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RESEARCH Open Access

Whole blueberry protects pancreatic beta-
cells in diet-induced obese mouse
Weixiang Liu, Yiping Mao, Jacob Schoenborn, Zhihong Wang, Guiliang Tang and Xiaoqing Tang*

Abstract

Background: Blueberry is rich in bioactive substances and possesses powerful antioxidant potential, which can
protect against oxidant-induced and inflammatory cell damage and cytotoxicity. The aim of this study was to
determine how blueberry affects glucose metabolism and pancreatic β-cell proliferation in high fat diet (HFD)-
induced obese mice.

Methods: Wild type male mice at age of 4 weeks received two different kinds of diets: high-fat diet (HFD)
containing 60% fat or modified HFD supplemented with 4% (wt:wt) freeze-dried whole blueberry powder (HFD + B)
for 14 weeks. A separate experiment was performed in mice fed with low-fat diet (LFD) containing 10% fat or
modified LFD + B supplemented with 4% (wt:wt) freeze-dried whole blueberry powder. The metabolic parameters
including blood glucose and insulin levels, glucose and insulin tolerances were measured.

Results: Blueberry-supplemented diet significantly increased insulin sensitivity and glucose tolerance in HFD + B
mice compared to HFD mice. However, no difference was observed in blood glucose and insulin sensitivity
between LFD + B and LFD mice. In addition, blueberry increased β-cell survival and prevented HFD-induced β-cell
expansion. The most important finding was the observation of presence of small scattered islets in blueberry
treated obese mice, which may reflect a potential role of blueberry in regenerating pancreatic β-cells.
Conclusions: Blueberry-supplemented diet can prevent obesity-induced insulin resistance by improving insulin
sensitivity and protecting pancreatic β-cells. Blueberry supplementation has the potential to protect and improve
health conditions for both type 1 and type 2 diabetes patients.

Keywords: Insulin sensitivity, Glucose tolerance, High fat diet, Islets, Insulin, Diabetes

Background
Type 2 diabetes develops as a consequence of a combin-
ation of insulin resistance and loss of pancreatic β-cell
mass [1, 2]. Pancreatic β-cells are essential endocrine
cellular units controlling blood glucose via the biosyn-
thesis and secretion of insulin. In states of obesity and
insulin resistance, insulin levels typically increase to
maintain normal glucose tolerance. To compensate in-
creased insulin demand, β-cell can adapt by increasing
β-cell mass, leading to increased insulin production dur-
ing obesity and insulin resistance. β-cell mass is defined
as the total weight of β-cells within a pancreas and adap-
tive expansion of β-cell mass is accomplished primarily
by increasing β-cell proliferation. However, during times

of prolonged metabolic demand, inadequate β-cell func-
tion leads to increased apoptosis and a progressive loss
of β-cell mass [3, 4]. Therefore, loss of functional β-cell
mass is a hallmark of type 2 diabetes [5]. High concen-
trations of glucose, free fatty acids, reactive oxygen spe-
cies (ROS) or proinflammatory cytokines converge
toward a common cell death-signaling pathway and
cause β-cell death during the development of type 2 dia-
betes [6–9]. Given β-cell failure during the progression
to diabetes, more approaches are needed to preserve
β-cell mass or enhance β-cell survival.
Blueberry has become a popular fruit that gained the

interest of the public and scientific communities due to
its role in maintaining and improving health. Blueberry
is rich in bioactive compounds such as flavonoids and
exhibit inhibitory effects on the induction of apoptosis
[10–13]. In addition, blueberry possesses powerful
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antioxidant potential, which can consequently protect
against oxidant-induced and inflammatory cell damage
and cytotoxicity [14–17]. Many studies have reported
that consumption of blueberries (in natural, dried, ex-
tracts or juice) were associated with a lower risk of type
2 diabetes and insulin resistance in rodents and humans
[18, 19]. Particularly, blueberry has been found to inhibit
lipogenesis, improve insulin sensitivity in muscle and
adipose, and thus reduce the risk of developing type 2
diabetes [20–23]. Recent studies revealed that blueberry
attenuated endothelial inflammation in diabetes, indicat-
ing its benefits in improving vascular complications as-
sociated with diabetes [24, 25]. However, whether
blueberry affects β-cell function and growth were not
evaluated in these studies. Only one report indicated
that blueberry extracts significantly increased β-cell via-
bility and inhibit triglyceride accumulation when incu-
bating with INS832/13 β-cells [26].
In this article, blueberry-supplemented diet was ap-

plied to the mice fed with the combination of high-fat
diet (HFD) to examine the effect of whole blueberry on
β-cell mass and insulin production. Mice fed with HFD
display obesity and hyperglycemia, which mimics the
natural history of insulin resistance as well as metabolic
features of human type 2 diabetes [27, 28]. We con-
firmed that supplement of blueberry in diet (HFD + B)
significantly increased insulin sensitivity and glucose tol-
erance in mice. Furthermore, HFD + B diet enhanced
β-cell survival and prevented HFD-induced β-cell expan-
sion, which is a new discovery that will provide new in-
sights into the effects of blueberry on β-cell function
and expand our understanding the importance of blue-
berry in treating and preventing diabetes.

Methods
Animals and diets
The C57BL/6 J mice (000664, The Jackson Laboratory)
were housed in a pathogen-free animal facility of Mich-
igan Technological University with 12-h light / dark
cycle and unlimited ad libitum water. Due to the fact
that female mice are less susceptible to obesity and dia-
betes than female mice, male mice at 4 weeks of age
were weighted and randomly assigned to one of the two
groups (n = 5 mice/group) that received four different
diets prepared at Research Diets Inc. (New Brunswick,
NJ): 1) a high-fat diet (HFD, D12492, 60% kcal fat); 2) a
modified HFD supplemented with 4% (wt:wt)
freeze-dried whole blueberry powder (HFD + B); 3) a
low-fat diet (LFD, D12450B, 10% kcal fat); 4) a modified
LFD supplemented with 4% (wt:wt) freeze-dried whole
blueberry powder (LFD + B) (see detailed compositions
in Additional file 2: Table S1). The study utilized the
whole blueberry powder, which was provided and
shipped to Research Diets by the U.S. Highbush

Blueberry Council following the specification by the
funding agency. The energy from sucrose and total car-
bohydrates was adjusted to be equivalent between HFD
and HFD + B, or between LFD and LFD + B. Diets were
irradiated and stored at − 20 °C until use. All experi-
ments were carried out in accordance with the approval
by the Animal Care Committee at Michigan Techno-
logical University.

Blood glucose and plasma insulin and glucagon levels
The body weight and blood glucose level were measured
weekly starting at 5 week-old age. Mice were fasted for
16 h and fasting blood glucose was measured from 2 μl
of tail vein blood with an Accuchek glucometer and glu-
cose test strips (Abbott Diabetes Care). For plasma hor-
mone assay, blood was harvested from orbital venous
sinus using heparinized Natelson blood-collecting tubes.
Plasma was prepared from blood collected by centrifuga-
tion at 4000 rpm for 5 min and kept in − 80 °C until use.
Plasma insulin and glucagon levels were measured using
ultrasensitive plasma insulin ELISA kit (10–1249-01,
Mercodia) and glucagon ELISA kit (10–1271-01, Merco-
dia), respectively following the manufacturer’s
instruction.

Glucose tolerance test (GTT) and insulin tolerance test
(ITT)
The glucose tolerance test was performed after a 16 h
fast to 14-week-old mice. Mice were injected intraperito-
neally with a glucose solution at a dose of 1.5 g/kg body
weight. Blood samples were taken from the tail vein be-
fore and soon after glucose administration at 15, 30, 60,
90, and 120 min. Blood glucose levels were determined
using glucometer and test strips. To assess the plasma
insulin level during the GTT, the blood samples were
obtained from the orbital vein at 0, 15, 30 min and Insu-
lin levels were measured in plasma as described above.
The area under the curve of GTT was calculated to
analyze the glucose tolerance.
In the Insulin tolerance test (ITT), mice were fasted

for 6 h and injected intraperitoneally with regular mouse
insulin (I0516, Sigma) at 0.5 units/ kg body weight.
Blood glucose was measured before (time = 0) and 15,
30, 45, 90 and 120 min after injection. The area under
the curve of ITT was calculated to analyze the insulin
sensitivity.

β-Cell mass and islet size
Dissected mouse pancreas was fixed in 4% formaldehyde
(pH 7.4) for 24 h at 4 °C, embedded in paraffin, and cut
into 5-μm sections. The sections were then deparaffi-
nised and stained for insulin (mouse anti-insulin, I2018,
Sigma, 1:5000, overnight at 4 °C; secondary antibody:
Alexa Fluor 488-conjugated anti-mouse from Invitrogen,
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A11001, 1:500, 1 h room temperature); nuclei were
stained with DAPI in anti-fading mounting medium
(H1200, Vector Labs). The whole pancreatic sections
were captured by Leica whole slide scanner fluorescence
microscopy. Islets were counted, and areas for every islet
(Insulin+ area) and total pancreas were measured by the
Image-Pro Premier software. β-cell mass (mg per pan-
creas) was calculated by obtaining the ratio of insulin+

area to total pancreas area of all scanned sections per
animal and multiplied by the pancreas wet weight. To
evaluate islet size distribution, islet size for each islet
was obtained and the group of islet with different size
was categorized. Five slides per animal (≥250 μm apart)
were examined.

β-Cell proliferation and in-situ TUNEL assay
Islet analysis after intraperitoneal injections of BrdU on
seven consecutive days (100 μg/g Body Weight,
11669915001, Roche) was performed on 5 μm sections
of paraffin-embedded pancreas approximately 50 μm
apart. The slides were performed for normal immuno-
histochemistry staining using anti-BrdU (ab152095,
1:500, Abcam) and anti-insulin antibody. β-cells prolifer-
ation was expressed as the percentage of BrdU+/insulin+

cells per total number of insulin+ cells. At least 50 islets
per slide and 3 different sections per animal were ana-
lyzed and normalized by total number of insulin positive
cells.
Apoptosis was evaluated using transferase-mediated

dUTP nick end labeling (TUNEL) with an in situ Cell
Death Detection kit (11774425001, Roche) following
supplier’s instructions. The sections were performed in-
sulin staining followed after apoptosis staining as de-
scribed above. The number of TUNEL-positive cells in
islets was counted and the apoptotic index was
expressed as the percentage of TUNEL+/insulin+ cells
per total number of insulin+ cells.

Quantitative real-time PCR for mRNA transcripts
Total RNA was extracted from islets using miRNeasy kit
(217004, Qiagen) according to the manufacturer’s in-
structions and treated with DNase I (79254, Qiagen).
The purity and quality of the extracted RNA were ana-
lyzed using NanoDrop and Bioanalyzer (Agilent 2100). A
total of 250 ng high quality RNA (RIN ≥8) was reversely
transcribed to cDNA with High Capacity cDNA Reverse
Transcription Kit (4368814, Thermo Fisher). Quantita-
tive RT-PCR (RT-qPCR) was performed with Power
SYBR Green PCR Master Mix (4368706, Thermo Fisher)
on a StepOnePlus™ Real-Time PCR System (Applied bio-
system) using the following program: 10 mins at 95 °C,
40 cycles of 95 °C for 15 s and 60 °C for 1 min. All sam-
ples were run in duplicate, and the RNA expression of
each gene was determined using relative comparison

method (ΔΔCt), with Hypoxanthine guanine phos-
phoribosyl transferase (Hprt) mRNA as an internal
standard.

Statistical analysis
Data are expressed as means ± SD of three independent
experiments. Statistical significance was determined by
unpaired Student’s t-test (two-tailed) or oneway ANOVA
with Tukey’s post hoc test with differences considered
significant at P < 0.05 (marked as *) and p < 0.01
(marked as **).

Results
Blueberry-supplemented diet lowered plasma insulin
level in HFD-fed mice
Wild type mice fed with HFD exhibited a significant in-
crease in body weight, blood glucose and insulin levels.
To examine the effects of blueberry-supplemented diet
on HFD-fed mice, the wild-type male mice, which are
more susceptible to obesity and diabetes than female
mice, received two different kinds of diets at 4 weeks of
age: HFD or a modified HFD supplemented with 4%
(wt:wt) freeze-dried whole blueberry powder (HFD + B).
Compared to the mice fed with HFD, mice fed with
HFD + B had no significant change in the body weight
(Fig. 1a) and blood glucose level (Fig. 1b) throughtout 4
to15 weeks.
We further measured the blood glucose and plasma

insulin levels before and after 16 h fasting of the two
groups at week 8 and 12. No significant difference was
observed between HFD + B and HFD mice regarding
body weight (Fig. 2a, c) and blood glucose level (Fig. 2b,
d). As expected, HFD feeding for 4 weeks significantly
increased plasma insulin level and it was approximately
5-fold higher at week 12 compared to its level at week 8
(Fig. 2e). However, the addition of blueberry prevent the
increase of plasma insulin (Fig. 2e). The plasma insulin
level was much lower in HFD + B group than in the
HFD group at 12 weeks of age, indicating that less insu-
lin was required to maintain normal glucose level in
HFD + B mice compared to HFD mice. In contrast, fast-
ing plasma glucagon levels did not show significant dif-
ferences between HFD + B and HFD groups (Fig. 2f ).

Blueberry supplementation improved insulin sensitivity
and glucose tolerance in high-fat diet treated mice
To examine the effect of the whole blueberry on meta-
bolic features, we performed glucose tolerance test
(GTT) in mice at 12 weeks of age. After glucose injec-
tion, as expected, blood glucose level reached above 400
mg/dL after 15 mins and remained high for 60 mins in
HFD mice (Fig. 3a), confirming that 8 weeks of HFD
feeding resulted in glucose intolerance. Compared to
mice fed with HFD, mice fed with HFD + B cleared
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blood glucose much faster after glucose injection (Fig.
3a) and had significant lower AUC (area under the
curve) level (Fig. 3b), suggesting that blueberry supple-
mentation significantly enhanced glucose tolerance. Fur-
thermore, compared to HFD mice, mice fed with HFD +
B had significant lower plasma insulin level after over-
night fast, as well as lower levels following glucose ad-
ministration (Fig. 3c).
Insulin tolerance test (ITT) was further performed in

the same groups of mice after 10 weeks of dietary treat-
ment to assess the effects of blueberry on HFD-induced

insuin resistance. As reported previously, mice fed with
HFD displayed insulin resistance and had a blunted re-
sponse to the exogenous insulin (Fig. 3d). However, mice
fed with HFD + B responded to insulin with decreases in
blood glucose after insulin injection. The area under the
curve (AUC) during ITT was significant lower in mice
fed with HFD + B compared to mice fed with HFD (Fig.
3e), suggesting that addition of blueberry increased insu-
lin sensitivity.
We also examined the effect of blueberry-supplemented

LFD (LFD + B) on blood glucose and insulin sensitivity.

a b

Fig. 1 Effect of blueberry supplemented diet on body weight and blood glucose in HFD + B mice compared to HFD mice. a Weekly changes in
body weight in mice fed with HFD or HFD + B between 4 and 14 weeks. b Blood glucose levels between HFD and HFD + B mice. *P < 0.05;
**P < 0.01; n = 6–8 mice per group

a b e

c d f

Fig. 2 Effect of blueberry supplementation on plasma insulin and glucagon levels. a and c Body weight in HFD or HFD + B mice at 8 and 12
weeks of age. b and d Blood glucose levels between two groups. e Changes in fasting plasma insulin levels between two groups at 8 and 12
weeks of age. f Changes in fasting plasma glucagon levels between two groups after 16 h fast. Values are mean ± SD. ** p < 0.01
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Compared to mice fed with LFD, no significant changes
were observed on blood glucose and insulin sensitivity in
mice fed with LFD + B for 10 weeks (Additional file 1: Fig-
ure S1). Taken together, these results suggested that blue-
berry can improve insulin sensitivity and glucose tolerance
under HFD stress condition, and therefore delay insulin
resistance caused by HFD feeding.

Blueberry protected pancreatic β-cell function
To determine how blueberry attenuated HFD-induced in-
sulin resistance, we performed morphometric analysis of
the pancreas by immunofluorescence staining for insulin
(Fig. 4a). Continuous HFD feeding induced a compensatory
increase in β-cell mass due to increased insulin demand in
mice fed with HFD. Compared to mice fed with HFD, mice
fed with blueberry supplementation for 8 weeks exhibited a
significant reduction in β-cell mass (Fig. 4b), suggesting that
addition of blueberry prevented HFD-induced β-cell expan-
sion. However, the β-cell mass reduction in HFD+B mice
did not appear to be the result of reduced β-cell prolifera-
tion according to BrdU incorporation assay (Fig. 4c).
Accordingly, we analyzed islet area distribution in

samples pooled from 3 animals per group (Fig. 4c). The

number of small islets (defined as a diameter of an
insulin-positive area 5000–10,000 μm2) was greater in
HFD + B than in HFD mice. In contrast, the number of
large islets (with diameter 40,000–50,000 μm2) was
smaller in HFD + B mice compared to HFD mice. The
data suggest that blueberry supplementation prevent
HFD-induced β-cell mass expansion. In addition, blue-
berry supplementation may increase β-cell neogenesis or
regeneration in HFD + B mice, as shown by the in-
creased number of small islets.
To examine whether the reduction in β-cell mass in

HFD + B mice was the result of increased apoptosis, the
frequency of apoptotic cells was evaluated (Fig. 4e).
However, few TUNEL signals were detected in HFD + B
mice compared to HFD mice. β-cell apoptosis became
apparent in mice at 20 weeks of age and we observed a
modest increase of TUNEL staining in HFD mice when
compared to HFD + B mice (Fig. 4e), indicating an im-
portant potential of increasing β-cell survival with blue-
berry supplementation.
Since plasma insulin levels were much lower in HFD

+ B mice compared to HFD mice, we reasoned whether
the addition of blueberry affects insulin transcription.

a

d e

b c

Fig. 3 Diet supplemented with blueberry attenuated HFD-induced glucose intolerance and insulin resistance. a Glucose tolerance test (GTT) was
performed in 12-wk-old mice fed with HFD or HFD + B after a 16 h fast. Blood glucose levels were determined at baseline and at the indicated
times after glucose injection (1.5 g/kg body weight). b The area under the curve (AUC) during GTT. c The plasma insulin was measured at 0, 15
and 30 min after glucose injection (1.5 g/kg body weight). d Insulin tolerance test (ITT) was performed in 14-wk-old mice fed with HFD or HFD +
B after a 6 h fast. Blood glucose levels were presented as the percentages of time-course blood glucose levels over the baseline level after
intraperitoneal injection of insulin (0.5 U/kg body weight). e The area under the curve (AUC) during ITT. *P < 0.05; **P < 0.01; n = 4–8 mice
per group
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The expression of insulin and major β-cell specific
transcription factors including Pdx-1 and MafA were
examined in isolated islets and no significant
changes were observed between the two groups
(Data not shown). The data suggest that blueberry
had no effect on insulin transcription, and the low
fasting plasma insulin level in HFD + B mice mainly
resulted from increased insulin sensitivity and re-
duced β-cell mass.

Discussion
Our data demonstrated that blueberry-supplemented
diet significantly increased insulin sensitivity in
HFD-induced obesity mouse model, although the
addition of blueberry did not prevent HFD-induced
weight gain. Of note, similar findings have been ob-
served in obese mice or diabetic mice that consumed a
blueberry diet [29–31]. Similar results were also ob-
served when obese or healthy adults consumed the
whole blueberry or blueberry juices or capsules contain-
ing purified anthocyanins [21, 32, 33]. Although the
underlying mechanisms remain unclear, much evidence
suggests that blueberry inhibited the expression of nu-
clear factor κB, interleukin-6 (IL-6) and tumor necrosis
factor alpha (TNFα) in the liver and abdominal adipose
tissue, which may protect against adipocyte death and

increase insulin sensitivity in obese-induced mice [30,
34, 35]. Contrarily, the anti-inflammatory effect was less
pronounced in some animal studies and human [21, 36,
37]. New reports indicated that blueberry extracts can
significantly inhibit inflammatory and apoptosis via
activation of JAK1/STAT3 signaling [38], PPARγ ac-
tivity [39] or survival PI3K/Akt and MAPK/ERK path-
ways [40].
Beside the improved insulin sensitivity, our results

clearly indicated that blueberry supplementation signifi-
cantly increased β-cell survival, improved glucose toler-
ance, and prevent β-cell mass expansion. These finding
are important because the expansion of β-cell mass and
the increase in insulin secretion are early signals of obes-
ity and insulin resistance, which eventually lead to β-cell
exhaustion, death and dysfunction [41, 42]. Thus, blue-
berry preserving β-cell structure and function will re-
duce the overwhelming burden of β-cells and prevent
the development of obesity and diabetes. The possible
mechanisms by which blueberry exerts its pancreatic
protection involve enhancing β-cell survival by inhib-
ition of cytokine expression and antioxidant stress. Pre-
vious in vitro study also showed that blueberry extracts
significantly increased β-cell viability, reduced ROS level
and improved the antioxidant defense system when cul-
turing with INS832/13 β-cells [26].

a b c

d e

Fig. 4 Blueberry supplementation preserved islet architecture. a A representative section of pancreas from 14-week-old mice fed with HFD or
HFD + B was visualized by immunofluorescence after staining with anti-insulin (green) antibodies. b Changes in β-cell mass in 14-wk-old mice fed
with HFD or HFD + B. c β-cell proliferation was evaluated by BrdU staining, the BrdU+/insulin+ cells to the total insulin+ cell ratio was quantified. d
Size distribution of islets in HFD and HFD + B groups. Size distribution was categorized by percentage of total islets analyzed. Addition of
blueberry to diet significantly increased the number of small islets in aggregates 5000–10,000 μm2 when compared to HFD. e Changes in β-cell
apoptosis evaluated by TUNEL staining in 20-wk-old mice fed with HFD or HFD + B. The ratio of TUNEL+/insulin+ cells to the total insulin+ cells
was quantified. Values are mean ± SD. *P < 0.05; **P < 0.01; n = 3–8 mice per group
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The most important finding of the present study was
the observation of more smaller scattered islets in blue-
berry treated obese mice, which may reflect neogenesis
of new β-cells from pre-existing islet cells. β-Cell mass is
regulated by three factors, proliferation, neogenesis (dif-
ferentiation from precursor cells), and β-cell apoptosis
[41]. It is believed that β-cells can regenerate through
the replication of pre-existing β-cells or neogenesis from
α- or duct cells inside the islets [43–46]. In human
adults, the capacity for self-replication of remaining
β-cells is too limited to result in a significant regener-
ation [47]. Therefore, enhancing neogenesis has a bigger
potential to provide an increase of new β-cells that could
then replicate further to provide enough β-cells to re-
verse diabetes [2, 48]. A number of herbs have been re-
ported to induce the neogenesis of islets from the
pre-existing islet cells [49–53]. The consumption of gar-
lic induced a protective/ regenerative effect on β-cells
[54]. Bitter melon also protected pancreatic damage and
induced the renewal of β-cells in neonatal diabetic rats
[55, 56]. Thus, the potentiality of blueberry in regenerat-
ing pancreatic β-cells will provide a new promising and
welcome option for the patients who have lost functional
islet cells.

Conclusions
In summary, blueberry-supplemented diet significantly
increased insulin sensitivity in HFD-induced obesity
mouse model. In addition, diet supplemented with blue-
berry improved β-cell function by increasing β-cell sur-
vival and preventing β-cell mass expansion, which was a
new discovery in this study. These findings provided
new insights into the effects of blueberry on β-cell func-
tion and expand our understanding of the importance of
blueberry in treating and preventing diabetes. Further
studies are needed to define the molecular mechanisms
underlying blueberry-mediated protective effects in islets
and potential β-cell regeneration.

Additional files

Additional file 1: Figure S1. Changes in blood glucose and insulin
sensitivity in mice fed with LFD or LFD + B. a Weekly changes in blood
glucose levels over 4–16 weeks. b Insulin tolerance test (ITT) was
performed in 16-week-old mice and blood glucose levels were assessed
at the indicated times following an intraperitoneal injection of insulin
(0.5 U/kg body weight). Values were represented as the percent of t = 0
glucose levels. n = 4–8 mice per group. (PDF 35 kb)

Additional file 2: Table S1. Composition of diets. (DOCX 109 kb)
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