
Michigan Technological University Michigan Technological University

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech

Dissertations, Master's Theses and Master's Reports

2019

APPLICATION OF SENSOR FUSION FOR SI ENGINE DIAGNOSTICS APPLICATION OF SENSOR FUSION FOR SI ENGINE DIAGNOSTICS

AND COMBUSTION FEEDBACK AND COMBUSTION FEEDBACK

FNU Muralidhar Nischal
Michigan Technological University, nmuralid@mtu.edu

Copyright 2019 FNU Muralidhar Nischal

Recommended Citation Recommended Citation
Muralidhar Nischal, FNU, "APPLICATION OF SENSOR FUSION FOR SI ENGINE DIAGNOSTICS AND
COMBUSTION FEEDBACK", Open Access Master's Thesis, Michigan Technological University, 2019.
https://doi.org/10.37099/mtu.dc.etdr/819

Follow this and additional works at: https://digitalcommons.mtu.edu/etdr

 Part of the Navigation, Guidance, Control, and Dynamics Commons

http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etdr
https://doi.org/10.37099/mtu.dc.etdr/819
https://digitalcommons.mtu.edu/etdr?utm_source=digitalcommons.mtu.edu%2Fetdr%2F819&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1409?utm_source=digitalcommons.mtu.edu%2Fetdr%2F819&utm_medium=PDF&utm_campaign=PDFCoverPages

APPLICATION OF SENSOR FUSION FOR SI ENGINE DIAGNOSTICS AND

COMBUSTION FEEDBACK

By

Muralidhar Nischal

A THESIS

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

In Mechanical Engineering

MICHIGAN TECHNOLOGICAL UNIVERSITY

2019

© 2019 Muralidhar Nischal

This thesis has been approved in partial fulfillment of the requirements for the Degree

of MASTER OF SCIENCE in Mechanical Engineering.

Department of Mechanical Engineering-Engineering Mechanics

Thesis Co-advisor: Dr. Jeffrey D. Naber

Thesis Co-advisor: Dr. Jason R. Blough

Committee Member: Dr. Mahdi Shahbakhti

Department Chair: Dr. William W. Predebon

Dedication

To my parents, family, teachers and friends

for having always helped me excel in my endeavors. I wouldn’t be the person I am

today without you’ll.

Contents

List of Figures . xi

List of Tables . xix

Acknowledgments . xxiii

Abstract . xxv

1 Introduction . 1

1.1 Goals and Objectives . 3

1.2 Thesis overview . 3

2 Literature Review . 5

3 Experimental setup and sensor specification 9

3.1 Engine Specification . 11

3.2 Exhaust Pressure Sensor . 13

3.3 Ion Sensors . 18

3.4 Crank-angle Encoder . 21

3.5 Optical Engine . 22

vii

3.6 Accelerometer . 25

3.7 Data Acquisition System . 27

4 Algorithm development . 29

4.1 Correlation Studies . 30

4.2 Order Tracking . 32

4.3 Knock Integral Calculator . 35

4.4 Misfire Generator . 38

4.5 Neural Networks . 39

4.5.1 Feature Scaling . 42

4.5.2 Random Initialization . 43

4.5.3 Principal Component Analysis 44

5 Results and Discussion . 46

5.1 Ion sensor . 47

5.1.1 Correlation of ion features with pressure metrics 47

5.1.1.1 Ion Correlation studies - Metal engine 48

5.1.1.2 Optical engine . 53

5.1.2 Knock detection using Ion probe 61

5.1.2.1 Adaptive window 69

5.1.2.2 Adaptive and Static window 71

5.1.2.3 Modified dual adaptive window 74

5.1.2.4 Effect of using the adaptive windowing 76

viii

5.1.2.5 Conclusions on ion sensor studies 79

5.2 Exhaust pressure sensor . 80

5.2.1 Feature extraction and correlation with combustion metrics in

steady state . 80

5.2.2 Factors affecting exhaust signatures 84

5.2.3 Misfire detection under transient conditions 96

5.2.4 Order tracking . 100

5.2.5 Comparison of Omega and Kulite sensor 106

5.2.6 Conclusion on exhaust sensor studies 112

5.3 Crank angle encoder . 113

5.3.1 Order extraction . 113

5.4 Neural network . 116

5.4.1 Feature scaling and PCA . 124

5.4.2 Recursive neural net . 131

5.4.2.1 Pseudo-steady state tests for combustion metric esti-

mation . 146

5.5 Conclusion on neural network studies 159

6 Conclusion and Recommendations 161

References . 169

A Sample Code . 175

ix

A.1 ANN for Pseduo-Transient code . 176

A.2 Ion knock detection code . 220

B Letters of Permission . 255

C Test Conditions . 257

x

List of Figures

3.1 Schematic of engine setup used in study 10

3.2 Representative image of engine used in study 12

3.3 Positioning of exhaust pressure sensors on engine [1] . Reprinted with

permission from original author. Refer Appendix B 16

3.4 Mounting diagram for exhaust sensors used in vehicle testing 17

3.5 Ignition coil of coil integrated ion sensor 19

3.6 Standalone ion sensor probes . 20

3.7 Optical encoder . 21

3.8 Optical Engine [2] . 23

3.9 Ion probe location in optical engine [2] 24

3.10 Final accelerometer mounting positions. Reprinted with permission

from original author. Refer Appendix B 26

4.1 Representative standalone ion sensor signal at load of 750kPa and

speed of 1500RPM . 30

4.2 Representative Exhaust pressure signal 32

4.3 Representative order-map of crank signal 34

xi

4.4 Representative waterfall plot of kulite exhaust pressure signal . . . 35

4.5 Representative figure of knock integral calculation (Speed : 1500RPM,

IMEP : 11bar) . 36

4.6 User-interface of Ford’s Misfire Generator Software [1] . Reprinted with

permission from original author. Refer Appendix B 38

4.7 A simple neural network . 40

4.8 Feed forward network . 42

4.9 Recursive neural network . 42

5.1 Ion sensor signal artifacts studied 49

5.2 Filtered ion signal for a normal combustion cycle (Speed : 1500RPM ,

IMEP : 750kPa) . 50

5.3 Correlation of Ion sensor signal artifacts with pressure metrics - Test

1 : 1500RPM, 250kPa . 51

5.4 Correlation of Ion sensor signal artifacts with pressure metrics - Test

2 : 1500RPM, 750kPa . 52

5.5 Output of ion probes on optical engine - normal combustion cycle -

Test 1 . 55

5.6 Output of ion probes on optical engine - misfire cycle - Test 1 . . . 55

5.7 Correlation of ion sensor 1 with pressure metrics, across all tests . 57

5.8 Correlation of ion sensor 2 with pressure metrics, across all tests . 58

5.9 Correlation of ion sensor 3 with pressure metrics, across all tests . 59

xii

5.10 Correlation of ion sensor 4 with pressure metrics, across all tests . 60

5.11 Knock window for knock tests . 63

5.12 Filtering method to obtain uniform sampling rate 64

5.13 In-cylinder Pressure and ion signal for cycle with highest knock - ellip-

tical bandpass(5-8kHz) filter . 65

5.14 In-cylinder Pressure and ion signal for cycle with least knock- elliptical

bandpass(5-8kHz) filter . 66

5.15 Distribution of pressure intensity - Test 1 67

5.16 Distribution of ion intensity for coil ion probe - Test 1 68

5.17 Distribution of ion intensity for standalone ion probe - Test 1 . . . 68

5.18 Implementation of Adaptive windowing -Test 2 70

5.19 Correlation of ion intensities with adaptive windowing -Test 2 . . . 71

5.20 Implementation of Adaptive static windowing- Test 2 73

5.21 Correlation of ion intensities with Adaptive static windowing- Test 2 73

5.22 Implementation of Modified adaptive windowing- Test 5. 75

5.23 Correlation of ion intensities with modified adaptive windowing - Test

5 . 75

5.24 Linear spectrum visualization without using the custom windowing

algorithm - Test 5 . 77

5.25 Linear spectrum visualization with using the custom windowing algo-

rithm - Test 5 . 78

xiii

5.26 Exhaust signal during healthy combustion in all cylinders - Test 5 .

"star" indicates maxima , "circle" indicates EVO 81

5.27 Exhaust signal for a cycle with misfire - Test 5 82

5.28 Correlation of Exhaust pressure with in-cylinder pressure at EVO -

Test 5 . 83

5.29 Correlation of incylinder pressure peak with pressure at EVO - Test

5 . 83

5.30 Exhaust pressure waveform at various operating conditions 84

5.31 Section of transient drivecycle . 86

5.32 Correlation of Type I waveform exhaust peaks with in-cylinder pres-

sure . 86

5.33 Correlation of Type I waveform exhaust peak location with in-cylinder

pressure location . 87

5.34 Correlation of Type I waveform exhaust peak with IMEP 88

5.35 Correlation of Type I waveform exhaust peak with CA50 89

5.36 Correlation of Type II waveform exhaust trough with in-cylinder pres-

sure peak . 89

5.37 Transient drivecycle for evaluating exhaust signatures of low load cy-

cles . 90

5.38 Segregation of Type II waveforms using engine speed 91

5.39 Segregation of Type II waveforms using engine speed 92

xiv

5.40 Location of various Type II waveforms over a drivecycle 94

5.41 Misfire and DFSO detection . 97

5.42 Misfire events as detected by algorithm 98

5.43 Window applied to signal for order analysis 101

5.44 Cycles for which order analysis was conducted 102

5.45 Waterfall plot of exhaust order analysis for cycles shown 103

5.46 Order map of exhaust signal for transient engine testing 105

5.47 Order cut of exhaust signal for transient engine testing 106

5.48 Order Colormap of Kulite sensor for Test 1 109

5.49 Order Colormap of Omega sensor for Test 1 109

5.50 Order Colormap of Kulite sensor for Test 4 110

5.51 Order Colormap of Omega sensor for Test 4 110

5.52 Comparison of Linear spectra for Test 1 111

5.53 Comparison of Linear spectra for Test 4 111

5.54 Order map of crank signal for transient engine testing 114

5.55 Order cut of crank signal for transient engine testing 115

5.56 Transient cycle used in neural network studies 117

5.57 Feed forward neural network used for initial studies 117

5.58 Actual and estimated combustion metrics for feed forward neural net-

work . 119

xv

5.59 Actual against estimated combustion metrics for feed forward neural

network . 121

5.60 Error analysis of simple feed forward network 122

5.61 Distribution of error of simple feed forward network 123

5.62 Contribution of each principal component 125

5.63 Feed forward neural network with feature scaling and PCA 126

5.64 Actual and estimated combustion metrics for modified feed forward

neural network . 127

5.65 Actual against estimated combustion metrics for modified feed forward

neural network . 128

5.66 Error analysis of modified feed forward network 129

5.67 Distribution of error of modified feed forward network 130

5.68 Nonlinear auto-regressive with external input (NARX) network . . 131

5.69 Recursive neural network (RNN) 131

5.70 Actual and estimated combustion metrics for recursive neural network 133

5.71 Actual against estimated combustion metrics for recursive neural net-

work . 134

5.72 Error analysis of recursive network 135

5.73 Distribution of error of recursive network 136

5.74 Cross-correlation between inputs . 138

5.75 Recursive neural network for IMEP estimation 140

xvi

5.76 Network prediction and error . 141

5.77 Error analysis of recursive network for IMEP estimation 142

5.78 Distribution of error of recursive network 143

5.79 Recursive neural network for CA50 estimation 144

5.80 Network prediction and error for CA50 estimation 145

5.81 Error analysis of recursive network for CA50 estimation 146

5.82 Drive cycle for pseudo steady state test 147

5.83 RNN to estimate IMEP in pseudo-steady state test 148

5.84 Network estimated and actual IMEP for pseudo-steady state tests . 150

5.85 Error analysis of network . 151

5.86 Distribution of error in estimation of IMEP in pseudo-steady state

tests . 152

5.87 Estimation of IMEP on a cycle by cycle basis in pseudo-steady state

tests . 153

5.88 Accuracy of ANN IMEP estimation 153

5.89 RNN to estimate CA50 in pseudo-steady state test 154

5.90 Network estimated and actual CA50 for pseudo-steady state tests . 156

5.91 Error analysis of network . 157

5.92 Distribution of error in estimation of CA50 in pseudo-steady state

tests . 158

xvii

5.93 Effect on number of hidden layers on characteristics on CA50 estima-

tion errors . 159

B.1 Letter of permission . 256

xviii

List of Tables

3.1 Sensors instrumented in setup . 11

3.2 Engine specifications . 12

3.3 Properties of fuel used . 13

3.4 Specification of exhaust pressure sensors used in test cell 15

3.5 Specification of exhaust pressure sensors used in vehicle tests 17

3.6 Specification of initial standalone ion probe 20

3.7 Specification of latest standalone ion probe 20

3.8 Specification of Optical encoder . 22

3.9 Specification of Optical engine . 23

3.10 Specification of ion probe in optical engine 25

3.11 PCB-356A03 Accelerometer specifications 27

3.12 Specification of analog input module 28

4.1 List of Ion features analyzed in correlation studies 31

5.1 Ion correlation studies : Feature acronyms 48

5.2 Test matrix for ion sensor evaluation - Cylinder 2 49

5.3 Results of correlation studies of ion sensor 53

xix

5.4 Test matrix for ion sensor evaluation in optical engine 54

5.5 Test matrix for knock detection using ion sensors 62

5.6 Test matrix for exhaust sensor evaluation 81

5.7 Correlations studied for low load cycles 94

5.8 Pattern input to misfire software 96

5.9 Detection algorithm performance 100

5.10 Test matrix for exhaust sensor evaluation 107

5.11 Inputs to feed forward network . 118

5.12 Setting of feed forward neural network 118

5.13 Inputs to modified feed forward network 125

5.14 Setting of modified feed forward neural network 126

5.15 Settings of recursive neural network 132

5.16 Parameters evaluated and acronyms 137

5.17 Correlations of various inputs with combustion metrics 139

5.18 Inputs to recursive network to estimate IMEP 140

5.19 Specifications of recursive network to estimate IMEP 140

5.20 Inputs to recursive network to estimate CA50 144

5.21 Specifications of recursive network to estimate CA50 144

5.22 Inputs to RNN to estimate IMEP in pseudo-steady state test 148

5.23 Specifications of RNN to estimate IMEP in pseudo-steady state tests 149

5.24 Inputs to RNN to estimate CA50 154

xx

5.25 Specifications of RNN to estimate CA50 in pseudo-steady state tests 155

xxi

Acknowledgments

I am grateful to Dr. Jeffrey D. Naber and Dr. Jason R. Blough for giving me an

opportunity to be a part of their research group. I am also thankful to them for their

guidance and supervision throughout this thesis work. I would also like to thank Dr.

Mahdi Shahbakhti and Dr. Bo Chen for their suggestions along the way.

I would like to sincerely thank Ford Motor Company for sponsoring this research

and my Masters degree. I am grateful to the Ford research team including Garlan

Huberts, Chris Gugla, Chad Archer, Darren Nester, Qiuping Qu and Ken Rhodes for

their constant support throughout the project and especially during my time at Ford.

I’d also like to thank the Ford management, specifically Todd Rumpsa for the timely

inputs and suggestions.

I would like to thank my dear friends Xin Wang, Amir Khameneian and Kaushik

Prabhu for helping me conduct experiments in a timely fashion and also for their

company throughout this experience. I would also like to acknowledge Paul Dice,

Joel Duncan and the other staff members of the APS Labs for their support.

I would also like to thank my batchmates and friends Srihari, Vivek, Suman, Kruthika,

Shiva, Sweta, Anupam and Sunit for their company and encouragement throughout

my masters degree.

xxiii

Last but not least I would like to thank my parents, family and buddies back home

for all their love and encouragement.

- Muralidhar Nischal

xxiv

Abstract

Shifting consumer mindsets and evolving government norms are forcing automotive

manufacturers the world over to improve vehicle performance and also reduce green-

house gas emissions. A critical aspect of achieving future fuel economy and emission

targets is improved powertrain control and diagnostics.

This study focuses on using a sensor fusion based approach to improving control

and diagnostics in a gasoline engine. A four cylinder turbocharged engine was in-

strumented with a suite of sensors including ion sensors, exhaust pressure sensors,

crank position sensors and accelerometers. The diagnostic potential of these sensors

was studied in detail. The ability of these sensors to detect knock, misfires and also

correlate with pressure and combustion metrics was also evaluated.

Lastly a neural network based approach to combine individual sensor signal informa-

tion was developed. The neural network was used to estimate mean effective pressure

and location of fifty percent mass fraction fuel burn. Additionally, the influence of

various neural network architectures was studied.

Results showed that under pseudo transient conditions a recursive neural network

could use information from the low cost sensors to estimate mean effective pressure

within an error of 0.1bar and combustion phasing within 2.5 crank-angle degrees.

xxv

Chapter 1

Introduction

The world today is striving towards using alternative forms of energy. The automotive

sector is no exception to this migration. Global treaties, technological advancements

and evolving consumer mindsets are driving auto manufacturers to adopt greener,

more efficient strategies and produce vehicles with minimal emissions. Electric vehi-

cles (EVs) present an alternative to fossil fuel operated vehicles however infrastructure

constraints prevent electric vehicles from dominating the market.

A solution then is to improve the performance and reduce the emissions of fossil fuel

operated vehicles until such time that the necessary infrastructure is built to make

EV the primary vehicle architecture. Further, to enhance operation of conventional

engines, one approach would be to achieve greater control of engine operation.

1

Engine control units have evolved by leaps and bounds since their advent, however

much like any control system, the effectiveness of the controller is hugely dependent on

the accuracy of information supplied by the sensors. Engines today use a plethora of

sensors for control and diagnostic purposes, one such sensor is the in-cylinder pressure

sensor (ICPS). In a research setup, it is quite common to use an ICPS, however in a

production scenario, implementing ICPS is not viable due to cost and maintenance

considerations. The challenge then is to develop sensors that could provide the same

fidelity of information as an ICPS but at a fraction of the cost.

This study thus aims at studying the prospect of using low cost sensors, both existing

and new, for their application in engine control and diagnostics. The fundamental

idea is to fuse together the information supplied by multiple sensors to ascertain

critical combustion metrics like indicated mean effective pressure (IMEP) and crank

angle for 50 percent burn (CA50). Further, the diagnostic potential of the sensor

suite is evaluated, specifically knock, misfire and partial/late burn detection.

The potential benefits of following such a sensor fusion approach includes :

• Improvement in fuel economy including enhanced knock and closed loop dilution

control

• Reduced calibration effort and time

• Extended life of catalytic converter due to improved diagnostics

2

1.1 Goals and Objectives

The goals of this study are as listed below:

1. Identify signal artifacts in output of sensors and their correlation with combus-

tion metrics

2. Study potential of using specified sensors to identify and quantify engine knock

3. Study potential for detecting abnormal combustion cycles i.e. late burn, partial

burn and misfire

4. Perform transient testing, both vehicle level and using dynamometers

5. Assess feasibility of using artificial intelligence (AI) including advanced neural

networks in tandem with multiple sensor inputs to estimate combustion metrics

1.2 Thesis overview

This thesis is divided into five chapters. In Chapter 1 and introduction to the study

and the objectives of the current work is covered. A brief literature review is con-

ducted in Chapter 2. In Chapter 3, details regarding the experimental setup includ-

ing technical specification of the engine and various sensors used in this study are

described. The various methods and algorithms developed as part of this study are

discussed in Chapter 4. In Chapter 5, a detailed analysis of the data and results is

3

conducted. Finally, Chapter 6 concludes this study and offers recommendations for

future work.

4

Chapter 2

Literature Review

The in-cylinder pressure sensor is a valuable control input. Significant effort has been

devoted towards developing means and method to reconstruct the in-cylinder pressure

signal. Studies by Jia et al. [3] showed that Frequency Response Functions(FRF)

generated for a particular engine operating point can be altered to be applied over a

range of operating points to recreate an in-cylinder pressure waveform. Particle swarm

optimization was utilized to selectively alter low frequencies that were dominant in the

FRF.Another approach to pressure waveform reconstruction using FRFs was carried

out by Liu et al. [4] wherein the in-cylinder pressure close to the top dead center (TDC)

was reconstructed with FRFs using crank-shaft velocity as an input. Researchers have

also used structure borne signals [5] and fluctuations in engine speed [6] to reconstruct

cylinder pressure waveforms.

5

Combustion diagnostics constitute a significant portion in evaluating component or

system performance and consequently vehicle drive quality and operation. Work car-

ried out by Bahri et al. [7] utilizes a neural network (NN) to identify misfires in a

ethanol fueled HCCI engine. The study used a small subset of in-cylinder pressure

readings to train a NN to predict misfires with tremendous accuracy. Another ap-

proach to detecting misfires in the absence of ICPS was showcased by Willimowski

and Isermann [8] and also Prabhu [1] where the exhaust sensor was utilized as a

means to successfully identify misfire events.The studies observed that exhaust signal

artifacts specifically exhaust minima were a reliable indicator of engine misfire.

Giglio et al. [9] conducted a study to show the potential of a spark coil integrated

ion sensor in detecting knock. The study used engine data of a number of steady

state operating points and conducted an analysis to evaluate correlation between

knock metrics and equivalent ion metrics developed as part of the study. Panousakis

et al. [10] focused efforts on evaluating the ability of ion signals to detect misfire and

ignition timing. The study also evaluated correlation between ion signal intensity and

air-fuel ratio as well as compression ratio. Another study to explore the diagnostic

capabilities of ion signals was conducted by Cavina et al. [11] wherein the ion integral

was used to identify misfires and partial burns. Although ion integral could reliably

identify misfires, identification of partial burns showed limited success.

Dev et al. [12] carried out a study to use ion signal as a means to determine combustion

6

phasing namely location of five percent mass fraction fuel burn (CA5) and location of

fifty percent mass fraction fuel burn (CA50). A custom ion sensor integrated into a

multi-electrode spark plug was used in the study to show that ion based combustion

phasing estimates were comparable to combustion phasing information derived from

pressure based measurements. Abhijit and Naber [13] investigated the ability of

ion sensors to detect knock and found that when appropriately processed, frequency

content dominant in ion signals were similar to that seen in the in-cylinder pressure

signal. The study also showed correlation between pressure-based knock intensity

(PI) and ion intensity (II).

Researchers have also studied the application of crankshaft speed for control and di-

agnostic purposes. A study by Yinhui et al. [14] demonstrated the use of crankshaft

speed for misfire recognition where the filtered second derivative of the crank signal

was used in tandem with a static threshold to identify misfiring cylinders at a given

operating condition. Azzoni et al. [15] were able to identify misfires in a V12 en-

gine using crankshaft speed and applying suitable signal processing techniques like

Discrete Fourier Transforms. Other signal processing methods including Frequency

Response Functions (FRFs) have also been used to process crank data to obtain esti-

mates of in-cylinder pressure [16]. Brown and Neill [17] on the other hand employed

pattern recognition of crank angular velocity for estimating in-cylinder pressure. The

variation in angular velocity of a particular cycle was compared to a knowledge base of

patterns based on the operating point to draw up an estimate of in-cylinder pressure.

7

Several studies have also used crankshaft speeds as input to neural networks to es-

timate combustion parameters and for signal reconstruction purposes. Taglialatela

et al. [18] used crank speed and acceleration as inputs to a multilayer perceptron net-

work in order to estimate peak cylinder pressure and location of peak pressure. The

study was able to obtain network estimated pressure signals that were within 0.5bar-

1bar (depending on operating point) of actual data and also proposed utilizing the

network estimated in-cylinder pressure peak and location to identify abnormal com-

bustion. Another study by Saraswati and Chand [19] made use of a recursive neural

network with crankshaft speed and motorized pressure as inputs to develop a network

capable of reconstructing in-cylinder pressure.

Thus through the brief literature survey it can be seen that several different studies

have used various sensors and methodologies to develop alternatives for an ICPS,

which is a valuable input for closed loop combustion control. Studies have also utilized

these alternative sensors for diagnostic purposes with varying degrees of success and

reliability. However none of the studies utilize the entire sensor suite as present in

the current study. Previous studies in this area also primarily focused on evaluating

sensor capabilities under steady state conditions. The current study however, includes

analysis and results from not just steady state studies but also transient studies

conducted both on an engine dynamometer as well as in-vehicle.

8

Chapter 3

Experimental setup and sensor

specification

This chapter broadly describes the experimental setup used in this study and also

presents the specification of instrumentation and sensors utilized as part of the study.

A brief schematic of the experimental setup used in this study is provided in Figure

3.1. As part of the study, the engine was instrumented with multiple sensors. Table

3.1 lists the various sensors instrumented onto the setup. A number of these sensors

played a pivotal role in the current study. Specifications regarding the sensors utilized

in this study are provided later in this chapter.

9

F
ig

u
re

3.
1:

Sc
he

m
at
ic

of
en

gi
ne

se
tu
p
us
ed

in
st
ud

y

10

Table 3.1
Sensors instrumented in setup

Sensor Name Primary Purpose

Direct mounted exhaust pressure

sensor

Combustion metric correlation and misfire

diagnostics

Standoff mounted exhaust pres-

sure sensor

Similar to high pressure sensor but mounted

with a standoff

Standalone ion probe Detection of flame front and combustion

phasing information

Coil integrated ion probe Combustion phasing detection

Crank position sensor Measure engine speed variations

Accelerometer Knock/misfire detection

3.1 Engine Specification

This study utilized an inline 4 cylinder 2.0L gasoline direct injection (GDI) engine

as shown in Figure 3.2. The engine was provided to the Advanced Power Systems

Research Center (APSRC) by Ford Motor Company as part of a larger collaborative

research effort between Michigan Tech and Ford. Table 3.2 offers the specifications

of the engine used.

11

Table 3.2
Engine specifications

Specification Values Units
Engine displacement 2.0 lit
Number of cylinders 4 N/A
Block/head material Aluminum N/A
Bore 87.5 mm
Stroke 83.1 mm
Connecting rod length 155.86 mm
Wrist pin offset 0.6 mm
Compression ratio 9.3:1 N/A
Firing order 1-3-4-2 N/A
Production crank sensor type Hall effect N/A
Crank sensor type used for data logging Optical N/A

Figure 3.2: Representative image of engine used in study

12

As previously mentioned the engine is gasoline operated. AKI 87 fuel was used

during testing. Fuel properties are further elaborated in Table 3.3 and are similar to

a previous study [1] conducted using the same setup.

Table 3.3
Properties of fuel used

Properties Values Units
Carbon 83.06 Percentage weight
Hydrogen 13.48 Percentage weight
Oxygen 3.46 Percentage weight
Density 741.9 kg/m3

Lower heating value 41.725 MJ/kg
Stoichiometric Air-Fuel Ratio (AFR) 14.06 N/A
Research Octane Number 91.7 N/A
Motor Octane Number 82.5 N/A

3.2 Exhaust Pressure Sensor

Exhaust pressure sensors function based on either piezo-resistivity or piezo-electricity

. A piezo-resistive strain gauge is placed in a specific arrangement on a diaphragm.

As the pressure changes, the diaphragm expands or contracts based on the pres-

sure change. This in-turn causes the resistance of the strain gauge to change. The

change in resistance leads to a voltage change which is consequently converted to a

pressure reading. Piezo-electric based sensors on the other hand use a piezoelectric

crystal which when subjected to a force, produce a charge which can then be suitably

conditioned to obtain a voltage signal.

13

In this study two types of exhaust pressure sensors were used to obtain insights into

engine performance and capture combustion dynamics. A high pressure piezoelectric

exhaust sensor was mounted directly in the exhaust manifold, less than 10mm from

the exhaust port of the engine as shown is Fig. 3.3. This directly mounted pressure

sensor also referred to as the Kulite sensor (after the manufacturer name) was capable

of operating at high temperatures and pressures. Table 3.4 lists the specifications of

the Kulite sensor. The primary purpose of the Kulite sensor was to capture the

exhaust gas dynamics. A second piezo-resistive exhaust pressure sensor, also called

the Omega sensor(after the manufacturer) was placed at a standoff, about 18 inches

from the exhaust port, as shown in Fig. 3.3. The Omega sensor had limited tolerance

to high temperature and pressure in comparison to the Kulite sensor as the Omega

sensor could only operate up to a temperature of 85 deg. C and 10.5 bar pressure

while the Kulite could sustain temperatures of about 500 deg.C and 20 bar pressure.

The tubing connecting to the Omega sensor acts as a low pass filter (cut-off frequency

325Hz [1]) thereby limiting the information captured in the signal. Specifications of

of the Omega sensor are provided in Table 3.4. It is to be noted that the sensor

details in Table 3.4 are the specifications of the sensors used in the test cell and not

that of the sensors used in the vehicle tests.

14

Table 3.4
Specification of exhaust pressure sensors used in test cell

Property Unit Kulite Omega

Rated Pressure bar abs. 10 3.5

Maximum Pressure bar abs 20 10.5

Excitation Voltage VDC 12 28

Sensitivity mV/bar 456.5 501.5

Operating Temperature Range deg. C -55 to 500 -20 to 85

Bandwidth kHz 150 1

Output Range VDC 0.5 to 5 0 to 5

Part number N/A ETL312M PX309

15

Figure 3.3: Positioning of exhaust pressure sensors on engine [1] . Reprinted
with permission from original author. Refer Appendix B

The specifications of the sensors used in the test cell and in vehicle tests differ slightly

due to lack of availability of sensors with the exact same specifications. Table 3.5

details the specifications of the sensors used in vehicle tests. Unlike the engine tests,

the vehicle was mounted with 2 Kulite sensors instead of one. This was primarily

to ensure testing would not be hindered due to sensor failures. Figure 3.4 shows the

flange designed to mount the exhaust sensor close to the exhaust port of the engine

in the vehicle, a Lincoln MKC. The flange design is similar to that used in the engine

at the APS Labs.

16

Table 3.5
Specification of exhaust pressure sensors used in vehicle tests

Property Unit Kulite Kulite Omega

Rated Pressure bar abs. 3.45 6.89 6.89

Maximum Pressure bar abs 6.89 13.79 13.79

Excitation Voltage VDC 12 12 28

Sensitivity mV/bar 1296.85 659.30 724.5

Operating Temperature Range deg. C -55 to 538 -55 to 500 -20 to 85

Bandwidth kHz 150 50 1

Output Range VDC 0.5 to 5 0.5 to 5 0 to 5

Part Number N/A ETL312M ETL190 PX359

Figure 3.4: Mounting diagram for exhaust sensors used in vehicle testing

17

3.3 Ion Sensors

Ions probes function based on the principle that when a DC voltage is applied to

two electrodes, charged particles in the vicinity of the electrode cause a current to

flow which can be detected by the same sensor. The current is thought to be flowing

due to ions in the combustion charge, present near the probe, and is hence termed as

ionization current. The ion current is then electronically converted to a voltage signal

which in turn is used for combustion sensing and diagnostics. Popular applications

of ion sensors are in misfire and knock detection as well as estimating combustion

phasing. This study utilizes ion sensors for similar purposes.

Ion sensors are predominantly of two types. Coil integrated ion probes and standalone

ion probes. Coil integrated ion probes use the spark plug as an ion sensor. Once the

spark discharge is complete the spark gap of the plug is utilized to sense ions. This

form of ion sensors do not suffer from packing issues and minimize rework on engine

head geometry, however the method suffers from ringing issues caused by the coil

circuitry. Figure 3.5 offers a pictorial representation of the coil integrated ion probe

used in this study along with the wiring diagram and pin configuration.

18

Figure 3.5: Ignition coil of coil integrated ion sensor

Another means of ion sensing, also used in this study, is to use a standalone ion

probe as shown in Fig 3.6. The standalone ion probes used in this study were custom

probes fabricated at MTU. Standalone ion probes do not suffer from the same ringing

issues as in coil integrated probes but face issues in terms of packaging. It is to be

noted that the standalone ion probe used in this study evolved over the course of the

study, but for any given test only a single standalone ion probe was used. A list of

specifications of the initial and final version of the custom ion probes are given in

Tables 3.6 and 3.7 respectively. Additionally the ion sensors output was connected to

a custom conditioning box provided to MTU by Ford. The conditioning box helped

reduce the noise on sensor output thereby making it more suitably for data analysis.

The rating of the boxes include 1MΩ, 300kΩ and 250kΩ.

19

Figure 3.6: Standalone ion sensor probes

Table 3.6
Specification of initial standalone ion probe

Electrode Properties Values Units
Material steel N/A
Tip protrusion 2.5 mm
Conditioning box rating 1 MΩ
Face insulation material RTV N/A
Location of sensor Cylinder 2 N/A

Table 3.7
Specification of latest standalone ion probe

Electrode Properties Values Units
Material Tungsten N/A
Tip outer diameter 2.4 mm
Tip protrusion 4 mm
Conditioning box rating 300 kΩ
Location of sensor Cylinder 2 N/A

20

3.4 Crank-angle Encoder

Encoders or more specifically rotary encoders are used as a means to monitor the posi-

tion and speed of rotation of a shaft. Optical variants of an encoder use a light source

and a disc with predefined transparent and opaque regions. As the shaft rotates, so

does the disc. A photo-diode detects the light passing through the transparent por-

tions of the disc. This in-turn generates a pulse train that is supplied to an external

processor which consequently calculates the position and speed of the shaft.

Figure 3.7: Optical encoder

In engines, these sensors find applications in monitoring crankshaft rotation and

speed. Production engines use crankshaft position sensors with lower resolution crank

wheel, that work primarily based on the Hall effect as they are easy to package and

sufficiently accurate for control applications. However in a research environment,

21

such as this study, greater resolution and higher accuracy in angular data is required.

Figure 3.7 shows an image of the incremental optical encoder used in this study, made

by BEI Sensors. Specifications of the same can be found in Table 3.8

Table 3.8
Specification of Optical encoder

Property Value Units
Shaft Material Stainless Steel N/A
Shaft diameter 3/8 inch
Maximum RPM 12000 RPM
Encoder type Incremental N/A
Input Voltage 5-28 V
Disc Resolution 0.5 CAD
Part Number H25 N/A

3.5 Optical Engine

A portion of this study, pertaining to evaluating the influence of ion sensor location on

correlation studies was conducted on an optical engine. The optical engine present at

the APSRC was a modified 2.0L 4-cylinder Ford ecoboost engine developed by Mahle

Powertrain [2]. The specifications of the engine are given in Table 3.9 and Figure

3.8 offers a visual representation of the same. Of the four cylinders, only cylinder

two is active and optically accessible, the remaining three cylinders are deactivated

by grounding off the cam lobes. In order to accommodate the piston extension, the

cylinder head of the engine is separated from the engine block and placed at an

elevation. The piston extension is in-turn threaded to a flat-top aluminum piston

22

with a quartz window insert.

Table 3.9
Specification of Optical engine

Property Value Units
Cylinder Displacement 0.6 L
Bore 87.5 mm
Stroke 100 mm
Compression Ratio 10.01:1 N/A
Fuel Gasoline AKI 87
Injector Pressure 4.5 MPa
Injector Bosch 7-hole GDI injector
Piston Flat top piston with sapphire insert
Intake Ford 2L Ecoboost intake manifold
Exhaust Custom exhaust pipe

Figure 3.8: Optical Engine [2]

23

The optical engine was predominantly used for studying correlation of ions signal

features with pressure metrics as it was instrumented with sensors at multiple posi-

tions unlike the metal engine. Figure 3.9 depicts the location of the four ion probes

placed in the periphery of engine cylinder. The specifications of the ion probes are

mentioned in Table 3.10.

Figure 3.9: Ion probe location in optical engine [2]

24

Table 3.10
Specification of ion probe in optical engine

Electrode Properties Values Units

Material 304 Stainless Steel N/A

Tip outer diameter 0.38 mm

Tip protrusion 5 mm

Conditioning box rating Probe 1 250 kΩ

Conditioning box rating Probe 2 250 kΩ

Conditioning box rating Probe 3 250 kΩ

Conditioning box rating Probe 4 1 MΩ

3.6 Accelerometer

The sensor suite installed onto the engine included accelerometers. Accelerometers

are sensors capable of measuring acceleration and vibration. The engine was mounted

with two triaxial accelerometers capable of simultaneous acceleration measurements

along three orthogonal axes. The location of sensor mounting is shown in Figure

3.10 and brief specifications of the sensors are listed in Table 3.11. The accelerome-

ter output was connected to a conditioning box and then onto the data acquisition

system. Although the engine was instrumented with accelerometers, their use was

not emphasized in this study. Studies related to these sensors were conducted in a

25

previous study by Prabhu [1].

Figure 3.10: Final accelerometer mounting positions. Reprinted with per-
mission from original author. Refer Appendix B

26

Table 3.11
PCB-356A03 Accelerometer specifications

Specification Values (SI units)

Sensitivity (±20%) 1.02mV/(m/s2)

Measurement range ±4905 m/s2 pk

Frequency range (±5%) (y or z axis) 2 to 8000 Hz

Frequency range (±5%) (x axis) 2 to 5000 Hz

Resonant Frequency ≥50 kHz

Broadband resolution (1 to 10000 Hz) 0.03 m/s2 rms

Non-Linearity ≤1%

Transverse sensitivity ≤5%

Temperature range (operating) -54 to +121◦C

3.7 Data Acquisition System

A data acquisition system (DAQ) is a device used to log (in digital format) the output

signal of various sensors in a system. In this study, a Redline CAS system was used

for data logging purposes. The DAQ was equipped with both real-time and analog-

to-digital(A/D) modules. The specifications of the A/D modules are shown in Table

3.12. The DAQ was connected to the H25 crank encoder(3.4 to be used as a trigger

to log data. Additionally a Redline SODEP encoder signal conditioner was used to

27

ensure high quality signal isolation, conditioning and transmission to the DAQ.

The DAQ chassis used was mounted with one 4344 real-time processor module and

three 2840 analog modules thereby providing a total of 48 analog-digital channels.

The 4344 module processes engine encoder information, stores digitized data and

performs real-time calculations. The 2840 modules convert analog input to digital

information which can then be used by the 4344 module for performing calculations

and processing data. Further a combustion analysis software was used to post process

data to obtain additional information. Depending on the settings established during

data logging, results were obtained in time domain, angle domain or cyclic basis.

Table 3.12
Specification of analog input module

Paramter Value

Number of channels 16

Max. sampling rate 1Msamples/sec

Full scale input (FS) ±10,±5,±2,±1

Bandwidth (3dB) >1MHz@10V FS

Resolution 1 part in 4096 (12bits)

Accuracy ±0.05% of reading ± 1 LSB

Input impedence 1MΩ

Overvoltage protection 10VDC

Operating temperature 0-50degC

28

Chapter 4

Algorithm development

This study used multiple different sensors including ion sensor, exhaust pressure sen-

sors and optical crank encoder. Each of these sensors offered varied information

regarding engine combustion metrics including IMEP and CA50. A number of these

sensors also offered diagnostic capabilities viz. knock detection, misfire detection

etc. However in order to extract this information from the sensors, various different

analysis techniques were required. This chapter presents details on the various tech-

niques/algorithms developed and used for feature extraction, correlation studies and

neural network development

29

4.1 Correlation Studies

Amongst the first sensors studied as part of this body of work, is the ion sensor

(Section 3.3). A typical ion signal from the standalone ion probe is shown in Figure

4.1. As can be seen, the signal has multiple features that can be studied for possible

correlation with combustion metrics. Table 4.1 lists the various features analyzed

in this work. Once the features were extracted a Pearson correlation was used to

determine which ion features best correlate with metrics including IMEP, in-cylinder

peak pressure and peak pressure location.

Figure 4.1: Representative standalone ion sensor signal at load of 750kPa
and speed of 1500RPM

A Pearson correlation coefficient (Eqn: 4.1), developed by Karl Pearson, is a means

30

to find the linear correlation between two random variables X and Y. The value for the

coefficient ranges between -1 and 1, where a value of -1 indicates total linear negative

correlation. A value of 1 indicates total positive correlation and zero indicates no

correlation.

ρX,Y =
cov(X, Y)
σXσY

(4.1)

where cov(X,Y) is the covariance, σX and σY are the standard deviation in variable

X and variable Y

Table 4.1
List of Ion features analyzed in correlation studies

Feature
Ion metrics Area under ion curve

First
peak
metrics

Amplitude of first peak
Position of first peak
Half width of first peak
Prominence of first peak

Second
peak
metrics

Amplitude of second peak
Position of second peak
Half width of second peak
Prominence of second peak

The same method as mentioned for ion signal was used at multiple points in this

study including the analysis of correlation between features in the exhaust pressure

signal and IMEP as well as CA50. Figure4.2 shows a representative image of in-

cylinder pressure and the corresponding exhaust pressure for the same cycle. The

prominent features studied are also highlighted including Pressure maxima/minima,

area beneath the curve and pressure at exhaust valve opening.

31

Figure 4.2: Representative Exhaust pressure signal

4.2 Order Tracking

A prominent technique used for feature extraction throughout this study is order

tracking. Order tracking is a technique in signal processing that is used to analyze

signals with time varying frequency, specifically when the frequency is proportional to

the speed of rotation of a primary shaft or machine. This technique finds prominence

in analysis of rotary equipment including motors, engines, bearings etc.

32

The generic representation for a time vary frequency signal is given by Equation 4.2

[20]

X(t) = A(k, t)sin(2π(kp)t + φk) (4.2)

where;

k is the order being tracked

A(k,t) is amplitude of order k as a function of time

t is time

p is the period of primary order in seconds

In this study the crankshaft is the primary rotary shaft of reference. Also since most

signals logged by the combustion analysis software are relative to crankshaft position,

the signals are logged in angle domain. Thus the order analysis was conducted in the

angle or order domain and not time domain as given in Equation 4.2. Thus by

conducting a Fourier transform on the data it is possible to extract the orders and

corresponding phase and amplitude independent of engine speed. A list of steps

involved in order extraction is given below:

• If signal is in time domain convert it to angle domain using an RPM (Tachome-

ter) signal

• Filter the signal to remove any high frequency noise if need be

33

• Create signal blocks of appropriate length to obtain desired order resolution

• Apply window and conduct FFT on the signal

• Visually verify the computation using order colormap or waterfall plot

• Extract amplitude and phase information of desired orders

Figures 4.3 and 4.4 show a representative images of an ordermap for crank data and

a waterfall plot for orders in exhaust data respectively. Here crank data refers to the

speed signal derived from the output of the crank position sensor. The plots are for

transient tests conducted as part of the study. Further, event index refers to a firing

event or cycle count. The graphs are also color coded by the amplitude of the orders

as shown in the scales beside the plots.

Figure 4.3: Representative order-map of crank signal

34

Figure 4.4: Representative waterfall plot of kulite exhaust pressure signal

4.3 Knock Integral Calculator

Knocking is an engine phenomenon, wherein the unburnt gaseous mixture outside/be-

yond the normal flame front undergoes rapid combustion causing high frequency

pressure oscillations to be setup in the engine cylinder [21]. Knocking is a form of

abnormal combustion that can be caused due to a number of reasons, one of which

is improper spark timing. For certain operating conditions, the likelihood of knock

increases with advancing the spark as this leads to combustion being initiated sooner

than optimal timing which inturn causes pressure and temperature conditions to be

35

conducive for mixture beyond the normal flame front to be ignited and thus cause

engine knock.

From a measurement standpoint it is essential to detect and quantify knock as high

engine knock could cause component damage or even engine failure in severe cases.

This study thus looks at means of quantifying engine knock not just using the ICPS

but also using the ion signal. Knock detection was also evaluated using accelerometer

by Prabhu [1]. Figure 4.5 shows a representative image of an engine cycle in which

knock was occurring.

Figure 4.5: Representative figure of knock integral calculation (Speed :
1500RPM, IMEP : 11bar)

36

Note in the Figure 4.5 ’Bpass’ is an acronym for Bandpassed; also SC refers to spark

coil ion signal and SA refers to standalone ion signal. The yellow highlighted region

signifies the knock window (15 dATDC to 60 dATDC) considered for the specific test.

The figure shows both in-cylinder pressure signal as well as the ion signal from both

the coil integrated ion (SC) and the standalone ion probe (SA). The method involved

in calculating the knock integral are similar to that presented by Naber et al. [22]

. The specified signal of interest was bandpass filtered before calculating the knock

integral as given in equation 4.3

S(N) = 1
t2 − t1

∫
t2=t(θ2)

t1=t(θ1)
∣sf(t)∣dt =

1
n∑ ∣sf(i)∣ (4.3)

where

s is the signal of interest (Pressure or Ion in this case)

n is the number of sample or datapoints

θ1 is the start of the knock window in crankangle degrees

θ2 is the end of the knock window in crankangle degrees

In Equation4.3 ’s’ could be any signal. The equation is developed assuming the signal

is sampled in time domain. However it is applicable to angle domain sampled signals

as well with minimal modifications.

37

4.4 Misfire Generator

A portion of this study involved in-vehicle transient testing which was conducted

at Ford’s high speed test track facility in Dearborn, MI. The primary focus of the

vehicle testing was to evaluate the performance of the exhaust sensor in transient

conditions. A portion of the study also involved studying misfires during transient

driving conditions. In order to generate these misfires a custom Ford Misfire Gener-

ator software was used. Figure 4.6 shows a portion of the user interface as observed

in ATI Vision. ATI Vision is an integrated calibration and data acquisition tool used

to collects signals from the ECU and other sources.

Figure 4.6: User-interface of Ford’s Misfire Generator Software [1] .
Reprinted with permission from original author. Refer Appendix B

38

The same software was also used for misfire generation in the steady state dynamome-

ter tests conducted at the Michigan Tech. As shown in Figure 4.6 the software has

multiple misfire patterns that can be generated. For example, depending on the pa-

rameter setting, it can create misfires at predefined intervals in a particular cylinder

or create a walking pattern where a misfire is generated after a predefined number of

firing events i.e. independent of cylinder. The software can create a random misfire

pattern but this feature is not utilized for ease of analysis. The software is activated

by using the toggle switch parameter at any point while conducting the test. It is

however recommend to not have multiple misfire events occur continuously as this

could damage the catalytic converter.

4.5 Neural Networks

Artificial Neural Networks (ANN) are a method of machine learning that was devel-

oped to mimic the neurons in the brain [23] . Typical uses of neural networks include

linear and non-linear regression as well as logistical regression. A simple neural net-

work like that shown in Figure 4.7 consists of three segments or layers, an input layer,

an output layer and a hidden layer. The hidden layer is called so because the values

in this layer are typically not seen or displayed.

39

Figure 4.7: A simple neural network

Any neural network is composed of neurons or units also called activation units. The

activation function of these units is typically a sigmoid function (shown in equation

4.4. Wherein ’z’ is an input and the output g(z) ranges between -1 and 1.

g(z) = 1

1 + e−z
(4.4)

The system of equations (Eqn 4.5) , adapted from the work of Andrew [23], offer a

mathematical representation of the simple network shown in Figure 4.7. Further, a(i
j)

is the activation of unit i in layer j and Θ
(j) is the matrix of weights controlling the

function mapping layer j to layer j+1.

40

a
(2)
1 = g(Θ(1)

10 x0 +Θ
(1)
11 x1 +Θ

(1)
12 x2 +Θ

(1)
13 x3),

a
(2)
2 = g(Θ(1)

20 x0 +Θ
(1)
21 x1 +Θ

(1)
22 x2 +Θ

(1)
23 x3),

a
(2)
3 = g(Θ(1)

30 x0 +Θ
(1)
31 x1 +Θ

(1)
32 x2 +Θ

(1)
33 x3),

a
(3)
1 = g(Θ(2)

10 a
(2)
0 +Θ

(2)
11 a

(2)
1 +Θ

(2)
12 a

(2)
2 +Θ

(2)
13 a

(2)
3),

a
(3)
2 = g(Θ(2)

20 a
(2)
0 +Θ

(2)
21 a

(2)
1 +Θ

(2)
22 a

(2)
2 +Θ

(2)
23 a

(2)
3),

hθ(x) = a(4)1 ,

a
(4)
1 = g(Θ(3)

10 a
(3)
0 +Θ

(3)
11 a

(3)
1 +Θ

(3)
12 a

(3)
2).

(4.5)

There are many different types of neural networks such as the feed forward network,

radial basis network, support vector machine, recursive network etc. The networks

are typically distinguished based on the flow of information from one unit (or layer)

to another. This study primarily utilized a feed forward network and a recursive

network. Figures 4.8 and 4.9 show the architecture of such a network. The primary

difference between the two networks is that the recursive network uses previous out-

put/estimates (i-1) to generate an estimate for a given cycle (i). Further, ’W’ and ’b’

refers to the weight matrix and bias vector. Each layer has a set of weights assigned

to the nodes as well as a bias i.e a vector of ones applied for computational purposes.

Chapter 5 delves into greater details on the performance obtained using the different

networks.

41

Figure 4.8: Feed forward network

Figure 4.9: Recursive neural network

4.5.1 Feature Scaling

A neural network often uses multiple inputs; as such the inputs can each have varied

ranges. For example, in a transient engine study, if a parameter like peak cylinder

pressure is estimated using a neural network whose inputs are engine speed, spark

timing and manifold air pressure (MAP). The range or scale of each of the three

inputs is different i.e. engine speed could vary from 0-5000 rpm, spark could vary

42

from -30 dATDC to 10 dATDC and MAP from 0-1.5 bar. This being the case, it

is often beneficial to alter the inputs (also called as features) such that they are all

of a similar scale. This process of scaling the inputs is called feature scaling and is

analogous to normalization. Any input Xi can be scaled using equation 4.6

Xi =
Xi − µi
σi

(4.6)

where µi and σi is the mean and variance of the feature

4.5.2 Random Initialization

Previously it was mentioned that Θ
(j) is a matrix of weights that controls the mapping

of a function from one layer to the next. When training a network these weights are

progressively altered to find an optimal weighting factor, this is done using various

algorithms like gradient descent and advanced optimization algorithms.

In order for these optimization algorithms to function, an initial value is to be assigned

to these weights. If the same value is assigned to all the wights then all the units

would compute the same feature or function of the inputs i.e. the function for a(2)1

would be the same as that for a(2)2 and so on. This would make the system redundant

or more technically, lead to the problem of symmetric weights.

43

Random initialization helps eliminate the problem of symmetric weights and car-

ries out symmetry breaking by assigning the weights of the parameters in a random

fashion, but within a specified bound (ε) as shown in Equation 4.7.

− ε ≤ Θ
(l)
ij ≤ ε (4.7)

4.5.3 Principal Component Analysis

Neural networks quite often utilize multiple inputs, making for a high dimensional-

ity input data space. However with data sets that have high dimensionality there

is always a possibility of cross correlation between the various inputs, thereby mak-

ing them redundant. Principal component analysis (PCA) is method to transform

a dataset with multiple correlated variables into a set of linearly uncorrelated vari-

ables known as principal components [3]. The principal components are arranged in

descending magnitude of variance. Thus using PCA helps reduces the demensional-

ity of the data while also conserving the most relevant information from the original

dataset. This study as well, utilized PCA initially to reduce the demensionality of

the network used for combustion metric estimation.

Implementation of PCA is a two step process i.e

• Compute the covariance matrix Σ

44

• Compute the eigen-vectors of the covariance matrix using singular value decom-

position

Considering an input matrix or data space with ’n’ features and ’m’ samples, the

covariance matrix can be calculated as given in eqn. 4.8

Σ =
1
m

n

∑
i=1

(x(i))(x(i))T (4.8)

where x(i) is a n× 1 vector

Further any vector A can be represented as

A(m×n) = U(m×r)S(r×r)(V(n×r))T (4.9)

The matrices U, S and V in Equation 4.9 are the left singular vector, singular values

and right singular vector respectively. These matrices can also be found using singular

value decomposition of the covariance matrix mentioned in Equation 4.8. Lastly to

reduce a data matrix with ’n’ features or dimensions to ’k’ features the first ’k’ columns

of the left singular matrix is convolved with the input matrix (Eqn. 4.10)

z(m×k) = x(m×n)U(n×k) (4.10)

45

Chapter 5

Results and Discussion

The algorithms and methodologies used for processing the data of the various sensors

were discussed in the previous chapter. This chapter presents an analysis of the

results and discusses the performance of the sensor suite across the various tests

conducted C. This chapter is divided into four sections. Section 5.1 talks about the

analysis conducted using the ion sensor. Results obtained both on the regular and

optical engine are discussed. Results pertaining to the exhaust sensor are discussed in

Section 5.2. This section primarily talks about sensor performance during transient

(i.e in-vehicle) test conditions. Section 5.3 presents select results pertaining to the

use of the crank angle encoder. Lastly, Section 5.4 discusses the process of using the

various sensor outputs to develop a neural network for predicting combustion metrics

including IMEP and CA50.

46

5.1 Ion sensor

This study used two variants of ion sensors, the standalone ion sensor and the spark

coil integrated ion sensor discussed in chapter 3. The standalone ion sensors were

custom built prototypes and had undergone several design iterations over the course

of the study. Suitable mentions of the variants are made throughout this section.

Additionally, during the initial phase of the study only the standalone ion senor was

used, the coil ion probe was a later addition.

5.1.1 Correlation of ion features with pressure metrics

The first task in utilizing a particular sensor for control and diagnostic purposes is

to understand if there are signal artifacts within the signal that correlate with the

parameter needed to be sensed or controlled. Thus a range of steady state tests were

conducted to evaluate the correlation of various ion signal artifacts with in-cylinder

pressure metrics including the pressure peak location and amplitude. A list of the

acronyms for the features used in ion studies is listed in Table 5.1 and shown in Figure

5.1

47

Table 5.1
Ion correlation studies : Feature acronyms

Acronym Feature

CA I Pk1 Location of first ion peak

CA P Pk Location of pressure peak

P Pk Amp Amplitude of pressure peak

I Pk2 Amp Amplitude of second ion peak

I Area Area under ion curve

I Pk1 width Half width of first ion peak

5.1.1.1 Ion Correlation studies - Metal engine

The various ion artifacts investigated were discussed in Chapter 4 Section 4.1. Figure

5.1 offers a depiction of the same. Table 5.2 lists the steady state tests conducted

to evaluate correlation of ion signal artifacts with pressure metrics. The alumina

based standalone ion probe was used during this phase of the study. The raw ion

signal was connected to a 1MΩ conditioning box developed by Ford Motor Co and

mentioned in Section 3.3 Table 3.6. The signal was sampled at intervals of 0.5CAD.

Additionally, during post processing, a fourth order (one-way) Butterworth filter with

cutoff frequency at 25 orders was used. Two way filtering was done to avoid phase

delay.

48

Figure 5.1: Ion sensor signal artifacts studied

Table 5.2
Test matrix for ion sensor evaluation - Cylinder 2

Test Speed IMEP Intake

advance

Exhaust

retard

CA50 COV

RPM KPa deg deg deg %

Test 1 1500 250 0 0 8 0.74

Test 2 1500 750 0 0 8 0.59

Test 3 3500 250 0 0 8 0.68

Test 4 3500 750 0 0 8 0.42

Figure 5.2 shows the in-cylinder pressure and standalone ion probe signal for a typical

49

combustion cycle. The spark timing is also marked on the ion signal. The slight

oscillation in ion signal after the spark but before the TDC is an artifact introduced

due to the filtering process.

Figure 5.2: Filtered ion signal for a normal combustion cycle (Speed :
1500RPM , IMEP : 750kPa)

Upon extracting the features of interest, a correlation study was conducted between

the various features extracted and in-cylinder pressure metrics. Figure 5.3 shows

the correlation (Pearson Correlation Coefficient - refer Section 4.1) of first ion peak

50

artifacts with pressure metrics for Test 1. The dataset was composed of 300 cycles of

data with the engine operating at a speed of 1500 RPM and IMEP of 250kPa. The ion

peak was extracted for the ion signal corresponding to each cycle and evaluated for

correlation with the pressure metrics listed. Figure 5.3 lists ion metrics on the x-axis

and pressure metrics on the y-axis. Table 5.1 lists the expansion for the acronyms

used in the figure. It was seen that for Test 1 (Figure 5.3), the correlation of location

of first ion peak (CA I Pk1) with pressure peak amplitude (P Pk Amp) and locations

(CA P Pk) was greater than 0.6. However, the other ion features including area under

ion curve (I Area), ion first peak amplitude (I Pk1 Amp) etc. showed poor correlation

with pressure metrics including IMEP, pressure peak amplitude and location.

Figure 5.3: Correlation of Ion sensor signal artifacts with pressure metrics
- Test 1 : 1500RPM, 250kPa

Conducting the same analysis on the dataset of Test 2 (Figure 5.4), it was seen that

the location of first ion peak showed highest correlation with pressure peak amplitude

51

and location. However the magnitude of the correlation coefficients was lower than

at low load conditions.

Figure 5.4: Correlation of Ion sensor signal artifacts with pressure metrics
- Test 2 : 1500RPM, 750kPa

Similar analysis was conducted across the various datasets mentioned in Table 5.2

and the results are tabulated in Table 5.3. A correlation coefficient of above 0.6 was

considered to be satisfactory to use a particular artifact for pressure metric estimation

and other diagnostic applications based on prior work by Naber et al. [24].

Thus from Table 5.3 it can be seen that the ion signal offers a good estimate of

peak pressure location. This is evidenced by the fact that the correlation of ion

peak location with pressure peak location is greater than the previously mentioned

threshold of 0.6. However, the first ion signal peak does not offer consistently good

correlation (R/>0.6) with amplitude of pressure peak.

52

Table 5.3
Results of correlation studies of ion sensor

Correlation Test 1 Test 2 Test 3 Test 4

First peak

& Pressure

CA I Pk1 - P Pk Amp -0.64 -0.52 -0.60 -0.52

CA I Pk1 - CA P Pk 0.69 0.63 0.64 0.62

Between Ion

Metrics

I Pk2 Amp - I Area 0.71 0.65 0.59 0.63

I Pk2 Amp - I Pk1 width 0.73 NA NA 0.70

No. of 2
nd peaks 210 127 233 158

First peak &

Pressure *

CA I Pk1 - P Pk Amp -0.64 -0.66 -0.60 -0.58

CA I Pk1 - CA P Pk 0.69 0.74 0.65 0.66

* Correlation in cycles with 2 peaks N/A - Not calculated

Further, in cycles with two ion peaks, the first ion peak showed a correlation of

greater than 0.65 with location of peak pressure. The amplitude of second ion peak

also correlated well (R >0.6) with area under ion curve.

5.1.1.2 Optical engine

The ion studies on the metal engine showed that there are correlations between the

ion signal characteristics and pressure metrics. The metal engine however has certain

restrictions on the spatial position of the ion sensor, thereby making it hard to study

the influence of sensor location on correlation studies. The optical engine however,

53

was instrumented with four ion sensors in Figure 3.9. Thus the optical engine could

help offer a visualization of the combustion process and also showcase the influence

of sensor position on correlation studies. Table 5.4 lists a subset of tests conducted

on the optical engine to understand the influence and signal quality of ion sensors

placed on the cylinder periphery. It is to be noted that all the tests are conducted at

low speed-load conditions to prevent damage to the optical engine.

Table 5.4
Test matrix for ion sensor evaluation in optical engine

Test Speed IMEP CA50 Spark Adv. Start of inj. Tumble

RPM KPa dATDC deg dBTDC

Test 1 1000 236 4.2 18 360 OFF

Test 2 1000 257 12.3 12 360 OFF

Test 3 1000 253 8.1 12 360 ON

Figure 5.5 shows the output of the ion sensors for a normal combustion cycle. It

can be observed that based on the location of the sensor, the waveform intensity and

shape changes. The intensity of each signal rises at a different crank-angle, indicative

of the fact that the flame speed and in-cylinder combustion dynamics play a role in

determining the signal amplitude. Figure 5.6 shows the ion signal for a misfire cycle

in the same dataset.

54

Figure 5.5: Output of ion probes on optical engine - normal combustion
cycle - Test 1

Figure 5.6: Output of ion probes on optical engine - misfire cycle - Test 1

55

In Figure 5.6 can be seen that the absence of combustion inhibits ion formation,

thereby causing the ion signal to be negligibly small. The lack of combustion also

results in low/negative IMEP.

Going beyond merely just visualizing the ion signals, correlation studies conducted

using the output of the four ion sensors, offered some interesting results. Figure 5.7

shows the correlation of the various ion sensor artifacts with the pressure metrics.

The figure showcases the correlation study results across the various tests conducted

as well. For sensor 1 it was seen that none of the features showed consistently good

correlation (i.e R ≥ 0.6) for all the tests conducted. Crankangle location of the first

peak of the ion signal showed the strongest correlation with both amplitude and

location of the pressure peaks. However low correlation was observed with IMEP.

Figures 5.8, 5.9 and 5.10 offer a similar depiction but for ion sensors 2, 3 and 4

respectively. Observing the plots it can be seen that the trends are largely the same

but the magnitudes are different based on the sensor location. This goes to show that

the location of the ion sensor plays a vital role in combustion sensing.

Thus if the ion sensor is to be used for control and diagnostic applications, location

of the sensor would have to be a key consideration. Further, for the test conditions

studies, ion sensors 3 and 4 showed the strongest correlation with pressure peak loca-

tion and amplitude as seen from Figures 5.7 - 5.10. The results were also consistent

across the datasets. The results are also similar to that obtained on the metal engine.

56

F
ig

u
re

5.
7:

C
or
re
la
ti
on

of
io
n
se
ns
or

1
w
it
h
pr
es
su
re

m
et
ri
cs
,
ac
ro
ss

al
l

te
st
s

57

F
ig

u
re

5.
8:

C
or
re
la
ti
on

of
io
n
se
ns
or

2
w
it
h
pr
es
su
re

m
et
ri
cs
,
ac
ro
ss

al
l

te
st
s

58

F
ig

u
re

5.
9:

C
or
re
la
ti
on

of
io
n
se
ns
or

3
w
it
h
pr
es
su
re

m
et
ri
cs
,
ac
ro
ss

al
l

te
st
s

59

F
ig

u
re

5.
10

:
C
or
re
la
ti
on

of
io
n
se
ns
or

4
w
it
h
pr
es
su
re

m
et
ri
cs
,
ac
ro
ss

al
l

te
st
s

60

5.1.2 Knock detection using Ion probe

Knock detection is a critical aspect of engine control as knock amplitudes over a

certain limit could be detrimental if not fatal, to the engine. Accurate information

regarding the occurrence of in-cylinder knock and its amplitude is vital in ensuring

the powertrain control module (PCM) takes corrective measure to prevent damage

to the engine. The in-cylinder ion sensors were thus studied to evaluate if they could

offer accurate information regarding knock, thereby proving to be an alternative for

conventional knock sensors.

Table 5.5 offers a list of operating conditions under which the ion sensor’s knock

detection capabilities were evaluated. In accordance with an in-house procedure to

conduct knock tests, first the spark is altered on all cylinders until knock is observed

in cylinder 2. Once knocking occurs in the desired cylinder i.e. cylinder 2, then the

spark on all cylinder except cylinder 2 (which houses the ion sensors) were retarded

to prevent knocking in them. Care was also taken to ensure that the magnitude of

knock in cylinder 2 was below a nominal value of 2 bar. This was done by ensuring

the spark timing for cylinder 2 is not advanced more than about 30degBTDC at

2500RPM, as high knock could damage the sensors and the engine. The threshold

on spark timing is also dependent on throttle and intake air temperature amongst

other factors. In the knock test, the valve timings and wastegate setting were set to

61

’auto’ and thus were not manually controlled. All tests were also conducted under

stoichiometric conditions. Further, the latest version of the standalone ion sensor was

installed during these knock tests and was connected to the 300kΩ conditioning box.

The coil ion probe was connected to the 250kΩ conditioning box.

Table 5.5
Test matrix for knock detection using ion sensors

Test Speed IMEP Knock Amp* Spark CA50

(RPM) (kPa) (bar) (dATDC) (dATDC)

Test 1 1500 1113 1.1 -6.5 20

Test 2 1500 1044 1.62 -2.0 24.7

Test 3 1500 921 0.19 3.5 33.9

Test 4 2500 680 0.57 -25.3 4.0

Test 5 2500 673 0.83 -26.3 1.5

Test 6 2500 662 1.05 -29.3 -1.0

Test 7 2500 724 0.69 -20.5 6.0

Test 8 2500 713 1.24 -23.5 3.0

Test 9 2500 694 1.98 -27.5 2.1

* 95
th percentile of knock amplitude

In the knock test previously listed (Table 5.5), the sampling rate for the in-cylinder

pressure and ion signals were not uniform throughout. A knock window was defined,

62

in the test conducted, that spanned -30dATDC to 70dATDC. Within the knock win-

dow the sampling rate was 0.25CAD, outside the knock window it was 0.5CAD. This

was done so as to capture the knock events. Figure 5.11 offers a visual representation

of the knock window. A higher resolution was not achievable due to issues with the

acquisition system used at the time of testing.

Figure 5.11: Knock window for knock tests

Considering the dual sampling rates of the pressure and ion signals, the signals had

to be processed to obtain a uniform sampling rate. Figure 5.12 offers a flow chart of

steps involved in obtaining the uniform sampling rate for the pressure and ion signals.

First the pressure and ion signals outside of the knock window (i.e before -30dATDC

63

and after 70dATDC) were upsampled by a factor of two so that ∆θ is 0.25 CAD

throughout. Then the signal is low pass filtered to remove aliasing using an elliptical

filter (default Matlab lowpass filter). For ease of understanding, filtering is conducted

in frequency domain. The pass band of the lowpass (Fpass) was 45% of the sampling

frequency(Hz) of the low resolution portion (i.e 0.45*(360/0.5)*RPM/60) and the

sampling rate(Fs) was equal to the sampling rate(Hz) of the high resolution portion

(i.e. (360/0.25)*RPM/60).

Figure 5.12: Filtering method to obtain uniform sampling rate

The pressure signal was then bandpass filtered using elliptical filters with a pass

band of 5kHz to 8kHz and sampling rate equal to the sampling rate(Hz) of the high

resolution portion (i.e. (360/0.25)*RPM/60) to obtain the filtered pressure signal

64

(termed as knock pressure in Figure 5.13). Additionally, the same bandpass filters

were applied to the ion signals but before filtering the signal a window was applied

to the ion signals. The type of window applied varied based on the algorithm used

and included static Tukey windows and adaptive windows. Section 5.1.2.1 has more

details of the methods developed to create the various windows used. Figure 5.13 and

5.14 show the bandpassed signal for a knocking and non knocking cycle of a particular

dataset. It is also to be noted that in the graphs henceforth, the standalone ion probe

would be referred to as SA and the coil ion probe as SC. Also ’BPass’ refers to

bandpassed signal.

Figure 5.13: In-cylinder Pressure and ion signal for cycle with highest
knock - elliptical bandpass(5-8kHz) filter

65

Figure 5.14: In-cylinder Pressure and ion signal for cycle with least knock-
elliptical bandpass(5-8kHz) filter

Once the signals were bandpass filtered the pressure intensity (PI) and ion inten-

sity(II) were calculated. The procedure to calculate PI and II are similar to the

procedure described in Section 4.3. The primary intent of this step was to know if

the ion intensity follows a log-normal distribution. The pressure intensity or knock

integral is known to follow a log-normal distribution under knock conditions, based

on previous work conducted by Naber et al. [22]. Thus if under the same knocking

conditions, the ion integral as well correlates with pressure intensity and followed a

log-normal distribution ion signal can potentially be indicative of in-cylinder knock.

66

Figures 5.15-5.17 show the distribution of the pressure and ion intensity respectively.

Each figure also shows the probability and cumulative distribution function.

Figure 5.15: Distribution of pressure intensity - Test 1

67

Figure 5.16: Distribution of ion intensity for coil ion probe - Test 1

Figure 5.17: Distribution of ion intensity for standalone ion probe - Test 1

Through visual verification it was seen that a log normal distribution is a good fit

68

for pressure intensity and ion intensity (both probes). Both ion intensities showed

similar skewness but the standalone ion intensity showed higher kurtosis.

In the knock study, initially, a static Tukey window(between 15dATDC to 60dATDC)

was applied to the ion signals, both coil and standalone. The use of this stationary

window causes an issue in cycles where the flame front occurs within the window. For

example in Figure 5.14, the flame front as detected by the standalone ion probe, is

within the knock window of -30dATDC to 70dATDC. The steep rise in ion concentra-

tion (at 21dATDC) causes the large oscillations seen on the bandpassed standalone

ion signal. This in turn leads to an improper estimate of ion intensity and could lead

to false classification of the cycle as one with high knock. To counteract this problem

various methods were developed that changed the start of the windows applied based

on a set of criteria specified. Subsequent sections describe the approaches developed.

5.1.2.1 Adaptive window

One method developed was to use an adaptive window instead of a simple static win-

dow. In this method, the location of the flame front as observed by the standalone ion

sensor is first detected. The start of the window applied is then offset by a specified

number of CAD w.r.t the location of the flame front detected. Figure 5.18 shows a

visual representation of the algorithm developed, wherein the first blue triangle indi-

cates the location of flame front w.r.t. standalone ion probe and the second triangle

69

indicates the start of the window applied. In this particular dataset a threshold of

1V was used to identify flame front and an offset of 4 CAD was used. It is to be

noted that in this method the same window is applied to the coil and standalone ion

signals.

Figure 5.19 shows the correlation of the ion intensity with the pressure intensity for the

coil and standalone ion signals after implementing the adaptive window. The results

show that with the application of adaptive windowing technique, the performance of

the standalone ion probe was good (R=0.7>0.6) but the performance of the coil ion

probe was not satisfactory(R=0.5<0.6).

Figure 5.18: Implementation of Adaptive windowing -Test 2

70

Figure 5.19: Correlation of ion intensities with adaptive windowing -Test
2

5.1.2.2 Adaptive and Static window

Another approach tried was to use separate windows for each of the ion sensors.

The coil ion probe used a static window and the standalone ion probe used the

adaptive window, mentioned previously. Figure 5.20 offers a visual representation of

the algorithm. The window applied to the coil ion signal starts at 15dATDC and is

45CAD long, while the window applied to the standalone ion signal is 35CAD long

and is offset from the flame front by 4CAD. The blue triangles indicate the flame

front location and the start of the adaptive window. The lengths of the window and

the offset was decided by trial and error.

Figure 5.21 shows the correlation of the ion intensities with pressure intensity for

71

the two ion sensors using the adaptive and static windowing technique. The window

applied to the standalone ion signal in this technique is similar to that of the previous

technique and hence there isn’t any improvement in the correlation achieved for the

standalone ion probe. However, applying the static window, to the coil ion signal did

not show a noticeable improvement in correlation with pressure intensity. Further,

in certain cases, when the ringing portion of the coil ion signal was within the static

window zone, it lead to large oscillations being observed in the bandpassed coil ion

signal. This in turn lead to an improper estimate of the coil ion intensity. To avoid

this scenario, a modified dual adaptive windowing technique was developed.

72

Figure 5.20: Implementation of Adaptive static windowing- Test 2

Figure 5.21: Correlation of ion intensities with Adaptive static windowing-
Test 2

73

5.1.2.3 Modified dual adaptive window

The final method developed was the modified dual window technique, wherein a

separate window was used by each of the ion sensors and both of them were adaptive

in nature. The window used by the coil ion probe, 35CAD long, was designed to avoid

the ringing phase of the coil ion signal and the window applied to the standalone ion

probe, also 35CAD long, was designed to be applied at an offset with respect to

the flame front detected. Figure 5.22 offers a visual representation of the algorithm.

The blue triangles indicates the point of flame detection and the window start for

the standalone probe ion signal(6CAD offset used here). The red triangles indicate

the location of the start of ringing and the start of the window for the coil ion

probe signal(8CAD offset used here). It was seen that using the modified adaptive

windowing technique, correlation of both ion intensities with pressure intensity was

improved. Thus the technique implemented reduced the influence of the flame front

and ringing on the ion intensity estimates.

Using this method offered a good correlation (R > 0.6) with pressure intensity for

both ion probes as can be seen from Figure 5.23. This was true both at low and

high speed regimes, making the method the more reliable amongst the techniques

developed. Further a slight decrease in R value of the standalone ion intensity is

observed due to a change of dataset used for analysis.

74

Figure 5.22: Implementation of Modified adaptive windowing- Test 5.

Figure 5.23: Correlation of ion intensities with modified adaptive window-
ing - Test 5

75

5.1.2.4 Effect of using the adaptive windowing

In Section 5.1.2.1, the effect of using the various techniques in knock detection were

discussed. It was seen that the modified adaptive windowing technique showed im-

proved performance in terms of offering a correlation between the ion intensity and

pressure intensity for knock tests. Figure 5.24 and 5.25 show a comparison of the

linear spectra (in a log scale) of pressure and ion signals. The plots shows the lin-

ear spectrum for the cycle with the highest and lowest knock amplitudes within the

dataset (i.e Test 5).

Figure 5.24 shows the results when a simple static window is applied to the three

signals viz in-cylinder pressure, standalone ion and coil ion signal. It can be seen that

for the cycle with highest knock, the spectrum of the in-cylinder pressure shows a peak

around 6kHz-7kHz, which corresponds to the frequency of knock for the engine used

in this study. However, the standalone and coil ion signals for the same high knock

cycle does not show a prominent peak when a static window is used. It is to be noted

that though a minor peak is observed on the standalone, it is indistinguishable from

peaks at other frequencies. This indicated that using a static window for processing

ion signal is not beneficial in obtaining information regarding knock.

76

Figure 5.24: Linear spectrum visualization without using the custom win-
dowing algorithm - Test 5

Figure 5.25 on the other hand shows the liner spectrum of the in-cylinder pressure and

ion signals when the ion signals are processed using the modified adaptive windowing

technique discussed earlier. The results are shown for the same dataset and cycles in

Figure 5.24.

Further in Figure 5.25 it can be seen that the linear spectrum of the standalone ion

signal shows a peak around the knock frequency of 6kHz-7kHz, for the cycle with high

77

knock, when the modified windowing technique is used. However the linear spectrum

of the coil ion probe do not show as a prominent peak around the knock frequency.

One possible cause for this could be that the position of the coil ion probe causes an

issue in offering reliable information regarding knock. None the less the results show

that for the conditions tested, the standalone ion probe is capable of knock detection.

Figure 5.25: Linear spectrum visualization with using the custom window-
ing algorithm - Test 5

78

5.1.2.5 Conclusions on ion sensor studies

Through the ion sensor studies conducted on the metal engine, it was found that loca-

tion of ion signal peak could be used to correlate with pressure metrics. Further, the

knock studies conducted also showed that the ion signals required additional process-

ing to be able to detect knock. The use of the modified adaptive windowing technique

showed better results. Despite the knock amplitude being relatively low (<2bar) the

standalone ion sensor was able to detect knock. Through the optical engine studies

it was found that location of the sensor also plays a critical role in obtaining good

correlations with pressure and combustion metrics. Detailed conclusions of the ion

sensor studies are listed in Chapter 6.

79

5.2 Exhaust pressure sensor

The study of exhaust pressure, as showcased in this body of work, was conducted

across two facilities. The steady state tests were conducted in the APS labs at Michi-

gan Tech. while the in-vehicle transient tests were conducted at the Ford test facility.

As mentioned previously, the engine was instrumented with two exhaust sensors. A

Kulite sensor, placed close to the exhaust port (10mm) and an Omega sensor, located

at a standoff(18in). The bulk of this study utilizes the Kulite sensor as it was able

to capture the exhaust dynamics better than the Omega. A comparative analysis of

the Omega and the Kulite is also discussed towards the end of this section.

5.2.1 Feature extraction and correlation with combustion

metrics in steady state

Table 5.6 lists a subset of various operating conditions at which steady state data was

acquired. The collected data was analyzed to identify features in the exhaust signal

that correlate with pressure and combustion metrics. Figure 5.26 shows the exhaust

signal under normal combustion conditions. The various sections of the exhaust signal

are color coded based on the corresponding cylinder pressure. The "star" markers

signify in-cylinder peak pressure and exhaust maxima; circles indicate EVO.

80

Table 5.6
Test matrix for exhaust sensor evaluation

Test Speed IMEP Intake

advance

Exhaust

retard

CA50 COV

RPM KPa deg deg deg %

Test 1 1500 250 0 0 8 0.74

Test 2 1500 750 0 0 8 0.59

Test 3 3500 250 0 0 8 0.68

Test 4 3500 750 0 0 8 0.42

Test 5* 1500 250 -35 35 8 9.89

* Lambda=0.9 - Misfire testing

Figure 5.26: Exhaust signal during healthy combustion in all cylinders -
Test 5 . "star" indicates maxima , "circle" indicates EVO

81

Previous studies by Prabhu [1] showed that the exhaust pressure could be used to

identify misfire events. Figure 5.27 shows the visual representation of in-cylinder and

exhaust pressure of a cycle with misfire in cylinder 2. The engine used in this study

has four cylinders and follows the firing order 1-3-4-2. Thus in Figure 5.27 it can

be seen from the in-cylinder pressure and IMEP mentioned, that cylinder 2 misfired.

Concretely, the exhaust pressure of cylinder 2 showed a deep trough, indicative of the

misfire in the cylinder. Thus by using the amplitude of the exhaust pressure minima,

misfire events can be easily distinguished from normal combustion cycles. However,

as shown in Figure 5.28 and 5.29, the exhaust pressure offers additional information

as well.

Figure 5.27: Exhaust signal for a cycle with misfire - Test 5

82

Figure 5.28: Correlation of Exhaust pressure with in-cylinder pressure at
EVO - Test 5

Figure 5.29: Correlation of incylinder pressure peak with pressure at EVO
- Test 5

83

When evaluating correlation of exhaust pressure with incylinder pressure metrics, it

was observed that a direct correlation between the two parameters was weak. How-

ever, both exhaust pressure and incylinder peak pressure correlate well (i.e R >0.6)

with in-cylinder pressure at EVO as shown in Figure 5.28 and 5.29. The figures show

the correlation for all four cylinders at a particular operating condition i.e Test 5.

5.2.2 Factors affecting exhaust signatures

The steady state studies showed that the exhaust pressure contains valuable infor-

mation that could be used for diagnostic and control applications. However, as the

operating conditions change, the exhaust waveform shape change, as seen in Figure

5.30.

Figure 5.30: Exhaust pressure waveform at various operating conditions

84

In Figure 5.30, each exhaust waveform corresponds to a particular operating condi-

tion, and the ◦ markers indicate the EVO of each cylinder. Further, considering how

drastically the waveform changes, it would be incorrect to use a single signal artifact

(ex. signal maxima) as a feature to evaluate exhaust correlation with combustion

metrics. Thus it was critical to understand exhaust pressure signatures and factors

that affect waveform signatures. This exercise helped identify signal artifacts that

could be used to correlate exhaust pressure with combustion metrics.

In an effort to make the identification of exhaust signatures and in-turn the correlation

studies more comprehensive, tests were conducted in a vehicle setup under real-world

testing conditions. Figure 5.31 shows a section of the drive profile for a particular

road test conducted. The effect of various engine parameters including load, engine

speed, spark timing etc. on exhaust signatures was studied.

Initially it was found that engine load could be used to classify waveforms into two

categories. A normalized load index of 0.27 was used as a threshold to segregate

waveforms as Type I (ones with prominent peaks) and Type II (ones with troughs).

The threshold was found by trial and error. In type I waveforms, the exhaust peak

showed good correlation with combustion metrics as seen in Figures 5.32 - 5.35.

85

Figure 5.31: Section of transient drivecycle

Figure 5.32: Correlation of Type I waveform exhaust peaks with in-cylinder
pressure

86

Figure 5.32 shows the correlation of exhaust peak pressure with in-cylinder pressure

for all cylinders to be greater than 0.74. Additionally the exhaust maxima was seen

to saturate at 400kPa; This was due to the rating of the pressure sensor used for this

particular test. In subsequent tests the sensor was suitably altered to avoid saturation.

Also the cycles encircled in the bottom left represent cycles with deceleration fuel shut

off (DFSO) and cycles with a synchronization issue. The exhaust peaks however did

not show as good a correlation with location of in-cylinder peak pressure. Figure 5.33

shows the correlation. It can be seen that all the cylinders showed a correlation lower

than 0.6. Further the data-points encapsulated in the rectangle indicate cycles with

DFSO, sync issues and spark retard (i.e the compression peak was detected).

Figure 5.33: Correlation of Type I waveform exhaust peak location with
in-cylinder pressure location

87

The exhaust maxima for Type I cycles also showed good correlation with combustion

metrics including IMEP and CA50. Figure 5.34 shows the correlation of the exhaust

maxima with IMEP for Type I cycles. It can be seen that irrespective of the cylinder,

the exhaust maxima shows a correlation greater than 0.97 with IMEP. The cycles with

near zero and negative IMEP were cycles with DFSO, sync issues or spark retard.

Figure 5.34: Correlation of Type I waveform exhaust peak with IMEP

Similarly, the exhaust peak also showed a correlation greater than 0.69 with location

of 50% MFB or also called CA50. This correlation was not as high as that seen for

IMEP, thereby indicating that exhaust pressure can be used for IMEP estimation

with greater accuracy than for CA50 estimation.

88

Figure 5.35: Correlation of Type I waveform exhaust peak with CA50

Moving on to the low load cycles or the Type II waveforms; The exhaust minima was

used for correlation studies as the waveforms for a number of cycles did not have a

prominent peak. Figure 5.36 shows the results of the correlation studies.

Figure 5.36: Correlation of Type II waveform exhaust trough with in-
cylinder pressure peak

89

As seen in Figure 5.36, apart from the encapsulated datapoints that signify DFSO,

the amplitude of exhaust minima does not vary by more than about 25kPa with

changes in in-cylinder peak pressure. This lead to a correlation of less than 0.5 across

all the four cylinders.

In order to study exhaust waveforms under low load conditions in greater detail, an

algorithm was developed that used any particular engine parameter (Engine speed in

this case) and color coded exhaust waveforms based on their intensity of the chosen

parameter. This helped identify parameters that could be used to distinguish the

various waveform signatures. Additional test data was also acquired to conduct this

phase of the study. The drivecycle of the transient test is shown in Figure 5.37.

Figure 5.37: Transient drivecycle for evaluating exhaust signatures of low
load cycles

90

When analyzing the Type II exhaust waveforms using the tool developed it was found

that engine speed played an important role in defining waveform signatures as well.

Figure 5.38 shows a series a images where engine speed was used to segregate exhaust

waveforms pertaining to a particular cylinder.

Figure 5.38: Segregation of Type II waveforms using engine speed

Figure 5.38a shows all the Type II waveforms color coded by RPM. In doing so, three

RPM bands were observed, each having a peculiar signature. Each of these bands

were segregated and shown in figures 5.38 b, 5.38 c and 5.38 d.

91

The three RPM bands were found to be as listed below

• Type A - Engine speed less than 1900 RPM

• Type B - Engine speed between 1900 RPM and 2800 RPM

• Type C - Engine speed greater than 2800 RPM

However, within the RPM bands a split distribution was observed. Thus the sec-

ondary classification of waveforms was further refined with a tertiary classification

viz. Type A was further segregated using brake torque, Type B using spark timing

and Type C using load. This lead to the classification diagram shown in Figure 5.39

that helped identify the various exhaust signatures.

Figure 5.39: Segregation of Type II waveforms using engine speed

* TqBrkreq signifies brake torque

Upon classifying the low load cycles, a correlation study was conducted to identify

features in the respective exhaust waveforms to find correlations with combustion

92

metrics. Table 5.7 lists the various artifacts studied and color codes the results.

Green indicates that a correlation of greater than 0.6 was obtained for the correlation

of the parameter with the respective combustion metric and red indicates a poor

correlation (R<0.6). In a few cases there were not enough cycles with a particular

type of waveform to conduct a correlation study. A notable feature is that the Type

C cycles showed a poor correlation with in-cylinder pressure despite a number of

different artifacts being evaluated. In part this might be due to the fact that the Type

C cycles mostly occurred during DFSO/Tip-out conditions as seen from Figure 5.40.

The location of the other low load cycles are also mentioned in the same figure. The

lack of combustion during the tip-out/DFSO portions of the cycle, results in minimal

exhaust pressure rise during the blowdown portion of the cycle thereby making it

hard to find signal artifacts that correlate with combustion metrics as there was a

lack of combustion itself.

93

Table 5.7
Correlations studied for low load cycles

*N/A Not evaluated due to low number of cycles

Figure 5.40: Location of various Type II waveforms over a drivecycle

94

The exhaust classification and correlation studies showed that the exhaust pressure

was rich in information. However, using a signature/pattern recognition approach to

extract features that correlate with combustion metrics was found to be a cumber-

some process. Order tracking/extraction of the exhaust pressure provides the same

information with lesser computational effort. Thus subsequently, this study used

order tracking to extract information from the exhaust sensor.

95

5.2.3 Misfire detection under transient conditions

Previous studies by Prabhu [1] have shown that exhaust pressure signals can be used

for misfire detection. However, a number of the tests in these studies were conducted

under steady state conditions. This study conducted tests to identify misfire under

transient on-road conditions. The Ford misfire generator software (refer Section 4.4)

was used to generate misfires in a predefined sequence/pattern. The pattern used is

listed in Table 5.8. An input of 83 causes the misfires to occur in a walking fashion.

Table 5.8
Pattern input to misfire software

1 83 255 0 1

0 X X X X

0 X X X X

The data collected over the transient test was processed to analyze misfire events on

an individual cylinder basis. Figure 5.41 shows the exhaust waveforms corresponding

to cylinder 1 color coded by load. The misfire and DFSO events/cycles are the

waveforms with a significant trough. Although misfire and DFSO both result in a

lack of combustion in the cylinder chamber, they are quite different in nature. DFSO

is intentionally induced as part of the PCM strategy while misfire can occur due to a

96

number of causes including insufficient charge, improper spark or valve timings etc.

Misfire detection is essential to ensure there is no power loss in the drivetrain and

also to minimize hydrocarbon emissions.

Figure 5.41: Misfire and DFSO detection

Using the amplitude of the exhaust troughs the misfire events could be distinguished

from the normal combustion cycles. An algorithm was developed to extract the

required signal features and detect the misfire events. Figure 5.42 shows the perfor-

mance of the algorithm with respect to a particular cylinder. For the purpose of the

analysis, cycles with IMEP lesser than zero were classified as misfires and cycles with

97

an IMEP lower than 46% of the mean IMEP were classified as partial burns. The

thresholds used were based on work done by Cesario et al. [25]. Further, the DFSO

events were differentiated from the misfire events using PCM parameters/commands.

Figure 5.42: Misfire events as detected by algorithm

To verify if the algorithm developed was functioning as expected, two indices were

developed called as Detectability index(DI) and False flag index (FFI). DI is a measure

of how well the algorithm is able to identify misfires/DFSO. FFI indicates the number

of cycles that were detected as a misfire/DFSO but were not actually a misfire/DFSO

event. Mathematically the indices could be defined as:

98

DI =
X ∩ Y

number of actual misfires

FI =
X − Y

number of detected misfires

where X represents a set of cycles detected as misfires by the algorithm and Y rep-

resents as set of cycles with actual misfire. Table 5.9 shows the performance of the

algorithm in terms of the indices discussed. It can be seen that the algorithm was

able to detect most of the misfire events. However there were a few cases when the

false flag index was greater than a nominal value of 5%; possible causes for this are

listed below

1. Thresholds used to classify or identify misfire/DFSO events would need to be

fine tuned

2. On the top level, waveforms are classified based on load index. Since data is

logged in sync mode, certain type I waveforms get classified as type II because

of the time ATI takes to re-measure/refresh the load index

3. Exhaust waveform had bias (a drift in sensor output). This causes waveform

classification to become harder

99

Table 5.9
Detection algorithm performance

DI Value(%) FFI Value (%)

Cyl. 1 95.73 Cyl. 1 4.85

Cyl. 2 95.02 Cyl. 2 7.19

Cyl. 3 100.00 Cyl. 3 0.58

Cyl. 4 100 Cyl. 4 0.00

5.2.4 Order tracking

Previously in Section 5.2.2 it was shown that the use of exhaust signatures and fea-

ture extraction resulted in good correlation with combustion metrics for a number

of operating conditions but the technique involved mapping a sizable dataspace and

could be computationally intensive. Another technique utilized to extract exhasut

pressure information was order tracking. The procedure to implement order tracking

is mentioned in Section 4.2. The window applied to the exhaust signal is shown in

Figure 5.43. Order analysis was conducted such that each block had 2880 data points

(2-cycles, sampled at 0.5CAD); The Tukey window used was of the same length as

well. The window was then shifted by 360 data points with respect to the previous

block to cover the next 2880 points. This centers the window with the exhaust peak of

a particular cylinder and every consecutive shift centers the window over the exhaust

100

signal of the next firing event. In Figure 5.43 for example the window (solid line) first

aligns with exhaust peak of Cylinder 1 in the first block and exhaust peak of Cylinder

3 in the second block, where the window is showed with the dashed line. Thus by

conducting the order analysis in the manner mentioned, order information on a cyclic

and cylinder basis was obtained over the drivecycle. Further, an order resolution of

0.25 was obtained for the analysis, with a block size of 2880 points, sampled at an

angle resolution of 0.5CAD.

Figure 5.43: Window applied to signal for order analysis

Results on implementing the order tracking technique to a section of the data collected

over the transient vehicle tests (Figure 5.44) is showcased in Figure 5.45. Figure 5.44

shows the engine speed, load, wastegate position and gear command on a cyclic basis,

101

for a section of the drive cycle from tip-in (cycle 2176) to tip-out and onto the low

load section(cycle 2351). The location of the low load Type II cycles (i.e A, B C)

are also highlighted.

Figure 5.44: Cycles for which order analysis was conducted

Observing the waterfall plot in Figure 5.45 it can be seen that the orders present

vary based on operating point. It is to be noted that in the waterfall plot the FFTs

are stacked in firing order for the specified cycles. It is for this reason that though

from tip-in to low load there are only 175 cycles, the event index in Figure 5.45 spans

about 700 events i.e 175 cycles x 4 cylinders.

102

Further, the following inferences can be made from Figure 5.45 :

• Second order is consistent as it corresponds to firing order

• The harmonics of the second order viz. 4,6,8 etc are also seen to be present

• Order 7 and 9 seen to be excited as waste gate closes

• Odd orders, i.e Orders 1, 3 and 5 seen to have low amplitude during low load

cycles

• Gear shift events coincide with drops in amplitude of orders. The two arrows

in the waterfall plot indicate the 3-5 upshift and 5-6 upshift gear events.

Figure 5.45: Waterfall plot of exhaust order analysis for cycles shown

103

Through the waterfall plot it was seen that the exhaust signal during transient vehicle

tests, could be affected by numerous factors, the prominent noise element being gear

shift events. Thus in an effort to simplify the analysis and neural network studies

described later, transient tests were conducted on the engine dynamometer. The test

cycles would mimic engine operation over a transient drivecycle, so the exhaust signal

would be similar to that seen in a transient vehicle test but devoid of disturbances

including gear shift events.

Figure 5.46 shows the order colormap for the exhaust signal over a transient cycle

conducted in the engine test cell. A colormap is similar to a waterfall plot but is two

dimensional. The color indicates amplitude; yellow being high and blue indicates low

amplitude. The methodology to extract orders was the same as mentioned before.

Further, the drivecycle of the test is also shown in the figure. The engine speed and

load had to be scaled to ensure safe operation in laboratory conditions, i.e. engine

speed was limited to 4500RPM and the normalized engine load was restricted to a

range of 0.12 to 1.12.

The order colormap shows orders 2, 3 and 4 being excited during high speed-load

conditions. Orders 4-6-8 etc are harmonics of the primary firing order 2 and are

seen to be excited as well. For the neural network studies, orders 2, 3 and 4 were

extracted and their amplitude and phase information was used in the NN studies for

combustion metric estimation. Figure 5.47 shows an order cut of exhaust orders 2,

104

3 and 4. The figure shows the amplitude of the exhaust orders on a cycle-by-cycle

basis. The figure is plotted on a logarithmic scale to accentuate signal features for

visualization. Similar to the colormap, it can be seen that the amplitudes of the orders

extracted increase during the high speed-load regime. The amplitude and phase of

the exhaust orders extracted was later used as an input to the neural network for

IMEP and CA50 estimation.

Figure 5.46: Order map of exhaust signal for transient engine testing

105

Figure 5.47: Order cut of exhaust signal for transient engine testing

5.2.5 Comparison of Omega and Kulite sensor

This study predominantly used the Kulite exhaust sensor, however the Omega exhaust

sensor which was placed at a standoff could also be used for the same purpose as shown

in this section. Table 5.10 lists the set of tests conducted to show that the Omega

sensor contains the necessary order content to be used for estimation of combustion

106

metrics. The tests were conducted across various speed-load regimes.

Table 5.10
Test matrix for exhaust sensor evaluation

Test Speed IMEP Intake

advance

Exhaust

retard

CA50

RPM kPa deg deg deg

Test 1 1500 250 0 0 8

Test 2 1500 750 0 0 8

Test 3 3500 250 -35 35 8

Test 4 3500 750 -35 35 8

In all the tests mentioned in Table 5.10 the exhaust signals were sampled at an

angle resolution of 0.5CAD. To generate order colormaps, the exhaust signals were

divided into overlapping blocks of 2880 points and a Tukey window was applied to

each block before conducting an FFT. Figure 5.48 to 5.53 shows the results of the

FTT as colormaps to compare the Kulite and the Omega sensor output. It is to be

noted that all the colormaps are color coded by the amplitude of the orders for a

given cycle (event index). Figure 5.48 and 5.49 showcase the order colormap of the

exhaust sensors for Test 1 viz low speed-load conditions. It can be seen that under

low speed conditions the Omega sensor has significant content till about 12
th order

in comparison to the Kulite sensor which shows content upto about 18
th order.

107

Conversely when the engine operates under high speed-load conditions similar to that

of Test 4 it was seen that the Kulite sensor (Figure 5.50) showed that a number of odd

orders were also excited which were not observed under low speed-load conditions.

Figure 5.51 shows the orders present in the Omega signal for the same test and it

can be seen that the sensor showed significant order content up till about 8
th order.

The neural network studies use only orders 2, 3 and 4 as inputs to the neural network

for IMEP and CA50 estimation. Thus through the results it was concluded that the

Omega sensor had the necessary order content to replace the Kulite sensor.

Figure 5.52 shows a comparison of the linear spectra of the two exhaust sensor for

low speed-load conditions. The graph is plotted on a logarithmic scale. Figure 5.53

shows a similar comparison but for high speed-load conditions. The figures also show

the frequency corresponding to orders 2, 4 and 6. It can be seen that under low

speed-load conditions the amplitude of orders are largely the same on both sensors

up to about 325Hz but when the engine operates under high speed-load conditions,

the amplitude of the orders on the Omega sensor (after about 150Hz) are seen to be

significantly lower than that observed on the Kulite sensor.

108

Figure 5.48: Order Colormap of Kulite sensor for Test 1

Figure 5.49: Order Colormap of Omega sensor for Test 1

109

Figure 5.50: Order Colormap of Kulite sensor for Test 4

Figure 5.51: Order Colormap of Omega sensor for Test 4

110

Figure 5.52: Comparison of Linear spectra for Test 1

Figure 5.53: Comparison of Linear spectra for Test 4

111

The results show that the Omega sensor could be used as a alternative for the Kulite

sensor however it is to be noted that since the Omega sensor is placed at a standoff,

there would be time delay involved between the exhaust event and pressure measure-

ment. Work conducted by Willimowski and Isermann [8] offers a methodology to

calculate the time delay involved with the measurement. The method accounts for

transport delay occurring due to the standoff and group delays introduced due to the

anti-alias filter and pressure transmitter.

5.2.6 Conclusion on exhaust sensor studies

Under steady state conditions it was found that the exhaust minima could be used for

misfire detection. Analyzing the exhaust pressure signal under transient conditions

it was found that a number of engine parameters including load, speed etc could

be used to identify exhaust signatures. Knowledge of the signatures helped extract

features that could be used to obtain correlations with combustion metrics. However,

the order tracking technique was later used to extract information from the exhaust

sensor. Lastly, the standoff exhaust pressure sensor was seen to have the necessary

order content to subsititute the sensor placed closer to the exhaust port.

112

5.3 Crank angle encoder

The output of the crank encoder installed in the engine is processed to identify the

position of the crank/piston with respect to time. Thus the output signal is a time-

stamp based on the desired angular resolution. This signal can be differentiated

to obtain a crank speed signal. Fluctuations in the crank speed could offer helpful

information for engine control and diagnostics.

5.3.1 Order extraction

Similar to the analysis conducted using the exhaust pressure signal; order analysis

was conducted on the crank speed signal under transient conditions. A block size of

1440 points (i.e 1 cycle) sampled at 0.5 CAD resolution was used for the analysis.

A simple Hanning window, the same size as the block, was applied to each signal

block to avoid leakage when performing the Fourier transform. Further the internal

timer resolution of the data acquisition system was set to about 5 microseconds. This

was done so that there is sufficient resolution in the timestamp during high speed

conditions.

Thus by processing the data as previously mentioned, an order map was generated

as shown shown in Figure 5.54. The drivecycle followed is shown in the figure as

113

well. It can be seen that when the engine is operating in a high speed-load regime,

orders 4 and 6 are excited. Here as well, second order refers to the firing order and

orders 4, 6 etc. are harmonics of the firing order. The sixth order showed the highest

amplitude when engine was operating in high speed load conditions. Similar to the

exhaust pressure analysis orders 2, 3, 4 and 6 were extracted to be used as inputs to

the neural network. Figure 5.55 shows the amplitude of the various orders previously

mentioned on a cycle-by-cycle basis. The orders are plotted on a logarithmic scale.

Figure 5.54: Order map of crank signal for transient engine testing

114

Figure 5.55: Order cut of crank signal for transient engine testing

115

5.4 Neural network

The previous sections showed how each of the sensors studied offered insights and

correlations with combustion metrics. This section talks about how the information

provided by the various sensors were consolidated to obtain estimates of combustion

metrics including CA50 and IMEP.

In this study a neural network based approach was used to combiine the various

sensor signals to obtain estimates of combustion metrics on a cyclical basis. Initially

a matlab based simple feed-forward neural net was used. Later on, more advanced

neural network architectures were also explored. Figure 5.56 shows the drivecycle

over which the engine to obtain data for the neural network studies. Table 5.11 lists

the initial set of inputs given to the neural network. Apart from the order amplitude

and phase information from the exhaust and crank sensors, the flame locations and

ion peak information from the ion sensors were also supplied. Besides the sensor

inputs, engine operating parameters including engine speed, MAP, cam timing and

spark were also provided as inputs to increase accuracy of network estimates. Initially

the same network was used to estimate both the CA50 and IMEP.

Figure 5.57 offers a graphical representation of the network used and Table 5.12

provides insights about the settings of the neural network used in this phase of the

study. Bayesian regularization was used as the training algorithm as it can result in

116

good generalization for difficult, small or noisy datasets even though it requires more

processing time.

Figure 5.56: Transient cycle used in neural network studies

Figure 5.57: Feed forward neural network used for initial studies

117

Table 5.11
Inputs to feed forward network

ANN Inputs
Engine Speed
MAP
Spark Advance
Intake and Exhaust Cam phasing
Location of waste gate
Amplitude of 2nd, 3rd and 4th order of exhaust pressure
Phases of 2nd, 3rd and 4th order of exhaust pressure
Amplitude of 2nd, 3rd, 4th and 6th order of crank data
Phases of 2nd, 3rd, 4th and 6th order of crank data
Amplitude of first peak of standalone ion signal
Location of first peak of standalone ion signal
Amplitude of first peak of coil ion signal
Location of first peak of coil ion signal
Flamefront location detected by standalone ion probe

Table 5.12
Setting of feed forward neural network

Parameter Value

Number of samples 6500

Samples in Training, Validation & Test set 70% , 15% & 15%

Number of Inputs 26

Number of Outputs 2

Number of Hidden Layers 10

Training Algorithm Bayesian Regularization

Performance Metric Least Squared Error

118

Figure 5.58 and 5.59 show the performance of the neural network in estimating the

IMEP and CA50. Figure 5.58 shows the results on a cycle by cycle basis. The results

show that the network estimates of IMEP follow the general trend of the actual IMEP

values but show some deviation during the tip-in and tip-out zones. Similarly for the

CA50 estimates the network estimates show significant deviation during deceleration

and tip-out regions.

Figure 5.58: Actual and estimated combustion metrics for feed forward
neural network

119

Figure 5.59 shows the same results but in a different format of actual value of com-

bustion metric against network estimated value of combustion metric. The data is

also color coded by engine speed to know if there was significant deviation at any

particular engine speed or operation regime. However, the results showed that this

was not the case.

120

Figure 5.59: Actual against estimated combustion metrics for feed forward
neural network

The observation in Figure 5.58 are corroborated by Figure 5.60 that shows the error in

estimation. It can be seen that the error in IMEP estimates was highest during tip-in

and tip-outs and the error in CA50 estimates was large during the tip-out portions

121

of the drivecycle.

Figure 5.60: Error analysis of simple feed forward network

Figure 5.61 shows the distribution of errors in estimation of CA50 and IMEP. Using

the simple feed forward neural network, it was observed that a majority of the cycles

had IMEP estimates that were within 0.4 bar of the actual value and CA50 estimates

that were within 3 CAD.

122

Figure 5.61: Distribution of error of simple feed forward network

The initial results proved promising but had to be improved. The initial choice was

to retain the same network architecture but to improve the accuracy of estimates. To

achieve this, feature normalization and principal component analysis was conducted.

Further in terms of the inputs used it was found that the coil integrated ion signal

was offering erroneous results in certain cases. The algorithm used to process coil ion

signals was detecting the false peak as first ion peak in certain cases. Despite trying

various approaches to identify the corect peak in all cases, there were shortcomings.

Thus it was decided to drop the coil ion signal from the list of inputs. Additionally, to

123

offer the network with inputs regarding fuel concentration, the mass of fuel injected

into the cylinder on a cyclic basis was also used as an input.

5.4.1 Feature scaling and PCA

Feature scaling or featuring normalization is the process of altering or scaling the

neural network inputs (i.e features) such that they all have a similar range . This

process helps make the network equally sensitive to all inputs. The method to conduct

feature scaling is mentioned in Section 4.5.1.

Using the simple feed forward network, it was observed that the network used 26

different inputs. Considering the training set had over 4800 cycles (samples), the

dimensionality of the input matrix was quite large. Thus there was a need to make

the analysis less computationally expensive without compromising the accuracy of

estimation. One method to achieve this was thorough PCA. Thus in an effort to

improve accuracy of estimation, feature scaling and PCA were implemented. Table

5.13 shows the inputs used in the modified feed forward neural network. There were

24 inputs but using PCA the number of inputs were reduced to 10. Figure 5.62 shows

the contribution of each of the principal components and the marker indicates the

number of components needed to retain 90% of the variance present in the data,

which came out to be 10 components in the study conducted.

124

Table 5.13
Inputs to modified feed forward network

ANN Inputs
Engine Speed
MAP
Spark Advance
Mass of fuel injected
Intake and Exhaust Cam phasing
Location of waste gate
Amplitude of 2nd, 3rd and 4th order of exhaust pressure
Phases of 2nd, 3rd and 4th order of exhaust pressure
Amplitude of 2nd, 3rd, 4th and 6th order of crank data
Phases of 2nd, 3rd, 4th and 6th order of crank data
Amplitude of first peak of standalone ion signal
Location of first peak of standalone ion signal
Flamefront location detected by standalone ion probe

Figure 5.62: Contribution of each principal component

Figure 5.63 shows the network used to conduct the analysis and specifications regard-

ing the network are mentioned in Table 5.14.

125

Figure 5.63: Feed forward neural network with feature scaling and PCA

Table 5.14
Setting of modified feed forward neural network

Parameter Value

Number of samples 6500

Samples in Training, Validation & Test set 70% , 15% & 15%

Number of Inputs (after PCA) 10

Number of Outputs 2

Number of Hidden Layers 10

Training Algorithm Bayesian Regularization

Performance Metric Least Squared Error

The results of implementing feature scaling and PCA are shown in Figure 5.64 to 5.67.

Figure 5.64 shows that the estimates of modified feed forward network followed the

same general trend as the previous network. However, the network was still unable

to offer accurate estimates during highly transient operation. Further it can be seen

126

from Figure 5.65 that the deviation between the actual and estimated CA50 and

IMEP was higher than the previous network. the deviation was spread across all load

and speed conditions. It is to be noted that the data in Figure 5.65 is color coded by

engine speed.

Figure 5.64: Actual and estimated combustion metrics for modified feed
forward neural network

127

Figure 5.65: Actual against estimated combustion metrics for modified feed
forward neural network

Figure 5.66 shows the error in estimation of the combustion metrics on a cycle by

cycle basis. it can be seen that despite the implementation of the feature scaling,

the network was unable to improve accuracy of estimates, especially under heavy

transience conditions.

128

Figure 5.66: Error analysis of modified feed forward network

Figure 5.67 shows the distribution of errors in estimation of CA50 and IMEP. Using

the modified feed forward neural network the standard deviation in IMEP was seen

to be about 0.6bar and the standard deviation in CA50 was about 5CAD. Thus

though implementation of PCA reduced input dimensionality it caused a significant

deterioration of network accuracy.

129

Figure 5.67: Distribution of error of modified feed forward network

The modified feed forward network was unable to improve the performance obtained.

Further, the network never used any information of the prior cycle to estimate com-

bustion metrics of a given cycle i.e it was not recursive in nature. In reality, the sort

of combustion occurring in a given cycle is significantly affected by the performance of

the previous cycle. Thus it was decided to change the architecture of neural networks

used to include a recursive element.

130

5.4.2 Recursive neural net

As mentioned previously, in an effort to enhance the performance of the neural net-

work, a recursive approach was needed. Two neural net architectures were evaluated

for this application viz. nonlinear auto-regressive with external input (NARX) net-

work and a recursive neural network (RNN). Figure 5.68 and 5.69 show a visualization

of the two architectures. The same inputs as mentioned in Table 5.13 were used in

the recursive studies too.

Figure 5.68: Nonlinear auto-regressive with external input (NARX) net-
work

Figure 5.69: Recursive neural network (RNN)

131

The NARX network showed large errors in estimation. This might be due to the

fact that a NARX network uses previous cycle data of all inputs, including inputs

whose historical data might not affect a given cycle’s estimates. Thus in the interest

of maintaining brevity, results pertaining to NARX are not discussed in this study.

The recursive neural net however used IMEP and CA50 estimates of cycle ’i-1’ and

inputs of cycle ’i’ to estimate the CA50 and IMEP of cycle ’i’. This architecture was

more representative of capturing engine combustion dynamics. Table 5.15 presents

the specifications of the network used.

Table 5.15
Settings of recursive neural network

Parameter Value

Number of samples 6500

Samples in Training, Validation & Test set 70% , 15% & 15%

Number of Inputs 24

Number of Outputs 2

Number of Hidden Layers 10

Training Algorithm Bayesian Regularization

Performance Metric Least Squared Error

132

Figure 5.70 and 5.71 show the results of the RNN for estimation of CA50 and IMEP.

From the figures it can be seen that the network was able to follow the general trend

however, in terms of the accuracy of estimation, the network had to be improved

especially in the estimation of CA50.

Figure 5.70: Actual and estimated combustion metrics for recursive neural
network

From Figure 5.71 it can be seen that there was significant deviation in network CA50

estimates, especially at low speed conditions (marked by the dark blue points). The

133

IMEP estimates however showed much better results in comparison to the CA50

estimates.

Figure 5.71: Actual against estimated combustion metrics for recursive
neural network

Figures 5.72 and 5.73 shows the location and distribution of the errors. The highest

errors in estimation were mostly during the heavy transient phases. The errors in

CA50 estimates were seen to be larger than previously observed. Figure 5.73 shows

134

the distribution of errors and it can be seen that the standard deviation of error in

CA50 estimates was about 12CAD. The standard deviation of error observed in IMEP

estimation was about 0.5 bar.

Figure 5.72: Error analysis of recursive network

Thus it was seen through the initial studies of using RNN that the network had to

be improved by a large margin; especially CA50 estimation. When conducting a

root cause analysis of the problem, it was found that the use of inputs that were

135

Figure 5.73: Distribution of error of recursive network

not strongly correlated with the parameter being estimated could cause issues with

accuracy of estimation. Further, considering the large number of inputs being used,

several inputs could be correlated with other inputs thereby making them redundant.

To resolve this issue, the correlation of the combustion metrics with the various inputs

being used was evaluated. The cross-correlation of the various inputs being ustilized

was also evaluated. Lastly, using the same network to estimate both CA50 and IMEP

could be problematic as inputs that strongly correlate with one combustion parameter

need not strongly correlate with the other combustion parameter.

136

Table 5.16 lists the various input parameters evaluated in the correlation studies and

their acronyms.

Table 5.16
Parameters evaluated and acronyms

Parameter Acronym
Engine Speed RPM
Manifold Abs. Pressure MAP
Intake cam phasing IVT
Exhaust cam phasing EVT
Location of waste gate WGpos

Fuel mass injected MF
Amplitude of 2nd exhaust order Exh2A
Amplitude of 3rd exhaust order Exh3A
Amplitude of 4th exhaust order Exh4A
Phase of 2nd exhaust order Exh2P
Phase of 3rd exhaust order Exh3P
Phase of 4th exhaust order Exh4P
Amplitude of 2nd crank order Cnk2A
Amplitude of 3rd crank order Cnk3A
Amplitude of 4th crank order Cnk4A
Amplitude of 6th crank order Cnk6A
Phase of 2nd crank order Cnk2P
Phase of 3rd crank order Cnk3P
Phase of 4th crank order Cnk4P
Phase of 6th crank order Cnk6P
Amplitude of standalone ion peak SIpk
Location of standalone ion peak SIpl
Location of flame front wrt standalone SIf
Spark Advance SA

Figure 5.74 offers a visual representation of the cross-correlation between various

inputs given to the neural network. The matrix is color coded by the magnitude

of the correlation coefficient. It can be seen that the crank data (i.e amplitude and

phase of various crank orders) has a strong correlation (R >0.6) with the exhaust

data (i.e amplitude and phase of various exhaust orders). Further, the amplitude of

137

crank orders were also observed to have strong positive correlation with speed and

load as well as a strong negative correlation with valve timing. Thus it can be inferred

that the crank data was not offering any new information and could thus be omitted

for the neural network studies.

Figure 5.74: Cross-correlation between inputs

The correlation of the various parameters with IMEP and CA50 were also evaluated.

The results of the correlation study are listed in Table 5.17. With regard to IMEP, it

can be seen that engine speed, load, valve timing, fuel mass, amplitude of exhaust and

crank orders have the highest correlation (indicated by green cells). The ion signals

shows poor correlation with IMEP. However, for CA50 estimation, the location of the

138

ion peak and the location of the flame front showed the highest correlation. None of

the other inputs used showed a significant correlation with CA50.

Table 5.17
Correlations of various inputs with combustion metrics

Thus it can be seen that the inputs needed for IMEP estimation were different from

those needed for CA50 estimation. Thus it was decided to use two separate networks

for estimation of IMEP and CA50 respectively. Another observation from Table 5.17

is that the spark advance did not show significant correlation with CA50 as would be

expected in actuality. A possible cause for this issue could be a synchronization issue

between CAS and ATI.

Based of the results found in Table 5.17 a network was developed whose inputs were

only parameters that correlated well with IMEP. Table 5.18 shows the list of inputs

used. The network developed and the network specifications are mentioned in Figure

139

5.75 and Table 5.19.

Table 5.18
Inputs to recursive network to estimate IMEP

ANN Inputs
Engine Speed
MAP
Mass of fuel injected
Intake Cam phasing
Amplitude of 2nd, 3rd and 4th order of exhaust pressure

Figure 5.75: Recursive neural network for IMEP estimation

Table 5.19
Specifications of recursive network to estimate IMEP

Parameter Value
Number of samples 6500
Samples in Training, Validation & Test set 70% , 15% & 15%
Number of Inputs 7
Number of Outputs 1
Number of Hidden Layers 10
Training Algorithm Bayesian Regularization
Performance Metric Least Squared Error

140

Results of using the network specifically for IMEP estimation are shown in Figure

5.76. It can be seen from the results that despite the reduced number of inputs the

network was able to offer reasonably good estimates that had an error lesser than

0.5bar. The largest errors were still under heavy transience conditions.

Figure 5.76: Network prediction and error

Figure 5.77 shows the estimated IMEP plotted against the actual IMEP for a par-

ticular cycle. The data points are color coded by engine speed. It can be seen that

the there was significant deviation observed between 2-6bar IMEP. The deviation is

141

much lesser at higher loads. This is due to the fact that the points showing large

deviation correspond to cycles under heavy transience.

Figure 5.77: Error analysis of recursive network for IMEP estimation

Figure 5.78 shows the distribution of errors and it can be seen that the standard

deviation of error in IMEP estimates was about 0.47 bar. This error can be assumed

to lower if the estimates for high transience is ignored. Thus it was demonstrated

that by using a dedicated recursive network for IMEP estimation could offer good

estimates on a cyclic basis.

142

Figure 5.78: Distribution of error of recursive network

Similar to the network developed for estimating IMEP, a network for estimating CA50

as well was developed. Similar to the IMEP estimation network, the CA50 estimation

network only used inputs that highly correlated with CA50. Table 5.20 shows the

list of inputs used; none of the engine parameters were used as they had shown poor

correlation. The network developed and the network specifications are mentioned in

Figure 5.79 and Table 5.21.

143

Table 5.20
Inputs to recursive network to estimate CA50

ANN Inputs
Location of standalone ion peak
Location of flame front wrt standalone ion probe

Figure 5.79: Recursive neural network for CA50 estimation

Table 5.21
Specifications of recursive network to estimate CA50

Parameter Value

Number of samples 6500

Samples in Training, Validation & Test set 70% , 15% & 15%

Number of Inputs 2

Number of Outputs 1

Number of Hidden Layers 10

Training Algorithm Bayesian Regularization

Performance Metric Least Squared Error

144

The results of using a dedicated network for CA50 estimation are shown in Figure

5.80 and 5.81. It can be seen in Figure 5.80 that the errors in CA50 estimation were

considerable high especially under heavy transience. Figure 5.81 shows the estimated

CA50 plotted against the actual CA50 of the cycle. The datapoints are color coded

by the location of the ion peak. It can be seen that there is significant deviation

between the estimated and the actual CA50.

Figure 5.80: Network prediction and error for CA50 estimation

145

Figure 5.81: Error analysis of recursive network for CA50 estimation

5.4.2.1 Pseudo-steady state tests for combustion metric estimation

Through the various iterations of neural networks developed it was observed that

under heavy transience, the estimates of the network showed large deviation. In order

to evaluate network performance under conditions with relatively lower transience,

a pseudo-steady state test was developed wherein the engine was subjected to step

changes in operating conditions. This test helps highlight the performance of the

network under conditions with low transience.

146

Figure 5.82: Drive cycle for pseudo steady state test

Figure 5.82 shows the drivecycle used for the pseudo steady state studies. As can

be seen, the drivecycle consisted of a sequence of step changes in engine operating

points. The engine speed varied from 1500rpm-3500rpm and the normalized engine

load varied from about 0.25 to 0.7.

IMEP estimation for pseudo-steady state test

Similar to the previous analysis a seperate network was used for IMEP estimation

and CA50 estimation. The list of inputs used for the current network are listed in

Table 5.22. The correlation of the various inputs with IMEP was re-evaluated for the

147

current dataset and it was found that in addition to the parameters shown in Table

5.17, the exhaust cam timing and phase of exhaust pressure orders also showed a

strong correlation. They were thus included as inputs to the network. Additionally

the number of hidden layers were increased to help obtain better results.

Table 5.22
Inputs to RNN to estimate IMEP in pseudo-steady state test

ANN Inputs

Engine Speed

MAP

Mass of fuel injected

Intake and exhaust Cam phasing

Amplitude of 2nd, 3rd and 4th order of exhaust pressure

Phase of 3rd and 4th order of exhaust pressure

Figure 5.83: RNN to estimate IMEP in pseudo-steady state test

148

Table 5.23
Specifications of RNN to estimate IMEP in pseudo-steady state tests

Parameter Value

Number of samples 2500

Samples in Training, Validation & Test set 70% , 15% & 15%

Number of Inputs 10

Number of Outputs 1

Number of Hidden Layers 20

Training Algorithm Bayesian Regularization

Performance Metric Least Squared Error

The performance of the neural network in estimating IMEP over the pesudo-steady

state test is shown in Figures 5.84, 5.85 and 5.86. It can be seen that the network was

able to estimate the IMEP with minimal errors. Figure 5.85 shows that across the

various operating conditions the network did not show large deviations with respect

to the actual IMEP value. Further, the distribution of errors shown in Figure 5.86,

shows that the IMEP estimates of about 95% of the data points of the dataset were

within about 0.28bar of the actual value which was the best performance observed

throughout.

149

Figure 5.84: Network estimated and actual IMEP for pseudo-steady state
tests

150

Figure 5.85: Error analysis of network

151

Figure 5.86: Distribution of error in estimation of IMEP in pseudo-steady
state tests

The ability of the network to estimate IMEP on a cycle-by-cycle basis is shown in

Figure 5.87 which is essentially a zoom-in of Figure 5.84. It can be seen that in some

cycles the network estimated IMEP (shown in +) is the same as the actual IMEP

(shown by .) and in some cycles the network estimates show a deviation. Figure 5.88

shows the results for the number of datapoints where the network estimated IMEP

was within a certain percentage of the actual IMEP. It was observed that with the

current ANN 90% of the IMEP estimates were within 3% of the actual IMEP and

152

98% of the IMEP estimates were within 5% of the actual IMEP. If a 3-5% variation

in IMEP is attributed to stochasticity, then it can be stated that the network offers

accurate IMEP estimates on a cyclic basis.

Figure 5.87: Estimation of IMEP on a cycle by cycle basis in pseudo-steady
state tests

Figure 5.88: Accuracy of ANN IMEP estimation

153

CA50 estimation for pseudo-steady state test

The pesudo steady state dataset was also used to train a network to estimate CA50.

The inputs to the network are mentioned in Table 5.24 and are similar to that pre-

viously used. The network developed and the specifications of the network are men-

tioned is Figure 5.89 and Table 5.25.

Table 5.24
Inputs to RNN to estimate CA50

ANN Inputs

Location of standalone ion peak

Location of flame front wrt standalone ion probe

Figure 5.89: RNN to estimate CA50 in pseudo-steady state test

154

Table 5.25
Specifications of RNN to estimate CA50 in pseudo-steady state tests

Parameter Value

Number of samples 2200

Samples in Training, Validation & Test set 70% , 15% & 15%

Number of Inputs 2

Number of Outputs 1

Number of Hidden Layers 20

Training Algorithm Bayesian Regularization

Performance Metric Least Squared Error

The results of the analysis are shown in Figures 5.90, 5.91 and 5.92. It can be seen

that the network was able to offer good estimates of the CA50. Figure 5.91 shows

that the deviations observed were not restricted to one particular operating regime.

The distribution of errors shown in Figure 5.92 showed that the standard deviation

of the errors in estimates was about 2.5 CAD which was the best results obtained

throughout the study.

155

Figure 5.90: Network estimated and actual CA50 for pseudo-steady state
tests

156

Figure 5.91: Error analysis of network

157

Figure 5.92: Distribution of error in estimation of CA50 in pseudo-steady
state tests

Efforts were also made to evaluate the influence the number of hidden layers on the

accuracy of estimation. Figure 5.93 shows the mean and standard deviation of the

error in CA50 estimation for various number of hidden layers. It was observed that

for the conditions evaluated, a network with 12 layers or 20 layers produced CA50

estimates with the least mean and standard deviation in errors. This study chose 20

layers due to repeatability of results.

158

Figure 5.93: Effect on number of hidden layers on characteristics on CA50
estimation errors

5.5 Conclusion on neural network studies

The study initially utilized a simple feed forward network to estimate combustion

metrics including IMEP and CA50 using numerous inputs from the various sensors

discussed and several engine parameters as well. Progressively it was understood

that a recursive approach would be more representative of capturing the combustion

dynamics being studied. The inputs being given to the neural networks had to be

refined and customized for obtaining good accuracy. The use of correlation studies

159

aided in uncovering the most critical inputs needed for estimation of IMEP and CA50.

Finally the pesudo steady state test proved the ability of the neural network to provide

reasonable estimates in the absence of heavy transience. Detailed conclusion are

mentioned in Chapter 6

160

Chapter 6

Conclusion and Recommendations

This thesis offers a broad overview of the control and diagnostic capabilities of vari-

ous sensors such as ion probes, exhaust pressure sensors and crankspeed sensors. The

study also outlines a neural network based approach to estimate IMEP and CA50

by combining the information contained in the various sensors outputs. This study

used a Ford 2.0L Ecoboost engine to conduct tests under various operating conditions

as well as carry out transient testing. Additional testing was also conducted on an

optical engine as well as in-vehicle. This study primarily focused on three sensors

namely ion sensors, exhaust pressure sensors and crank position sensors. The prime

objective of the study was to use the sensor suite to identify correlations with incylin-

der combustion as well as estimate combustion metrics including IMEP and CA50

under both transient and steady state conditions.

161

The ion sensor studies conducted using the standalone ion probe instrumented onto

the metal engine showed that under steady state conditions the amplitude and lo-

cation of the pressure peak could be estimated using the ion peak amplitude and

location. Across the operating conditions studied, the correlation of ion peak location

with pressure peak location was more consistent (i.e R > 0.6) than the correlation of

ion peak amplitude with pressure peak amplitude. The optical engine studies showed

the influence of sensor location in obtaining good correlations with pressure metrics.

It was seen that placing the sensor in front or rear positions (i.e sensor 3 and 4)

yielded the best results in comparison to sensors 1 and 2 which were place near the

intake and exhaust ports.

Further, the results of the knock tests showed that the integral of the ion signal fol-

lowed a log normal distribution, similar to that of the integral of incylinder pressure.

Additionally, of the various windowing techniques developed to obtain good correla-

tion between the ion integral and pressure integral the modified adaptive windowing

technique yielded the best results. The integral of the coil ion sensor output showed

a correlation of 0.61 with pressure integral while the standalone ion sensor output

showed a correlation of 0.63. Furthermore, visualizing the linear spectrum of the

incylinder pressure and ion signals, it was seen that by using the modified adaptive

windowing technique the knock frequency of 6kHz-7kHz was identifiable on the stan-

dalone ion probe. The coil ion probe signal however showed much poorer response. A

possible cause for this could be the location of the sensor and the influence of ringing.

162

Moving onto exhaust sensor studies it was seen that under steady state conditions the

exhaust pressure could be correlated with inclyinder pressure as well as detect misfires.

However in order to be able to correlate exhaust pressure artifacts with combustion

metrics it was essential to identify exhaust signatures and understand factors affecting

them. Transient in-vehicle tests conducted, helped in waveform classification as it

showed that exhaust waveforms could be classified based on engine load, speed, spark

timing etc. The type I waveforms showed very good correlations with IMEP (R>0.9)

and CA50 (R> 0.7) apart from just pressure metrics. The exhaust pressure signal of

cycles under low load (Type II) with a prominent maxima showed good correlations

with incylinder pressure. It was also observed that the type C cycles that consisted of

cycles whose signals had a prominent trough always occurred during Tip-out/DFSO

and consequently could not correlate with any of the pressure metrics.

Furthermore, the indices developed for detecting misfires/DFSO events showed that

the methodology of using exhaust minima could help identify misfires with a high

degree of accuracy. The exhaust studies also investigated the use of order tracking

as an alternative means of extracting information from the exhaust pressure signal.

The order analysis of the vehicle tests dataset showed the rich yet complex nature

of information that can be extracted. There was need to isolate gearshift events and

thus the use of transient test on an engine dynamometer was employed. The exhaust

orders extracted namely 2, 3 and 4 were later used as inputs to the neural network.

Similar processing was conducted on the crank data as well.

163

Lastly moving onto the neural network studies it was seen that using a simple feed

forward network with 26 inputs from the various sensors and engine parameters it

was seen that the network estimates of IMEP and CA50 followed the same trend as

the actual IMEP and CA50. The error in estimates were nominal at about 0.4 bar

for IMEP and 3 CAD for CA50 estimates. However the dimensionality of the input

matrix was quite large. In an attempt to reduce input dimensionality feature scaling

an PCA were implemented. Though PCA helped reduces the demensionality of the

input matrix the accuracy of estimates were compromised.

Additionally in an attempt to use a network that would utilize prior cycle information

to generate an estimate for a given cycle, a recursive network was utilized. Further,

a separate network was used for IMEP and CA50 estimation. The inputs to these

networks were refined and only parameters that correlated well with the combustion

metric being estimated were used as inputs. In doing so, the estimates of the network

improved such that the IMEP showed a standard deviation of about 0.47bar. CA50

estimation however displayed significant deviation. Finally to evaluate the perfor-

mance of the neural network in the absence of heavy transience a pesudo transient

test was developed. The performance of the network in the pseudo transient transient

test was the best obtained with the standard deviation of IMEP found to be about

0.15 bar and CA50 about 2.5CAD.

Thus through the results shown in Chapter 5 it can be said that the study was

164

successful in using a sensor suite to identify abnormal combustion as well as estimate

combustion metrics including IMEP and CA50 under both transient and steady state

conditions.

Future work

This section entails a number of recommendations that could be used to develop

this study further. In regard to knock detection using ion sensors, it was found that

sensor location and ringing played a major role in inhibiting the coil ion sensor from

accurately detecting knock. If ion sensors are to be used for knock detection then

improving the coil ion sensors’ capability in detecting knock would be pivotal. Coil

integrated ion sensors do not provide a packaging hassle and require no additional

machining to be implemented. Thus by improving the ability of the sensor to reject or

avoid the ringing phase could help make ion sensors more viable in knock detection.

In this study there was limited usage of the pressure sensor placed at a standoff(i.e.

Omega sensor). Results show that even the Omega sensor contains the necessary order

information across various speed load regimes. The use of the Omega sensor as an

input to the neural network instead of the Kulite sensor could be evaluated. Further,

the effect of standoff distance on the analysis could also be investigated. Along with

the use of the Omega sensor, the calculation and influence of the transport delay in

165

measurement would have to be conducted as well.

This study used neural networks as a means to fuse the information from the various

sensors. The use of alternative techniques including Kalman filters could yield better

results with reduced computational effort and is worth investigating.

The exhaust data used in the later part of this study involved a simplified dataset

with the absence of gear shift events. It could prove worthwhile to conduct an analysis

where the inputs to the neural network use sensor outputs from vehicle level tests.

Additional investigations into the applications of crank data would also need to be

conducted. The influence of sampling rates and clock resolutions is a key study as

well

A larger and more critical task in regard to this study would be to implement the

findings and techniques developed in this study into the engine diagnostic and control

strategy to evaluate the engine performance.

It was observed in this study that the network estimates showed large errors under

highly transient conditions. One could consider using separate networks for steady

state and highly transient operation in an effort to improve network performance.

The CA50 could at best be estimated to a accuracy of 2.5 CAD. Improvement of

CA50 estimates using parameters like RGF, Torque etc. would be a worthy exercise.

166

The influence of using virtual sensors in addition to sensor suite could also be prove

worthwhile.

Establishing a benchmark for acceptable errors in IMEP and CA50 estimates would

also be important in assessing network performance.

167

References

[1] Kaushik Prabhu. Sensor fusion for spark-ignition engines. 2018.

[2] Yanyu Wang. The interaction of ignition and in-cylinder flow on flame kernel

development and its impacts on combustion in an optically accessible direct

injection engine. 2018.

[3] Libin Jia, Jeffrey D Naber, and Jason R Blough. Frequency response func-

tion adaptation for reconstruction of combustion signature in a 9-l diesel engine.

Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Me-

chanical Engineering Science, 229(17):3071–3083, 2015.

[4] Feilong Liu, Gehan AJ Amaratunga, and Nick Collings. A fourier analysis based

synthetic method for in-cylinder pressure estimation. Technical report, SAE

Technical Paper, 2006.

[5] Michael Wagner, Johann F Böhme, and Jürgen Förster. In-cylinder pressure

169

estimation from structure-borne sound. Technical report, SAE Technical Paper,

2000.

[6] Haris Hamedović, Franz Raichle, Jörg Breuninger, Wolfgang Fischer, Wolfgang

Fishcer, Werner Dieterle, Martin Klenk, and Johann F Böhme. Imep-estimation

and in-cylinder pressure reconstruction for multicylinder si-engine by combined

processing of engine speed and one cylinder pressure. SAE transactions, pages

135–142, 2005.

[7] Bahram Bahri, Azhar Abdul Aziz, Mahdi Shahbakhti, and Mohd

Farid Muhamad Said. Understanding and detecting misfire in an hcci engine

fuelled with ethanol. Applied Energy, 108:24–33, 2013.

[8] Markus Willimowski and Rolf Isermann. A time domain based diagnostic system

for misfire detection in spark-ignition engines by exhaust-gas pressure analysis.

Technical report, SAE Technical Paper, 2000.

[9] V Giglio, G Police, N Rispoli, A di Gaeta, M Cecere, and L Della Ragione.

Experimental investigation on the use of ion current on si engines for knock

detection. Technical report, SAE Technical Paper, 2009.

[10] Dimitris Panousakis, Andreas Gazis, Jill Patterson, and Rui Chen. Analysis of

si combustion diagnostics methods using ion-current sensing techniques. 2006.

[11] Nicolo Cavina, Poggio Luca, and Giovanni Sartoni. Misfire and partial burn

170

detection based on ion current measurement. SAE International Journal of En-

gines, 4(2):2451–2460, 2011.

[12] Shouvik Dev, Navjot Singh Sandhu, Mark Ives, Shui Yu, Ming Zheng, and Jimi

Tjong. Ion current measurement of diluted combustion using a multi-electrode

spark plug. Technical report, SAE Technical Paper, 2018.

[13] Abhijit Abhijit and Jeffrey Naber. Ionization signal response during combustion

knock and comparison to cylinder pressure for si engines. SAE International

Journal of Passenger Cars-Electronic and Electrical Systems, 1(2008-01-0981):

349–364, 2008.

[14] Wang Yinhui, Huang Kaisheng, Lin Zhihua, and Meng Fanbo. Advanced gasoline

engine misfire diagnostic method based on crankshaft speed multiple filtering.

In Electric Information and Control Engineering (ICEICE), 2011 International

Conference on, pages 1964–1968. IEEE, 2011.

[15] P Azzoni, G Cantoni, G Minelli, D Moro, Giorgio Rizzoni, M Ceccarani, and

S Mazzetti. Measurement of engine misfire in the lamborghini 533 v-12 engine

using crankshaft speed fluctuations. SAE transactions, 104:1423–1429, 1995.

[16] Syed Abbas Ali and Samir Saraswati. Cycle-by-cycle estimation of cylinder pres-

sure and indicated torque waveform using crankshaft speed fluctuations. Trans-

actions of the Institute of Measurement and Control, 37(6):813–825, 2015.

171

[17] Terrence S Brown and W Stuart Neill. Determination of engine cylinder pressures

from crankshaft speed fluctuations. SAE transactions, pages 771–779, 1992.

[18] F Taglialatela, M Lavorgna, E Mancaruso, and BM Vaglieco. Determination of

combustion parameters using engine crankshaft speed. Mechanical Systems and

Signal Processing, 38(2):628–633, 2013.

[19] Samir Saraswati and Satish Chand. Reconstruction of cylinder pressure for si

engine using recurrent neural network. Neural Computing and Applications, 19

(6):935–944, 2010.

[20] Jason R. Blough. MEEM 5700- Lecture Slides, Digital Signal Processing. Michi-

gan Technological University, 2017.

[21] John B Heywood et al. Internal combustion engine fundamentals. 1988.

[22] Jeffrey Naber, Jason R Blough, Dave Frankowski, Monroe Goble, and John E

Szpytman. Analysis of combustion knock metrics in spark-ignition engines. Tech-

nical report, SAE Technical Paper, 2006.

[23] NG Andrew. Lecture Slides, Machine Learning. Stanford University, 2018.

[24] Jeffrey Naber, Jason R Blough, Dave Frankowski, Monroe Goble, and John E

Szpytman. Analysis of combustion knock metrics in spark-ignition engines. Tech-

nical report, SAE Technical Paper, 2006.

172

[25] N Cesario, F Tagliatatela, and M Lavorgna. Methodology for misfire and partial

burning diagnosis in si engines. IFAC Proceedings Volumes, 39(16):1024–1028,

2006.

173

Appendix A

Sample Code

The code below is used for ANN studies, specifically for the pseudo transient test

175

A.1 ANN for Pseduo-Transient code

% ↩

---↩

% FILE: ANN_pesudo_transient.m

%

% AUTHOR(S): Nischal Muralidhar , Jeff Naber and Jason R. ↩

Blough

%

% DESCRIPTION: Processes sensor data of ion , exhaust ↩

pressure and crank

% sensor and then uses them to train a neural network to ↩

predict IMEP or

% CA50

% Written specifically for and tested on Ford 2.0L ↩

Ecoboost engine

% ↩

---↩

176

%%

%Look out for samplig rate of Pressure trace , exhaust and↩

ion signal , a

%number of parameters change based on that

%THIS CODE IS SPECIFIC TO THE DATASET MENTIONED

%V2 uses MAP , Fuel mass ,Spark timing and RPM from CAS ↩

instead of ATI as in V1. Cam

%timing ,wastegate position ,

clear all;

close all;

clc;

%% Read data from NI, ATI and CAS

Test_no= ' TEST11 '; %UPDATE WHEN DATA SET CHANGES . No ↩

space in text

test_num = 11;

test_date = 20190115;

dt = num2str(test_date);

%% Load ATI Data

folder_loc = strcat('D:\',dt ,'\ATI ');

cd (folder_loc);

TEST_ATI = sprintf('TEST%d.xlsx ', test_num);

177

Data_ATI = xlsread(TEST_ATI);

time_ATI=Data_ATI (38:end ,1); %timestamp

IGN_ATI = Data_ATI (38:end ,4);

N_ATI = Data_ATI (38:end ,2);

eng_tq = Data_ATI (38:end ,6); %TORQUE SOURCE

eng_rpm = Data_ATI (38:end ,2); %RPM

eng_ld = Data_ATI (38:end ,3); %LOAD

eng_evt = Data_ATI (38:end ,24); %VCT_angle_exh i.e. ↩

exhaust adv or rtd

eng_ivt = Data_ATI (38:end ,25); %VCT_angle_int i.e ↩

intake adv or rtd

eng_spk_ca = Data_ATI (38:end ,4); %Spark SAFTOT

eng_spk_src=Data_ATI (38:end ,5); %Spark source

eng_fuel_src=Data_ATI (38:end ,64); %fuel source

Cyl2_IGN_ATI=Data_ATI (38:end ,33); %Cylinder 2 SA

eng_fuel_mg=Data_ATI (38:end ,30) .*453592; %fuel ↩

supplied to Cyl2 in mg (original lbm)

RGF=Data_ATI (38:end ,117); % RGF(%) computed using ↩

AIR_RESD and CYL_AIR_CHG

%% ATI Synchronization

l_N_ATI = length(N_ATI);

178

k=0;

ATI_cal1 =120/ max(diff(time_ATI));

Cycle_ATI (1)=0;

for k=2: l_N_ATI

Cycle_ATI(k) = (N_ATI(k,1)/ATI_cal1)+Cycle_ATI(k-1);

end

k=0;

i=1;

for k=1: l_N_ATI

if Cycle_ATI(k) >=i

N_ATI_cycle(i)=N_ATI(k);

IGN_ATI_cycle(i) = IGN_ATI(k);

eng_tq_cycle(i) = eng_tq(k);

eng_rpm_cycle(i) = eng_rpm(k);

eng_ld_cycle(i) = eng_ld(k);

eng_evt_cycle(i) = eng_evt(k);

eng_ivt_cycle(i) = eng_ivt(k);

eng_spk_ca_cycle(i) = eng_spk_ca(k);

eng_spk_src_cycle(i)=eng_spk_src(k);

eng_fuel_src_cycle(i)=eng_fuel_src(k);

179

Cyl2_SA_cycle(i)= Cyl2_IGN_ATI(k);

eng_fuel_mg_cycle(i)=eng_fuel_mg(k);

RGF_cycle(i)=RGF(k);

i=i+1;

end

end

ati_idx =2490;

ATI_trigger_idx = find(abs(IGN_ATI_cycle(ati_idx:end↩

) - IGN_ATI_cycle(ati_idx)) >=3, 1, 'first ')+↩

ati_idx;

%% Load CAS Data

folder_loc = strcat('D:\',dt ,'\CAS '); %Change ↩

as per your location

cd (folder_loc);

s = num2str(test_num); % Converts ↩

number to string

basepath = strcat(folder_loc ,'\TEST ',s);

cd(basepath) % Goto Basepath

180

foo = load('Trace.cpdc.mat ');

CAS_sync = getfield(foo ,char(fieldnames(foo))); %Do ↩

not delete even if not used

clear foo;

foo = load('CAIGN.Cyl1.EST.mat ');

IGN_CAS = getfield(foo ,char(fieldnames(foo))); %Do ↩

not delete even if not used

clear foo;

eng_spk_CAS = IGN_CAS;

foo = load('RPM.Timer.mat ');

N_CAS = getfield(foo ,char(fieldnames(foo)));

clear foo;

eng_rpm_CAS=N_CAS;

foo = load('IMEP.Cyl2.mat ');

Cyl2_IMEP = getfield(foo ,char(fieldnames(foo)));

clear foo;

181

foo = load('Trace.IonSensingCyl2.mat '); %Standalone↩

Ion

IonSig_s = getfield(foo ,char(fieldnames(foo)));

clear foo;

IonSig_s=detrend(IonSig_s);

foo = load('Trace.Ion_Coil.mat ');

IonSig_c = getfield(foo ,char(fieldnames(foo)));

clear foo;

foo = load('tqca1.mat '); % Crank angle for ↩

cylinder 1

tqca1 = getfield(foo ,char(fieldnames(foo)));

clear foo;

tqca_ion =(-179.967666625977 :0.5:539.532348632813) '; ↩

%Ion and Exhaust sampled at 0.5 CAD

tqca_cycle =(-179.967666625977:0.5:(180+900));

foo = load('PresTrace.Cyl2.mat ');

Cyl2_P = getfield(foo ,char(fieldnames(foo)));

clear foo;

182

foo = load('CA50.Cyl2.mat ');

Cyl2_CA50 = getfield(foo ,char(fieldnames(foo)));

clear foo;

foo = load('Peak Loc.Cyl2.mat ');

Cyl2_Pk_loc = getfield(foo ,char(fieldnames(foo)));

clear foo;

foo = load('Peak.Cyl2.mat ');

Cyl2_Pk_amp = getfield(foo ,char(fieldnames(foo)));

clear foo;

foo = load('Knock Intensity.Cyl2.mat ');

Cyl2_KI = getfield(foo ,char(fieldnames(foo)));

clear foo;

foo = load('Trace.ExhaustPressure.mat '); %Kulite

Exh_kulite = getfield(foo ,char(fieldnames(foo)));

clear foo;

183

foo = load('Average.MAP.mat ');

eng_map = getfield(foo ,char(fieldnames(foo)));

clear foo;

foo = load('Average.Fuel_Flow.mat ');

eng_mf_CAS = getfield(foo ,char(fieldnames(foo)));

clear foo;

%Loading the crank timing data

load('trtime1.mat ') % for Cyl1

load('trtime4.mat ') % for Cyl3

load('trtime5.mat ') % for Cyl4

load('trtime3.mat ') % for Cyl2

n_cyc= size(trtime3 ,2); % number of cycles

%% CAS & ATI & NI Synchronization index (cycle number ↩

allign)

cas_idx =1990;

CAS_ATI_trigger_idx = find(abs(IGN_CAS(cas_idx:end) ↩

- IGN_CAS(cas_idx)) >=3, 1, 'first ') -1+cas_idx;

184

cycle_diff_CAS_ATI = ATI_trigger_idx - ↩

CAS_ATI_trigger_idx ;

CAS_end_idx = length(IGN_CAS);

resh_CPDCIn = reshape(CAS_sync ,[],1); % reshaping↩

in one column

CAS_tirgger_idx = find(resh_CPDCIn >0.4, 1, 'first ')↩

-1; % index for first trigger

CAS_tirgger_cycle = fix(CAS_tirgger_idx/size(CAS_sync↩

,1)); % Cycle for first trigger

ati_cycles=cycle_diff_CAS_ATI :(cycle_diff_CAS_ATI+size(↩

IGN_CAS ,2) -1); %ATI cycles that line up with CAS

%% Synchronization Check

figure;

subplot (2,1,1)

plot(-IGN_CAS , 'r', 'linewidth ', 2)

hold on

plot(IGN_ATI_cycle ,'b', 'linewidth ', 2)

hold off

grid on;

185

set(gca ,'FontSize ',14)

title('CAS and ATI data Synchronization ');

ylabel('Ignition Timing (CAATDC)')

legend('CAS ','ATI ')

subplot (2,1,2)

plot(-IGN_CAS ,'r', 'linewidth ', 2)

hold on

plot(IGN_ATI_cycle(ati_cycles),'b', 'linewidth ', 2)

hold off

grid on;

set(gca ,'FontSize ',14)

ylabel('Ignition Timing (CAATDC)')

xlabel('Cycle ')

legend('CAS ','ATI ')

%% Cycle wise all ATI parameters

%ASSUMPTION : ATI PARAMETERS SAME FOR ALL CYLINDERS in a ↩

given cycle

eng_tq_cycle = eng_tq_cycle(ati_cycles);

eng_rpm_cycle = eng_rpm_cycle(ati_cycles);

186

eng_ld_cycle = eng_ld_cycle(ati_cycles);

eng_evt_cycle = eng_evt_cycle(ati_cycles);

eng_ivt_cycle = eng_ivt_cycle(ati_cycles);

eng_spk_ca_cycle = eng_spk_ca_cycle(ati_cycles);

eng_spk_src_cycle=eng_spk_src_cycle(ati_cycles);

eng_fuel_src_cycle=eng_fuel_src_cycle(ati_cycles);

Cyl2_SA_cycle=Cyl2_SA_cycle(ati_cycles);

eng_fuel_mg_cycle=eng_fuel_mg_cycle(ati_cycles);

RGF_cycle=RGF_cycle(ati_cycles);

clear eng_tq eng_ld eng_evt eng_ivt eng_spk_ca wg_dc↩

eng_spk_src Cyl2_IGN_ATI eng_fuel_mg;

%% plot drive cycle

figure;

title(strcat('Drive profile for MTU transient test -', ↩

num2str(test_date), num2str(Test_no)));

xlabel('Cycle number ');

yyaxis left

plot(eng_rpm_cycle ,'Linewidth ',2);

ylabel('Engine RPM ');

hold on

yyaxis right

187

plot(eng_ld_cycle ,'Linewidth ',2);

ylabel('Norm. Engine load ');

legend('Speed ','Load ');

grid minor;

%% %Sorting Crank data

% Plotting Crank angle vs time

cyc =1;

figure;

plot (trtime1(:,cyc),tqca1)

hold on

plot (trtime4(:,cyc),tqca1)

plot (trtime5(:,cyc),tqca1)

plot (trtime3(:,cyc),tqca1)

hold off

set(gca ,'fontsize ',20);

ylabel ('Crankangle [deg]');

xlabel ('time [sec]');

legend ('Encd Cyl1 ','Encd Cyl3 ','Encd Cyl4 ','Encd Cyl2 ')

grid minor

title ('Crankangle vs. time ')

188

title ([' Crankangle vs. time for Cycle :' num2str(cyc) ' ↩

Test ' num2str(Test_no)]);

%% Calculate Velocity signal for Cylinder 2

Cyl= 'Cylinder 2';

TRTIME= trtime3; % change according to above line

% Computing the rpm (slope of the above plot)

dCA= diff(tqca1);

dTime1= diff (TRTIME);

dCA_rep= repmat(dCA ,1,n_cyc);

crnk_rpm= (dCA_rep ./ dTime1)*60/360;

cyc_rpm =1500;% cycle for which RPM is plotted

figure;

plot (tqca_ion (1:end -1),crnk_rpm(:,cyc_rpm))

ylabel ('rpm ');

grid minor

title (['rpm vs. time for ' num2str(Cyl) ' Cycle :' ↩

num2str(cyc_rpm) ' Test ' num2str(Test_no)]);

189

%% %Order analysis of crank data

crnk_rpm =[crnk_rpm; crnk_rpm(end ,:)];% insert an element ↩

in the last row of all columns to make length 1440

signal=crnk_rpm;

block_count=size(crnk_rpm ,2);

N=360*4;

D_Theta= 0.5;

fs= 360/ D_Theta; %Osample

T=N*D_Theta; %R

delf=fs/N; %del_o

win_len=N;

win=hanning(win_len);

ACF =1/ mean(win);

win_mat=repmat(win ,1, block_count);

sig_fft=fft(signal .* win_mat);

pos_fft =(1/N).*[sig_fft (1,:); (2* sig_fft (2:N/2,:))].*ACF;

amp_sig=abs(pos_fft ');

phase_sig=angle(pos_fft ');

freq =(0: length(pos_fft (:,1)) -1) '*fs/N; %Order resolution ↩

is 0.5

%%

190

figure;

subplot (2,1,1)

label='start -end ';

pcolor(freq ,1: block_count ,log10(amp_sig));

colormap default;

shading('interp ');

set(gca ,'fontsize ',12)

xlabel('Order ');

ylabel('Event index ');

set(gca ,'Ydir ','reverse ')

zlabel('Amplitude ');

xlim ([0 20]);

set(gca ,'XTick ' ,0:2:20);

title([strcat('Cyl2 crnk RPM , Cyc: ',label ,', ', num2str↩

(test_date),' ',num2str(Test_no))]);

view ([-90 90]);

subplot (2,1,2)

plot(eng_rpm_cycle ,'Linewidth ',2);

title(['Drive profile for MTU transient test -' num2str(↩

Test_no)]);

191

xlabel('Cycle number ');

ylabel('Engine RPM ');

hold on

yyaxis right

plot(eng_ld_cycle ,'Linewidth ',2);

ylabel('Norm. Engine load ');

legend('Speed ','Load ');

grid minor

xlim ([1 block_count])

%%

%Amplitude and phase of 2nd ,3rd and 4th order , cylinder 2↩

crank RPM data.

%CROSS CHECK ORIENTATION OF POS FFT. SUM LINEAR SPECTRA , ↩

THEN TAKE ABS OR

%PHASE

pos_fft=pos_fft '; %each cycle in a row

%Amplitude

ANN_crnk_rpm_2or_amp=abs(sum(pos_fft (:,5) ,2));

ANN_crnk_rpm_3or_amp=abs(sum(pos_fft (:,7) ,2));

ANN_crnk_rpm_4or_amp=abs(sum(pos_fft (:,9) ,2));

ANN_crnk_rpm_6or_amp=abs(sum(pos_fft (:,13) ,2));

192

%Phase

ANN_crnk_rpm_2or_ang=angle(sum(pos_fft (:,5) ,2));

ANN_crnk_rpm_3or_ang=angle(sum(pos_fft (:,7) ,2));

ANN_crnk_rpm_4or_ang=angle(sum(pos_fft (:,9) ,2));

ANN_crnk_rpm_6or_ang=angle(sum(pos_fft (:,13) ,2));

%% %Ion first peak and peak location

%flame front and ringing detection

end_angle =110;

thresh_SA =1; %V

thresh_SC =1;

k=1;

for i=1: n_cyc

[~,str_idx]= (min(abs(tqca1 -(-1* eng_spk_ca_cycle(cyc)))))↩

;

[~,end_idx]= (min(abs(tqca1 -end_angle)));

[temp ,~] = find(IonSig_s(str_idx:end_idx ,i)>thresh_SA ,1,'↩

first '); %find the first instance in the define CA ↩

range when ion rise above 0.5V

if isempty(temp)

193

rise_idx_SA(i)=0; %if no element is found assign ↩

spark timing so eventually we ''l have pointer at ↩

Spk timing for this cyc

miss_cyc_SA(k)=i; %missing cyc

k=k+1;

else

rise_idx_SA(i)= temp;

end

[temp ,~] = find(IonSig_c(str_idx:end_idx ,i)>thresh_SC ,1,'↩

first ');

if isempty(temp)

rise_idx_SC(i)=0; %if no element is found assign ↩

spark timing so eventually we ''l have pointer at ↩

Spk timing for this cyc

miss_cyc_SC(k)=i; %missing cyc

k=k+1;

else

rise_idx_SC(i)= temp;

end

194

rise_idx_SA(i)=rise_idx_SA(i)+str_idx; %Get the correct ↩

index wrt to tqca1

ANN_rise_angle_SA(i)=tqca1(rise_idx_SA(i));

rise_idx_SC(i)=rise_idx_SC(i)+str_idx; %Get the correct ↩

index wrt to tqca1

ANN_rise_angle_SC(i)=tqca1(rise_idx_SC(i));

end

%% %Standalone Ion - find peaks in cycles with normal ↩

combustion

%Location and amplitude of Ion peak

for cyc=1: n_cyc

flag=ismember(cyc ,miss_cyc_SA);

if flag ==1 %if abnomral cycle assign zero

ANN_Ion_s_pk_amp(cyc)=0;

ANN_Ion_s_pk_loc(cyc)=0;

195

else

[pkt ,lct] = findpeaks(IonSig_s(:,cyc),tqca1 ,'NPeak↩

',1,'MinPeakWidth ',3,'MinPeakHeight ',1,'↩

MinPeakProminence ',0.5,' WidthReference ','halfprom↩

');

ANN_Ion_s_pk_amp(cyc)=pkt;

ANN_Ion_s_pk_loc(cyc)=lct;

end

end

%% %For coil ion start from opposite side and find a peak↩

. First flip the

%signal then find a peak and location , then convert ↩

location to usual conv

%Location and amplitude of Ion peak

k=1;

for cyc=1: n_cyc

flag=ismember(cyc ,miss_cyc_SA);

[~,str_idx]= (min(abs(tqca1 -(-1* eng_spk_ca_cycle(↩

cyc)))));

196

if flag ==1 %if abnomral cycle assign zero

ANN_Ion_c_pk_amp(cyc)=0;

ANN_Ion_c_pk_loc(cyc)=0;

else

[pkt ,lct] = findpeaks(IonSig_c(str_idx:end ,cyc),'↩

MinPeakHeight ',1.5,'MinPeakWidth ',5,'↩

MinPeakProminence ',1,'SortStr ','descend ');

if isempty(pkt)%cycles where actual coil peak in ↩

negligible use ringing peak

clear pkt lct;

ANN_Ion_c_pk_amp(cyc)=IonSig_c(rise_idx_SC(cyc));

ANN_Ion_c_pk_loc(cyc)=tqca1(rise_idx_SC(cyc));

mark(k)=cyc;

k=k+1;

elseif size(pkt ,1)==2

ANN_Ion_c_pk_amp(cyc)=pkt (2); %use the largest ↩

peak as odds are this is first peak that isn 't↩

ringing

ANN_Ion_c_pk_loc(cyc)=tqca1(str_idx+lct (2));

197

elseif size(pkt ,1)==1

ANN_Ion_c_pk_amp(cyc)=pkt (1); %use the largest ↩

peak as odds are this is first peak that isn 't↩

ringing

ANN_Ion_c_pk_loc(cyc)=tqca1(str_idx+lct (1));

end

end

end

%% %Exhaust Pressure data

Exh_1col=Exh_kulite (:); %puts one cycle after the other

% This section puts the exhaust data in a proper form

% Reshape the exhaust pressure data into one column for ↩

each cycle. From the start we next

% 7 blocks of data to see the exhuast event for cycle 1. ↩

Each block has data

198

% for 180 degrees. however we cannot see the last cycle ↩

exhaust data

k=1;

for i=1: size(Exh_kulite ,2) -1

ExhPres_K_EVO_cycle (:,i)=Exh_1col(k:k+7*180*2 -1); %need 7↩

blocksbut for safe measure taking an 8th block

k=k+(4*180*2);

end

%%% Building a filter

D_Theta =0.5;

filt_order= 8; % order of filter to be built

fc = 15; % cut -off frequency , selected based on linear ↩

spectrum plot

fs = 360/ D_Theta; % sampling rate

[b,a] = butter(filt_order ,fc/(fs/2)); % building the ↩

filter

figure

freqz(b,a) % plotting the filter

%%% Applying the filter

199

for ii=1: size (ExhPres_K_EVO_cycle ,2)

% Two -way filtering for each cycle

ExhPres_filt (:,ii) = filtfilt(b,a,ExhPres_K_EVO_cycle (:,↩

ii));

end

%%% Changing variable name to use filtered signal

ExhPres_K_EVO_cycle_abs=ExhPres_filt;

ExhPres_K_EVO_cycle=detrend(ExhPres_K_EVO_cycle_abs); %↩

detrend removes any trend lines and offsets in signal

%the for loop below tries to center the signal about zero↩

so as to ease

%processing in misfire identification and waveform ↩

classification

%Arrange exh such that each column has 360 data points. ↩

start from

%cylinder 1 EVO of first cycle in dataset which is the ↩

648th data point i.e

% to get to TDC 180 pts , EVO is 144 from there , sampling ↩

rate is 0.5CAD so

% 2(144+180) =648

200

raw_exh_one_col=Exh_1col (2*(180+144):end);

max_iter=floor(size(raw_exh_one_col ,1) /(2*2*360));

%cut into blocks of 1 cycles

k=1;

for i=1: max_iter

raw_exh_oa_all (:,i)=raw_exh_one_col(k:k+2*2*360 -1); ↩

%2*360 will take each block from Cyl1 EVO to just ↩

before ...

%start of Cyl 1 EVO in next cycle

k=k+(2*2*360);

end

%%

%Stitch them back together and cut into blocks of size ↩

360*4*2 or 2 cycles

%sampled at 0.5 CAD

raw_exh_one_col=raw_exh_oa_all (:);

max_iter=floor(size(raw_exh_one_col ,1) /(4*2*360));

k=1;

201

raw_exh_oa =[];

for i=1: max_iter

raw_exh_oa (:,i)=raw_exh_one_col(k:k+4*2*360 -1);

k=k+(4*2*360);

end

%Stitch them back together and cut into blocks of size ↩

360*2*2 or 1 cycle

%sampled at 0.5 CAD

raw_exh_one_col=raw_exh_oa_all (:);

max_iter=floor(size(raw_exh_one_col ,1) /(2*2*360));

k=1;

raw_exh_oa2 =[];

for i=1: max_iter

raw_exh_oa2 (:,i)=raw_exh_one_col(k:k+2*2*360 -1);

k=k+(2*2*360);

end

%%

202

%Create blocks such that window lines up with peak of ↩

exhaust pressure

%Each block need to be 2 cycles long. if sampling at 0.5↩

CA thats 2880 pts

cycles =1: ati_cycles(end);

cyc_name ='1:end ';

label=' start to finish ';

cont_signal=raw_exh_oa (:); %Puts one column below the ↩

other so exhaust events will be continuous

rpm_2=eng_rpm(cycles)'; %Each row has the Cyl RPM in ↩

firing order

%Vector of RPM in firing order

i=[];

k=1;

for i=1: size(cycles ,2)

cont_rpm(k:k+4)=eng_rpm(cycles(i));

k=k+4;

end

%We will be using bocks of size 2880. In the very first ↩

block to make the window line up with exhaut peak of

203

%Cylinder 1 we need to start block from 333 data point in↩

cont_signal. The next block should have the window

%line up with next exhaust peak ,to achive this we shift ↩

the block captured by 360 pts and take 2880 data point

cont_signal=cont_signal (324: end);

%First lets find out how many block we can get from the ↩

cycles

block_count=fix((length(cont_signal) -2880) /(180*2))+1; %↩

block count is the number of block of data we can get

%from cont_signal. fix gives the quotient. 180*2 cuz we'↩

re sampling at

%0.5 CAD and 360 datapoints will be exhaust event of one ↩

cylinder

%For loop below puts each block in a cloumn , then shifts ↩

180 pts and takes

%another block

k=0;

signal=zeros (2880, block_count);

for i=1: block_count %for loop goes from second block

str_idx =(180*2*k);

204

if str_idx ==0

signal(:,i)=cont_signal (1:2880) ;% first block

else

block=cont_signal(str_idx:str_idx +2879);

signal(:,i)=block; %Each block will go into a column

end

k=k+1;

end

%%

N=360*4*2;

D_Theta= 0.5;

fs= 360/ D_Theta; %Osample

T=N*D_Theta; %R

delf=fs/N; %del_o

win_len=N;

%win=hanning(win_len);

win=tukeywin(win_len ,0.5);

%win=[zeros (869+13+10 ,1); tukeywin (1084 ,0.5); zeros↩

(927 -13 -10 ,1)];

ACF =1/ mean(win);

205

win_mat=repmat(win ,1, block_count);

sig_fft=fft(signal .* win_mat);

pos_fft =(1/N).*[sig_fft (1,:); (2* sig_fft (2:N/2,:))].*ACF;

amp_sig=abs(pos_fft ');

phase_sig=angle(pos_fft ');

freq =(0: length(pos_fft (:,1)) -1) '*fs/N;

k=1;

%NOTE : Look at the next figure , if the exhaust block is ↩

first cut starting

%from Cyl1 EVo and we go 333 points in as done in code ↩

above , the window

%will line up wih the peak of cylinder 1

%thus for loop below is 1-3-4-2

%Sort cylinderwise amp

cyc =1;

for i=1:4: block_count

if cyc <= floor(block_count /4)

%In firing order

Cyl1_exh_ls (:,k)=pos_fft(:,i);

Cyl1_oa(k,:)=amp_sig(i,:);

206

Cyl3_exh_ls (:,k)=pos_fft(:,i+1);

Cyl3_oa(k,:)=amp_sig(i+1,:);

Cyl4_exh_ls (:,k)=pos_fft(:,i+2);

Cyl4_oa(k,:)=amp_sig(i+2,:);

Cyl2_exh_ls (:,k)=pos_fft(:,i+3);

Cyl2_oa(k,:)=amp_sig(i+3,:);

k=k+1;

cyc=cyc+1;

end

end

%%

%Plot a block and also the window applied

index =(1:1:N)';

figure;

yyaxis left

plot(index ,signal (: ,3200) ,'k');

hold on

207

plot(index ,signal (: ,3200) ,'b');

ylabel('Exh Pressure(kPa) ');

xlabel('index ');

xlim ([1 2880]);

yyaxis right

plot(index ,win ,'red ');

ylabel('Window amplitude ');

title('Block and window used in order analysis ');

blah=[zeros (869+13+10 ,1); hann (1084); zeros (927 -13 -10 ,1)↩

];

plot(index ,blah ,'-black ');

legend('Cyl1 , Cycle 757','Cyl2 , Cycle 757','Window -new ','↩

Window -old ');

%%

%Cyl2 waterfall

figure;

waterfall(freq ,1: floor(block_count /4),log10(Cyl2_oa));

xlabel('Order ')

ylabel('Event index ');

zlabel('Amplitude ');

208

xlim ([0 20]);

set(gca ,'XTick ' ,0:2:20);

title([strcat('Cylinder 2-Cycles: ', num2str(cyc_name),↩

label)]);

%%

%Cyl 2 colormap in order of occurence

cycles =1: ati_cycles(end);

cyc_name ='1:end ';

label=' start to finish ';

figure;

subplot (2,1,1)

pcolor(freq ,1: block_count /4,log10(Cyl2_oa));

colormap default;

shading('interp ');

set(gca ,'fontsize ',12)

xlabel('Order ');

ylabel('Event index ');

set(gca ,'Ydir ','reverse ')

209

zlabel('Amplitude ');

xlim ([0 20]);

set(gca ,'XTick ' ,0:2:20);

title([strcat('Cyl2 Exh Colormap ,Cycles: ', num2str(↩

cyc_name),label)]);

view ([-90 90]);

xval =1: n_cyc;

subplot (2,1,2)

plot(xval ,eng_rpm_cycle ,'Linewidth ',2);

title(['Drive profile for MTU transient test -' num2str(↩

Test_no)]);

xlabel('Cycle number ');

ylabel('Engine RPM ');

xlim ([1 n_cyc]);

hold on

yyaxis right

plot(xval ,eng_ld_cycle ,'Linewidth ',2);

ylabel('Norm. Engine load ');

legend('Speed ','Load ');

%%

210

%Plot amplitudes of orders 2,3,4 for all cylinders

figure;

subplot (3,1,1);

plot(log10(sum(Cyl1_oa (: ,8:10) ,2)),'r'); %Cylinder1 order↩

1, sum across 3 bins for all events

hold on

plot(log10(sum(Cyl3_oa (: ,8:10) ,2)),'g');

plot(log10(sum(Cyl4_oa (: ,8:10) ,2)),'b');

plot(log10(sum(Cyl2_oa (: ,8:10) ,2)),'k');

legend('Cyl 1','Cyl 3','Cyl 4','Cyl 2');

title([strcat('2nd order.', label ,' Cycles:',num2str(↩

cyc_name))]);

ylabel('Amplitude (log) ');

xlabel('Cycle number ');

subplot (3,1,2);

plot(log10(sum(Cyl1_oa (: ,12:14) ,2)),'r'); %Cylinder 1 ↩

order 3

hold on

plot(log10(sum(Cyl3_oa (: ,12:14) ,2)),'g');

plot(log10(sum(Cyl4_oa (: ,12:14) ,2)),'b');

plot(log10(sum(Cyl2_oa (: ,12:14) ,2)),'k');

211

legend('Cyl 1','Cyl 3','Cyl 4','Cyl 2');

title([strcat('3rd order.', label ,' Cycles:',num2str(↩

cyc_name))]);

ylabel('Amplitude (log) ');

xlabel('Cycle number ');

subplot (3,1,3);

plot(log10(sum(Cyl1_oa (: ,16:18) ,2)),'r'); %Cylinder 1 ↩

order 5

hold on

plot(log10(sum(Cyl3_oa (: ,16:18) ,2)),'g');

plot(log10(sum(Cyl4_oa (: ,16:18) ,2)),'b');

plot(log10(sum(Cyl2_oa (: ,16:18) ,2)),'k');

legend('Cyl 1','Cyl 3','Cyl 4','Cyl 2');

title([strcat('4th order.', label ,' Cycles:',num2str(↩

cyc_name))]);

ylabel('Amplitude (log) ');

xlabel('Cycle number ');

%%

%Preprocess input for ANN - Done here only for Cylinder 2

% We input Engine Speed , load , MAP , SA, Intake and ↩

Exhaust Cam phasing ,

212

%location of waste gate , 2, 3, and 4 order amplitudes and↩

phases of exhaust pressure

clear ('ANN_IP ','ANN_OP ');

%Inputs

ls=Cyl2_exh_ls ';

%Amplitude

ANN_Cyl2_2or_amp=abs(sum(ls(: ,8:10) ,2));

ANN_Cyl2_3or_amp=abs(sum(ls(: ,12:14) ,2));

ANN_Cyl2_4or_amp=abs(sum(ls(: ,16:18) ,2));

%phase

ANN_Cyl2_2or_ang=angle(sum(ls(: ,8:10) ,2));

ANN_Cyl2_3or_ang=angle(sum(ls(: ,12:14) ,2));

ANN_Cyl2_4or_ang=angle(sum(ls(: ,16:18) ,2));

cyc_of_orders=size(Cyl2_oa ,1);

ANN_eng_rpm=eng_rpm_CAS (2: cyc_of_orders +1) ';

ANN_eng_ld=eng_ld_cycle (2: cyc_of_orders +1) ';

ANN_eng_ivt=eng_ivt_cycle (2: cyc_of_orders +1) ';

ANN_eng_evt=eng_evt_cycle (2: cyc_of_orders +1) ';

213

ANN_cyl2_SA=eng_spk_CAS (2: cyc_of_orders +1) ';

ANN_eng_map=eng_map (2: cyc_of_orders +1) ';

ANN_eng_fuel_mg=eng_mf_CAS (2: cyc_of_orders +1) ';

ANN_Ion_s_pk_amp=ANN_Ion_s_pk_amp (2: cyc_of_orders +1) ';

ANN_Ion_s_pk_loc=ANN_Ion_s_pk_loc (2: cyc_of_orders +1) ';

ANN_rise_angle_SC=ANN_rise_angle_SC (2: cyc_of_orders +1) ';

ANN_rise_angle_SA=ANN_rise_angle_SA (2: cyc_of_orders +1) ';

ANN_crnk_rpm_2or_amp=ANN_crnk_rpm_2or_amp (2: cyc_of_orders↩

+1);

ANN_crnk_rpm_3or_amp=ANN_crnk_rpm_3or_amp (2: cyc_of_orders↩

+1);

ANN_crnk_rpm_4or_amp=ANN_crnk_rpm_4or_amp (2: cyc_of_orders↩

+1);

ANN_crnk_rpm_6or_amp=ANN_crnk_rpm_6or_amp (2: cyc_of_orders↩

+1);

ANN_crnk_rpm_2or_ang=ANN_crnk_rpm_2or_ang (2: cyc_of_orders↩

+1);

ANN_crnk_rpm_3or_ang=ANN_crnk_rpm_3or_ang (2: cyc_of_orders↩

+1);

214

ANN_crnk_rpm_4or_ang=ANN_crnk_rpm_4or_ang (2: cyc_of_orders↩

+1);

ANN_crnk_rpm_6or_ang=ANN_crnk_rpm_6or_ang (2: cyc_of_orders↩

+1);

%%

% ANN_IP =[ANN_eng_rpm ANN_eng_map ANN_cyl2_SA ANN_eng_ivt↩

ANN_eng_evt ANN_wg_dc ANN_eng_fuel_mg ...

% ANN_Cyl2_2or_amp ANN_Cyl2_3or_amp ANN_Cyl2_4or_amp ↩

...

% ANN_Cyl2_2or_ang ANN_Cyl2_3or_ang ANN_Cyl2_4or_ang↩

...

% ANN_Ion_s_pk_amp ANN_Ion_s_pk_loc ANN_rise_angle_SA↩

...

% ANN_crnk_rpm_2or_amp ANN_crnk_rpm_3or_amp ↩

ANN_crnk_rpm_4or_amp ANN_crnk_rpm_6or_amp ...

% ANN_crnk_rpm_2or_ang ANN_crnk_rpm_3or_ang ↩

ANN_crnk_rpm_4or_ang ANN_crnk_rpm_6or_ang];

ANN_IP =[ANN_Ion_s_pk_loc ANN_rise_angle_SA];

%%

%Output

215

ANN_Cyl2_IMEP=Cyl2_IMEP (2: cyc_of_orders +1) ';

ANN_Cyl2_CA50=Cyl2_CA50 (2: cyc_of_orders +1) ';

%ANN_OP =[ANN_Cyl2_IMEP ANN_Cyl2_CA50];

ANN_OP =[ANN_Cyl2_IMEP ANN_Cyl2_CA50];

%% %Remove abmormal cycles

miss_cyc_SA_corr=miss_cyc_SA -1;% becasue the latest matrix↩

starts from cycles two , the cycle index in ↩

miss_cyc_SA

%will be one index less than actual index

for cyc=1: cyc_of_orders

flag=ismember(cyc ,miss_cyc_SA_corr);

if flag ==1

ANN_IP(cyc ,:) =[];

ANN_eng_rpm(cyc)=[]; %needed for color coding later

ANN_OP(cyc ,:) =[];

end

end

216

%% Recursive neural net

%ANN_IP =[ANN_Cyl2_2or_amp ANN_Cyl2_3or_amp ↩

ANN_Cyl2_4or_amp ...

% ANN_Cyl2_2or_ang ANN_Cyl2_3or_ang ANN_Cyl2_4or_ang];

%ANN_OP =[ANN_Cyl2_IMEP];

x = tonndata(ANN_IP ,false ,false);

t = tonndata(ANN_OP ,false ,false);

% Choose a Training Function

% For a list of all training functions type: help nntrain

% 'trainlm ' is usually fastest.

% 'trainbr ' takes longer but may be better for ↩

challenging problems.

% 'trainscg ' uses less memory. Suitable in low memory ↩

situations.

trainFcn = 'trainbr '; % Bayesian Regularization ↩

backpropagation.

net = layrecnet (1:2,20, trainFcn);

217

[Xs ,Xi,Ai ,Ts] = preparets(net ,x,t);

net = train(net ,Xs ,Ts,Xi ,Ai);

% Setup Division of Data for Training , Validation , ↩

Testing

net.divideParam.trainRatio = 70/100;

net.divideParam.valRatio = 15/100;

net.divideParam.testRatio = 15/100;

% Train the Network

[net ,tr] = train(net ,x,t);

ANN_OP_resul2 = net(Xs ,Xi,Ai);

ANN_OP_resul=cell2mat(ANN_OP_resul2);

perf = perform(net ,ANN_OP_resul2 ,Ts);

% Test the Network

ANN_error=ANN_OP (1:end -2,:) '-ANN_OP_resul;

% View the Network

view(net)

218

% Plots

figure , plotperform(tr)

%figure , plottrainstate(tr)

%figure , ploterrhist(ANN_error)

%figure , plotregression(t,ANN_OP_resul)

%figure , plotfit(net ,x,t)

cycles =1: size(ANN_OP_resul ,2);

219

A.2 Ion knock detection code

% FILE: Ion_Knock_Detection.m

% AUTHOR(S): Nischal Muralidhar , Jeff Naber and Jason R. ↩

Blough

% DESCRIPTION: Processes Ion sensor to evaluated knock ↩

detection capability

% Written specifically for and tested on Ford 2.0L ↩

Ecoboost engine

close all; clear all; clc

%% Loading the data

Test_no= ' TEST 2'; %UPDATE WHEN DATA SET CHANGES . No ↩

space in text

test_num = 2;

test_date = 20181011;

dt = num2str(test_date);

%% ATI Data for Cyl 2 Ign

dt = num2str(test_date);

220

folder_loc = strcat('M:\ jnaber_ford \2.0L Ford Metal ↩

Engine\Test Data\',dt ,'\ATI '); %Change as ↩

per your location

cd (folder_loc);

TEST_ATI = sprintf('TEST%d.xlsx ', test_num);

Data_ATI = xlsread(TEST_ATI);

IGN_ATI = Data_ATI (38:end ,6); %Cyl1 SPK_ADV

Cyl2_IGN_ATI=Data_ATI (38:end ,46); %CHECK COLUMN for ↩

SPK_ADV [3] in ATI file %Cyl 2 SPK_ADV Another ↩

Option is Column 54

%%

% Load CAS Data

folder_loc = strcat('M:\ jnaber_ford \2.0L Ford Metal ↩

Engine\Test Data\',dt ,'\CAS '); %Change as ↩

per your location

s = num2str(test_num); % Converts ↩

number to string

basepath = strcat(folder_loc ,'\TEST ',s);

cd(basepath)

load('Trace.IonSensingCyl2.mat ');

load('Trace.IonCoil.mat ');

221

load('tqca3.mat '); %CHECK which tqca size matches

tqca1=tqca3 -540;

load('IMEP.Cyl2.mat ');

load('CA50.Cyl2.mat ');

load('Knock.Cyl2.mat ');

load('PresTrace.Cyl2.mat ');

load('Knock FKI4.Cyl2.mat ') % Knock FKI4 for cylinder 2

load('Knock Intensity.Cyl2.mat ') % Knock intensity for ↩

cylinder 2

load('Knock Amplitude.Cyl2.mat ') % Knock amplitude for ↩

cylinder 2

%% _s - standalone ion probe , _c - coil ion probe

IonSig_ssf= IonSensingCyl2Trace;

IonSig_csf= IonCoilTrace;

PresTrace= Cyl2PresTrace;

IMEP= Cyl2IMEP;

CA50=Cyl2CA50;

Knock_inten=Cyl2KnockIntensity;

Knock_amp=Cyl2KnockAmplitudeRT;

Knock=Cyl2Knock;

num_cyc= size(IMEP ,2);

222

cycles= 1: num_cyc;

%MAx and Min Knock intensity cycles

[min_knock_inten ,min_knock_cyc]= min(Knock_inten);

[max_knock_inten ,max_knock_cyc]= max(Knock_inten);

%Max and Min Knock Amplitudes

[min_knock_amp ,min_knock_amp_cyc]= min(Knock_amp);

[max_knock_amp ,max_knock_amp_cyc]= max(Knock_amp);

%% Display Test Parameters

load('IMEP.Cyl1.mat ')

load('CA50.Cyl1.mat ')

load('CAIGN.Cyl1.EST.mat ')

load('RPM.Timer.mat ');

load('IMEP.EA.mat ') % for COV calc

Rpm= mean(RPM);

Rpm= round(Rpm /500) *500

IMEP= mean(Cyl2IMEP (1:end))

STD_IMEP= std(Cyl2IMEP (1: end))

CA50= mean(Cyl2CA50 (1:end))

ST= mean (Cyl2_IGN_ATI) % Use Cyl2 Spark from ATI for ↩

Knock tests

mean_IMEP=mean(EAIMEP);

223

std_IMEP= std(EAIMEP);

COV= std_IMEP/mean_IMEP *100

basepath=strcat ('\\homes.mtu.edu\home\Desktop\Sensor ↩

Fusion_2018\Knock_studies_Nis ');

cd(basepath);

%% Plotting

cyc= 144 %max_knock_cyc; % UPDATE BASED ON WHICH CYCLE ↩

YOU WANT THE FUNC TO PLOT

%Had to create an encoder signal for ion data as the ↩

tqca1 has 1840 point to

%account for heigher resolution around the knock region

tqca_ion =(-179.967666625977 :0.5:539.532348632813) ';

spark_pt=mean(ST); %If Knock Test use Cyl 2 Spark from ↩

ATI not Cyl1 spark from CAS

[~, spark_pt_idx]= (min(abs(tqca1 -(-1* spark_pt))));

figure;

subplot (2,1,1);

plot(tqca1 ,PresTrace (:,cyc));

ylabel ('In -cylinder Pressure (bar) ');

xlim ([-30 70])

set(gca ,'XTick ',[-180 : 15 : 540]);

224

xlabel ('Crankangle [deg]');

title (['Raw Cyl Pressure. Data: ' num2str(Test_no) ' ↩

Cycle :' num2str(cyc)]);

grid minor;

subplot (2,1,2);

plot(tqca1 ,IonSig_ssf (:,cyc),'-black ');

hold on

plot(tqca1 ,IonSig_csf (:,cyc),'-red ');

plot(tqca1(spark_pt_idx),0,'o','LineWidth ',2,'↩

MarkerEdgeColor ','k','MarkerFaceColor ','r','MarkerSize↩

',8);

ylim ([0 10])

xlim ([-30 70])

legend ('Standalone Ion probe signal ','Coil Ion probe ↩

signal ','Spark timing:ATI ');

set(gca ,'XTick ',[-180 : 15 : 540]);

xlabel ('Crankangle [deg]');

ylabel ('Ion signal - [V]');

title (['Raw Ion signal. Data: ' num2str(Test_no) ' Cycle↩

:' num2str(cyc)]);

grid minor;

225

%% Log normal Probability density function for FKI4 and ↩

Knock intensity

x=(sort(Cyl2KnockIntensity));

pct_95=prctile(x,95);

x=x./ pct_95;

mu=mean(log(x));

sigma=std(log(x));

pdf=lognpdf(x,mu,sigma);

cdf=logncdf(x,mu,sigma);

figure;

histogram(x,30,'Normalization ','pdf ');

ylabel('PDF ');

hold on;

plot(x,pdf ,'LineWidth ',2);

yyaxis right

plot(x,cdf ,'LineWidth ',2);

ylabel('CDF ');

title(strcat('PDF of Knock Intensity :',Test_no));

xlabel('Knock Intensity (bar)');

clear('x','mu ','sigma ');

x=sort(Cyl2KnockFKI4RT);

226

mu=mean(x);

sigma=std(x);

FKI4_pdf=pdf('normal ',x,mu,sigma);

figure

plot(x,FKI4_pdf ,'LineWidth ',2)

title(strcat('PDF of FKI4 :',Test_no));

xlabel('FKI4 rating ');

ylabel('Probability density ');

clear x;

%%

%Look where to place window so that flame front doesn 't ↩

mess with Knock detection in standalone ion

%Detection of Flame front on Standalone Ion

%Check Excel sheet "Variable settings for Knock test ↩

codes.xlsx" for

%variable values for each test

str_angle =-15; %CAD ATDC

end_angle =60;

thresh_SA =2; %V

thresh_SC =2;

[~,str_idx]= (min(abs(tqca1 -str_angle)));

227

[~,end_idx]= (min(abs(tqca1 -end_angle)));

for i=1: num_cyc

[rise_idx_SA(i) ,~] = find(IonSig_ssf(str_idx:end_idx ,i)>↩

thresh_SA ,1,'first '); %find the first instance in the ↩

define CA range when ion rise above 0.5V

[rise_idx_SC(i) ,~] = find(IonSig_csf(str_idx:end_idx ,i)>↩

thresh_SC ,1,'first ');

end

rise_idx_SA=rise_idx_SA+str_idx; %Get the correct index ↩

wrt to tqca1

rise_angle_SA=tqca1(rise_idx_SA);

rise_idx_SC=rise_idx_SC+str_idx; %Get the correct index ↩

wrt to tqca1

rise_angle_SC=tqca1(rise_idx_SC);

%Look at the Cycles

plot_cyclewise_flamefront %Press any keep to look at ↩

cycles in loop

%% Upsample of Pressure trace

idx_Hres_start= 301; % starting index of high res crank ↩

data

idx_Hres_end= 701; % ending index of high res crank data

228

%Pressure

D_Theta_press= 0.5/2; % For Knocking data

Fs_press= 360/ D_Theta_press;

%Ion

D_Theta= 0.5;

Fs= 360/ D_Theta; % sampling rate = 0.5 deg so for 360 ↩

degs (1 rev) we have 720 orders

% Upsampling PresTrace

PresTrace_up1= upsample(PresTrace (1: idx_Hres_start ,:) ,2);↩

% staring 0.5 deg interval

PresTrace_up2= upsample(PresTrace(idx_Hres_end:end ,:) ,2);↩

% ending 0.5 deg interval

PresTrace_up= [PresTrace_up1 (1:end -2,:);PresTrace(↩

idx_Hres_start:idx_Hres_end -1,:);PresTrace_up2 (1:end↩

,:)]; %upsampled PresTrace

PresTrace_up_b = lowpass(PresTrace_up ,0.45* Fs*Rpm./60,↩

Fs_press*Rpm ./60);

IonSig_ssf1= upsample(IonSig_ssf (1: idx_Hres_start ,:) ,2); ↩

% staring 0.5 deg interval

IonSig_ssf2= upsample(IonSig_ssf(idx_Hres_end:end ,:) ,2); ↩

% ending 0.5 deg interval

229

IonSig_ssf_up= [IonSig_ssf1 (1:end -2,:);IonSig_ssf(↩

idx_Hres_start:idx_Hres_end -1,:);IonSig_ssf2 (1:end ,:)↩

]; %upsampled PresTrace

IonSig_ssf_up_b = lowpass(IonSig_ssf_up ,0.45* Fs*Rpm./60,↩

Fs_press*Rpm ./60);

IonSig_csf1= upsample(IonSig_csf (1: idx_Hres_start ,:) ,2); ↩

% staring 0.5 deg interval

IonSig_csf2= upsample(IonSig_csf(idx_Hres_end:end ,:) ,2); ↩

% ending 0.5 deg interval

IonSig_csf_up= [IonSig_csf1 (1:end -2,:);IonSig_csf(↩

idx_Hres_start:idx_Hres_end -1,:);IonSig_csf2 (1:end ,:)↩

]; %upsampled PresTrace

IonSig_csf_up_b = lowpass(IonSig_csf_up ,0.45* Fs*Rpm./60,↩

Fs_press*Rpm ./60);

%% Band pass filter the IncylP , standalone Ion and coil ↩

ion between 5-8kHz . Plot the bandpassed and origianl.↩

Then do Frequcney analysis

tqca_p = -180:0.25:539.75;

tq_len=length(tqca_p);

winlen_CAD =35; %Length of window in CAD

230

win_offst_SA =8; %2; %CAD offset of window from flame ↩

detection CAD

win_offst_SC =11; %6;

d_theta =0.25;

steps =1/ d_theta;

recwin_str_idx =781; %index 15 deg ATDC in tqca_p

% find the crank angle where flame starts and build ↩

appropriate window

for i=1: num_cyc

%Standalone ion window

[~,flame_idx(i)]= (min(abs(tqca_p -rise_angle_SA(i)))); %↩

find flame front index

s_win_str_idw(i)=win_offst_SA*steps+flame_idx(i);

str_zero=length (1: s_win_str_idw(i)); %Number of zeros to ↩

pad at start

win_len=length(s_win_str_idw(i):s_win_str_idw(i)+steps*↩

winlen_CAD); %Tukey window of defined size

fin_zero=tq_len -str_zero -win_len; %Number of zeros to pad↩

at end

win_mat(:,i)= [zeros(str_zero ,1);tukeywin(win_len ,0.5);↩

zeros(fin_zero ,1)];

231

%Window for Coil Ion - similar to Standalone

[~,flame_idx(i)]= (min(abs(tqca_p -rise_angle_SC(i)))); %↩

find flame front index

c_win_str_idw(i)= win_offst_SC*steps+flame_idx(i);

str_zero=length (1: c_win_str_idw(i)); %Number of zeros to ↩

pad at start

win_len=length(c_win_str_idw(i):c_win_str_idw(i)+steps*↩

winlen_CAD); %Tukey window of defined size

fin_zero=tq_len -str_zero -win_len; %Number of zeros to pad↩

at end

win_mat_SC (:,i)= [zeros(str_zero ,1);tukeywin(win_len ,0.5)↩

;zeros(fin_zero ,1)];

%Calc the size of the rect window for the Pressure signal↩

. Rect win to

%extend from earliest flame detection CAD to a length of ↩

60 CAD

if flame_idx(i) < recwin_str_idx

recwin_str_idx=flame_idx(i)+6* steps;

end

end

%DND

232

int_len =50; %length in CAD across which to integrate for ↩

PI and II later

str_zero=length (1: recwin_str_idx); %Number of zeros to ↩

pad at start

win_len=length(recwin_str_idx:recwin_str_idx+steps*↩

int_len); %Tukey window of defined size

fin_zero=tq_len -str_zero -win_len;

rect_win= [zeros(str_zero ,1);ones(win_len ,1);zeros(↩

fin_zero ,1)]; %upsampled PresTrace

%%

%win= [zeros (780 ,1);tukeywin (182 ,0.5);zeros (1918 ,1)]; %↩

upsampled PresTrace

%win_mat=repmat(win ,1,size(cycles ,2));

PresTrace_up_bpass = bandpass(PresTrace_up_b ,[5000 8000] ,↩

Fs_press*Rpm ./60); %Knock; %The CAS Knock signal is ↩

the bandpassed pressure data

IonSig_s_bpass = bandpass(win_mat .* IonSig_ssf_up_b ,[5000 ↩

8000], Fs_press*Rpm ./60);

IonSig_c_bpass = bandpass(win_mat_SC .* IonSig_csf_up_b↩

,[5000 8000], Fs_press*Rpm ./60);

%Max ampltidue of bandpassed ion signals

233

max_ion_amp_s = max(IonSig_s_bpass);

max_ion_amp_c = max(IonSig_c_bpass);

%% Plotting the bandpassed data

%MAX and MIN using Knock Intensity

tqca_p = -180:0.25:539.75;

%Cycle with min knock

cyc= max_knock_cyc; %max_knock_cyc; % UPDATE BASED ON ↩

WHICH CYCLE YOU WANT THE FUNC TO PLOT

plot_type= 'For a cycle ';

legend_loc='northeast ';

spark_pt=mean(Cyl2_IGN_ATI);

[~, spark_pt_idx]= (min(abs(tqca1 -(-1* spark_pt))));

figure('pos ',[500 300 900 600]);

subplot (2,1,1);

plot(tqca1 ,PresTrace (:,cyc));

ylabel ('In -cylinder Pressure (bar) ');

xlim ([-15 70])

set(gca ,'XTick ',[-180 : 15 : 540]);

xlabel ('Crankangle [deg]');

title (strcat('Raw Cyl Pressure.',plot_type ,'. Data: ', ↩

num2str(Test_no) ,' Cycle :', num2str(cyc)));

234

grid minor;

hold on

yyaxis right

ylim ([-80 80]);

plot(tqca_p ,rect_win .* PresTrace_up_bpass (:,cyc).*100);

ylabel ('Knock Pressure x 100 (bar) ');

legend('Incyl Pressure ', 'Bpass Incyl Pressure ');

hold off

subplot (2,1,2);

plot(tqca1 ,IonSig_ssf (:,cyc),'-black ',tqca1 ,IonSig_csf (:,↩

cyc),'-Red ');

hold on

plot(tqca1(spark_pt_idx),0,'o','LineWidth ',2,'↩

MarkerEdgeColor ','k','MarkerFaceColor ','r','MarkerSize↩

',8);

plot(tqca1(rise_idx_SA(cyc)) ,0,'^','LineWidth ',2,'↩

MarkerEdgeColor ','k','MarkerFaceColor ','blue ','↩

MarkerSize ',8)

plot(tqca1(rise_idx_SA(cyc)+win_offst_SA*steps) ,0,'^','↩

LineWidth ',2,'MarkerEdgeColor ','k','MarkerFaceColor ','↩

blue ','MarkerSize ',8);

235

plot(tqca1(rise_idx_SC(cyc)) ,0,'^','LineWidth ',2,'↩

MarkerEdgeColor ','k','MarkerFaceColor ','red ','↩

MarkerSize ',8)

plot(tqca1(rise_idx_SC(cyc)+win_offst_SC*steps) ,0,'^','↩

LineWidth ',2,'MarkerEdgeColor ','k','MarkerFaceColor ','↩

red ','MarkerSize ',8);

ylim ([0 10])

xlim ([-15 70])

set(gca ,'XTick ',[-180 : 15 : 540]);

xlabel ('Crankangle [deg]');

ylabel ('Ion signal - [V]');

yyaxis right

plot(tqca_p ,win_mat(:,cyc).*100,'-blue ');

plot(tqca_p ,win_mat_SC (:,cyc).*100,'-cyan ');

ylim ([-80 80]);

g=plot(tqca_p ,IonSig_s_bpass (:,cyc).*1000,'-black ')

plot(tqca_p ,IonSig_c_bpass (:,cyc).*1000,'-Red ');

set(g,'LineWidth ',2);

ylabel ('BPass Ion signal - [mV]');

236

legend ('SA Ion ','SC Ion ','Spk timing:ATI ','SA flame ↩

front ','SA win str ','SC ringing ','SC win str ','SA ↩

window ','SC window ', 'Bpass SA Ion ','Bpass SC Ion ','↩

Location ',legend_loc); %'Orientation ','horizontal ');

lgd.NumColumns = 2;

title (strcat('Raw Ion signal.',plot_type ,'. Data: ', ↩

num2str(Test_no) ,' Cycle :', num2str(cyc)));

grid minor;

%%

%Show that ion window always starts well before peak ↩

knock

%find where peak occurs in knock signal

[~, pk_knock_idx]=max(rect_win .* PresTrace_up_bpass); %↩

windowed bandpassed pressure signal used

s_win_diff=pk_knock_idx -s_win_str_idw;

c_win_diff=pk_knock_idx -c_win_str_idw;

[~, high_knock_cyc] =find(Knock_amp >=0.9);

figure;

subplot (2,1,1)

bar(s_win_diff/steps);

ylabel('crank angles ');

237

title(strcat('Standalone Window start relative to knock ↩

peak (CAD),',Test_no ,',',num2str(test_date)));

subplot (2,1,2)

bar(c_win_diff/steps);

ylabel('crank angles ');

title(strcat('Coil Window start relative to knock peak (↩

CAD),',Test_no ,',',num2str(test_date)));

%% Raw intensity in window of 15 to 60CAD

II_s_raw=IonSig_s_bpass(recwin_str_idx:recwin_str_idx+↩

steps*int_len ,:); %CAD of earliest flame detect to 60 ↩

degrees after

II_c_raw=IonSig_c_bpass(recwin_str_idx:recwin_str_idx+↩

steps*int_len ,:);

PI_raw =PresTrace_up_bpass(recwin_str_idx:recwin_str_idx+↩

steps*int_len ,:); %sampled at 0.25 CAD

N_ion = size(II_s_raw ,1);

N_press = size(PI_raw ,1); %numder of rows or crank angle ↩

points

PI = sum(abs(PI_raw).*100)/N_press; %Change from bar to ↩

kPa

238

II_s = sum(abs(II_s_raw).*1000)/N_ion; %Change from V to ↩

mV

II_c = sum(abs(II_c_raw).*1000)/N_ion;

idx=find(PI <= prctile(PI ,99)); %find values below the 95↩

th percentile

%Correlation between PI and II

figure;

x=PI; y=II_c;

plot(x,y,'o');

coeffs = polyfit(x, y, 1);

% Get fitted values

fittedX = linspace(min(x), max(x), 200);

fittedY = polyval(coeffs , fittedX);

% Plot the fitted line

hold on;

plot(fittedX , fittedY , 'r-', 'LineWidth ', 3);

r=corrcoef(x,y);

str=sprintf('r= %1.2f',r(1,2));

T = text(min(get(gca , 'xlim ')), max(get(gca , 'ylim ')), ↩

str);

239

set(T, 'fontsize ', 14, 'verticalalignment ', 'top ', '↩

horizontalalignment ', 'left ');

title (strcat('Correlation PI vs Coil II. Data: ', ↩

num2str(Test_no)));

xlabel('Pressure intensity (kPa)');

ylabel('Coil Ion Intensity (mV) ');

clear ('x','y','r');

figure;

x=PI; y=II_s;

plot(x,y,'o');

coeffs = polyfit(x, y, 1);

% Get fitted values

fittedX = linspace(min(x), max(x), 200);

fittedY = polyval(coeffs , fittedX);

% Plot the fitted line

hold on;

plot(fittedX , fittedY , 'r-', 'LineWidth ', 3);

r=corrcoef(x,y);

str=sprintf('r= %1.2f',r(1,2));

T = text(min(get(gca , 'xlim ')), max(get(gca , 'ylim ')), ↩

str);

240

set(T, 'fontsize ', 14, 'verticalalignment ', 'top ', '↩

horizontalalignment ', 'left ');

title (strcat('Correlation PI vs Standalone II. Data: ', ↩

num2str(Test_no)));

xlabel('Pressure intensity (kPa)');

ylabel('Standalone Ion Intensity (mV) ');

clear ('x','y','r');

figure;

x=II_c; y=II_s;

plot(x,y,'o');

coeffs = polyfit(x, y, 1);

% Get fitted values

fittedX = linspace(min(x), max(x), 200);

fittedY = polyval(coeffs , fittedX);

% Plot the fitted line

hold on;

plot(fittedX , fittedY , 'r-', 'LineWidth ', 3);

r=corrcoef(x,y);

str=sprintf('r= %1.2f',r(1,2));

T = text(min(get(gca , 'xlim ')), max(get(gca , 'ylim ')), ↩

str);

241

set(T, 'fontsize ', 14, 'verticalalignment ', 'top ', '↩

horizontalalignment ', 'left ');

title (strcat('Correlation Coil II vs Standalone II. Data↩

: ', num2str(Test_no)));

xlabel('Coil Ion Intensity (mV) ');

ylabel('Standalone Ion Intensity (mV) ');

clear ('x','y','r');

figure;

x=PI; y=Knock_amp .*100;

plot(x,y,'o');

coeffs = polyfit(x, y, 1);

% Get fitted values

fittedX = linspace(min(x), max(x), 200);

fittedY = polyval(coeffs , fittedX);

% Plot the fitted line

hold on;

plot(fittedX , fittedY , 'r-', 'LineWidth ', 3);

r=corrcoef(x,y);

str=sprintf('r= %1.2f',r(1,2));

T = text(min(get(gca , 'xlim ')), max(get(gca , 'ylim ')), ↩

str);

242

set(T, 'fontsize ', 14, 'verticalalignment ', 'top ', '↩

horizontalalignment ', 'left ');

title (strcat('Correlation PI vs Knock Amp (Pk-Pk). Data:↩

', num2str(Test_no)));

xlabel('Pressure intensity (kPa)');

ylabel('Knock Amplitude (Pk-Pk) (kPa) ');

clear ('x','y','r');

%%

%Plot pdf

var=II_s;

xaxis='Standalone II (mV) '; %'Pressure Intensity(bar)' %'↩

Standalone II (mV) ';

plot_name='PDF of Standalone II ';

x=(sort(var));

mu=mean(log(x));

sigma=std(log(x));

pdf=lognpdf(x,mu,sigma);

cdf=logncdf(x,mu,sigma);

figure;

histogram(x,30,'Normalization ','pdf ');

ylabel('PDF ');

243

hold on;

plot(x,pdf ,'LineWidth ',2);

r=corrcoef(x,cdf);

str=sprintf('r= %1.2f',r(1,2));

T = text(min(get(gca , 'xlim ')), max(get(gca , 'ylim ')), ↩

str);

set(T, 'fontsize ', 14, 'verticalalignment ', 'top ', '↩

horizontalalignment ', 'left ');

yyaxis right

plot(x,cdf ,'LineWidth ',2);

ylabel('CDF ');

title(strcat(plot_name ,':',Test_no));

xlabel(xaxis);

grid minor

clear('x','mu ','sigma ');

%%

%FFT the upsampled Incyl pressure and Ion signal

basepath=strcat ('\\homes.mtu.edu\home\Desktop\Sensor ↩

Fusion_2018\Knock_studies_Nis ');

cd(basepath);

% FFT of the Pressure signal

244

% Data acquisition parameters

D_Theta_press= 0.25; % For Knocking data

Fs_press= 360/ D_Theta_press; % sampling rate = 0.25 deg ↩

so for 360 degs (1 rev) we have 1440 orders

N=size(PresTrace_up_b ,1);

num_cyc=cycles(end);

win_P = hann(N);

for ii=1: num_cyc

LS_PresTrace (:,ii)= Linear_Spectrum(PresTrace_up_b (:,ii),↩

Fs_press , N, win_P); %Linear Spectrum for standalone ↩

Ion sig

end

f_array_orders_Press= (0:(N/2))*Fs_press /(N); %X axis for↩

plotting

% Converting orders to freq

Rpm= mean(RPM);

Rpm= round(Rpm /500) *500;

f_array_kHz_Press= f_array_orders_Press .*Rpm ./60/1000; % ↩

f_array in kHz so divide by 1000

%%

% FFT of the standalone ion signal

245

% Data acquisition parameters

D_Theta= 0.25;

Fs= 360/ D_Theta; % sampling rate = 0.5 deg so for 360 ↩

degs (1 rev) we have 720 orders

N=size(IonSig_ssf_up_b ,1);

for ii=1: num_cyc

win_I = win_mat(:,ii);

LS_IonSig_s (:,ii)= Linear_Spectrum(IonSig_ssf_up_b (:,ii),↩

Fs , N, win_I); %Linear Spectrum for standalone Ion ↩

sig

end

f_array_orders= (0:(N/2))*Fs/(N); %X axis for plotting

% Converting orders to freq

Rpm= mean(RPM);

Rpm= round(Rpm /500) *500;

f_array_kHz= f_array_orders .*Rpm ./60/1000; % f_array in ↩

kHz so divide by 1000

% FFT of the coil ion signal

% Data acquisition parameters

D_Theta= 0.25;

246

Fs= 360/ D_Theta; % sampling rate = 0.5 deg so for 360 ↩

degs (1 rev) we have 720 orders

for ii=1: num_cyc

win_I = win_mat_SC (:,ii); %USe the custom window of the ↩

cycle

LS_IonSig_c (:,ii)= Linear_Spectrum(IonSig_csf_up_b (:,ii),↩

Fs , N, win_I); %Linear Spectrum for standalone Ion ↩

sig

end

f_array_orders_coil= (0:(N/2))*Fs/(N); %X axis for ↩

plotting

% Converting orders to freq

Rpm= mean(RPM);

Rpm= round(Rpm /500) *500;

f_array_kHz_coil= f_array_orders_coil .*Rpm ./60/1000; % ↩

f_array in kHz so divide by 1000

%% Plotting the Linear Spectrum

%Plotting the LS of Pressure trace

figure

subplot (3,1,1);

247

semilogy (f_array_kHz_Press ,(abs(LS_PresTrace (:,↩

min_knock_cyc))))

hold on

semilogy (f_array_kHz_Press ,(abs(LS_PresTrace (:,↩

max_knock_cyc))))

ylabel ('Linear Spectrum - Pressure data ');

xlabel ('Frequency [kHz]');

legend ('Low Knock Cycle ','High Knock Cycle ')

grid minor

title (['Linear Spectrum for Knocking: ' num2str(↩

max_knock_cyc) ' and Non -Knocking: ' num2str(↩

min_knock_cyc) ' cycle (Pressure data)' Test_no]);

xlim ([0 15]);

%Plot Standalone ion

%figure

subplot (3,1,2);

semilogy (f_array_kHz ,(abs(LS_IonSig_s (:, min_knock_cyc)))↩

)

hold on

semilogy (f_array_kHz ,(abs(LS_IonSig_s (:, max_knock_cyc)))↩

)

248

ylabel ('Linear Spectrum - Ion data ');

xlabel ('Frequency [kHz]');

legend ('Low Knock Cycle ','High Knock Cycle ')

grid minor

title (['Linear Spectrum for Knocking: ' num2str(↩

max_knock_cyc) ' & Non -Knocking: ' num2str(↩

min_knock_cyc) ' cycle (SA, Custom win)' Test_no]);

xlim ([0 15]);

%Plot coil ion

%figure

subplot (3,1,3);

semilogy (f_array_kHz_coil ,(abs(LS_IonSig_c (:,↩

min_knock_cyc))))

hold on

semilogy (f_array_kHz_coil ,(abs(LS_IonSig_c (:,↩

max_knock_cyc))))

ylabel ('Linear Spectrum - Coil Ion data ');

xlabel ('Frequency [kHz]');

legend ('Low Knock Cycle ','High Knock Cycle ')

grid minor

249

title (['Linear Spectrum for Knocking: ' num2str(↩

max_knock_cyc) ' & Non -Knocking: ' num2str(↩

min_knock_cyc) ' cycle (SC, Custom win)' Test_no]);

xlim ([0 15]);

%%

%PLot spectrogram of knocking and non -knocking cycle

specsig=IonSig_ssf(idx_Hres_start:idx_Hres_end ,↩

max_knock_cyc); %Raw Ion signal of max knock cycle in ↩

knock window

specsig2=IonSig_ssf(idx_Hres_start:idx_Hres_end ,↩

min_knock_cyc); %Raw Ion signal of max knock cycle in ↩

knock window

%Bpass Ion in hires win

[~,idx1]= (min(abs(tqca_p -(-30)))); %CA for high res ↩

start

[~,idx2]= (min(abs(tqca_p -(70)))); %CA for high res end

specsigb=IonSig_s_bpass(idx1:idx2 ,max_knock_cyc);

specsig2b=IonSig_s_bpass(idx1:idx2 ,min_knock_cyc);

winlen =15;

overlap =12;

Fn =36000;% Check and change based on RPM of test

250

sampling_freq =2*Fn;

caxis_lim =[-100 -10];

x_axis =(-30:0.25:70);

figure('pos ',[500 300 900 600]);

subplot (2,2,1)

spectrogram(specsig ,tukeywin(winlen ,0.5),overlap ,8*winlen↩

,sampling_freq ,'yaxis ')

colorbar('off ')

caxis(caxis_lim)

title(['Max knock cyc ', num2str(test_date),' :', Test_no↩

]);

set(gca ,'YTick ' ,[0:3:Fn /1000]);

set(gca ,'XTicklabel ',[]);

xlabel('Crank Angle ');

subplot (2,2,3)

plot(x_axis ,specsig)

ylabel('Ion signal(V)');

xlabel('Crank angle ');

hold on

yyaxis right

g=plot(x_axis ,specsigb .*1000)

251

ylim ([-80 80]);

set(g,'LineWidth ',1.2);

ylabel ('BPass Ion signal - [mV]');

grid minor

xlim ([-30 70])

subplot (2,2,2)

spectrogram(specsig2 ,tukeywin(winlen ,0.5),overlap ,8*↩

winlen ,sampling_freq ,'yaxis ')

caxis(caxis_lim)

colorbar('off ')

title(['Min knock cyc ', num2str(test_date),' :', Test_no↩

]);

set(gca ,'YTick ' ,[0:3:Fn /1000]);

set(gca ,'XTicklabel ',[]);

xlabel('Crank Angle ');

subplot (2,2,4)

plot(x_axis ,specsig2);

grid minor

ylabel('Ion signal(V)');

xlabel('Crank angle ');

hold on

252

yyaxis right

g=plot(x_axis ,specsig2b .*1000)

set(g,'LineWidth ',1.2);

ylabel ('BPass Ion signal - [mV]');

ylim ([-80 80]);

xlim ([-30 70])

253

Appendix B

Letters of Permission

255

Figure B.1: Letter of permission

256

Appendix C

Test Conditions

257

258

259

	APPLICATION OF SENSOR FUSION FOR SI ENGINE DIAGNOSTICS AND COMBUSTION FEEDBACK
	Recommended Citation

	Contents
	List of Figures
	List of Tables
	Acknowledgments
	Abstract
	Introduction
	Goals and Objectives
	Thesis overview

	Literature Review
	Experimental setup and sensor specification
	Engine Specification
	Exhaust Pressure Sensor
	Ion Sensors
	Crank-angle Encoder
	Optical Engine
	Accelerometer
	Data Acquisition System

	Algorithm development
	Correlation Studies
	Order Tracking
	Knock Integral Calculator
	Misfire Generator
	Neural Networks
	Feature Scaling
	Random Initialization
	Principal Component Analysis

	Results and Discussion
	Ion sensor
	Correlation of ion features with pressure metrics
	Ion Correlation studies - Metal engine
	Optical engine

	Knock detection using Ion probe
	Adaptive window
	Adaptive and Static window
	Modified dual adaptive window
	Effect of using the adaptive windowing
	Conclusions on ion sensor studies

	Exhaust pressure sensor
	Feature extraction and correlation with combustion metrics in steady state
	Factors affecting exhaust signatures
	Misfire detection under transient conditions
	Order tracking
	Comparison of Omega and Kulite sensor
	Conclusion on exhaust sensor studies

	Crank angle encoder
	Order extraction

	Neural network
	Feature scaling and PCA
	Recursive neural net
	Pseudo-steady state tests for combustion metric estimation

	Conclusion on neural network studies

	Conclusion and Recommendations
	References
	Sample Code
	ANN for Pseduo-Transient code
	Ion knock detection code

	Letters of Permission
	Test Conditions

