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Abstract

This report contains researches in the theory of high-order bound-preserving

(BP) discontinuous Galerkin (DG) method and their applications in petroleum

engineering. It contains both theoretical analysis and numerical experiments.

The compressible miscible displacements and wormhole propagation problem,

arising in petroleum engineering, is used to describe the evolution of the pres-

sure and concentrations of different components of fluid in porous media. The

important physical features of concentration and porosity include their bound-

edness between 0 and 1, as well as the monotone increasing for porosity in

wormhole propagation model. How to keep these properties in the simulation

is crucial to the robustness of the numerical algorithm. In the first project,

we develop high-order bound-preserving discontinuous Galerkin methods for the

coupled system of compressible miscible displacements on triangular meshes. We

consider the problem with multi-component fluid mixture and the (volumetric)

concentration of the jth component, cj, should be between 0 and 1. The main

idea is stated as follows. First, we apply the second-order positivity-preserving

techniques to all concentrations c′js and enforce
∑

j cj = 1 simultaneously to ob-

tain physically relevant boundedness for every components. Then, based on the

second-order BP schemes, we use the second-order numerical fluxes as the lower-

order one to combine with high-order numerical fluxes to achieve the high-order

accuracy. Finally, since the classical slope limiter cannot be applied to poly-

nomial upper bounds, we introduce a new limiter to our algorithm. Numerical

x



experiments are given to demonstrate the high-order accuracy and good perfor-

mance of the numerical technique. In our second project, we propose high-order

bound-preserving discontinuous Galerkin methods to keep the boundedness for

the porosity and concentration of acid, as well as the monotone increasing for

porosity. The main technique is to introduce a new variable r to replace the orig-

inal acid concentration and use a consistent flux pair to deduce a ghost equation

such that the positive-preserving technique can be applied on both original and

deduced equations. A high-order slope limiter is used to keep a polynomial up-

per bound which changes over time for r. Moreover, the high-order accuracy is

attained by the flux limiter. Numerical examples are given to demonstrate the

high-order accuracy and bound-preserving property of the numerical technique.
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Chapter 1

Introduction

The DG methods become increasingly popular due to their good stability, high-

order accuracy, and flexibility on h-p adaptivity. The first DG method was intro-

duced in 1973 by Reed and Hill [1] for neutron linear transport. Subsequently,

Cockburn et al. developed Runge-Kutta discontinuous Galerkin (RKDG) meth-

ods for hyperbolic conservation laws in their papers [2, 3, 4, 5]. In [6], Cockburn

and Shu introduced the local discontinuous Galerkin (LDG) method to solve the

convection-diffusion equation.

In 2010, the genuinely maximum-princip le-satisfying high-order DG schemes

were constructed for conservation laws on rectangular meshes in [50] by Zhang

and Shu. The basic idea is to take the test function to be 1 in each cell to yield

an equation satisfied by the cell average of the target variable r, and prove the

desired boundedness of the cell average r̄. Then a slope limiter which do not

affect accuracy and mass conservation can be used to modify the variable r to

obtain a new one r̃ = r̄+θ(r− r̄) such that r̃ has the physically relevant bounds.

1



In the case that the variable r only need a lower bound zero, this technique is

also called positivity-preserving technique. The physically positivity-preserving

and bound-preserving numerical schemes have been actively studied since then.

In 2012, this technique has been successfully extended to triangular meshes in

[53], where the general criteria for quadrature rule on triangular elements was

proposed. After that, this technique was applied to many problems including

compressible Euler equations with source terms [52], hyperbolic equations in-

volving δ-singularities [44, 70], relativistic hydrodynamics [29], extended MHD

equations [55], shallow water equations [37], etc. For convection-diffusion equa-

tions, the genuinely second-order maximum-principle-preserving technique were

introduced in [54]. Subsequently, the extension to third-order or even higher

order bound-preserving techniques for parabolic equations were also developed

in [69, 10, 58]. Besides the above, the flux limiter [39, 38, 25] can also be used

to obtain the high-order accuracy and maintain the boundedness. Recently, in

[22], the authors studied miscible displacements in porous media and applied the

techniques introduced in [54, 25, 38, 39] to preserve the two bounds, 0 and 1, of

the volumetric fractions.

In the Chapter 2, we extend the ideas in [38, 50] and construct high-order

bound-preserving DG methods for multi-component compressible miscible dis-

placements. However, there are significant differences from previous techniques.

First of all, most of the problems in [38, 50] satisfy maximum-principles while the

concentration cj in (2.1.2) does not. To solve this problem, we would like to apply

the positivity-preserving technique to each cj and enforce
∑

j cj = 1. Secondly,

2



the high-order positivity-preserving technique in this paper is based on the flux

limiter [25, 38]. The basic idea is to combine higher order and lower order fluxes

to construct a new one which yield positive numerical cell averages. However,

for triangular meshes, first-order fluxes are not easy to construct. Therefore, we

will consider the second-order flux as the lower order one. Finally, to obtain

the equation satisfied by the cell averages, we need to numerically approximate

rj = φcj instead of cj. By doing so, the upper bound of rj is not a constant and

the limiter (2.1.4) may fail to work, since such a θ may not exist [22]. Moreover,

the limiter applied in [22] is not straightforward extendable to multi-component

problems, since we cannot simply set the upper bound of cj to be 1 if the fluid

mixture contains more than two components. Therefore, a new bound-preserving

limiter will be introduced. In summary, the whole algorithm can be separated

into three parts. We first treat pt as another source in (2.1.2) to obtain the

positivity of cj by the flux limiter [25, 38]. Then we choose consistent fluxes (see

Definition 2.2.1) with suitable parameter in the flux limiter in the concentration

and pressure equations to obtain the positivity of 1−∑N−1
j=1 cj. More precisely, in

our analysis, instead of solving p and cj, j = 1, · · · , N−1, we rewrite (2.1.1) and

(2.1.2) into a system of cj, j = 1, · · · , N and enforce
∑N

i=j cj = 1 by choosing

consistent fluxes. Finally, we will introduce a new limiter to obtain physically

relevant numerical approximations.

In the Chapter 3, the whole algorithm can be separated into four parts. We

first apply positivity-preserving technique to obtain positive φt and use which

as another source to find the velocity and pressure. Then apply the positivity-

3



preserving technique again to φ and cf simultaneously to obtain positive numer-

ical cell averages by the flux limiter [38, 25]. Subsequently, we choose consistent

flux pair [22, 57] with suitable parameters in the flux limiter in the concentration

and pressure equations to obtain the positivity of 1 − cf . Finally, we introduce

suitable limiters to obtain physically relevant numerical approximations.

The main accomplished work will be presented in the following two chapters. In

Chapter 2, we show our research on high-order bound-preserving discontin-uous

Galerkin methods for compressible miscible displacements in porous mediaon

triangular meshes. Then, in Chapter 3, we present our study on high-order

bound-preserving discontinuous Galerkin methods for wormhole propagation on

triangular meshes. We will end in Chapter 4 with a brief conclusion.

4



Chapter 2

High-order bound-preserving

discontinuous Galerkin methods for

compressible miscible

displacements in porous media on

triangular meshes1

Abstract

In this paper, we develop high-order bound-preserving (BP) discontinuous Galerkin

(DG) methods for the coupled system of compressible miscible displacements on

1This chapter has been published as an article in Journal of Computational Physics. Cita-

tion: N. Chuenjarern, Z. Xu, Y. Yang, Journal of Computational Physics 378 (2019),110-128.

https://doi.org/10.1016/j.jcp.2018.11.003
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triangular meshes. We consider the problem with multi-component fluid mix-

ture and the (volumetric) concentration of the jth component, cj, should be

between 0 and 1. There are three main difficulties. Firstly, cj does not satisfy

a maximum-principle. Therefore, the numerical techniques introduced in (X.

Zhang and C.-W. Shu, Journal of Computational Physics, 229 (2010), 3091-3120)

cannot be applied directly. The main idea is to apply the positivity-preserving

techniques to all c′js and enforce
∑

j cj = 1 simultaneously to obtain physically

relevant approximations. By doing so, we have to treat the time derivative of

the pressure dp/dt as a source in the concentration equation and choose suitable

fluxes in the pressure and concentration equations. Secondly, it is not easy to

construct first-order numerical fluxes for interior penalty DG methods on tri-

angular meshes. One of the key points in the high-order BP technique applied

in this paper is the combination of high-order and lower-order numerical fluxes.

We will construct second-order BP schemes and use the second-order numerical

fluxes as the lower-order one. Finally, the classical slope limiter cannot be ap-

plied to cj. To construct the BP technique, we will not approximate cj directly.

Therefore, a new limiter will be introduced. Numerical experiments will be given

to demonstrate the high-order accuracy and good performance of the numerical

technique.

Key words: compressible miscible displacements, bound-preserving, high-order,

discontinuous Galerkin method, triangular meshes, multi-component fluid, flux

limiter
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2.1 Introduction

In this paper, we are interested in constructing high-order bound-preserving

discontinuous Galerkin (DG) schemes for compressible miscible displacements

in porous media on triangular meshes. We consider the fluid mixture with N

components and the governing equations over the computational domain Ω =

[0, 1]× [0, 1] read

d(c)
∂p

∂t
+∇·u = d(c)

∂p

∂t
−∇·

(
κ(x, y)

µ(c)
∇p

)
= q, (x, y) ∈ Ω, 0 < t ≤ T, (2.1.1)

φ
∂cj
∂t

+∇(u·cj)−∇·(D∇cj) = c̃jq−φcjzjpt, (x, y) ∈ Ω, 0 < t ≤ T, j = 1, · · · , N−1,

(2.1.2)

where the dependent variables are the pressure in fluid mixture denoted by p, the

Darcy velocity of the mixture (volume flowing across a unit across-section per

unit time) denoted by u and the concentration of interested species measured

in amount of species per unit volume denoted by c = (c1, · · · , cN)T , with cj

being the concentration of the jth component. φ and κ are the porosity and

permeability of the rock, respectively. µ refer to the concentration-dependent

viscosity. q is the external volumetric flow rate, and c̃j is the concentration of the

fluid in the external flow. c̃j must be specified at points where injection (q > 0)

takes place, and is assumed to be equal to cj at production points (q < 0).

The diffusion coefficient D is symmetric and arises from two aspects: molecular

diffusion, which is rather small for field-scale problems, and dispersion, which is

velocity-dependent, in the petroleum engineering literature. Its form is

D = φ(x, y)(dmolI + dlong|u|E + dtran|u|E⊥), (2.1.3)

7



where E, a 2× 2 matrix, represents the orthogonal projection along the velocity

vector given as

E = (eij(u)) =

(
uiuj

|u2|

)
, u = (u1, u2),

and E⊥ = I − E is the orthogonal complement. The diffusion coefficient dlong

measures the dispersion in the direction of the flow and dtran shows that trans-

verse to the flow. To ensure the stability of the scheme, D is assumed to be

strictly positive definite in almost all of the previous works. In this paper, we

assume D to be positive semidefinite. Moreover, the pressure is uniquely deter-

mined up to a constant, thus we assume
∫
Ω
p dxdy = 0 at t = 0. However, this

assumption is not essential. Other coefficients can be stated as follows:

cN = 1−
N−1∑

j=1

cj, d(c) = φ

N∑

j=1

zjcj,

where zj is the compressibility factor of the jth component of the fluid mixture.

In this paper, we consider homogeneous Neumann boundary conditions

u · n = 0, (D∇c− cu) · n = 0,

where n is the unit outer normal of the boundary ∂Ω. Moreover, the initial

solutions are given as

cj(x, y, 0) = cj0(x, y), p(x, y, 0) = p0(x, y), (x, y) ∈ Ω.

The miscible displacements in porous media were first presented in [15, 16],

where mixed finite element methods were applied. Later, the compressible prob-

lem was studied in [17] and the optimal order estimates in L2-norm and almost

8



optimal order estimates in L∞-norm were given in [11]. Subsequently, many

new numerical methods were introduced, such as the finite difference method

[47, 48, 49], characteristic finite element method [27], splitting positive defi-

nite mixed element method [40] and H1-Galerkin mixed method [9]. Besides

the above, in [35], an accurate and efficient simulator was developed for prob-

lems with wells. Later, the authors introduced an Eulerian-Lagrangian localized

adjoint method to solve the transport partial differential equation for concen-

tration, while a mixed finite element method to solve the pressure equation [34].

Recently, DG methods have been popular to solve compressible miscible dis-

placements in porous media [13, 14, 41, 42, 23, 43, 46]. Some special numerical

techniques were introduced to control the jumps of numerical approximations as

well as the nonlinearality of the convection term. Besides the above, there were

also significant works discussing the DG methods for incompressible miscible dis-

placements, see e.g. [7, 24, 26, 28, 31, 32, 36] and for general porous media flow,

see e.g. [8, 19, 18, 33] and the references therein. However, no previous works

above focused on the bound-preserving techniques. In many numerical simula-

tions, the approximations of cj can be placed out of the interval [0, 1]. Especially

for problems with large gradients, the value of d(c) might be negative, leading

to ill-posedness of the problem, and the numerical approximations will blow up.

We will use numerical experiments to demonstrate this point in Section 2.5. In

[22], we have introduced second-order bound-preserving DG methods on rectan-

gular meshes for two-component miscible displacements in porous media. In this

paper, we will extend the idea to multi-component miscible displacements and

9



construct high-order bound-preserving techniques on triangular meshes. More-

over, the idea can be extended to incompressible flows with some minor changes.

The DG method gained even greater popularity for good stability, high-order

accuracy, and flexibility on h-p adaptivity and on complex geometry. In 2010,

the genuinely maximum-principle-satisfying high-order DG and finite volume

schemes were constructed in [50] by Zhang and Shu, the extension to unstruc-

tured meshes was given in [53]. After that, the idea was applied to many prob-

lems such as compressible Euler equations [51, 52], hyperbolic equations involv-

ing δ-singularities [44, 45, 55], relativistic hydrodynamics [29] and shallow water

equations [37], etc. The basic idea is to take the test function to be 1 in each

cell to obtain an equation of the numerical cell average of the target variable,

say r, and prove the cell average, r̄, is within the desired bounds. Then we can

apply a slope limiter to the numerical approximation and construct a new one

r̃ = r̄ + θ(r − r̄), θ ∈ [0, 1]. (2.1.4)

If the problem has only one lower bound zero, the technique is also called

positivity-preserving technique. Thanks to the limiter, the whole algorithm were

proved to be L1-stable [45, 29] for some complicated systems. Moreover, the tech-

nique does not rely on the trouble cell detector and the limiter keeps the high-

order accuracy in regions with smooth solutions for scalar equations [50]. In case

of convection-diffusion equations, the same idea was applied to construct gen-

uinely second-order maximum-principle-satisfying DG method on unstructured

meshes [54]. Recently, the flux limiter [25, 38, 39] and third-order maximum-

principle-preserving direct DG method [10] were also introduced. However, it is

10



not easy to apply the flux limiter to unstructured meshes since the lower order

fluxes are not easy to construct, and the only work available is [12] in which the

technique for hyperbolic equations was analyzed, and no previous works aimed

to discuss convection-diffusion equations. In this paper, we will extend the ideas

in [38, 50] and construct high-order bound-preserving DG methods for multi-

component compressible miscible displacements. However, there are significant

differences from previous techniques. First of all, most of the problems in [38, 50]

satisfy maximum-principles while the concentration cj in (2.1.2) does not. To

solve this problem, we would like to apply the positivity-preserving technique

to each cj and enforce
∑

j cj = 1. Secondly, the high-order positivity-preserving

technique in this paper is based on the flux limiter [25, 38]. The basic idea

is to combine higher order and lower order fluxes to construct a new one which

yield positive numerical cell averages. However, for triangular meshes, first-order

fluxes are not easy to construct. Therefore, we will consider the second-order

flux as the lower order one. Finally, to obtain the equation satisfied by the cell

averages, we need to numerically approximate rj = φcj instead of cj. By doing

so, the upper bound of rj is not a constant and the limiter (2.1.4) may fail to

work, since such a θ may not exist [22]. Moreover, the limiter applied in [22] is

not straightforward extendable to multi-component problems, since we cannot

simply set the upper bound of cj to be 1 if the fluid mixture contains more than

two components. Therefore, a new bound-preserving limiter will be introduced.

In summary, the whole algorithm can be separated into three parts. We first

treat pt as another source in (2.1.2) to obtain the positivity of cj by the flux

11



limiter [25, 38]. Then we choose consistent fluxes (see Definition 2.2.1) with

suitable parameter in the flux limiter in the concentration and pressure equa-

tions to obtain the positivity of 1 −∑N−1
j=1 cj. More precisely, in our analysis,

instead of solving p and cj, j = 1, · · · , N−1, we rewrite (2.1.1) and (2.1.2) into a

system of cj, j = 1, · · · , N and enforce
∑N

i=j cj = 1 by choosing consistent fluxes.

Finally, we will introduce a new limiter to obtain physically relevant numerical

approximations.

The paper is organized as follows: we first discuss the DG scheme in two

dimension on triangular mesh in Section 2.2. In Section 2.3, we demonstrate the

bound-preserving technique for second-order scheme. The high-order bound-

preserving technique with flux limiter will be given in Section 2.4. In Section

2.5, some numerical experiments and results will be shown. We will end in

Section 2.6 with concluding remarks.

2.2 The DG scheme

In this section, we will construct the DG scheme for compressible miscible dis-

placements in porous media. We first demonstrate the notations to be used

throughout the paper. We consider triangular meshes and denote Ωh to be

the set of cells. For any K ∈ Ωh, we denote the three edges of K to be eiK

(i = 1, 2, 3), with corresponding lengths ℓiK (i = 1, 2, 3) and unit outer normal

vectors νi (i = 1, 2, 3). We also denote the neighboring triangle along eiK as Ki.

We use Γ for all the cell interfaces, and Γ0 = Γ \ ∂Ω for all the interior ones. For

any e ∈ Γ, denote |e| to be the length of e. Let u± denote the numerical solution
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on the edges, evaluated from K or Ki. The ′±′ for each edge eiK is determined

by the inner product of νi and a predetermined constant vector ν0 which is not

parallel to any edge in the mesh: for each edge eiK in the cell K,

u− = uK , u+ = uKi
, if ν0 · νi > 0,

u+ = uK , u− = uKi
, if ν0 · νi < 0.

Moreover, we define ne as the unit outer normal of each edge e ∈ Γ0 such that

ne ·ν0 > 0 and define the jump and average of any function v at the cell interface

e as

[v]e = v+e − v−e , {v}e =
1

2
(v+e + v−e ).

We also denote ∂Ω+ = {e ∈ ∂Ω : n · ν0 > 0}, where n is the unit outer normal

of ∂Ω and ∂Ω− = ∂Ω\∂Ω+. The finite element space is chosen as

Wh = {z : z|K ∈ P k(K), ∀K ∈ Ωh},

where P k(K) denotes polynomials of degree at most k ≥ 1 in K.

To construct the DG method, we first rewrite the system (2.1.1)-(2.1.2) into

the following form

d(c)pt +∇ · u = q, (2.2.5)

a(c)u = −∇p, (2.2.6)

(φcj)t +∇ · (ucj)−∇ · (D(u)∇cj) = c̃jq − φcjzjpt, j = 1, 2, · · · , N − 1,

(2.2.7)

where a(c) =
µ(c)

κ
.
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Next, we would like to demonstrate the key points in this paper that are

quite different from most of the previous works.

1. Approximate rj = φcj instead of cj. We cannot simply take the test

function to be 1 to obtain the cell average of cj.

2. Treat pt in (2.2.7) as a source to apply the positivity-preserving techniques.

3. Apply flux limiters to the high-order scheme by combining the second- and

high-order fluxes.

4. Suitably choose the parameters in the flux limiter to obtain consistent

fluxes for (2.2.5) and (2.2.7) to make r̄j < φ̄, where r̄j and φ̄ are the cell

averages of rj and φ, respectively.

5. Take the L2-projection of φ into Wh, denoted as Φ, and use which as the

new approximation of the porosity.

6. Construct a new limiter to maintain the cell average r̄j and modify the

numerical approximations of rj such that 0 < rj < Φ, which further yields

cj = Pk

{rj
Φ

}
∈ [0, 1], where Pk is the L2-projection projection into Wh is

k ≥ 2 while P1u|K is the interpolation of u at the three vertices of cell K.

For simplicity, if not otherwise stated, we use p,u, cj, rj, j = 1, 2, · · · , N as

the numerical approximations from now on. Then the DG scheme for (2.2.5) -

(2.2.7) is to find p, rj ∈ Wh and u ∈ Wh = Wh×Wh such that for any ξ, ζ ∈ Wh
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and η ∈ Wh,

(d̃(r)pt, ξ) = (u,∇ξ) +
∑

e∈Γ0

∫

e

û · ne[ξ]ds+ (q, ξ), (2.2.8)

(a(c)u,η) = (p,∇ · η) +
∑

e∈Γ

∫

e

p̂[η · ne]ds, (2.2.9)

(rjt , ζ) = (ucj −D(u)∇ci,∇ζ) + (čjq − rjzjpt, ζ) +
∑

e∈Γ0

∫

e

ûcj · ne[ζ]ds

−
∑

e∈Γ0

∫

e

(
{D(u)∇cj · ne}[ζ] + {D(u)∇ζ · ne}[cj] +

α̃

|e| [cj][ζ]
)
ds,

(2.2.10)

where

cj = Pk

{rj
Φ

}
, d̃(r) =

N∑

j=1

zjrj, (u, v) =

∫

K

uvdx, čj =





c̃j, q > 0,

rj
Φ
, q < 0.

In (2.2.8)-(2.2.10), p̂, û and ûcj are the numerical fluxes. We use alternating

fluxes for the diffusion term and for any e ∈ Γ0

û|e = u+|e, p̂|e = p−|e, (2.2.11)

and on ∂Ω we take

p̂|e = p−|e, ∀e ∈ ∂Ω+, p̂|e = p+|e, ∀e ∈ ∂Ω−.

For the convection term, for any e ∈ Γ0 we take

ûcj = u+c+j − α[cj]ne. (2.2.12)

In (2.2.10) and (2.2.12), α and α̃ are two positive constants to be chosen by the

bound-preserving technique. Before we complete this subsection, we would like
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to introduce the following definition that will be used in the bound-preserving

technique.

Definition 2.2.1. We say the flux ûcj is consistent with û if ûcj = û by taking

cj = 1 in Ω.

The numerical flux ûcj in (2.2.12) is consistent with the flux û in (2.2.11),

and this is required by the bound-preserving technique.

Remark 2.2.1. There are plenty of fluxes can be used following the procedures

introduced in the next section. The proofs are basically the same with some minor

changes, so we only list some of them below without more details.

• û = u−, p̂ = p+, ûcj = u−c−j − α[cj]ne.

• û = 1
2
(u+ + u−), p̂ = 1

2
(p+ + p−), ûcj =

1
2
(u+c+j + u−c−j )− α[cj]ne.

2.3 Second-order bound-preserving scheme

In this section, we will construct second-order bound-preserving DG scheme

with Euler forward time discretization on triangular meshes. For simplicity,

we only discuss the technique for cells away from ∂Ω, while the boundary cells

can be analyzed following the same lines with some minor changes. A similar

analysis for the boundary cells can be found in [22]. We use oK for the numerical

approximation of o in K with cell average ōK . Moreover, we use on as the solution

o at time level n. Now, we will demonstrate the bound-preserving technique in
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detail. For simplicity, we will drop the subindex j in (2.2.10) and use r, c, č, z

for rj, cj, čj, zj, respectively.

In (2.2.10), we take ζ = 1 in K to obtain the equation satisfied by the cell

average of r

r̄n+1
K = Hc

K(r,u, c) +Hd
K(r,u, c) +Hs

K(r, č, q, z, p) (2.3.13)

where

Hc
K(r,u, c) =

1

3
r̄nK − λ

3∑

i=1

∫

ei
K

ûc · νids, (2.3.14)

Hd
K(r,u, c) =

1

3
r̄nK + λ

3∑

i=1

∫

ei
K

(
{D(u)∇c · νi}+

α̃

ℓiK
[c]ne · νi

)
ds,

(2.3.15)

Hs
K(r, č, q, z, p) =

1

3
r̄nK +△tčq − rzpt, (2.3.16)

with λ = △t

|K|
being the ratio of the time step and the area of triangle K, and

čq − rzpt being the cell average of čq − rzpt. We denote Vi, i = 1, 2, 3 as the

three vertices of cell K. In this section, we will construct the bound-preserving

technique in K, hence for any w ∈ Wh, we define w(Vi) to be the limit evaluated

in K. We use the (k+1)-point Gaussian quadrature to approximate the integrals

along the cell interfaces in (2.3.14)-(2.3.16), and denote xi,β, β = 1, 2, · · · , k + 1

as the quadrature points on eiK with wβ as the corresponding weights on the

reference interval [−1
2
, 1
2
]. Moreover, we use quadratures discussed in [53] to

compute the cell average r̄nK . The quadrature contains L = 3(NG − 2)(k + 1)

quadrature points, denoted as xγ, lying in the interior of K with2NG − 3 ≥ k ,

and the quadratures points on the cell interfaces are exactly the k + 1 Gaussian
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quadratures points. We denote the quadrature weights corresponding to the

interior quadrature points as w̃γ and those on the cell interfaces as ŵβ. In [53],

it was shown that ŵβ = 2
3
wβŵ, where ŵ is the quadrature weight corresponding

to the first quadrature point in the NG-point Gauss-Lobatto quadrature on the

interval [−1
2
, 1
2
]. Based on the above notations, we define the values of o (o =

r, c, p, q,Φ) at the quadrature points as oi,βK = o(xi,β) along the boundary of

K and oγK = o(xγ) in cell K. Now, we can demonstrate the bound-preserving

techniques. We will consider the source term Hs
K first, and discuss the high-order

bound-preserving technique.

Lemma 2.3.1. Suppose rn > 0 (cn > 0), then Hs
K(r, č, q, z, p) > 0 under the

conditions

△t ≤ 1

6zpM
, △t ≤ Φm

6qM
, (2.3.17)

where

pM = max
i,β,γ

((pt)
i,β
K , (pt)

γ
K , 0) Φm = min

x
Φ(x), qM = max

i,β,γ

{
−qi,βK ,−qγK , 0

}
.

(2.3.18)

Proof. We can write Hs
K as

Hs
K(r, č, q, z, p) =

(
1

6
r̄nK −△trzpt

)
+

(
1

6
r̄nK +△tčq

)
:= L1 + L2.
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Applying the quadrature in [53], we have

L1 =
1

6
r̄nK −△trzpt

=
1

6

(
3∑

i=1

k+1∑

β=1

ŵβr
i,β
K +

L∑

γ=1

w̃γr
γ
K

)

−△tz

(
3∑

i=1

k+1∑

β=1

ŵβr
i,β
K (pt)

i,β
K +

L∑

γ=1

w̃γr
γ
K(pt)

γ
K

)

=
3∑

i=1

k+1∑

β=1

ŵβ

(
1

6
−△tz(pt)

i,β
K

)
ri,βK +

L∑

γ=1

w̃γ

(
1

6
−△tz(pt)

γ
K

)
rγK .

Then L1 > 0 under the condition (2.3.17). We apply the same quadrature for

L2 to obtain

L2 =
1

6

(
3∑

i=1

k+1∑

β=1

ŵβr
i,β
K +

L∑

γ=1

w̃γr
γ
K

)
+△t

(
3∑

i=1

k+1∑

β=1

ŵβ č
i,β
K qi,βK +

L∑

γ=1

w̃γ č
γ
Kq

γ
K

)

=
3∑

i=1

k+1∑

β=1

ŵβ

(
1

6
ri,βK +△tči,βK qi,βK

)
+

L∑

γ=1

w̃γ

(
1

6
rγK +△tčγKq

γ
K

)
.

Notice that č = r/Φ if q < 0 while č > 0 if q > 0. Therefore, under the condition

(2.3.17), each term in the summation above is positive.

In the rest part of this section, we will consider second-order scheme only,

i.e. k = 1, N = 2, L = 0, then ŵ = 1
2

and wβ = 3ŵβ. Now we can analyze the

convection term Hc
K and the result is given below.

Lemma 2.3.2. Suppose rn > 0 (cn > 0), if α satisfies

α > max
i,β

{|ui,β
Ki
|, 0}, (2.3.19)

and the time step satisfies

∆t ≤ min
i,β

{
1

9ℓiKα
,

1

9ℓiK(|ui,β
K |+ α)

}
Φm|K|. (2.3.20)
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we have Hc
K(r,u, c) > 0.

Proof. Following the same analysis for the source term, we write

Hc
K =

3∑

i=1

2∑

β=1

wβH
c
i,β, Hc

i,β =
1

9
ri,βK − λℓiKûc

i,β · νi.

We only need to show Hc
i,β > 0.

Case 1: νi = ne, i.e. u− = uK , u+ = uKi
, c− = cK and c+ = cKi

. Then

Hc
i,β =

1

9
ri,βK − λℓiK(u

i,β
Ki
ci,βKi

· νi − αci,βKi
+ αci,βK ).

Since r and c are both linear functions, we can write the function values of r

and c as the interpolation of the values at vertices {V1, V2, V3} of K, i.e. for any

point xρ in K,

rρK = µρ
1rK(V1) +µρ

2rK(V2) +µρ
3rK(V3), cρK = µρ

1cK(V1) +µρ
2cK(V2) +µρ

3cK(V3),

(2.3.21)

with µρ
m ≥ 0, m = 1, 2, 3, and

3∑

m=1

µρ
m = 1. Then

Hc
i,β =

3∑

m=1

µi,β
m

(
1

9
rK(Vm)− λℓiKαcK(Vm)

)
+ λℓiK(α− u

i,β
Ki

· νi)c
i,β
Ki

=
3∑

m=1

µi,β
m

(
1

9
ΦK(Vm)− λℓiKα

)
cK(Vm) + λℓiK(α− u

i,β
Ki

· νi)c
i,β
Ki
.

Then we have Hc
i,β > 0, if α and ∆t satisfy (2.3.19) and (2.3.20), respectively.

Case 2: νi = −ne, i.e. u+ = uK , u− = uKi
, c+ = cK and c− = cKi

. Then

Hc
i,β =

1

9
ri,βK − λℓiK(u

i,β
K ci,βK · νi − αci,βKi

+ αci,βK ).
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Applying (2.3.21) again, we have

Hc
i,β =

3∑

m=1

µm

(
1

9
ΦK(Vm)− λℓiKu

i,β
K · νi − λℓiKwβα

)
cK(Vm) + λℓiKαc

i,β
Ki
.

Then we have Hc
i,β > 0 under the condition (2.3.20).

Finally, we discuss the diffusion part. We also take k = 1, N = 2, L = 0 and

the result is given in the following lemma.

Lemma 2.3.3. Assume the minimum angle of each triangle K is uniformly

bounded away from zero. Suppose rn > 0 (cn > 0), then Hd
K(r,u, c) > 0 under

the conditions

α̃ ≥ (3 +
√
3)Λ

2minK,i,j

(
sin
(
θi,jK
)) , (2.3.22)

and

∆t ≤ Φm|K|
18α̃

,
△t

|K|
(3 +

√
3)Λ

minK,i,j

(
sin
(
θi,jK
)) ≤ 1

54
Φm, (2.3.23)

where θi,jK , i, j = 1, 2, 3, i 6= j denotes the angle between the edge eiK and ejK, and

Λ is the largest absolute value of the eigenvalue of D.

Proof. First, we will consider the term

∫

ei
K

(
{D(u)∇c · νi}+

α̃

ℓiK
[c]ne · νi

)
ds.

Following [54], we write

D(u)∇c · νi = ∇c ·D(u)νi =
∂c

∂ηi

‖η̃i‖,

where

η̃i = D(u)νi, ηi =
η̃i

‖η̃i‖
.
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K

Ki

•
x̃i,β
K

•
xi,β • x̃

i,β
Ki

νe

Figure 2.1: Two intersection points for the numerical flux in diffusion part on

the triangular mesh.

Define ηK = ηi|K and ηKi
= ηi|Ki

. Likewise for η̃K and η̃Ki
. For each quadra-

ture point xi,β on the edge eiK , we can draw a straight line from xi,β with direction

ηKi
intersects ∂Ki at x̃i,β

Ki
. Similarly, we can draw another straight line from xi,β

with direction −ηK intersects ∂K at x̃i,β
K . See Figure 2.1 for an illustration. It

is easy to verify that at x = xi,β

{D(u)∇c · νi}+
α̃

ℓiK
[c]ne · νi

=
1

2
D(uK)∇cK · νi +

1

2
D(uKi

)∇cKi
· νi + α̃

(cKi
− cK)

ℓiK

=
1

2

ci,βK − c(x̃i,β
K )

‖xi,β
K − x̃i,β

K ‖
‖η̃K‖+

1

2

c(x̃i,β
Ki
)− ci,βKi

‖x̃i,β
Ki

− xi,β
Ki
‖
‖η̃Ki

‖+ α̃

ℓiK
(ci,βKi

− ci,βK )

=

(
‖η̃K‖

2‖xi,β
K − x̃i,β

K ‖
− α̃

ℓiK

)
ci,βK +

(
α̃

ℓiK
− ‖η̃Ki

‖
2‖x̃i,β

Ki
− xi,β

Ki
‖

)
ci,βKi

− ‖η̃K‖
2‖xi,β

K − x̃i,β
K ‖

c(x̃i,β
K ) +

‖η̃Ki
‖

2‖x̃i,β
Ki

− xi,β
Ki
‖
c(x̃i,β

Ki
).
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We write the cell average r̄nK as

r̄nK =
3∑

i=1

2∑

β=1

ŵβr
i,β
K =

3∑

i=1

2∑

β=1

3∑

m=1

ŵβµ
i,β
m ΦK(Vm)cK(Vm).

we can rewrite Hd
K(r,u, c) as

Hd
K =

1

3

3∑

i=1

2∑

β=1

3∑

m=1

ŵβµ
i,β
m ΦK(Vm)cK(Vm)

+ λ

3∑

i=1

ℓiK

2∑

β=1

wβ

[
{D(u)∇c · νi}+

α̃

ℓiK
[c]ne · νi

]

x=xi,β

=
3∑

i=1

2∑

β=1

wβ

(
1

9

3∑

m=1

µi,β
m ΦK(Vm)cK(Vm)

+λℓiK

[
{D(u)∇c · νi}+

α̃

ℓiK
[c]ne · νi

]

x=xi,β

)

:=
3∑

i=1

2∑

β=1

wβLi,β + L,

where

Li,β =
1

18

3∑

m=1

µi,β
m ΦK(Vm)cK(Vm) + λℓiK

[(
‖η̃K‖

2‖xi,β
K − x̃i,β

K ‖
− α̃

ℓiK

)
ci,βK

+

(
α̃

ℓiK
− ‖η̃Ki

‖
2‖x̃i,β

Ki
− xi,β

Ki
‖

)
ci,βKi

+
‖η̃Ki

‖
2‖x̃i,β

Ki
− xi,β

Ki
‖
c(x̃i,β

Ki
)

]
,

L =
1

6
r̄nK − λ

3∑

i=1

2∑

β=1

ℓiK‖η̃K‖
2‖xi,β

K − x̃i,β
K ‖

c(x̃i,β
K ).
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We need to make Li,β > 0. In fact

Li,β =
1

18

3∑

m=1

µi,β
m ΦK(Vm)cK(Vm) + λℓiK

(
‖η̃K‖

2‖xi,β
K − x̃i,β

K ‖
− α̃

ℓiK

)
ci,βK

+ λℓiK

(
α̃

ℓiK
− ‖η̃Ki

‖
2‖x̃i,β

Ki
− xi,β

Ki
‖

)
ci,βKi

+ λℓiK
‖η̃Ki

‖
2‖x̃i,β

Ki
− xi,β

Ki
‖
c(x̃i,β

Ki
)

=
3∑

m=1

µi,β
m

(
1

18
ΦK(Vm) + λℓiK

(
‖η̃K‖

2‖xi,β
K − x̃i,β

K ‖
− α̃

ℓiK

))
cK(Vm)

+ λℓiK

(
α̃

ℓiK
− ‖η̃Ki

‖
2‖x̃i,β

Ki
− xi,β

Ki
‖

)
ci,βKi

+ λℓiK
‖η̃Ki

‖
2‖x̃i,β

Ki
− xi,β

Ki
‖
c(x̃i,β

Ki
).

Notice that ‖η̃‖ ≤ Λ. To make Li,β > 0, we need

α̃ ≥ ℓiKΛ

2‖x̃i,β
Ki

− xi,β
Ki
‖
, λℓiK

(
α̃

ℓiK
− ‖η̃K‖

2‖xi,β
K − x̃i,β

K ‖

)
≤ 1

18
ΦK(Vm).

It is easy to compute that

ℓiK

‖x̃i,β
K − xi,β

K ‖
≤ 6

(3−
√
3)minj sin

(
θi,jK
) .

and we conclude Li,β > 0 under the conditions (2.3.22) and (2.3.23). Finally, we

can apply the same idea above to estimate L. Similar to (2.3.21), we write

c(x̃i,β
K ) =

3∑

m=1

µ̃i,β
m cK(Vm),

with 0 ≤ µ̃i,β
m ≤ 1 and

3∑

m=1

µ̃i,β
m = 1. Then

L =
1

6
r̄nK − λℓiK

3∑

i=1

2∑

β=1

‖η̃K‖
2‖xi,β

K − x̃i,β
K ‖

c(x̃i,β
K )

=
3∑

m=1

(
1

18
ΦK(Vm)− λℓiK

3∑

i=1

2∑

β=1

‖η̃K‖µ̃i,β
K

2‖xi,β
K − x̃i,β

K ‖

)
cK(Vm)

≥
3∑

m=1

(
1

18
ΦK(Vm)− λ

3∑

i=1

2∑

β=1

(3 +
√
3)Λ

2minj sin
(
θi,jK
)
)
cK(Vm)
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Therefore, we have L > 0 under the condition (2.3.23).

Base on the above three lemmas, we can state the following theorem.

Theorem 2.3.4. Suppose rn > 0 (cn > 0), and the parameters α and α̃ satisfy

(2.3.19) and (2.3.22), respectively. Then r̄n+1 > 0 under the conditions (2.3.17),

(2.3.20) and (2.3.23).

Now, we have proved r̄j > 0 for j = 1, 2, · · · , N − 1. To obtain r̄N > 0, we

need to subtract (2.2.10) from (2.2.8) to obtain

(rNt
, ζ) =(ucN −D(u)∇cN ,∇ζ) + (čNq − rNzNpt, ζ) +

∑

e∈Γ0

∫

e

ûcN · ne[ζ]ds

−
∑

e∈Γ0

∫

e

(
{D(u)∇cN · ne}[ζ] + {D(u)∇ζ · ne}[cN ] +

α̃

|e| [cN ][ζ]
)
ds.

(2.3.24)

Here, we have used the fact that the flux for (2.2.10) is consistent with that in

(2.2.8). We can observe that the above equation is similar to (2.2.10). Therefore,

following the same analysis above with minor changes we have the following

theorem.

Theorem 2.3.5. Suppose 0 ≤ rn ≤ Φ, and the conditions in Theorem 2.3.4 are

satisfied. Moreover, if the fluxes ûcj and û are consistent, then r̄n+1 ≤ Φ̄, under

the condition

△t ≤ 1

6zMpM
, (2.3.25)

where pM is given in (2.3.18) and zM = max
1≤j≤N

zj.
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2.4 Bound-preserving technique for high-order

scheme

In this section, we will apply the flux limiter to construct high-order bound-

preserving technique.

2.4.1 Flux limiter

We use P k (k>2) polynomials and write (2.3.13) as

r̄n+1
K = r̄nK + λ

3∑

i=1

F̂ei +∆ts̄,

where

F̂ei = −
∫

ei
ûc · νids+

∫

ei

(
{D(u)∇c · νi}+

α̃

ℓiK
[c]

)
ds, s̄ = c̃q − rz1pt

(2.4.26)

are high-order flux and source, respectively. In Section 2.3, we have demon-

strated how to treat the source terms. Therefore, we only discuss the modifi-

cation of the high-order fluxes only. We will apply the flux limiter [25, 38] and

combine the high-order flux F̂ei and the second-order fluxes, which was analyzed

in Section 2.3, denoted as f̂ei . We define the new flux as

F̃ei = f̂ei + θei(F̂ei − f̂ei),

where θei is a parameter that to be chosen. Then the cell average can be written

as

r̄n+1
K = r̄nK + λ

3∑

i=1

f̂ei + λ

3∑

i=1

θei(F̂ei − f̂ei) + ∆ts̄ = r̄n+1
L + λ

3∑

i=1

θei(F̂ei − f̂ei),
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where

r̄n+1
L = r̄nK + λ

3∑

i=1

f̂ei +∆ts̄

is the second order cell average which was proved to be positive if ∆t is suf-

ficiently small. Notice that, we need the fluxes in (2.2.10) and (2.2.8) to be

consistent. Therefore, we have to discuss the fluxes for all components together.

We define f̂ j

ei
and F̂ j

ei
as the second- and high-order fluxes for component j,

j = 1, 2, · · · , N , respectively, and the cell average r̄ for the jth component to be

r̄j. To computef̂ j

ei
, we only replace the cj in F̂ j

ei
in (2.4.26) by a second-order

approximation. We cannot change u, since we want
∑N

j=1 F̂
j

ei
=
∑N

j=1 f̂
j

ei
= ûei ,

which due to the flux consistency requirement. To construct the second-order

cj, we can simply apply the second-order L2 projection to the high-order cj, and

then apply the limiter discussed in 2.4.2 with k = 1 and Φ as the second-order

L2 projection of φ. We can choose the parameter θei as follows:

1. For any K ∈ Ωh, set βK = 0.

2. Define F̂N
ei = ûei −

N−1∑

j=1

F̂ j

ei
, f̂N

ei = ûei −
N−1∑

j=1

f j

ei
and r̄n = Φ̄−

N−1∑

j=1

r̄j.

3. For any j = 1, 2, · · · , N , if F̂ j

ei
− f̂ j

ei
≥ 0, take θj

K,ei
= 1, otherwise set

βK = βK + F̂ j

ei
− f̂ j

ei
.

4. For those edges ei with F̂ j

ei
− f̂ j

ei
< 0, we set θj

K,ei
= min

{
−
r̄n+1
j,L

λβm
K

, 1

}
.

5. Take θK,ei = min
1≤j≤N

θj
K,ei

.

6. For any e ∈ Γ0, we can find K1, K2 ∈ Ωh such that K1 ∩K2 = e. We take

θe = min{θK1,e, θK2,e}.

27



Following the same analyses in [12], we have r̄n+1
j ≥ 0, j = 1, 2, · · · , N . Thus,

0 ≤ r̄n+1
j ≤ Φ̄, since we have the relationship r̄n+1

1 + r̄n+1
2 + . . .+ r̄n+1

N = Φ̄.

Remark 2.4.1. In (2.2.8)-(2.2.10), we do not compute rN (cN) directly. Step

2 in the above algorithm is used to compute the fluxes in (2.3.24). Actually, we

can simply take FN
ei

= −∑N−1
j=1 F j

ei
, f̂N

ei
= −∑N−1

j=1 f j

ei
, since we only need the

difference of the higher order and lower order fluxes. Moreover, step 5 is used

to construct consistent fluxes (See definition 2.2.1).

2.4.2 Slope limiter

In this section, we discuss the limiters to be applied. As discussed in [22],

the traditional slope limiter (2.1.4) cannot be applied. In this paper, we will

construct a new one. We consider problem with 2 components first and then

extend it to N-component ones. The algorithm is given as follows.

1. Define Ŝ = {x ∈ K : r(x) ≤ 0}. Take

r̂1 = r1 + θ
( r̄1
Φ̄
Φ− r1

)
, θ = max

y∈Ŝ

{ −r1(y)Φ̄

r̄1Φ(y)− r1(y)Φ̄
, 0

}
. (2.4.27)

2. Set r2 = Φ− r̂1, and repeat the above step for r2.

3. Take r̃1 = Φ− r̂2 as the new approximation.

Remark 2.4.2. In step 1, we can show that r̂1 ≥ 0 which further implies r2 ≤ Φ.

In step 2, we have

r̂2 = r2 + θ
( r̄2
Φ̄
Φ− r2

)
= (1− θ)r2 + θ

r̄2
Φ̄
Φ ≤ (1− θ)Φ + θΦ = Φ, ∀θ ∈ [0, 1],
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which means the property r̂2 ≤ Φ is inherited naturally from r2 ≤ Φ, no matter

which limiter θ is chosen in this step. This fact gives us enough space to choose

θ to modify r̂2 such that r̂2 ≥ 0, as we did in step one. Therefore, after step 3,

we have 0 ≤ r̃1 ≤ Φ.

It is easy to check that 0 ≤ r̃1 ≤ Φ and
∫
K
r̃(x)dx =

∫
K
r(x)dx. Moreover, we

can also prove that the limiter does not kill the accuracy.

Theorem 2.4.1. Let R(x) ∈ Ck+1(K) and r(x),Φ(x) ∈ P k(K) with 0 ≤ r̄ ≤ Φ̄

and ‖r(x) − R(x)‖∞ ≤ Chk+1. Assume there exist two positive constants Φm

and ΦM such that 0 < Φm ≤ Φ(x) ≤ ΦM , then ‖r̃(x)−R(x)‖∞ ≤ Chk+1.

Proof. WLOG, we assume θ > 0 in (2.4.27) and need to show the modifica-

tion in step 1 keeps the accurate :‖r̂(x) − r(x)‖∞ ≤ Chk+1. Denote rm =

minx∈K r(x), rM = maxx∈K r(x). Let y ∈ K be the point at which the maximum

in (2.4.27) is achieved and define ry = r(y) < 0,Φy = Φ(y). Then

θ =
−ry

r̄
Φ̄
Φy − ry

≤ −ry

r̄ Φm

ΦM
− ry

≤ −ry

r̄ Φm

ΦM
− ry

Φm

ΦM

=
−ry
r̄ − ry

ΦM

Φm

≤ −rm
r̄ − rm

ΦM

Φm

,

which further yields

|r̂ − r| =θ| r̄
Φ̄
Φ− r| ≤ ΦM

Φm

−rm
r̄ − rm

| r̄
Φ̄
Φ− r| = ΦM

Φm

(−rm)
|r̄Φ

Φ̄
− r|

r̄ − rm
.

Since
ΦM

Φm

is a constant and | − rm| ≤ Chk+1, we only need to prove that

|r̄ φ

φ̄
− r|

r̄ − rm
≤ C for some positive constant C independent of x and h. Notice

that

r̄
Φm

ΦM

− rM ≤ r̄
Φ

Φ̄
− r ≤ r̄

ΦM

Φm

− rm,
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we have ∣∣∣∣r̄
Φ

Φ̄
− r

∣∣∣∣ ≤ max

{∣∣∣∣r̄
ΦM

Φm

− rm

∣∣∣∣ ,
∣∣∣∣r̄
Φm

ΦM

− rM

∣∣∣∣
}
,

which further yields

|r̄Φ
Φ̄
− r|

r̄ − rm
≤ max

{
|r̄ΦM

Φm
− rm|

r̄ − rm
,
|r̄ Φm

ΦM
− rM |

r̄ − rm

}
.

Next, we will prove the boundedness of
|r̄ΦM

Φm
− rm|

r̄ − rm
, and

|r̄ Φm

ΦM
− rM |

r̄ − rm
, respec-

tively. For the first term, we have

|r̄ΦM

Φm
− rm|

r̄ − rm
=

r̄ΦM

Φm
− rm

r̄ − rm
≤

r̄ΦM

Φm
− rm

ΦM

Φm

r̄ − rm
=

ΦM

Φm

.

while for the second term

|r̄ Φm

ΦM
− rM |

r̄ − rm
= −

r̄ − rM + r̄(Φm

ΦM
− 1)

r̄ − rm

≤ − r̄ − rM
r̄ − rm

−
r̄(Φm

ΦM
− 1)

r̄

≤ rM − r̄

r̄ − rm
+ 1− Φm

ΦM

.

In Appendix C of [51], Zhang proved that for any non-constant polynomial of

degree k, say p(x), we have

| p̄−max p(x)

p̄−min p(x)
| ≤ Ck,

where Ck is a constant only depends on the polynomial degree k. Thus,

|r̄ Φm

ΦM
− rM |

r̄ − rm
≤ Ck + 1− Φm

ΦM

,

and we finish the proof.
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Remark 2.4.3. There are two ways to apply this limiter in an N-component

system. One way is to compute the parameter θj for the jth component, (j =

1, 2, · · · , N) and then take θ = maxj θj. Another way is to modify r1, r2, · · · , rN−1

one by one such that r1 ∈ [0,Φ], r2 ∈ [0,Φ− r1], r3 ∈ [0,Φ− r1 − r2], · · · , rN−1 ∈

[0,Φ− r1 − r2 · · · − rN−2].

2.4.3 High-order time discretization

In this section, we extend the Euler forward time discretization to high-order

ones which are convex combinations of Euler forwards. In this paper, we use

third-order strong stability preserving (SSP) high-order time discretization to

solve the ODE system ut = L(u):

u(1) =un +∆tL(u, tn),

u(2) =
3

4
un +

1

4

(
u(1) +∆tL(u(1), tn+1)

)
,

un+1 =
1

3
un +

2

3

(
u(2) +∆tL(u(2), tn +

∆t

2
)

)
.

Another choice is third-order SSP multi-step method:

un+1 =
16

27
(un + 3∆tL(un, tn)) +

11

27
(un−3 +

12

11
∆tL(un−3, tn−3)).

More details can be found in [20, 21, 30].

2.5 Numerical experiments

In this section, we provide numerical experiments to test the accuracy and sta-

bility of the high-order bound-preserving DG scheme. In all the examples, we
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choose N = 3, and consider fluid mixture with 3 components. Moreover, we use

the third-order SSP Runge-Kutta discretization in time and P 2 element in space.

The computational domain is set to be Ω = [0, 2π] × [0, 2π]. To construct Ωh,

we first equally divide Ω into M ×M rectangles and the triangles are obtained

by equally divide each rectangle into two. See Figure 2.2 for the mesh.

Figure 2.2: Triangular mesh (M = 10)

Example 2.5.1. We set the initial conditions as

c1,0(x, y) =
1

6
(1 +

1

2
(cos x+ cos y)), c2,0(x, y) =

1

3
(1 + cos x cos y),

c3,0(x, y) = 1− c1,0(x, y)− c2,0(x, y), p0(x, y) = cos x cos y − 1,

and the source variables are taken as

c̃1(x, y, t) =
1

6
(1 +

1

2
e−γt(cos x+ cos y − 1

2
sin x cos y − 1

2
sin y cos x)),

c̃2(x, y, t) =
1

3
(1 + e−2γt(cos x cos y − 1

2
sin2 x cos2 y − 1

2
cos2 x sin2 y)),

c̃3(x, y, t) = 1− c̃1(x, y, t)− c̃2(x, y, t), q(x, y, t) = 2e−2t.
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Other parameters are chosen as

φ(x, y) = µ(c1, c2) = k(x, y) = a(x, y, c1, c2) = z1 = z2 = z3 = 1,

D(u) = diag(γ, γ).

It is easy to verify that the exact solutions are

c1(x, y, t) =
1

6
(1 +

1

2
e−γt(cos x+ cos y)), c2(x, y, t) =

1

3
(1 + e−2γt cos x cos y),

c3(x, y, t) = 1− c1(x, y, t)− c2(x, y, t), p(x, y, t) = e−2t(cos x cos y − 1).

In the numerical simulation, we choose γ = 0.01, final time T = 0.01 and

∆t = 0.001h2 to reduce the time error. The computational results are shown

in Table 2.1, illustrating the L2 error and convergence orders for c1 and c2 with

and without bound-preserving technique. From the table, we observe optimal

convergence rates. Therefore, the flux limiter and slope limiter do not degenerate

the convergence order.

Example 2.5.2. We choose the initial conditions as

c1,0(x, y) =





1, x ≤ π

2
, y ≤ π

2
,

0, otherwise.

c2,0(x, y) =





1, x ≥ 3π

2
, y ≥ 3π

2
,

0, otherwise.

c3,0(x, y) = 1− c1,0(x, y)− c2,0(x, y) and p0(x, y) = cos(
x

2
) + cos(

y

2
).

Other parameters are taken as

z1 = z2 = 1, z3 = 10, q(x, y, t) = 0,D(u) = 0,

µ(c1, c2) = k(x, y) = a(x, y, c1, c2) = φ(x, y) = 1.
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c1 c2

no limiter with limiter no limiter with limiter

M L2 error order L2 error order L2 error order L2 error order

5 3.02e-3 – 4.61e-3 – 2.12e-2 – 2.39e-2 –

10 5.00e-4 2.59 5.30e-4 3.12 3.29e-3 2.69 3.47e-3 2.78

20 8.85e-5 2.50 8.86e-5 2.58 5.34e-4 2.63 5.34e-4 2.70

40 1.25e-5 2.82 1.25e-5 2.82 7.25e-5 2.88 7.25e-5 2.88

80 1.71e-6 2.87 1.71e-6 2.87 9.41e-6 2.95 9.41e-6 2.95

160 2.02e-7 3.09 2.02e-7 3.09 1.16e-6 3.02 1.16e-6 3.02

Table 2.1: Example 2.5.1: Accuracy test for c1 and c2 with and without bound-

preserving technique.
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We use this example to demonstrate the stability of the scheme. We choose

D = 0, then the diffusion term will not provide any dissipation to the scheme. We

compute the components c1 and c2 at time T = 0.1s and T = 0.6s, respectively,

with M = 40 and ∆t = 0.001h2 (h = 2π
40
). The numerical results are shown as

Figure 2.3. From the figure we can see that the concentrations c1 and c2 are

between 0 and 1. To test the effectiveness of the bound-preserving technique, we

simulate the example without the bound-preserving limiters, and the numerical

approximations blow up at about 0.003s even though we take time step size

as small as ∆t = 0.0001h2. In [22], we demonstrated that the reason for the

blow-up of the numerical approximations is the ill-posedness of the system. This

example demonstrates the necessity of the bound-preserving technique in solving

compressible miscible displacements in porous media.

Example 2.5.3. We investigate the displacement of 3-phase porous media flow

in the five-spot arrangement of injection and production wells. The computa-

tional domain is a square region taken as quarter-of-a-five-spot pattern. The

three phases are light oil c1 (with low viscosity and high compressibility), heavy

oil c2 (with high viscosity and low compressibility) and water c3 (with medium

viscosity and medium compressibility).
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(a) T=0.1 s

(b) T=0.6 s

Figure 2.3: Example 2.5.2: Numerical approximations of c1 and c2
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The initial concentrations of oil (water) are

c1,0(x, y) =





1, x ≤ π

2
, y ≤ π

2
,

0, otherwise.

c2,0(x, y) =





0, x ≤ π

2
, y ≤ π

2
,

1, otherwise.

c3,0(x, y) = 0.

Therefore, the lower-left part of the region is light oil enrichment area while the

other part is heavy oil enrichment area. Moreover, no water exists initially and

the initial pressure is taken as 0 in the whole computational domain. To simulate

the random perturbation of porosity and permeability around their average value,

we choose the porosity and permeability as

φ(x, y) = 0.5 + 0.05 sin(5x) sin(5y) and k(x, y) = 1.0 + 0.1 cos(5x) cos(5y),

respectively. Other parameters are taken as

µ(c1, c2, c3) = 0.4c1 + 2.0c2 + 1.0c3,

z1 = 1.2, z2 = 0.8, z3 = 1.0, D = diag(|u|, |u|).

The injection well is located in lower-left corner and production well is located

in upper-right corner, treated as δ sources.

This example is used for petroleum production simulations. We compute the

components c1 and c2 at time T = 0.2, 0.8 with M = 35 and ∆t = 0.001h2(h =

2π

35
). The distributions of c1, c2 and c1+ c2 at different time are shown in figures
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(a) c1 at T=0.2 s (b) c1 at T=0.8 s

(c) c2 at T=0.2 s (d) c2 at T=0.8 s

(e) c1 + c2 at T=0.2 s (f) c1 + c2 at T=0.8 s

Figure 2.4: Example 2.5.3: Concentrations of c1, c2 and c1 + c2.
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2.4a-2.4f, respectively. From the figure we can see that c1, c2 and c1 + c2 are all

between 0 and 1.

Example 2.5.4. To show the significance of the bound-preserving technique in

real petroleum production simulations, we choose the exact parameters in Exam-

ple 2.5.3, except D = 0 in order to avoid any dissipation to the scheme which is

resulted from the diffusion term.

This example is used for petroleum production simulations when diffusion

effect is negligible. We compute the components c1 and c2 at time T = 0.2, 0.8

with M = 35 and ∆t = 0.001h2(h =
2π

35
). The distributions of c1, c2, and c3 at

different time along diagonal y = x are shown in figures 2.5a-2.5f, respectively.

From the figures we can see that the concentrations c1, c2, and c3 are between 0

and 1.

However, the numerical approximations without bound-preserving limiters

blow up at about T = 0.25 if we take the same time step as before. The

distribution of components along diagonal at time T = 0.1, 0.2 are shown in

figures 2.6a-2.6f, from which we can observe strong oscillations and physically

irrelevant values. Further experiments show that, even though we take the time

step as small as ∆t = 0.0001h2, the numerical approximations still blow up at

about T = 0.26, which implies the necessity of the bound-preserving technique.
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(a) c1 at T=0.2 s
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(b) c1 at T=0.8 s

0 1 2 3 4 5 6 7 8 9

position along diagonal

-0.5

0

0.5

1

1.5

v
o

lu
m

e
tr

ic
 c

o
n

c
e

n
tr

a
ti
o

n

(c) c2 at T=0.2 s
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(d) c2 at T=0.8 s
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(e) c3 at T=0.2 s
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(f) c3 at T=0.8 s

Figure 2.5: Example 2.5.4: Concentrations of c1, c2 and c3 with limiters
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(a) c1 at T=0.1 s

0 1 2 3 4 5 6 7 8 9

position along diagonal

-0.5

0

0.5

1

1.5

v
o

lu
m

e
tr

ic
 c

o
n

c
e

n
tr

a
ti
o

n

(b) c1 at T=0.2 s
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(c) c2 at T=0.1 s
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Figure 2.6: Example 2.5.4: Concentrations of c1, c2 and c3 without limiters
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2.6 Concluding remarks

In this paper, we constructed high-order bound-preserving DG methods for com-

pressible miscible displacements in porous media on triangular meshes. We have

applied the technique to the problem with multi-component fluid mixtures. Nu-

merical simulations shown the accuracy and necessity of the bound-preserving

technique.
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Chapter 3

High-Order bound-preserving

discontinuous Galerkin methods for

wormhole propagation on

triangular meshes1

Abstract

Wormhole propagation, arising in petroleum engineering, is used to describe the

distribution of acid and the increase of porosity in carbonate reservoir under dis-

solution of injected acid. The important physical features of porosity and acid

concentration include their boundedness between 0 and 1, as well as the mono-

tone increasing for porosity. How to keep these properties in the simulation is

1This chapter has been completed as an article to submit to Journal of Computational

Physics. Citation: Z. Xu, Y. Yang, H. Guo (2019).
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crucial to the robustness of the numerical algorithm. In this paper, we propose

high-order bound-preserving discontinuous Galerkin methods to keep these im-

portant physical properties. The main technique is to introduce a new variable

r to replace the original acid concentration and use a consistent flux pair to de-

duce a ghost equation such that the positive-preserving technique can be applied

on both original and deduced equations. A high-order slope limiter is used to

keep a polynomial upper bound which changes over time for r. Moreover, the

high-order accuracy is attained by the flux limiter. Numerical examples will be

given to demonstrate the high-order accuracy and bound-preserving property of

the numerical technique.

Key Words: wormhole propagation, bound-preserving, high-order, discontinu-

ous Galerkin method, triangular meshes, flux limiter

3.1 Introduction

As an important technique of enhanced oil recovery (EOR), acid treatment has

been widely practiced in carbonate reservoir to improve the productivity of oil

wells. In this technique, acid is injected into wells to dissolve the fines deposed

in wellbore and the rock near the wellbore. By doing so, the permeability and

porosity of the rock close to a well can be increased prominently, which facilitates

oil flow into production well and thereby improves the production rate of oil.

However, the efficiency of this technique has a strong relevance with the dis-

solution patterns which depend on the injection rate. With a very low injection
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rate, the acid only dissolves the face of wellbore since it will be consummated

all before they get into deeper region and this scenario is called face dissolution

pattern. In contrast, with a very high injection rate, the acid can be pushed

uniformly into the wellbore region with certain depth and this results is the so-

called uniform dissolution pattern. In addition to the above two extreme cases,

with an appropriate injection rate, wormhole patterns can be formed as the in-

jected acid in the rock tends to flow through the paths with high permeability

and porosity, which causes the permeability and porosity of these path to be

further increased under the dissolution of acid, and facilitate more acid to flow

through. Therefore, under optimal injection rate, maximum number of narrow

channels with high conductivity will be formed in the rocks after the acidizing

process. These highly conducting channels, also known as wormholes because

of its shape, can build a good connectivity between reservoir and wellbore, and

improve the productivity of oil well enormously. Because of the important role

that wormhole plays in improving productivity, a lot of research works have been

taken to investigate the formation and propagation of wormholes.

In the early days, researchers investigated the wormhole propagation phe-

nomenon by means of experiments [61, 59]. Later, several mathematical models,

such as dimensionless model, capillary tube model, network model, and contin-

uum models, were established to help people understand the process of worm-

hole propagation. Among these models, the most popular one is the two-scale

continuum model developed by Panga et al. in [66], where the authors pro-

posed a partial differential equations (PDE) system to describe the formation
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and propagation of wormholes. There were a lot of follow-up works based on

this model. In [72], the authors analyzed the front instability of wormhole prop-

agation theoretically and numerically. In [65], Maheshwari et al. presented a

3D simulation for this model. A parallel simulation was conducted by Wu et al.

in [68] under a modification of flow equation. In [56], the authors studied the

numerical-simulation approach for a modified model. Later, Wei et al. extended

this model from single phase to two-phase flow in [67] and discussed the simu-

lation results. Besides the above, many researchers designed specific numerical

schemes for this kind of models as well. In [62], the authors constructed a con-

servative scheme for flow and transport based on mixed finite element method.

Later, Li et al. applied finite difference methods to this problem in [63, 64].

Recently, the discontinuous Galerkin (DG) method was applied to this model

in [60]. In all the above works, some theoretical works, such as the stability

and error estimates, were established under different norms. However, to the

best of our knowledge, no works have been undertaken to preserve the bounded-

ness of porosity and concentration of acid without loss of mass conservative. In

fact, the boundedness of these variables is essential for the stability of numerical

simulations. Firstly, the rate of change of porosity φ in this model depends on

the concentration of acid cf . If the exact solutions contain large gradients or

even discontinuities, the numerical approximations of cf can be negative, which

further leads to φ < 0 in some regions with low porosity. Secondly, the oscilla-

tions of φ itself near the wormhole may also result in negative values. Both of

the above two cases will bring a negative coefficient in the diffusion term of the
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transport equation, leading to ill-posedness of the problems, and finally cause

the blow-up of the numerical simulations. We will demonstrate this feasibility by

a numerical example in Section 6 and show how bound-preserving technique can

prevent the blow-up phenomenon. Moreover, as we will see in the later section,

many coefficients in the model appear as functions of φ, which require φ to take

values in the physically relevant range [0, 1] as well. To construct high-order

bound-preserving technique, we have to apply suitable limiters to modify the

numerical approximations. Therefore, we would like to use DG methods.

The DG methods become increasingly popular due to their good stability,

high-order accuracy, and flexibility on h-p adaptivity. In 2010, the genuinely

maximum-princip le-satisfying high-order DG schemes were constructed for con-

servation laws on rectangular meshes in [50] by Zhang and Shu. The basic idea

is to take the test function to be 1 in each cell to yield an equation satisfied

by the cell average of the target variable r, and prove the desired boundedness

of the cell average r̄. Then a slope limiter which do not affect accuracy and

mass conservation can be used to modify the variable r to obtain a new one

r̃ = r̄ + θ(r − r̄) such that r̃ has the physically relevant bounds. In the case

that the variable r only need a lower bound zero, this technique is also called

positivity-preserving technique. The physically positivity-preserving and bound-

preserving numerical schemes have been actively studied since then. In 2012, this

technique has been successfully extended to triangular meshes in [53], where the

general criteria for quadrature rule on triangular elements was proposed. After

that, this technique was applied to many problems including compressible Euler
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equations with source terms [52], hyperbolic equations involving δ-singularities

[44, 70], relativistic hydrodynamics [29], extended MHD equations [55], shal-

low water equations [37], etc. For convection-diffusion equations, the genuinely

second-order maximum-principle-preserving technique were introduced in [54].

Subsequently, the extension to third-order or even higher order bound-preserving

techniques for parabolic equations were also developed in [69, 10, 58]. Besides

the above, the flux limiter [39, 38, 25] can also be used to obtain the high-order

accuracy and maintain the boundedness. However, with the flux limiters we

have to modify the numerical fluxes, hence the accuracy is not easy to analyze.

Recently, in [22, 57], the authors studied miscible displacements in porous me-

dia and applied the techniques introduced in [54, 25, 38, 39] to preserve the

two bounds, 0 and 1, of the volumetric fractions. In this paper, we will con-

struct high-order bound-preserving DG schemes for the porosity of the rocks φ

and the concentration of the acid cf . However, there are significant differences

from most of the previous techniques. First of all, most of the problems in

[39, 50] satisfy maximum-principles while the concentration of acid cf does not.

To solve this problem, we derive a ghost equation satisfied by c = 1 − cf and

apply the positivity-preserving technique to both cf and c. Secondly, the high-

order positivity-preserving technique in this paper is based on the flux limiter

[38, 25]. The basic idea is to combine higher order and lower order fluxes to

construct a new one which can yield positive numerical cell averages. However,

for triangular meshes, first-order fluxes are not easy to construct. Therefore,

we will consider the second-order flux as the lower order one. Moreover, to
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obtain the equation satisfied by the cell averages, we need to numerically ap-

proximate r = φcf instead of cf . By doing so, the upper bound of r is not a

constant and the traditional slope limiter may fail to work [22]. Therefore, a new

bound-preserving limiter will be introduced. Finally, different from [22, 57], the

porosity is increasing and less than 1. Therefore, the upper bound of r is chang-

ing during time evolution and special techniques will be introduced to make φ to

be physically relevant. In summary, the whole algorithm can be separated into

four parts. We first apply positivity-preserving technique to obtain positive φt

and use which as another source to find the velocity and pressure. Then apply

the positivity-preserving technique again to φ and cf simultaneously to obtain

positive numerical cell averages by the flux limiter [38, 25]. Subsequently, we

choose consistent flux pair [22, 57] with suitable parameters in the flux limiter

in the concentration and pressure equations to obtain the positivity of 1 − cf .

Finally, we introduce suitable limiters to obtain physically relevant numerical

approximations.

The rest of the paper is organized as follows. In Section 2, we introduce the

mathematical model of wormhole propagation. In Section 3, we establish the

DG scheme used in this paper. In Sections 4 and 5, we construct the second-

order bound-preserving scheme and then extend it to high-order spatial and time

discretizations. Some numerical examples are given in Section 6. We will end in

Section 7 with some concluding remarks.
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3.2 Mathematical model

Let the computational domain Ω = [0, 2π] × [0, 2π] and simulation time J =

[0, T ], the mathematical model of the wormhole propagation is given as follows:

∂φ

∂t
+∇ · u = f, (x, y) ∈ Ω, 0 < t ≤ T, (3.2.1)

u =
−κ(φ)

µ
∇p, (x, y) ∈ Ω, 0 < t ≤ T, (3.2.2)

∂(φcf )

∂t
+∇ · (ucf ) = ∇ · (φD∇cf ) + kcav(cs − cf ) + fIcI − fP cf (3.2.3)

∂φ

∂t
=

αkcav(cf − cs)

ρs
, (x, y) ∈ Ω, 0 < t ≤ T, (3.2.4)

where φ is the porosity which is defined as the percentage of the empty space in

a rock, κ is the permeability that measures the ability for a rock to allow fluid to

pass through it, u is the Darcy’s velocity defined as the volume of flow crossing

a unit across-section per unit time, p is the pressure of fluid in porous media,

and µ is the viscosity of fluid. f = fI − fP is the external volumetric flow rate

with fI = max{f, 0} being the injection flow rate and fP = −min{f, 0} being

the production flow rate. cf , cs and cI are the concentrations of acid in the fluid

phase, the fluid-solid interface and in the injected flow, respectively. D is the

dispersion tensor for the acid in porous media and kc is the local mass-transfer

coefficient. av is the interfacial area available for reaction, ρs is the density of

the rock and α is the dissolving constant of the acid, defined as grams of solid

dissolved per mole of acid reacted. Moreover, in the case of first order kinetic

reaction, the concentration cs of acid in the fluid-solid interface have a simple
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relationship with cf :

cs =
cf

1 + ks/kc
,

where ks is the kinetic constant for reaction. The coefficients κ and av are

functions of φ defined as

κ

κ0

=
φ

φ0

(
φ(1− φ0)

φ0(1− φ)

)2

,
av
a0

=
1− φ

1− φ0

, (3.2.5)

respectively, where κ0, a0, and φ0 are the initial values for κ, av, φ. Through-

out this paper, the values µ, kc, ks, α, ρs are positive constants, D, f, fI , fP , cI

are known functions independent of time and φ,u, p, cf , are unknown time-

dependent variables.

We consider impermeable boundary conditions

u · n = 0, (D∇c− cu) · n = 0,

where n is the unit outer normal of the boundary ∂Ω. The initial concentration

and porosity are given as

cf (x, y, 0) = c0(x, y), φ(x, y, 0) = φ0(x, y), (x, y) ∈ Ω.

Before we finish this section ,we would like to make an important reasonable

hypothesis for the initial porosity: 0 < φ⋆ ≤ φ0(x, y) ≤ φ⋆ < 1.

3.3 The DG scheme

In this section, we will construct the DG scheme for wormhole propagation on

triangular meshes. We first demonstrate the notations to be used throughout

the paper.
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Consider a regular triangulation Ωh of domain Ω, i.e. ∃ρ > 0, such that

diam(BK) ≥ ρ diam(K), ∀K ∈ Ωh, where BK is the largest ball contained

in K. For any triangle K ∈ Ωh, we denote the three edges of K to be eiK

(i = 1, 2, 3), with corresponding lengths ℓiK (i = 1, 2, 3), unit outer normal

vectors νi
K (i = 1, 2, 3) and neighboring elements Ki(i = 1, 2, 3). We denote

Γ =
⋃

K∈Ωh
{e|e ∈ ∂K} to be the set of all cell interfaces and Γ0 = Γ \ ∂Ωh

as all the interior ones. Set a predetermined constant unit vector ν0 which is

not parallel to any edge e and define ne as the unit normal vector of each edge

e ∈ Γ such that ne · ν0 > 0. For any discontinuous function v (scalar or vector)

crossing edge e, let v±e denote its traces on e evaluated from K or Ki . The ′±′

for each edge eiK in the cell K is determined by the inner product of νi
K and ν0

as follows:

v−e = vK , v+e = vKi
, if ν0 · νi

K > 0,

v+e = vK , v−e = vKi
, if ν0 · νi

K < 0.

Moreover, we define the jump and average of v (either a scalar or a vector) on

the cell interface e as

[v]e = v+e − v−e , {v}e =
1

2
(v+e + v−e ).

The finite element spaces are chosen as

Vh = {v : v|K ∈ P k(K), ∀K ∈ Ωh} and Wh = Vh × Vh,

where P k(K) denotes the space of polynomials of degree at most k in K. Then

the semidiscrete DG scheme for (3.2.1) - (3.2.4) can be written as: find φ, r, p ∈
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Vh and u ∈ Wh such that for any ζ, ξ, v ∈ Vh and η ∈ Wh, the following equations

hold:

(
∂φ

∂t
, ζ

)
= (u,∇ζ) +

∑

e∈Γ0

∫

e

û · ne[ζ]ds+ (f, ζ), (3.3.6)

(a(φ)u,η) = (p,∇ · η) +
∑

e∈Γ

∫

e

p̂ ne · [η]ds, (3.3.7)

(
∂r

∂t
, ξ

)
= (ucf − φD∇cf ,∇ξ) +

∑

e∈Γ0

∫

e

ûcf · ne[ξ]ds

−
∑

e∈Γ0

∫

e

(
{φD(u)∇cf} · ne[ξ] + {φD(u)∇ξ} · ne[cf ] +

α̃

|e| [cf ][ξ]
)
ds

+(fIcI − fP cf − B1(φ)cf , ξ), (3.3.8)
(
∂φ

∂t
, v

)
= (B2(φ)cf , v), (3.3.9)

where

a(φ) =
µ

k
,B1(φ) =

a0(1− φ)kskc
(1− φ0)(ks + kc)

, B2(φ) =
αa0(1− φ)kskc

ρs(1− φ0)(ks + kc)
.

Moreover, we use a new variable r instead of φcf on the left hand side of (3.3.8),

and define cf as the L2-projection of r
φ

if k ≥ 2, while take cf to be the interpo-

lation of r
φ

at the three vertices in each triangle K if k = 1.

Following the idea in [22, 57], we take a consistent flux pair û, ûcf in the

sense that û = ûcf when cf = 1. The consistent flux pair is used in the

construction of the bound-preserving techniques. The numerical fluxes û, ûcf

and p̂ in (3.3.6)-(3.3.9) are chosen as

û|e = {u}e, p̂|e = {p}e, ûcf |e = {ucf}e − α[cf ]ene, if e ∈ Γ0,

û|e = 0, p̂|e = pK , ûcf |e = 0, if e ∈ ∂Ω ∩ ∂K. (3.3.10)
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In the DG schemes, we introduced two penalty parameters α and α̃. These

two parameters will be chosen by the bound-preserving technique.

3.4 Second-order bound-preserving schemes

In this section, we will construct second-order bound-preserving scheme with for-

ward Euler time discretization. High-order time discretizations will be discussed

in the next section. At time level n, we assume φ0 < φn < 1 and 0 ≤ rn ≤ φn,

and would like to construct physically relevant numerical approximations at time

level n+ 1, i.e. φn ≤ φn+1 < 1 and 0 ≤ rn+1 ≤ φn+1.

At time level n, we will first solve (3.3.9) for φn
t , then substitute which to the

left-hand side of (3.3.6). With forward Euler time discretization, (3.3.6), (3.3.8)

and (3.3.9) can be written as

(
φn+1 − φn

∆t
, ζ

)
= (u,∇ζ) +

∑

e∈Γ0

∫

e

û · ne[ζ]ds+ (f, ζ), (3.4.11)

(
rn+1 − rn

∆t
, ξ

)
= (ucf − φD∇cf ,∇ξ) +

∑

e∈Γ0

∫

e

ûcf · ne[ξ]ds

−
∑

e∈Γ0

∫

e

(
{φD(u)∇cf} · ne[ξ] + {φD(u)∇ξ} · ne[cf ] +

α̃

|e| [cf ][ξ]
)
ds

+(fIcI − fP cf − B1(φ)cf , ξ), (3.4.12)
(
φn+1 − φn

∆t
, v

)
= (B2(φ)cf , v), (3.4.13)

with all the superscript n on the right hand sides being omitted for simplicity.

Because of the usage of consistent flux pair û and ûcf , we can get a ghost

equation for r2 by subtracting (3.4.12) from (3.4.11) and introducing ghost vari-
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ables c2 = 1− cf , c2I = 1− cI , r2 = φc2,

(
rn+1
2 − rn2
∆t

, ξ

)
= (uc2 − φD∇c2,∇ξ) +

∑

e∈Γ0

∫

e

ûc2 · ne[ξ]ds

−
∑

e∈Γ0

∫

e

(
{φD(u)∇c2} · ne[ξ] + {φD(u)∇ξ} · ne[c2] +

α̃

|e| [c2][ξ]
)
ds

+(fIc2I − fP c2 +B1(φ)cf , ξ). (3.4.14)

Therefore, though we solve (3.4.11) and (3.4.12) in the real computation, we

analyze (3.4.12) and (3.4.14) instead of the former pair as the two forms are

equivalent.

The second-order bound-preserving scheme is built and analyzed based on

(3.4.12), (3.4.14) and (3.4.13).

In this paper, we use the quadrature rule of order k proposed in [71] to compute

the integral in cells, and use the corresponding k+1 points Gaussian quadrature

rule to evaluate integration on cell interfaces. The quadrature rule of order k

has the following crucial properties:

• All of the quadrature points lie in the cells with positive weights,

• The quadrature points contains k + 1 Gaussian quadrature points in each

of its edges,

• It is exact for polynomials up to degree 2k − 1,

The distribution of quadrature points in the case of k = 1 and k = 2 are shown

in Figure 3.1. We denote xi,β, β = 1, 2, · · · , k+1, as the quadrature points on eiK

with w̃β being the corresponding weights, and denote xγ, γ = 1, 2, · · · , L, as the
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Figure 3.1: Distribution of quadrature points for k = 1 and k = 2.

quadrature points in cell K with ω̂γ being the corresponding weights. Moreover,

We denote ωβ, β = 1, 2, · · · , k + 1, as the k + 1 Gaussian quadrature weights

on the reference interval [−1
2
, 1
2
]. Based on the above notations, we define the

values of o (o = r, c, φ, p, · · · ) at the quadrature points as oi,βK = o(xi,β) along the

boundary of K and oγK = o(xγ) in cell K.

In (3.3.9), we take v = 1 in K to obtain the equation satisfied by the cell

average of φ:

φ̄n+1
K = φ̄n

K +△tB2(φn)cf . (3.4.15)

We will demonstrate how to preserve the monotonicity and the upper bound of

φ̄n+1
K in the following lemma:

Lemma 3.4.1. Given 0 ≤ rn ≤ φn (0 ≤ cnf ≤ 1) and φn < 1, we have φ̄n
K ≤

φ̄n+1
K < 1, if the time step satisfies

△t < B−1
30 , (3.4.16)
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where B30 is a constant defined as

B30 =
αa0kskc

ρs(1− φ⋆)(ks + kc)
.

Proof. Define B3(x) = αa0kskc
ρs(1−φ0(x))(ks+kc)

. Then B3(x) is independent of time t

and it’s easy to check that B2(x, φ) = B3(x) · (1− φ) ≤ B30 · (1− φ).

Applying quadrature rule in [71] to (3.4.15) with enough algebraic order k, we

have

φ̄n+1
K

=φ̄n
K +△tB2(φn)cf

=φ̄n
K +△t

(
3∑

i=1

k+1∑

β=1

ŵβ(B3)
i,β

K (1− φi,β
K )(cf )

i,β
K +

L∑

γ=1

ŵγ(B3)
γ

K(1− φγ
K)(cf )

γ
K

)

≥φ̄n
K

under the assumption 0 ≤ cnf ≤ 1 and φn
K < 1. Moreover, we have

φ̄n+1
K

=φ̄n
K +△t

(
3∑

i=1

k+1∑

β=1

ŵβ(B3)
i,β

K (1− φi,β
K )(cf )

i,β
K +

L∑

γ=1

ŵγ(B3)
γ

K(1− φγ
K)(cf )

γ
K

)

≤φ̄n
K +△t

(
3∑

i=1

k+1∑

β=1

ŵβ(B3)
i,β

K (1− φi,β
K ) +

L∑

γ=1

ŵγ(B3)
γ

K(1− φγ
K)

)

≤φ̄n
K +△t

(
3∑

i=1

k+1∑

β=1

ŵβB30(1− φi,β
K ) +

L∑

γ=1

ŵγB30(1− φγ
K)

)

=φ̄n
K +△tB30

(
3∑

i=1

k+1∑

β=1

ŵβ(1− φi,β
K ) +

L∑

γ=1

ŵγ(1− φγ
K)

)

=φ̄n
K +△tB30(1− φ̄n

K).
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Thus φ̄n+1
K < 1 under the condition (3.4.16).

The bound-preserving property for r̄n+1
K is relatively difficult to derive. There-

fore, instead of obtaining 0 ≤ r̄n+1
K ≤ φ̄n+1

K directly, we apply the positivity-

preserving technique to r̄n+1
K and r̄n+1

2K in (3.4.12) and (3.4.14), respectively, which

further yields 0 ≤ r̄n+1
K ≤ φ̄n+1

K due to the fact that r̄n+1
K + r̄n+1

2K = φ̄n+1
K . To con-

struct the positivity-preserving technique, in (3.4.12), we take ξ = 1 in K to

obtain the equation satisfied by the cell average of r

r̄n+1
K = Hc

K(r, cf ,u) +Hd
K(r, cf ,u, φ) +Hs

K(r, cf , cI , fP , fI , φ), (3.4.17)

where

Hc
K(r, cf ,u) =

1

3
r̄nK − λ

3∑

i=1

∫

ei
K

ûcf · νi
Kds, (3.4.18)

Hd
K(r, cf ,u, φ) =

1

3
r̄nK + λ

3∑

i=1

∫

ei
K

(
{D(u)∇c} · νi

K +
α̃

ℓiK
[c]ne · νi

K

)
ds,

(3.4.19)

Hs
K(r, cf , cI , fP , fI , φ) =

1

3
r̄nK +△tfIcI − fP cf − B1(φ)cf , (3.4.20)

with λ = △t

|K|
being the ratio of time step and area of triangular element K,

and fP cf − fIcI − B1(φ)cf being the cell average of fP cf −fIcI −B1(φ)cf on K.

We will demonstrate the positivity-preserving property for r̄n+1
K by collecting the

following three lemmas.

Lemma 3.4.2. Given rn > 0 (cnf > 0), we have Hs
K(r, cf , cI , fP , fI , φ) > 0, if

the time step satisfies

△t ≤ φ⋆

6fPM

, △t ≤ φ⋆

6B1(φ⋆)
, (3.4.21)
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where

fPM = max
i,β,γ

{(fP )i,βK , (fP )
γ
K}.

Proof. We can split (3.4.20) as

Hs
K = △tfIcI +

(
1

6
r̄nK −△tfP cf

)
+

(
1

6
r̄nK −△tB1(φ)cf

)
:= L1 + L2 + L3.

It is easy to check that L1 = △tfIcI ≥ 0. We only need to consider L2 and L3.

Applying quadrature rule in [71] with enough algebraic order k to L2 and L3,

respectively, we can get

L2 =
1

6
r̄nK −△tfP cf

=
1

6

(
3∑

i=1

k+1∑

β=1

w̃βr
i,β
K +

L∑

γ=1

ŵγr
γ
K

)

−△t

(
3∑

i=1

k+1∑

β=1

w̃β(fP )
i,β
K (cf )

i,β
K +

L∑

γ=1

ŵγ(fP )
γ
K(cf )

γ
K

)

=
3∑

i=1

k+1∑

β=1

w̃β

(
1

6
ri,βK −△t(fP )

i,β
K (cf )

i,β
K

)
+

L∑

γ=1

ŵγ

(
1

6
rγK −△t(fP )

γ
K(cf )

γ
K

)

≥
3∑

i=1

k+1∑

β=1

w̃β

(
1

6
ri,βK −△t(fP )

i,β
K ri,βK φ−1

⋆

)
+

L∑

γ=1

ŵγ

(
1

6
rγK −△t(fP )

γ
Kr

γ
Kφ

−1
⋆

)

=
3∑

i=1

k+1∑

β=1

w̃β

(
1

6
−△t(fP )

i,β
K φ−1

⋆

)
ri,βK +

L∑

γ=1

ŵγ

(
1

6
−△t(fP )

γ
Kφ

−1
⋆

)
rγK .

59



Thus L2 > 0 under the condition (3.4.21).

L3 =
1

6
r̄nK −△tB1(φ)cf

=
1

6

(
3∑

i=1

k+1∑

β=1

w̃βr
i,β
K +

L∑

γ=1

ŵγr
γ
K

)

−△t

(
3∑

i=1

k+1∑

β=1

w̃βB1(φ
i,β
K )(cf )

i,β
K +

L∑

γ=1

ŵγB1(φ
γ
K)(cf )

γ
K

)

=
3∑

i=1

k+1∑

β=1

w̃β

(
1

6
ri,βK −△tB1(φ

i,β
K )(cf )

i,β
K

)

+
L∑

γ=1

ŵγ

(
1

6
rγK −△tB1(φ

γ
K)(cf )

γ
K

)

≥
3∑

i=1

k+1∑

β=1

w̃β

(
1

6
ri,βK −△tB1(φ

i,β
K )ri,βK φ−1

⋆

)

+
L∑

γ=1

ŵγ

(
1

6
rγK −△tB1(φ

γ
K)r

γ
Kφ

−1
⋆

)

=
3∑

i=1

k+1∑

β=1

w̃β

(
1

6
−△tB1(φ

i,β
K )φ−1

⋆

)
ri,βK

+
L∑

γ=1

ŵγ

(
1

6
−△tB1(φ

γ
K)φ

−1
⋆

)
rγK

≥
3∑

i=1

k+1∑

β=1

w̃β

(
1

6
−△tB1(φ⋆)φ

−1
⋆

)
ri,βK

+
L∑

γ=1

ŵγ

(
1

6
−△tB1(φ⋆)φ

−1
⋆

)
rγK .

Thus L3 > 0 under the condition (3.4.21). To sum up, Hs
K(r, cf , cI , fP , fI , φ) =

L1 + L2 + L3 > 0 under the condition (3.4.21).

In the following two lemmas, we only consider second order scheme, i.e. we
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use P 1 element, and apply quadrature rule in [71] with k = 1 in cell and the the

corresponding 2 point Gaussian quadrature rule on cell interface. Note that in

this case, ω̂β = 1
3
ωβ.

Lemma 3.4.3. Given rn > 0 (cnf > 0), we have Hc
K(r, cf ,u) > 0, if α satisfies

α ≥ max
i,β,K

{|ui,β
K |}, (3.4.22)

and the time step satisfies

△t ≤ min
i,β,m

{ |K|φ(Vm)

9ℓiK(|ui,β
K |+ α)

}, (3.4.23)

where φ(Vm), m = 1, 2, 3 are the values of φ at vertices Vm ∈ K at time level n.
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Proof. Applying quadrature rule for k = 1, we can rewrite (3.4.18) as

Hc
K =

1

3
r̄nK − λ

3∑

i=1

∫

ei
K

ûcf · νi
Kds

=
1

9

(
3∑

i=1

2∑

β=1

wβr
i,β
K

)
− λ

3∑

i=1

2∑

β=1

wβℓ
i
K(ûcf )

i,β

ei
K

· νi
K

=
3∑

i=1

2∑

β=1

wβ

(
1

9
ri,βK − λℓiK(ûcf )

i,β

ei
K

· νi
K

)

=
3∑

i=1

2∑

β=1

wβ

(
1

9
ri,βK − λℓiK

(
1

2
u

i,β
Ki

· νi
K(cf )

i,β
Ki

+
1

2
u

i,β
K · νi

K(cf )
i,β
K

−α(cf )
i,β

Ki
+ α(cf )

i,β

K

))

=
3∑

i=1

2∑

β=1

wβ

{(
1

18
ri,βK − 1

2
λℓiK

(
u

i,β
Ki

· νi
K(cf )

i,β
Ki

− α(cf )
i,β

Ki
+ α(cf )

i,β

K

))

+

(
1

18
ri,βK − 1

2
λℓiK

(
u

i,β
K · νi

K(cf )
i,β
K − α(cf )

i,β

Ki
+ α(cf )

i,β

K

))}

:=
3∑

i=1

2∑

β=1

wβ

(
Li,β
1 + Li,β

2

)
.

Since cf and r are both approximated by linear functions, they can be represented

as a linear combination of their values on three vertices {V1, V2, V3} of K, i.e. for

any point xρ
K ∈ K,

(cf )
ρ

K
=

3∑

m=1

µρ
mcf (Vm), rρK =

3∑

m=1

µρ
mr(Vm) =

3∑

m=1

µρ
mφ(Vm)cf (Vm), (3.4.24)

where 0 ≤ µρ
1, µ

ρ
2, µ

ρ
3 ≤ 1 and µρ

1 + µρ
2 + µρ

3 = 1 are the barycentric coordinates
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of xρ
K in K. Then we have

Li,β
1 =

1

18
ri,βK − 1

2
λℓiK

(
u

i,β
Ki

· νi
K(cf )

i,β
Ki

− α(cf )
i,β

Ki
+ α(cf )

i,β

K

)

=
3∑

m=1

1

18
µi,β
m φ(Vm)cf (Vm)

− 1

2
λℓiK

(
u

i,β
Ki

· νi
K(cf )

i,β
Ki

− α(cf )
i,β

Ki
+ α

3∑

m=1

µi,β
m cf (Vm)

)

=
3∑

m=1

µi,β
m

(
1

18
φ(Vm)−

1

2
λℓiKα

)
cf (Vm) +

1

2
λℓiK(α− u

i,β
Ki

· νi
K)(cf )

i,β

Ki
,

and

Li,β
2 =

1

18
ri,βK − 1

2
λℓiK

(
u

i,β
K · νi

K(cf )
i,β
K − α(cf )

i,β

Ki
+ α(cf )

i,β

K

)

=
3∑

m=1

1

18
µi,β
m φ(Vm)cf (Vm)

− 1

2
λℓiK

(
u

i,β
K · νi

K

3∑

m=1

µi,β
m cf (Vm)− α(cf )

i,β

Ki
+ α

3∑

m=1

µi,β
m cf (Vm)

)

=
3∑

m=1

µi,β
m

(
1

18
φ(Vm)−

1

2
λℓiK(u

i,β
K · νi

K + α)

)
cf (Vm) +

1

2
λℓiKα(cf )

i,β

Ki
.

Therefore Li,β
1 , Li,β

2 > 0 under the conditions (3.4.22) and (3.4.23), respectively,

which further yields Hc
K > 0.

Lemma 3.4.4. Given rn > 0 (cnf > 0), we have Hd
K(r, cf ,u, φ) > 0, if α̃ satisfies

α̃ ≥ (3 +
√
3)Λ

2ρ
, (3.4.25)

and the time step satisfies

∆t ≤ min
m

{|K|φ(Vm)

18α̃
}, ∆t ≤ min

m
{ ρ|K|φ(Vm)

27(3 +
√
3)Λ

}, (3.4.26)
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where φ(Vm), m = 1, 2, 3 are the values of φ at the vertices Vm ∈ K at time

level n, ρ is the parameter used in the definition of regularity of Ωh, and Λ is the

largest spectral radius of D in K’s.

Proof. For the diffusion part

Hd
K(r, cf ,u, φ) =

1

3
r̄nK + λ

3∑

i=1

∫

ei
K

(
{D(u)∇cf} · νi

K +
α̃

ℓiK
[cf ]ne · νi

K

)
ds.

Since D is symmetric, following [54], we can rewrite the diffusion term as a

directional derivative

D∇cf · νi
K = Dνi

K · ∇cf = Si∂cf
∂li

,

where Si = ‖Dνi
K‖ ≤ Λ and li = Dνi

K/‖Dνi
K‖. Define Si

K = Si|K , Si
Ki

= Si|Ki

and liK = li|K , liKi
= li|Ki

. For each quadrature point xi,β
K on the edge eiK , we

can find the corresponding points x̃i,β
K ∈ ∂K and x̃i,β

Ki
∈ ∂Ki such that

−−−−→
x̃i,β
K xi,β

K

and
−−−−→
xi,β
K x̃i,β

Ki
are the same direction with liK and liKi

, respectively. See Figure 3.2

for an illustration. At the quadrature point x = xi,β
K , we have

{D(u)∇cf}i,βei
K

· νi
K =

1

2
D(ui,β

K )∇(cf )
i,β

K
· νi

K +
1

2
D(ui,β

Ki
)∇(cf )

i,β

Ki
· νi

K

=
1

2
Si,β
K

(cf )
i,β
K − cf (x̃

i,β
K )

‖xi,β
K − x̃i,β

K ‖
+

1

2
Si,β
Ki

cf (x̃
i,β
Ki
)− (cf )

i,β
Ki

‖x̃i,β
Ki

− xi,β
K ‖

=
Si,β
K

2‖xi,β
K − x̃i,β

K ‖
(cf )

i,β
K −

Si,β
Ki

2‖x̃i,β
Ki

− xi,β
K ‖

(cf )
i,β
Ki

− Si,β
K

2‖xi,β
K − x̃i,β

K ‖
cf (x̃

i,β
K ) +

Si,β
Ki

2‖x̃i,β
Ki

− xi,β
K ‖

cf (x̃
i,β
Ki
).
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K

Ki

•
x̃i,β
K

• xi,β
K•

x̃i,β
Ki

eiK

νi
K

Figure 3.2: The points chosen to evaluate directional derivative in the diffusion

part.

Therefore, we can rewrite Hd
K(r, cf ,u, φ) as

Hd
K =

1

6
r̄nK +

1

6
r̄nK + λ

3∑

i=1

∫

ei
K

(
{D(u)∇cf} · νi

K +
α̃

ℓiK
[cf ]ne · νi

K

)
ds

=
1

6
r̄nK +

1

18

3∑

i=1

2∑

β=1

wβr
i,β
K

+ λ
3∑

i=1

2∑

β=1

wβℓ
i
K

(
{D(u)∇cf}i,βei

K

· νi
K +

α̃

ℓiK
(cf )

i,β
Ki

− α̃

ℓiK
(cf )

i,β
K

)

=
1

6
r̄nK +

1

18

3∑

i=1

2∑

β=1

3∑

m=1

wβµ
i,β
m φ(Vm)cf (Vm)

+ λ
3∑

i=1

2∑

β=1

wβℓ
i
K

(
{D(u)∇cf}i,βei

K

· νi
K +

α̃

ℓiK
(cf )

i,β
Ki

− α̃

ℓiK
(cf )

i,β
K

)

=
1

6
r̄nK +

3∑

i=1

2∑

β=1

wβ

(
1

18

3∑

m=1

µi,β
m φ(Vm)cf (Vm)

+λℓiK

(
{D(u)∇cf}i,βei

K

· νi
K +

α̃

ℓiK
(cf )

i,β
Ki

− α̃

ℓiK
(cf )

i,β
K

))

:=
3∑

i=1

2∑

β=1

wβL
i,β
1 + L2,
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where

Li,β
1 =

1

18

3∑

m=1

µi,β
m φ(Vm)cf (Vm) + λℓiK

[(
Si,β
K

2‖xi,β
K − x̃i,β

K ‖
− α̃

ℓiK

)
(cf )

i,β
K

+

(
α̃

ℓiK
−

Si,β
Ki

2‖x̃i,β
Ki

− xi,β
K ‖

)
(cf )

i,β
Ki

+
Si,β
Ki

2‖x̃i,β
Ki

− xi,β
K ‖

cf (x̃
i,β
Ki
)

]
,

L2 =
1

6
r̄nK − λℓiK

3∑

i=1

2∑

β=1

ωβS
i,β
K

2‖xi,β
K − x̃i,β

K ‖
cf (x̃

i,β
K ).

We need to make Li,β
1 , L2 > 0. In fact

Li,β
1 =

1

18

3∑

m=1

µi,β
m φ(Vm)cf (Vm) + λℓiK

(
Si,β
K

2‖xi,β
K − x̃i,β

K ‖
− α̃

ℓiK

)
(cf )

i,β
K

+ λℓiK

(
α̃

ℓiK
−

Si,β
Ki

2‖x̃i,β
Ki

− xi,β
K ‖

)
(cf )

i,β
Ki

+ λℓiK
Si,β
Ki

2‖x̃i,β
Ki

− xi,β
K ‖

cf (x̃
i,β
Ki
)

=
3∑

m=1

µi,β
m

(
1

18
φ(Vm) + λℓiK

(
Si,β
K

2‖xi,β
K − x̃i,β

K ‖
− α̃

ℓiK

))
cf (Vm)

+ λℓiK

(
α̃

ℓiK
−

Si,β
Ki

2‖x̃i,β
Ki

− xi,β
K ‖

)
(cf )

i,β
Ki

+ λℓiK
Si,β
Ki

2‖x̃i,β
Ki

− xi,β
K ‖

cf (x̃
i,β
Ki
).

Since Si,β
K , Si,β

Ki
≤ Λ, to make Li,β

1 > 0, we need

α̃ ≥ ℓiKΛ

2‖x̃i,β
Ki

− xi,β
K ‖

, λℓiK

(
α̃

ℓiK
− Si,β

K

2‖xi,β
K − x̃i,β

K ‖

)
≤ 1

18
φ(Vm).

It’s easy to compute that

ℓiK

‖x̃i,β
Ki

− xi,β
K ‖

≤ 3 +
√
3

minj sin
(
θjKi

) ,

where the θjKi
is the angle in triangle Ki which is opposite to the edge ejKi

. From

Figure 3.3 and regularity assumption of Ωh, for all angle θjKi
in Ki, we have

sin θjKi
=

h

s
≥ diam(BKi

)

diam(Ki)
≥ ρ.
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h
BKi

Ki

s

θjKi

Figure 3.3: Triangle Ki and its sine

Therefore Li,β
1 > 0 under the conditions (3.4.25) and (3.4.26). As for L2, similar

to (3.4.24), we write

cf (x̃
i,β
K ) =

3∑

m=1

µ̃i,β
m cf (Vm),

with 0 ≤ µ̃i,β
m ≤ 1 and

3∑

m=1

µ̃i,β
m = 1, and use the fact that ω1 = ω2 =

1
2
. Then

L2 =
1

6
r̄nK − λℓiK

3∑

i=1

2∑

β=1

3∑

m=1

µ̃i,β
m Si,β

K

4‖xi,β
K − x̃i,β

K ‖
cf (Vm)

=
3∑

m=1

(
1

18
φ(Vm)− λℓiK

3∑

i=1

2∑

β=1

µ̃i,β
m Si,β

K

4‖xi,β
K − x̃i,β

K ‖

)
cf (Vm)

≥
3∑

m=1

(
1

18
φ(Vm)− λ

3∑

i=1

2∑

β=1

(3 +
√
3)Λ

4ρ

)
cf (Vm)

=
3∑

m=1

(
1

18
φ(Vm)− λ

3(3 +
√
3)Λ

2ρ

)
cf (Vm).

Thus, L2 > 0 under the condition (3.4.26). Therefore we have Hd
K(r, cf ,u, φ) > 0

under the conditions (3.4.25) and (3.4.26).

Collecting the three lemmas above, we have the following Lemma:
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Lemma 3.4.5. Given rn > 0, and the parameters α and α̃ satisfy (3.4.22) and

(3.4.25), respectively. Then r̄n+1
K > 0 under the conditions (3.4.21), (3.4.23) and

(3.4.26).

Compare the equation (3.4.14) with (3.4.12), we can observe that the equa-

tion for r2 is almost the same as that for r, except that its source term contains

a positive term +B1(φ)cf instead of −B1(φ)cf , which will benefit its positivity.

Therefore, we can get a similar lemma for r2:

Lemma 3.4.6. Given rn2 > 0, and the parameters α and α̃ satisfy (3.4.22) and

(3.4.25), respectively. Then r̄n+1
2K > 0 under the conditions (3.4.21), (3.4.23) and

(3.4.26).

Combine Lemmas 3.4.5, 3.4.6 and 3.4.1, and use the fact that rn + rn2 =

φn, rn+1 + rn+1
2 = φn+1, we finally reach our main theorem:

Theorem 3.4.7. Given 0 ≤ rn ≤ φn < 1, if we chose consistent flux pair û, ûcf

and the penalty parameters α and α̃ satisfying (3.4.22) and (3.4.25), respectively,

then φ̄n
K ≤ φ̄n+1

K < 1 and 0 ≤ r̄n+1
K ≤ φ̄n+1

K under the conditions (3.4.16), (3.4.21),

(3.4.23), and (3.4.26).

3.5 Bound-preserving technique for high-order

schemes

In this section, we proceed to discuss the high-order bound-preserving technique.
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3.5.1 High-order spatial discretization

In Lemmas 3.4.3 and 3.4.4, our proofs are based on P 1 elements. To attain

high-order accuracy, we use P k(k > 2) polynomials and apply the flux limiters

following [25, 38].

We write (3.4.17) as

r̄n+1
K = r̄nK + λ

3∑

i=1

(
θei

K
F̂ei

K
+ (1− θei

K
)f̂ei

K

)
+∆ts̄,

where

F̂ei
K
= −

∫

ei
K

ûcf · νids+
∫

ei
K

(
{D(u)∇c} · νi

K +
α̃

ℓiK
[cf ]

)
ds,

s̄ = fIcI − fP cf − B1(φ)cf (3.5.27)

are high-order flux and source, respectively, and f̂ei
K

is the second-order bound-

preserving flux analyzed in Section 3.4. In lemma 3.4.2, we considered high-order

approximations of the source term. Therefore, we only discuss the modification

of the high-order fluxes in this section, which is implemented by choosing an

appropriate parameter θiK . The cell average can be written as

r̄n+1
K = r̄nK + λ

3∑

i=1

f̂ei
K
+ λ

3∑

i=1

θei
K
(F̂ei

K
− f̂ei

K
) + ∆ts̄

= r̄n+1
L + λ

3∑

i=1

θei
K
(F̂ei

K
− f̂ei

K
),

where

r̄n+1
L = r̄nK + λ

3∑

i=1

f̂ei
K
+∆ts̄

is the second-order cell average which was proved to be physically relevant if ∆t

is sufficiently small. To compute f̂ei
K
, we replace the high-order cf in F̂ei by a
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second-order approximation čf ∈ [0, 1]. To construct it, we can simply apply the

second-order L2 projection to the high-order rn to get řnK and high-order φn to

get φ̌n
K , and then apply the limiter discussed at the end of this section with k = 1

to obtain 0 ≤ řnK ≤ φ̌n
K . The čf can be obtained as the linear interpolation of

řn

φ̌n at the three vertices in each cell K. We choose the parameter θei
K

as follows:

1. For any K ∈ Ωh, set β1
K , β

2
K = 0.

2. For each edge eiK , if F̂ei
K
− f̂ei

K
≤ 0, set β1

K = β1
K + F̂ei

K
− f̂ei

K
, otherwise

set β2
K = β2

K + F̂ei
K
− f̂ei

K
.

3. Take θK,ei
K
= min

{
− r̄n+1

L

λβ1
K

,
φ̄n+1
K − r̄n+1

L

λβ2
K

, 1

}
.

4. For any e ∈ Γ0, we can find K1, K2 ∈ Ωh such that K1 ∩K2 = e. We take

θe = min{θK1,e
i
K
, θK2,e

i
K
}.

The above algorithm can guarantee the monotone increasing and bound-

preserving properties for the cell averages of φ and r: if 0 ≤ rn ≤ φn < 1,

then φ̄n
K ≤ φ̄n+1

K < 1 and 0 ≤ r̄n+1
K ≤ φ̄n+1

K , under the appropriate penalty

parameters α, α̃ and sufficiently small time step △t. It remains to use proper

slope limiter to modify φn+1
K and rn+1

K such that φn
K ≤ φn+1

K < 1 and 0 ≤

rn+1
K ≤ φn+1

K without loss of cell average and accuracy. As discussed in [22], the

traditional slope limiter [50] cannot be applied since the bounds of φn+1
K , rn+1

K

are not constants but polynomials changing overtime. In this paper, we extend

the limiter introduced in [57] and the algorithm can be described as follows: For

polynomials u(x), U(x) ∈ P k(K) such that 0 ≤ ū ≤ Ū and U⋆ ≤ U(x) ≤ U⋆,
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where U⋆, U
⋆ are two positive constants. We obtain a modified ũ(x) in the

following way:

1. Define Ŝ = {x ∈ K : u(x) < 0}. Take

û = u+ θ
( ū
Ū
U − u

)
, θ = max

y∈Ŝ

{ −u(y)Ū

ūU(y)− u(y)Ū
, 0

}
. (3.5.28)

2. Set v = U − û, and repeat the above step for v to get v̂ .

3. Take ũ = U − v̂ as the new approximation for u(x).

This limiter is proved in [57] to have the following three necessary properties:

• boundness: 0 ≤ ũ(x) ≤ U(x), ∀x ∈ K,

• average:
∫
K
ũdx =

∫
K
udx,

• accuracy: ‖u(x)− ũ(x)‖∞ ≤ Chk+1, h = diam(K).

We use such a slope limiter in the following way: To obtain φn
K ≤ φ̃n+1

K < 1, we

take u = φn+1
K − φn

K and U = 1− φn
K in the limiter, and then φ̃n+1

K = ũ+ φn
K ; To

obtain 0 ≤ r̃n+1
K ≤ φ̃n+1

K , we take u = rn+1
K and U = φ̃n+1

K to apply this limiter

directly.

3.5.2 High-order time discretization

In the previous subsection, we only discussed the bound-preserving technique

based on Euler forward time discretization. The technique can be extended to

high-order time integrations that are convex combinations of Euler forwards. In
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this paper, we use third-order strong stability preserving (SSP) time discretiza-

tion to solve the ODE system ut = L(u):

u(1) =un +∆tL(u, tn),

u(2) =
3

4
un +

1

4

(
u(1) +∆tL(u(1), tn+1)

)
,

un+1 =
1

3
un +

2

3

(
u(2) +∆tL(u(2), tn +

∆t

2
)

)
.

Another choice is to use third-order SSP multi-step method which is also a convex

combination of forward Euler:

un+1 =
16

27
(un + 3∆tL(un, tn)) +

11

27
(un−3 +

12

11
∆tL(un−3, tn−3)).

More details can be found in [20, 21, 30].

3.6 Numerical experiments

In this section, we provide numerical experiments to show the performance of the

high-order bound-preserving DG scheme. In all the examples, we use third-order

SSP Runge-Kutta discretization in time and P 2 element in space unless otherwise

stated. To construct Ωh, for simplicity, we first equally divide Ω into N × N

rectangles and then obtain a uniform triangular mesh by equally dividing every

rectangle into two. See Figure 3.4 for an illustration. However, the algorithms

can be applied for any unstructured triangular meshes.

Example 3.6.1. We first test the accuracy of the high-order bound-preserving

DG scheme. Because of the restriction 0 ≤ cI ≤ 1, f = fI −fP and fI , fP ≥ 0 of
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Figure 3.4: Triangular mesh (N = 8)

right hand side, it’s difficult to find a suitable exact solution. Therefore, we use

periodic boundary condition and predetermine the Darcy’s velocity u = (1, 1)T in

order to use spectral method to give a reference solution. Initial conditions are

given as

cf (x, y, 0) = 0.5 + 0.5 cos(x) cos(y) φ(x, y, 0) = 0.5 + 0.4 sin(x) sin(y),

The source functions are taken as

fI = 2φt, fP = −φt, cI = 1,

where φt is obtained in the computation. The parameters are taken as:

D = 0.1‖u‖, kc = ks = a0 =
α

ρs
= 1

We use the uniform triangular meshes with N = 4, 8, 16, 32, 64, respectively,

over the computational domain Ω = [0, 2π] × [0, 2π] and set ∆t = 0.001h2 to

reduce the time error. Moreover, the reference solution is obtained by spec-

tral method on 64 × 64 equispaced grid points with fourth-order Runge–Kutta
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time discretization. The computational results at T = 0.01 are shown in Table

3.1, illustrating the error and convergence order of cf and φ, with and with-

out bound-preserving technique respectively. From the table, we can observe

optimal convergence rates. Therefore, the flux limiter and slope limiter do not

degenerate the convergence order.

cf φ

no limiter with limiter no limiter with limiter

N L2 error order L2 error order L2 error order L2 error order

4 2.90e-1 – 9.48e-2 – 1.82e-1 – 1.11e-1 –

8 2.46e-2 3.56 1.21e-2 2.97 2.50e-2 2.87 1.50e-2 2.89

16 1.83e-3 3.74 1.16e-3 3.39 3.18e-3 2.97 1.91e-3 2.97

32 1.40e-4 3.71 1.47e-4 2.98 4.00e-4 2.99 2.39e-4 2.99

64 1.29e-5 3.47 1.53e-5 3.26 5.00e-5 3.00 2.99e-5 3.00

N L∞ error order L∞ error order L∞ error order L∞ error order

4 1.52e-1 – 2.45e-2 – 5.01e-2 – 2.64e-2 –

8 7.08e-3 4.42 3.61e-3 2.76 7.11e-3 2.82 3.98e-3 2.73

16 7.21e-4 3.29 6.21e-4 2.54 9.16e-4 2.96 5.20e-4 2.94

32 1.12e-4 2.69 1.33e-4 2.22 1.15e-4 2.99 6.56e-5 2.99

64 9.66e-6 3.53 1.53e-5 3.13 1.44e-5 3.00 8.22e-6 3.00

Table 3.1: Example 3.6.1: Accuracy test for cf and φ with and without bound-

preserving technique.
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Example 3.6.2. We take the initial conditions with large gradients

cf0 =
sign(sin(2x) sin(2y)) + 1

2
, φ0 = 0.9

sign(sin(x) sin(y)) + 1

2
+ 0.05.

The source functions are taken as

fI = (1 +
π2

2
φ̄t)max{sin(2x) sin(2y), 0}, fP = −min{sin(2x) sin(2y), 0}, cI = 0,

where φ̄t is the average of φt over the whole computational domain. Other pa-

rameters are chosen as

µ = k0 = ks = kc = 1, a0 = 0.5, D(u) = 0.01.

This example is used to demonstrate the necessity of the bound-preserving

technique. The simulation will blow up without the technique due to the nega-

tivity of φ in some region while the bound-preserving scheme performs well.

We take N = 40 over the computational domain Ω = [0, 2π]× [0, 2π]. More-

over, we use P 1 element in this example since it is more suitable to demon-

strate the stability than higher order ones, and set the time-step as small as

∆t = 0.001h2. All these effort is made to prevent the simulation without limiter

from blowing up.

However, numerical simulation shows that the simulation without bound-

preserving technique blows up at about T = 0.0155. The distributions of cf

before blow-up is shown in Figure 3.5.

While with the settings exactly the same, the simulation with bound-preserving

technique is stable. The distribution of cf with time evolution in this case is

given in Figure 3.6. We can see that the numerical approximations are high
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(a) cf at T = 0.005s (b) cf at T = 0.015s

Figure 3.5: Example 3.6.2: Evolution of cf without limiter

oscillatory. This is because the bound-preserving technique only preserves the

bound but cannot suppress the oscillations. Some suitable limiters such as TVD,

TVB and WENO limiters can suitably smooth the numerical approximations.

Though oscillatory, the numerical simulation did not blow up. Therefore, with

the bound-preserving technique, the numerical scheme is quite stable. What’s

more, we plot the evolution of extreme value of cf and φ in Ω along simulation

time in Figure 3.7 to illustrate the effectiveness of bound-preserving technique

more clearly. We can observe that without the bound-preserving limiter, the

concentration of acid cf can be negative and greater than 1, and the porosity φ

can also be negative, leading to ill-posed problems. With the bound-preserving

technique, all the numerical approximations are within the physical bounds.

Example 3.6.3. We simulate a single wormhole propagation experiment in rect-

angular rock tube, from which we can observe the formation and propagation of
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(a) cf at T = 0.005s (b) cf at T = 0.015s

(c) cf at T = 0.030s (d) cf at T = 0.050s

Figure 3.6: Example 3.6.2: Evolution of cf with limiter.
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Figure 3.7: Example 3.6.2: Evolution of extreme value of cf and φ in Ω.
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a wormhole starting from a singular point. The parameters are taken as

D = 0, K0 = 10−9m2, T = 15s,

α = 100kg/mol, kc = 1m/s, ks = 10m/s,

µ = 10−2Pa s, fI = fp = 0, cf0 = 0,

a0 = 2m−1, ρs = 2500kg/m2, φ0 = 0.2,

Moreover, the computational domain is Ω = [0, 0.2m] × [0, 0.2m].To investigate

the phenomenon of wormhole propagation, we set a singular area with high poros-

ity φ = 0.4 and corresponding permeability determined by (3.2.5) which is about

10−8m2 on the middle of the left boundary with size 0.01m×0.01m. The left and

right boundary of the domain are Dirichlet conditions with pressure pd = 10000Pa

and pd = −10000Pa, respectively. The upper and lower boundaries of the do-

main are impermeable, i.e. u · n = 0. The acid flows into the rock from the left

boundary with a concentration of cI = 1mol/m2 and drained out of it from the

right boundary.

The contour plots of the concentration of acid and porosity of the rock at

different time are shown in Figures 3.8-3.9, from which we can observe cf , φ ∈

[0, 1] and the phenomenon of wormhole propagation along the whole simulation.

3.7 Concluding remarks

In this paper, we constructed high-order bound-preserving DG methods for

wormhole propagation on triangular meshes. We have obtained the bound-

preserving and monotone-increasing properties for concentration and porosity,
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(a) cf at T = 1s (b) cf at T = 5s

(c) cf at T = 10s (d) cf at T = 15s

Figure 3.8: Example 3.6.3: Concentration of acid with time evolution.
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(a) φ at T = 1s (b) φ at T = 5s

(c) φ at T = 10s (d) φ at T = 15s

Figure 3.9: Example 3.6.3: Porosity of rock with time evolution.
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respectively, with high-order accuracy. Numerical experiments have shown the

accuracy and effectiveness of the bound-preserving technique.
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Chapter 4

Conclusion

In the first work, we constructed the high-order bound-preserving discontinuous

Galerkin method to multi-component compressible miscible displacements prob-

lem in porous media on triangular meshes. By introducing a new slope limiter

and applying flux limiter, we attained the high-order accuracy without loss of

bound-preserving properties. Numerical examples shown the accuracy and ef-

fectiveness of our scheme.

In our second work, we extended the idea in previous work to the wormhole prop-

agation problems on triangular meshes. The properties of monotone increasing

for porosity, and boundedness for porosity and concentration were guaranteed

simultaneously. Numerical simulations shown the accuracy and necessity of our

bound-preserving technique.
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Appendix A

Copyright documentations

A.1 Copyright documentation of Chapter 2
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A.2 Copyright documentation of Chapter 3

High-Order bound-preserving discontinuous Galerkin methods for wormhole prop-

agation on triangular meshes has been completed as an article to submit to Jour-

nal of Computational Physics. As it has not yet been published (at the time of

this report is made), we (Ziyao Xu, Yang Yang, and Hui Guo) still retain the

copyright and as such, there is no need to obtain copyright documentation.
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