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Influence of equatorial diatom processes on Si deposition and

atmospheric CO2 cycles at glacial//interglacial timescales

R. C. Dugdale,1 M. Lyle,2 F. P. Wilkerson,1 F. Chai,3 R. T. Barber,4 and T.-H. Peng5

Received 19 May 2003; revised 9 June 2004; accepted 2 July 2004; published 16 September 2004

[1] The causes of the glacial cycle remain unknown, although the primary driver is changes in atmospheric
CO2, likely controlled by the biological pump and biogeochemical cycles. The two most important regions of
the ocean for exchange of CO2 with the atmosphere are the equatorial Pacific and the Southern Ocean (SO), the
former a net source and the latter a net sink under present conditions. The equatorial Pacific has been shown to
be a Si(OH)4-limited ecosystem, a consequence of the low source Si(OH)4 concentrations in upwelled water that
has its origin in the SO. This teleconnection for nutrients between the two regions suggests an oscillatory
relationship that may influence or control glacial cycles. Opal mass accumulation rate (MAR) data and d15N
measurements in equatorial cores are interpreted with predictions from a one-dimensional Si(OH)4-limited
ecosystem model (CoSINE) for the equatorial Pacific. The results suggest that equatorial Pacific surface CO2

processes are in opposite phase to that of the global atmosphere, providing a negative feedback to the glacial
cycle. This negative feedback is implemented through the effect of the SO on the equatorial Si(OH)4 supply. An
alternative hypothesis, that the whole ocean becomes Si(OH)4 poor during cooling periods, is suggested by low
opal MAR in cores from both equatorial and Antarctic regions, perhaps as a result of low river input.
terminations in this scenario would result from blooms of coccolithophorids triggered by low Si(OH)4
concentrations. INDEX TERMS: 1615 Global Change: Biogeochemical processes (4805); 4267 Oceanography: General:

Paleoceanography; 3344 Meteorology and Atmospheric Dynamics: Paleoclimatology; 4231 Oceanography: General: Equatorial

oceanography; 4805 Oceanography: Biological and Chemical: Biogeochemical cycles (1615); KEYWORDS: diatoms, CO2, silicate

Citation: Dugdale, R. C., M. Lyle, F. P. Wilkerson, F. Chai, R. T. Barber, and T.-H. Peng (2004), Influence of equatorial diatom

processes on Si deposition and atmospheric CO2 cycles at glacial/interglacial timescales, Paleoceanography, 19, PA3011,

doi:10.1029/2003PA000929.

1. Introduction

[2] CO2 increased before the melting of the ice sheets in
the last two terminations [Petit et al., 1999] and appears to
be a primary driver in glacial cycles [Shackleton and
Pisias, 1985; Archer et al., 2000]. Interglacial to glacial
decreases in atmospheric CO2 concentration change regu-
larly in step with the Milankovitch solar insolation cycles
[Sigman and Boyle, 2000]. Although these solar cycles
appear to initiate the glacial periods, the decreases in heat
input from this source are insufficient to bring about the
inferred cooling and glacier formation. Instead they create
feedbacks that result in decreased atmospheric CO2 and
increased cooling. Shackleton [2000] identified a 100,000
year cycle in ice volume lagging atmospheric temperature,
atmospheric CO2 and deep water temperature, all three

found to be in phase with orbital eccentricity, indicating
that carbon cycle changes apparently lead the changes in
ice volume.
[3] Broecker [1982] first proposed that the cause of the

CO2 changes was the oceanic biological pump. His
hypothesis would require changes in the nutrient concen-
trations or supply, since increased nutrients would result in
increased new production [Dugdale and Goering, 1967]
and increased export of carbon to the deep ocean [Eppley
and Peterson, 1979]) and decreased atmospheric CO2. In
particular increased supply of Si(OH)4 for diatoms, usually
considered to be the engines of export production [Smetacek,
1998], would be important. Dust deposition, as a source of
Si [Harrison, 2000], should stimulate diatom productivity.
Archer et al. [2000] considered that doubling of the Si(OH)4
inventory of the ocean could drive the atmospheric CO2

changes and glacial cycles, but had difficulty in explaining
how the ocean content of Si(OH)4 would have increased
by that amount. Sigman and Boyle [2000] showed that
any credible NO3 increments would be insufficient to
account for the reduction in pCO2 of 80–100 ppmv that
was observed during glacial periods. Also Loubere
[2000] concluded from carbon isotope data from the
foraminiferan Neogloboquadrina dutertrei that the Equa-
torial Undercurrent (EUC) supply of nutrients was lower
during the last full glacial (around the Last Glacial
Maximum, LGM, 21 kyr) period than at present.

PALEOCEANOGRAPHY, VOL. 19, PA3011, doi:10.1029/2003PA000929, 2004

1Romberg Tiburon Center, San Francisco State University, Tiburon,
California, USA.

2Center for Geophysical Investigation of the Shallow Subsurface, Boise
State University, Boise, Idaho, USA.

3School of Marine Science, University of Maine, Orono, Maine, USA.
4NSOE Marine Laboratory, Duke University, Beaufort, North Carolina,

USA.
5Ocean Chemistry Division, NOAA Atlantic Oceanographic and

Meteorological Laboratory, Miami, Florida, USA.

Copyright 2004 by the American Geophysical Union.
0883-8305/04/2003PA000929

PA3011 1 of 10



[4] The two major oceanic regions involved in the glacial
to interglacial changes in CO2 are the equatorial Pacific and
Southern Ocean that likely interact to influence the global
CO2 and glacial cycles [e.g., Brzezinski et al., 2002]. The
equatorial Pacific is the major ocean region where net CO2

efflux to the atmosphere occurs [e.g., Takahashi et al., 1986,
1997; Feely et al., 1997] and which has considerable
influence on the global carbon budget of the atmosphere.
The eastern equatorial Pacific (EEP) upwelling area is
considered as a HNLC (high nitrate, low chlorophyll) region
due to the presence of considerable NO3 in the surface
waters but low chlorophyll concentration [e.g., Minas et
al., 1986; Dugdale and Wilkerson, 1998]. The lack of iron
(Fe) from atmospheric dust input, was proposed initially as a
cause of the incomplete utilization of NO3 by phytoplankton
and hence of surplus CO2 to be exchanged to the atmosphere
from the equatorial Pacific Ocean [e.g., Chavez et al., 1990].
However, Ku et al. [1995] using 228Ra showed upwelled
Si(OH)4 would be limiting for diatom growth and the
equatorial upwelling system has subsequently been desig-
nated more accurately as low silicate-HNLC (LSHNLC)
[Dugdale et al., 1995]. Confirmation of equatorial Si(OH)4
limitation was obtained from 32Si uptake kinetics [Leynaert
et al., 2001]. In this paper we explore the role of equatorial
diatoms in Si flux and CO2 cycles at glacial/interglacial
timescales by applying results from an ecosystem model
constructed using modern-day data to understand relation-
ships observed in paleoceanographic core data.

[5] Although diatoms in the equatorial upwelling system
are low in abundance relative to other non-Si-using phyto-
plankton [Bidigare and Ondrusek, 1996; Chavez et al.,
1990]), they may have a dominating effect on other phyto-
plankton, the nutrient environment and overall productivity.
For example, enclosure experiments in a Norwegian fjord
showed when Si(OH)4 concentrations were greater than
2 mmol/m3, diatoms were able to grow faster than the
non-Si-users, and inhibited their growth [Egge and Aksnes,
1992]. Consideration of interactions between diatoms and
other phytoplankton led to the construction of a 1-D
biogeochemical model, (CoSINE: carbon, silicate, nitrogen
ecosystem model) of the equatorial upwelling system [Chai
et al., 2002] (Figure 1). It includes two functional groups of
phytoplankton (the numerically dominant small-sized non-
Si-using picoplankton, and the Si-requiring diatoms), three
nutrients (NO3, NH4 and Si(OH)4), two size classes of
zooplankton grazers, and detrital N and Si. The influence
of Fe is included as a fixed factor reducing photosynthesis
below optimal levels. Si(OH)4 and NO3 are supplied in
upwelled water in ratios always less than the 1:1 ratio
usually occurring in diatoms [Brzezinski, 1985] ensuring
that diatom growth will be limited by Si. NO3, largely
unavailable to the picoplankton which primarily use NH4,
will remain in substantial amounts in the surface waters, a
well known feature of the eastern equatorial Pacific.
[6] The model can be manipulated to simulate the

LSHNLC conditions. One experiment in which the

Figure 1. The intercompartmental flow chart of the one-dimensional CoSINE model. The flow of N is
indicated by solid line; the flow of Si is indicated by dashed line; and C flow is indicated by line-dashed
line.
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concentration of Si(OH)4 in the upwelling source waters
was increased while holding the NO3 concentration constant
[Dugdale et al., 2002a] showed a two phase response
(Figures 2a–2d). The initial response, termed phase 1, is
an increase in diatom and decrease in picoplankton biomass

(Figure 2a), with accompanying increases in surface nutri-
ent concentrations (Figure 2b), surface TCO2 (Figure 2c),
and Si export (Figure 2d). With a further increase in
Si(OH)4 (from 7.5 mmol/m3 to 15 mmol/m3), phase 2 then
occurs and the biomass of diatoms continues to increase

Figure 2. Surface response (phases 1 and 2) of the 1-D CoSINE model to changes in source Si(OH)4
concentration: (a) picoplankton and diatom biomass, mmol/m3; (b) NO3 and Si(OH)4 concentrations,
mmol/m3;, (c) TCO2, mmol/m3; (d) integrated export production of N and Si, mmol/m2/d. Stars are
present-day equatorial data from Leynaert et al. [2001]. Dotted lines show range of mean Si(OH)4 at
120 m from 140�W, JGOFS.
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(Figure 2a), TCO2 decreases (Figure 2c) and Si export
continues to increase linearly with N export increasing
slowly relative to Si (Figure 2d). These results represent
two extremes: at the lowest Si(OH)4 concentrations the
system is fully dominated by picoplankton and at the
highest Si(OH)4 concentrations there exists a fully diatom-
dominated system. At each extreme, upwelled CO2 is fully
incorporated into the phytoplankton. At intermediate
Si(OH)4 concentrations, diatom populations are not suffi-
ciently large to deplete all upwelled CO2 but are large
enough to out-compete picoplankton biomass and their
use of CO2. The existence of a peak in surface TCO2

(Figure 2c) and NO3 (Figure 2b) at intermediate Si(OH)4
source concentrations and the linear change of Si export
with changes in source Si(OH)4 concentrations (Figure 2d)
are the model results to be applied here to explore how
diatom driven changes may have resulted in interglacial/
glacial changes in atmospheric CO2. Paleoceanographic and
paleoclimate proxy data are re-interpreted in light of these
model results to develop a new hypothesis about paleopro-
ductivity and atmospheric CO2.

2. Differences in Source Si(OH)4 Concentrations
to the Equatorial Pacific and the
Paleoceanographic Consequences

[7] The primary source for nutrients to the modern Pacific
equatorial upwelling ecosystem is the EUC, that is deficient
in Si(OH)4 with respect to NO3 resulting in Si(OH)4
limitation for diatoms [Ku et al., 1995; Dugdale and
Wilkerson, 1998, 2001; Leynaert et al., 2001; Jiang et al.,
2003]. The EUC forms at the western end of the equator
where water from the Northern and Southern Hemispheres
meet. The contribution of water volume to the EUC is
roughly equal between the Northern and Southern Hemi-
spheres. The southern water is low in Si(OH)4 relative to
NO3, while the northern water has about equal concentra-
tions of Si(OH)4 and NO3 [Dugdale et al., 2002b]. Changes
in Si(OH)4 in the Southern Ocean should be reflected in
changes in equatorial Si(OH)4 supply and diatom produc-
tion. In the Southern Ocean, waters strongly deficient in
Si(OH)4 compared to NO3 (i.e. with increased Si trapping)
are formed during the austral summer productivity season
[Hiscock et al., 2003] and advected northward as Sub-
Antarctic Mode Water (SAMW) [Toggweiler et al., 1991;
Dugdale et al., 2002b]. Diatomaceous sedimentation rates
in the Antarctic, south of the polar front were lower during
the last Ice Age [Sigman and Boyle, 2000; Mortlock et al.,
1991; Charles et al., 1991] suggesting less Si trapping and
more Si(OH)4 available for northward transport in the
SAMW to the equatorial Pacific: the silicate leakage
hypothesis of Brzezinski et al. [2002]. If so Southern Ocean
productivity can influence equatorial Si(OH)4 concentra-
tions and the Si flux and regulate the resulting CO2 cycles.
[8] Tropical Pacific cores (central equatorial Pacific, east-

ern equatorial Pacific, and the Guatemala Basin) [Lyle et al.,
1988] exhibit alternating periods of biogenic silica (opal)
and carbonate deposition with the major peaks in opal
deposition occurring every 100 kyr (the Milankovitch major
frequency), suggesting that the supply of Si(OH)4 to the

equator has varied in concert with 100 kyr glacial/intergla-
cial cycles. However, high opal burial occurred on the
transitions between glacial and interglacial periods, rather
than being in phase with either glacial or interglacial
periods. To search for a link between glacial equatorial Si
burial and changes in atmospheric CO2, opal deposition
from the central equatorial Pacific core W8402-14GC [Lyle
et al., 1988] and CO2 changes from Vostok ice core data
[Petit et al., 1999] were compared. We chose to compare
W8402-14GC (recovered at 1�N, 139�W) to the ice core
record because the largest CO2 flux from the oceans takes
place in the equatorial Pacific between 110� and 160�W
[Takahashi et al., 1997]. We assume that Si(OH)4 intro-
duced into surface waters is efficiently incorporated into
diatom tests so that the opal rain is a reasonable indicator of
Si(OH)4 supply to the surface ocean. We also assume that
the majority of opal being deposited in the central equatorial
Pacific is of diatom origin. Murray [1987] measured the
opal flux at a 2-year sediment trap deployment at the
location of W8402-14 by partitioning the opal flux into
diatom and radiolarian fractions. By using size separations
he was able to determine that 75–80% of the total opal flux
was of diatom origin. Comparisons of opal flux as deter-
mined from the sediment traps with opal sediment deposi-
tion [Dymond and Lyle, 1985] showed a positive correlation
between opal deposition/preservation and opal rain from the
surface ocean, perhaps driven, at least in part, by changes in
flux of other sedimentary components [Archer et al., 1993].
We also assume that the opal record of W8402-14GC is a
reasonable representation of opal deposition in the central
equatorial Pacific but recognize that there may be consid-
erable zonal variability, e.g. in the eastern Pacific a 50 kyr
opal depositional event is much stronger than to the west
[Lyle et al., 1988].
[9] Sediment focusing evaluated by 230Th and 3He may

have influenced the apparent burial rates of equatorial
sediments [Marcantonio et al., 1996, 2001]. Marcantonio
et al. [2001] argue that the presence of high concentrations
of phytodetritus at the sediment surface from 2�N to 2�S is
the result of sediment focusing. However, the latitude band,
2�N to 2�S is the maximum in equatorial upwelling and new
production. The simplest explanation is that the phytoplank-
ton blooms resulting from upwelling productivity events are
being deposited under the surface where the phytoplankton
biomass was produced. The freshness of these deposits
argues for a rapid sinking of surface production, a charac-
teristic of diatom blooms in many localities [Smetacek,
1985]. In any case W8402-14GC is at a location where
Marcantonio et al. [1996, 2001] claimed there was no
sediment focusing. We are thus inclined to accept the
sediment record of biogenic silica (opal) as a record of
the overlying productivity, a conclusion based on our
understanding of the functioning of the equatorial upwelling
system.
[10] The mass accumulation rate of opal (opal MAR) in

core W8402-14GC was averaged to 5 kyr intervals
(Figure 3). Changes in opal MAR show a strong similarity
to changes in atmospheric CO2, with peak values of both at
or near terminations 1 (�12 kyr) and 2 (�130 kyr). These
data are combined together in a plot of atmospheric CO2
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(also averaged to 5 kyr intervals) versus equatorial opal
MAR (Figure 4). This plot was made to enable the paleo Si
and C trends to be compared with those predicted by the
CoSINE model. Opal mass accumulation rate is considered
here as a proxy for Si(OH)4 supply or concentration in
equatorial source water. If Si(OH)4 source water concen-
trations varied over glacial cycles in the full range consid-
ered in the CoSINE model and the global atmospheric CO2

concentration varied in phase with the surface TCO2 at the
equator then the CO2 versus source Si(OH)4 pattern shown
in Figure 2c should appear in Figure 4. However, the basic
pattern for the core data (Figure 4) is that low opal MAR
occurs when Vostok CO2 is low and high opal MAR occurs
when CO2 is high; i.e. the relationship between opal MAR
and global atmospheric CO2 is almost always positive.
There is no evidence from the relationship of global
atmospheric CO2 and opal MAR of a phase 2 limb that
would appear to the right in Figure 4 at the high opal MAR
values and with negative slope. While it is tempting to
interpret the data in Figure 4 as indicating a model phase 1
at the equator, the conclusion would only be valid if the
changes in TCO2 at the equator were in phase with the
global atmosphere changes and we have no evidence for
such an in-phase condition. Consequently Figure 4 can only
be used to indicate that equatorial opal MAR appears to
have a positive relationship with the global atmosphere CO2

changes.

3. Paleoceanographic Nutrient Conditions
Resolved by Natural Isotope Abundances

[11] Variations in the natural abundance of N, C and Si
isotopes in core material provide another tool for under-
standing paleoceanographic nutrient conditions, [Farrell et
al., 1995; Altabet and Francois, 1994]. The basis for the
method is the fractionation of isotope pairs, e.g. 15N/14N,
13C/12C, 30Si/28Si during phytoplankton uptake and assim-
ilation. Although various outcomes are possible depending
on the particular environmental conditions, the change in
isotope composition depends on the degree of utilization of
the element [Altabet and Francois, 1994] such that as
available nutrient is reduced to near source levels, the

isotope composition of the phytoplankton becomes heavier
by Rayleigh fractionation. In the case of nitrogen this is
expressed as an increase in d15N and occurs with decreased
NO3 concentration.
[12] Our analysis suggests the equatorial upwelling sys-

tem experienced decreased source Si(OH)4 supply (i.e. low
opal MAR) over most of the last cooling cycle,125–25 kyr
(Figure 4) i.e. model phase 1. The CoSINE model output
can also be used to predict changes in utilization of NO3 and
Si(OH)4 and changes in d15N as a function of source
Si(OH)4 (Figures 5a and 5b). d15N natural abundance
variations were obtained from CoSINE model predicted
values of surface NO3 by calculating the relative NO3

utilization (Figure 5a), as the difference between the 120 m
source NO3 (12 mmol/m3, held constant in the model) and
the surface NO3 concentration divided by the source NO3

concentration as the 120 m source Si(OH)4 was varied
(Figure 2b) and inserting that value into Altabet [2001,
equation (4)] for first order Rayleigh fractionation. The
model predicts a U-shaped curve (Figure 5b) with a mini-
mum in d15N at the transition between phase 1 and 2.
Farrell et al. [1995] measured nitrogen isotope ratios in
bulk nitrogen in three cores from the eastern equatorial
Pacific. Their d15N measurements cover the periods, 24–
12 kyr including the LGM, termination 1 (12 kyr), and 12–
0 kyr warming (Holocene). Minimum values occurred at the
LGM and increased toward the Holocene. Farrell et al.
[1995] attributed low d15N values at the LGM to an elevated
NO3 supply to the euphotic zone due to increased upwelling
apparently without a compensating increase in NO3 uptake
(new production). However, the CoSINE model results
suggest that the low d15N at the LGM was due to low

Figure 3. Atmospheric CO2 (ppmv, single line) from the
Vostok core plotted over bar plot of opal mass accumulation
rate (mg/cm2/year) from a central equatorial core (W8402-
14GC).

Figure 4. Average atmospheric CO2 (ppmv) from the
Vostok core plotted against average opalMAR (mg/cm2/year)
from the equatorial core labeled with numbers indicating
age in kiloyears.
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Si(OH)4 supply to the equator resulting in high unused NO3

(Figure 2b), rather than to an increase in NO3 supply. The
subsequent increase in d15N was due to an improved
Si(OH)4 supply. The minimum in d15N during the LGM
may represent the transition point in Figure 5b, between
model phases, which is also the point of maximum surface
TCO2 (Figure 2c). The range of mean Si(OH)4 concentra-
tions at 120 m measured on U.S. JGOFS cruises to 140�W
[Dugdale et al., 2002a, Table 2] are shown as vertical

lines in Figures 2 and 5. This range of contemporary source
Si(OH)4 concentrations along with indications of increasing
export of Si at the equator (Figure 3) from the LGM to the
Holocene are consistent with the CoSINE results suggesting
a transition from phase 1 to phase 2. The evidence from
d15N analyses of equatorial cores interpreted with the
CoSINE model suggests the LGM was at the transition
point between phase 1 and phase 2. Increased Si(OH)4 flux
to the sediments from the glacial minima to the transitions
combined with CoSINE results also point to phase 2
changes as suggested by the vertical lines in Figures 2
and 5. The CoSINE model and d15N results indicate a
maximum in TCO2 at the equator at the glacial maximum,
specifically the LGM, and at that time the equator would
have been a maximum source to the atmosphere. However,
low equatorial opal MAR correlates with low global atmo-
spheric CO2 and high equatorial MAR opal with high
atmospheric CO2 suggesting that the equator is out of phase
with some other process influencing atmospheric CO2 in an
opposite way. The suggestion of maximum CO2 flux to the
atmosphere at the equator during glacial periods is consis-
tent with the analysis of Pedersen et al. [1991] who suggest
cooler temperatures and higher CO2 flux to the atmosphere
for the eastern equatorial Pacific over the last 30 kyr.
[13] Altabet [2001] obtained d15N values from a JGOFS

core at 0�, 140�W, within a degree of where W8402-14GC
was collected. The d15N values have cyclic saw-tooth like
changes over the last 600 kyr with a periodicity of �100 kyr
[Altabet, 2001] (Figure 6). The period recorded by this
core includes both termination 2 and termination 1. Both
terminations are periods of increasing opal MAR (Figures 3
and 4a). The rapid rise in d15N from 150–125 kyr, which
includes termination 2 (128 kyr) is correlated with an
increase in opal MAR. The rapid decrease from 125–
110 kyr coincides with a decrease in opal MAR. The period
from 25–0 kyr which includes the LGM (21 kyr) and
termination 1 (12 kyr) is also a period of rapid increase in
opal MAR (Figure 3) and increasing d15N. In both termi-
nations, the positive relationship between opal MAR and
d15N suggests model phase 2 conditions, in agreement with
the termination 1 data from Farrell et al. [1995]. Altabet
[2001] interpreted increases in d15N; i.e. increased NO3

Figure 5. (a) Modeled utilization of NO3 or Si(OH)4 and
(b) modeled d15N in trap particles versus source Si(OH)4
concentration computed with CoSINE model and Altabet
[2001, equation (4)]. Dotted lines show range of mean
Si(OH)4 at 120 m from 140�W, U.S. JGOFS.

Figure 6. Bulk sediment d15N at the equator for the last
600 kyr from Piston core PC 72 collected during U.S.
JGOFS EqPac Program [from Altabet, 2001, Figure 11].
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utilization as a consequence of increased Fe availability and
higher new production. However, the changes predicted by
the CoSINE model are consistent with the Altabet [2001] N
isotope measurements and provide an alternate explanation,
i.e., increased d15N is due to increased Si(OH)4 supply
resulting in increased NO3 utilization.

4. Hypothetical Si-Driven Glacial Cycle

[14] The equatorial Pacific is a chronically Si(OH)4-
limited ecosystem receiving Si(OH)4 from the Southern
Ocean through SAMW that is rich in NO3 and low in
Si(OH)4. Our modeling shows Si(OH)4-limited diatoms to
control the success of other non-Si-using phytoplankton in
the equatorial ecosystem in such a way that a bell shaped
curve emerges of surface TCO2 as a function of Si(OH)4
source concentration (Figure 2c). For the cores considered
here, the relationship between Si deposition and Vostok
atmospheric CO2 appears to be always positive. Interpre-
tation of this pattern requires recognition that although the
opal MAR represents local equatorial processes, the atmo-
spheric CO2 values are global, the result of both local and
remote processes. If we take the d15N isotope data to
indicate the equator is in model phase 2 (increasing and
decreasing source Si(OH)4 over glacial cycles) then when
source Si(OH)4 is low, d

15N is low and equatorial TCO2 is
highest (Figure 2). However, at low source Si(OH)4
concentrations, global atmospheric CO2 is at a minimum
(Figure 4), indicating the equatorial CO2 cycle is in
opposite phase to global atmospheric CO2. The link
between Southern Ocean and equatorial Si(OH)4 biogeo-
chemical processes provides a negative feedback in the
warming and cooling cycle. In a cooling period the
Southern Ocean exhibits high diatom productivity, high
CO2 influx from the atmosphere; Si(OH)4 export to the
equator is reduced. As equatorial diatom productivity
declines due to reduced source Si(OH)4, equatorial CO2

flux to the atmosphere increases. At some point equatorial
CO2 flux becomes dominant over Southern Ocean CO2

absorption and warming begins. In an alternative scenario,
as equatorial Si(OH)4 continues to decline, the equatorial
system enters model phase 1 and CO2 changes in the
surface waters are in synchrony with the Southern Ocean
resulting in a rapid decline in atmospheric CO2 leading to
full glacial conditions. When a critical low source Si(OH)4
concentration is reached, blooms of coccolithophorids are
triggered [Aksnes et al., 1994], releasing CO2 to the
surface waters and to the atmosphere. The equator has
been converted from a sink to a source of atmospheric
CO2. Warming begins rapidly with increased Si(OH)4
supply to the ocean, e.g. from river input and glacial
melting and the cycle begins again. In this scenario, the
equator is initially a brake on decreasing atmospheric CO2,
later falls into synchrony with the Southern Ocean and
finally triggers rapid CO2 release and warming.

5. Causes of the Changes in Source Si(OH)4

[15] This hypothetical cycle based upon the CoSINE
model simulations, is driven by changes in Si(OH)4 supply

to the equatorial Pacific. The causes of the changes in
Si(OH)4 supply, besides the reduced supply from the
Southern Ocean to the EUC, include weathering, glacial
melting, drying of the climate, river inputs and dust. Rapid
increases in opal MAR and CO2 occurred from 150–135 kyr,
just prior to termination 2 (128 kyr), and 35–5 kyr
including the LGM and termination 1. CO2 and air tem-
perature are in phase with the 100,000 year ice age cycle,
but changes in ice volume lags both [Shackleton, 2000].
Since opal MAR changes in the central equatorial core are
in phase with CO2, ice volume also lags opal MAR in this
case. The lag in ice volume change, i.e. melting, eliminates
increased weathering and also glacial melting with inputs of
glacial flour [Pollock, 1997] as the sources of increased
Si(OH)4 at the terminations. Re-dissolution from the con-
tinental shelf sediments does not appear to be a viable
source of Si(OH)4 since CO2 rose before sea level increased
at terminations [Broecker and Henderson, 1998]. The dust
pulses shown in the work of Petit et al. [1999, Figure 2],
occurred also with a 100 kyr frequency but declined to low
levels just before the rise in air temperature and CO2 at
termination 2, the ‘‘demise of the dust’’ [Broecker and
Henderson, 1998]. The low dust period lasted until about
60 kyr. Although aeolian inputs of Si are only about 10% of
river inputs [Tréguer et al., 1995], the dust falls on the
surface and can have an immediate effect on the euphotic
zone. However, the high dust period precedes the increase
in Si deposition at termination 2 and so is unlikely to be the
source of increased Si at terminations.
[16] Another possible explanation for decreasing input of

Si(OH)4 to the ocean is a progressive drying of the climate
which would affect both the inputs of Si(OH)4 from both
local, western Pacific rivers, and to the EUC from both the
Northern and Southern Hemispheres. River inputs are the
primary source of Si(OH)4 (�90%) to the modern ocean,
with hydrothermal vents and basalt dissolution making up
the remaining 10% [Tréguer et al., 1995]. Input from the
North Pacific would be affected both directly through lower
river Si(OH)4 supply to the ocean and perhaps by a
decrease in the estuarine effect with deepening of the
nutricline. Si(OH)4 input from the rivers of the western
tropical Pacific [Dugdale et al., 2002b] would decrease
with the drying of the climate. The southern source of
Si(OH)4 to the EUC would also be reduced by reduced
river input to the Atlantic and Indian Oceans. A shutdown
or decrease in the conveyer belt transporting nutrients in
deep water from the Atlantic toward the south would also
starve the Southern Ocean of Si(OH)4. The timescales for
precipitation induced changes to the Si budget of the world
oceans would be somewhere close to the turnover time for
Si(OH)4 as a function of river input, about 15,000 years
[Tréguer et al., 1995] and so match the timescale of the
slow equatorial opal decline. During the long cooling phase
(107–23 kyr), Southern Ocean productivity south of the
polar front declined; a fourfold decrease according to
Mortlock et al. [1991] and Charles et al. [1991], but this
reduction in southern Si demand did not result in increased
export to the equator. On balance, at least the regions south
of the polar front in the Southern Ocean were starved of
Si(OH)4 along with the equatorial system.
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[17] Decreased Si(OH)4 and opal accumulation during
interglacial cooling, might also occur if the global supply of
Si(OH)4 became progressively sequestered in the coastal
margins [Berger et al., 1994]. Berger et al. [1994] observed
that the global ocean must have had a very different
chemistry during periods of glacial accumulation. However,
the diatom record from cores taken from three Atlantic
coastal upwelling sites [Abrantes, 2000] shows the same
pattern as the equatorial Pacific and the Southern Ocean,
i.e. very low opal accumulation during the post termination
2 interglacial period with large accumulations beginning in
isotope stage 2 and reaching peak values in termination 1.
The apparent global decline of Si(OH)4 as indicated by core
opal in upwelling areas during cooling periods may be a
result of the silicate pump [Dugdale and Wilkerson, 1998;
Ragueneau et al., 2002]. Si(OH)4 is efficiently exported
from the euphotic zone through its low regeneration rate
compared to N or P [Dugdale et al., 1995]. The relatively
low dissolution rate of diatom frustules compared to water
column regeneration of N and P drives upwelling systems
with diatom populations into Si(OH)4 limitation, leaving
behind relatively high levels of N and P. The consequence
of silicate pumping is that the marine Si cycle is more
reactive to changes in inputs than N, which is recycled
biologically at a rapid rate and which has a new source in
biological nitrogen fixation. Global marine nitrogen fixa-
tion is now recognized to be a significant part of the
oceanic N budget [Karl et al., 2002]. As a consequence,
a certain level of uncoupling between Si and N on the
glacial timescale is likely to occur. The Si cycle should be
strongly dependent on climate related changes in weather-
ing and runoff but the highly biological nitrogen cycle is
less affected.

6. Discussion

[18] We have shown that equatorial Pacific cores show
low opal deposition in interglacial periods when CO2 is low,
increasing opal MAR at glacial maxima and high opal
deposition at terminations when atmospheric CO2 is high.
Cores north of the polar front in the Southern Ocean and
Atlantic coastal upwelling areas [Abrantes, 2000] also show
the same pattern, as do cores from the California margin
[Kienast et al., 2002; Lyle et al., 1992; Gardner et al., 1997],
consistent with the pattern predicted and recreated by the 1-
D CoSINE model for low source Si(OH)4 concentrations,
i.e., phase 1 [Dugdale et al., 2002a]. In the model this direct
relationship between source Si(OH)4 and surface TCO2 is
the result of diatom suppression of non-Si-requiring
phytoplankton.
[19] The Southern Ocean has been suggested as a source

of the varying Si deposition in the equatorial region, through
decreased Si trapping during glacial periods communicated
as increased Si(OH)4 to the equator through advection of
SAMW to the EUC [Dugdale et al., 2002a], and the silicate
leakage hypothesis [Brzezinzki et al., 2002]. The present
study however, suggests that Antarctic and equatorial
changes in opal MAR vary together. Alternatively, the
supply of Si(OH)4 remains constant during glacial cycles,
but is re-distributed between different parts of the Southern

Ocean and equatorial systems. However, it may emerge that
different regions of the equatorial/southern ocean system are
in different, opposite deposition phases, e.g. the more direct
effect of the SAMW water may be to the eastern equatorial
Pacific, through the lower EUC which transits under the
equatorial upwelling system, upwells along the Peru coast
and turns north to supply some of the water to the EEP
upwelling system [Toggweiler and Carson, 1995; Dugdale
et al., 2002b]. The upper part of the EUC is supplied from
shallower waters to the south and north and so is less
influenced by SAMW water. In this case, the pattern of Si
deposition in the central and eastern equatorial Pacific could
be either in or out of phase with each other. Enhanced export
production north of the polar front during glacial periods
would send water with decreased Si concentration north-
ward. Additional studies of opal deposition in both equato-
rial and Antarctic cores will be useful in corroborating or
refuting the silicate leakage hypothesis, the general conclu-
sion of Berger et al. [1994] and our results suggesting that
opal deposition tends to be low in glacial periods.
[20] We have interpreted variations in natural abundance

of N, Si and C isotopes from the equatorial Pacific and our
model results to indicate that the equatorial Pacific provides
a negative feedback on CO2 processes in the Southern
Ocean. Additional measurements of stable isotope natural
abundances in cores from the two regions would allow
further tests of the hypothesis that variations in Si and N
isotopes are the result of changes in Si(OH)4 supply rather
than changes in Fe or other drivers of enhanced production.
The possibility that low Si(OH)4 conditions are necessary
for the blooming of coccolithophorids, adds another dimen-
sion to the hypothesis that variations in Si(OH)4 supply
during glacial/interglacial cycles affect the emission of CO2

through diatom control of upwelling ecosystem functioning.
Dymond and Lyle [1985] suggested that a reduction in the
proportion of diatoms to coccolithophorids would lead to
more calcite export from the equatorial surface waters and
an increase in CO2. An attractive element of this hypothesis
is that it predicts the alternating opal-rich and carbonate-rich
deposits under the equatorial Pacific.
[21] The purpose of this study was to add a new biolog-

ical dimension and new theory to the quest for understand-
ing glacial CO2 cycles. Our major conclusion from data and
modeling is that the role of diatoms in carbon export needs
to be considered in a more complex way than the commonly
accepted mode where increased diatom production equals
increased carbon export. At low Si(OH)4 source levels,
diatom interaction with other non-Si-requiring phytoplank-
ton may have the counter-intuitive result that increased
Si(OH)4 source concentration and increased diatom popu-
lations result in greater surface TCO2 concentrations and
increased evasion of CO2 to the atmosphere. At even higher
Si(OH)4 source concentrations, increased diatom popula-
tions result in lower TCO2 and decreased CO2 flux to the
atmosphere. Although the changes in TCO2 in equatorial
surface waters predicted by the CoSINE model are relatively
small, they are enough to change the equator from a net
source to a net sink and so lead to a new equilibrium value
for the atmosphere. The possibility that the equatorial
Pacific may provide either negative or positive feedback
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to Southern Ocean processes is intriguing. The observed
relationship between Si(OH)4 deposition and glacial/inter-
glacial CO2 may be causal or artifact, but in any case should
be considered in the context of climate changes on short or
long timescales. Of particular interest is the question of the
source of increased Si(OH)4 just prior to or at terminations.
Field studies to test these model driven hypotheses need to
be made in the equatorial Pacific. We hope some contribu-
tion will be made by these efforts to the puzzle of glacial/

interglacial feedback systems in Earth’s biogeochemical
system.
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