Longwood University
Digital Commons @ Longwood University

Theses, Dissertations & Honors Papers

4-1985

Rivest-Shamir-Adelman Cryptosystem

Edward A. Fetzner
Longwood University

Follow this and additional works at: http://digitalcommons.longwood.edu/etd

b Part of the Computer Engineering Commons

Recommended Citation
Fetzner, Edward A., "Rivest-Shamir-Adelman Cryptosystem" (1985). Theses, Dissertations & Honors Papers. Paper 323.

This Honors Paper is brought to you for free and open access by Digital Commons @ Longwood University. It has been accepted for inclusion in
Theses, Dissertations & Honors Papers by an authorized administrator of Digital Commons @ Longwood University. For more information, please

contact hinestm@longwood.edu.

http://digitalcommons.longwood.edu?utm_source=digitalcommons.longwood.edu%2Fetd%2F323&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.longwood.edu/etd?utm_source=digitalcommons.longwood.edu%2Fetd%2F323&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.longwood.edu/etd?utm_source=digitalcommons.longwood.edu%2Fetd%2F323&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.longwood.edu%2Fetd%2F323&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.longwood.edu/etd/323?utm_source=digitalcommons.longwood.edu%2Fetd%2F323&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:hinestm@longwood.edu

Rivest~Shamir-Adelman
Cryptosysten

By
Edward A. Fetzner
April 1985

Diﬁgctor: Dr. Robert Webber
Lrbut 2 who
Reader 1: Dr. Robb Koether
Kbl T~ Hpelhen.

Reader 2: Dr. Robert May

Tkt d [0, Polpns—

Reader 3; r. E. T Noone

f / V ne . 7 rv—\

7
ittee Chaéfi(Dr. Rosemary Sprague
§Anh ,_5;_%£a€ffz»~_

Rivest-=Shamir—-Adelman
Cryptosystem

By
Edward A. Fetzner
April 1985

A paper presented to Longwood
College in partial fulfiliment
of the requirements for honors
in Computer Science

INTRODUCTION

Defipition;

Cryptography, the art of writing secret nessages, has been prac-
ticed for almost 3000 years. Two people have a message to communicate
to each other, with a chance of an outside person intercepting the mes-
sage before it reaches the receiver. Therefore, the message must be
put through an encryption scheme to keep the intervening person from
finding the true nature of the message. An encryption scheme is coding
a message using an enciphering key and then decoding the coded message

with a deciphering key.

Iypes of Encryption Schemes:

The earliest encryption schemes are Kknown as symmetric schemnes,
since the enciphering and deciphering keys are identical or they are
related in such a way that by knowing one, the cryptographer can derive
the other from it. The best example of this type of scheme is the
Caesar Cipher [5, pp. 69-71], which consists of first converting the

characters of the message into numbers.

Example 1l: Ceasar Cipher

Let A=01
B=02
C=03

D\ oe o2

=26
Using EUCLID as the message, the number blocks would look like:

E U e L ik D
05 20 03 12 09 04

SR 11111

Next, a number is chosen that is larger than the number of symbols
in the alphabet used. Then, the number chosen is added to each number
block. Next, the number of symbols in the alphabet used is divided
into the sum just mentioned and the remainder, or modulus, is the coded
block. The last step in the coding process is to take the coded blocks

and convert them back to characterse.

Example 2: Caesar Cipher continued

If the ciphering key is 31 and the English alphabet is
is used (26) then the coded blocks would be:

10 25 08 17 14 09
or Jd Y H Q N I
To decode the coded message, subtract each coded block from the the

nurmber chosen, take the modulus, and convert back to characters.

With today's computers, symmetric encryption schemes are virtually
useless, since a computer could do all the calculations to decode the
nessage 1in seconds. Also, computers are handling more and more of our
communications, and since these communications are vulnerable to inter-
ception, encryption schemes have to be designhed to be computer unbreak-
able. These encryption schemes are known as asymmetric, since the
ciphering and deciphering keys are different, and it is computationally

infeasible to derive one from the other.
THE_RSA

Definition:
The Rivest-Shamir-Adelman [6], or RSA, cryptosystem currently is
computer unbreakable. The RSA is an asymmetric encryption that

incorporates a one-way algorithm. A one-way algorithm is invertible,

and it 1is easy to conpute all values needed for the ciphering and
deciphering keys. But for all domain values of one key 1t is
computationally infeasible to compute the value of the inverse of that

key, even if a complete description of the algorithm is given.

Values Needed to Find the Ciphering and Deciphering Keys:

The values needed for the cipher and decipher keys are two prime
nunbers . A prime number is a positive integer that can be divided,
with a remainder of 0, only by one and the number itself. Next, the
product of the two primes is found and the Euler phi (see APPENDIX 1
for a definition of Euler phi value) value of the product of the two
primes is calculated. The Euler phi value is found by subtracting one
from each prime and then multiplying them together. This gives the
following information:

Two Primes: P & Q

N=PXQ

O(N) = (P-1) X (Q-1) (Euler Phi value)
Finding the Ciphering and Deciphering Keys:

Now the ciphering key, C, can be derived by finding a number that
has a greatest common divisor of one with O(N), or (C,O0(N))=1l. A
greatest common divisor (GCD) is the largest number that will divide

into two numbers with a remainder of zero. For example, the GCD of 6

and 9 is 3, or (6,9)=3.

Next the deciphering key, D, is derived by finding a number that
is a multiplicative inverse of C modulo O(N). This is a number that,
if multiplied with C and divided by O(N), would have a remainder of
one. The best way of finding the GCD and the multiplicative inverse of

C mod O(N) is to use the Euclidean Algorithm [1, pp. 28-30]. The

Euclidean Algorithm is a series of repeated subtractions that will
yield a 1 as a last nonzero remainder, if C and O(N) have a GCD of one.
Then, if the steps are reversed, using substitution, the deciphering

key will be the number multiplied with C after the last substitution.

Example 3: Euclidean Algorithm

If C=167, P=47, Q=61 then: N=47X61=2867
O(N)=46X60=2760
First check to see if (C,0(N))=1:
1A) 2760=(167X16)+88_remainder
2h) 167=(88X1)+79
3A) 88=(79X1)+9
47) T79=(9X8)+7
57A) 9=(7X1)+2
6A) 7=(2X3)+1 Last non-zero remainder. Therefore the
7a) 2=(1X2)+0 GCD of 167 and 2760 is 1.

Now reverse the steps and substitute to find D:

1B) 1=7-(2X3) Substituting 5A for 2 in 1B
2=9-(7X1)

2B) 1=7-(9-(7X1))Xx3

3B) 1=7X4-9X3 Substituting 4A for 7 in 3B
7=79-(9X8)

4B) 1=(79-(9%X8&))X4-9%X3

5B) 1=79X4-9X35 Substituting 3A for 9 in 5B
11=53-(14x3)

6B) 1=79X4-(88-(79X1)X35

7B) 1=79X39-88%35 Substituting 2A for 79 in 7R
79=167-(88X1)

8B) 1=(167-(88X1))X39-88X35

9B) 1=167X39-88X74 Substituting 1A for €8 in 9B
88=2760-(167X16)

10B) 1=167X39-(2760-(167X16))X74

11B) 1=167X1223-2760X74 Last_substitution

Therefore, 1223 is the multiplicative inverse of 167 modulo
2760.

RSA_Algorithm:

Now that all the values have been calculated, the RSA algorithm

can be easily explained. The first step 1s to convert the characters

°of the nessage into nunbers (as in example 1), then block them into

groups.

Example 4: RSA NUMBER BLOCKS

Using example 1 and blocking the characters by 2, the
nunber blocks would look like:
E U C L I D

0520 0312 0904
% Note that the number blocks can be grouped by any

number of characterse.

Then each number block is raised to the power of the ciphering key and

divided by N to produce the remainder, which is the coded block. To

decode the coded blocks, raise each block to the deciphering key,

divide by N to get the remainder, and convert back to characters.

Letting NB be the uncoded blocks, CB be the coded blocks, and ** mean

raised to a power, the algorithm would look like:

CB=NB**C MOD N

NB=CB**D MOD N

The MOD in the previous equation means to find the remainder of NB¥**C

divided by N.

Example 5: RSA ALGORITHM

Using the the number blocks in example 4 and the calculated value
as follows:

in example 3, the RSA algorithm works

To code the message:
CB1=520**167 MOD 2867=1058

CB2=312*%167 MOD 2867=315
CB3=904**167 MOD 2867=621

The coded message: 1058, 315, 621

To decode the message:
NM1=1058**1223 MOD 2867=520

NM2=315%*1223 MOD 2867=312
NM3=621*%*1223 MOD 2867=904

Convert the number blocks back to characters.
PROBLEMS IN PROGRAMMING AN _RSA CRYPTQOSYSTEM

Large pumbers:

Even though the algorithm is easy to compute with relatively small
numbers, to make the algorithm truly computer-unbreakable the two
primes chosen should be at least 100 digits long, and the ciphering and
deciphering keys should be over 5 digits. Working with numbers of this
size 1s very slow even for computers. For example, to raise 9,999 to
the 9,999 power using multiplication might take a computer around 30
seconds. But if the number blocks are grouped by twos, then 9,999
represents two characters and in a passage of only 100 words (ap-

proximately 400 characters), those few seconds could become hours.

Therefore a more efficient way should be used.

Another problem with computers and large numbers is that conputers
usually divide by repeated subtraction. If the number to be divided is
100 times larger then the number dividing it, a computer will take a
few seconds to produce an answer. As before, with a 100 word passage

the waiting time could be in the hours.

Solutions:

In order to speed up both the exponentiation process and keeping a
large number from being divided by a small number, a Russian Peasant
Algorithm [2, pp. 43-45] can be used. The Russian Peasant Algorithm

first converts the exponent to a binary nunber.

Example 6: BINARY NUMBER

167 in base 2 is: 10100111.

s what each posi;ion in the binary
e is the power of 2 for that position,
ow three is the base ten

The following table show
nunber represents. Row on
row two is the binary number, and I
Fepresentatione.

(row 1) 2%x7 2%%6 2%% 5 2%%4 2%%3 2%% 2%%] 2%% ()
(row 2) 1 0 1 0 0 1 1 1
0 + 0 + 4 + 2 + 1=1e67

(row 3) 128 + 0o + 32 +

Secondly, the algorithm uses the following rules to raise the base

hurber to the required exponent and find the modulus.

1) Read the binary numbery giving the exponent, left
to right.

2) Start with 1 as

3) A 0 digit means square

4) A 1 digit means sqguare
base, or original numb

5) After each squaring an
take the modulus with

"result".

preliminary "result",
"result” to get new "resulit".
"result" and multiply with

er, to get new "result".

d multiplication with base,

respect to N, to get the new

Example 7: RUSSIAN PEASANT ALGORITHM

To compute CBl in example O3

Binary number Calulations ,
1 (1*%%2)Xx520=520 (Rule 2)

0 520%*%2 MOD 2867=902 (Rule 3 & 5)

1 902%%*2 MOD 2867=2243 (Ru;e 4 $ 5)

2243%X520 MOD 2867=2358 (Rule 4 & 5)

0 2358%%2 MOD 2867=1051 (Rule 3 & 5)

0 1051%%2 MOD 2867=806 (RULE 3 & 5)

x%x2 MOD 2867=1694 (Rule 4 & 5)

1 e s 1 (Rule 4 & 5)

1694X520 MOD 2867=71

1 711%*2 MOD 2867=929 (Rule 4 & 5)
929%x520 MOD 2867=1424 (Rule 4 & 5)

1 1424*%*2 MOD 2867=807 (Rule 4 & 5)
807X526 MOD 2867=1058 (Rule 4 & 5)

So instead of taking 167 multiplications and then taking the
modulus of that large number, the Russian Peasant Algorithm only takes
12 steps, and the result of each squaring is kept close to the size of

the modulus.

Also, long division can be used to speed up the run time for cal-
culating the remainder. Long division subtracts the divisor from the
left of the given number. Each time the left of the number is reduced
to smaller than the divisor, the next number to the right is added and
the divisor 1is subtracted again. This is continued until the right

most number is used and the number is smaller than the divisor.

Example 8: LONG DIVISION

Find the remainder of 79435 when dividing by 715
using long division:

79435
=713 (subtract from the left)
18 (since the left of the number is
smaller than the divisor, bring
183 the next number on the right.)
=113 (subtract)
78 (number 1s smaller than divisor)
785 (bring down next number)
=113 (subtract)
70 (remainder)

Listsz

Another very important idea to rewmember when working with com-
puters and very large numbers is memory efficiency. Since a number
over 9 digits is too large to keep in integer form, the number needs to

be broken into a list of digits.

Example 9: LIST

The nunber 8,469,843,132, would lcok like this in a
list:

nunber: 8 4 6 9 8
position in list 1 2 3 4 85 6 7 & 8 10
There are two ways in which a 1list can be built and maintained:
arrays and linked lists. Arrays are easier to work with since any part
of the list can be accessed, but the size of the array must be preset.
For example, in the computer language FORTRAN [4, pp. 64-70], a linked
list 1is an array of preset size, with several fields in each position.
The extra fields contain the position of the next or previous position

in the list.

Example 10: LINKED LIST ARRAY

Using the number in example 9, it would lcok like
this in an array linked list:

Fields Data

position: 1 2 3 4 5 6 7 8 9 10
nunber: 8 4 6 9 8 4 3 1 3 2
forward pointer: 2 3 4 5 6 7 8 .9 10 mnil
back pointer: nil 1 2 3 4 5 6 7 8 9

The nil in the first and tenth positions designates the end of the
list. For instance, the tenth position in the forward pointer row is

nil since there is no eleventh position to "point" to.

Presetting the size of the array can waste space. For example, if
zip codes are to be put into a 1list, the preset size would be 9 posi-
tions, since some locations now use 9 digit instead of 5 digit zip
codes. Therefore, every time a 5 digit zip code was put into a list
there would be four unusable positions in memeory The major drawback

with using arrays with the RSA is that the array would have to be set

to the maxinum length of the modulus. But the remainder, if working

with 100 digit primes, could be petween 1 and 200 digits. This could

Wake up to 199 positions of memory unusable. A programmed RSA cryp-

tosystem uses up to 10 of these arrayss which could render 1990 memory

FOsitions unusable.

Solutions:

The program needs to be able to create link lists without preset-
ting the size of the list. The best language for accomplishing this is

Pascal [3, pp. 395-410]. In Pascal, only the "type" of record is

Preset. For instance, if each cell of the list is to contain a block

of data and two pointers, then at the beginning of the program a

fecord type is set up to have one plock of data and two pointers. From
that point on, to add to the list a nev block is created and the front

and back pointers are set. If the list shortens then the extra blocks

€an be disposed of easily.
FINAL NOTE

Most of the problems in programming an RSA cryptosystem is working
With large numbers, specifically the large primes. However, these
large primes are what makes the RSA computer unbreakable. To break the
RSA, the product of the two primes would have to be factored in order
to obtain the primes themselves, and the decipher number would have to
also pe found to decode the message: For example, if two 100 digit
Primes were used, then the product of these two would be a number
around 200 digits long. If a trial and error process is used to find
the two primes, it could take trillions of trials to factor the
(that is, an inverse of somne

Product. also, to find a deciphering REYr

10

hunber modulo the Euler phi value of the two 100 digit primes), could

take another trillion or so trials. The amount of time, even using the
most advanced computer system, to break the RSA would take thousands of

Years. Therefore, until a more effective way of factoring large num-

bers is discovered, the RSA remains computer unbreakable.

HIEIE“EQR”EBQQBAMMLEQ“IﬂﬂwBSA

The following miscellaneous items are very helpful to remember in

Programming a RSA cryptosystem:

1) Use structured progaming techniques.

2) The number blocks and coded blocks must be
smaller than the modulus.

3) The Pascal standard functions, ORD & CHR, are
very good ways to convert the characters into num-
bers and numbers back to characters respectively.
4) Make sure that the multiplication and division
routines take into account all possible situations
that may occur when multiplying and dividing large
nunbers.

5) Make sure that all pblocks created, if using
Pascal, are disposed of properly or memory may be
exhausted.

11

APPENDIX 1
DEFINITION: If N>1, let O(N) denote the numnber of positive
integers which are less than N and relatively
prime to MN.

**Note: The reason for using the Euler phi value is to
remove the restriction of N being a prime.

12

Bibligraphy

Armendaiz, Efraim, & McAdam, Stephen, Elementary Number
Theory, Macmillan Publishing Co., Inc., New York, 1983.

Baskst, Aaron, Matbematical Puzzles and Pastimes, D Van
Nostrand Company, Inc., Princeton, New Jersey, 1954.

Cooper, Doug, & Clancy, Michal, Qh! Pascal, W. W. Norton &
Company, Inc., lNew York, N. Y., 1982.

Day, Colin, Fortran Technigues, Cambridge University Press,
1972.

Konheim, Alan, Cryptography a Primer, John Wiley & Sons, Inc.,
Mew York, 1981.

Rivest, R. L., Shamir, A., & Adelman, L., "A Method For
Obtaining Digital Signatures and Public-Key Cryptosystemns,"
MIT Lab. Comp. Sci. Rep., MIT/LCS/TM82 (technical memo),
1977.

13

PSUEDO CODE
OF THE RSA

This 1is the pseudco code for the Rivest-Shamir-Adelman cryptosys-
tem. The program will take the inputted file and ccde or decode it,
depending on the user's needs. The program first checks to see if the
user has a valid code number to use the system. This is done by check-
ing the users inputted code number with the file of code numbers. If
the code number is bogus then the user is disconnected from the system.
Otherwise all the values needed for the algorithm are read in and the
coding or decoding process is continued until the end of the inputted
file is reached.

The RSA cryptosystem is broken into the following procedures:

Link list procedures:
INTEGER_TO_LINK_LIST
CREATE_DUPLICATE_LIST
LIST_TO_DBL_LIST

Reading in the data file procedures:
READCIPHTEXT
READDECIPHTEXT

Arithmetic procedures:
BINARYCON
MULT_NUMBERS
ADD_NUMS (Subprocedure of MULT_NUMBERS)
MODULUS
UPDATE (Subprocedure)

Introduction to cryptosystem:
INTRO
CHECKNUM
SETCODES

Writing procedures:
WRITE_CIPHER_TEXT
WRITE_DECIPH_TEXT
(**Note: Check APPENDIX 1 for a complete variable listing
and discreption.)

. lis i

Procedure INTEGER_TO LINK_LIST will take the integer f;om
READCIPHTEXT and put it into the link lists, BASE & RESULT. The in-
teger is put in a link list since its value will become to large too
keep 1in integer form. The digits of the number are stored backward in
the list with a -1 as a nil pointer.

Begin _ :
Raise PUTVAR2 to the approprate power determined by WORDSIZE.
Extract the last digit from given integer, LISTNUM.
If the last digit is a 0 then

While the last digit is 0 do
Begin
Delete last digit from nuwber
Reduce PUTVAR2 by 10
Extract next-last digit from LISTNUM
End
While LISTNUM is greater or equal to 10 do
Begin
Create new block in list RESULT
Store digit from LISTNUM in block
Set pointer of new block tc point to old block
Reset head of the list to new block
Repeat the previous four steps with list BASE
Delete digit from LISTNUM
Reduce PUTVARZ2 by 10
Extract next digit from LISTNUM
End of while LISTNUM is greater or eqgual to 10
Create new block in list RESULT
Store first digit of LISTNUM in block
Set pointers of old block to new block
Set head of the list to new block
Repeat previous four step with list BASE
End of procedure INTEGER_TO_LINK_LIST.

Procedure CREATE DUPLICATE LIST will take a given link list and dul-
picate it using the second given link list. This is used for squaring
a number.

Begin
Set first given link list, CDLNUMl, to start of list
Set DUMPOINTER to first block in second link list, CDLNUM2
While CDLNUM1 is not equal to the end of the list do
Begin
Store CDLNUM1 block into CDLNUM2 block
Creat new CDLNUM2 block
Set old block (DUMPOINTER) to point to new block
Advance CDLNUM1l list to next block
End of while CDLNUM1l is not equal to the end of the list
Set end of the list value for CDLNUM2
End of procedure CREATE_DUPLICATE_LIST

Procedure [LIST TO DBL LIST will put a given singly linked list into
a doubly linked list. A doubly link list 1s needed by the MODULUS pro-
cedure for division.

Begin

Set the doubly link list, DBLNUM2, to start

Set the number head of list

Set DUMDBL pointer to current position of DBLNUM2

Create new block in DBLNUM2

Set the pointer of new block to point to the old block, DUMDBL
Set the pointer of old block to point to the new block

Set DUMDBL to the new block

Set the head of the list to current block in DBLNUMZ2

Set the singly link list DBLNUM1 to start
While DBLNUM1 is not at the end of the list do
Begin
Store DBLNUM1 in current block of DBLNUM2
Create new block in DBLNUMZ2
Set DUMDBL pointer to point to new block
Set the current block to point to old block, DUMDRBL
Set DUMDBL to new block
Advance DBLNUM1 to next block in list
End of while DELNUM1l is not at the end of the list
Set the tail pointer to the current block in DBLNUM2
Store the number end of the list for DBLNUM2
Create new block in DBLNUM2
Set DUMDBL to point to new block
Store the number end of the list for DBLNUM2
Set pointer of current block in DBLNUMZ to point to DUMDBL
End of the procedure CREATE_DUPLICATE_LIST.

Reading in the data file procedures:

Procedure _READCIPHTEXT will read from the data file the number of
characters according to the constant, SIZE-1, one at & time. The
characters will be turned into number values by ORD, raised to the ap-
propriate powers and added together to produce a single number which
will then be put into a link list.

Begin
Create new block in list RESULT
Store a -1 for the nil pointer at the tail of the list
Set the head pointer to the current head of the list
Create new block in list BASE
Store a -1 for the nil pointer at the tail of the list
Set the head pointer to the current head of the list
Set end of file flag, MAINFLAG, to off position
If the end of the file has not been reached then
Begin
Read first character from text OLDTEXT
If the end of the line marker is found then
Begin
Reset file OLDTEXT to next line in file
If the end of the file has not been found then
Read next character from OLDTEXT
Else if the end of the file was found after resetting then
Begin
Set flag, READFLAG, to end the procedure
Set flag, MAINFLAG, to end the program
End of else statement
End of resetting file to next line
If the end of the procedure flag is off then
Begin
Change the character read into a number and store in REPROD
If REPROD is larger then 99 then
Subtract 99 to keep all character numbers to two digits
Multiply REPROD by 100 to be able to combine with next

character read.
If the end of the file has not been found then
Begin
Read next character from OLDTEXT
If the character read is the end of the line marker then
Begin
Reset file to next line
If the end of the file is not found then
Read the next character from the file
Else if the end of the file is found then
Begin
Set flag to end the procedure
Set flag to end the program
End of the Else statement
End of resetting the file statement
If there was a second character read then
Begin
Change the second character read to a number
and store in RESUM
If RESUM is greater then 99 then
subtract 99 to keep all charcter number to two digits
Add RESUM and REPROD, to form the number block
End of if there was a second character
End if the end of the file has not been found
Else if there was no second character then the number block
is just the first character times 100
Call the procedure INTEGER_TO_LINK_LIST to put the number
block into a link list
End of if the end of the procedure flag is off
End of if the end of the file was not found at the beginning
End of the procedure EADCIPHTEXT.

Procedure READDECIPHTEXT will read a coded number from the file
OLDTEXT wuntil it reads a ".", which is the end of the coded number

marker. A check for the end of the line is also made to reset the file
to the next line. Once the end of the file is found the flag MAINFLAG

will be set to the on position to end the program.

Begin
Create a new block in list RESULT
Set the head of the list
Set a dummy pointer to the current block in list
Read the first number to be stored into REDCHAR
While REDCHAR is not egual to "." do
Begin
Since the numbers are read as characters, change the character
nunber to an integer (see APPENDIX II)
If the character read is a blank then
set the end of the file flag, MAINFLAG, to the on position
Store the read nunber in the list
Create new block in list .
Set pointer of the old block to polnt to new block
Set the dummy pointer to new block
If the end of the line has not been reached then

Read the next digit in number . o
Else if the end of the line was been reached then

Begin " . . -
Reset the file to the next line 1R the file
Read the next digit in number

reached

End of else if the end of the lineé was

End of while not the end of the coded number
Set the end of the list marker
Create new block in list BASE
Set the head of the list for BAS
Call procedure CREATE_DUPLICATE—

End list RESULT
d of the procedure READDECIPHTEXT.

ARITHMETIC PROCEDURES
given integer, the ciphering or

Procedure BIN N will take @ B¢ o3
deciphering key,ABE%g_ change it to @ binary number. This is used to
Speed up raising the number plock to be coded or decoded to the given
Power,

E
LIST to create list BASE using

Begin
Set BINPOW to equal the given power) .
Set the binary array pos?tion counter to the start of the array
While BINPOW is greater or equal to 2 do
Begin
If BINPOW is an odd number then : AL
Store a 1 in the current p051t10? in the array
Eése if BINPOW is a even numbeiizgegn i SELEY
tore i he current posil il L N
Advanceatgelgrtay positionpcounter to Fh? 2£?tt$35}t;9n ol
Divide BINPOW by 2 to get the next SgTbié 20 e array
I?nd of while BINPOW is greate; or €94
BINPOW is reduced to zero then o~
Store additional 0 and then a 1 Bntﬁgﬁ REESE
Else if BINPOW is not reduced to
g SEOTe an additional 1 in t
Nd of the procedure BINARYCON.

he array

) . e two link lists and multiply them
at g timé and multpling it with every qlgltulnlllnk list NUMBERI. Tpe
Eirst préduct is ctored in the 1ib list M LT@QMl and al;_qf thg rest
Of & ducts are stored in MULTNUMZ. Aftgr the first product
NULTRyHN 1 p;?lgcbz used as a running total of Fbe products. Also after
he second product MULTNUM1 and MULTNUMZ are added together after each
Product jig produced.

tak
each

Begin
Create a] i NUM1
new block in MULT .
Set the head of the list to that block
Create a new block in MULTNUMZ = ..
Set the head of the list tO thatl.st
Set NUMBER1 to the start of the &%

Set NUMBERZ to the start of the list
Set the number of zeros to be embedded to starting number
Set a dummy pointer to the current block in MULTNUM1
Set a second dummy pointer to the current block in MULTNUM2
Set the flag to indicate a carry, MULTFLAGl, to off
Set the flag for embedding zeros, MULTFAG2, to on
Set the pass counter, MULTCOUNT, to first pass
Set the flag to indicate a carry on the last multiplication,
MCFLAG, to off
While the pass counter, MULTCOUNT, is not equal to 0 do
Begin
ngle the end of the list, NUMBERl, is not reached do
Begin
If there is no carry from the previous multiplication then
Multiply the current block of NUMBER1 and NUMBERZ2 together
Else if there is a carry from the previous multiplication then
Multiply NUMBER1 and NUMBERS together and add the carry
If the product is zero then store a 0 in MULTMOD
Else MULTMOD equals the product modulo 10
Set the carry flag, MULTFLAGl, to the product divided by 10
If it is the first pass then
Begin
Store MULTMOD in the list MULTNUMI1
Create & new block in MULTNUM1
Set the old block to point to the new block
Store the nil pointer of the list
If the last carry flag, MCFLAG, is on then
Reset the nil pointer in NUMBER1
Else if MCFLAG is off then
Advance NUMBER1 to the next number in the list
End of if it is the first pass
Else if it is not the first pass then
Begin
If the flag to embed zeros, MULTFLAGZ, is on then
For 1 to the number of zeros needed, MULTVAR2, do
Begin
Store a 0 in MULTNUM2
Create a new block in MULTNUM2
Set the pointer of the old block to point to the new block
Set the dummy pointer to the new block
Turn MULTFLAG2 off
End of embedding zeros
Store MULTMOD in list MULTNUM2
Create a new block in MULTNUM2
Set the pointer of the old block to point to the new block
Store nil pointer of the list
If the last carry flag, MCFLAG, is on then
Reset the nil pointer in NUMBERI
Else advance NUMBER1 to the next number in the list
End of if it is not the first pass
If the end of the NUMEER1 is found but there is a carry from
the previous multiplication then remove the nil
pointer in NUMBER1 to enable the routine to make one more
pass to store the carry

End of while not the end of NUMBER1
If it is not the first pass then
Call procedure ADD_NUMS to add MULTNUM1 and MULTNUM2
If it is not the first pass then
Begin
Dispose of the list MULTNUM2
Create new block in list MULTNUM2
Set the head of the list
End of disposing of MULTNUM2
Add one to the number of zeros to be embedded, MULTVAR2
Add one to the pass counter, MULTCOUNT
Advance NUMBERZ2 to the next number in the list
If the next number in NUMBER2 is a zero then
Until a non-zero number is reached do
Begin
Advance NUMBER2 to the next block
Add one to MULTVAR2
End of until a non-zero number is reached
If the end of NUMBER2 is reached then
Set the pass counter, MULTCOUNT, to zero
Set a dummy pointer to the current block in MULTNUMN2
Set the embed zero flag, MULTFLAG2, to on
Set the last carry flag, MCFLAG, to off
End of while pass counter is not equal to zero
Set NUMBER1 and MULTNUM1 to start of the list
While the end of MULTNUM1 is not reached do
Begin
If the end of NUMBER1 is not reached then
Begin
Store the current block of MULTNUM1 in NUMBER]
Advance both list to the next block
End of if the end of NUMBER] is not reached
Else if the end of NUMBER1 is reached then
Begin
Set a dummy pointer to current block in NUMBER1
Store MULTNUM1 in NUMBER1
Create a new block in NUMBERL ‘
Set the pointer of the old block to point to the new block
Set the nil pointer in NUMBERI1 7
Set a dummy pointer to the current block in NUMBERL
End of else if the end of NUMBERL is reached
End of while not the end of MULTNUM1
Dispose of MULTNUMI1
Dispose of MULTNUM2
End of the procedure MULT_NUMBERS.

Subprocedure ADD NUMS is a procedure that is part of MULT_NUMBERS.
This procedure will add the running total of the products, link list
MULTNUM1, and the current multiplication in MULTNUM2. Corresponding
blocks in both 1lists are added and stored in the current block otf
MULTNUM1.

Begin
Set MULTNUM1 AND MULTNUMZ2 to the beginning of the list

Set the carry flag, ADDFLAG, to off
While MULTNUM1 & MULTNUMZ2 are not at the end of the list do
Begin
If the carry flag, ADDFLAG, is off then
Add MULTNUM1 & MULTNUMZ2 and store in ADDSUM
Eise if ADDFLAG is on then
Begin
Add MULTNUM1, MULTNUM2, and add one to that sum
Store in ADDSUM
Turn ADDFLAG off
End of else if ADDFLAG is on
Subtract 10 from ADDSUM
If ADDSUM is negative then
Begin
Add 10 to ADDSUM
Store ADDSUM in current block in MULTNUMI1
End of if ADDSUM is negative
Else 1f ADDSUM is positive then
Begin
Store ADDSUM in MULTNUM1
Turn ADDFLAG on
End of else if ADDSUM ig positive
Advance MULTNUM1 & MULTNUM2 to next block in list
End of while MULTNUM1 & MULTNUM2 are not at the end of the list
Set a dummy pointer to current block in MULTNUMI1
If there is a carry from the last addition and the end of the list
MULTNUMZ2 has been reached then
Begin
Store a one in the last block of MULTNUM1
Create a new block in MULTNUMI1
Set the pointer of the old block to point to the new block
Store a nil pointer in new block
End of if there is a last carry
Else if the end of MULTNUM2 has not been reached then
While MULTNUM2 is not at the end of the list do
Begin
If ADDFLAG is off then
ADDSUM equals MULTNUM2
Else ADDSUM equals MULTNUM2 plus one
Subtract 10 from ADDSUM
If ADDSUM is negative then
Begin
Add 10 to ADDSUM
Store ADDSUM in MULTNUM1
Turn ADDFLAG off
End of if ADDSUM is negative
Else if ADDSUM is positive then
Begin
Store ADDSUM in MULTNUMI1
Turn ADDFLAG on
End of if ADDSUM is positive
Create a new block in MULTNUMI1
Set the pointer of the old block to point to the new block
End of while MULTNUM2 is not at the end of the list

If the carrry flag, ADDFLAG, is still on then
Begin
Store a one in MULTNUM1
Create a new block in MULTNUM1
Set the pointer of the old block to point to the new block
End of if ADDFLAG is still on
Store the a nil pointer in the last block of MULTNUMI1
End of the procedure ADD_NUMS

Procedure MODULUS will find the remainder of MODNUM] divided by
MODNUM2 . The procedure will do long division to obtain the remainder.
This 1is done by setting the two list to their tail pointer and then go
backwards through the 1list until the end of MODNUM1 is found. Note
that if the end of MODNUM2 is found before the end of MODNUM1 then the
procedure will stop since MODNUM2 is already smaller then MODNUMI.
Once the numbers are arranged correctly then MODNUM1 will be subtracted
from MODNUM2 wuntil the left part of MODNUM2 is smaller then MODNUMI1.
Next, the next digit to the right in MODNUM2 is brought down tc form a
new number to subtract MODNUM1 from. Once the right most digilt in
MODNUM2 is used and MODNUM2 is smaller then MODNUM1, the remainder 1is
what is left in the list MODNUM2. The procedure uses doubly link lists
to enable the procedure to go in either direction in the list,
frontwards or backwards.

Begin
Create new block in MODNUM2
Set the head pointer to this block
Call the procedure LIST_TO_DBL_LIST to make the singly link list
given into a doubly link list ,
Set MODNUM1 & MODNUMZ to the tail of thg list _
While MODNUM1 is not at the beginning of the list do
Begin '
If MODNUM2 is not at the beginning of the list do
Back MODNUM1 & MODNUM2 back one block
Else stop the procedure
End of while not at the head of MODNUMI1
Advance MODNUM1 & MODNUMZ one block
Set CURRENTMOD2 to the current position in MODNUM2
Set the flag to end the subtraction routine, ENDFLAG, to off
While ENDFLAG is off do
Begin
While the end of MODNUM2 is not reached and the filag to check
if there is a -1 result produced, MODFLAG, is off do
Begin
If MODNUM1 is less then MODNUM2 then
Subtract MODNUM1 from MODNUM2
Else if MODNUM1 is larger then MODNUM2 then
Begin
If the next block in MODNUM1 is not the end of the list and
not a zero then
Begin
Add 10 to MODNUM2
Subtract one from the next block in MODNUM2
Subtract MODNUM1 from MODNUM2

End of 1f the next block in MODNUM1l is not the end of list
Else if the next block in MODNUM2 is a zero then
Begin
Set a dummy pointer to the current block in MODNUM2
Advance MODNUM2 t the next block
While MODNUM2 is a zero do
Begin
Change the zero in MODNUMZ to a 9
Advance MODNUMZ to the next block
End of while MODNUM2 is a zerc
Subtract one from the current block in MODNUM2
Reset MODNUM2 to the original position before this routine
End of if the next block in MODNUM2 is a zero
Else 1f the next bliock in MODNUM2 is the end of the list then
Begin
Set a dummy pointer to the current position in MODNUM2
Subtract MODNUM1 from MODNUM2
If the result is a -1 then
Begin
Set the next block in MODNUM2 to zero
If the next block after the zero is not the nil
pointer then set that block to be -1
Else if the next block after the zero is the nil
pointer then
Begin
Set that block to be -1
Set a dummy pointer to that position in MODNUM2
Create a new block in MODNUMZ2
Store a -2 nil pointer in that block
Set the back pointer of that block
Set the front pointer of the previous block
End of else if the next block after the zero is the nil
End of if the next block in MODNUM2 is the end of the list
End of if MODNUM is larger then MODNUMZ
Advance MODNUM1 and MODNUM2 to the next block
Call procedure UPDATE to up date the end of the list
End of while the end of MODNUM2 has not been reached
Set MODNUM1 & MODNUM2 to the start of the list
Set the flag to check for a carry in addition to off
While the end of MODNUM2 has not been reached do
Begin
If the addition carry flag, MODFLAG, is off then
Add MODNUM1 & MODNUM2
Else if there is a carry, MODFLAG is on, then
Add MODNUM1, MODNUM2, and one
Subtract 10 from the previous sum and store in MODFLAG
If MODFLAG is positive then
Begin
Set MODFLAG to the on position
Store the sum of MODNUM1 & MODNUM2 minus 10
End of if MODFLAG is positive
Else turn MODFLAG offf
Advance MODNUM1 & MODNUM2 to the next block
End of while the end of MODNUM2 has not been reached

10

If the next block in MODNUMZ is a zero then
Begin
If MODFLAG is on then
Add the current block in MODNUM1 & MODNUM2
Else if MODFLAG is on then
Add the current block in MODNUM1 & MODNUMZ2 plus one
Turn MODFLAG off
End of if the next block in MODNUM2 is a zero
Set MODNUM1 to the nil pointer
Call procedure UPDATE to update the list MODNUM2
Set CURRENTMODZ2 to the next block to the right in MODNUM2
Set MODNUM1 to the start of the list
Set MODNUMZ to CURRENTMOD2 in the list
If the end of the list MODNUM2 has not been reached then
Set the flag to stop the long division routine to off
Else if the end of the list has been reached then
Set the flag to stop the division routine to on
End of while the flag to stop the division is off
Set the lists MODNUMZ2 and RESULT to the start of the list
Dispose of the list RESULT
Create a new block in the list RESULT
Set the head of the list to the new block
While the end of the list MODNUM2 has not been reached do
Begin
Store the current block of MODNUM2 in RESULT
Set a dummy pointer to the current block in RESULT
Create a new block in RESULT
Set the pointer of the old block to point to the new block
Advance MODNUM2 to the next block in the list
End of while the end of the list MODNUM2 has not been reached
Store a nil pointer in the last block of RESULT
Dispose of MODNUMZ list
End of the procedure MODULUS

Subprocedure UPDATE will delete any zeros that are at the end of
nunber being mod. This is done by going through the list until the
of the 1list is found and then go bachwards replacing zeros with
The procedure will not up date if the modulus is not at the end of
list and there was a -1 result produced by the division routine.

Begin
If MODNUM1 is not at the end of the list and there was not a -1
result in the divsion routine then
Begin
Reset MODNUM1 to the start of the list
Go through the number being mod until the nil pointer is found
While MODNUMZ2 is a zero do
Begin
Store a -1 for the zero in MODNUM2
Back MODNUM2 to the next block in list
End of while MODNUM2 is a zero do
Reset MODNUMZ to the position in the list before updating
End of if MODNUM1 was not at the end of the list
End of the procedure UPDATE

Il

the
end

the

INTRODUCTION PROCEDURES

Procedure INTRO will first ask the user for their code number. If
the code number is real then INTRO will write the greetings. If the
code number is bogus then the program will terminate itself. After the
greetings the user will be asked if they are Cciphering or deciphering.
According to the user response the ciphering or deciphering key will be
used. Also a flag 1is set for the rest of the program to indicate
waether to use a ciphering or deciphering routine.

Begin
Ask user for code numnber
Call procedure CHECKNUM to check the code number
If the code number is bogus then end the program
Else write the greetings and instructions
Ask the user if they are ciphering of deciphering
If they are ciphering then
Set the variable CIPHORDECIPH to C
Elise set CIPHORDECIPH to D
Call procedure SETCODES to read in the primes and coding keys
Create new block in the modulus linked list, MODNUM]1
Set the head of the list to the new block
Call prcedure LIST_TO_DBL_LIST to put the sum of the two primes
in a doubly linked list
Dispose of the first prime list
End of the procedure INTRO

Subprocedure CHECKNUM will use the inputted code nunber and check to
make sure it is a real code number. If the inputted number is not in
the 1list of codes then a negative answer will be returned to the INTRO
procedure and INTRO will terminate the program.

Begin
Reset the text file to be used
Set the variable to contain the answer
While the answer is not yes and the end of the text file is not
found do
Eegin
Read the current line of the text
If the inputted code number and the code number just read
are not equal to each other then
Set the answer to no
End of while the answer is not yes
If the answer is not yet then set the answer to no
End of the procedure CHECKNUM

Procedure SETCODES will read through the file that contains the code
numbers, primes, and keys until the inputted code number mathes with
the code number in the text file. Then SETCODES will use that set of
primes, P & Q, and either the ciphering or deciphering key for this run
of the program. The two primes will be nultiplied together to produce
the modulus and the key will be used for the binary table.

12

Begin
geset the file that contains the code numbers, primes, and
coding keys
Read the first line in the text
While the proper code number is not found and the end of the
file is not found do
Begin
Read past the primes and coding keys to the next code number
Read the next code number
End of while the proper code number is not found
If the code number was not found then end the program
Set the flag to tell the end of the prime to off
Create a new block in the list PRIMEL
Set the head pointer to this block
Store a nil pcinter of -1 in block
Read the first digit in the first prime
While the flag for the end of the prime is off do
Begin
Create a new block in PRIME1
Store the first digit in the new block
Set the new block to point to the old block
Set the head of the list to the current block
Read the next digit in the prime
If the next digit is a blank then
Turn the flag for the end of the prime on
End of while the flag for the end of the prime is off
Repeat the same process for the second prime and store it
in PRIME2
If the user is ciphering then
Read the first key in the text
Else advance the text file to the next line and
Read the second key in the text
Call procedure MULT_NUMBERS to multiply the two primes together
Dispose of the link list PRIME2
End of the subprocedure SETCODES.

Procedure WRITE_CIPHER_TEXT will write the ciphered message to the
text file NEWTEXT. This procedure will be called after each block has
been coded.

Begin
Set the list containing the coded block to start
While the end of the coded block list is not found do
Begin
Write the current digit in the list to the file NEWTEXT
If the end of the line in the text file is found then
Reset the text file the next line in the file
End of while the end of the coded block list is not found
Write a end of number marker to the file
Check for the end of the line agian
End of the procedure WRITE_CIPHER_TEXT.

13

Procedure WRITE DECIPH TEXT will write the decoded block to the
printer. The decoded message will be changed from a nunber into two
set of blocks and then changed tc a character.

Begin
Reset the list that contains the decoded block
Separate number into two blocks
Change into characters
Write both characters to the printer
If the end of the line has been found then
Reset the printer to the next line
End of the procedure WRITE-DECIPH_TEXT
MAINLINE

The main 1line of the program wil first call INTRO to verify the
code number and read, in the primes and the cipher and decipher keys.
Then, the cipher or decipher number will be put into a binary nunber
and all input and output files will be reset. Next, a block of data is
read, coded and written. This is continued until the end of the file
being read is found.

Begin

Call procedure INTRO

Call procedure BINARYCON

Reset the files being used

While the end of the file being read is not found do
Begin
Call reading procedures
Proform Algorithm
Call writing procedures
End of while the end of the file being read is not found

14

APPENDIX 1
VARIABLE LISTING

PROGRAM CRYPTOSYS:
Labels: 666:The position in program for a goto statement.
A goto statement is used 1f the user trieg to
input a bogus code number.

Constants: BINMAX:The maximum length for the Binarray Table.
ENDOFLINE: This is the symbol for the end of a
line marker.
SIZE: This is one less then the number of
characters read when ciphering.
LINESIZE: The size of each sent to the
text file or the printer.

Type: POINTER=PNTRECORD: Creates a pointer of type PNTRECORD .

PNTRECORD: A record that contains an integer and a
pointer.

NUMBER integer of PNTRECORD.

NEXT: Pointer of PNTRECORD.

DBLPOINTER=DBLRECORD: Creates a pointer of type

DBLRECORD .

DBLRECORD: A record that contains an integer and two
pointers.

NUMBERDBL: Integer of DBLRECORD.

DBLNEXT: One pointer of DBLRECORD.

DBLLAST: ©Second pointer of DBLRECORD.

Variables:
CODES: File that contains the code numbers.
CODENUMS: File that contains the code numbers, first prime,
second prime, cipher number, and decipher number.
OLDTEXT: File that will be used to cipher or decipher.
NEWTEXT: File that will get the coded message.
RESULT: Link list that contains code block for the
algorithm.
RESULTHEAD: Head of link list RESULT.
BASE: Link list that contains original code block.
BASEHEAD: Head of the l1link list Base.
DUMRESULT: Dummy link list used to square RESULT.
DUMRESULTHEAD : Head of 1link list DUMRESULT.
DUMPOINTER: Dummy pointer.
MODNUM1: Modulus link liste.
MODHEAD : Head of link list MODNUMI1.
MAINGEN: Generates binary number in reverse order.
BINARRAY: Contains binary number.
BEINCOUNT: Contains the number of digits in binary number.
POWER: Contains either the cipher or decipher number.
CIPHORDCIPH: Flag used to see if user is ciphering or
deciphering.
MAINFLAG: Flag used to show end of file if found during
READCIPHTEXT or READDECIPHTEXT.

15

LINEVAR: A variable used to keep the current position of
the line in the text file or printer.

Procedure INTEGER TO LINK_LIST
Variables:

Global:

RESULT: Cipher block number.

BASE: Original cipher block number.

RESULTHEAD: Head of result list.

BASEHEAD: Head of base list.

LISTNUM: The number read for ciphering.

Local:
PUTVARL: Original integer being put in to list.
PUTVARZ2: Size of original integer in power of 10's.
PUTGEN: A FOR statement variable.

Called By: READCIPHTEXT

Procedure CREATE DUMMY LIST
Variables:
Global:
DUMPOINTER: Dunmy pointer.

Local:

CDLNUM1l: Original link list.

CDLHAEDl: Head of original link list.
CDLNUM2: Duplicate link list of original.
CDLHEADZ2: Head of CDLNUMZ2 1link list.

Called By: READDCIPHTEXT,MAINLINE

Procedure LIST TO DBL LIST

Variables:

Locals
DBLNUM1: Singly link list to be used.
DBLHEAD1: Head of DBLNUM1 list.
DBLNUMZ: Doubly link list being created.
DBLHEADZ2: Head of DBLNUM2 list.
DUMDBL: Dummy doubly link list pointer.

Called by: INTRO, MODULEST

Procedure READCIPHTEXT
Variable:
Global:

RESULT: Cipher block nunber.

BASE: Original base of cipher block.

RESULTHEAD: Head of RESULT list.

BASEHEAD : Head of BASE list.

MAINFLAG: A flag used to tell that the »
end of the file has been reached
but it was found in the middle of

16

a line.
ENDOFLINE: End of line constante.

Local:

CHARl: First character read.

CHAR2: Second character read.

REPROD: Product of ORD(CHAR1l) times 100.

RESUM: Sum of first and second character digit value.
READFLAG: Flag that checks for end of file.

Called by: MAINLINE

Procedure READDECIPHTEXT
Variables:
Global:

RESULT: Cipher block number.

BASE: Original base to cipher block.

RESULTHEAD ¢ Head of RESULT 1list.

BASEHEAD : Head of BASE liste.

MAINFLAG: Flag used to tell that the end of the
file has been found in the middle of
a line.

Local:
REDNUM: ORD of REDCHAR-4§.
REDCHAR: Character read.

Called by: MAINLINE
Calls: CREATE_DUMMY_LIST

Procedure BINARYCON
Variables:
Global:
BINARRAY= Array that holds the binary nunber .
BINCOUNT= The number of digits in BINARRAY.

Local:
BINVAR: The result of original number (1 or 0).
BINPOW: Original decimal number.

Called by: MAINLINE

Procedure MULT NUMBERS
Variables:
Global:
DUMPOINTER: Dummy pointer.

Local: .
NUMBER1: Number to be multiplied with NUMBER2.

NUMBER2: Number to be multiplied with NUMBER].
NUMHEAD1 ¢ Head of NUMBER]1 list.

NUMHEAD2: Head of NUMBER2 list.

DUMPNTMULT: Duniuy pointer.

MULTNUM1: Result of each addition.

17

MULTHEADl: Head of MULTNUM1 list.
MULTNUM2: Result of each muitiplication to add to MULTNUML1.
MNULTHEAD2: Head of MULTNUM2 list.
MCFLAG: Flag used to see if there is a carry on the last
number in the list being multiplied.
MULTFLAGl: Holds the carry from the multiplication if any.
MULTFLAG2: Flag that used to see 1f zeros should be imbedded
in MULTNUM2 list.
MULTVAR2: Represents the number of zeros needed for
imbedding.
MULTGEN: Generates the number of zeros needed.
MULTPROD: Product of each multiplication between MULTNUM1 and
MULTNUMZ2.
MULTMOD: Result of multiplication as a single digit.
MULTCOUNT: 1Is used to see if it is the first pass of
procedure and to see if the end of the procedure
has been reached.

Called By: MAINLINE
Calls: ADD_NUMS

Subprocedure ADD_NUMS
Variables:
Global: .
MULTNUM1: Number to be added to MULTNUM2 and will hold the
result.

MULTNUM2: Number to be added to MULTNUM1.
MULTHEAD1: Head of MULTNUM]1 list.
MULTHEAD2Z2: Head of MULTNUM2 list.
DUMPOINTER: Dunmy pointer.

Local:

ADDSUM: The sum of each block of MULTNUM@ gnd MQLTNUMZ.
ADDFLAG: Flag for carry over of each addition if any.

Calied By: MULT_NUMBERS

Procedure MODULEST

Variables:
Glcobal:
RESULT: Cipher block number.
RESULTHEAD Head of RESULT liste.
MODNUM1l: Modulus.
MODHEAD1: Head of MODNUM]1 list.

Local:

MODNUM2: Doubly link list of RESULT list.

MODHEAD2: Head of MODNUM2 list.

DUMDBLPNT: Dumnmy doubley link list pointer. _

MODFLAG: Flag to check if a -1 result occured or a carry in
the addition routine occured.

CURRENT: Dummy pointer used to keep track of current list
position.

18

Called By: MAINLINE i
Calls: LIST_TO_DBL_LIST,UPDATE

Erocedure INTRO
Variable:
Global:
MODNUM1: MODULEST. Sl
MODHEAD1: Head of MgDNUMliéliEé user is ciphering or
CIPHORDCIPH: Flag see

deciphering.

Local:

CODENUMBER: Inputted code npumbet- . .. o . .
ANSWER: Flag to see if code numb?rhl En or deciphering.
INTROCHAR: Inputted € or D for €iE e i

PRIMEl: First prime read from Congg

PRIME2: Second prime read from C ’

PRMHEAD1: Head of PRIMEL list.

PRMHEAD2: Head of PRIME2 list.

Called By: MAINLINE
Calls: CHECKNUM, SETCODES

Subprocedure CHECKNUM
Variables:
Globals
CODENUMBER: Inputted code number.
Local:

CHECKVAR: Code number read from CODENUMS .
Called By: INTRO

Subprocedure SETCODES
Variables:

Global:)
PRIMEl: First prime read from CODES.
PRMHEAD1: Head of PRIME1 list. ES
PRIME2: Second prime readﬂﬁrom CODES .
PRMHEADZ2: Head of PRIMEZ list. ‘
POWER: Power to raise cipher bloCKe.
DUMPOINTER: Dummy pointer.

Local: ES
SETVAR: Code numnber read from COD ff \ CODES
SETCHAR: Digit of each prime read from .

Called By: INTRO
Calls: MULT_NUMBERS

Procedure WRITE CIPHER TEXT
Variables:
Global: :
RESULT: Coded block from ciphering.
RESULTHEAD: Head of RESULT list.

18

LINESIZE: A constant that tells the size of the
line to be written.
LINEVAR: A variable that keeps the position of the
being written.

Local: ' _
WRITEVAR: Digit of coded block to write to file.

Called By: MAINLINE

Procedure WRITE DECIPH TEXT
Variables:
Global: ‘
RESULT: Decoded block from deciphering.
RESULTHEAD : Head of RESULT list.
LINESIZE: A constant used to tell when the end of
the line has been reached. o
LINEVAR: A variable used to tell the position of
the line being written.

Local:

WRITVAR: Holds first digit of deciphered mnessage.
WRITVARL: Holds second digit of deciphered message.
WRITCHAR: The character value of deciphered digits.

Called By: Mainline
MAINLINE

CALLS:
INTRO
BINARYCON
READCIPHTEXT
READDECIPHTEXT
CREATE_DUMMY_LIST
MULT_NUMBERS
MODULEST
WRITE_CIPHER_TEXT
WKITE_DECIPH_TEXT

20

APPENDIX 2
FILE STRUCTURE

The file that will contain the code nurbers to the code files will
look like this:

1430
4693
8167

Code file will contain a code number, two primes, and & cipher and
decipher number. File will look like:

Ccde number: 1430
Prime 1: 637535832758
Prime 2: 387453852854
Ciph/Deciph: 158 1856
4693
2748778752385738
9545235239535
128 637
8167
34345539895
85839829459
485 9845

21

APPENDIX 3
ASCII CODE_FOR THE CHARACTERS

A-B=65-97
a-z=97-122

(*note that c¢=(C1, Ad=027e0e0.2=24)
1-9=48-57

22

	Longwood University
	Digital Commons @ Longwood University
	4-1985

	Rivest-Shamir-Adelman Cryptosystem
	Edward A. Fetzner
	Recommended Citation

	tmp.1460055999.pdf.fAnrd

