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A B S T R A C T

Mole crabs of the genus Emerita (Family Hippidae) inhabit many of the temperate and tropical sandy

beaches of the world. The nine described species of this genus are rarely sympatric, and most are endemic

to broad biogeographic regions. The phylogenetic relationships among the species have not yet been

investigated. Based on presumed morphological synapomorphies, it has been suggested that the species

inhabiting the New World constitute a monophyletic group, as do the species inhabiting the Old World.

The relationships within the New World species were previously studied using sequence data from

Cytochrome Oxidase I and 16S rRNA mitochondrial genes; the results strongly suggested that one of the

species, Emerita analoga, was very divergent from the other taxa examined. This observation prompted

uncertainty about monophyly of the New World species. The goal of the present study was to elucidate the

relationships among the species within the genus Emerita. Partial sequences for the mitochondrial COI

and 16S rRNA genes for all nine species of the genus (and several outgroups) were examined. Phylo-

genetic analyses suggest thatE. analoga is closer to the Old World taxa than to the other New World species;

thus the New World Emerita species do not constitute a monophyletic group.

Mole crabs of the genus Emerita Scopoli,
1777, are medium-sized benthic crustaceans of
the family Hippidae (Anomura: Hippoidea) that
live in intertidal and upper subtidal sandy ma-
rine environments. Three genera are included
in the family: Emerita Scopoli, 1777; Hippa
Fabricius, 1787; and Mastigochirus Miers,
1878. Historically, taxonomy of the genera
Hippa and Emerita has been dynamic, with
movement of species from one genus to the
other. When initially described, the genus
Emerita had as type species a taxon that is now
assigned to the genus Hippa. Similarly, in
Miers’ (1879) revision of the Hippidae, all of the
species referred to as belonging to the genus
Hippa now belong to the genus Emerita.
Morphologically, the major difference between
Hippa and Emerita is the shape of the cara-
pace: it is dorsoventrally flattened, oval, and
moderately convex in Hippa species and not
flattened, cylindrical, and very convex in Emer-
ita species. In addition, compared to Hippa
species, Emerita species have longer ocular
peduncles, longer flagella on the antennae, and
smoother lateral margins of the carapace
(Calado, 1987). The external morphology of
these structures suggests that Hippa and
Emerita are sister genera.

There are no described fossils that provide
information regarding the history of Emerita
species or the origin of the genus. On the basis
of a molecular clock, it has been suggested that
all species in the genus evolved before the
mid- to late-Pliocene (Tam et al., 1996), but no
center of origin or biogeographic scenarios
were suggested. Emerita species are distributed
along most marine temperate coasts (Fig. 1)
but are absent from East Atlantic and West
Pacific coasts. In the regions where Emerita
species are absent, mole crabs of the genera
Hippa and Mastigochirus may be present; these
genera are distributed throughout the temperate
and tropical seas of the world (Miers, 1879).
Six species of Emerita occur along New World
coasts: Emerita analoga (Stimpson, 1857);
E. rathbunae Schmitt, 1935; E. talpoida (Say,
1817); E. benedicti Schmitt, 1935; E. brasilien-
sis Schmitt, 1935; and E. portoricensis Schmitt,
1935. Three species are found along Old World
coasts: E. austroafricana Schmitt, 1937; E.
emeritus (Linnaeus, 1767); and E. holthuisi
Sankoli, 1965.

Two conflicting phylogenetic hypotheses
have been proposed (Fig. 2). On the basis of
morphological traits and distribution of species,
Efford (1976) suggested that Emerita analoga,
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E. brasiliensis, and E. talpoida probably last
occurred together in the late Pliocene. After the
rise of the Isthmus of Panamá, their presumed
mutual ancestor separated into different
lineages during ocean warming and/or because
of competition within the E. rathbunae-E. por-
toricensis species complex. Emerita talpoida
and E. brasiliensis share morphological
features that suggest a sister-group relationship
between them; both are also similar to
E. analoga. Although not explicitly considered
in Efford’s (1976) study, E. benedicti would
also be part of the E. rathbunae-E. portoricen-
sis complex (Fig. 2A). Additional evidence
supporting Efford’s hypothesis is based on the
shape of the dactylus of the first peraeonite: the
Old World species of Emerita share an acutely
pointed dactylus on the first leg (Sankoli,
1962). Efford (1976) suggested that E. austroa-
fricana and E. emeritus are closer to each other
than either is to E. holthuisi.

The second hypothesis (Fig. 2B) is sug-
gested by the study of Tam et al. (1996) on
the divergence and biogeography of the New
World mole crabs. Using sequence data from
the mitochondrial (mt) genes Cytochrome Oxi-
dase I (COI) and 16S ribosomal RNA (16S
rRNA), they showed that Emerita analoga is
divergent from the other five New World spe-
cies (Fig. 2B). Their results suggest that
E. rathbunae is more closely related to the spe-
cies of Emerita found in the West Atlantic than
it is to E. analoga that inhabits the same coast-

line. Tam et al. (1996) also suggested that the
Emerita species in the Americas evolved from
an ancestral stock that was split into two
branches, one leading to E. analoga and the
other to the five remaining species.

Schmitt (1937) did a comparative study of
the joint of the antennal peduncle in mole
crabs. He found that in Emerita analoga, the
shape of the second joint is similar to that of
E. emeritus and that the degree of ornamenta-
tion present in E. analoga lies between what can
be seen in E. emeritus and E. austroafricana.
The rest of the New World species have a sec-
ond joint of the antennal peduncle that is simi-
lar in shape to the one in E. analoga or in
E. emeritus, but its ornamentation is much
different. Based on Schmitt’s (1937) analysis,
E. analoga is similar to the Old World taxa
with respect to this character. This suggestion
is in agreement with Tam et al. (1996) (even
though they did not include the Old World taxa
in their study): E. analoga is external to the
rest of the New World taxa.

In contrast with Efford’s hypothesis, Tam
et al. (1996) also showed that Emerita brasi-
liensis does not appear to be close to E. talpoi-
da and that E. rathbunae is more distantly
related to American east coast species, suggest-
ing that presumed morphological homologies
may be homoplasious. The hypotheses pre-
sented by Efford (1976) and by Tam et al.
(1996) are in conflict (Fig. 2); thus, phylo-
genetic resolution of all the species within the

Fig. 1. Geographic distribution of the nine species of the genus Emerita (based on Efford (1976) and Tam et al. (1996)).
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genus will provide insights into questions of
monophyly.

The present work uses mtDNA to investigate
the level of genetic divergence within the
genus Emerita. Mitochondrial DNA provides a
powerful approach for resolving the relation-
ships among taxa, especially when functional
constraints influence morphological variation
and/or when convergence confounds relation-
ships. We used mtDNA data from the mt 16S
rRNA and COI genes to study the levels of
relatedness among species within the genus.

The 16S rRNA gene has been used to gain
insights into the phylogenies of numerous crus-
tacean taxa at both high and low taxonomic le-
vels (i.e., orders and families as well as genera
and species) (Cunningham et al., 1992; Cran-
dall and Fitzpatrick, 1996; Sturmbauer et al.,
1996; Casanova et al., 1998; Kitaura et al.,
1998; Schubart et al., 1998, 2000; Tam and
Kornfield, 1998; Crandall et al., 2000; Grand-
jean et al., 2000; Remigio and Hebert, 2000;
Maggioni et al., 2001). Similarly, the COI gene
has been successfully used to generate phylo-
genetic hypotheses at the species level in many
crustacean groups (Palumbi and Benzie, 1991;
Meyran et al., 1997; Badwin et al., 1998;
Harrison and Crespi, 1999). For a wide diver-
sity of taxa, the COI gene is the most conserved
(in terms of sequence variation) of the mito-
chondrial protein-coding genes (Simon et al.,
1994). The DNA sequences of 16S rRNA and
COI provide two data sets that may be inform-
ative at different taxonomic levels because of
their different rates of evolutionary change.

MATERIALS AND METHODS

Collection and DNA Extraction

All nine species of the genus were examined in this
study. Samples for New World species were characterized
by Tam et al. (1996). Specimens of the Old World species
were collected, fixed in 95% ethanol, and shipped to the
University of Maine. Specimens were dissected, and the
telson muscle was used for DNA extraction employing
proteinase K digestion followed by phenol/chloroform
extraction (Ausubel et al., 1989).

Partial sequences for COI and 16S rRNA genes were
obtained through PCR (Polymerase Chain Reaction; Saiki
et al., 1988). A 570-basepair (bp) segment of the 16S
rRNA gene was amplified using these primer sequences:
16SA 59CGCCTGTTTATCAAAAACAT and 16SB
59CTCCGGTTTGAACTCAGATC (Xiong and Kocher,
1991), and a 658-bp segment of the COI gene was amplified
using these primers: COIa 59AGTATAAGCGTCTGGG-
TAGTC and COIf 59CCTGCAGGAGGAGGAGAYCC
(Palumbi and Benzie, 1991). Amplification reactions were
performed following standard protocols described by Tam
et al. (1996). Sequences were obtained from purified

PCR products (QIAquick-spin columns; Qiagen, Inc.,
Chatsworth, California) followed by cycle-sequencing and
electrophoresis on an Applied Biosystems, Inc., Model 377
Automated Sequencer (Foster City, California), using
amplification primers and fluorescent dye terminators
(Perkin-Elmer; Foster City, California). All sequences are
a consensus of two sequencing reactions (one in each
direction).

The DNA sequences of Hippa pacifica for both genes
were obtained through cloning of PCR products that were
purified (QIAquick-spin columns; Qiagen, Inc.) and ligated
into the pCR� vector (TA CloningTM System, Invitrogen
Corp., San Diego, California), followed by transformation of
INVa cells. Bacterial colonies with inserts were cultured in
SOC media overnight, following which plasmids were

Fig. 2. Phylogenetic hypotheses for species of Emerita.
The relationships suggested by the molecular analyses of
Tam et al. (1996) are in conflict with the morphologically
based hypothesis of Efford (1976). (A) Efford (1976)
suggested that Emerita analoga, E. brasiliensis, and E.
talpoida form a clade sister to one containing E. benedicti,
E. portoricensis, and E. rathbunae. Together these were
hypothesized to form a sister clade to the Old World species
(E. austroafricana, E. emeritus, and E. holthuisi). (B) Tam
et al. (1996) proposed a phylogenetic hypothesis for the
New World species of Emerita based on mtDNA data.
Emerita analoga is external to the other New World species
of Emerita.

905HAYE ET AL.: MOLECULAR PHYLOGENETICS OF MOLE CRABS



purified using the Plasmid Miniprep Kit (Qiagen, Inc.).
Presence of the correct-size insert was verified using PCR
followed by agarose gel electrophoresis. Plasmid prepara-
tions that had the correct-size inserts were sequenced as
previously described.

The genus Hippa is considered to be the sister taxon to
the genus Emerita (A. Harvey, personal communication).
The Pacific mole crab Hippa pacifica (Dana, 1852),
widespread in the Indopacific region, was investigated as
the sister taxon in the present study. Several anomuran
species belonging to the families Porcellanidae and
Paguridae were also used as outgroup taxa. Three nonhippid
anomuran taxa were available for use as outgroups for the
16s rRNA, and six for the COI data. Table 1 lists the species
examined and the associated GenBank accession numbers.

Data Analysis

Sequences were aligned by eye using the program ESEE
(Cabot and Beckenbach, 1989) and Sequence Navigator
(Applied Biosystems, version 1.0, 1994, Foster City,
California). After alignment, the sequences were truncated
at the 59 and 39 ends to leave no ambiguous sites for any
taxon.

Data sets for both genes were examined for base-
frequency homogeneity by using a Chi-square test available
in PAUP 4.0* version 4.0b8a (Swofford, 2000). Each data
set was analyzed with distance by using neighbour-joining
(Saitou and Nei, 1987), parsimony (Camin and Sokal,
1965), and maximum-likelihood (Felsenstein, 1981) opti-
mality criteria by using PAUP* (Swofford et al., 1996; Steel
and Penny, 2000; Swofford, 2000). All analyses were done
with random-sequence addition. Gaps were treated as a fifth
character for the parsimony analyses.

The program Modeltest version 3.06 (Posada and
Crandall, 1998) was used to select the model of molecular
evolution for maximum-likelihood analyses. Modeltest
performs a hierarchical likelihood-ratio test to compare 56
models of molecular substitution and selects the model that
best fits the data. The chosen model was then implemented
in PAUP*. Each data set was individually tested using
Modeltest (see Results).

The data were evaluated for information content using
the skewness statistic (g1) obtained from the tree-length
frequency distribution of an exhaustive parsimony search
using PAUP* (Huelsenbeck, 1991; Hillis and Huelsenbeck,
1992). The robustness of tree topologies (nodes of the tree)
was evaluated by bootstrap resampling (1,000 replicates;
Felsenstein, 1985; Zharkikh and Li, 1992; Hillis and Bull,
1993). We report all bootstrap values over 50%.

The trees obtained from the phylogenetic analyses were
further explored using MacClade 4.0 (Maddison and
Maddison, 2000). Within MacClade, positions of taxa were
changed, and the effect on tree lengths and confidence
values were examined. Consistency indices (CI) and
retention indices (RI) were obtained from MacClade tree-
topology analyses (Farris, 1989). Alternative phylogenetic
hypotheses were statistically tested in PAUP* using the
corrected nonparametric Shimodaira-Hasegawa test of tree
topologies (Shimodaira and Hasegawa, 1999; Goldman
et al., 2000). Log-likelihood scores for the maximum-
likelihood tree were compared to the log-likelihood scores
from tree topologies constrained to fit alternative phylo-
genetic hypotheses. The null hypothesis of the Shimodaira-
Hasegawa test is that there is no difference between trees.

The ratio of transversions to transitions (Tv : Ti) was
calculated for every pair of taxa for both COI and 16S rRNA
genes. The Tv : Ti ratio was plotted versus the Jukes-Cantor

genetic distance (Jukes and Cantor, 1969) to assess the
degree of saturation of the sequences caused by multiple
substitutions. Because transitions are much more frequent
than transversions, the ratio in which they occur potentially
provides information about the level of mutation-saturation
of the gene. A Mantel test (Mantel, 1967) was used to test
for the degree of association between elements of the
distance and Tv : Ti-ratio matrices for each data set.

Gene sequences were analyzed using different weighting
schemes for transitions and transversions (Pollock and
Goldstein, 1994). Because COI is a protein-coding gene,
weights per nucleotide position and the effects of the
inclusion or exclusion of third positions within codons were
examined. For this gene, phylogenetic analyses at the amino
acid level were also performed.

Secondary structure of the partial sequence of the 16S
rRNA gene was inferred by correspondence with the
secondary structure model for Drosophila yakuba (see
Gutell and Fox, 1988) and by use of mfold software (version
3.0, 1996, available at http://mfold.burnet.edu.au/), which
predicts secondary structure of rRNA. Sites within the
sequence were then classified as stems or loops (see also
Harris and Mayden, 2001). Phylogenetic analyses were
performed by weighting stems and loops both equally and
differentially (1–53) in order to evaluate the effects on
topology (Kjer, 1995).

A partition homogeneity (¼ incongruence length differ-
ence) test implemented in PAUP* was performed in order
to examine homogeneity among data sets (Farris et al.,
1994). If data sets are not significantly heterogeneous, then
combination of data sets may be appropriate for analysis via
a total evidence approach (Kluge, 1989).

RESULTS

Final truncated sequences used for the analy-
ses were 322 bp and 419 bp for the genes 16S
rRNA and COI, respectively. Both 16S rRNA
and COI were successfully sequenced for seven
of the nine Emerita species and for Hippa paci-
fica; unfortunately, no amplification products
were obtained for E. austroafricana and E.
rathbunae by using 16S primers or for E.
holthuisi and E. portoricensis by using COI
primers.

No significant base-frequency heterogeneity
was found among taxa for either of the genes;
base frequencies were not significantly differ-
ent among taxa (P ¼ 0.976 and P ¼ 0.995 for
16S and COI data, respectively).

Modeltest (Posada and Crandall, 1998)
revealed that the model of substitution that best
fit the 16S rRNA data was the transversion
model with a gamma distribution (base frequen-
cies: A ¼ 0.390, C ¼ 0121, G ¼ 0.063, T ¼
0.425; substitution model rate matrix: [A-C] ¼
2.028, [A-G] ¼ 19.078, [A-T] ¼ 3.000, [C-G]
¼ 4.060, [C-T] ¼ 19.078, [G-T] ¼ 1.000; pro-
portion of invariable sites ¼ 0; gamma shape
parameter ¼ 0.206). The general time reversi-
ble model with a proportion of invariable sites
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and with a gamma distribution (GTR þ I þ G)
fit the COI data (base frequencies: A ¼ 0.366,
C ¼ 0.149, G ¼ 0.102, T ¼ 0.382; substitution
model rate matrix: [A-C] ¼ 65.780, [A-G] ¼
133.584, [A-T] ¼ 0.000, [C-G] ¼ 48.914, [C-
T] ¼ 2,673.434, [G-T] ¼ 1.000; proportion of
invariable sites ¼ 0.498; gamma shape parame-
ter ¼ 0.335). For the combined data set, the
same GTR þ I þ G model of substitution pro-
vided the best fit (base frequencies: A ¼ 0.348,
C ¼ 0.145, G ¼ 0.112, T ¼ 0.395; substitution
model rate matrix: [A-C] ¼ 97, 015.945, [A-G]
¼ 270,529.219, [A-T] ¼ 96, 358.883, [C-G] ¼
57,551.094, [C-T] ¼ 747, 799.375, [G-T] ¼
1.000; proportion of invariable sites ¼ 0.3969;
gamma shape parameter ¼ 0.539).

The 16S rRNA data (102 parsimony-
informative characters) generated similar tree
topologies for distance, parsimony, and maxi-
mum-likelihood analyses (the latter shown in
Fig. 3). Under parsimony, the shortest tree had
291 steps (g1 ¼ �1.42 (P , 0.01); CI ¼ 0.73;
HI ¼ 0.27; RI ¼ 0.60; RC ¼ 0.43; �Ln likeli-
hood ¼ 1,627.14). Differentially weighting
transitions and transversions (Pollock and
Goldstein, 1994), or stems and loops (Kjer,
1995) did not alter the tree topology (data not
shown). In the maximum-likelihood with boot-

strap resampling analysis, Hippa pacifica and
Emerita analoga cluster together with 87%
bootstrap support (Fig. 3). The E. analoga-H.
pacifica clade is sister to the E. holthuisi-E.
emeritus clade (Old World clade) with 75%
bootstrap support. All hippid species examined
cluster together with 100% bootstrap support
when using three nonhippid taxa as outgroups
(H. pacifica always falls within the ingroup).
The maximum-likelihood tree obtained in the
PAUP* analysis for 16S rRNA was manipu-
lated in MacClade to test the effects of forcing
the topology to make the genus Emerita mono-
phyletic (forcing H. pacifica to be in the out-
group). The resultant tree has six more steps
and slightly lower CI and RI values (CI ¼
0.71; HI ¼ 0.27; RI ¼ 0.59; RC ¼ 0.43; �Ln
likelihood ¼ 1,673.39). Changing the topology
so it conforms to Efford’s (1976) hypothesis
with the New World Emerita monophyletic
(Fig. 2A) generated a tree with 16 more steps
and lower CI and RI values (CI ¼ 0.69; HI ¼
0.31; RI ¼ 0.52; RC ¼ 0.36; �Ln likelihood
¼ 1,631.36). Shimodaira-Hasegawa tests (Shi-
modaira and Hasegawa, 1999) were performed
to compare alternative tree topologies gener-
ated from the 16S rRNA data. The tree where
the genus Emerita is monophyletic, as in Ef-

Table 1. List of taxa, collection localities for Emerita species, and GenBank accession numbers for all species.

GenBank accession no.

Species Collection locality 16S COI

Hippoidea: Hippidae
Emerita analoga San Diego, California and

Algarrobo, Chile
AF246153
AF246154

L43101
L43099

E. austroafricana Durhan, South Africa AF246160
E. benedicti Port Aransas, Texas, U.S.A. AF246155 L43102
E. brasiliensis Fortaleza de Santa Teresa, Uruguay L43110 L43151
E. emeritus Pondichvory, India AF246156 AF246159
E. holthuisi Dubai, United Arab Emirates AF246157
E. portoricensis Mayaguez, Puerto Rico L43111
E. rathbunae Golfo de Fonseca, El Salvador L43103
E. talpoida West Falmouth, Massachusetts;

Conway, South Carolina; and
Panacea, Florida

AF246151
AF246150
AF246152

L43104
L43105
L43106

Hippa pacifica DNA provided by C. Cunningham AF246158 AF246161

Galatheoidea: Porcellanidae
Clatotoechus vanderhorsti AF222723
Neopisosoma angustifrons AF222720
Pachycheles serratus AF296178
Pachycheles chilensis AF260610
Petrolisthes galathinus AF260639 AF222727
Porcellana platycheles AF222731

Paguroidea: Paguridae
Pagurus longicarpus AF150756 AF150756
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ford’s (1976) hypothesis (Fig. 2A), is signifi-
cantly different (P ¼ 0.030) from the most par-
simonious tree generated with the 16S rRNA
data (Fig. 3).

Similar phylogenetic analyses were repeated
for the COI gene data set. Compared to 16S
rRNA, the COI phylogenetic signal was less
robust. Bootstrap likelihood analysis provides
71% support for the Emerita emeritus-E.
austroafricana clade, and 66% support for the
cluster of the Hippidae (Fig. 4). The COI
nucleotide data represents a total of 132
parsimony-informative characters. The most
parsimonious tree has 588 steps (g1 ¼ �0.38
(P , 0.01); CI ¼ 0.47, RI ¼ 0.33, and RC ¼
0.16) and is topologically consistent with the
tree generated under maximum likelihood
(�Ln likelihood ¼ 2,512.77) (Fig. 4). Exclud-
ing fast-evolving third positions or weighting
the codon sites differentially never produced a
well-supported tree. Amino acid data only con-
tained three parsimony-informative substitu-
tions and thus was not used for further
analyses. Forcing the tree topology to make the
genus Emerita monophyletic resulted in a par-
simony tree five steps longer (CI ¼ 0.46, RI ¼
0.30, and RC ¼ 0.14; �Ln likelihood ¼
3,002.10). When the topology was forced to
conform to Efford’s hypothesis by making
New World Emerita species monophyletic
(Fig. 2A), the tree was 11 steps longer (CI ¼
0.47, RI ¼ 0.32, RC ¼ 0.15; �Ln likelihood ¼

3,021.48). As with the 16S rRNA data,
Shimodaira-Hasegawa tests (Shimodaira and
Hasegawa, 1999) were performed to compare
alternative tree topologies of the trees generated
from the COI data (trees in Figs. 2A and 4). No
tree comparisons were significant (P . 0.1).

Tamura-Nei distances (Tamura and Nei,
1993) based on 16S rRNA data indicate that
Emerita analoga is the most divergent species
in the genus (Table 2). Emerita analoga has
an average distance of 0.165 from its conge-
ners; the average distance among all Emerita
species is 0.120 (excluding E. analoga, the
distance decreases to 0.112). Hippa pacifica
has an average distance of 0.166 from all
Emerita species. The nonhippid species have
an average distance of 0.352 from the Emerita
species.

As with the 16S rRNA data, Tamura-Nei ge-
netic distance data for the COI gene show that
Emerita analoga is the most distant of the
Emerita species, having an average distance of
0.215 from its congeners (Table 2). The aver-
age genetic distance among all the Emerita spe-
cies is 0.189, and when excluding E. analoga,
it is 0.185. Hippa pacifica has an aver-
age genetic distance of 0.207 (smaller than the
average distance for E. analoga); the nonhippid
outgroup species have an average COI genetic
distance of 0.227 from the Emerita species.

Partition-homogeneity tests indicated that the
16S rRNA and COI data sets are not signifi-

Fig. 3. Phylogram of the 16S rRNA sequence data and values from bootstrap maximum-likelihood analysis (1,000
replicates). Nonhippid anomurans were declared as outgroup taxa. Hippa pacifica and all the Emerita species cluster together
with 100% bootstrap support. Hippa pacifica and E. analoga form a clade sister to the E. holthuisi-E. emeritus clade. Scale
bar represents branch length (substitutions/site). (*) Species from the Old World.
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cantly heterogeneous (P ¼ 0.176), which justi-
fies performing phylogenetic analysis using a
combined data set (Farris et al., 1994). The
combined data set yields results similar to those
generated for 16S and COI separately (Fig. 5).
Emerita analoga and Hippa pacifica cluster to-
gether with a 60% bootstrap support value.
Emerita analoga and H. pacifica cluster with
E. emeritus (the only representative of Old
World taxa for which there was both 16S
rRNA and COI data) with 83% bootstrap sup-
port. All Emerita species and H. pacifica clus-
ter together with 100% bootstrap support.

Gene-saturation analyses provided indepen-

dent support for utility of the 16S rRNA
data but demonstrated potentially less utility
for COI gene data. Plots of the transversion
: transition ratio (Tv : Ti) versus Jukes-Can-
tor genetic distance (Jukes and Cantor, 1969)
show that the genes have different rates of
evolution in the genus Emerita. For the 16S
rRNA gene, the slope of the regression is
positive (P , 0.01), indicating that the
gene is not completely saturated with muta-
tions (Fig. 6A). By contrast, the slope of
Tv : Ti ratio versus Jukes-Cantor distance
for COI (Fig. 6B) is not significant (see
Discussion).

Fig. 4. Phylogram of the COI sequence data and values from bootstrap maximum-likelihood analysis (1,000 replicates).
Nonhippid anomurans were declared as outgroup taxa. Hippa pacifica and Emerita analoga cluster with the Old World
species (no bootstrap support over 50% for the formed clade). Scale bar represents branch length (substitutions/site). (*)
Species from the Old World.
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DISCUSSION

That both separate and combined analyses
placed Emerita analoga and Hippa pacifica
within the same clade was unexpected. Parsi-
mony and likelihood analyses of both 16S
rRNA and COI data support the external place-
ment of E. analoga with respect to the other
New World members of the genus (Figs. 3–5).
The results obtained from the 16S rRNA and
COI genes are consistent with the hypothesis
presented by Tam et al. (1996) (Fig. 2B) that
E. analoga falls outside the group that includes
all other New World Emerita species. The
placement of E. analoga closer to the Old
World than to the rest of the New World species
follows Schmitt’s (1937) observations that the
second joint of the antennal peduncle in E. ana-
loga is more similar in shape and ornamentation
to the one seen in the Old World taxa.

The difference between the results generated
with the 16S rRNA and the COI data is mainly
the degree to which the trees are supported; this
may be a result of saturation that COI exhibits
for this group of species (Fig. 6B). The tree re-
sulting from analyses of the 16S rRNA data is
well supported and the data are not saturated;
the topology generated thus provides a strong
and significant phylogenetic hypothesis. This
perspective is further corroborated by the fact
that the data for the 16S rRNA gene generates

a similar topology regardless of the optimality
criteria used to generate the phylogeny.

Tamura-Nei distances of 16S rRNA show
that the divergence between Emerita analoga
and all other species of Emerita is greater than
that of any one of the other Emerita species
and its congeners (Table 2). The fact that E.
analoga is highly divergent could be the result
of a higher rate of mutation or a longer diver-
gence time. Long branch attraction (i.e., an arti-
factual association of taxa that are distantly
related because of either high substitution rates
or very distant outgroups) (Felsenstein, 1978;
Huelsenbeck, 1997) has been a frequent expla-
nation for the grouping of some taxa on the
basis of homoplasies. Whereas E. analoga
exhibits large genetic distances relative to its
congeners, those distances are not of a magni-
tude believed to generate long branch attraction
(Table 2; Figs. 3–5).

Any particular DNA sequence is informative
over a limited divergence range, and that range is
variable among different taxa (Naylor and Brown,
1998). That the COI gene would be informative at
the species level was predicted a priori (Palumbi
and Benzie, 1991; Meyran et al., 1997; Badwin et
al., 1998). However, DNA sequence data from
thatgene forEmeritawasnotsufficiently informa-
tive to clearly elucidate relationships within the
genus. As shown in Fig. 6B, the regression of the
ratio of transversions to transitions against

Fig. 5. Phylogram of the combined data set and values from bootstrap maximum likelihood analysis (1,000 replicates).
Pachycheles (16S rRNA sequence corresponds to Pachycheles serratus and the COI sequence to P. chilensis), Pagurus
longicarpus, and Petrolisthes galathinus were declared as outgroups. Scale bar represents branch length (substitutions/site).
(*) Species from the Old World.
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Fig. 6. Substitution patterns for all species considered in the analyses. Transversions vs. transitions (Tv : Ti) are plotted
against Jukes-Cantor genetic distance (Jukes and Cantor, 1969) for every pair of taxa. (A) 16S rRNA data. A significant
(P , 0.01) positive slope is observed (y ¼ 3.728x þ 0.6193; r2 ¼ 0.4996). (B) COI nucleotide data. Slope is not significant
(P . 0.1).
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Jukes-Cantor distance was not significant for
the COI sequences. Two possible but opposite
explanations for this finding may be suggested:
the gene has accumulated few mutations, or the
gene is saturated with mutations. The fact that
the Tv : Ti ratio is not significantly different for
both closely related and divergent pairs of taxa
suggests that the gene is evolving very slowly
and has not accumulated enough phylogenetic
signal to elucidate relationships (Figs. 4, 6).
This is also supported by the observation that
there are only three phylogenetically informa-
tive amino acid substitutions for Emerita within
the data set.

If the molecular data presented here provides
a valid estimate of the true species tree, then E.
analoga is closer to the Old World species than
to the New World taxa. This result poses a bio-
geographical challenge for radiation of the re-
maining taxa. It has been hypothesized that
Emerita species evolved at least before the
Late Neogene (Tam et al., 1996). Both vicar-
iance and dispersal undoubtedly played a role
in the speciation of Emerita; other ecological,
physiological, and oceanographic processes
probably contributed to the final geographic
placement of populations that gave rise to the
different Emerita species. Range expansion
and colonization of new geographic areas with
subsequent reduced gene flow were probably
the mechanisms by which the majority of these
species originated; explicit biogeographic sce-
narios are difficult to suggest, but we outline
two below. Consistent with our results, the
genus Emerita could have originated in the
western side of the Atlantic Ocean. If the cen-
ter of origin is the Atlantic Ocean, we can hy-
pothesize that species currently distributed in
the Pacific (E. analoga and E. rathbunae)
evolved from ancestors in the Atlantic via
opening and closing of the Isthmus of Panamá.
The Isthmus was closed to circulation of ma-
rine surface water approximately 3 million
years ago (Late Neogene), and it was closed to
deep-water circulation much earlier (Malfait
and Dinkelman, 1972; Keigwin, 1982). The
placement of Hippa pacifica, sister to E. analo-
ga, is biogeographically consistent with this
idea, in that both species occur in the Pacific.
Alternatively, the center of origin of the genus
Emerita may be the Pacific Ocean. The Atlan-
tic may have been colonized via the Isthmus.
Taxa that differentiated in the Atlantic may
have been ancestral to species that subse-
quently recolonized the Pacific.

Morphology may provide misleading infor-
mation when homoplasy is not taken into con-
sideration. The genera Emerita and Hippa are
differentiated by a few external features (i.e.,
shape of the carapace, ocular peduncle shape,
and length of antennal flagellum) that are
highly constrained by functional morphology
(and thus, presumably, by the environment).
Our data strongly suggest that Hippa pacifica
and Emerita analoga are closely related.
The molecular data pose a basic question for
understanding relationships within the family
Hippidae, but these findings alone are not
sufficiently strong to justify taxonomic revi-
sion. Further analyses that include more species
of the genus Hippa and representatives of Mas-
tigochirus are necessary to elucidate phyloge-
netic positions within the family. From the
present study, we conclude (1) that the Emerita
species of the Americas do not constitute a
monophyletic unit as previously believed, and
(2) that morphological characters traditionally
used in the systematics of mole crabs are
homoplasious in the family Hippidae, espe-
cially within the genus Emerita.
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