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Research Article
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Buildings in Southern China widely use a double-skin roof to reduce heat entry through the roof to the building interior during
summertime. Concrete roof tiles are preferably installed as the outmost layer of the double-skin roof due to their resistance to hail
and wind damages and their attractive price. However, after construction, the tile’s top tends to be darkened by dust deposit and
algae growth, increasing the heat entry through the roof to the building. Here, we show that this heat entry can be curtailed by
lowering the emissivity at the tile’s underside. Temperatures and heat fluxes at different elevations of a double-skin roof with
concrete tiles as the outmost layer of the roof are monitored. .e underside of each concrete tile is coated with a specific paint to
get a unique emissivity. Observations reveal that lowering the emissivity of concrete roof tiles could cut down the summer heat
gain of buildings in tropical regions.

1. Introduction

A double-skin roof is composed of a pair of parallel sheets
intermediate by an air layer [1]. .e outmost sheet of the
roof shields the sunlight from the roof deck and thus reduces
heat entry through the roof to the building due to the heat
loss in the heat transfer caused by the air layer [2, 3]. In
Southern China, concrete tiles are typically constructed as
the outmost sheet of a double-skin roof due to their re-
sistance to wind and hail damages, their attractive price, and
the easy installation. Zingre et al. [4] found that such a roof
can reduce 6% of the annual heat entry through the building
roof during the daytime, but it also impedes the heat loss at
nighttime. Tong et al. [5] investigated the heat entry to the
building interior through double-skin tile roofs with dif-
ferent albedos and found that the heat entry to the building
interior can be cut about 11% if the rooftop albedo reduces a
unit of 0.10. In addition, the heat transfer through a double-
skin facade has been investigated widely in the aspects of
configuration optimum [6], ventilation characteristics [7],
façade’s strikes [8], and facade’s albedos [9]. In addition, the

type, usage, orientation, and insulation of a building greatly
influence the energy efficiency of a double-skin façade.

Heat entry through the concrete roof tile to the building
interior primarily depends on the heat transfers in the tile
and in the air gap under the tile. Raising the albedo of the
tile’s top (rooftop) reflects more sunlight off the tile and thus
lowers down heat entry through the roof to the inner
building. However, in Southern China, after the installation
of roof tiles for several years, the top of concrete tiles is
darkened by dust deposit and algae growth (Figure 1). As the
height of the air layer under the tile is several orders of the
magnitude lower than the width and length of the layer,
wind speed in the air gap is negligibly small. While the
natural air circulation in the air layer cools the roof deck to
some degrees, the main heat transfer in this layer is the
emission and absorption at the deck surface and at the tile’s
underside [10, 11]. A numerical study has found that
convective heat flux under a roof tile layer contributes about
0–0.284W/m2 to the ceiling [12], which is far lower than the
heat entry through the roof to the building interior. .e
Nusselt number in the air gap is found at a range of 4–7,
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further implying that convection inside the air layer is
negligibly smaller than long-wave radiation [10].

As the heat transfer in the air layer is radiation-
dominated, heat entry through the roof to the building
interior would be cut down by modulating the emissivity of
the deck and the tile’s underside. Since the heat entry
through the roof to the building interior is mainly controlled
by the temperature at the roof deck, the following sections
illustrate the influence of the emissivity of the roof deck and
of the tile’s underside on the heat absorption of the roof
deck. A building cell is constructed with a flat double-skin
roof, in which the outmost layer of the roof is housed for
concrete tiles. .e underside of each tile is coated with a
specific paint to get a unique emissivity. Temperatures and
heat fluxes at different heights are observed to confirm the
influence of the emissivity of the tile’s underside on the heat
entry through the roof to the building interior.

2. Radiative Heat Transfer in the Air Layer

Sunlight absorbed at the rooftop heats up the tile and
transfers the heat to the underside of the tile. Heat at the
tile’s underside propagates downward via convection, ra-
diation, and conduction. According to Lai et al. [10], in the
air gap, radiation is more significant than the convection
and conduction. Photons emitting from the underside of the
tile bounce back and force in the air layer until all photons are
intercepted. At a double-skin roof with concrete tiles as the
outmost layer, both the roof deck and the tile’s underside can
be treated as two parallel boundless gray sheets. Assuming
that the emissivity and absorptance of both sheets do not vary
with the temperature, net long-wave radiation absorbed by
the roof deck, And (W/m2), ([13], pp. 495-496), is

And �
σ T4

b −T4
d( 

1/εb(  + 1/εd( − 1
, (1)

where σ is the Stefan–Boltzmann constant (�5.67×10−8
Wm−2·K−4); ε is the thermal emissivity; T(K) is the tem-
perature; the subscript “b” represents the bottom (un-
derside) of the tile; and the subscript “d” stands for the roof
deck.

In summer months, the net radiation absorbed by the
roof deck, to a great extent, controls the heat entry from the

roof to the building. .e heat entry can be cut down by
reducing And. According to equation (1), decreasing Tb
can effectively reduce And, which is a topic that has been
studied elsewhere [9]. Increasing the temperature of the roof
deck (Td) drops And but it would lead to more heat being
conducted to the building interior. Decreasing the tile’s
bottom emissivity (εb), roof deck emissivity, and/or both
could reduce the net long-wave radiation absorbed by the
roof deck. A nonmetal roof deck has a typical emissivity of
0.70–0.95, so it is possible to decrease the emissivity of the
roof deck by coating it with a low-emissivity paint. However,
a roof deck is prone to deposit dust, which is equal to recoat
the deck with a layer of nonmetal dust. As a result, it is
impractical to decrease the emissivity of the roof deck. On
the contrary, the tile’s underside is free from dust deposit, so
its emissivity could keep at a low value during its lifetime.
.erefore, lowering εu would be the most retrofit strategy to
cut down And.

3. Experiments

Here, an experiment was conducted to confirm that the
emissivity of the tile’s underside controls heat entry through
the roof to a building interior..e experiment simultaneously
measured temperatures and heat fluxes of six roof tiles with
the same albedo at the rooftop but with different emissivity
values at the roof tile’s underside. .e roof tiles were as-
sembled to a 1.8m-height building cell with a 2.2× 2.2m2

double-skin roof, in which concrete tiles were the outmost
layer (Figure 2(a)). .e building wall was insulated, and
the outmost skins of the walls were painted white..e rooftop
of the building cell was constructed to six square modules
with a 66 cm× 66 cm× 10 cm (Figures 2(b)–2(d)), and each
module was housed for a concrete roof tile, which was
66 cm× 66 cm× 2.5 cm. .e thickness of the air gap beneath
the tile was thus 7.5 cm (Figure 2(b)). According to the ge-
ometry of this double-skin roof, the projected area of each tile
covers 95% view field of the center of the tile’s bottom
(computed as stated in [14]). .is view factor means that the
radiation transfer in the air layer can be deemed as one-
dimensional.

.e tiles were a Portland concrete type available in China
markets. Using the test method of ASTM-E1461-13 [15] and

(a) (b)

Figure 1: Concrete tiles are widely used as the overlay of a flat double-skin roof in Southern China. (a) A new concrete tile roof. (b) 2-3 years
tile roof: the tiles have been darkened by dust deposit and algae growth.
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ASTM-C1470-06 [16], the thermal conductivity, heat ca-
pacity, and density of tiles were found to be 1.41± 0.03W/
m·K, 1020± 3, and 2405 + 10 kg/m3, respectively. Each tile’s
underside was coated with different emissivity values, which
was achieved by mixing the white pigment, aluminum
powder, and acetone in different fractions and then coating
the tile’s underside with the mixed latex. To get the real
emissivity, a roof tile was cut to a suite of 5 cm× 5 cm× 1 cm
samples, and each sample was then coated with a thin layer
(<10 μm) of the designed latex. .e emissivity of the samples
was measured under different temperatures. We found that
when the concrete substrate was coated with about 10micron
latex, the emissivity of the coated sample (after the latex dried
and hardened) was a constant, and the further addition of the
latex to the substrate did not vary the emissivity. .e esti-
mated emissivity was also independent of the temperature in
the range of interest (10–70°C in Figure 3). .eir emissivity
values were 0.32, 0.43, 0.54, 0.66, and 0.82, respectively, which
were tested as stated in ISO 18434-1. .ese five tiles, together
with a control tile without any coating on its bottom, were
assembled into the designed six modules on the roof. .e
control tile had an emissivity of 0.93..e spacing between two
modules was separated by a 1.5 cm thick plywood bulkhead,
whose top was leveled with the rooftop to isolate the heat
transfer in each module (Figure 2(b)).

Temperatures and heat fluxes were measured at different
heights of the double-skin roof (Figure 4). For each tile,
T-type thermocouples were attached to the rooftop, the tile’s
underside, roof deck, and the ceiling to log the local tem-
perature. .ese four thermocouples were aligned vertically
through the center of the tile (Figures 2(b)–2(d)). Each
thermocouple was mounted to the upper side of a
1 cm× 1 cm thin copper plate and was then calibrated in a
thermostatic water bath. .e underside of the copper plate

was coated with a thin layer of thermal grease (T-Global
S606C thermal conductivity� 5.0W/mK) and then attached
to the thermocouple-located place. .e corner of the plate
was fastened by 502 Cyanoacrylate Adhesive Super Glue. At
the underside of a specific tile, the thermocouple-mounted
plate and the area surrounding were painted unicolor by
the specific latex with a unique emissivity. After thermo-
couples were properly installed and tiles were completely
assembled, the entire rooftop was painted unicolor, as
indicated in Figure 2(a). .e albedo of the rooftop was
0.269, which was measured according to the method
proposed by Qin et al. [17].
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Figure 2: .e experimental building cell and the deployment of measurement sensors on the concrete roof tile. (a) A photo of the roof, (b)
roof ’s front view, (c) roof ’s side view, and (d) roof ’s plan view.
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Figure 3: .e emissivity of samples coated with different emission
latexes. .e emissivity is independent of temperature.
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In addition, on the ceiling and at 1.0 cm nearby the plate
with thermocouples, a 1 cm× 1 cm× 0.5mm heat flux sensor
plate was attached. A thin layer of thermal grease was lu-
bricated on the sensor-designed place, and then, the heat flux
sensor was attached. Finally, the corner of the sensor was
fastened by 502 Cyanoacrylate Adhesive Super Glue. In total,
six heat flux sensors logged the heat entry through the roof to
the building interior under the tiles with different emissivity
values. .e heat flux sensor, gSKIN®-XP, can read the heat
flow signal with 3% error.

Both the temperature and heat flux were logged by a
Compell CR3000 compliment, which logged 45 temperatures
and 6 heat fluxes simultaneously. In addition, a weather tower
(the Davis Instruments 6152) was installed at the same height
with the rooftop to log the local weather information during
the experiment. Observations began at the midnight of May
30, 2017 and ceased at the midnight of June 04, 2017, a time
period that was rain free. .e interior building cell was not
air-conditioned during the experiment. .e temperatures,
heat fluxes, and weather data were logged at an interval of
5minutes. Weather information during the experiment
campaign can be referred to Figure 5.

4. Results

4.1. Emissivity of Tile’s Underside Greatly Influences the
Temperature of the Roof. .e lowest emissivity in this ex-
periment is εb � 0.32; and the greatest emissivity is 0.93,
which is the emissivity of common concrete (the tile with
εb � 0.93 is referred hereafter as the control tile). Temper-
atures at the top and underside of these two tiles indicate that
the tile with εb � 0.32 stays hotter than the control tile
(Figure 6(a)). .e reason may be that a tile with low εb value

impedes the heat of the tile propagating downward. At
nighttime, a fraction of heat in the building cell discharges
via the roof deck, which radiates the heat to the underside of
the tile. As emissivity is equal to absorptivity, a tile with low
εb value absorbs a small amount of heat and thus stays cool at
nighttime (Figure 6(b)). While only observations of tiles
with εb � 0.32 and εb � 0.93 are shown, the data for other tiles
indicate the same trend. .erefore, the roof tile’s temper-
ature is controlled by the emissivity of the tile’s underside.

.e emissivity also dictates the temperature of the roof’s
deck (Figure 7). At nighttime, the difference is indistin-
guishable, possibly because in the air gap the nocturnal ra-
diative heat transfer is far lower than the daytime one. During
the daytime, the temperature of the roof deck under a tile
increases with the emissivity of the tile’s underside (Figure 7).
.is is because a tile with a larger emissivity radiates more
heat to the underlying roof deck. It is also found that the daily
maximum temperatures of the roof decks decrease linearly
with the emissivity of the tile’s underside, εb. Lowering εb from
0.93 to 0.32 decreases the maximum daily temperature of the
roof deck about 3–8°C (Figure 8(a)). .is temperature re-
duction caused by lowering the emissivity is greater than 2.4°C
with the white cool coating [4] and 2–6°C when increasing
the albedo of the roof deck up to 0.77 [9]. However, as shown
in Figure 8(b), the daily minimum temperature of the roof
deck seems unchanged in comparison with the daily maxi-
mum temperature. According to the daily maximum and
minimum temperatures of the roof deck, it is concluded that
the temperature amplitude of the roof deck decreases linearly
with the emissivity of the tile’s underside.

.e temperature variation of the building ceiling is
shown in Figure 9. .e deck and the ceiling share a similar
temperature pattern. But the ceiling temperature fluctuates
less than the deck temperature because heat transfer at-
tenuates with depth. Similarly, the daily maximum tem-
perature of the ceiling increases linearly with the emissivity
of the tile’s bottom, but the daily minimum temperature of
the ceiling varies indiscernibly (Figure 10). At noontime, the
ceiling temperature under the control tile (εb � 0.93) is about
3-4°C greater than that under the tile with εb � 0.32. As the
temperature at the ceiling is a surrogate of the heat entry
through the roof to the building, it is concluded that low-
ering εb curtails heat entry.

4.2. BuildingHeatGain/Loss (Q)Decreases LinearlywithTile’s
Underside Emissivity. A lower ceiling’s temperature may
indicate a less amount of heat (Q) entry to the building
interior..e heat flux (q) observed at the ceiling fluctuates at
a pattern similar to the temperature pattern at the ceiling
(Figures 10 and 11). .e fluxes below the five concrete tiles
distinguish greatly, especially during the daytime, with a
greater amount of heat inward to the building cell under a
tile with a larger bottom’s emissivity (one of the heat flux
sensors damaged during the measurement). For instance,
during a sunny day (June 03-June 04), the control tile leads
to a maximum inward heat flux of 68W/m2 but the tile with
a bottom emissivity of 0.32 leads to 42W/m2. During the
night, the roof tiles with a greater bottom’s emissivity

Thermocouple
Heat flux sensor

q

Ceiling

Roof deck
Air gap

Concrete tiles

Figure 4: Sensors are deployed at different heights of a concrete tile
roof to log the local temperature and heat flux.
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dissipate a larger amount of heat from the ceiling. .e
difference, however, is only 3–6W/m2.

In Figure 11, it is hard to distinguish the correlation
between the heat flux (q) and the tile’s bottom emissivity εb.
We summate the daily heat inward/outward from the ceiling
and then compare the summation with the tile bottom’s

emissivity. Only the data measured on May 31, June 01, and
June 02 are shown for the avoidance of data congestion, but
observations at other measurement days share similar
correlations. .e daily cumulative heat gain at the ceiling
increases linearly with the tile bottom’s emissivity εb
(Figure 12(a)). .e greater the εb value, the larger the
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amount of heat loss from the building ceiling (Figure 12(b)).
.e regression deviates somewhat from a linear correlation,
possibly because the nighttime long-wave radiation in the air
layer has the same order of the magnitude compared to the
convection and conduction. In Figure 12, one can coarsely
estimate that decreasing εb from 0.93 to 0.32 can curtail
the heat entry to the building about 25 kJ/day, corresponding
to 2.4 kW/hr/m2 for the 0.66m× 0.66m tile (25/24/
(0.66∗ 0.66)� 2.4). .is heat loss is greater than those by
increasing the albedo only in the existing studies,
e.g., 0.21 kWh/m2 from [4] and 234W·hr/m2 from [5].While
lowering the tile’s underside emissivity linearly curtails the
heat entry through the roof and also linearly impedes heat
loss, the heat gain cutback far exceeds the heat loss reduction
(Figure 12). .erefore, it is concluded that decreasing εb cuts
down the heat entry through the roof to the building linearly.

5. Conclusions

To reduce heat entry from the roof during summer months,
buildings in Southern China widely use a flat double-skin
roof, in which concrete tiles are the outmost layer. In such a
roof configuration, heat entry through the tiles to the
building interior is greatly influenced by the emissivity (εb)
at the bottom of the tile. To showcase this influence, this
study built a flat double-skin roof with concrete tiles as the
outmost layer and monitored temperatures and heat fluxes
under tiles with different εb. .e experiment confirmed that
a concrete tile with a lower εb has a lower roof deck tem-
perature and propagates the less amount of heat to the
building interior, especially during the daytime. For in-
stance, in our experimental campaign, decreasing εb of a
concrete tile from 0.93 to 0.32 can reduce the heat entry
through the roof to the building interior about 2.4 kW/hr/m2

in average.

Appendix

.e weather information during the experimental campaign
is shown in Figure 5.
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