

Longwood University Digital Commons @ Longwood University

Spring Showcase for Research and Creative Inquiry

Research & Publications

Spring 2019

Restoring the Population of Keystone Species in the Chesapeake Bay: How the Preservation of Submerged Aquatic Vegetation Can Improve the Blue Crab Population

Christina Bell Longwood University

Follow this and additional works at: https://digitalcommons.longwood.edu/rci spring

Part of the **Biology Commons**

Recommended Citation

Bell, Christina, "Restoring the Population of Keystone Species in the Chesapeake Bay: How the Preservation of Submerged Aquatic Vegetation Can Improve the Blue Crab Population" (2019). *Spring Showcase for Research and Creative Inquiry*. 43. https://digitalcommons.longwood.edu/rci_spring/43

This Poster is brought to you for free and open access by the Research & Publications at Digital Commons @ Longwood University. It has been accepted for inclusion in Spring Showcase for Research and Creative Inquiry by an authorized administrator of Digital Commons @ Longwood University. For more information, please contact hamiltonma@longwood.edu, alwinehd@longwood.edu.

Restoring the Population of Keystone Species in the Chesapeake Bay: How the Preservation of Submerged Aquatic Vegetation Can Improve the Blue Crab Population

Christina Bell, Department of Biological and Environmental Sciences

Background

- Blue Crabs (Callinectes sapidus) are a keystone species in the Chesapeake Bay. They inhabit lagoons and estuaries and can now be found from Nova Scotia to South America (Condrey and Gelpi, 2010) (Hines et al, 2011).
- Their numbers have declined due to increased fishing habits
- Scientists have implemented guidelines in states such as Maryland and • Virginia to prevent the fishermen from collecting too many crabs (Bunnell et al, 2010).
- This however, only sustains the current population

Figure 1: This is a picture of a Blue Crab (Callinectes sapidus) From: https://www.splendidtable.org/recipes/okragumbo-with-blue-crabs-and-shrimp

MIGRATORY PATTERNS Figure 2: The geographic range of *(Callinectes sapidus)* From: baltimorecrabs.wordpress.com

Specific Aim

- To determine if preservation of submerged aquatic vegetation (SAVs) will improve the Blue Crab (Callinectes sapidus) population.
- Why? The entire east coast is dependent on these crabs. The Blue Crab fishery brings in at least \$70 million in revenue per year (Rains et al., 2016).

Hypothesis

- We believe that areas with submerged aquatic vegetation (SAVs) will produce more juvenile crabs

movement • A cell-based model is used **Statistics** to measure each vegetation plot

Potential Pitfalls

- The fishing wire used to tether the crabs to the pvc pipes could snap
- Tethering the crabs to the pole may increase predation
- The pvc pipes could be damaged by extreme weather conditions
- The biggest pitfall we could face is pollution

From: bobvila.com

From: Chesapeakebay.net

From: Chesapeakebay.net

- We will test these hypotheses by placing the juveniles in plots of Red Algae (Gracilaria vermiculophylla) and Eelgrass (Zostera marina)
- The amount of juveniles found will be similar for both species

Figure 4: An image of Red Algae https://arstechnica.com

Potential Conclusions

- The heavily vegetated plots could produce larger crabs overall
- The specimens in the non-vegetated areas are more likely to be preved upon in the 12-25hr. Period
- The amount of juveniles produced could be determined by the vegetation density
- The juvenile abundance could be determined by pollution

References

Bunnell, David B., et al. 2010."The Bioeconomic Impact of Different Management Regulations

- on the Chesapeake Bay Blue Crab Fishery." North American Journal of Fisheries Management, 30(6):1505–1521
- Condrey, Richard, and Carey Gelpi. 2009. "Blue Crab (Callinectes Sapidus) Use of the
 - Ship/Trinity/Tiger Shoal Complex as a Nationally Important Spawning/Hatching/Foraging Ground ." U.S. Department of the Interior Minerals Management Service. 1-61

Hines, A.h., et al. 2011."Predicting Effects of Climate Change on Blue Crabs in

Rains, Sarah A. M., et al. 2016. "Sex Ratios and Average Sperm per Female

Blue Crab Callinectes Sapidus in Six Tributaries of Chesapeake Bay." Marine and Coastal Fisheries. 8(1):492–501.