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Microbial ecology is undergoing a revolution of
phenomenological discoveries and methodological

advances that bring resolution down toward the level of the
individual and highlight the role of chemical exchanges in bac-
terial communities. Recent work shows that inter- and 
intraspecific chemical signaling, leading to coordinated,
density-dependent behavior (termed quorum sensing) (Fuqua
et al. 1994), is commonplace among bacterial species (Fuqua
et al. 1996, Kaiser and Losick 1997) and is relevant in natural
habitats (McLean et al. 1997, Bachofen and Schenk 1998).
Density-dependent phenomena, first identified in biolumi-
nescence (Wilson and Hastings 1998), where the induced
behavior is visible, have since been implicated in general for-
aging and defensive behaviors such as production of extra-
cellular enzymes and antibiotics (Givskov et al. 1997, Chernin
et al. 1998, Srinivasan et al. 1998).

An additional development is the recognition of the tremen-
dous importance of surface-attached bacteria in nature
(Costerton 1995). Increased acquisition of nutrients has been
proposed as one explanation for attachment (Ben-Ari 1999).
Surfaces are also habitats for microbial consortia, or groups
of bacterial species whose interdependent metabolic reac-
tions are required for the decomposition of certain complex
substrates (Wolfaardt et al. 1994, Paerl and Pinckney 1996).

Improvements in molecular techniques for identifying
taxa, phylogenetic relationships, and differential genotypic and
phenotypic expression are accelerating (Pace 1997, Tunlid
1999). It is arguable that measurement capability has surpassed
predictive expertise, particularly at the clonal level. Other
authors have hypothesized that evolutionary processes op-
erating at multiple taxonomic levels result in widespread co-
operative behavior in bacteria, as exemplified by quorum
sensing (Caldwell et al. 1997). Coevolution has been pro-
posed to explain the close associations among consortial bac-
teria (Caldwell et al. 1997). In contrast to the progress being
made in empirical microbial ecology, few theoretical treat-
ments of these topics exist (Brookfield 1998).

An exciting result of the rapid progress in microbial ecol-
ogy is that methodologies and incentives now exist to treat bac-
teria like larger (i.e., easier to visualize) organisms, gaining from
the application of existing general ecological theory to mi-
crobial problems. General ecology, on the other hand, is
poised to benefit from applying such theory to microbial
systems. Bacteria can be modeled almost perfectly in terms of
morphologies, motilities, and growth, and they can be tested
experimentally with billions of organisms and over many
generations.
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ucsb.edu) is a postdoctoral researcher at the National Center for Eco-
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One major difficulty is predicting performance of bacte-
rial individuals, a key step in gaining understanding of most
metazoans. For example, the relationships between individ-
ual foraging and local habitat are central to predicting the
abundance of organisms in time and space. Additionally,
quantifying the relationships between fitness and genetic re-
latedness is essential for understanding the evolution of co-
operation (Dugatkin 1997). For bacteria, which are 0.2–2.0
µm in diameter and are often studied in samples of 105–109

organisms, these relationships have been difficult to elucidate.
Theoretical treatments have thus far been limited to individual
organisms and simple geometries (Koch and Wang 1982,
Karp-Boss et al. 1996, Vetter et al. 1998, Dusenbery 1999,
Ploug et al. 1999).

Here we quantify foraging by individual attached bacteria
in those porous media where mass transport is dominated by
diffusion. In particular, we focus on surficial marine sediments,
where 99.9% of bacteria are attached to grain surfaces (Stew-
ard et al. 1996), forming sparse biofilms. Specifically, we
quantify the cost of attachment in the currency of nutrient
uptake and, given attachment, how uptake is influenced by 
sediment-grain microtopography. Additionally, we describe
the impact of near-neighbor bacteria and initiate a foraging
theory appropriate for clonal populations.

These issues require solutions to Fick’s laws of diffusion for
complicated geometries (see Box 1). Analytical solutions do
not exist, and numerical estimates would require daunting
boundary and grid specifications. Instead, we implement an
electrical model, inspired by Berg’s (1993) theoretical treat-
ment, to quantify steady-state diffusive uptake by benthic
bacteria.

Electrical analogs, based on mathematical equivalence
among disparate systems, were used to solve transport prob-
lems before affordable digital computing became available
(Karplus and Soroka 1959, Welty et al. 1984). Physically im-
plemented electrical analogs had not been used previously to
solve complex diffusion problems (except for a brief treatment
in Segall et al. 1985, app. A), nor had they been used in eco-
logical contexts. The method described here is accurate, eco-
nomical, rapid, and flexible. It holds promise in contempo-
rary education, as well, because a hands-on approach involving
analogous thinking can greatly improve physical intuition, par-
ticularly regarding mass and energy transfer. Developing this
understanding is especially important in biology, where in-
teractions between organisms and their environments are
often constrained physically. Furthermore, the analogy is
well suited to interdisciplinary efforts emphasizing compre-
hension across multiple time and space scales (Rutherford and
Ahlgren 1989, Moreno 1999).

Microbial foraging
Bacteria are osmotrophs (osmosis + nutrient): They acquire
nutrients via the uptake of small dissolved molecules across
the cell membrane. Thus, their foraging relies on the diffu-
sion of nutrients to the cell surface. The thermal energy of a
solute (or any) molecule is manifested as kinetic energy (the

definition of which contains a velocity term), which propels
the molecule. Molecules move rapidly and collide with myr-
iad other (mostly solvent) molecules, which randomize the
motion. The repeated starting and stopping, with random di-
rectional reorientation at each step, is diffusion on a micro-
scopic scale. At a macroscopic scale, diffusion is the resulting
exchange between parcels of differing solute concentrations.
Both solute and solvent diffuse, but transport of solvent is de-
scribed as osmosis. Macroscopic transport (Figure 1a) is the
sum of the microscopic “random walks” of individual mol-
ecules (Berg 1993, p. 17). Random walk is a statistical term,
first presented in 1905 by Karl Pearson (Kaye 1989), who is
known by most biologists in reference to the Pearson corre-
lation coefficient. A random walk is a process consisting of a
sequence of discrete steps of fixed length; the randomness re-
quires that the direction of each step is governed by chance
independent of preceding steps (Weisstein 2000, “Random
Walk”). Kaye (1989) presents a humorous and intuition-
building approach to random walks that extends their ap-
plication to many problems. Weisstein (2000) provides an ex-
cellent source of hyperlinked mathematical terms and
definitions. From here forward, we use diffusion to describe
the macroscopic process of solute transport.

Diffusive transport to a cell occurs when a concentration
gradient surrounds the surface, and Fick’s laws of diffusion
can be used to calculate the diffusive transport (Box 1, Fig-
ure 2). In three dimensions, at steady state, diffusion follows
Laplace’s equation

∇2C[mol m–3 s–1 ] = 0,
which says that the second spatial derivative of the concen-
tration C[mol m–3] is equal to 0 (symbols defined in Table 1).
(See Box 1, note a, for a discussion of the Laplacian operator,
∇2.) To predict diffusion to a microbe, Laplace’s equation is
solved for C under given boundary conditions. The diffusional
flux JDiff [mol m–2 s–1], or transport rate per unit area, and the
diffusional transport rate IDiff [mol s–1] are then calculated
from the function C (Box 1, Figure 2).

Analytical and numerical solutions of Laplace’s equation
have modeled steady-state diffusion to single (Koch and
Wang 1982, Berg 1993, Karp-Boss et al. 1996) and colonial
(Ploug et al. 1999) planktonic osmotrophs of simple shapes.
Their models, as well as those developed here, generally in-
clude two assumptions. First, they assume that the cell’s up-
take rate is equal to the diffusional transport IDiff to the sur-
face. This rate can be limited by either the rate of diffusional
supply to the cell surface or the rate of transport across the
cell membrane (Pasciak and Gavis 1974, Koch 1990, Karp-Boss
et al. 1996). In either case, the rate corresponds to a constant
substrate concentration at the cell surface. In the former case,
the cell acts as a “perfect absorber” with the surface concen-
tration equal to 0. The second assumption is that nutrient up-
take is in steady state, implying that the time to reach steady-
state absorption is generally much shorter than the time in
which the environment changes. That is, concentration in the
medium far from the cell also is assumed constant. The ana-
log approach works by implementing the constancy in con-



centration in the medium and at the cell surface, thereby
setting the gradient that drives diffusion.

Unfortunately, analytical solutions, pursued as above, do
not exist for most real-world problems, particularly in porous
media. Numerical approaches (“Laplace solvers”) employ 
iteration on a specified grid in a problem space where bound-
ary conditions are given by known functions. This approach

is not feasible for complex grain surfaces and multiple cells,
especially in three dimensions.

Another method of solution is to measure the process of
interest in a physical model. When dimensional relation-
ships are understood, length scales can be manipulated to
make microscopic processes macroscopic. Diffusion of dye
through gelatin (used to reduce the inevitable mixing by
convection in aqueous solutions) can be used for simple sit-
uations (Berg 1993), but it is not a reasonable technique for
complex problems because of difficulties in maintaining
boundary conditions, measuring quantities, and waiting for
steady state. The time t for a molecule to diffuse a distance x
is

where D [m2 s–1] is the molecular diffusion coefficient (Berg
1993). Magnifying a microbial problem 104–105 times in
length (e.g., modeling a bacterium of 0.1 µm radius as an ob-
ject of 1 mm to 1 cm radius) would require scaling by factors
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Table 1. Symbols used throughout the text and figures.

SI unitsa

Symbol Quantity (alternate formb)

A Area m2

σ Conductivity A V–1 m–1

C Concentration mol m–3

D Diffusion coefficient m2 s–1

F Fitnessc mol s–1

IDiff, IElec Diffusive transport or mol s–1 or
electric currenta,d A(Cs–1)

JDiff, JElec Solute flux or mol m–2s–1 or
electrical flux A m–2(C m–2s–1)

(current density)

M Metabolic costa mol s–1

NB Number of bacteriae mol

r Radial distancef m

V Electric potentialg V

x Linear distanceh m

a. Units include ohms (Ω), amperes (A), coulombs (C), meters (m), sec-
onds (s), volts (V), and kelvins (K).

b. Included for clarity in dimensional analyses of transport processes.
c. Subscripts “Ind” and “Clone” refer to processes for individual cells or

clonal populations, respectively.
d. Subscript “Max” refers to the maximum transport measured or predict-

ed. Subscripts “Free” and “Flat” describe transport to a bacterium that is freely
suspended and to one that is abutted to a surface, respectively. Subscript “Full”
refers to that obtained with a full monolayer of bacteria.

e. Subscript “Full” refers to the number required for a full monolayer.
f. Subscripts “In,” “Out,” “B,” and “G” refer to inner, outer, bacterium, and

grain, respectively.
g. Synonymous with “voltage” in older texts. Electric potential V always

refers to a potential difference, either between the point of interest and a
known reference point (ground) or between two points of interest. Because 
(VL – VGround) – (V0 – VGround) = VL –V0, the distinction is not usually pointed
out.

h. Subscripts “L,” “H,” “S,” and “F” refer to length, height, separation, and
fluid (boundary), respectively.
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Figure 1. Basic diffusion phenomena. (a) Graphic and
analytic illustration of Fick’s first law of diffusion (one
dimensional) and the dependence of mass transport on
gradients, rather than magnitudes (see Box 2). Insets: In
each parcel of length dx, over time step t, 50% of the
solute molecules randomly walk to the left, and 50% ran-
domly walk to the right. The replacement molecules come
from the left (b) and right (c). Their sum equals the con-
centration C [mol m–3], and their difference is propor-
tional to the flux JDiff [mol m–2 s–1], shown by hatched re-
gions. As dx → 0, the derivative form is appropriate,
shown by the dashed lines. (b) Log–log plot of average
time for molecular diffusion of sucrose in water at 25°C.
Time to diffuse varying distances illustrates why scaled-
up diffusion models of microscopic process would require
a great deal of patience.

,



of 108–1010 in time.A molecule of sugar in water at room tem-
perature (D ≅ 1.0 x 10–5 cm2 s–1) diffuses 1 µm in 5 x 10–6 sec-
onds, but travels 1 cm in 14 hours, far too slow for practical
experiments (Figure 1b).

Analogy and similitude
Many authors (Gebhart 1993, Cussler 1997) show that prob-
lems described by the diffusion equation are interchangeable
with problems described by the heat conduction equation
(known as Fourier’s law),

with thermodynamic temperature v [K] and thermal diffu-
sivity κ[m2 s–1]. Thus, a solution of the heat equation (e.g.,
those found in Carslaw and Jaeger 1959) can be applied di-
rectly to an analogous diffusion problem by replacing v with
C [mol m–3] and κ with –D [m2 s–1]. At steady state, heat con-
duction is governed by Laplace’s equation for temperature,
∇2 v = 0. Diffusion of mass and heat both result from random
motions of molecules; diffusion changes the molecular dis-
tribution, and heat conduction changes the thermal energy
distribution. The terminology is similar, and boundary con-
ditions compare easily (e.g., constant solute concentration ver-
sus constant temperature). Both transport rates depend not
on absolute magnitudes but on gradients (of concentration
or temperature).

We stress here that every physical process that obeys
Laplace’s equation is analogous to, or has similitude to, dif-
fusion (Table 2). Vaux (1961), Johnson (1999), and
Narasimhan (1999) developed in-depth analogies among
transport processes. These analogies are based on linear re-
sponses to spatial gradients, generally resulting from ran-
dom walks or random walks with drift (due to an applied
force). They also rely on steady state. Biologists can readily ap-
ply  “analogous thinking”(Johnson 1999) to conceptualize and
quantify physical processes, providing immediate benefits in
physical intuition from more familiar systems.

Berg and Purcell (1977) and Berg (1993) presented a the-
oretical electrical analog, based on Laplace’s equation for
electrostatic potential in charge-free space, to solve chal-
lenging diffusion problems. Berg (1993) presented a second,
more accessible theoretical analog, based on Ohm’s law for
electric current, to solve some of the same problems. Al-
though not stated explicitly, the analog relies on Laplace’s equa-
tion for the electric potential V [V] in a steady-state conductor,
which results in direct correspondence between electric po-
tential V and concentration C, electrical current IElec and dif-
fusive transport IDiff, and diffusivity D and conductivity σ. To
illustrate the analogy between diffusive transport rate and elec-
tric current, we compared the simple, familiar examples of
steady-state diffusion through a rectangular volume (Box 1,
Figure 2a) and steady-state current in metal wire (Box 2,
Figure 2b).

346 BioScience  •  April 2002 / Vol. 52 No. 4

Articles

Table 2. Examples of transport processes governed by Laplace’s equation.

Transport process

Flow in porous Flow between
Feature Mass diffusion Current flow Heat conduction media parallel plates

Flow law Fick Ohm Fourier Darcy Pouiseuille

Potential Concentration Voltage Temperature Energy Pressure

Conductance Diffusivity Conductivity Thermal Permeability/ Separation2/
conductivity viscosity viscosity

Zero-flux Coated surface or Insulated surface or Insulated surface Impermeable Impermeable
surface mass-flow line current-flow line or heat-flow line boundary or boundary or

streamline streamline

Normal-flux Equiconcentration Equipotential Isothermal Equienergy Equipressure
surface surface surface surface surface surface

Continuity ∇ Mass flux = 0 ∇ Current = 0 ∇ Heat flux = 0 ∇ Velocity = 0 ∇ Velocity = 0
equation

Laplace’s ∇2 Concentration ∇2 Voltage ∇2 Temperature ∇2 Energy ∇2 Energy
equation = 0 = 0 = 0 = 0 = 0

Note: Adapted from Vaux (1961).

= κ∇2v,
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Macroscopic diffusion follows Fick’s first law,

(1) 

with solute flux due to diffusion JDiff [mol s–1 m–2] proportional to the spatial gradient, or derivative d/dx, of solute concentration C [mol m–3]. The con-
stant of proportionality is the diffusion coefficient D [m2 s–1], and the negative sign reflects that JDiff is in the direction of lower concentration (down gra-
dient) (Figure 1). The transport rate due to diffusion IDiff [mol s–1] is found by multiplying equation 1 by the cross-sectional area A [m2],

Solute concentration C increases or decreases over time t [s], based on the conservation of mass (of solute),

With substitution from equation 1, yielding Fick’s second law:

(3)

This result is satisfying intuitively: Over time, if the flux of solute into a parcel of length dx is smaller than the flux out, solute will accumulate. A key

feature of equations 1 and 3, and of nature itself, is that JDiff and dC/dt depend not on the magnitude of concentration but on the spatial gradient

(Figure 1). At steady state, or equilibrium, solute neither accumulates nor declines (although molecules are still in constant motion), and

If D is constant (not changing with C or x), then

(4)

which is usually applicable for the dilute solutions of ecological interest (Cussler 1997).

A simple application of Fick’s laws calculates diffusion through a rectangular volume in steady state, with constant concentrations at each end and

concentration varying in only the x dimension (Figure 2a). The crucial question is the transport rate by diffusion IDiff through the volume. It is answered

by finding the solution of equation 4, or an expression for C(x). Integrating both sides of equation 4 with respect to t gives

where G1 and G2 are constants of integration. Summing the constants into a third constant G [mol m–4] gives              Integrating both sides again,

Gx + H1 = C + H2. Summing the constants H1 and H2 into H [mol m–3] and solving for C provides the general solution  

C(x) [mol m–3] = Gx + H. (5)

With the specified boundary conditions C(x0) = C0 and C(xL) = CL, the constants are determined by substitution in equation 5 to be G = (CL – C0)/xL and

H = C0 (the algebra being easier with H determined first). The exact solution is then

(6)

(Figure 2a). The flux along the x-axis is obtained from Fick’s first law, equation 1,

(7)

and the quantity of typical interest, the transport IDiff, is

(8)

This problem was described in one spatial dimension, x, but many real problems vary in three dimensions. In Cartesian coordinates, Fick’s 

second law is

(9)

where ∇2 is the Laplacian operatora. At steady state in three dimensions,

∇2C[mol m–3s–1] = 0. (10)

The result and notation in equation 10 hold true in any coordinate system. Equation 10, applied to functions other than C, is so familiar in physics that

it has a name, Laplace’s equation, and is indexed in many math and physics books.b

a. The symbol ∇, or del, is shorthand for the gradient “operator,” which requires that the first partial derivative in space be applied to a function. The symbol ∇2, or del
squared, is shorthand for the Laplacian operator, which requires that the second partial derivative in three dimensions be applied. Other familiar operators include +, –, x, and ∫.
The Laplacian appears different among coordinate systems (Weisstein 2000), but the operation (second derivative) is the same.

b. Laplace’s equation is also indexed under “Dirichlet problems” when boundary conditions are stated in terms of the function’s value (e.g., C specified on a cell surface), and
“Neumann problems” when boundary conditions are stated in terms of flux (e.g., JDiff specified on a cell surface).

Box 1. Fick’s laws of diffusion.

(2)

.

JDiff[mol m–2 s–1] =

http://www.jstor.org/action/showImage?doi=10.1641/0006-3568(2002)052[0343:CFOABP]2.0.CO;2&iName=master.img-004.png&w=148&h=22


Model implementation
To implement the physical model, we created electric cir-
cuits of relevant geometries from conductive material im-
mersed in electrolytic baths. Dimensions were scaled up to
macroscopic proportions and nondimensionalized by refer-
ence to bacterial radii. Analogs for pore-fluid concentrations
were made from disposable aluminum cookware (pie pans and
baking sheets) and copper pipe, and analogs for bacteria
were steel slingshot ammunition. They were all electrodes
whose distributions of electric charges were uniform at each
surface. Nonconductive boundaries were made from plastic
tubs and plates, modeling clay, and adhesive shelf paper
placed over aluminum surfaces. Electrolytic baths, made
from sodium bicarbonate (chosen to reduce electrochemical
plating on metal surfaces) dissolved in water (concentration

adjusted to obtain appropriate current flow), constituted the
resistance. Circuits were completed with 22-gauge, insulated
copper wire using solder or alligator clips to steel (using
stainless-steel soldering flux) and aluminum, respectively.

Circuits were driven with direct current (DC, via two D cell
batteries) or alternating current (AC, via a signal generator lim-
ited to ~100 mA output). In the terminology of diffusion, the
power source maintained constant “concentrations” at the
boundaries by applying a constant voltage across the elec-
trodes. These power supplies ensured the experimenters’
safety and provided signals of sufficient magnitude and sta-
bility. Plating and bubble generation occurred but did not sig-
nificantly influence the results. The DC power supply was sim-
pler, but the AC power supply gave higher precision and
reduced plating. Digital and analog multimeters were used to
measure potential difference V [V] and current I [mA] in the
circuits. All distances were measured to ±0.5 mm, and ma-
nipulations were made by hand.

Model validation
The physical model was tested against problems with known
analytical solutions for the corresponding diffusion prob-
lems. We first tested the concentration–voltage analog by
modeling steady-state diffusion from an outer cylinder to
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For a typical metallic conductor such as wire, Ohm’s law states that

the electric current IElec is proportional to the electric potential dif-

ference V [V] measured along it, that is,

where the constant of proportionality is the resistance R [Ω]. Note

that nonitalicized “A” represents the dimension Amperes (Table 1).

Resistance is a property defined by an object’s geometry and its

resistivity ρ [Ω m], or conductivity σ [1/ρ; Ω–1 m–1]. For a wire of

length xL[m] and cross-sectional area A [m2] (Figure 2b),

The current is then 

similar to equation 8. Dividing by the area A gives the current den-

sity or charge flux (11)

similar to equation 7. The formal equivalence between the linear

functions in equations 7 and 11 implies that equations derived

from one system hold true for the other, given consistent replace-

ment of variables. Thus, in differential form,

,

as in equation 1. In three dimensions,

,

as in equation 9, and at steady state

,

as in equation 10. Because circuits of general interest usually

involve one-dimensional transport along wires, this equation is not

common in texts, but it is appropriate for describing circuits involv-

ing three-dimensional electrolytic baths.

Note: See Halliday and Resnick (1978) for an alternate definition of Ohm’s
law. Ohm’s law, like Fick’s law, is not valid for materials that do not behave lin-
early. Non-Ohmian electrical conductors include semiconductors, in which the
conductivity (and thus the current) does depend on the magnitude of the elec-
tric potential. Analogously, in non-Fickian materials, the diffusion coefficient
(and thus flux) does change with concentration.

Box 2. Ohm’s law.

b

x [m] 
xL

V
 [V

]

V0 

A
IElec

VL 
x0

C
 [m

ol
 m

-3
]

C0

CL
x0

  

A

IDiff

x [m]
xL

a

Figure 2. Schematic of diffusion–electric current analog
(Boxes 1 and 2). (a) Steady-state diffusion through a
rectangular volume of cross-sectional area A and length
xL, with constant concentrations C0 and CL at either
end. (b) Steady-state current flow through a wire of
cross-sectional area A and length xL, with constant elec-
tric potential V0 and VL at either end.

JElec[A m–2]

JElec[A m–2]



an inner cylinder (Figure 3a; Crank 1975, eq. 5.2). The outer
cylinder was made from a disposable aluminum cake pan
(with vertical sides) with a 10 cm radius (rOut). To insulate the
bottom of the pan, adhesive shelf paper was glued to the
bottom. To facilitate measurements, plain paper with printed
radial coordinates was taped to the insulating paper. The in-
ner cylinder was made from copper pipe, with a 1.0 cm ex-
ternal radius (rIn), taped to the bottom of the pan with 
double-sided foam tape. Because in this case diffusion is en-
tirely radial, in cylindrical coordinates C varies only with ra-
dial distance r. Using a voltage probe oriented vertically and
spanning the fluid depth (1 cm), we measured the electric po-
tential averaged along the z axis for a given radius (r) and an-
gle from the center point. We measured V along four or-
thogonal radii and averaged the values (Figure 3b).

The electric potential V increased from the surface of the
inner cylinder outward along the radial axes. The electrical data
matched closely the general analytical solution

C(r) = G + H ln(r),
where G [mol m–3] and H [mol m–3] are constants dependent
on boundary conditions. With the boundary conditions
C(rIn) = CIn and C(rOut) = COut,

In this problem, the modeled boundary conditions were 
CIn = 0 [mol m–3] and COut = 5.04[mol m–3], taken directly
from the measured VIn and VOut, respectively.

We then tested the relationship of real interest, that is, the
current–diffusion analog, by using the geometry as described
above while increasing the inner radius rIn from 0.1 to 6 cm.
The inner cylinder was made from a strip of aluminum cut
from a flat baking sheet, rolled into a cylinder, and secured with
an alligator clip. At each step, the cylinder was unrolled,
trimmed, and resecured. The experiment was completed
twice (once each with AC and DC power). The current IElec
was scaled to the maximum IMax and the scaled values were
averaged for the two experiments. The electrical data matched
the analytical solution (from Crank 1975, eq. 5.5 divided by
t) closely (Figure 3c):

Given the boundary conditions and rOut from above, we fit this
equation to the data using the function Nonlinear Fit in
Mathematica 4.1 (Wolfram Research), thereby estimating
the parameter D. Note that in the cylindrical geometry here,
diffusive transport IDiff is not a linear function of the inner ra-
dius rIn, as it is in the spherical problem. These initial tests in-
stilled confidence that we could use this easily implemented
physical model of circuits on unsolved problems of steady-
state diffusion. Though it is possible to use electrical analogs
for time-dependent problems (Karplus and Soroka 1959), in-
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Figure 3. Model validation for the diffusion–electric cur-
rent analog. (a) Schematic diagram of circuit used to solve
problem of transport from an outer cylinder to an inner
cylinder. (b) Concentration–electric potential analog.
Line represents analytical solution and crosses represent
electric potential measured along radial axis r. (c) Diffu-
sive transport–electric current analog. Line represents an-
alytical solution and diamonds represent electric current
measured as the inner cylinder radius rIn increased.
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vestment in apparatus and protocols may compare with that
required for numerical modeling.

Diffusive flux to attached bacteria
We used the analog model to investigate how a surface-
attached bacterium fares in obtaining nutrients by diffusive
transport compared with a planktonic bacterium. The model
mimicked a bacterium of radius rB (here 0.5 cm) attached to
an inert sediment-grain surface with a constant-concentra-
tion pore-fluid boundary parallel to the grain surface, at a fixed
distance away from the bacterium (20 rB; Figure 4a). The
bacterium was assumed to be a perfect absorber, that is, C =
0 [mol m–3] at the cell surface. With the bacterium and pore-
fluid boundary fixed in place, the current IElec flowing through
the circuit was measured as the insulating grain surface was
moved a separation distance xS [cm] away from the bac-
terium’s outer surface (Figure 4a).We scaled the resulting cur-
rent to that obtained without a grain surface present (IElec/IFree,
dimensionless) and scaled the separation distance to the bac-
terial radius (xS/rB, dimensionless). This problem is analogous
to the heat-transfer problem of a buried heat sink abutted

against an adiabatic surface, a problem that has not yet been
solved analytically (“exactly”) with consensus (Hahne and
Grigull 1974, Small and Weihs 1977).

When the bacterium was tangential to the rigid surface, that
is, xS = 0, the current was about 80% of that of the unattached
cell (Figure 4b). Thus, the cost of attachment in terms of
lost access to diffusive transport was about 20% of the cell’s
potential gross uptake. In diffusionally constrained settings,
the reason for attachment cannot be simple gain in nutrient
acquisition. Rather, attached bacteria can be thought of as em-
ploying the feeding strategy of sessile marine invertebrates—
that is, they let food come to them.When fluid advection (flow
relative to the surface) is present, the diffusive sublayer over
the grain surface will thin, thereby increasing nutrient sup-
ply as the same concentration difference is divided by a
shorter distance. This complication illustrates the difficulty
of comparing two distinct foraging strategies over ecological
and evolutionary time scales. Who wins? The attached bac-
terium isolated in the diffusive sublayer, which may be thinned
by flow, or the motile suspended bacterium that can spend
more time in high-concentration fluid (Mitchell et al. 1996,
Dusenbery 1999, Konopka 2000)? In porous environments
with significant advection and periodic sediment suspen-
sion, attachment may be the only way to exploit the habitat
over long time periods.

Attachment cost dropped to about 5% when the bac-
terium was one cell diameter away from the grain surface (Fig-
ure 4b). The rapid amelioration of uptake cost with increas-
ing separation suggests that attached bacteria capable of
maintaining a distance of at least one radius away from a solid
surface would have a distinct advantage over those abutted di-
rectly to the surface. This result immediately prompts spec-
ulation about the role of extracellular material in microbial
ecology. Extracellular polysaccharide (EPS) is often produced
in large volume by attached bacteria in plush and sparse
biofilms (Figure 5; Underwood et al. 1995, Heissenberger et
al. 1996, Bennett et al. 1999, Ransom et al. 1999). As a first ap-
proximation, EPS and water have identical transport properties
for the diffusion of small molecules, that is, Ds for small
molecules in the two media are not substantially different
(Koch 1990, Cussler 1997). These results suggest that EPS may
act in part to hold cells a fixed distance from a surface in or-
der to improve diffusive transport of nutrients.

Sediment-grain topography
Uncovering relationships between foraging and habitat relies
on characterizing spatial effects at the organism’s scale. For ex-
ample, sediment grains display a wide range of microtopog-
raphy, typically expressed in bulk as the surface area per unit
of volume. Rounded sand grains are often modeled as Eu-
clidean surfaces, but silt and clay grains can contain up to two
orders of magnitude more surface area per unit of volume be-
cause of a higher surface-to-volume ratio and increased sur-
face relief. On a given grain, bacterial attachment can occur
at topographic highs (bumps) or lows (pits) (Figure 6a). At-
tachment at a topographic low might provide refuge from
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Figure 4. Effect of attachment on steady-state diffusive
uptake by a spherical bacterium. (a) Cross-sectional
schematic of electric circuit, where xs is separation dis-
tance. (b) Influence of separation distance xs on diffusive
transport (I relative to that received by a freely suspended
sphere, IFree).
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grazing (DeFlaun and Mayer 1983), but this benefit could in-
volve a substantial tradeoff in terms of nutrient flux.

Using the same setup as before, with a malleable, non-
conductive surface (modeling clay), we investigated the effects
of sediment features, such as pits and bumps, on diffusive flux.
We changed the grain topography (feature radius r/rB and 
relief xH/rB) and measured the resulting current IElec passing
through the circuit (Figure 6b). The current, scaled to that re-
ceived by the cell on a flat surface (IElec/IFlat, dimensionless),
increased slightly for the bacterium on bumps and decreased
severely for the bacterium in pits (Figure 6c). The uptake var-
ied sixfold over the range of topography examined. Thus, deep,

narrow pits may be excellent places to survive predation, but
they are not good foraging locations. DeFlaun and Mayer
(1983) noted a lack of bacteria in bacteria-sized pits on sed-
iment grains. For attachment in bacterium-sized pits (xH/rB
= 2 and r/rB = 1), the modeled uptake of limiting nutrient was
reduced by about 50% (Figure 6c).

Multiple cells and clonal fitness
Because cell signaling by bacteria can involve coordinated and
perhaps cooperative behavior, bacteria have been suggested
to function like modular (Andrews 1998) or multicellular
(Shapiro 1998) organisms and to evolve at multiple levels of
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Figure 5. Extracellular polysaccharides (EPSs) associated
with bacteria in sediments as identified with transmis-
sion electron microscopy. (a) High volume of EPS sur-
rounding two dividing cells showing their distance from
the surrounding grains. (b) Higher magnification view
showing gel matrix of EPS with open pore spaces.
Reprinted from Bennett et al. (1999), with permission
from Elsevier Science.

Figure 6. Influence of local sediment-grain topography on
steady-state uptake by attached bacteria. (a) Geometry
used to define topographic pits and bumps. (b) Schematic
configuration of electric circuit. (c) Contour plot of trans-
port to the bacterium depending on surface relief. Lines
represent transport relative to that obtained by a cell on a
flat surface, IFlat.
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selection (Caldwell et al. 1997). As in the ecology of higher
organisms, however, observing cooperative behavior is in-
sufficient to establish higher-order (kin) selection. Studies of
marmot warning calls illustrate the arduous task of quanti-
fying the fitness costs and gains and the “genetic relatedness”
that is required to posit the evolution of a cooperative behavior
(Blumstein and Armitage 1998, Hauber and Sherman 1998).

We conjecture that in a small volume of sedimentary habi-
tat (10–100 µm3), most of the bacteria of a particular species
may be members of the same clone, having nearly 100% of
their DNA in common and thus genetic relatedness close 
to 1. As an initial step in understanding whether typical ben-
thic bacteria have evolved under clonal selection (as the first
level of higher-order selection), we sought to develop predictive
theory for clonal foraging by surface-attached bacteria.

We began with a theory based on individual fitness (re-
productive success by the succeeding generation), using solute
uptake as a proxy for energy gain. Because of differing meta-
bolic costs tied to foraging strategies, the gross nutrient up-
take rate is insufficient to predict fitness. Rather, the net nu-
trient uptake rate is often suggested to correlate with individual
fitness FInd. As above, we assumed that all solute transport was
due to diffusion and that uptake equaled diffusive transport
IInd to the individual cell surface, that is, the cells were perfect
absorbers. Thus, individual fitness FInd[mol s–1] was the net
rate of gain

FInd [mol s–1] = IInd – MInd,
where MInd[mol s–1] is the metabolic cost of maintaining the
organism.

We then defined clonal fitness FClone [mol s–1] as the net up-
take rate of all the bacteria belonging to the clone

FClone [mol s–1] = IClone – MClone,
where the metabolic gains and costs equaled the sums of the
individual rates. In this equation, IClone is the clonal uptake,
and MClone is the metabolic cost of maintaining the clone. As
a first approximation, we assumed uniform basal metabolic
costs among the clone members, such that 

FClone [mol s–1] = IClone – NB MInd,
where NB is the number of bacteria in the clone.

The uptake, or transport IClone, is not a simple linear func-
tion of cell number because of competition for nutrients
among neighbors. To solve this problem, we followed the ar-
guments that Berg and Purcell (1977) and Berg (1993) de-
veloped to model the uptake by multiple receptors on a sin-
gle cell, based on the analog of “diffusive resistors” in parallel
(Figure 7a, 7b).As a first step, we followed their approach the-
oretically to calculate the clonal uptake IClone by disk-shaped
bacteria attached to sediment grain of radius rG (with the ori-
gin at the center of the grain). The dissolved limiting nutri-
ent was assumed to be at a constant concentration at r = ∞
(Figure 7a). In fact, staring at Berg’s (1993) cartoon of mul-
tiple receptors on a cell, after peering at bacteria on sand
grains under a microscope, stimulated this research. Follow-
ing Berg (1993), while scaling the number of bacteria NB to
the maximum possible for a complete monolayer of bacteria,

The number of bacteria NFull for a complete monolayer cov-
erage of the grain was calculated as the grain surface area
(4πrG

2) divided by the area per bacterium (πrB
2), without cor-

recting for the empty space between projected circles (an er-
ror of 10% at most) (Weisstein 2000, “Circle Packing”).

Berg and Purcell (1977) and Berg (1993) showed that a very
small number of receptors is needed on a cell’s surface before
it receives nearly all that it would have by having the entire sur-
face covered with receptors. For geometry representative of
bacteria on a sand grain (rG/rB = 100), scant coverage of the
surface was needed before IClone/IFull reached 0.90, or 90% of
what it would get if the entire grain surface were covered by
bacteria (Figure 7c). This function, similar in form to the
Michaelis-Menten equation for saturating enzyme kinetics,
increased steeply and leveled off to approach IClone/IFull = 1 
asymptotically as the fraction of surface area covered by bac-
teria increased. We improved our physical intuition for the
problem by employing physical models that included adhe-
sive paper, with holes punched out, attached to aluminum sur-
faces.

To improve the realism of the theoretical model, we pre-
dicted clonal uptake by spherical bacteria with the constant-
concentration boundary at a finite, rather than infinite, dis-
tance xF away. We interpreted the characteristic length xF as
half the distance to a neighboring sediment grain, where in
a symmetrical pore (space between grains) lined by absorb-
ing bacteria, the concentration would be highest.We modeled
the bacteria attached to a flat plate in order to simplify the
mathematics and because the curvature of a large grain
should not be influential at the bacterium’s scale. The “diffusive
resistance”of each bacterium was estimated using the “shape
factor”put forth by Hahne and Grigull (1974), resulting in an
effective radius equal to ~2rB. Uptake was then calculated as

where A is the area of the surface. Uptake increased more
rapidly, compared with disk-shaped bacteria, as the fraction
of surface covered by bacteria increased (Figure 7d). It is also
worth noting that, unlike coverage by transport sites in a cell
membrane, it is possible to have more than 100% coverage
of the grain surface by bacteria by stacking them in various
arrangements more than a single bacterium thick. We did not
go to these lengths because of the obviously diminishing 
nutrient returns at well short of what we termed 100% 
coverage.

We calculated clonal fitness based on idealized metabolic
costs (low, medium, and high) (Figure 7d, 7e). Thus, whereas
costs increased linearly as clone mates were added (near-
neighbor progeny produced), gross uptake approached an 
asymptote, and the difference, or clonal fitness FClone, reached
a maximum at well below 100% coverage. The higher the
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metabolic costs (relative to a fixed nutrient supply),
the more pronounced were the optima in coverage.
In Berg’s (1993) analysis of the receptors on a sin-
gle cell, he stated that the paucity of coverage re-
quired to approach IFull leaves room for all of the dif-
ferent receptor types that a cell needs. This analogy
should extend to microbial consortia on grain sur-
faces, where there would be room for multiple
types of cells involved in the breakdown of complex
substrates, as suggested by Koch (1990).

Depending on the metabolic cost-to-nutrient-
supply ratio, a clone may decrease its fitness by
producing near neighbors. Reduced fitness for
high-density clones was predicted with parameter
values attainable in surficial sands (Figure 7f). In
such cases, attached bacteria may be predicted to
produce motile progeny rather than near neighbors.
Though greatly simplified, this type of modeling al-
lows development of quantitative predictions for
conditions favoring allocation of resources to dis-
persal (Caldwell and Lawrence 1986, Lawrence and
Caldwell 1988).

For a given strain, cell size, cost per cell, and
bulk solute concentration, one way that the nutri-
ent supply changes in nature is by advective thin-
ning of the diffusive boundary layer over a 
surface. This method gives a way to predict quan-
titatively how thinning of the boundary layer over
a grain surface should result in denser bacterial
populations. Laboratory experiments could be used
to test the hypothesis that clonal bacterial foraging
is explained better by maximizing clonal rather
than individual fitness. Implicit in the hypothe-
sized density-dependent foraging strategy is inclu-
sion of quorum sensing. We emphasize that quo-
rum sensing is the use of signals to determine a
combination of population density (signal accu-
mulation) and hydrodynamic conditions (signal de-
pletion). We also note that the modeling described
here, both theoretical and analytical, could be
adapted to investigate bacteria as sources, rather
than sinks, of solute molecules. Brookfield (1998)
showed theoretically how quorum sensing may be
a stable strategy under certain conditions. In an ex-
periment tracing the evolution of Myxococcus xan-
thus over 1,000 generations,Velicer and colleagues
(1998) found that the evolution of social behaviors,
coordinated by chemical signaling, depended on the
hydrodynamics of the habitat.

Summary
We implemented an electric-circuit analog to the
diffusive process, which was successful for exam-
ining issues of nutrient uptake by attached bacte-
ria. We used the formal equivalence of Ohm’s and
Fick’s laws to provide quantitative solutions to mi-
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Figure 7. Modeled clonal foraging and fitness. (a) Schematic of uptake by clonal
bacteria attached to sediment grain bathed in fluid. Taken from Berg (1993), as
developed for uptake by multiple receptors on a single cell, with symbols modified
to mirror this text (reprinted by permission of Princeton University Press).
(b) Schematic of electrical analogy, where the “diffusive resistance” of each ab-
sorber is obtained and then analyzed as for resistors in parallel. (c) Model results
of diffusive uptake by a (clonal) population of disk-shaped bacteria on a spheri-
cal grain, as a function of the fraction of grain surface covered by bacteria, with
uptake scaled to the uptake calculated for population covering the surface with a
monolayer of cells (IFull). Only a small fraction of the surface needed to be covered
by bacteria (NB/NFull) before the clone received nearly all that it would by covering
the surface completely. Note that with a constant solute concentration at r∞, up-
take IClone/IFull depends also on the parameter rG/rB (here equal to 100). (d) Model
results of diffusive uptake by a (clonal) population of spherical bacteria attached
to a flat plate, showing that uptake increased rapidly with increasing coverage by
bacteria. Dashed lines represent idealized metabolic costs to the population,
which increase linearly with population size. Successive differences among low,
medium, and high costs were 10-fold. Arrow represents graphically the calcula-
tion of clonal fitness as the difference between population gains and costs. (e)
Clonal fitness given idealized costs and gains in (d). For high ratios of cost to nu-
trient supply (uptake), clonal fitness shows pronounced optima with scant bacter-
ial coverage of the surface. (f) Clonal fitness given values attainable in nutrient-
poor sands: rB = 0.5 µm, xF = 50 µm, CF = 5 µM (limiting nutrient of C), MInd = 5
x 10–14 µm s–1 (based on 1 x 10–14 g C cell–1, growth efficiency = 10%, and dou-
bling time of 2 days), and D = 1 µ 10–5 cm2 s–1.



crobial foraging questions that have been intractable with an-
alytical and introductory numerical techniques. The technique
is applicable to any system governed by Laplace’s equation,
which describes many forms of mass or energy transfer at
steady state. The technique is easy and inexpensive. Further-
more, the solutions are real and exact and do not rely on de-
finable gridding or boundary conditions.

The benefits of this physical model are many. It rapidly ap-
proaches steady state (instantaneous to the observer) and pro-
vides real-time feedback during manipulations. For micro-
biologists, it builds intuition of organism-scale processes
while working at a macroscopic scale. Boundary conditions
are physical rather than symbolic (as in analytical models)
or digital (as in numerical models) and so can be grasped both
literally and visually. The method could easily be adapted, for
example, to investigate uptake by single cells with complex
shapes (such as diatoms and dinoflagellates), complex geome-
tries of diagenetic reactions, and diffusion-like transport of
populations through complex habitat. The electrical model
can also be used in the implementation of curricula apt for
“hands- and minds-on” learning (Lynch 1997, Moreno 1999).
Many engineering texts on transport processes (Karplus and
Soroka 1959, Welty et al. 1984) contain brief discus- 
sions of experimental methods for two-dimensional experi-
ments, using carbon paper and silver paint to create  de-
sired geometries.

Using the electrical analog, we found that a cell attached
to a flat surface loses about 20% of its potential uptake. This
cost all but vanishes when the bacterium is maintained at a
single bacterial diameter away from the surface, generating
the hypothesis that one role of bacterial EPS is to maintain
a fixed distance from the surface. Conversely, protection in
a bacterium-sized pit comes at a cost of 50% of an attached
cell’s potential nutrient uptake.

When multiple bacteria were attached to a planar surface,
the combined diffusion current increased steeply with the per-
centage of surface covered by bacteria and reached 90% of that
possible with 100% coverage with less than 2% of the surface
occupied.We calculated that, depending on specific metabolic
costs, the combined net gain of multiple cells can be maximal
at well below 100% coverage. In benthic systems, approxi-
mately 0.1%–2% of sediment-grain surfaces are covered by
bacteria; a clonal population using a dissolved resource there-
fore might better partition growth to progeny that disperse
(i.e., motile cells) than to producing near neighbors.
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