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INTRODUCTION

The generalized invefses of matrices discussed in this
papér consist only of the Moore-Penrose géneralized inverse
defined by equations (3) - (6) and several of the more
applicable inverées defined by taking one or two of these
equations separately. In particular, the minimum norm and
least squares generalized inverses use the first and fourth
and first and third equations respectively.

Chapter 1 defines the notation which will be used
throughout thé paper.

Chaptér‘Z lists the definitions and theorems neéded
from linear algebra; The references for the proofs of the
theorems cited are given where the proofs themselves are
not given. -

Chapter 3 begins the core of the paper with the
definitions of a generalized inverse associated with E. H.
Moofe and R. Penrose. The equivalence of these definitions
is shown. The uniqueneéé of this generalized inverse is
proven and a computational method for finding the matrix
representing this inverse is developed. Then after proving
several useful properties of the Moore-Penrose generalized
inverse, two examples are worked.A The second example shows
how this inverse can'be used to-find the best approximation
of a solution of a system of inconsistent equations.

Chapters L and 5 discuss the minimum norm inverse and

the least squares invefse respectively.
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Chapter 6 contains an application of a genéralized
inverse as it pertains to interval programming problems.
.Used to solve these problems is the generalized inverse
which satisfies the first equation of the Moore-Penrose
generalized inverse (equation 3).

The final application, to Markov chains, is discussed
in Chapter 7. The example worked at the end of the chapter
uses the Moore-Penrose generalized inverse. However, a
theorem in the chapter allows for the use of any_generalized
inverse satisfying at least one of the four Moore-Penrose
equations if certain conditions are true.

Chapter 8 contains the figures referred to in

chapters 4 and 5.
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CHAPTER I
NOTATION

field of complex numbers

space of n-dimensional column vectors over the
complex numbers

space of m X n matrices over
field of real numbers

space of n-dimensional column vectors over the
real numbers

space of m X n matrices over R

transpose of a matrix A

cohjugate transpose of a matrix A
complex conjugate of a vector a
orthogonal complement of a vector a
orthogonal complement of a subspace V

orthogonal projection of ¢n onto a subspace X

jth column of the identity matrix

column vector -having ones in each combonent
identity matrix |

range of A

null space of A

generalized (Moore-Penrose) inverse

denotes thg inner product of two vectors, defined

by
X,y 7 = Zy.x. = *4
'Y Yi¥i X

where x = (xi) and y = (yi) for 1 = A 25 « » » v N
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l’xll denotes the Euclidean norm of a vector, defined by

' i 2 o 0 4
”x"]— '\rx1+x2+...+xn
where x = (xi) Py =4 Be o aoe 3 X
2 ] - denotes the end of a proof

Lower case Latin and Greek letters denote column vectors and
scalars.

Upper case Latin letters denote matrices and subspaces.

All matrices and véctors will be taken over the complex
numbers unless otherwise specified.



CHAPTER II
PRELIMINARIES

Within the body of the paper several definitions and
'bheoremé are needed from linear algebra. They are listed
below with references given for the proofs of the theorems

if the proof does not follow the stated theorem.

DEFINITION 1: The inner product (or scalar product)

of two n x 1 column vectors u, v with real or complex

elements is the scalar quantity <u,v?> defined by

VRS = . UaVoa + o o o 4+
Lu, vy ulv1 + u2v2 unvn ¢

where u—; is the complex conjugate of Us . The norm or length

of u, denoted by |]ull, is defined vy

“u” = <u,u” /2 _ ('fqul +ﬁ—£u2+ “« v o %un)l/z.

Two vectors u and v are orthogonal if and only if

Cu, w7 = 0,

DEFINITION 2: Let V be a vector space. W is any

+subset of V. The orthogonal complement of W, denoted by W‘L

(read "W perp"), consists of those vectors in V which are
orthogonal to every wé W:

W'L = {vEV: & v,w? =0 for every WEW}.

DEFINITION 3: A matrix A is Hermitian if and only if

A = A¥,



THEOREM 1: Let X and Y be two matrices whose product
XY is defined. Then rank(XY) % min(rank(X), rank(Y))
(6, p. 112].

DEFINITION 4: Let V and W be vector spaces. A function

L: V=W is called a linear transformation of V into W if

it satisfies
p L(ot+p) = Lat ) + L([ﬂ) for e andﬁ in V.

2. L(cet) = cL(ot) for> in V, and ¢ a real number.

THEOREM 2: There is a one - to - one correspondence
between the set of linear transformations and the set of
matrices. Hence every linear transformation can be uniquely

represented by a matrix [3, p. 205].

_ THEOREM 3: Let W be a subspace of V. Then any vector
in the vector space can be uniquely represented as the sum
of a vector in the subspace and a vector orthogonal to every
vector in the subspace. In particular, for any vé&v, v can
be written uﬁiquely as

v =w+wr for wEW and wté W [6, [ 295].

DEFINITION 5: QGonsider a linear transformation E: V=W

given by E(v) = w. E is the orthogonal projectioh of V onto

W provided
1. if w& W, then E(w) = w; and

2. 4if z€W* then E(z) = 0.

6 ®



THEOREM 4: Given a space V and a subspace W then there
is a unique ocrthogonal projection of V onto W.
Proof: Let v€V, By Theorem 3 there exists a
unique w and wJ‘ in W and w* respectively such that
v =w+ wr . Let E be a linear transformation of V into W
such that E(v) = w. Then E satisfies the conditions of
Definition 5 and thus E is an orthogonal projection onto W.

Suppose F is also an orthogonal projection onto W. Then

F(v) = F(w+ w®) = w=E(v). So F = E for every v.

THEOREM 5: A projection is a linear transformation and
hence can-be uniquely expressed as a matrix [ Definition 5 and

Theoremn 2] .

DEFINITION 6: A major determinant of a p x g matrix is

the determinant of any square submatrix of maximum crder.

DEFINITION 7: If A is anm X n matrix, and B is an
n x m matrix with m&n, then a major determinant of A and

a major determinant of B are said to be corresponding majors

of A and B if and only if the columns of A used to form the
major of A have the same indices as do the rows of B used to

form the major of B.

THEOREM 6: If A is anm X n matrix and B is an n x m
matrix, and if m€n, then the determinant of AB is equal to
the sum of the products of the corresponding majors of A

and B [3, pp. 64 - 65)] .



- THEOREM 7: If L: V-»W is a linear transformation of an
n-dimensional vector space V into a vector space W, then the
dimension of the null space of L plus the dimension of the

domain of L equals the dimension of V T4, p, 100] .

THEOREM 8: 1If P is nonsingular, then A and PA have the

same column rank [9, D 551 ‘

THEOREM 9: If L is a linear transformation of a vector
spalce V over ¢ such that <Lv,v » = 0 for all v€V, then L = 0,
{12, p. 16?] .

LEMMA 1: If x and y are two orthogonal vectors, then

[l e
' Proof:

5 e
”X+yH Ax+y, x+y72 3

L + £ X, ¥y2 + Ly, x> + Ly>;
2 _ 2
Wxll ™+ Iyl ®

I



CHAPTER III

THE -MOORE-PENROSE
GENERALIZED INVERSE

In 1920 E. H. Moore published a paper on a generalized
inverse for matrices [?] . This inverse could be found for
any singular and rectangular matrix. Until this time only
inverses of nonsingular matrices had been studied. The
following definition of a generalized inverse is due to

Moore.

DEFINITION (Moore): A matrix X is a generalized inverse

of A if
w ke
XAlu PRIX) (1)
and ' :
g
AX = Pgryy, (2)
Several years later in 1955, R. Penrose, unaware of Moore's
work, developed the same generalized inverse [:8] . However

he defined it in a slightly different manner.

DEFINITION (Penrose): A matrix X is a generalized

inverse of A if

AXA = 4, (3)

XAX = X, N (&)

(AX)* = AX, (5)
and - | '

(XA)® = XA, LR - (6)



Because of the jndependence of the work, this inverse is

often referred to as the Moore-Penrose inverse.

The claim that Moore's definition is equivalent to
Penrose's definition of a generalized inverse is by no means
obvious. Before establishing the equivalence of these two

definitions several theorems must be proven.

THEOREM 10: For any matrix A€ b e HUAR) = R(A)T

Proof: By definition of N(A¥*) a vector x€¢, is
in N(A*) if and only if A¥x = 0. This is equivaien"t to the
statement that x€ N(A¥) if and only if each row of A¥
postmultiplied by x gives the product 0. Now, the rows of
A¥ are the conjugate transposes of the columns of A, and
therefore x¢€ N(A¥) if and only if it is orthogonal to every
column of A. Thus <€ N(A*) if and only if € R(A) ;

Hence N(A¥) = R(A)'" 3 a

THEOREM il: 1f a matrix is idempotent and Hermitian

then it is an orthogonalﬂ projection onto its range.

Proof: Let X be idempotent and Hermitian. -Then
40 be an orthogonal projection, X must satisfy the following
conditions:

1., if x€R(X), then Xx = x
and . i
s, 4P wE R(X)T  then Xz = 0.

Let x€R(X). Then there exists a y€ én such that x = Xy.

But X is idempotent so x = Xy = X(Xy) - Xx., So X acts as an

10




identity on its range.
Let z€R(XF . But R(X)™ = N(X*) by Theorem 10.
Since X is Hermitian N(X*) = N(X), so that z€ N(X). Thus

Xz = 0. 8

THEOREM 12: An orthogonal projection P is idempotent
and Hermitian. |
Proof: Let P be an orthogonal projection of V onto
W. Define the jth column of P to be pj. Since Pe:| = pj,
pj€ R(P). Thus

ij = Pj for each j
by definition of an orthogonal projection. Written in matrix
notation the eguation becomes P? = P or Pz = P, Hence P is

idempotent.
If v€V, then v can be expressed uniquely as
Vo= W o4 W‘L
where w€ R(W) and w* €R(W)* . Hence
<PH*v,vp= Lv,Pv? = &v,w?> = dw+ wr, w>;

= <w,w? + w? W 2 3

= &w,w> = <w,w? + <w,w > ;
= <w,w+ wt>» = <w,v>
= &<Pv,v>» ,
giving
< p¥v,v?>= <Pv,v>,

and hence
C(P%® -~ P)v,v > =0,
for all €V, By Theorem 9,

(P* - P) = 0

13



so P* = P, Hence P is Hermitian.[3

THEOREM 13: VNN = P;%M) if and only if MNM = M and

(MN)* = MN.

Proof: 1. MN is an orthogonal projection onto
R{M). Let ms be the jth column of M so mje R(M). Thus
Mij = mj. Written in matrix notation the equation becomes
- MNM = M. By Theoren 12, (MN)* = MN.A

ii. BSince (MN)* = MN, MN is Hermitian. Multiplying
both sides of MNM = M on the right by N yields MNMN = MN.
Thus (MN)2 = MN. Therefore MN is idempotent. Hence MN is
an orthogonalrprojection onto R(MN).

Let x€R(MN). Then x = MNy for some y, so x = M(Ny)€ R(M).
Hence R(MN)ER(M). Conversely, let a€R(M). Then a = Mb.
for some b, =0

a = Mb = MNNMb = MN(Mb),
Hence a€ R(MN) and R(M)& R(MN). Therefore R(M) = R(MN).

Thﬁs, MN is an orthogonal projection onto R(M).

. . » -L ¥
Since there is a unique projection onto R{(M), MN = PR(M)' Ea

By applying Theorem 13 in the following corollaries the

two definitions are shown to be equivalent.

COROLLARY 1: AX = Pé%A) if and only if AXA = A and
(AX)* = AX.
COROLLARY 2: XA = Pé%xj if and only if XAX = X and

(XA)*-= XA,

12



The equivalence of the two definitions of the generalized
in&erse has been shown in Corollaries 1 and 2. The rest of
this chapter consists of a method for finding the orthogonal
projections on*o either the range_of X or the range of A, a
theorem which shows the uniqueness of the Moore-Penrose
generalized iﬁverse, and several useful properties of the
Moore-Penrose generalized inverse. Then several examples
dealing with the computation of this generalized inverse and
its use in solving inconsistent systems of linear equations
are precented.

For any m x n matfix A over'¢ a representation of the
orthogonai projection onto the range of A may be obtained
using the following method.

Let A be an m x n matrix over § with rank r. whs #
linearly independent column vectors which form a basis of the
column space or range R(A) of A also form a matrix,

B = [b1 b, . . ; br] y having rank r. Every column vector of
A may be written as a linear combination of the columns -of B;
i.e., a. = Bc. where Cj' the jth coluﬁn of a r x n matrix C,

J J

is determined by expressing aj as a linear combination of the

basis vectors in B. Therefore A = BC.

Using Theorem 1, the rank of C is found to be r. Indeed,

i rank of A by definition of A;

il

rank of BC;

& rank of C by Theorem 1:

£r since C is an T.x n matrix.
Therefore, r £ rank of Cé:f. so the rank of C is r.

Taking the conjugate transpose of A = BC, the equation

13



A¥ = C¥B¥ isg obtained and the columns of C¥* form a basisrfor
the range of A*, written R(A%*). (The jth column of A* is
written as a linear cdmbination of the vectors of C* with
the jth column of B¥*; a§ = C*b%.)

In general a column vector of R(A) is of the form a = Bx
for xEICn. Therefore, the problem may be restated: For any
s€bn, find the vector Bx€ R(A) which is a projection of s
in R(A). 1In particular, s may be written uniquely és the
sum of a vector in R(A) and a vector in R(ATL ,A

o
s =a+ a* where a€ R(A) and &~ € R(A) .

ﬁut a = Bx for some x. So s = Bx + a+t . Subtracting Bx
from both sides,
s - Bx = dl .

Hence s - Bx is orthogonal to every vector in R(A) and
therefore to each of the basis vectors. Thus Bx may be
determined as follows:

<bj' g8 =BX>»=0, for | =21, 28, s+ « s+ 3 Yu
By applying the definition of.inner product, the equation
becomes —

b?(s —‘BX) =0
which can be written as a matrix equation

B*(s - Bx) = 0.
Using the distributive property of matrices and adding B¥Bx
to both sides of the equation,

B#g = B*Bx. | . (7)

Since B¥B is an r-square matrix its rank cannot exceed r.

14



Assume the rank of B*B to be k wheré k -rl Tgen by Theorem 6
the determinant of B*B is the sum of the products of the
corresponding majors of B¥* and B. Since in this case pairs
of corresponding majors are complex conjugate numbérs, their
products are nonnegative. Since B is of full column rank,
some major M of B is nonsingular. Thus M* is nonsingular,
and the determinant of M¥* times the determinant of M is
greater than 0. Thus the determinant of B*B is greater
than 0. Therefore B#B is nonsingular and hence invertible.
Therefore, equation (7) may be rewritten

(3%8) "!B*s = x. |

Using Theorem 5, P is defined'as an n xn matrix which

projects s onto R(A). Thus

Ps = Bx = B(B*B) lB*s
for all s. Therefore for any column vector s,

Ps = B(B*B) !B*s, |
Let s = e;., Then Pe, = B(B*B) 'B¥e, implies that the jth

J J
column of P equals the jth column of B(B*B)'lB* for

J=1; 24 « »+ » » s Therefors,
P = B(B¥B) lp*,

The matrix P is an orthogonal projection. Indeed,

- p? = (B(B*B) 1B*)? = (B(B*B) 1B¥)(B(B*B) 1B*);
= B(B*B)~1(B*B) (B*B) 1B* = B(B*B) lB* = p
and | . '
p* = (B(B*B) B*)* = B(B*B) lB* = P

15



shows that P is idempotent and Hermitian.
By a similar method a projection onto R(A*) can be

found. Call such a projection Q. As above,

Q = c*(cc¥*) "t

and C* is the matrix containing a basis of R(A%*) as its
columns.

For any matrix A it is shown‘in the development of
an orthogonal projection onto R(A) that any vector in R(A)
can be written aé'a linear combination of the basis vectors
of R(A). Thus A = BC, where B is a matrix containing the
basis vectors of R(A) as its columns. Having defined the
matrices B and C it is possible to define a matrix A" suen

that At is a generalized inverse of A.

THEOREM 14: Let A be an m X n matrix, P be the projection
onto R(A), and Q be the projection onto R(A¥*)., Then there
~exists a unique matrix A" such that

i. AATA =1,

11. ATaat = at,
iii. AAT =P, and
iv. ATA = q.

Proof: Let At = c*(co*)"1(B*B) 1B*, It can be

shown that this matrix satisfies the four properties. Indeed,

i. aata = Bc cx*(co*)"Y(m*p) 1p* B0 ;

"

B(cq*)(cc*)‘l(B*B)‘l(B*B)c = BC = A.



i

i1, ATaat = cx(ce*)"l(m#B)"1B* BC Cc*(cox)"l(m*m) lp*

cx(cc*)~1(*B) "1 (B*B) (co*) (co*) "1 (B*B) "lm*

-e

cx(cex) " 1(p¥p) ip* = A",

]

iii. Since A = BC, AAT = BC c*(ccx)"1(m*m)~lp* ;
= B(B*B) 1B* = P,

. o1 = + = * .-}i- ~1 * ..1.* .

iv. Since A = BC, ATA = c*(co*) Y (B#B) !B* BC ;

1t

cx(cc*) 1 = q.
Having shown that A" satisfies the four properties listed
above, assume two such matrices, Ai and Ag, exist and that

both satisfy the four properties. Since AAI = P,

4 F
AZAAl = A2P.
Moreover, AA+ = P, and A+AA* = A+P. Therefore,
2 2 2 2
4, .+ kL
AZAAl = A2AA2 = AZ'
But AjA = Q, and hence A3AA] = QAT. Similarly AJA = Q, and
+ 4 + il . + + A +
hence AlAA1 = QAl. This implies QAl = A, so that A2AA1 = Al.
. e +
However, it has been shown that AZAA1 = Az. Therefore,

A; = AZ. Thus A" is unique. Therefore A" is the unique

matrix that satisfies the four properties.'a

In linear algebra an inverse Aul is defined only for a
nonsingular matrix A, and Aal is unique. However a matrix

also has a generalized inverse ‘A* which is also unique. The

17 -



following theorem will resolve this seeming contradiction

of two unique inverses for the same nonsingular matrix.

THEOREM 15: It A matrix A is nonsingular, then

At = a7t
Proof: If A™L exists, then
i. AAA = AT = 4.
i1, a~taa™t = 4717 = 471
1ii. AaA"1 = 1 = P since fofxélR(A),
Px = Ix = X.
iv. ATYA = I = Q since for y€ R(A%),

Qy = Iy = y. Thus Af1 satisfies the four equations in
Theorem 14. Since AT is the unique matrix sétisfying these

equations, then Aot m

Even though a1

is defined only for nonsingular
matrices; g may be determined for singular matrices. Being
able to determine AT is useful when finding solutions of a
system of linear equations. There are three possibilities
for the number of solutions a system of linear equations may-
‘have. If Ax = b is consistent, then either one solution
exists or an infinite number exist. In either case fof any
x which is a solution of the system,'l Ax - bl = 0. 17
there are an infinite number of solutions then among them

- there exists a x such that ll xll is a minimum. However,

if Ax = b is-inconsistent, then no solution exists. It will

18



be shown that A+b minimizes ”Ax - b “ . Among the vectors

A'b is the unique vector

i

which minimize H Ax - D ” X

with minimum norm.

LEMMA 2: Let A€¢mxn and P, Q, and A" be defined as in
Theorem 14. Then

i. R(I - P) = R(AYY ,

1l

' 4
ii. (I - P) is a projection onto R(4) ,
iii.. R(A%) = R(A*), and

ive (I - Q) is a projection onto R(A*)i ;

Proof: i. P is a projection onto'R(A). R(A) is
a subspace, so by Theorem 3, a vector se.¢n can be uniquely
expressed as the sum of a vector in the subspace and a
vector in its orthogonal complement. So s = x + x+ . But
X can be expressed as the projection of s onto R(A) or Ps = x.

Substituting Ps for x the equation becomes s = Ps + xT .

Subtracting Ps from both sides, s - Ps = x+, Using the

- distributive property of matrices (I - P)s = x* . So
R(I - P)SR(A) .

Let XGR(A)"' , then Px = 0. So (I - P)x = x. Hence
Xx€ R(I - P). So R(ATL € R(I - P). Therefore R(AYL = R(I - P),

ii. Since

(I-P)2=(I-P)(I-P)=1I-2P+Dp%;
=1-2P+ P =(I-P)
and
(I - P)* = (I* - ©%) = (I - P)

19



(I - P) is idempotent and Hermitian. Therefore (I - P) is
an orthogoné.l projection onto the orthogonal complement of
R(A).

i%i. By definition Q is a projectlion onto R(A¥*) and
q = A+A; but Q@ is also a projection onto R(A+). Indeed for
any y€ R{A%*),

¥y = Qy = A+Ay.

This implies that y€ R(AT). So R(a*)E R(AT).

However, for any y€ R(AT), y = AYz for some z, so that

| y = Atatz = "),
implying y€ R(A*).  So R(AT)ER(A*). Hence R(A%*) = R(a).

iv. By a proof similar to part ii, (I - Q) is a

4
projection onto R(AT)” . H

THEOREM 16: Let X, = A™. Then for any x # X, either

i; ”Ax—b” >”Axo-b”. or

o= ol = e ) e S

Proof: 1i. For any x,

"Ax - b = A(x - A'D) +-(I ~ AAT)(-1b).
Making the substitution x, = A'b,
Ax - b = A(x - x_) + (I - AA7)(-D).
But AAT = P, so '
Ax - b = A(x - xo) + (I - 2)(-p).

Hence

2
L ax - o (I

I acx - xs) + (I - P)(-b)l 2.

20



. By part i of Lemma 2, A(x - Xo) is orthogonal to (I - P)(-b).

Applying Lemma 1, the equation becomes

| lle—.bH2= Pl oacx

xo>112 r b -l |
&

o Ut -=l) + e - 0l s
= }] Atx - xof“ “ 11 at™ - vl . ;
= ”A(x —'xo)“2+ ”Axo - b” 2.

Hence IIAX - b'* > li Axb - bll unless Ax = Axo.

ii. If Ax ='Ax0, then

Atax = A+Axo.

Ataate. But ataat = AT, so

]

ﬁy substitution A+Axo
| £ax = ATax = AT = x .

The véctor X may be written
X = x, 4+ (x - xo) = A"+ (x - ATAx),

so X = Ao o+ (I - A+A)x. But ATA = Q. Using this substitution,
| x = A% + (I - Q)x.

Squaring the norm of both sides,

2 2
W)l = A"+ (- ax]] .

By part iii of Lemma 2, A*b is orthogonal to (I - Q)x.,

Applying Lemma 1, the equation becomes

HellZ = b atlZs H-oxll®,
”X0“2+ ”X-Qx”2;

il X, 112 + 1l x - Atax I ° ;

I

]

- oy



Hx 117+ (lx- a1l 2,
W M r Ux-x 02

Therefore || x |l ->1It xol| iT x £ X,» Thus.among the

]

vectors which minimize || Ax - bf' x, is the unique vector

which has minimum norm.

- EXAMPLE: -

Find the generalized inverse of

P R R R
R R

= 0]
-1 1
0o -1
- B —
0 1
g
- 1 0 d L ]

The matrix C is obtained by finding the coefficients needed
to write A as a linear combination of B. The matrix C that

was found is’

22



1 6 -1 -2
B . 4 -1 -3].
Applying the definition of the Moore-Penrose generalized
inverse,
At = cox(ce*)"1(B#*B) 1B%,

it is found that

215 * -18 3 -3 18 15|
R 5 -13 -8
4 - 2 =g ~5 . =7

6 -3 9 -9 3 -64 .

The general form of a linear equation can be written

alxl + a2x2 B i o4 ow ¥ anxn - b = 0.

A system of linear equations would contain m such linear
equations. In matrix notation the system of linear equations
would be written

| Ax -b =0
where A is the mxn matrix of coefficients, x is a nxl matrix
of variables, and b is a mxl matrix of constants.

“If a system of linear equations, Ax = b, has no solution,
"~ then any nxl vector x will cause Ax to differ from b by some
residual amount, r, where r = Ax - b. When r is "small" this
vector, x, can be thought of as an approximate soiutioﬁ. Since
an infinite number of such solutions, could exist, it is
helpful to look at a subset of all the approximate solutions.
Let that subset be the set of all vectors which minimize
lle - b'l « By minimizing ‘I.Ax - bl] , the vector x minimizes
the sum of the squares of the components of the reéidual vector

r.
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In order to attach meaning to the residual vector,

consider that its jth component has the form

ajlxl + ajzxz P ajnxn - bj
where Xis Koo v o vy X, are components >f the vector x,
ajl' aj2’ s e W 3 ajn are the cocefficients of the jth equaticn,

and bj is the jth component of the vector b. In n-space
geometry the distance between the point with coordinates
(c{l,ﬂlz} « m ,a(n) and the n-space representation of the

equation ayXq t 8%, * . . 0 Fax = b is given by the formula

_ |3ty * et

N+ a

Furthermore, if the equation is normalized, i.e.,

. +...+anvﬂn-’o]

2
+...%an

AV AT B 4N]

2 . 2 & o
{ al T 32 i . L e .2 an s 1 ¥
the formula reduces to
= ol - =

Therefore, if the equations of the system Ax -~ b = 0 are
normalized, the absolute value of the jth component of the
residual vector represents the distance from the point aefined
by the vector x and the n-space representation of the jth
equatioﬁ.

To rewrite a linear equation in its normal form, find the
8quare root of the sum of the squares of the coefficients of

the variables, i;e., k = 4 a2 + aa + 4 e &+ ad « The normal
B 1 2 n

form can then be written by dividing each term in the equation
by the k which has the opposite sign from the constant of
the equation. Now that the normalized equations have been

found, substitute the corresponding components of the vector
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X, into each equation to find the corresponding component of r.

After writing each equation in a system of eguations in
its normal form, rewrite the normalized system of equations
in matrix form, Ax = b. The set of 2ll vectors which
minimize |le -~ bll could be an infinite set. However, if
the Moore-Penrose generalized inverse is used to solve for x..
the unique vector of minimum norm obtained will be in -the
set consisting of ail vectors which minimize El Ax - bl, ;

For any solution vector, x, of a system of linear equations
to have physical meaning, i.e., for the residual vector to
represent the undirected distances from a point defined by
a vector ; to the n-space represeﬁtation of the jth linear
equation, the normalized equations are used when solving for
x. Thus in working examples, the normalized form of the
equations will be found before the Moore-Penrose inverse is
obtained. The Moore-~Penrose generalized inverse will Ee
used to find the unique vector of minimum nbrm in the set

of vectors which minimize Ile - bll.

EXAMPLE:
Find the unique solution vector of minimum norm that

minimizes Ile - b llfor the following system of equations:

3x + 2y = 6
bx - 8y = 8
X = 0.

Solution: Normalizing each equation yields

i

! 5 5



By el e A
{3 {13 {13
N SHPT SR -
{5 is 5

X . = 0.

The normalized system of equations can be rewritten in matrix

form z2s
F.i .29 V6]
{3 A3 iz
X
L =8 - 2
s 15 |y 75
\_~1 § 3 Lo J.
Factoring A into BC it is found that
5 - 8]
13. (13
. 1 0
B = L. 22l and C =
V5= 15 o o1) .
AR
Upon substituting inte the equation AT = C*(CC*)"I(B*B)_lB*,
» - - -1_ -
'3 1 1) 3 2 3. 1 1
s T = S| B T
at=1 2 -2 o 1 -2 2 =2 0
5 13 1|5 BB R E
L1 0 _J
: L2418 26307 . 52941
0“’7721 "082208 "'102924'1 »
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x . L2418 . 26307 seout] [ 6 7]
= A'D =
v L7721 -.B82208 -.02941 €I§
.-
Vs
, | 0 J
X .94118
Therefore, = is the solution vector of
1y .05883

minimum norm which minimizes E\Ax - b l]. Figure 10 is a
graph of these equations with the best approximate solution

marked .



CHAPTER IV
THE MINIMUM NORM INVERSE

A minimum norm inverse of a matrix A is defined as a
matrix Y such that A = AYA and (YA)* = YA. Therefore the
minimum norm inverse satisfies the first and fourth
properties of the Moore-Penrose inverse, equations (3) and (6).
Hence the minimum norm inverse shall be denoted by A(l'n).

Norms may be thought of as distaﬁces. Thus a minimum
norm is the smallest distance. When working with solutions
of a system of linear equations the minimum norm solution
represents the solution which when expressed és a vector

has the smallest length. Here norm is defined by

Wl = ‘x,x>1/2
where the inner product is defined by
ex,y» = 2 ¥i%; = yEx.

If a system of linear equations AX = b has a nonempty
solution set, then by definition it is consisteht. If there
is only one solution in the set, then that‘solution is
trivially the minimum norm solution (figure 1). An example
ig the intersection of two nonparallel lines. However, if
several solytions exist for a system of linear equations
one of the solutions must be the minimum norm solution. This
becomes clearer if the graph of coinciding lines in 2-space
is considgred (figure 2). An infinite number of points are

*in the solution set, yét only one point is closest to the
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origin and hence the term minimum norm.

These two examples have dealt w1th systems of linear
'equations in 2-space. A linear equation represents a line
in 2-space and a system of linear equations represents a
family of lines. If the concept of space 1s extended to
3-space a linear equation represents a plane and therefore
a system of linear equations represents a family of planes.,

Figures 3 and 4 show the various.ways three planes may
interseet and a solution or solutions exist. In figure 3
the three planes have a unique point of intersecfion which
causes the minimum norm solution to be trivial. However,
two cases exist where the solution set contains an infinite
number of points and hence the minimum norm solution is not
trivial. Consider the case in which all three planes
intersect in a line (figure 4). Since the intersection is
a line, one of the points on the line must be closest to the
origin. This point will be the solution of minimum norm.
The other case to be considered deals with the intersection
of coinciding planes. The intersection is‘a plane and the
solution set consists of all points in the plane. There
must be one point in the plane closest to the origin - the
minimum norm solution. |

Any coﬁsistent eystem of linear equations will have a
minimum norm solution. However, not ail systems are
consistent. If a system of linear equations ie inconsistent,

-then no solution exists and therefore no minimum norm
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solution exists. Examples of systems of equations which have
no minimum.horm solution can easily be found in both 2- and.
3- space. In two dimensions two parallel lines do not

intersect (figure 5). Therefore the system of equations
which represents this family of lines has no solution.
Another example in 2- space is found by extending the line
segments which form the sides of a polygon (figures 6a and 6b).
There is no common point of intersection. Therefore the
system of equatidns which represents this family of lines
has no solutién. -(This example is mentioned since the
system of equations contains more equatiéns than unknowns.
Thus the coefficient matrix is nonsquare.) Since no solution
exists in each of fhese cases in 2- space, no minimum norm
solution exists. | |

Similarly in 3- space parallel planes do not intersect.

EVen if two parallel planes are cut by a third plane there
" is no common intersection (figures 7 and 8). Upon considering
the figure formed by n planes which intersect in n mutually
parallel lines (figure 9), it is found thét no common
intersection is found. If the system of equations which
représents the planes in any of the above cases 1s examined,
it is found that no solution exists, and therefore no minimum
norm solution exists.

| "It is important that a distinction be made between a
minimum norm inverse and a minimum norm solution. A minimum

norm inverse exists for any matrix A. However, for a system
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of linear equations, Ax = b, to have a minimum norm solution,
Ax = b must have a solution; i.e., be consistent. Therefore
not every system of linear equations will have a minimum norm

solution.

THEOREM 17: If a solution of a system of linear equations,
Ax = b exists, then the unique vector for which II X l‘ is
smallest is given by
= altiby,

X
-0

Proof: Ax = b is consistent. A solution is given
. by X, = A(l’u)b since
axy = aa(1 8y o 0 (LB o ay C oy,
The general solution x may be written
-
where yEN(A) [ 12, p. 107] . Then
- 2 2
W=l =i

<x0+y, x0+y>;

]

CXon X, VYD 4+ 2y, T T

2 2
llxoil + lly'l' + < X Yo + < y,.XO> ;

ST [T

Therefore || x 1 > XOIF unless x = x

1]

o
Given a system of consistent linear equations, Ax = b,
it has been shcwn that X, = A(l’u)b is the unique vector for
which ll xl, is a minimum. Since the minimum norm inverse
is not unique, any minimum norm inverse of the matrix A when

multiplied by the vector b yields X,+ Let X and Y bé‘two such

T



minimum norm inverses 6f A. Then Xb = Yb. Subtracting Yo
| from both sides gives
| (x - Y)b = @,
Thus the vector b must be in the null space of the difference’

of any two minimum norm inverses of A. W
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. CHAPTER V

THE LEAST SQUARES INVERSE

A least squares inverse of a matrix A is any matrix X
such that Pﬁ%&) = AX. From Co}ollary 1 this definition can
be written as AXA = A and (AX)* = AX., Since X satisfies
the first and third properties of the Moore-Penrose inverse,
equations (3) and (5), a least sguares inverse shall be
denoted by A'1'3),

A least squares solution of a system of equations Ax =D
is a vector which causes the sum of the squares of the
residual vector r to'Ee a minimum, where r = AXx - b. The
absolute value of the jth component of a residual vector r
represents the undirected distance between a point defined by
the vector, x, and the n-space representation of the jth
linear equation in a system of linear'equations. Thus r
consists of the undirected distances between a point defined
by thé vector x and the n-space representations of each
linear equation in 2 system of equations. 1In order to find
~ these undirected distances, it is necessary to write each
linear equation in its normal form before detefmining the
distances. Hence the normalized equations are used to find
the solution vector if the system of equatioﬂs is consistent
or the approximate solution vector if the system of equations
is inconsistent.

If a system of linear equation, Ax = b, is coﬁsistent,

then r = Ax - b = 0. Hence x is trivially a least squares
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solution. But if Ax = b 1is inconsistent, then no solution
exists. Then for any x, a residual vector r exists such

that r # 0. Thus any x that is chosen will cause Ax to differ
from b by some residual amount. The following theorem shows
that the least squares inverse can be used to find a vector

x which will minimize |[ax - v]].

THEOREM 18: 1If Ax = b is a system of linear equations,
then a vector which‘causes lle - Db ll to be a minimum is
given by x, = A(l's)b.

Proof: In general,

Ax - b ="A(x - A3y & (1 - an(13)y (L,

Making the substitution x, = A(1:3)y

Ax - Db # Alx - xo) + (I - AA(l'B))(-b).

By definition AA(l‘B) = P,

S0
Ax - b = A(x - xo) + (I - P)(-Db).

Squaring the norm of both sides, the equation becones
' 2 2
Hax -ol] = Hax-x)+ (T-2)¢0) ]

By part i of Lemma 2, A(x - xo) is orthogonal to (I - P)(-b).

Applying Lemma 1, the equation becomes

TR | R [ PV

i
!

2 | 2
x U+ 1 - py-o Il
[l ax

Il
i

2 2
x b+ Heo-o) 10 5
2 2
x )+ TVASTEL NN | I

2 2
[Ha - x )l + Jhax, - o]l

Therefore IIAx -~ B l|'> l'Axo - b Il unless Ax = Ax. B

!!A(x

i
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There are several ways to determine a least squares
solution. Several methods are described in Ben-Israel and
¢reville [2, pp. 105 - 113] .

Even though a least squares solution exists for all
systems of equations, a least squares solution is not
necessarily unique. If a system of equationé is consistent,
then either the solution is unique, causing the least squares
solution to be unigue, or there are an infinite number-of
solutions, causing an infinite number of least squares
solutions to exist. The most interesting least squares
solutions are those solutions for inconsistent, normalized
systems of equations. Figures 5, 6a, and 6b show 2-space
representations of systems of equations which have no solution.
Similarly, figures 7 - 9 are the 3-space fepresentati@ns of
inconsistent, normalized systems in that space. It is
interesting to note that in each case there are an infinite
number of least~équares solutions‘excepi.in the cases shown
in figures 6a and 6b. These figures in 2-space represent
systems of eguations containing more equations than unknowns.
In each case if the coefficient matrix were column reduced it
would bé found to have full colﬁmn rank. In comparison the
least squares solution of three parallel planes has an infinite
humber of solutions since the column reduced matrix is not

of full rank.
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CHAPTER VI
INTERVAL PROGRAMMING

Interval programming problems (IP) are optimization
problems of the form:
. Maximize eTx N (10)
subject to a £ Ax & b, . (11)
where the matrix A and column vectors a and b are given.
Of particular interest is the method for solving IP problems
where A has full row rank using generalized inverses.

All matrices, vectors, and scalars used in this

chapter are to be taken over the field of real numbers.

DEFINITION 8: Let F =4 x€R : a4¢Ax4b} be the set
. of solutions of the IP. If F is nonempty the IP is feasible.
Furthermore if the IP is feasible and max {ch:: Jcslﬁ £ o

then the IP is bounded.

THEOREM 19: [2, p. "90]. Let A€R ., c€R_, and
a, b€R_Dbe given such that the IP defined by (10) and (11)

is feasible. Then the IP is bounded if and only if
c € N(ayt .

Let A(l) be any generalized inverse of A satisfying

AXA = A,

 THEOREM 20: [2, p. 91] . If c€N(AY" and A is of full

row rank then the optimal solutions of the IP are characterized

LJ.’
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by

X = A(l) rtl (a,b.A(l)Tc) + ¥

where yEN(A) and A is defined by

uy if

M (u,v,w) =4 V3 if

Agug * (1= Ag)vy

wi Z O
L4 » 0

7 & 2 -
where 0% A;¢1, if w; = 0.

The following method found in Ben-Israel. and Greville

tzi Ppo

14 - 18] may be used to find A(l).

Any matrix A can be premultiplied by a finite number of

nonsingular matrices Ei representing elementary row operations

and post multiplied by 2a finite number of nonsingular matrices

Py representing elementary column o

T
EAP =| T
0

A =E

which implies that

where A is of rank r, E =EE i &
m m-1

pergtions such that

K
0
K :

P—l

0

L] El, and P = P1P20 L] L ] Pnl

E and P are nonsingular matrices since they were obtained by

multiplying nonsingular matrices.

A generalized inverse of A satisfying AXA = A can be

computed from .

I
All) = T

0 L

1

where L is any matrix of dimension (n-r) x (m-r) since

Y. &
AA(l)A i E"'l r
0 0

3%

0 0

€ AN el |
r ] EE’l r P-l



It should be noted that if m = r and or n = r special

1. 0]
In particular,

consideration should be given to [
- 0 L

L vanishes, so that the matrix becomes [ﬁi, Q] ifm=r

I

or M ifn = r.
0
-K
The columns of the n x (n-r) matrix P
Innr
form a basis of N(A) since
-K I
i. AP = gt {
In-r 0
and hence is contained in N(A);
ii. By Theorem 8, the rank of P equals
=K -K
the rank of ) since P is nonsingular. The rank of
In—r ' In-r
. -K \.
is n-r. Therefore the rank of P is n-r. Thus the
In—~r
=R : ,
columns of P are linearly independent. "By Theorem 7
) = :
“n-r
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-K

the dimension of N(A) is n-r. Thus the matrix P

In—r

is a linearly independent subset of N(A) with n-r elements.

Any such set is automatically a basis of N(4) [4, Do 6§] .
EXAMPLE :

Maximize 2x1 - Xy - Xg + 3x4

subjeet to

Solution: From the equations,

0 1 2 1 2 -1 0
a= -3, v=lof., e={1, amaa=f1 0 1 1
1 3 3 23 =3 1

To find A(i), A must first be written in the form

K

EAP = P
0
It is found that
12  =5f2 | -1
E = J1/2 12 0 P = I, and
1/é -3/2' =1
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Ti/2 -5/2 -1}| 1 2 -1 0
EAP = |1/2 12 oll-1 o 1 -1
1/2  -3/2 -1}l 2 1 -3 1

= 0 1 0 -1/2
0 0 1 1/2 |.
_ " gkt -3/2 .
f 1/2
Using P , a basis of N(A) is ~1/2 |+ @and the IP
I .
n-r : 1

is bounded since ¢ is perpendicular to N(A).

, I 0
A(l) = PI I ]E )
0 L
] 1/2 -5/2 -1

I e
I, | Y12 172 ol ;
0 ,
1/2 -3/2 -1

Having defined

L)

i

1/2 -5/2 -1

1/2 1/2 0

I 7 Y T
| 0 0 04 .

Using the definition of ?T(u,v,w) and realizing that
u=a, v=">5 and w = A{i)Tc, the optimal sclution can be

computed.
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1/2 142 1/2 ol 2 0
w = Llssz 172 =3/2 of™H] = |-»
=% 0 -1 o)l 3 )
so ‘l:ha.’c'w.mr1 = 0, m_r2 = -4, and w3 = =7 Thus
e ((0) + (1 - p) PEE
nT(a-)bJA C) = "3
1
1 = A 1
= -3
1

Let P4 = (qa - A ). Since by definition 0% llé 1, then

L - & : &
0 & (1 11)- 1. Thus 0_ﬂ14 is

Therefore the optimal SOlutionI is

F1/2
1.2
142

0

=

which can be rewritten

X =3

_1/21
1/2
1/2

0

-

A

where 4 is arbitrary.

-5/2
1/2

. =3/2

0

(-5/2

-3/2
0

_h1

1/2_

_1]

0

4

[-3/2

y

T2
-1/2




CHAPTER VII

MARKOV CHAINS

A stochastic process in probability theory is " a

family of random variables describing an empirical process,
the developmen% of which in time is governed by probabiliistic
law" [11. p._5iéj . Stochastic processes have applications
in many fields. For example, Markov chains, a special class
of stochastic processes, are applicable to problems in

sociology, genetics, and engineering.

A Markov chain may be defined as a random
.process, the development of which is
treated as a series of transitions between
certain values, called the states, of the
process, which are finite or countably
infinite and which possess the property
that the future probabilistic behavior of
the process depends only on the present
{given) state and not on the method by
which the process arrived in that state
f11: ps 51637 .

All matrices, vectors, and scalars in this chapter are
taken over the field of real numbers.
DEFINITION 9: The n x n matrix P = (pij) is said to be

a stochastic matrix if and only if P20 and

%; .
| po- = 1. i = 1, 2 . N e 9 N,
Jel ~J | ’
DEFINITION 10: A stochastic matrix is ergodic if one
eigenvalue equals unity and all the other eigenvalues have

magnitudes less than unity.
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DEFINITION 11: A stochastic matrix P is regular if
there exists a positive integer n such that P? has all

positive terms.

Let the column vector p(0) céntain the initial
probabilities of the various states. Since p(0) is a
probability vector the sum of the elements of the vector.
is 1. Let the stochastic matrix P.consist of.rows which
are probability vectors giving the probabilities of transition
from one state to another. Given p(0) and P it is of
particular interest in many cases to find p(n), the
probability vector giving the probability that, at a
particular time n, the procéss ié gt a certain state. The

probability vector of a system at time n is given by
pT(n) = p' (0)P".
If P is ergodic or regular, as n becomes infinitely
large, the sequence ip(nj} converges to a unique probability

vector p(ww ) called the stationary vector [11. Ds 569] + The

stationary vector, p(&°), satisfies

pl(o9)P = pl(o=)

and

il

pl(oe)e = 1,
where e is a vector Qaving 1 in each componeﬁt.

It is in the computation of p(®) that the generalized
inverse may be used. The following theorems are stated

without proof and serve as a computational method for
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finding p(e®). For a reference to the two thecrems see

{1, p. 262] .

THEOREM 21: If P is a regular or an.ergodic stochastic

matrix and

et [r- -0 -t

. '
then (eTy) yT is the unique stationary vector for P.

Tﬁe preceeding theorem allows P to be either regular
or ergodic but also limits the generalized inverse used to
be the Mooré-Penrose inverse. However, if ® is required
to be ergodic the following theorem allows the use of any
generalized inverse-satisfying at least one of the

Moore-Penrose properties, equations (3), (&), (5), and (6).

THEOREM 22: Let P be an erogodic stochastic matrix and
define ‘ )
| M=I-(P-1I)P~-1I)"
where (P - I)” is any generalized inverse of (P - I)
satisfying at least one of the four Moore-Penrose properties,
equations (3), (&), (5), and (6). If yT is any nonzero

row of M then

(‘%—) y' = plts)
e’y '

is the unique stationary vector.
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EXAMPLE: [ 11, p. 521] + Four quarterbacks are.warming up

by throwing a football to one another. Let il' iz, 13. and
-iu denote the four quarterbacks. It has been observed that
il is as likely to throw the ball to i2 as to 13 and i,
Player 12 never throws to i3 but splits his throws between
i) and i,. Quarterback i, throws twice as many.passés to
i1 as to 14 and never throws to iz, but.i4 throws only to
il' This process forms a Markov chain because the player
who is about to throw the ball is not influenced by the
player who had the ball before him. |

Use the Moore-Penrose inverse to find the stationary

vector p(o®).
Solution: The transition probability matrix is

0 1/3 1/3 1/3

T 1/2 0 0 1/2
2/3 © 0 173 1.
1 0. 0 0o
For n = 4, °% is positive, so by definition P is regular. -

Since P is regular it is possible to find p(®®) using

Theorem 21. Solving for yT.

= Ilr--ne-Y,;

v

=t 1/3 173 /3] -2 13 1/3
T _11/2 -1 B /2] 1/2 - 0
2/3 0 -1 1/3]1{2/3 o0 -1
1 0 o -1J{1 0 0

]
1]
-

b5

1/3]
1/2
1/3




ol SRR
= of I¥- 1/2 -1 0 1/2
/4 @ =1 1/3
l 1 0 0 -1
[ [ .37331  -.208896
= e L =4 089 -.06963
-.38298  -.12766
- k .
62669 .208896
o | -2089 . 069631
- .2089 .0696131
.38298 .12766

Thus —%~) yT =
ey

[1.&275 47582

1

47582

-.27998

15667 .15668  .28722]

.12081 -.70987  .29014 . .03192
.05658  ,26886 =-.73114  .15958
| 1028 .28433  .28433 -.47871]]
-.20890 -.38295]
93037 -.12767 b
-.12765 -76593J‘J
")
.20890 .38295
. 06963 » 12767
.069673 12767 |
12765 .23&071
.87236] y

F.2515 [1-42?5 b7582 47582 .8?236] ¥

{43002 14634 14634 2683 = pl(ee).

The probability vector p(©?) gives the long-range prediction

regarding probabilities of the ball being thrown to each

quarterback. Thus over a long period of time, gquarterback 1

is likely to be thrown the ball about 44% of the time;

quarterback 2, 15% of the time; quarterback 3, 15% of the time;

and quarterback 4, about 27% of the time.



CHAPTER VIII
FIGURES
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FIGURE 1 Intersecting lines

FIGURE 2 . Coinciding lines
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FIGURE 3 Three planes intersecting
at a point
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FIGURE 4 Three planes intersecting
"in a line
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FIGURE 5 Parallel lines
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FIGURE 6a Lines forming a polygon

FIGURE 6b Lines forming a triangle
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Three parallel planes

FIGURE 7
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FIGURE 8 Two parallel planes intersected
by a third plane
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FIGURE 9 Three planes intersecting
in three mutually parallel

lines
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N
FIGURE 10 A graph of the equations.
1,4 3x + 2y = 6
1,¢ Lx - 8y = 8
13: X = 0.
Also plotted is the
best approximate solution,

P = (.94, .06).
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