determined by their attributes, and could be manipulated to reflect a desired 

generalization or refinement of their representation. 

This framework would not focus on the objects themselves though, but rather on 

partitions of sets. Defining a system that operates on partitions of sets instead of classes 

and instances of objects has some mathematical advantages. Partitioned sets can be 

expressed more generally than objects and can be related to other areas of mathematics. 

Also, particular theorems and notation related to set theory are more applicable and may 

be used to define or describe results in this framework. Finally, defining operations on 

partitions will allow the creation of a structure that could validate and hopefully 

accommodate some queries related to a GIs. 



The next section will define some basic terminology and will provide background 

information of topics related to a GIs. Once this information has been established, we 

shall attempt to develop a well-defined mathematical structure around operations on 

partitions, particularly the operation simplification. After this, we shall tie our initial GIs 

terminology together with the developed structure, and discuss the significance of our 

results in terms of representations of objects. 



Chapter 2 

BASIC G.I.S. TERMINOLOGY 

2.1 Objects and Attributes 

To begin, we need to start with the terms that will be frequently used in our work. We 

shall define these terms formally so there is no ambiguity in regard to the vocabulary. 

Thus, we shall first define what we mean by an object. 

Definition of "Objectv- A physical structure or phenomenon of interest that has distinct 

attributes. We shall use 0 to designate the universe of all objects in the GIs. 

As you can see, the definition allows an object to be virtually anything that has 

tangible attributes. In the context of a geographic information system, examples of 

objects could include buildings, mountains, forests, cities, counties, states, as well as 

many others. Each is a physical item that has attributes like, height, shape, area, or 

demographics. 

To make sure you know what is meant by the word attribute, we shall formally define 

this word as well. 

Definition of "Attribute" - A specific type of quality or property associated to an object. 



Let's say that some objects of interest in a GIs were a collection of buildings on the 

UM campus, and there were four attributes of interest: materials, age, exact location, and 

height. Thus, each object has four "attributes" in the system. 

In work done by Ramalingam, objects were defined as either being physical items or 

categories. These were termed as "instances" or "classes" of objects. Our work differs 

because it only considers "instances of objects" as being objects. For example, we 

consider Cadillac Mountain to be an object, but the "Acadia Region" which contains 

Cadillac Mountain is a class or category, and therefore is not an object by our standards 

(Ramalingam 2002). 

Thus, since objects all are instances and have the same attributes, but not necessarily 

the same traits in regard to those attributes, each object would have specific values for the 

attributes. We call these "attribute values". 

Definition of "Attribute Value" - A distinct value related to an object according to a 

particular attribute. 

For example, on the University of Maine campus, if possible attributes for buildings 

are "materials, age, location, and height", then Gannett Hall might have the respective 

attribute values 

{brick materials, 30 years old , 45.3143 north latitude - 60.8964 west longitude, 52' tall}. 



Thus, these attribute values are distinctly related to Gannett Hall. We call this n-tuple 

of values an object-coding of the object "Gannett Hall". We shall formally define what 

this means in section 2.3. 

2.2 Attribute Domains 

In regard to common sense attribute values, i t  makes sense that Gannett Hall would not 

have attributes: {molten rock, 1000 years old, 4 5  north latitude-3i east longitude, -10 feet tall). 

These values are ridiculous. Thus, there is a domain of possible attribute values that each 

object may possess in regard to each attribute. We call each set of all possible attribute 

values an attribute domain. 

Definition of "Attribute Domain" - For each attribute, there is a finite set of elements 

associated to it such that the set represents all possible attribute values that can be 

assigned to objects in the system. If there are n attributes in the system, then A, ,  . . ., A, 

represent the attribute domains of possible values for each of the n attributes. 

Thus the attribute domain for building materials might be the set 

A, = {wood, brick, wood/brick, steel). In regard to age, A2 = { lo ,  20, 30) could be a 

domain of possible values in years related to the buildings in the system. Likewise, A-3, 

and & would be possible values for longitude/latitude and height in feet respectively. 

Note that the order of these domains is assumed to be finite here, though it could be an 

advantage in some future work to explore the notion of countably or uncountably infinite 

attribute domains 



In regard to the formal mathematics we will develop, attribute domains serve as the 

underlying sets that will be partitioned, so we may establish a level of separation in 

regard to objects and their attributes. In chapter 3, we will define what it means to 

partition a general finite set, and in chapter 6, we will look at different partitions or views 

of subsets of an attribute domain. 

2.3 Object Codings 

Since each object 0 in 0 has n specific attribute values, one from each of the n 

attributes, it makes sense to define a function mapping objects to their respective attribute 

value n-tuples. Thus, we have a means of characterizing each object with corresponding 

values. We shall show this relationship via the "object coding" function. 

Definition of "object coding" - For an object 0 E 0, there is a function fi that maps 0 

to a specific attribute a, E A,, i = { 1, 2, . . ., n). Thus, the object coding function is a 

function f such that each object 0 is mapped to the product-space of all the attribute 

domains. In other words, f: 0 + Al X A2 X . . . X An, so 

f(O) = ( f ~  (01, f2(0), - - 7  fn  (0)). 

Note that f is obviously a function, since it can be said that each object maps to only 

one ordered n-tuple. It cannot necessarily be said though that f is either one-to-one or 

onto. Some distinct elements could have identical n-tuples (same height, color, etc), thus 

making f not injective. Likewise there might exist some n-tuples of attributes in the 

attribute domain product space that have no object mapped to them, thus making f not 



surjective. Note though that if some quality like "absolute location" were included as an 

attribute, one could assume there was a unique mapping of objects to their absolute 

location and therefore achieve one-to-one correspondence in terms of the whole n-tuple. 

2.4 Summary 

In review, the key GIs terminology we focused on in this section were objects, attributes, 

attribute values and domains, and object coding functions. Each object can be 

characterized by an n-tuple of attribute values called an object coding. Such a coding has 

one value for each attribute, and values are each contained within the attribute domain. 

These terms are important because they relate to the concepts that are motivating the 

mathematics in this paper. Ultimately, we will show how objects can be represented 

according their attributes and where they lie in the attribute domain. Also, we will see 

how to change the level of detail of representations. This level of discernment will be 

accomplished through the development of operations on partitions. 

In the next section, we will define what it means to partition a set. With this notion, 

we will begin to develop a framework that will eventually display representations 

according to their attributes, and we will define operations that manipulate partitions in 

order to yield new partitions of lesser or greater detail. 



Chapter 3 

PARTITIONS 

3.1 Defining Partitions 

Before defining a partition, let's first look at a helpful notion that will make our work 

easier thoughout the paper. Since it will be a common action for us to take the union of 

sets, the following function will give us a shortcut for describing the union of a collection 

of sets. We shall call it a u-function. 

Definition of "u-function" - Let C = { C I  ,. . ., Ck } be a collection of sets. Thus the u- 

function of C is the union of all the elements in C. We write this as 

~ ( c )  = cI u...U ck 

Throughout this paper, we will be manipulating finite sets, including sets of 

consecutive nature numbers. Thus, the notation [a,b] will represent the set 

[ a ,  b] = {a, a+l, ..., b-1, b}, where a and b are integers. 

For example if C = { {0} , [ l ,4 ]  , [5,6] }, then 

u(C) = u ({ {O} , [I ,  41 , [5,61 1) = I01 u [I ,  41 u [5,61 = [O, 61. 

Though fairly trivial, the u-function can save us a lot of notational effort. In fact, we 

shall put it to use in our next definition. Let's define what it means to partition a set X :  



Definition of "Partition" - A partition of a finite set X is a collection {XI, ..., X,) of 

mutually disjoint subsets of X such that the union of all these subsets equals X, that is, 

u({X1,. . . ,Xm)) = X. 

A numerical example of a partition would be the set 

where P is a partition of X = [0 , 101. Note that the sets contained in P are mutually 

disjoint and u(P) = X. 

Figure 3.1 A partition of the integer set [O, lo]. 

Thus, partitions allow us to divide sets into collections of subsets and still preserve 

the underlying set. In regard to the previous section, this concept is important when we 

consider how to make lesser or greater distinctions between objects. If each object's 

coding belongs to some partitioned subset of the attribute domain, we therefore could 

group objects as similar or dissimilar depending on the partitioned subset containing their 

coding. 

Of course, a partition of an attribute domain would be a partition of a product n- 

space, and not just a single integer interval such as [O, 101. For our purposes though, 



basic 1-space sets will suffice for examples while we develop the functions and 

definitions we need. Later we will generalize our work to n-space attribute domains and 

the meaningful representations of objects based on this notion. 

3.2 Basic Operations on Partitions 

With partitions now defined, our next step is to create some basic types of operations on 

partitions that will modify or change them in desired ways. We need methods of taking a 

given partition and changing it in order to reflect a desired granularity. We will 

accomplish this task by looking at two types of operations: filterlinsert and 

amalgamationlrefinement. 

3.2.1 FilterIInsert 

First, we will define a basic type of operation that starts with a partition P and removes or 

adds a collection of sets. Since we can think of this idea metaphorically as "filtering" out 

or "inserting" sets into a partition, we shall call this operation type, filter/ insert. 

First, let's explicitly define what it means tofilter a partition. 

Definition of "Filter" - Given a finite set X and partition P of X, let F c P. Define 

filt(P;F) to be the partition of X\u(F) given by P F .  We say that F is "filtered" from P. 



For example, let X = [O, 101 and let P = { [O, 21 , [3 , 4 ]  , [5,6] , [7, 101 } . If 

F = I [0,21 , [5,611 , then 

and filt (P ; F) is a partition of X \ u (F) = [3 ,4] u [7, 101. 

Notice that the removal of elements from a partition is actually a way that information 

can be removed from a partition and its underlying set. This idea is useful for when 

certain values in the partitioned set are no longer of interest. 

In terms of broader application, filter is important because it  is one way that 

representations of objects can have detail removed. Thus far, we have seen how the 

filter operation coarsens the granularity of a partition by removing elements from the 

collection. Thus, there is less information to see. Later, we will see how filtering 

partitions can lead to filtering objects. 

In the work done by Stell and Worboys, filter is termed as "selection", and the 

operation is applied primary to graphs instead of partitions. The same idea holds though, 

since particular nodes and their connected paths are removed via the operation, and the 



result has less information. Thus, a resulting graph is generated with the absence of these 

details (Stell & Worboys 1999). 

Along with "filter" and the removal of partitioned subsets, we shall also define 

"insert", which adds in sets. These two operations are paired as one type of operation 

because they give us the freedom to move backward and forward when manipulating 

partitions, and they serve as inverse operations of one another. 

Formally, we define insert as the following: 

Definition of "Insert" - Given a finite set X and a partition P' of X, let F be a collection 

of mutually disjoint sets such that u(F) n X = 0. Define ins(P';F) to be a partition of 

X u u(F) given by P' u F. We say that F is inserted into P'. 

For example, let X = [3,4] u [7,10] and let P' = { [3 ,4]  , [7 , 101 } . If 

F = {[0,2] , [5,6]}, then we can say that 



Notice that the partitions were chosen to conveniently show how insert acts as the 

inverse operation of filter. In the figure below, you can see how filter generated a 

partition, and how insert led back to the original. 

I t  
Filter Insert 

Figure 3.2 Filter and insert serve as inverse operations on partitions by removing or 

adding in collections of sets. 

3.2.2 AmalgamationIRefinement 

The other basic type of operation on partitions is amalgamationlrefinement (amallref). 

Amalgamation generally means that a collection of items are combined into one. 

Refinement means breaking apart single entities into many. In terms of partitions, 

amallref does not behave like filterlinsert, but rather serves to combine or split sets in a 

partition. 



First, let's define amalgamation. 

Definition of "Amalgamation"- Given a finite set X, P a partition of X, and P a 

partition of P, define amal (P ; P ) to be the partition of X whose members consist of the 

u-function applied to each collection in P. We say that P is "amalgamated" by P. 

Note that amal (P ; P ) and the original partition P are both partitions of 

{A,  B, C, D, E, F, G, H, I, J, K}. Mathematically, one could identify here that 

amal (P ; P ) is a coarser partition than P, meaning that every set in amal (P ; P ) is a 

union of sets in P, and both are partitions of X. 

Furthermore, amalgamation serves as a way to coarsen partitions similar to how filter 

did. Though a different type of function, it also lowers the level of information in a 



partition by unifying sub-collections of P, and thus lowers the granularity of the partition. 

Later, when collections of objects are associated to partitions, it will be useful to 

amalgamate representations of objects so we no longer discern between the objects 

according to particular attributes. These ideas will come in Chapter 6. 

Thus, we have two ways to lower the detail of a partition: filter and amalgamation. 

Previously, we showed that insert is a way that one can raise the level of detail, being the 

inverse of filter. Thus, we shall also discuss what it means to have higher granularity in a 

manner opposite to amalgamation. 

Thus, let us continue by defining an inverse operation for amalgamation, refinement. 

Definition of "Refinement" - Given a set X and partition P' = {PI . . . Pk} of X, let 

Q = {Q, . . . Qk} be such that each Qi is a partition of Pi . Define ref ( P' ; Q) to be the 

partition of X given by u(Q). We say that P' is "refined by Q. 



Note below how the result of ref ( P' ; Q) gave us back our original partition in the 

amalgamation example. Thus, we see pictorially how amalgamation and refinement are 

inverses of one another. 

A m a l g a m a t i o n  

Refinement - 

Figure 3.3 Amalgamation unifies sub-collections of a partition, while refinement 

partitions elements into a new single partition. 

Thus, we have established two types of operations that contain a single function and 

its inverse. Using filterlinsert and amallref, we shall next construct composition 

operations on partitions of single sets. These operations are called 

simplification/complexification. Simplification will be our means for developing the 

partial-order structure and lattice structure of collections of partitions. 



3.3 Simplification/Complexification 

With the basic operation types filterlinsert, and amallref, we can now define the more 

complex operations of interest. Particularly, we will focus on the operation type 

simplification~complexification (simp/comp). 

In work done by Stell and Worboys, simplification is used for the purpose of 

generalizing graphs. As stated as part of their goals, i t  is important to explore the 

foundations of the concept "less detailed than", based on the notions of selection (filter) 

and amalgamation. Using selection (filter) and amalgamation, the two are composed to 

create simplification (Stell and Worboys 1999). 

Thus, we shall also define the composition of filter followed by amalgamation as a 

simplification. 

Definition of "Simplification" - Given a set X, and P a partition of X, let F be a subset 

of P and P a partition of PW. Define, simp (P ; F, P ) to be equal to the composition 

amal(filt(P ; F); P ). Simp (P ; F, P ) is a partition of X\u(F). We say that simp (P ; F, P 

) is a simplification of P by F and P. 



Thus, simp(P;F, P )  = { [O, 4) , [9, lo]) ,  and is a partition of X\u(F) = [O, 41 u [9, 101. 

Stell and Worboys show the application of simplification in graph theory by the 

filtering and amalgamation of subway train stops in London. The example shows how 

the composition of these operations generates a more generalized graph. Though 

manipulation of graphs is beyond the scope of this paper, our work on partitions can 

eventually allow for similar types of manipulation and could extend to other realms of 

representation (Stell and Worboys 1999). 

Next, note that simplification is only one part of the simplcomp type operation, so we 

must also define what is meant by the inverse operation, complexifiication. 



Definition of "complexification" - Given set X and P' = {PI . . . Pk), a partition of X, let 

Q = {Ql ... Qk) be such that each Qi is a partition of Pi . Furthermore, let F be a 

collection of mutually disjoint sets such that u(F) n X = 0. Define comp( P' ; Q , F) to 

be equal to the composition ins ( ref ( P' ; Q) ; F). Comp(P' ; Q , F) is a partition of 

X u u(F). We say that comp( P' ; Q ; F) is a "complexification" of P' by Q and F. 

Thus, we have defined an operation that should reverse what was performed by 

simplification. For example, let P' = { [O, 41 , [9, 101) , let 

Q = { Q I , Q z ) =  11 [0,21,[3,41),1[9,101) andletF={[5,61,[7 ,81) .  Thus, 



Simplification ~om~lexi6cation 

Figure 3.4 Simplification and complexi~?cation are inverse operations of one another, 

where simplification is filter followed b y  amalgamation, and 

complexification is refinement followed b y  insert. 

Note that complexification is a refinement followed by insert. These are the inverse 

operations of amalgamation and filter respectively, and complexification is thus the 

inverse of simplification. This inverse relationship is also evident in the example used, 

where simplification yielded P' = {[0, 41 , [9, lo]), and then complexification gave us 

back our original partition P. 

Summary 3.4 

In this section, we have looked at partitions and some operations on partitions. 

Filterlinsert is an operation type that removes or adds sets to a partition. Amallref unifies 



sub-collections of a partition or splits apart existing partition sets. Both of these 

operation types are composed to create the simplcomp operations, where filter followed 

by amalgamation yields simplification, and refinement composed with insert leads to 

complexification. 

Note also that one of the key differences between this work and work done by Stell 

and Worboys is the discussion of insert, refinement, and complexification. These 

operations serve as inverses of filter, amalgamation, and simplification respectively. 

In the next section, we will focus specifically on simplification, and prove a number 

of important properties. We will show that the simp operation not only can be composed 

to generate a single simplification, but also results in a partial-order structure and lattice 

structure on partitions. 



Chapter 4 

ORDER RELATIONSHIPS BASED ON SIMPLIFICATION 

4.1 Basic Lemmas 

The purpose of this chapter is to look specifically at simplcomp type relationships 

between partitions, and how a partial-order relation exists in regard to simplification. To 

prove that we have a partial order structure, we first need to show the fact that for every 

composition of two simplifications on an arbitrary partition P, there exists a single 

simplification of P that yields the same result. We will need to prove four necessary 

lemmas to verify this simplification composition theorem. 

First, we will prove that the composition of two filterings of P is the same as a single 

filtering of P. 

Lemma 4.1.1: Let X be a set and P be a partition of X. Assume F L P and F' L PW, 

then 

filt (filt ( P ; F) ; F') = filt (P ; F u F') 

Proof: First, note by the definition of "filter" that filt ( P, F) = P \ F. Thus, we can say 

that filt ( filt ( P , F) , F') = filt (PW; F') = (P \ F ) \ F' = P \ (F u F'). + 



Now that we have established that a single filtering can represent the composition of 

two, we must also show the same for amalgamation. To do so, we must first define the 

notion of a sub-partition. 

Definition of "sub-partition" - Given X with partition P, we say U c X is sub- 

partitioned by P if some subset of P partitions U. 

For instance, P = { [O, 21 , [3 , 4 ]  , [5,6] , [7, 81 , [9, 101 } partitions the set 

X = [0 , 101, but it also sub-partitions subsets of X such as [O, 21, [O, 41, and [5, 101, as 

well as others. This is because sub-collections of P partition these sets. Next, we shall 

see that each element of an amalgamated partition is sub-partitioned by the initial 

partition. 

Lemma 4.1.2: Given X partitioned by P and Q, if Q is an amalgamation of P and Qi E Q, 

then Qi is sub-partitioned by P. 

Proof: If Q = amal(P; P),  then P i s  a finite partition of P. Therefore, P = { P I , .  . ., P, ] 

and Q = {u (PI),. . ., u(P,)}. Thus, each Qi equals some u(Pi) , 15 i I m. Furthermore, 

since each Pi c P, each Qi is partitioned by Pi , and is sub-partitioned by P. + 

Using this notion of sub-partitions, we can also show that the composition of two 

amalgamations is the same as some single amalgamation. 



Thus Lemma 4.1.3 states the following: 

Lemma 4.1.3: Let X be a set and P be a partition of X. If Q = amal (P; P )  and 

R = amal (Q ;Q), where P and Q are partitions of P and Q respectively, then there exists 

a partition P 'of  P such that R = amal ( P; P'). Thus, 

R = amal(amal(P; P )  ; Q) = amal (P, P') 

Proof: First, since Q = amal (P; P) ,  every element in Q is sub-partitioned by P according 

to Lemma 4.1.2. Similarly, since R = amal (Q ;Q), Q sub-partitions every element of R. 

Clearly then, P sub-partitions each element of R, since elements in R are unions of 

elements from Q which are each sub-partitioned by P. Thus, R = (u(cpl), . . ., ~(cp,)}, 

where each cpj is a collection of elements from P that partitions a particular element in R , 

1 L : j l m .  

Also, since P and R are partitions, we know that cpl ,  ... , cp, are mutually disjoint. 

Thus, it  is clear that P'= (cp, ,  ... , cp,} is a partition of P such that R = amal(P; P ' ) ,  and 

we are done. 0 

Thus, we also see that the composition of any two amalgamations can be expressed as 

some single amalgamation. Next, our final lemma will show that for every amalgamation 

followed by filtration, there exists some filtration followed by amalgamation that can 

generate the same result. 



Lemma 4.1.4: Let X be a set and P be a partition of X. Furthermore assume that P is a 

partition of P and F is a subset of amal(P, P). Then there exists F' c P and a partition P' 

of PW' such that 

amal ( filt (P; F'); P') = filt (ma1 (P, P )  ; F) 

Proof: First, let P = {TI, ... TL}, where each Ti is a collection of elements from P. Thus, 

Q = amal (P ; P )  = {u(Tl), ..., u(rL)}. Next, without loss of generality let 

F = {u(Tl), ..., u(Tj)} , where 1 l j l L. Let 

R = filt (Q ; F) = {u(rI) ,  ..., u(rL)} \ {u( r l ) ,  ..., ~(r,)} = {~(r,+,), ..., u(rL)}. 

Next let F' = u({Tl, ..., Tj}) and let P' = ITj+!, ..., TL}. Thus we can conclude that 

amal ( filt (P; F') ;P') 

= amal ( filt (P; u({Tl, ..., Ti}); {Tj+17 ..., TL}) 

= amal (u({Tj+1, -.., TL}); {rj+l, -.-, TL}) 

= { u(Tj+l), ... u ( ~ L )  1 

= R. 

So it follows that R = amal ( filt (P; F'); P') = filt (amal (P, P )  ; F). + 



4.2 Composition Theorem 

Thus, we have proven important lemmas that will help us to easily show that the 

composition of any two simplifications on a partition P can be expressed as a single 

simplification of P. Below, we shall show this as our first formal theorem. 

Theorem 4.1: First, let Q = simp(P; F ,P) and let R = simp(Q; F' , Q  ). There exists a G 

and R such that 

simp(simp (P ; F, P );F , Q )  = simp(P ; G, R) 

Proof: First, note that we need not expound upon the characteristics of P, Q,,  F, and F', 

since we only need our three lemmas to show the proof. Thus, we can first say that 

simp(simp (P ; F, P ); F , Q )  

= amal(filt(amal(filt(P; F); P);F') Q )  

= amal(amal(filt(filt(P; F); F"); P')  Q )  for some P' and F". 

This is true because of Lemma 4.1.3, where every amalgamation followed by filter 

can be expressed as some filter followed by amalgamation. Next, we can also say by 

Lemma 4.1.1 that 

simp(simp (P ; F, P ); F , Q )  

= amal(amal(filt(filt(P; F); F"); P') Q )  

= amal(amal(filt(P; F u F"); P ' )  Q )  

Let G = F u F". Finally, by Lemma 4.1.2, we can say that the composition of two 

amalgamations is the same as some single amalgamation. So  there exists R such that, 



amal(amal(filt(P; G); P') Q) 

= amal(filt(P; G); R )  

= simp(P; G, R). + 

Thus, for the composition of two simplifications, there exists a single simplification 

that accomplishes the same result. This fact is important for many reasons. The partial- 

order proof soon to follow depends on this fact. Also, queries related to simplifications 

of object representations can rely on the notion that the composition of a finite number of 

simplifications could be expressed as a single simplification. This result easily follows 

by induction. 

As an example of the theorem, let's look at our favorite example, a partition 

P = { [O, 21 , [3 ,4 ]  , [5,6] , [7, 81 , [9, 101) on the set X = [0,10]. 

Thus, we can say that 

simp(simp (P ; F, P );F , P') 



Our result is a partition of the set X = [O, 41 u [9, 101. From Theorem 4.1, we know 

that there exist G and R such that simp(P;G, R) = {[O, 41 , [9, lo]}. Letting 

G =  {[5,61, [6,711, a n d R =  {{[0,21,  [3,4lL I[9, 10111, 

Thus, we were able to simplify P in one step instead of two. On the following page, 

you can see this example pictorially and how the simplification composition can be 

accomplished in one step. 

We have verified Theorem 4.1, and now we can use this notion to prove that the 

simplification relation is a partial order. 



One-Step Simplification 

Figure 4. I The composition of two or more simpli~cations can be accomplished in 

one step with a single simplification. 

4.3 Partial-Order Structure 

Thus far, we have mentioned the notion of order relationships but have not considered 

what exactly shall define one partition to be less than another. In terms of simplification, 

we shall consider the binary relation I, to mean that 

P' 5, P if and only if P' = simp(P;F, P). 



Thus, we have a way of comparing the relationship of partitions via simplification, 

and therefore one partition can be considered less than another partition. In fact, we can 

show that this order relation is a partial-order. In mathematics, a partial order 5 on a set 

X is a binary relation that is reflexive, anti-symmetric, and transitive, i.e., i t  holds for all 

a, b and c in X that: 

a 5 a (reflexivity) 

if a I b and b 5 a, then a = b (antisymmetry) 

if a 5 b and b 5 c, then a 5 c (transitivity) 

A set with a partial order on it is called a partially ordered set, poset, or, often, simply an 

ordered set (Birkhoff 1967). 

Thus, our goal is to show that 5, creates a partial order structure on the set of 

partitions of a domain D and its subsets. Let's call this collection U. To prove that the 

partial order properties hold for U, we shall look at each one and show they are true 

according to how we have defined 5,. We will call this Theorem 4.2. 



Theorem 4.2: If D is a finite set, then U, the collection of all partitions of D and every 

X c Dl is a partially-ordered set according to the Ss relation. 

Proof: 

1) Reflexive Property 

First, let P be a partition of X c D. Note that if F = 0 and P = {P) ,  then 

simp(P; F ; P ) = amal(filt(P; 0 )  ; {P))  = P. Thus, by our order definition, P Is P, and 

therefore the reflexive property holds. 

2) Anti-symmetric Property 

First, it is given that P' = simp(P; F , P ) and P = simp(P1; F', P'). Note if we substitute 

P into P', then P' = simp(simp(P'; F', P') ; F , P ). Furthermore, by Lemma 4.1.1 and 

Theorem 4.1, P' = amal (filt (P'; F u F');R). Thus, F u F' = 0, which implies F = 0 

and F'= 0. 

Next we can say that since P' = simp(P; 0, P ), then P' = amal(P; P ). By Lemma 

4.1.2, we know that every P'i E P' is sub-partitioned by P. Thus, P'i = u(Pi), where each 

Pi c P, 15 i In .  Also, since P = simp(P'; 0, P'), then P = amal(P';P'). This implies that 

every p E Pi is sub-partitioned by P'. P'i covers p though, so P'i = p, and each subset Pi 

is a single element Pi in P. Thus, each P'i = Pi , and it follows that P = P'. 



3) Transitive Property 

First, it is given that P' Is P and , P" 5, P'. If this is true, then P' = simp(P; F , P ) and 

P" = simp(P'; F' , P'). Thus, P" = simp(P'; F' , P') = simp(simp(P; F , P ); F' , P'). 

By Theorem 4.1 we know that the composition of two simplifications can be expressed as 

a single simplification. Thus, there exist G and R such that 

P" = simp(simp(P; F , P ); F' , P') = simp(P; G , R), and by definition, P" 5, P. + 

Thus, we have shown that U has a partial-order structure via simplification. When 

we compare two or more partitions, we can compare their order relationship according to 

simplification and know that reflexive, anti-symmetric, and transitive properties hold. 

Note though that two partitions may also be completely unrelated in regard to 

simplification ordering. For instance, the partitions 

P = {[O, 21 , [3 ,41 , [5,61 , [7,81 , [9, 101 } and 

P'= {[O, 11 , [2,31 , [4,81 , [9, 101 1 

are not order-related in terms of simplification because neither one can be simplified to 

generate the other. Thus, some partitions are simplification order-related, and some are 

not. This is what is meant by a "partial" order. 

Though partitions P and P' are not order related, they are still related in terms of 

upper and lower bounds. We shall see in the next section that every pair of partitions has 

a greatest lower bound and a least upper bound according to simplification partial-order. 



4.4 Summary 

In this section, we have shown that for the composition of two simplifications, there 

exists a single simplification providing the same result. To do so, we developed four key 

lemmas: composition of two filtrations, a sub-partitioning lemma, composition of two 

amalgamations, and the interchanging of amalgamation followed by filter with filter 

followed by amalgamation. Finally, we used the simplification composition theorem to 

prove that 5, imposes a partial-order structure on U, the collection of all partitions of a 

finite domain D and its subsets. 

We will use the notion of partial-order in the next section when we also show that U 

has a lattice structure and is complete. In other words, we will see that every collection 

of partitions in U has a greatest lower bound and a least upper bound. To do so will 

involve the creation of some new definitions, as well as proving a number of initial 

lemmas. Once we see that a collection of partitions is a lattice and U is complete, we 

then will have a strong mathematical framework on partitions which can then be applied 

to representations of objects. 



Chapter 5 

SIMPLIFCATION LATTICES OF PARTITIONS 

5.1 Background 

When talking about the ordering of partitions in regard to simplification, it is not only 

useful to show that partitions would form a partially-ordered set, but also to look at the 

existence of upper and lower bounds. Such information can help categorize partitions by 

showing which ones share common simplifications or complexifications. 

More specifically, we desire to see if every pair of partitions has a least upper bound 

and a greatest lower bound. Using this fact, along with the partial-order structure, 

verifies the existence of a lattice structure. A lattice is defined as a partially-ordered 

where every pair of elements has a greatest lower bound (g.1.b.) and least upper bound 

(1.u.b.). 

Not only can we prove the existence of a lattice structure, but we can also show that 

the structure is complete. A partially-ordered set in which every subset that is bounded 

from above has a least upper bound is called complete. Note it is true that every subset 

of a complete set that is bounded below also has a greatest lower bound. It is also true 

that if a finite partially ordered set has a maximum and minimum element, and every pair 

of elements has a g.l.b., then the set is complete (Birkhoff 1967). 



In this paper, we have already shown the set U with I, is a partially ordered set. 

Recall that U is the collection of partitions of a domain D and all of its subsets. Since U 

is finite, the most refined partition in U exists as the partition of D made up of all single 

point subsets. Likewise, the empty set would be the coarsest partition. Thus, U has a 

maximum and minimum element. Therefore, our goal in this chapter is to show that 

every pair of elements has a g.l.b., and this will show that U is complete, and thus 

inherently a lattice. 

The reason behind this interest has much to do with the application of this material, 

and how representations of objects can be actualized and labeled according to their 

attributes. If we can determine which representations are more simplified or 

complexified than other representations, we can be mathematically certain there exist 

upper and lower bounds for pairs of representations, which could become important for 

simplification-related queries in future work. 

5.2 Key Lemmas 

To show that a finite collection of partitions forms a lattice structure, we first must 

develop a number of definitions and prove some key lemmas. Our goal is to create and 

prove important facts that will increase our understanding of simplification-related 

properties of partitions. Furthermore, these properties relate partitions to one another, 

and help develop the lattice proof piece by piece. 



First, recall the term "sub-partition" from Chapter 4. Given a finite set X with 

partition P, we say S L X is sub-partitioned by P if some subset of P partitions S. We 

shall expand our understanding of this definition in the lemma below. 

Lemma 5.1.1 If U1 and U2 are sub-partitioned by P, then so are U1 u U2 , U1 n U2 , 

U1\U2, andU2\Ul .  

Proof: Given U1 and U2 are sub-partitioned by P, by definition, U1 is partitioned by 

CI  P and U2 by C2 c P. Thus, C1 and C2 both contain mutually disjoint sets, and it is 

clear that C1 u C2 and C1 n C2 both contain mutually disjoint sets too (both being subsets 

of P). Furthermore, u(C1) = U1 and u(C2) = U2, SO u(C1 u C2) = U1 u U2, and u(C1 n C2) 

= U1 n U2. Thus C1 u C2 partitions U1 u U2 and C1 n C2 partitions U1 n U2. By 

definition, Ul u U2 and U1 n U2 are both sub-partitioned by P. 

Also, since C1 partitions U1, and C2 partitions U2 , and both C1 and C2 are subsets of 

P, it follows that C1 \ C2 is a collection of mutually-disjoint sets such that 

u(Cl \ C2 ) = U1 \ U2 . Thus, UI  \ U2 is sub-partitioned by P, and by symmetry, U2 \ U1 is 

sub-partitioned as well. + 

Thus, we see that the union, intersection, and difference of two sub-partitioned sets 

are also sub-partitioned sets. This notion can be easily generalized by induction to show 

that the union of finitely many sub-partitioned sets is sub-partitioned, as well as the 

intersection of finitely many sets. 



Next, we are not only interested in general sub-partitioning lemmas, but also in sets 

that are "minimally" sub-partitioned, meaning the smallest possible sets sub-partitioned 

by two different partitions. We shall call this a min(P, P') subset. 

Definition of "rnin(P, P') subsetv- Given partitions P,P' of X, if S c X is sub- 

partitioned by P and P', but no proper nonempty subset of S is sub-partitioned by P and 

P', then S is called a min(P, P') subset. 

Defining such a set is important for our development of the lattice proof. With this 

notion, we will eventually show that greatest lower bounds exist for two partitions of the 

same set. Thus, min(P, P') sets will play a pivotal role in the construction of the greatest 

lower bound. 

Next we shall look at a lemma related to min(P,P') subsets: 

Lemma 5.1.2: Given partitions P, P' of X and Pj E P, the intersection of all of the sets 

sub-partitioned by P and P' that contain Pj is a min (P, P') subset containing Pj as a 

subset. 

Proof: Note that X itself is sub-partitioned by both P and P',  and Pj E P implies that 

Pj c X. Therefore, X itself is one of the sets making up the intersection, and the 

intersection exists. Also, we know that if two sets are sub-partitioned by P and P', then 

their intersection is sub-partitioned by P and P' too (Lemma 5.1.1). Thus, by induction it 



is clear that the intersection of finitely many sets sub-partitioned by P and P' would also 

be sub-partitioned by P and P'. Therefore, the intersection of all the subsets of X that 

contain Pj and are sub-partitioned by P and P' is a set that is sub-partitioned by P and P'. 

Thus, we have a set containing Pj that is sub-partitioned by P and P' that is the 

intersection of all such sets. Call it I. 

Claim: I is a min(P, P') set. Assume not. Thus there exists J c I where J is a 

min(P, P') set. Clearly, either Pj c_ J or Pj n J = 0, since otherwise it would imply that P 

does not subpartition J. If Pj c_ J, that contradicts I being the intersection of all min(P, P') 

sets containing Pj, since J n I = J and J is a proper subset of I. If Pj n J = 0, then by 

Lemma 5.1.1.' I \ J is sub-partitioned by P and P', it contains Pj , and it is contained in I. 

This again contradicts I being the intersection of all min(P, P') sets containing Pj, since 

I n ( I \ J ) = I \ J .  

Thus, we can conclude that I is a min(P, P') set. + 

The graphic below (Figure 5.1) demonstrates an example of this lemma. Note all of the 

sub-partitioned subsets that contain Pj, and I, the intersection of these sets. 



Figure 5.1 Given that P and P' partition the same set, note that Pj E P belongs to 

many subsets sub-partitioned by both P and P', but I is the intersection of 

all such sets. 

In fact, a partition that has all min(P, P') elements has notable properties in relation to 

partitions P and P'. Lemma 5.1.3 below shows how a collection of all min(P, P') sets is 

related to simplification ordering. 

Lemma 5.1.3: Given P and P' partitions of X, let p(P, P') be the collection of every 

possible min(P,P') subset. p(P, P') is a partition of X, and p(P, P') Is P, p(P, P') Is P'. 



Proof: First, note that p(P, P') is non-empty by Lemma 5.1.2, since X is sub-partitioned 

by both P and P'. Thus, we must also show that p(P, P') is a partition of X. Since 

p(P, P') consists of every possible min(P, P') set, every element of P is covered by some 

element of p(P, P'). Thus, since each element of p(P, P') is a subset of X, 

u(p(P, P')) = X. 

Next, note that since every element of p(P, P') is sub-partitioned by P and P', then the 

intersection of any two elements is also sub-partitioned by P and P' (Lemma 5.1 .I). Since 

p(P, P') has distinct elements, the intersection of any two of them must be either a proper 

subset of the elements or empty. If this intersection were non-empty though, this would 

imply that there exists a subset of both elements that P and P' would sub-partition, which 

would contradict the definition of a min(P, P') set. Thus the sets in p(P, P') are mutually 

disjoint, and p(P, P') is a partition of X. 

Finally, since elements in p(P, P') are sub-partitioned by P and P', each element in 

p(P, P') is a union of elements from both P and P'. Thus, p(P, P') = {u(P1),. . ., u(P,)} = 

{u(P'l) ,..., u(P',)}, where each Pi c P and each P'i c P', 15 i I n. Thus, P = {PI ,..., P,} 

partitions P and P' = {P',,. . . , P',} partitions P'. Finally, by definition, we can say that 

p(P, P') = amal(P, P)  = amal(P1, P'). Thus, p(P, P') = simp(P,0, P) = simp(P',0, P') 

and we can say p(P, P') I, P and p(P, P') Ss P'. + 

So p(P, P') is an amalgamation of P and an amalgamation of P'. This step is 

important, but we can say something even stronger about p(P, P'). We can show it is not 



only a lower bound of both P and P' on X, but it is also a greatest lower bound. Note 

Lemma 5.1.4 below. 

Lemma 5.1.4: If Q 5, P, Q I, P', and Q # y(P, P'), then Q <, y(P, P'). 

Proof by Contradiction: Assume y(P7 P7)<, Q. Thus, every element of y(P7 P') is sub- 

partitioned by Q by Lemma 4.1.2. Furthermore, since the inequality is strictly "less 

than", there exists a non-trivial sub-partitioning of some element a E y(P, P') by Q. 

Therefore, there exists q E Q such that q c a. Since, Q 5, P and Q 5, P', q is sub- 

partitioned by both P and P'. This implies that q is a proper subset of a, which is sub- 

partitioned by both P and P' according to Lemma 4.1.2 and Lemma 5.1.3. This 

contradicts that given fact that a is a min(P, P') subset, and therefore Q c, y(P, P'). + 

The previous lemmas proved important facts about lower bounds of two partitions of 

the same set. Two partitions may not necessarily cover the same underlying sets though. 

The following lemma will consider arbitrary partitions of separate sets. 

Lemma 5.1.5 Let P be a partition of X and P' be a partition of X'. If 

simp(P; F , P) = simp(P'; F' , P'), then u(PW) = u(PIW') L X n X7, and u(PW) is sub- 

partitioned by P and P7. 



Proof: Note that if simp(P; F , P)  = simp(P'; F', P'), then 

amal (P\ F , P) = amal(P1\ F1,P'). Since amalgamation does not change the underlying 

set, u(P\F) = u(P'\F'). Furthermore, since u(P\F) c X and u(P\F) c X', u(P\F) c X n X'. 

Finally, note that u(P\F) is partitioned by P\F and P1\F', so it is obviously sub-partitioned 

by P and P'. + 

5.3 Simplification Lattice Proof 

With all of the lemmas from the last section, we now have a strong foundation of proof 

for the lattice theorem. Lemma 5.1.4 is particularly important, since i t  guarantees that 

p(P, P') is a greatest lower bound when P and P' both partition the same set. Since the 

lattice proof deals with arbitrary partitions though, we will have to assume that P and P' 

are partitions of different sets. 

In the theorem below, we will show that U with Is is a lattice. We already know that 

U with Is is a partially-ordered set, so we need only show that every pair of elements has 

a greatest lower bound (g.1.b.) and a least upper bound (1.u.b.). At the same time, we will 

also show that U is complete, where any collection in U has a g.1.b and 1.u.b (Birkhoff 

1967). 

Theorem 5.1: Let U be the collection of partitions on a finite set D and all of its subsets. 

U has a lattice structure and is complete in regard to the I, relation. 



Proof: Given P partitions X c D and P' partitions X' c D, let M be the union of all sets 

subpartitioned by both P and P'. We shall call this type of set a "maximal" 

subpartitioned set. Note that M is also sub-partitioned by P and P', since it is a finite 

union of such sets ( Lemma 5.1.1). Thus, there exist Pk c P and P'k c P' that partition 

M. Furthermore, there exist Fk c P and F'k c P' such that P\ Fk = Pk and P'\ F'k = P'k. 

Next, let LB(A,B) represent the set of all lower bounds of two partitions A and B. 

Claim: LB(P, P') = LB(Pk, P'k). 

First, if arbitrary Q E LB(Pk, Plk), then the fact that Pk <, P and P'k I, P' implies that 

Q I, P and Q <, P' by transitivity. Thus, LB(Pk, P'k) c LB(P, P'). Next, let Q' be an 

arbitrary partition less than both P and P'. Thus Q' = amal(P \F ; P) = amal(P'\ F' ; P'). 

Since M is the largest sub-partitioned subset of X n X', by Lemma 5.1.5, P\F c P\ Fk. 

This implies that Fk c F, which tells us that there exists F, such that F, n Fk = 0 and 

Fk U F, = F. Thus, 

Q = amal(P \F ; P) = amal(filt(P ; F ; P) = amal(filt(P ; Fk u F,); P )  

= amal(filt(filt(P ; Fk) ; F,); P) = amal(filt(P \ Fk ; F,); P) = amal(filt(Pk ; F,) ); P) 

= simp(Pk ; F, ,P). 

So, Q I, Pk, and by similar methods, Q <, P'k. Thus, LB(P, P') c LB(Pk, PYk), and we 

can conclude that LB(P, P') = LB(Pk, P'k). By Lemma, 5.1.4, we know that Pk and PYk 

have p(-Pk, P'k) as a greatest lower bound. Thus, since P and P' share the same lower 

bounds, any two arbitrary partitions in U have a greatest lower bound. 



Since we have shown that every set of two elements has a g.l.b., if we assume that 

every set of n-1 elements has a g.l.b., we can show that every set of n elements does as 

well. Thus, every finite subset of U has a greatest lower bound by induction. 

Furthermore, since U with 5, is finite, i t  has the greatest lower bound property, 

meaning every bounded subset has a greatest lower bound. Also, it is a common result 

that any partially ordered set with the g.1.b property also has the least upper bound 

property. Thus, U is complete since not only every pair of elements has a g.1.b. and l.u.b., 

but also every sub-collection of U (Birkhoff, 1967). + 

We have shown that there exists greatest lower bound a least upper bound for any 

subset in U. For example, if X = {a, b, c}, then every possible partition of X and its 

subsets forms a lattice. 

Figure 5.2 The simplification lattice of the three point set {a, b, c]. 

Note how { {a}, {b}, {c} } is the most "complex" partition since it is a collection of all 

the single point sets, and note that the null set as the most "simplified". Also, notice that 

every subset has a greatest lower bound and a least upper bound. 



For instance, ( ( a ,  b, c}} and ( ( a}}  have ( ( a ) ,  (b, c ) }  as a least upper bound and the 

null set as agreatest lower bound. ({a},  (b, c}}, {{a, c}, (b}}, and ( ( a ,  b}, (c}} have 

( (a}, (b}, (c}  } as a least upper bound, and ( (a, b, c} } as a greatest lower bound. 

5.4 Summary 

In this chapter, we developed important definitions and lemmas that allowed us to prove 

a very important theorem. If U is the collection of partitions on a set X and all of its 

subsets, then U has a lattice structure in regard to the I, relation and is complete. 

Through the basic example of partitions of a three point set and its subsets, we saw how 

such a set behaved as a lattice structure, and noted that every pair of elements had a 

greatest lower bound and least upper bound. 

Next, we shall look at a more applied structure on which to operate. Instead of 

partitions on basic number sets, we shall now look at views of view domains, and the 

resulting representations depending upon the coding function. Also, we shall see how 

simplcomp operations work within this realm, and see how to change the level of detail 

of a representation. 



Chapter 6 

VIEWS AND REPRESENTATIONS 

6.1 Views 

So far, we have developed a solid base of mathematical theory in regard to simplification 

of partitions. The definitions we have created can also relate to product partitions of 

finite product spaces. This fact is important since we desire to relate what we have done 

to queries in geographic information systems associated to finite attribute domains. 

We want to be able to study collections of objects according to their attributes, and 

be able to operate on representations of these objects. We also want to have the freedom 

to change the level of detail of a representation of objects according to their attributes. 

Therefore, we must use what we have developed thus far for simplification of partitions 

not only to select specific types of objects to look at, but also to make desired levels of 

discernment between them. 

First, there must be some way to determine the sets of attributes we are interested 

in. This space is a subset of the cross product of attribute domains, and is called the view 

doma in. 

Definition of "View Domain" - A view domain is an finite n-product space 

VD = XI x X2 x . . . x X, , where each Xi is a subset of the attribute domain Ai, 15 i I n. 



Thus, just as a single finite set X was used earlier to denote the underlying set for an 

arbitrary partition P, each Xi will be partitioned by some Pi. The collection of every n- 

product composed of subsets from each Pi is called a view. 

Defintion of "View" - Given a view domain VD = X1 x X2 x . . . x X, , let PI, .  . .,P, be 

partitions of XI, ..., X, respectively. Thus, a view V is a product partition of VD, where 

each partitioned subset of V is an n-product pix.. .x p,, where each pi E Pi. 

Thus, a view is simply a partition of a view domain, and its properties are no different 

than the arbitrary partitions we studied earlier. The major difference is in the semantics, 

since now we are talking about an applicable concept in a GIs. 

In fact, since V is a partition of VD , we can also say that all of the previous lemmas 

and theorems that held for arbitrary partitions also hold for V. This includes the idea that, 

given a finite attribute domain, the collection of every view on every view domain has a 

partial order structure and a complete lattice structure. These facts are very important 

when trying to find necessary views that contain the desired amount of information about 

collections of objects according to their attributes. 

6.2 Actualization of Views 

Now that we have developed all of our work on partitions and views, it is important that 

we also briefly mention the topic of actualization. The previous work makes sense when 



studying partitions of basic sets and product spaces, but when we also try to connect the 

work to real scenarios, the process can be equally as challenging. 

First, we must figure out which objects would be seen in a representation, given some 

specific view. Since a view is a partition of a subset of the attribute domains, we are only 

interested in objects related to the underlying view domain. Particularly, we want to see 

to which partitioned subset the objects' codings belong in the view. 

The representation of objects whose codings belong to the view is called the view 

actualization. 

Definition of "View Actualization" - Given a universe of objects 0, n attributes, and 

attribute domains A,, .  . ., A, , the view actualization is the labeling of objects whose 

codings lie within particular partitioned subsets of the view. 

Thus, a view labeling function is not a function on the objects, but rather the partitioned 

subsets of the view. 

6.3 Example 

Let's imagine that there were 50 important buildings in some city. These buildings have 

4 attributes of interest: financial value (in millions), location (numbered regions), zoning, 

and age in years. The attribute domains for each of the four attributes are, 



A1 = [1,201, 

A2 = [ I ,  161, 

A3 = {residential, commercial, historical, recreational}, and 

A4 = [I,  2003 

We begin our query by looking for all of the buildings that are in the view domain: 

VD = [5, 101 x 116) x {residential, commercial} x [I,  901. Notice that VD is a subset of 

the attribute domain Al x A2 x A3 x A4. Thus, we are looking for buildings between 5 

and 10 million dollars in value, located in region 16, with residential or commercial 

zoning, and between 1 and 90 years old. 

Next, we partition each part of VD. Let PI = {[5,6], [7, 81, [9, lo]}, P2 = {{16}}, 

P3 = { {residential}, {commercial} }, and P4 = { [1, 301 , [3 1,601, [61, 901 }. Thus, a view 

would consist of all partitioned cross-product subsets that can be generated with each 

partition. For instance, 

{[5,6] x { l6 )x  {residential} x [1, 3011, 

{[5,6] x { l6}x {commerical} x [61,90]}, and 

{[9, 101 x { 16)x {residential} x [31,60]} 

would be some of the sets contained in the view. 



Thus, there are 18 partitioned subsets of V. Next, to actualize the view, each one of 

the partitioned subset in PI ,  PZ, P3, and P4 is assigned a label. This label is applied to any 

object whose coding is contained in the set. 

Thus, let us assume that each partition has a labeling where the value is represented 

by "letters", zoning is represented by "sloped markings", and age is represented by 

"shape". Also suppose that there were 9 buildings whose codings were contained in the 

view domain. Thus, depending on in which partitioned subset each coding was 

contained, the following representation could result. 

pos. slope -{residential) 
neg. slnpe -{commercial) 

square K4301 
circle 131,601 
triande - [61,901 

Figure 6.1 A representation of objects is based on the view actualization, which 

depends on which objects have codings contained in various partitioned 

subsets of the view. 



Note that the system of labeling here is somewhat different than representations in 

other spatial engineering literature. Amalgamation is usually represented by combining 

objects into one entity rather than combining labels. This example shows that the 

labeling function can be defined in a number of ways. Certainly if there were only one 

attribute of interest, one might combine objects into single entities. 

The study of determining which labeling functions are best to use or how to define 

practical labeling functions is beyond the scope of this work. Our example serves as only 

a sample of one type of representation. A person could choose to label partitions in a 

number of ways, and might include labeling based on how objects relate to one another in 

terms of containment, connectedness, and nearness (Ramalingam 2002). 

With that said, we are not only interested in the representation's appearance, but also 

note that simplification/complexification can be applied to views, and the representation 

would be changed as a result. For instance, if the previous view were simplified so that 

partitioned subsets with {commercial} in them were filtered, and [ 5 , 6 ]  and [7, 81 were 

amalgamated, the result would appear like Figure 6.2 below. 

Along with this example, we also know that we can determine other facts as well, 

such as whether or not we can find greatest lower bounds for collections of 

representations. Since this is a known fact for views, we can say the same for the seen 



pus. slope -{residential) 

square P a  301 
circle 131,601 
triande - [61, 901 

Figure 6.2 The representation shows the result of a simplification of the view V. 

representation. Thus, a person seeking to find representations that capture a common 

thread among many representations could seek the view guaranteed by the underlying 

lattice structure. 

Thus, if a person wanted to see the greatest lower bound of {V1, . . . , V,}, they would 

look for the view p(V1, . .., V,). The result would be a representation that would serve as 

greatest lower bound of all the representations of V1, . . . , V, . 

6.4 Summary 

In this section, we have looked at view domains and views. A view domain is simply a 

subset of the cross product of attribute domains. Likewise, a view is a partition of a view 

domain. Using this notion, we discussed some general ways one might represent objects 

based on a given view. If an object's coding is contained in the view domain, then the 



object's actualization is based on the view. Also, each subset of the view has a particular 

label, so objects with codings contained in the subset inherit the label. 

A geographic example was also used here, where buildings were actualized according 

to where their codings were contained in the view. Simplification was also applied to the 

view, and the results were seen in the representation. Thus, representations that can act 

as greatest lower bounds or least upper bounds of view actualizations exist because they 

exist in the underlying view structure. 



CONCLUSIONS AND FURTHER WORK 

The work described in this paper has been concerned with the creation of a mathematical 

model that formally produces generalized representations of geographic information. In 

work done by Stell/Worboys and Ramalingam, much of this work has already been 

modeled, but not in the manner that has been done here. Inverse operations such as 

insert, refinement, and complexification were defined and studied. 

The manipulation of views presents an interesting way to generalize objects and 

formally prove some of the properties related to the model. In particular, we have shown 

that simplification generates a partial-order and lattice structure on views and the 

resulting representation as well. Though there is much more to show in this area, it 

establishes the existence of greatest lower bounds and least upper bounds, and allows the 

possibility for future math-related work, including the study of infinite attribute domains 

and infinite partitions of those domains. 

Our approach could be improved. The syntax of the operations becomes quite 

cumbersome when large collections of sets are either filtered or inserted. Furthermore, 

the notation required for amalgamating or refining large sets is also tedious. The next 

step in the work is to consider methods of easily describing the operations on partitions, 

but also preserve the semantics of the model. Secondly, there needs to be a method of 

characterizing amalgamations based on the notion of object containment, connectedness, 

and nearness (Ramalingam 2002), while still preserving the existing theory. Finally, 

view-labeling functions could be more fully developed in regard to semantic practicality. 



Deciding which labeling is best for conveying a representation of a view presents many 

open-ended challenges. 
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