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Abstract

Wave energy converters (WECs) exploit ocean wave energy and convert it into useful

forms such as electricity. But for WECs to be successful on a large scale, two primary

conditions need to be satisfied. The energy generated must satisfy the network re-

quirements, and second, energy flow from waves to the grid needs to be maximized. In

this dissertation, we address the second problem. Most control techniques for WECs

today use the Cummins' linear model to simulate WEC hydrodynamics. However, it

has been shown that under the application of a control force, where WEC motions

are amplified, the linear model diverges from actual motions. Hence, it becomes nec-

essary to model the nonlinear motion for realistic energy capture prediction. In this

work, it is shown that a closed form energy optimal solution to the nonlinear model

requires satisfaction of initial conditions that violate physical restrictions. Numerical

optimization based controllers that use physical constraints as a necessary condi-

tion require large computation costs and are difficult to implement in real time. To

mitigate computation costs for real-time implementation while precisely predicting

nonlinear behavior, an efficient method of modelling WECs using an estimated linear

model for computing the energy optimal control solution is presented. The estimated

linear model is compared against the Cummins' model for accuracy of motion dur-

ing an uncontrolled case. It is also shown that, there exists a force which results in

higher energy extraction than optimal force from Cummins' model when applied to a

xxi



nonlinear model. Additional analyses are also performed to evaluate the robustness

of the proposed method in random and extreme sea states.

xxii



Chapter 1

INTRODUCTION

Global population is continuously increasing and more and more resources are being

used on a daily basis. Although fossil fuels have been the major sources of energy, the

need for a sustainable, infinite and clean source of energy is ubiquitous. Environmen-

tal problems resulting from fossil fuels such as pollution and greenhouse gas emissions

have a negative impact on the climate and human habitation [1]. Renewable sources

such as wave energy along with solar, wind, geothermal, etc. can significantly reduce

our dependence on fossil fuels due to their enormous abundance. A total of 2.7 - 3

TW of ocean power resources have been estimated worldwide [2]. Mark et al. presents

a detailed report on world-wide wave energy potential [3]. Due to this prolific reserve

of energy, numerous scientists have tried to convert wave energy into usable forms.

It has been reported that inventors registered more than 1000 patents in this field by
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1980 [4].

A tremendous amount of ocean wave literature and technology have been extensively

theorized over the last three decades. However, in reality, it is very challenging to

describe, predict and reproduce conditions at offshore locations for testing purposes.

This is because of the complex and innumerable environmental parameters that have

significant effect on wave profiles. Spectral representation of ocean waves and their

characterization are detailed in [5]. The power produced as a result of reciprocating

movement induced by ocean waves is more uneven than other renewable sources.

Wave energy converters (WECs) exploit ocean wave energy and convert it into a

useful form such as electricity. But for WECs to be successful on a large scale,

two primary conditions need to be satisfied. The energy generated must satisfy the

network requirements, and second, energy flow from waves to the grid needs to be

maximized.

1.1 Problem Statement

Some of the earliest work in wave power devices is credited to Girard [6], who exper-

imented with heaving floats in 1799. The most commonly used equation of motion

to model WECs was derived by Cummins [7]. Since then, there have been constant

2



efforts to formulate control strategies for WECs for maximum energy harvesting. Be-

cause of the linear nature of this model, well established control methods, (namely,

Resistive, Model Predictive Control (MPC), Dynamic Programming (DP), Shape

Based (SB) Control, Linear Quadratic (LQ) Control, Latching, etc.) [8] were used by

researchers all over the world. Most of the studies rely on major simplifications and

assumptions such as accurate incoming wave prediction, Single Degree of Freedom

(SDOF) motion, linear or perfectly known non-linear hydrodynamics, no instrument

noise, unlimited Power Take-Off (PTO) performance.

Recently, there has been an increase in using nonlinear models to describe WEC dy-

namics as they are accurate in predicting buoy motion and do not have the limitation

of small WEC displacement about the equilibrium position [9]. Moreover, in a quest

to implement optimal control, whether using linear or nonlinear models, the relation-

ship of WEC initial displacement and velocity on extracted energy is overlooked.

1.2 Aim and Scope

There is a trade-off between WEC model complexity, computation cost and amount

of energy extraction. A linear, SDOF WEC model has a well defined closed form

optimal control force solution. Whereas, nonlinear models depend upon numerical

optimization based controllers that require wave forecasting [10] and hence are often

3



sub-optimal. Such optimization based controllers are difficult to implement in real-

time due to their computational cost. Additionally, optimal solution of such problems

requires satisfaction of additional necessary conditions at the beginning or end of the

optimal path. The solution to such conditions result in unrealizable motions in the

real world [11].

While a linear model has a convenient energy optimal control solution, it is based on

the assumption of small WEC displacements about a mean position. This is however

not true in reality as the objective of PTO is to enhance those motions. The aim of

this thesis is to propose an efficient method of modelling and control of WECs using

an estimated form of a nonlinear model. This linear model changes model parameters

in real-time to accurately follow the WEC's nonlinear response, thereby making it

possible to implement an optimal control force with necessary initial conditions. Due

to the continuous parameter update capability of the proposed technique, this method

is also robust to drift in WEC parameters over time.

1.3 Significance of Study

The proposed method is computationally fast like a linear model but offers the ad-

vantage of realizing the effect of nonlinearities induced as a result of a continuously

4



varying wetted area of buoy. Moreover, with the help of this study, realistic esti-

mates of extracted energy are possible. These estimates are critical in determining

the size and shape of individual buoys and arrays in a wave energy farm. The study

presented here considers regular waves using optimal control techniques to charac-

terize the effectiveness of the proposed methodology by comparing extracted energy

over a definite span of time. Additional analyses are also performed to evaluate the

robustness of the proposed method in random and extreme sea states.

1.4 Overview

This thesis consists of six chapters within two main parts. Part I comprising chapters

2 and 3, discusses the theoretical groundwork of wave energy conversion terminol-

ogy, components and control necessary to guide the research. Chapter 2 includes

an introduction to ocean waves, types of buoys, converters and PTO units to better

understand the dynamics behind their operation. Based on this knowledge, Chapter

3 investigates recent trends and policies in practice today pertaining to wave energy

control. It includes a critical review of historical and current practices, identifying

pressing areas that require deeper investigation. At this time, an approach to include

nonlinear behavior while maintaining ease of control is proposed. In part II, Chapter

4 discusses individual hydrodynamic effects along with their mathematical models.

These effects are eventually combined to form a governing equation used for creating

5



the energy optimal solution. Assumptions are laid down that distinguish a linear and

nonlinear model. Chapter 5 goes in detail of the proposed technique, design of exper-

iment, methodology and necessary criteria for success. Derivation of the general form

of the energy optimal force for the nonlinear model and its limitations are also pre-

sented. Finally, results and conclusions are presented in Chapter 6 with verification

of satisfaction of necessary criteria for success with suggestions for future work.
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Chapter 2

BACKGROUND

This chapter reviews types of waves, WECs and their interaction particularly in heave

motion. This chapter forms the basis of understanding how waves are characterized,

the wave energy conversion processes and the objective of control strategies for max-

imum energy extraction.

2.1 Ocean Wave Theory

Ocean waves are carriers of energy from one place to another. These waves can be

categorized as shallow and deep water waves based upon the ratio of depth of water

and wavelength [12]. If this ratio is less than 0.5, we have shallow water waves or

7



long waves; otherwise if the ratio is greater than 0.5, they are known as deep water

waves or short waves. Ocean waves can be produced by meteorological forces such

as wind and air pressure as well as astronomical forces like tides and earthquakes

resulting in tsunamis. In short waves, the rate of energy dissipation of waves is much

smaller compared to the wind from which they originate. This enables these waves

to last longer than the wind [13]. This phenomenon happens over large regions that

ultimately results in storage and concentration of useful energy both temporally and

spatially in these waves. Energy concentration is directly proportional to the density

of the medium. This results in more concentration of energy delivered by waves as

their density is 3 orders of magnitude higher than wind.

On a simplistic level, an ocean wave can be thought of as a sinusoidally travelling

disturbance with crests and troughs in a definite direction. According to this model, as

the water surface oscillates up and down, there is a circular motion of water particles

about the mean central position. This central line remains unchanged in time and

serves as a baseline for measuring WEC motions. Due to the relation between the

motion of water particles and the water surface, the amplitude and frequency of a

wave can be described in terms of its particle's motion. As a result, the amplitude

of a wave is the radius of circular motion of particles whereas, the frequency equals

the angular velocity. On the same lines, the rate of change of wave elevation with

respect to time is equal to the vertical velocity of individual particles on the surface.

However, this model, like any mathematical model, is based on some assumptions. It

8



is valid only when the effect of viscosity on the motion of particles is neglected and

the fluid is assumed to be in-compressible.

2.1.1 Linear and Nonlinear Waves

As already stated, waves can be described as sinusoidal variations at the water surface

and can be defined by their wavelength λ, height h and wave period T . It should be

kept in mind that ocean waves are never truly harmonic. Additionally, three other

parameters are often used in wave energy literature:

Wave Steepness, S = h/λ (2.1)

Wave Number, χ = 2π/λ (2.2)

Wave Frequency, ω = 2π/T (2.3)

Among these parameters, wave steepness is used to differentiate between linear and

non-linear waves. Usually, if the wave steepness is within a value of 0.018 then

the wave is considered to be linear. However, with the increase in steepness the

assumption of linearity becomes less precise [14].
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2.1.2 Regular and Irregular Waves

Airy's wave theory is the widely acceptable theory of ocean surface waves that gives

sufficiently high accuracy for WEC applications [15]. Formally, with the help of this

theory we can now represent wave propagation as a function of time, t and position,

x.

η (x, t) = a sin(ωt− xχ) (2.4)

where,

η = wave free surface elevation

a = wave amplitude

From equation (2.4) we can see that for a fixed position x0, wave elevation is purely

a function of time t. Assuming the origin is at the centroid of a buoy and coincides

with the mean still water level. Hence, for a wave gauge located at x0 distance in

front of buoy, the measured wave elevation will be:

η (t) = a sin(ωt+ x0χ) (2.5)

Linear waves can also be classified into two types, regular and irregular. Harmonic

regular waves are characterized by a single amplitude, frequency and wavelength.
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They may also have a phase angle with respect to a chosen initial time and location.

While we have represented wave elevation composed of a singule frequency, it can be

a combination of multiple frequencies. These multiple frequency constituted wave are

called irregular waves.

Broadly speaking, Fourier decomposition analysis allows an irregular sea wave to be

represented as a sum of a large number of regular waves with different amplitudes,

frequencies and directions [16]. For linear irregular waves, the response of a WEC can

be easily evaluated for each individual harmonic component. These responses can be

simply superimposed to get the overall response of the device. This is a very useful

characteristic for WEC design and performance analysis. Brilliant investigations of

water waves can be found in references [17], [18], [19], [20].

2.2 Wave Measurement

Ocean wave measurement is crucial to understanding the wave energy resource. Prob-

abilistic models exist that predict sea states over a finite horizon. But, measuring the

actual wave elevation is necessary where these models seem inaccurate or sufficient

test data is unavailable. Moreover, it is equally important to measure wave behavior

during field testing of WECs with control strategies. An important aspect of WECs

is their energy generation capability that depends on how closely the WEC follows
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the incoming waves. Without a suitable facility for measuring incoming wave profile,

accurate estimates of energy generation capability of WECs is not possible.

2.2.1 Devices

Some of the typical ocean wave measuring systems are surface following buoys, resis-

tive wave probes (commonly used in a wave tank), seabed pressure sensors, acoustic

current profilers and radar (land and satellite based) [5]. The most commonly used

wave measuring devices are discussed below.

2.2.1.1 Surface Following Buoy

This is typically loosely moored buoy consisting of a built-in accelerometer or a Global

Positioning System (GPS). The signal from the accelerometer is numerically inte-

grated to get wave surface elevation [21]. Their inclination is also used to estimate

the direction of the flow of current. However, surface following buoys do suffer several

drawbacks, especially during steep and rough waves they move around unevenly and

are unable to follow the waves. They are prone to damage and relatively expensive.
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2.2.1.2 Resistive Wave Probes

Resistive wave probes measure water level by measuring the resistance of water be-

tween a pair of parallel rods. Among resistive wave probes, two wire resistance wave

probes are relatively cheap, reliable and robust. Resistive wave gauges have the fol-

lowing advantages [22]:

• Fast data rates

• Compatibility with large arrays

• High accuracy

• Small lead-induced errors

2.3 Wave Energy Subsystems

A wave energy system is a complete stand-alone system that is capable of extracting

maximum energy from ocean waves. There are innumerable designs, shapes and

working principles but almost all contain the same generic subsystems, essentially

because of their same environment and common goal. The different subsystems and

their inter-relation is presented in Figure (2.1). The main WEC subsystems are as

follows.
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Figure 2.1: Wave Energy Subsystem breakdown and their correlation.

2.3.1 Hydrodynamic Subsystem

It is the primary wave absorption subsystem that faces the oncoming waves. It is more

commonly known as a WEC. The desirable property of hydrodynamic subsystems

is that it should be an effective absorber of waves. A number of methods have

been proposed to classify WECs based on size (point absorbers and large absorbers),

working principle and location [23]. The most widely used classification is based on

the type of technology used. These include overtopping, Oscillating Water Column

(OWC) and oscillating body WECs.
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2.3.1.1 Overtopping Converters

Overtopping converters capture the portion of waves that are at a higher elevation

than its reservoir through the process of over-spilling. This stored water remains

above the mean free surface level of the sea. The stored water is flown through

a low-head hydraulic turbine which converts the potential energy of water to useful

energy. The major drawback is that the hydrodynamics of these converters are highly

nonlinear. Example of devices of this type can be found in [24].

2.3.1.2 Oscillating Water Columns

Oscillating water columns, as the name suggests, are large structures of concrete or

steel that are partly submerged in water. These structures are open at the bottom,

trapping air above the free water surface. As the incident oscillatory waves interact

with the free internal surface, it forces air through an axial flow Wells turbine. The

turbine, which has an advantage of requiring no rectifying valves, drives an electric

generator. These types of OWC are built and used in India [25], Portugal [26] and

Norway [24]. Another type of OWC are the floating type. Their design is similar to

fixed OWC except instead of being moored to the seabed, they are slack moored and

can oscillate more freely. This enhances the energy extraction of this type of OWC.
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2.3.1.3 Oscillating Body Systems

Oscillating body systems are the most advanced form of the three types of hydro-

dynamic devices. They are a form of oscillating bodies either partially or fully sub-

merged. They experience the most powerful waves when they are deployed offshore.

As a result they are more complex than OWC type WECs. They are further classified

as follows.

1. Single-body Heaving Buoys

These are the least complex type of oscillating bouy systems. They consist of

a fixed frame (sea-bottom or any other fixed structure) against which a buoy

reacts in a heaving motion. Due to their small width compared to wavelength,

they are also known as point absorbers.

2. Two-body Heaving Buoys

One body heaving buoys may have operating difficulties due to the large distance

between the sea surface and the sea-bed. This results in unnecessary forces on

the mooring due to tidal oscillations. To resolve this issue, a multi-body heaving

buoy can be used instead, which uses the relative motion between the upper

and lower oscillating body. A detailed approach to such a system is presented

in [27]. Due to the interaction between two oscillating bodies, this type of WEC

possess difficult control issues as discussed in [28], [29], [30].
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3. Fully Submerged Heaving Systems

These devices produce energy by heave motion and are fully submerged inside

the free water surface. An example of this type is the Archimedes Wave Swing

(AWS) [31]. A fully submerged heaving systems consists of a fixed lower part

and an oscillating upper part that moves down under a wave trough and vice

versa. This oscillating motion is resisted by the interior air pressure acting as a

virtual spring for a linear generator type PTO.

4. Pitching Devices

Unlike the WECs previously discussed, this oscillating WEC converts wave

energy into useful electrical energy through relative rotation (mostly pitch).

One of the remarkable examples is the Salters duck from the University of

Edinburgh [32].

5. Bottom-hinged Systems

This system is a type of WEC that operates in pitch mode. It is in the form of

an inverted pendulum, hinged at the bottom of the sea. An example proposed

by Salter [33] is a symmetrical mace that constituted a buoyant spar capable

of swinging about a universal joint. The energy extraction takes place through

the rotation of a wave-activated reciprocating drum. Several cables are wound

around the winch-drum in the front and back part of the WEC in the direction

of wave propagation.
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2.3.2 Power Take-Off Subsystem

PTO subsystem is responsible for applying resistance to the oscillatory motion of the

hydrodynamic subsystem to convert the captured wave energy into useful electrical

energy that can be supplied to the electrical grid. However, due to the variability of

wave power in amplitude and time, a PTO subsystem typically requires a rectifier and

a storage system. This is necessary to ensure the stringent power quality requirements

at the grid are met. The oscillatory behavior of hydrodynamic subsystems results in

an alternating current which is taken care of by the rectifier producing a unidirectional

flow of energy. The energy storage system takes the role of decoupling random sea

state and an (ideally) constant destination (grid) [34].

A maximum amount of energy is extracted by a PTO subsystem when it moves along

one degree of freedom only [5]. That is why our analysis focuses on one mode i.e.

heave. On the basis of this working principle, a PTO subsystem can be divided into

hydraulic PTO, linear generators, air and water turbine and direct drive mechanical

PTOs. The most common of these types are discussed here.
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2.3.2.1 Hydraulic PTO

The hydraulic PTO uses the buoy oscillatory motion to compress and decompress

the fluid stored in a chamber known as an actuator [35]. These PTOs are especially

suitable for slowly oscillating bodies with large wave forces and/or moments. These

PTOs can accumulate energy over a couple of wave periods and thus smooth the

highly variable power from the waves. A conventional electric generator is used that

is driven by a fast hydraulic motor. More engineering issues and application of this

PTO can be found in [36], [37]. Some configurations of PTO of this type are presented

in [38], [39].

2.3.2.2 Linear Generators

Unlike the hydraulic PTO, liner generators are direct driven PTOs [4]. Hence, they

do not require a mechanical interface and therefore avoid associated losses in turbines

and hydraulic motors. This advantage is however negated by much higher demands

than high speed rotary PTOs due to higher load offering in case of direct drives [40].

The linear generator reciprocating motion has to match the buoy oscillation. The

velocity in such cases is two orders of magnitude lower than the usual rotary generator

velocities. This results in large forces at low speeds requiring a dimensionally large

machine. An overview of direct drive PTO technologies is presented in [41], [42], [43].

19



2.3.3 Reaction Subsystem

This subsystem is used to maintain large floating WECs into position with respect

to the sea bed and is deployed typically in water depths of greater than 40m. These

WECs and associated structures experience drift forces due to wind, tides and currents

and hence, have to be kept in place with the help of a reaction subsystem by providing

a reaction point. But unlike other structures such as oil and gas platforms, these

moorings significantly modify the absorbed energy patterns by interfering with the

buoy motion [44]. A detailed study comparing the type of mooring connection with

WEC performance is presented in [45]. Fitzgerald et al. linearized the mooring force

around the mean buoy position so that frequency domain analysis can be applied

conveniently. Additionally, steps to designing mooring structures can be found in [5].

2.3.4 Control Subsystem

The control subsystem is the brain of the complete wave energy subsystem. It con-

sists of the control algorithm, associated circuitry for automated and electromechan-

ical processes, instrumentation for sensors, data acquisition, user interface, etc. The

conversion of wave energy to a useful form of energy undergoes a series of energy con-

version processes, each having their associated efficiency as well as some constraints.
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The purpose of the control subsystem is to ensure that the hydrodynamic subsystem

operates in a manner so that the wave absorber and other components meet opti-

mal performance targets [46]. Moreover, the control subsystem should be capable of

modifying control inputs in view of external disturbances on the WEC. The control

input can be applied to potentially three different stages of the conversion process,

either exclusively or in combination. These are hydrodynamic transmission, electric

generation and power conversion [47].
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Chapter 3

WAVE ENERGY CONVERTER

CONTROL

This section provides a synopsis of the control strategies that have been used by

researchers for both linear and nonlinear WEC models. In [48], a historical overview

of WEC control is presented, where the authors mention the key publications that

form the basis of the optimal control theory. The primary objective of any control law

that focuses on maximization of power absorption in a linear system is to force the

device velocity to be in phase with the excitation force [9]. Reference [49] reviewed a

number of control methods applicable to heaving point absorbers. Control techniques

such as linear damping, latching control, complex conjugate control (CCC), optimal

velocity tracking and model-predictive control were considered. The performance
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parameters for comparison were power absorption, difficulty in implementation, and

maximum to average power ratio. These comparisons were made based on simulation

results. The authors also commented on ways of implementing the controllers and

handling buoy displacement constraints.

In order to systematically present major control strategies, the following section dis-

cusses the theory as well as some examples of implementation of different control

strategies, highlighting their limitations and recent advancements.

3.1 Latching Control

One way to reduce the phase shift between buoy velocity and excitation force is to

use discrete phase control known as latching control. It consists of a braking system

that applies an ON/OFF PTO force. The braking system locks buoy displacement

at one of the extreme positions (crest or trough) until a crest or trough approaches

the buoy to attain maximum velocity at these extremes. The control system then

re-locks the displacement for next crest or trough.

Latching control has good power absorption characteristic and a straightforward im-

plementation in a real device because the braking force is easier to implement com-

pared to any reactive force [13] . It also doesn't require on-board energy storage nor
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involve large reactive energy exchange between the PTO and converter.

But when the incident wave is irregular, there is no well-defined phase between exci-

tation force and velocity. The presence of more than one frequency component causes

the optimal latching interval to not be unique [50]. In such cases, it was shown by

[51] that for maximization of absorbed power, the optimal latching duration must

synchronise the peak of excitation force with the peak of velocity. This formulation is

complex due to the calculation of latching time, which requires the solving of the opti-

mization procedure and the forecasting of incoming waves, when the latching method

is used in real-time control. Moreover, there is no reactive control associated with

the method of alternatively switching braking force ON/OFF. Hence, this method

is generally sub-optimal as it does not lead to hydrodynamically optimum velocities

[13].

Early implementation of a Kalman Filter to calculate the latching time based on

estimates of incoming wave elevations was done by [52]. References [53], [54] and [55]

simulated a mathematical model of a buoy with latching control. The buoy shape had

a hemispherical bottom with a cylindrical top, and the experimental wave-tank results

were compared with simulation results. Reference [56] also reported and compared

experimental results for latching control. Latching was also experimentally tested on

buoy prototypes such as SEAREV [57], [58], [59] and Buldra [60].
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References [61], [62] and [63] applied several control techniques and reported the per-

formance comparison from simulation results for an Archimedes Wave Swing. They

showed that latching control and feedback linearization were able to extract maxi-

mum energy compared to reactive and phase and amplitude control. They asserted

that since the two control strategies are non-causal, they require wave prediction for

practical implementation, thus decreasing their effectiveness.

3.2 Neural Network Control

The use of Artificial Neural Network (ANN) is gaining popularity in ocean energy

domain for system identification and control. Reference [64] presents the use of neural

network in optimization, while [65] laid out the main steps in system identification

using neural networks. Several examples of some special problems where a neural

network is used in system modelling are solved in [66].

Real-time system identification of WEC dynamics was provided by [67] using ANNs.

Moreover, [68] used an ANN to successfully control AWS WEC. Reference [66] used

Hopfield neural network for parameter estimation and model identification. Their

model had the remarkable property of estimating time varying parameters. These

models can be used for WECs deployed in polychromatic waves, the parameters of
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which depend on frequency of excitation. The ANN model constructs a complex re-

lationship between input and output used to train the model. Due to the property of

using only input-output observations, the ANN models are behavioral or black box

models. Reference [69] solved the over-fitting problem of classical back-propagation

algorithms by using a regularization procedure. Their objective function had higher

identification accuracy compared to the conventional methods. To overcome the limi-

tation posed by the black-box model characteristic of neural networks, [70] developed

a grey-box model using ANNs. They formulated a mathematical transfer function

based on an input-output of the ANN model by using network weights as coefficients

of transfer function. Reference [71] developed a model-free algorithm for reactive con-

trol of a WEC. They mapped wave height, time period, PTO damping and stiffness

to absorbed power and buoy displacement. This ANN was used within the cost func-

tion of a numerical optimization strategy to compute optimal damping and stiffness

coefficients for maximum absorbed energy and maximum buoy displacement within

prescribed limits.

One of the most pioneering work with neural networks was done by [72]. They were

able to design their own specialized NN model that estimated the value of coefficients

of dynamic equations. With their technique, it was possible to construct white-box

models of dynamical systems. The proposed method was robust to errors in modelling

or use of incomplete dynamical equations. They constructed an objective function

that used the squared deviation of observation points from their simulated values
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and the sum of the squared residual of dynamical equation computed at some points.

Their NN weights represented actual physical quantities.

3.3 Model Predictive Control

Model predictive control attempts to solve a quadratic programming (QP) problem

using an optimization based control strategy in a receding horizon environment [73].

MPC requires a dynamic model of the system for optimization. Theory and advance-

ments on MPC can be found in [74]. MPC has several advantages compared to other

control strategies. It is effective in performing trade-off analysis between extracted

energy, energy consumed by actuator and displacement constraints. Also, the QP

of its objective function can be made convex. This promotes the use of efficient

optimization algorithms that are extensively developed [75]. These factors support

real-time applicability of MPC while ensuring low cost of hardware. Recently, [76],

[77] adopted MPC to calculate optimal latching duration for a real-time latching con-

trol. The incoming waves were forecasted using ANNs and trained by using a deep

machine learning algorithm. It was shown that this combination of controller strate-

gies increased the absorbed energy substantially. In [78] a semi-submerged sphere

was considered in heave motion by the authors. They showed the effect of buoy

displacement and control force constraints on extracted energy. They assumed the

excitation force was known completely. Similar work was implemented by [79] on a
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point absorber. The author predicted the excitation force using a Kalman filter.

3.4 Complex-Conjugate Control

Complex-conjugate control, also known as impedance-matching or reactive control, is

a control strategy specific for maximum power absorption. It can be applied through

the PTO, if the WEC is modelled as a linear system. The applied PTO force is such

that the mechanical reactance of the device is cancelled by the reactance of control

force. Complex-conjugate control sets a maximum bound on the amount of energy

that can be absorbed by the device subject to regular waves. Hence, this strategy

can be used to study the effectiveness of different modelling strategies by comparing

their extracted energy.

Reference [73] compared control strategies that require current and future information

of excitation force (CCC, DP, SB, MPC). For their study, they assumed that the

linear hydrodynamic model is perfect and complete knowledge of the incoming wave

was known for the entire simulation time. Reference [80] provides simulation and

experimental results for a model of Salter duck using complex conjugate control.

Reference [51] applied impedance-matching control to a sphere submerged partially

in water and oscillating in heave motion only. References [81], [82] analysed complex

conjugate control in presence of irregular waves.
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The requirement of foreknowledge of excitation force can be obtained by a floating

buoy or other measuring devices at a known distance ahead of the WEC. This tech-

nique makes it possible to apply complex conjugate control in the physical world.

References [83], [84], [85], [86] laid down the requirements of accurate prediction and

the negative effects of prediction errors in extracted energy. Reference [87] imple-

mented CCC using a linear generator type PTO for polychromatic waves by tuning

the PTO to match the peak frequency of the incoming wave spectrum.

3.5 Other Control Strategies

Reference [88] used the fuzzy logic controller for the control of WECs. Optimal

PTO damping and stiffness were determined by the fuzzy logic depending upon the

incoming wave profile. These optimal values were dependent on past values and

adjusted in real time by measuring wave elevation. The fuzzy logic was dependent

upon future incoming waves. Their work was expanded in [89] and [90] to include

genetic algorithm and robust control with fuzzy logic.

Reference [91] used a time domain model for an energy maximization problem for a

cylindrical buoy oscillating in heaving motion. The authors considered both regular

and irregular wave spectrum. Lagrangian multipliers were used to determine the

optimal force numerically. Unconstrained and constrained cases of buoy displacement
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were simulated. It was found that with accurate incident wave prediction, although

the total extracted energy in unconstrained case was higher, the conversion efficiency

of the WEC system was better in the constrained case. Reference [35] also used

Lagrangian multipliers and showed that the optimal solution converges to the CC

solution with appropriate initial displacement and velocity conditions.

Reference [92] used an innovative method of reinforcement learning for the simulation

and resistive control of point absorbers in regular and irregular waves. The authors

used model based approach so that the algorithm was immune to modelling errors

and drift in hydrodynamic parameters over time. Reference [35] used pressure dis-

tribution on WEC surface, buoy displacement and velocity to calculate the control

force. This control technique was valid for linear as well as nonlinear models. They

also showed that the calculation of excitation and radiation force was not required

with their dynamical model approach. Reference [93] considered hydrodynamic forces

and control force as system nonlinearities. Their objective was to optimize these non-

linearities by expressing them as a series function with constant coefficients. These

nonlinear forces were compared with a Proportional-Derivative (PD) control. The

total stiffness was considered like a proportional term and the damper was analogous

to a derivative term. This approach intuitively converted a nonlinear control prob-

lem to a PD tuning problem. Hidden gene genetic algorithm was used to optimize

coefficients for maximum power absorption. Reference [94] applied a control force by

fitting a narrow banded function to the excitation force. They named this strategy,
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simple-but-effective control. This strategy resulted in power absorption similar to

MPC but was comparatively easier to implement [47].
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Chapter 4

DYNAMIC MODELLING

The basic principles governing motion of buoys in water are derived from the theory of

marine hydrodynamics. These governing equations first developed in the 1950s for the

purpose of predicting the behavior of vessels and boats when placed in ocean waves.

Detailed and exhaustive description of theory developed in the field of hydrodynamics

in this period is mentioned in [95].

A body close to the surface of fluid and capable of absorbing the incident waves also

has the ability to affect the oncoming wave field. As the body oscillates in water,

it generates its own waves and these waves along with incident waves apply a net

force on the body [13]. These forces acting on a body immersed in a fluid depend on

the properties of fluid, which are defined by its pressure and flow velocity. Standard
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fluid dynamic equations apply and are used for development of necessary governing

equations. The fluid is assumed to be incompressible to express mass conservation

in the form of a continuity equation. Secondly, to solve Navier-Stokes equation, the

incident flow is taken as inviscid and irrotational. Finally, surface tension at the

interface is assumed negligible [96]. The inertial frame is assumed to be fixed at

stationary water level (SWL) and origin at the centroid of body which coincides with

the gravitational center. A SDOF floating buoy for wave energy conversion in heave

motion is shown in figure (4.1). The lower side of the buoy is connected to a linear

generator type PTO which is then anchored to the sea bed. Waves propagate in the

x-direction and follow a sinusoidal profile. Different modes identified based on this

coordinate system are presented in Table 4.1.

Table 4.1
Different modes of motion identified with respect to the coordinate system
located at the centroid of buoy with x in the direction of wave propagation

and z is the vertical motion.

Mode Translation Rotation
Surge X -
Sway Y -
Heave Z -
Roll - X
Pitch - Y
Yaw - Z
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Figure 4.1: Heaving buoy with power take-off unit moored to the sea floor.
Incident waves are along x - axis with λ wavelength and a elevation.

A general and simplified description of how the WEC hydrodynamic model is devel-

oped for heave motion is presented along with necessary assumptions that establish

its validity. A complete description of derivation for a multi degree of freedom WEC

can be found in books of marine hydrodynamics and/or wave energy conversion [97],
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[98].

4.1 Types of Forces

For a single body oscillating in a fluid in heave motion, the governing equation is:

mz̈ = Fd + Fr + FFK − Fc (4.1)

Where m is the mass of the buoy in air, z is the vertical displacement of the body

from the mean position (z = 0) and positive upwards, Fd is the diffraction force, Fr is

radiation force, FFK is the total Froude-Krylov force and Fc is applied PTO (external

control) force. The direction of control force is taken opposite to diffraction force

arbitrarily. These forces are discussed below:

4.1.1 Diffraction Force

It is the force that the approaching wave field applies on the buoy, assuming the buoy

is not oscillating (i.e. held stationary) in water. In some literature, diffraction force

is frequently called scattering force. It is calculated by integrating the diffraction
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pressure, Pd over the submerged area of the body.

Fd =

∫ ∫
S

Pd n dS (4.2)

Where,

Pd = ρ
∂φd
∂t

+ ρ
|∇φd|2

2

φd = Diffraction potential

S = Submerged buoy area

n = Unit vector normal to surface area

Another way of representing the diffraction force is by convolving the product of the

free surface elevation and the diffraction impulse response function (IRF).

Fd (t) =

∫ +∞

−∞
Kdirf (t− τ) η(t) dτ (4.3)

Where,

Kdirf = Diffraction IRF
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4.1.2 Radiation Force

It is the force that acts on the body when it oscillates in calm water. It is the sum

of added mass effect and the convolution between the product of WEC velocity and

the radiation IRF [7]. It can be represented as:

Fr (t) = −
∫ +∞

−∞
Kirf (t− τ) ż(t) dτ −ma z̈ (4.4)

Where,

Kirf = Radiation IRF

ma = Added mass (including frequency-independent component)

During implementation, it is very expensive to evaluate this convolution integral

at each time step. Moreover, it is not feasible in real time control. Hence, [99],

[100] presented a method to approximate the convolution integral using a state space

realization.

~̇xr = Ar~xr + Brv (4.5)

~Fr = Cr~xr (4.6)

Where,
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Ar =



0 0 0 . . . 0 −a1

1 0 0 . . . 0 −a2

0 1 0 . . . 0 −a3
...

...
...

. . .
...

...

0 0 0 . . . 0 −an−1

0 0 0 . . . 1 −an



Br =

[
p1 p2 p3 . . . pn−1 −pn

]T

Cr =

[
0 0 0 . . . 0 1

]

~xr = Radiation state vector

v = Input heaving velocity of buoy

This state space has a companion form realization with 2n unknown parameters.

Such state space representation has an impulse response function [101] of the form

given by :

gr(t) = Cr e
Art Br (4.7)

For the given state space to represent the convolution integral of equation (4.4), it

is necessary and sufficient that Kirf (t) = gr(t). The equality holds for an infinite

order state space, but a sufficiently higher order can be made to approximate the

39



convolution integral closely. This state space can be converted to a radiation damping

transfer function Gr(s) that can be represented as:

Gr(s) =
pn−1 s

n−1 + · · · + p1 s

sn + an−1 sn−1 + · · · + a1 s + a0
(4.8)

Reference [102] discusses state space estimation of the convolution term in detail for

a raft-type WEC.

4.1.3 Froude-Krylov Force

Froude-Krylov force is the net hydrodynamic force acting on the body due to unsteady

pressure fields. It consists of two parts, hydrostatic force FFKst and hydrodynamic

force FFKdy
. The FFKst is the difference between gravity and buoyant force, whereas

FFKdy
is the surface integral of dynamic pressure over instantaneous wetted area.

Mathematically,

FFKst (t) = Fg −
∫ ∫

S

Pst (t) n dS (4.9)

FFKdy
(t) = −

∫ ∫
S

Pdy (t) n dS (4.10)

where the Hydrodynamic pressure is, Pdy = ρ
∂φi
∂t

+ ρ
|∇φi|2

2

Hydrostatic pressure, Pst = −ρ g z
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φi = Incident flow potential

g = Acceleration due to gravity

4.2 Linear Model

The general model presented in the previous section has three main sources of nonlin-

earities. First, the quadratic terms in pressure from the Bernoulli's equation, second,

the incident waves can be nonlinear and third, the instantaneous wetted area of the

WEC is time-varying. Falnes [98] showed that the quadratic terms in pressure are

negligible compared to the linear terms and hence, can be dropped. The second

nonlinearity can be neglected if the analysis only considers linear waves, as they con-

stitute the majority of waves in the region of power production. Lastly, a mean value

of wetted surface can be calculated for a specific geometry and taken as a constant

in the analysis. With these assumptions, equation (4.1) can be written for a linear

model as:

mz̈ =

∫ +∞

−∞
Kdirf (t− τ) η(t) dτ −

∫ +∞

−∞
Kirf (t− τ) ż(t) dτ −ma z̈

+ Fg −
∫ ∫

S

Pst (t) n dS −
∫ ∫

S

Pdy (t) n dS − Fc (4.11)
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Which can be written in the form given by Cummins,

(m+ma) z̈ =

∫ +∞

−∞
Keirf (t− τ) η(t) dτ −

∫ +∞

−∞
Kirf (t− τ) ż(t) dτ −Kh z −Fc

(4.12)

or

(m+ma) z̈ = Fex −
∫ +∞

−∞
Kirf (t− τ) ż(t) dτ −Kh z − Fc (4.13)

where,

Fex =

∫ +∞

−∞
Keirf (t− τ) η(t) dτ =

∫ +∞

−∞
Kdirf (t− τ) η(t) dτ + FFKdy

FFKdy
= −Kh z

Kh = Hydrostatic stiffness

Keirf = Excitation IRF

The convolution of the product of the excitation IRF and the free surface elevation

is called the excitation force, Fex. It is the combination of the diffraction force and

the dynamic Froude-Krylov force. For low frequencies, the diffraction force is small

compared to the dynamic Froude-Krylov force [98].
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4.3 Non-Linear Model

As already stated in the development of the linear model, the wetted area of the buoy

varies with time. Calculation of the dynamic Froude-Krylov force is based on this

instantaneous wetted area and usually requires discretization of the buoy's surface

geometry into a fine mesh. The force on each elemental area is found by summing the

pressure force. As the body moves in the next time step, the wetted area changes and

the re-meshing and force calculation procedure has to be repeated. It is possible to

write a re-meshing routine that does this job automatically at each time step, but the

process will be highly computationally expensive. However, Giorgi et al. presented a

method to calculate dynamic Froude-Krylov force based on instantaneous wetted area

for common buoy geometries for heave motion [9]. The proposed algebraic solution

had 2% error compared to re-meshing routine approach. The reason for deviation

was due to non-ideal discretized geometry in the re-meshing case. It was also found

that no algebraic solution exists for motion with a combination of heave and pitch.

Meriguad et al. [103] found that the most prominent of the nonlinearities affecting the

response of the buoy with a non-uniform cross sectional area is the nonlinear Froude-

Krylov force. The device dynamics has negligible effect due to nonlinear radiation

and diffraction forces. To corroborate their results, Guerinel et al performed real

wave tank experiments and compared them with results from the nonlinear model
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[104]. Their nonlinear model used linear diffraction and radiation forces and nonlinear

Froude-Krylov forces. The results agreed with experimental values.

Another nonlinear factor that Giorgi and Ringwood [105] considered in their model

was nonlinear viscous damping, which they compared with a fully nonlinear CFD

model. The nonlinear viscous damping term was modelled by using Morrison's equa-

tion [106]:

Fvis =
1

2
ρ Cd Ad | ż − η̇ | (ż − η̇) (4.14)

Where,

Fvis = Viscous force

Cd = Drag coefficient

Ad = Characteristic surface area

The magnitude of drag coefficient determines the intensity of the viscous damping,

which requires computational fluid dynamics (CFD) simulations or experimental wave

tank testing. Using FFKnonlin
for total nonlinear Froude-Krylov force, the complete

nonlinear model can be described by the equation below:

(m+ma) z̈ = Fd +FFKnonlin
−
∫ +∞

−∞
Kirf (t− τ) ż(t) dτ −Kh z −Fc −Fvis (4.15)
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4.4 Wave Energy

Just like energy calculation for wind turbines, the control strategies associated with

WECs focus on maximizing a function of the form:

E =

t∫
t0

Fc ż dt (4.16)

Where,

E = Useful energy converted/absorbed by the PTO.

This absorbed energy can be expressed in the form of instantaneous power (P ) as

P = dE/dt. The period of useful ocean waves varies between 3-9 seconds [107].

As a result, the input power from a PTO also varies continuously. If no power

smoothning device is used, the output power supplied to the grid will also show the

same fluctuations. Hence, there exists a need to balance instantaneous power flow

from the WEC generators. Reference [108] integrated battery energy storage (BES)

with a WEC to smooth out the output power. To improve the power quality of WEC

farms, design and use of back-to-back converters was suggested. Additional converter

schemes are given in [109], [110], [111]. Use of auxiliary electrical stages ensures that

the frequency of the generator is decoupled from the fixed voltage and frequency of

the grid. Hence, the WEC generator can operate at variable speeds.
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Chapter 5

DESIGN and METHODOLOGY

This chapter discusses individual hydrodynamic effects along with their mathematical

models. These effects are eventually combined to form a governing equation used for

creating the energy optimal solution. Assumptions are provided that distinguish

the linear and nonlinear models. Finally, performance criteria to evaluate success of

proposed model with design of cases for hypothesis testing is presented.

5.1 Statement of Hypothesis and its Selection

It has been firmly established that for WECs to be successful on a large scale, energy

flow from PTOs to the grid needs to be maximized. Moreover, it is understood that
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nonlinear models are better at predicting buoy dynamics compared to the linear mod-

els especially when buoy motion is large or buoy cross sectional area is not constant

[104]. There is a need for linear modelling method that is as accurate as a nonlinear

model, so that well-documented real-time optimal control strategies can be applied

to this proposed model for accurate extracted energy estimations. It is hypothesized

that the optimal force from the proposed model would result in more extracted energy

compared to optimal force from the Cummins' model. A Cummins' model is used

for comparison because of its accuracy, extensive results in the literature [112], [113]

and ease of calculation using WAMIT [114]. It should also be noted that from now

onwards, the proposed model is called the linear estimated model.

5.2 Complete Model Description with Assump-

tions

In this section, a complete description of Cummins' and nonlinear hydrodynamic

model is presented.The buoy is modelled as a vertical cylinder with radius, R =

1m, draft, hd = 2m and height, H = 4m. Incident linear monochromatic waves

are assumed that induce buoy oscillation in only heave mode. A linear generator

directly coupled with the buoy applies a reaction force depending on the direction

of current in its coils. Boundary Element Method (BEM) [114] is used to calculate
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hydrodynamic loads in the frequency domain by solving the flow problem around the

geometry. Suitable selection of options for the input Force Control (FRC) files output

added mass, damping coefficient, diffraction and Froude-Krylov forces. Similar to the

approach of [112], the excitation force for the Cummins' model is taken as the sum of

the diffraction and Froude-Krylov forces. For the nonlinear model, the Froude-Krylov

force is calculated algebraically using formulations given in [9]. No nonlinear viscous

force is considered in this study because Merigaud et al. [103] found that the most

prominent nonlinearity affecting the buoy heave response is the nonlinear Froude-

Krylov force. As previously stated, the device dynamics have a negligible effect due

to nonlinear radiation and diffraction forces, hence these two forces are kept the same

for the Cummins' and nonlinear model. Buoy size and meshing used in WAMIT are

shown in figure (5.1). In this study, for faster computation, a transfer function was

used to approximate the convolution integral of Equations (4.13), (4.15) similar to

[99]. Finally, the Cummins' (5.1) and nonlinear (5.2) model take the form:

(m+ma(ω)) z̈ = Fex −Kh z − cż − Fc (5.1)

(m+ma(ω)) z̈ = Fd + πR2ρ g (a sin(ωt) eχ (z −hd) − z) − cż − Fc (5.2)

where,

πR2ρ g (a sin(ωt) eχ (z −hd) − z) = Nonlinear algebraic Froude-Krylov force

c = Radiation damping coefficient
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Figure 5.1: Submerged buoy dimension and meshing used in WAMIT.

5.3 Nonlinear Optimal Control Force Calculation

and its Limitation

The hydrodynamic model considering nonlinear Froude-Krylov force is accurate at

estimating buoy motions for regular and irregular shapes. Formulation of the gen-

eral optimal force for this nonlinear model is logically the first step to calculate the

theoretically possible maximum extracted energy. Due to the assumptions made in

the Cummins' model, there is a difference between nonlinear and linear model based

maximum energy. There is scope of capturing this energy difference if an optimal

force is applied to the nonlinear model. The following derivation presents the general

form of nonlinear optimal solution and necessary conditions to ensure optimality.
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Nonlinear model:

(m+ma(ω)) z̈ = Fd + πR2ρ g (a sin(ωt) eχ (z −hd) − z) − cż − Fc (5.3.1)

Assuming:

m+ma = M

πR2ρ g = Q

If we define,

z1 = z, z2 = ż = ż1, z3 = t, ż3 = 1

the equation (5.3.1) becomes

ż1 = z2 (5.3.2)

ż2 =
1

M

[
Fd −Q

(
z1 − a sin(ωz3) e

χ (z1 −hd)
)
− cz2 − Fc

]
(5.3.3)

ż3 = 1 (5.3.4)

The optimal control problem for regular waves is defined as:

Find F ∗c that minimizes

E (z (t), Fc (t)) = −
tf∫
0

Fc z2 (t) dt subject to (5.3.3).

The Hamiltonian, H is defined as:

H(z1, z2, z3, λ1, λ2, λ3, Fc) = −Fc z2 + λ1 ż1 + λ2 ż2 + λ3 ż3
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H = −Fc z2 + λ1 z2 +
λ2
M

[
Fd −Q

(
z1 − a sin(ωz3) e

χ (z1 −hd)
)
− cz2 − Fc

]
+ λ3

where, ~λ =

[
λ1 λ2 λ3

]T
are Lagrange multipliers.

The optimal control, F ∗c , must satisfy the necessary conditions

żi =
∂H
∂λi

λ̇i = −∂H
∂zi

λ(tf ) = 0

∂H
∂Fc

= 0

Evaluating these conditions, we find that the optimal solution must satisfy equation

(5.3.3) in addition to:

λ̇1 =
λ2
M

Q
(

1 − aχ sin(ωz3) e
χ (z1 −hd)

)
(5.3.5)

λ̇2 = Fc − λ1 +
λ2
M

c (5.3.6)

λ̇3 =
λ2
M

Q
(
− aω cos(ωz3) e

χ (z1 −hd)
)

(5.3.7)

z2 +
λ2
M

= 0 (5.3.8)

As we observe from the equations above, H is linear in Fc and the matrix HFcFc is

singular. Therefore the control force Fc cannot be determined from HFc = 0.
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Reference [115] derived most general form of the generalized Legendre-Clebsch con-

dition (5.3.9). It can be used to check if F ∗c that maximizes H is an optimal solution.

(−1)k
∂

∂Fc

[(
∂

∂t

)2 k

HFc

]
≥ 0 (5.3.9)

k ∈ 0, 1, 2, . . . , n

Equation (5.3.9) is always satisfied as long as equality in equation (5.3.8) is main-

tained. This poses a strict requirement on the initial condition for displacement and

velocity. If those initial conditions are violated, the solution is not optimal.

Differentiating equation (5.3.8) we can write,

ż2 +
λ̇2
M

= 0

Using equation (5.3.8) in (5.3.5)

λ̇1 = −z2Q
(

1 − aχ sin(ωz3) e
χ (z1 −hd)

)
(5.3.10)

Integrating equation (5.3.10)

λ1 = −Q
(
z1 − aχ

∫
z2 sin(ωz3) e

χ (z1 −hd) dz3

)
− ψ

where, ψ is a constant of integration.
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Assuming, I =

∫
z2 sin(ωz3) e

χ (z1 −hd) dz3 we get,

λ1 = −Q (z1 − aχI) − ψ (5.3.11)

Using equation (5.3.8) and (5.3.11) in (5.3.6)

λ̇2 = Fc +Q (z1 − aχI) + ψ − cz2 (5.3.12)

Using equation (5.3.3) in (5.3.12)

λ̇2 = Fd −Q
(
z1 − a sin(ωz3) e

χ (z1 −hd)
)
− cz2 −Mż2 +Q (z1 − aχI) +ψ − cz2

Simplifying yields,

− ψ = Fd −Qa
(
χI − sin(ωz3) e

χ (z1 −hd)
)
− 2cz2 (5.3.13)

Differentiating and rearranging equation (5.3.13) gives,

2cż2 =
∂Fd
∂z3

+Qaω cos(ωz3) e
χ (z1 −hd) (5.3.14)
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Using equation (5.3.3) in (5.3.14)

Fc
∗ = Fd −Q

(
z1 −a sin(ωz3) e

χ (z1 −hd)
)
−cz2 −

M

2c

∂

∂z3

[
Fd +Qa sin(ωz3) e

χ (z1 −hd)
]

(5.3.15)

Equation (5.3.15) gives the optimal control force for a cylindrical buoy when the

algebraic form of nonlinear Froude-Krylov force is considered. Equation (5.3.15) can

be generalized for any buoy shape to calculate the closed form of optimal control

force.

For a general non-linear governing equation of the form

(m+ma)z̈ = Fd + FFKdy
+ FFKst − cż − Fc

Optimal control force will be

Fc
∗ = Fd + FFKdy

+ FFKst − cż −
m+ma

2c

∂

∂t
[Fd + FFKdy

] (5.3.16)

On reducing the generalized optimal force in equation (5.3.16) for the linear Cummins'

equation, it matches exactly with results in [34].

To derive the required initial condition, use equation (5.3.15) in (5.3.3)

z̈ =
1

2c

[
∂Fd
∂t

+Qaw cos(ωt) eχ (z −hd)
]

On integrating, we get
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ż − ż0 =
1

2c

[
Fd(t) − Fd(0) +Qaw

∫ t

t0

cos(ωt) eχ (z −hd) dt

]

The above equation is implicit in displacement and velocity and no closed form so-

lution was found. Numerical optimization was used to find the initial conditions for

maximum energy extraction, but the results required buoy initial displacement and

velocity values that were very large and physically unrealizable and hence, discarded.

No solution existed within physical bounds.

This limitation of the implicit relation in displacement and velocity is overcome

by replacing the nonlinear model with a linear estimate and then using the well-

documented closed form optimal solution.

5.4 Proposed Estimated Model

It is found that application of nonlinear optimal force requires evaluation and sat-

isfaction of implicit initial conditions for maximum energy absorption. In case they

are not satisfied, it renders the use of closed form of optimal force. To overcome

this drawback, the nonlinear model is estimated with a linear model such that the

calculation of optimal force and initial conditions does not require solution of implicit

relations. It is possible to use optimization algorithms such as Genetic algorithm for

determining constrained optimal force, but it is computationally very expensive and

56



hence, unsuitable for real-time implementation. To qualify as a potential candidate

for modelling WEC dynamics, the estimated linear model has to satisfy the following

stringent requirements.

1. The estimated linear model has to be accurate compared to the Cummins' model

in predicting WEC motion (displacement and velocity).

2. The implementation of estimated model should be physically realizable without

high computational cost.

3. The estimated model must be capable of capturing extra energy resulting from

the difference between linear and nonlinear buoy motion.

In real-world application, following steps need to be followed for the development of

the estimated model.

1. Gather data for buoy motion (displacement and velocity) for a frequency band

of incoming waves. This step should be repeated for a number of estimation

frequency bands. Hence, the expected wave frequency region can be divided

into a discrete finite number of frequency bands.

2. Fit a linear model to determine the unique set of mass, damping and stiffness

for each frequency band using multiple data sets for better approximation.
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3. Generate a mass, damping and stiffness matrix corresponding to incoming wave

frequency similar to frequency dependent added mass and radiation damping

generated by WAMIT.

5.5 Time Domain Model and Control Application

To test the hypothesis, same control strategy is applied to the Cummins' and the linear

estimated model. The control force from both these models are used in the nonlinear

model describing the actual WEC dynamics. The extracted energy from both control

force cases is compared for a number of scenarios to evaluate the effectiveness of the

proposed technique. This method of applying control force from two different models

is used because in real-world application, the actual WEC dynamics are independent

of the model used. Only the calculation of control force is affected by the choice

of model used to estimate WEC displacement and velocity. Hence, comparison of

extracted energy by application of different control force is indicative of which model

results in larger power flow from waves to the grid.

Simulink model used to generate displacement and velocity data for parameter es-

timation is shown in Figure (5.2). In this case, no control force is assumed on the

nonlinear model. The estimated mass, stiffness and damping are denoted by mest,

kest and cest respectively. For the same diffraction force (Fd), the nonlinear (5.5.1)
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and estimated model (5.5.2) responses are approximately equal.

Fd = Mz̈ + cż −Q (η eχ (z −hd) − z) (5.5.1)

Fd = mestz̈ + cestż + kestz (5.5.2)

Defining,

FFKest = (M −mest)z̈ + (c − cest)ż + (Q − kest)z (5.5.3)

Using FFKest from Equation (5.5.3), the linear estimated model (5.5.2) can be repre-

sented in the form shown in Equation (5.5.4) which is an estimated linear model of

Equation (5.5.1).

Mz̈ = Fd + FFKest − cż −Qz (5.5.4)

Figure 5.2: Nonlinear model used to generate displacement and velocity
data for parameter estimation.
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Time domain model used for control law application is shown in Figure (5.3). Diffrac-

tion (Fd) and excitation forces (Fex) are shown as an output of a sinusoidal block,

calculated as described in Sections 4.1.1 and 4.2 respectively. Governing equations

and control law for each block is stated below:

Nonlinear model: From Equation (5.3.3) we have,

Mz̈ = Fd +Q (η eχ (z −hd) − z) − cż − Fc (5.5.5)

Cummins' model: Equations (5.1) and (5.3.16) are used to represent the governing

equation (5.5.6) and control law (5.5.7) respectively as shown below:

Mz̈ = Fex −Kh z − cż − Fccummins
(5.5.6)

F ∗ccummins
= Fex −Kh z − cż −

M

2c

dFex
dt

(5.5.7)

Linear estimated model: Equations (5.5.4) and (5.3.16) are used to represent the

governing equation (5.5.8) and control law (5.5.9) respectively as shown below:

Mz̈ = Fd + FFKest − cż −Qz − Fclinear
(5.5.8)

F ∗clinear
= Fd + FFKest − cż −Qz −

M

2c

d(Fd + FFKest)

dt
(5.5.9)
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Figure 5.3: Time domain model showing application of optimal control
force based on either Cummin's model or Linear estimated model.

Based on which model to use for energy extraction, control force can be switched

from the Cummins' model to the linear estimated model.

5.6 Design of Experiment/Test Cases

In order to encompass maximum sea states, an approach close to [9] is followed. Two

wave steepness indices (0.018 & 0.012) are considered where the higher steepness cor-

responds to the limiting value allowed in the linear wave regime. For each steepness,

two target wave periods are selected for parameter estimation. These two periods lie

at the opposite ends of a range of time periods commonly experienced by a point ab-

sorber in deep water conditions [116]. The selected wave periods are 4 and 8 seconds.

Moreover, to ensure physical realization of the proposed technique, each set of param-

eters is estimated for a band of frequencies lying in the vicinity of the targeted time
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period. Two such bands are studied, −/+ 0.5 and 0.1 seconds and three frequencies

are selected from each band for estimating one set of parameters. The choice of the

time period band was made keeping in mind two factors. A 0.5 second band ensures

a limited number of tests to cover the whole expected wave frequency domain, while

a 0.1 second band helps to analyze the benefits of accurate parameter estimation.

Finally, for each case, two kinds of incident waves are tested. The period of the first

wave lies within the band for which parameters were estimated and the period of the

other wave is far off. A layout of these different test cases is also presented in figure

(5.4).

5.7 Hypothesis Testing

It is important to carefully design methodology for testing the hypothesis such that an

unbiased assessment of the estimated model in terms of the aforementioned require-

ments can be performed. Four different types of evaluation criteria have been used

to test the estimated model against Cummins' model in terms of accuracy, extracted

energy and robustness. These criteria are explained in detail below:

1. Responses of the estimated and Cummins' model were compared with the non-

linear model for several incident wave frequencies when no control force was

applied. This ensured the estimated model was accurate at frequencies other
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Steepness
Estimation

Wave Period
Band Incident

Wave Period

0.012

0.018

4s

8s

4s

8s

0.5 s

0.5 s

0.5 s

0.5 s

0.1 s

0.1 s

0.1 s

0.1 s

4.07 & 6 s

4.07 & 6 s

6 & 7.91 s

6 & 7.91 s

Figure 5.4: Layout showing combination of steepness, estimation wave
period and incident wave period used to generate different test cases.

63



than those used for estimation.

2. Extracted energy was compared when the control force was given by the Cum-

mins' and the estimated model. This showed there was an optimal force other

than calculated from Cummins' model which results in higher energy extraction

from the nonlinear model.

3. The effect of bandwidth of frequencies used to estimate one set of parameters

was compared against extracted energy. This gave an indication of appropriate

size of frequency band used for estimation.

4. The extracted energy was compared in cases where the incoming wave frequency

was outside the band used for parameter estimation. This illustrated robustness

of the estimation model to extreme waves or in cases where insufficient data

collection resulted in incomplete modelling for the whole frequency domain.

5.8 Explanation of Technique/ Data Collection

This section explains the procedure for setting up simulation, data collection, estima-

tion and calculation of extracted energy for each test case.

1. Simulation Setup

(a) Select geometry of prototype buoy and obtain its mesh from NEMOH.
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(b) Convert NEMOH mesh file to geometry file for use in WAMIT.

(c) Run WAMIT to obtain added mass, radiation coefficients, FRC file, hy-

drostatic stiffness, etc. in the frequency domain.

(d) Compute radiation convolution in time domain and approximate with a

state space/transfer function.

(e) Compute IRF for excitation force from FRC file.

2. Data Collection

(a) Selection of wave frequency and steepness for estimation.

(b) Choose a frequency band and select three frequencies within the band.

(c) Determine diffraction force for each of the three frequencies by convoluting

diffraction IRF and wave elevation.

(d) Use nonlinear model governed by equation (5.2) for generating buoy motion

data (displacement and velocity).

3. Parameter estimation

(a) A linear model was used to satisfy three sets of input output relation using

interior point optimization method (fmincon). It was found that fmincon

performed better in reducing error than parameter estimation toolbox in

Simulink.

4. Energy calculation
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(a) Choose an arbitrary incident wave frequency and one of the two steepness.

(b) Determine wave elevation and compute excitation and diffraction forces

from convolution.

(c) Use excitation force in Cummins' model and diffraction force in the esti-

mated model and calculate the optimal force.

(d) Apply optimal force from both models into nonlinear model to compare

energy extracted.
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Chapter 6

RESULTS and CONCLUSIONS

This chapter is divided into six sections. The first four sections present the results

to evaluate the efficacy of the estimated model against the Cummins' model on four

criteria. Sections 5 and 6 present conclusion and future work respectively.

6.1 WEC Motion with no Control Force

Figures (6.1), (6.2), (6.3), (6.4), (6.5), (6.6), (6.7) and (6.8) show the steady state

displacement and velocities of the WEC using three different models. In all graphs,

the dashed black line shows the nonlinear motion. Green marker and solid blue

lines are used to show model responses for the −/+ 0.1s and −/+ 0.5s time period
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bandwidth estimated models. The solid red lines show results obtained from the

Cummins' model when no control force is applied. The incident wave frequencies

used for testing the no-control force behavior were chosen arbitrarily to cover the

entire expected frequency span and were different from those used to estimate the

linear model parameters. Four cases were considered, as described in Table (6.1).

Cases - 1 and 2 consider incident wave with frequencies within the region used for

parameter estimation while Cases - 3 and 4 consider wave frequencies outside the

estimated region. Incident waves in Cases - 2 and 4 have lower steepness compared

to Cases - 1 and 3. For each case, comparison of both displacement and velocity is

presented. This is important because the model should predict accurate displacement

and velocity. This ensures it can accurately estimate energy extraction. Also, for

each case, small amount of distortion in the sinusoidal velocity response is observed

for the nonlinear model response. This causes higher percentage amplitude difference

(PAD) in velocity compared to displacement.

Table 6.1
Wave Steepness and Time period corresponding to each Case.

Case
Excitation force Average Time Period used

for estimating Linear modelSteepness Time period (s)

1 0.018 4.07 4

2 0.012 7.91 8

3 0.018 6 8

4 0.012 6 4
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Figure 6.1: Case - 1a. Comparison of the nonlinear, linear estimated and
Cummins' model displacement without control force. The incident wave
has high steepness (0.018). Time period (4.07s) lies inside the parameter
estimation bandwidth.

Figure 6.2: Case - 1b. Comparison of the nonlinear, linear estimated and
Cummins' model velocity without control force. The incident wave has high
steepness (0.018). Time period (4.07s) lies inside the parameter estimation
bandwidth.
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Figure 6.3: Case - 2a. Comparison of the nonlinear, linear estimated and
Cummins' model displacement without control force. The incident wave
has low steepness (0.012). Time period (7.91s) lies inside the parameter
estimation bandwidth.

Figure 6.4: Case - 2b. Comparison of the nonlinear, linear estimated and
Cummins' model velocity without control force. The incident wave has low
steepness (0.012). Time period (7.91s) lies inside the parameter estimation
bandwidth.
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Figure 6.5: Case - 3a. Comparison of the nonlinear, linear estimated and
Cummins' model displacement without control force. The incident wave
has high steepness (0.018). Time period (6s) lies outside the parameter
estimation bandwidth.

Figure 6.6: Case - 3b. Comparison of the nonlinear, linear estimated and
Cummins' model velocity without control force. The incident wave has high
steepness (0.018). Time period (6s) lies outside the parameter estimation
bandwidth.
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Figure 6.7: Case - 4a. Comparison of the nonlinear, linear estimated and
Cummins' model displacement without control force. The incident wave has
low steepness (0.012). Time period (6s) lies outside the parameter estimation
bandwidth.

Figure 6.8: Case - 4b. Comparison of the nonlinear, linear estimated and
Cummins' model velocity without control force. The incident wave has low
steepness (0.012). Time period (6s) lies outside the parameter estimation
bandwidth.
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Figure 6.9: Comparison of Percentage Amplitude Difference of the Linear
versus Cummins' model with respect to the Non-Linear model.

Figure 6.10: Comparison of phase difference (radian) of the Linear versus
Cummins' model with respect to the Non-Linear model.

It can be seen graphically that the estimated model outperforms the Cummins' model

in predicting WEC motion. Numerical comparison of phase and amplitude difference

for each case is presented in Figures (6.9) and (6.10) respectively. For each case,
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the Cummins' model has higher amplitude and phase difference compared to the

linear model. It is also observed that when the incident wave is within the prediction

region (Cases 1 and 2), the narrower (+/ − 0.1s) bandwidth model has lower PAD

compared to the wider (+/−0.5s) bandwidth model. The reason lies in the estimation

process. As three sets were used to estimate the model parameters for each bandwidth,

narrower bandwidth resulted in precise estimation for that region. Hence, when the

excitation frequency lies in that region, the narrower bandwidth model shows better

correlation with the nonlinear model. Opposite behavior is observed when excitation

frequency lies outside of the two (+/ − 0.5s and +/ − 0.1s) estimation bandwidth

regions (Cases 3 and 4). This is because, initially the model was estimated for a wider

range of frequencies. As a result, its parameters were more accurate at extraneous

incident frequencies. However, from Figure (6.10) we observe that phase difference

remains constant when two models with different estimation frequency bandwidths

(Linear 0.1s and Linear 0.5s) were compared with the nonlinear model (ex. Case 1).

6.2 Extracted Energy Comparison

Figures (6.11), (6.12), (6.13), (6.14), (6.15), (6.16), (6.17) and (6.18) show the

extracted energy comparison between control laws based on the estimated versus

the Cummins' model. Here, solid blue and red lines show the extracted energy

by application of control force from the linear estimated model with -/+ 0.5 and
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0.1 second bandwidth respectively.The energy extracted by applying control force

from the Cummins' model is shown by solid yellow color lines. In this section,

the linear and Cummins' model are used to calculate the control force by using

Equations (5.5.6 - 5.5.9). The response in Section 6.1 is completely different

from cases presented here as no control law was used in Section 6.1. Eight cases

are shown. Cases 5, 6, 7 and 8 consider high steepness (0.018) waves, whereas

Cases 9, 10, 11 and 12 face low steepness (0.012) incident waves. For Cases

5,8,9 and 12, the incident wave frequency is inside the parameter estimation

bandwidth and for the rest of the Cases, it lies outside. Table 6.2 shows energy ex-

tracted (in megajoule) at the end of a 200 second time span for each of the test Cases.

Figure 6.11: Case - 5. Comparison of extracted energy between the Linear
estimated and Cummins' model. Incident wave with high steepness (0.018).
Time period (4.07s) lies inside the parameter estimation bandwidth (3.9s -
4.1s).
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Figure 6.12: Case - 6. Comparison of extracted energy between the Linear
estimated and Cummins' model. Incident wave with high steepness (0.018).
Time period (6s) lies outside the parameter estimation bandwidth (3.9s -
4.1s).

Figure 6.13: Case - 7. Comparison of extracted energy between the Linear
estimated and Cummins' model. Incident wave with high steepness (0.018).
Time period (6s) lies outside the parameter estimation bandwidth (7.9s -
8.1s).
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Figure 6.14: Case - 8. Comparison of extracted energy between the Linear
estimated and Cummins' model. Incident wave with high steepness (0.018).
Time period (7.91s) lies inside the parameter estimation bandwidth (7.9s -
8.1s).

Figure 6.15: Case - 9. Comparison of extracted energy between the Linear
estimated and Cummins' model. Incident wave with low steepness (0.012).
Time period (4.07s) lies inside the parameter estimation bandwidth (3.9s -
4.1s).
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Figure 6.16: Case - 10. Comparison of extracted energy between the Linear
estimated and Cummins' model. Incident wave with low steepness (0.012).
Time period (6s) lies outside the parameter estimation bandwidth (3.9s -
4.1s).

Figure 6.17: Case - 11. Comparison of extracted energy between the Linear
estimated and Cummins' model. Incident wave with low steepness (0.012).
Time period (6s) lies outside the parameter estimation bandwidth (7.9s -
8.1s).
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Figure 6.18: Case - 12. Comparison of extracted energy between the Linear
estimated and Cummins' model. Incident wave with low steepness (0.018).
Time period (7.91s) lies inside the parameter estimation bandwidth (7.9s -
8.1s).

Table 6.2
Extracted energy comparison at the end of 200 second time span between

the linear estimated model with two bandwidths (0.1s & 0.5s) and
Cummins' model.

Case
Energy (MJ)

Linear 0.1s Linear 0.5s Cummins

5 1.46 1.42 0.75

6 12.31 12.66
6.29

7 18.11 18.74

8 140.13 139.94 31.93

9 0.60 0.60 0.32

10 4.63 4.74
2.65

11 6.00 6.10

12 35.92 35.93 12.89

Hence, it is observed that if a linear model with estimated parameters is used, then for
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any combination of incident wave frequency and steepness, whether wave frequency

lies inside or outside of the estimation region, the control based on the linear model

gives higher extracted energy. This satisfies the second criterion stated in Chapter

5. Since, Hamiltonian based optimal control is applied to the Cummins' model, it

can be said that there exists a control force that can extract higher energy from the

nonlinear WEC system compared to optimal force based on the Cummins' model.

6.3 Effect of Estimation Frequency Bandwidth

As already stated, the frequency bandwidth used for parameter estimation plays a

crucial role. It determines the number of tests required to cover the entire expected

wave frequency domain. Figures (6.11), (6.12), (6.13), (6.14), (6.15), (6.16), (6.17)

and (6.18) include results for two frequency bandwidths for each case. Graphically,

there isn't a significant difference in energy extraction between the two, but analyzing

quantitatively reveals a trend. From Table 6.2, we see that whenever the excitation

frequency is outside the bandwidth, the wider band estimation model extracts higher

energy compared to narrow bandwidth model and vice versa. This is a similar rela-

tionship to that observed in the un-controlled case.
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6.4 Model Robustness to Extreme Waves or Insuf-

ficient Estimation

It is clearly established from the previous two sections and Figures (6.5), (6.6), (6.7),

(6.8), (6.12, (6.13), (6.16) and 6.17) that even in regions where no parameter esti-

mation was performed, the control based on the estimated model performed better

than when based on the Cummins' model. It means the estimated linear model in

general is desirable for modelling WEC hydrodynamics compared to the Cummins'

model. It also means that this technique will ensure faster deployment through initial

estimation, with the capability of improving the estimates by gathering data during

operation.

6.5 Conclusion

An efficient method of modelling WECs using an estimated linear model for comput-

ing the energy optimal control solution is presented. The estimated linear model was

compared against the Cummins' model for accuracy of motion during uncontrolled

case. In Section 6.1, it was shown that the estimated model outperforms Cummins'

model in predicting WEC motion. For all of the cases considered, the Cummins'
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model had higher amplitude and phase difference compared to the linear model. It

was also observed that, the narrow banded estimation was better in estimating uncon-

trolled WEC behavior when the estimation frequency was within the bandwidth used

for estimation and vice versa. However, making the estimation bandwidth smaller

came at an expense of increased number of tests to be performed to cover the entire

frequency spectrum. Hence, a trade-off analysis has to be performed for a judicial

choice of estimation bandwidth depending on expected sea states and ease of testing.

It was also found that phase difference in displacement and velocity between the nar-

row (−/ + 0.1s) and wider (−/ + 0.5s) bandwidth linear models remained constant

with the frequency of incident wave.

In this work, it was shown that a closed form energy optimal solution to the nonlinear

model required satisfaction of initial conditions that were implicit in displacement and

velocity. Optimal control strategy was used to show the effectiveness of the estimated

model versus Cummins' model in extracting wave energy. It was shown in Section

6.2 that, optimal force from the estimated linear model resulted in higher energy

extraction than optimal force from Cummins' model when applied to a nonlinear

model. However, this technique facilitates the use of any control strategy in use today.

Unlike other learning algorithms like Q-learning, where the learning time is similar

to the duration of prevalence of a particular sea state, the proposed technique will

ensure fast deployment through initial estimation, with the capability of improving

the estimates by gathering data during operation. Additional analyses were performed
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and it was found that the estimated model was robust to availability of insufficient

estimation data and presence of random sea states.

Use of the proposed estimation technique for modelling does not rule out Cummins'

model from the design process, as it may give initial estimates for buoy dimension

and expected forces to build a prototype which can be used for gathering data to

estimate an accurate model.

6.6 Future Work

This study proposed a method to increase the energy extraction of a WEC by using

an estimated form of nonlinear model. The analysis was conducted to investigate the

efficacy of this method for regular waves. However, for real-world implementation, it

is necessary to corroborate the findings for irregular waves. It will be important to

assess the accuracy of this model when parameters are estimated for the dominant

frequency in the spectrum. The size of estimation bandwidth will also be a crucial

factor, as it determines the number of tests to perform and is associated with the cost

of operation of a WEC. Another extension that directly follows from this study is the

validation of the proposed technique in a wave tank where regular waves with desired

characteristics can be produced. The estimated linear model allows the application

of any control strategy, but it will be important to study the variation of difference in
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extracted energy between the Cummins' and the estimated model and if the model

is prone to errors for specific control strategies.
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