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Preface 

This dissertation presents my research work in pursuing the Doctor of Philosophy degree 

in Statistic at Michigan Technological University. The research presented here was 

conducted under the supervision of Dr. Qiuying Sha and Dr. Shuanglin Zhang from the 

Department of Mathematical Sciences. The work is to the best of my knowledge and belief 

original, except where due reference is made in the text of the dissertation.  

Chapter 1 entitled Joint analysis of multiple phenotypes using a clustering linear 

combination method based on hierarchical clustering is a manuscript ready for submission. 

Qiuying Sha and Shuanglin Zhang developed the methodologies. Xueling Li and Qiuying 

Sha performed the statistical analyses. Zhenchuan Wang preprocessed the COPDGene real 

data. Xueling Li, Shuanglin Zhang, and Qiuying Sha drafted the manuscript. 

Chapter 2 entitled Application of UKBiobank data for phenome-wide association 

study is a continuation of the collaborative work of Huanhuan Zhu, Shuanglin Zhang, and 

Qiuying Sha. Huanhuan Zhu, Shuanglin Zhang, and Qiuying Sha focused their research on 

method development. The focus of this dissertation is refining the proposed method and 

applying it to the UK Biobank data, a large cohort study across the United Kingdom, to 

test the validity and understand the limitations of the proposed method. Shuanglin Zhang 

and Qiuying Sha continued their contribution to methodology development. Xueling Li 

pre-processed the UK Biobank data and performed all subsequent statistical analysis. 
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Abstract 

Genome-wide association studies (GWAS) have successfully detected tens of thousands of 

robust SNP-trait associations. Earlier researches have primarily focused on association 

studies of genetic variants and some well-defined functions or phenotypic traits. Emerging 

evidence suggests that pleiotropy, the phenomenon of one genetic variant affects multiple 

phenotypes, is widespread, especially in complex human diseases. Therefore, individual 

phenotype analyses may lose statistical power to identify the underlying genetic 

mechanism. Contrasting with single phenotype analyses, joint analysis of multiple 

phenotypes exploits the correlations between phenotypes and aggregates multiple weak 

marginal effects and is therefore likely to provide new insights into the functional 

consequences of genetic variations. This dissertation includes two papers, corresponding 

to two primary research projects I have done during my Ph.D. study, with each distributed 

in one chapter.  

Chapter 1 proposed an innovative method, which referred to as HC-CLC, for joint 

analysis of multipole phenotypes using a Hierarchical Clustering (HC) approach followed 

by a Clustering Linear Combination (CLC) method. The HC step partitions phenotypes 

into clusters. The CLC method is then used to test the association between the genetic 

variant and all phenotypes, which is done by combining individual test statistics while 

taking full advantage of the clustering information in the HC step. Extensive simulations 

together with the COPDGene data analysis have been used to assess the Type I error rates 

and the power of our proposed method. Our simulation results demonstrate that the Type I 

error rates of HC-CLC are effectively controlled in different realistic settings. HC-CLC 
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either outperforms all other methods or has statistical power that is very close to the most 

powerful alternative method with which it has been compared. In addition, our real data 

analysis shows that HC-CLC is an appropriate method for GWAS. 

Chapter 2 redesigned the PheCLC (Phenome-wide association study that uses the 

CLC method) which was previously developed by our research group. The refined method 

is then applied on the UKBiobank data, a large cohort study across the United Kingdom, 

to test the validity and understand the limitations of the proposed method. We have named 

our new method UKB-PheCLC. The UKB-PheCLC method is an EHR-based PheWAS. In 

the first step, it classifies the whole phenome into different phenotypic categories according 

to the UK Biobank ICD codes. In the second step, the CLC method is applied to each 

phenotypic category to derive a CLC-based p-value for testing the association between the 

genetic variant of interest and all phenotypes in that category. In the third step, the CLC-

based p-values of all categories are combined by using a strategy resemble that of the 

Adaptive Fisher's Combination (AFC) method. Overall, UKB-PheCLC harnesses the 

powerful resource of the UK Biobank and considers the possibility that phenotypes can be 

grouped into different phenotypic categories, which is very common in EHR-based 

PheWAS. Moreover, UKB-PheCLC can handle both qualitative and quantitative 

phenotypes, and it also doesn’t require raw phenotype information. The real data analysis 

results confirm that UKB-PheCLC is more powerful than the existing methods we have it 

compared with. Thus, UKB-PheCLC can serve as a compelling method for phenome-wide 

association study. 
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Chapter 1: HC-CLC 

Joint analysis of multiple phenotypes using a clustering linear combination method 

based on hierarchical clustering 

Emerging evidence suggests that a genetic variant can affect multiple phenotypes, 

especially in complex human diseases. Individual phenotype analyses are generally less 

informative and less powerful for uncovering the genetic variants underlying complex traits 

and diseases. The joint analysis of multiple phenotypes may offer new insights into disease 

etiology. In this paper, we develop an innovative method for joint analysis of multiple 

phenotypes using a hierarchical clustering approach followed by a clustering linear 

combination method. We have named our method HC-CLC. The proposed method consists 

of two consecutive steps: a Hierarchical Clustering (HC) step and a testing step using 

Clustering Linear Combination (CLC). The HC step partitions the original phenotypes into 

a small number of clusters; phenotypes within each cluster strongly correlate with each 

other while phenotypes between clusters are less likely to be correlated. The CLC method 

is then adopted to test the association between a genetic variant of interest and multiple 

phenotypes, which is done by combining individual test statistics while taking full 

advantage of the clustering information in the HC step. Extensive simulations together with 

the COPDGene data analysis have been used to assess the Type I error rates and the power 

of our proposed method. Our simulation results demonstrate that the Type I error rates of 

HC-CLC are effectively controlled in different realistic settings. HC-CLC either 

outperforms all other methods or has statistical power that is very close to the most 

powerful alternative method with which it has been compared. In addition, our real data 
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analysis shows that HC-CLC is an appropriate method for genome-wide association studies 

(GWAS). 

1.1 Introduction 

Pleiotropy is a well-established phenomenon in which a single locus affects more than one 

distinct, but possibly correlated, phenotypic traits (Gratten et al., 2016). Pleiotropy has had 

many important implications on physiological and medical genetics and evolutionary 

biology (Stearns, 2010). Substantial evidence has shown that pleiotropy is ubiquitous in 

complex human diseases (Sivakumaran et al., 2011). 

Genome-wide association studies (GWAS) have been very successful in detecting 

genetic variants that are responsible for complex human diseases. To date, the GWAS 

catalog contains more than 3,600 publications and roughly 90,000 unique SNP-trait 

associations. Traditional genotype-phenotype association studies focus on the pairwise 

relationship between phenotypes and genotypes. However, single phenotype analyses 

ignore the pleiotropic effect and suffer from multiple testing penalties, therefore these 

analyses may be considerably less powerful for detecting causal variants of weak effects 

(Sivakumaran et al., 2011). 

Contrasting with single phenotype analyses, joint analysis of multiple phenotypes 

exploits the correlations between phenotypes and aggregates multiple weak marginal 

effects and is therefore likely to provide important insights into the functional 

consequences of genetic variations. In addition, multiple correlated disease attributes (also 

termed disease phenotypes) that relate to clinically meaningful outcomes, such as 
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symptoms, exacerbations, responses to therapy, rate of disease progression, or death, are 

often collected and frequently encountered in genetic association studies (Han et al., 2010). 

In recent years, there has been increasing interest in jointly testing the association 

between a single genetic variant and multiple correlated phenotypes, with the null 

hypothesis that there is no association between the genetic variant of interest and any of 

the phenotypes while the alternative hypothesis is that the genetic variant of interest is 

associated with at least one of the phenotypes. The most widely used strategies for those 

research efforts are combining univariate analysis results, dimension reduction, and 

regression models. Methods involving the first strategy combine either the univariate test 

statistics (Kim et al., 2015; Peter C O'Brien, 1984a; Wei et al., 1985) or p-values (Liang et 

al., 2016; van der Sluis et al., 2013; J. J. Yang et al., 2016). They are generally very easy 

to implement and can cope with a mixture of different types of phenotypes; however, the 

statistical power of those methods might heavily rely on the homogeneity of univariate test 

statistics (H. Zhu et al., 2015a, 2018). The most popular methods in this category include 

O’Brien’s method (Peter C. O'Brien, 1984b; Wei et al., 1985), Trait-based Association Test 

that uses Extended Simes procedure (TATES) (van der Sluis et al., 2013), Fisher’s 

Combination (J. J. Yang et al., 2016), and Adaptive Fisher’s Combination (AFC) (Liang et 

al., 2016). For the strategy of dimension reduction, instead of testing one phenotype at a 

time, one first constructs a small number of latent variables, which are linear combinations 

of the observed phenotypes, and then tests the associations between the latent variables and 

the genetic variant of interest. Dimension reduction methods are in general suitable only 

when all phenotypes are normally distributed (Q. Yang et al., 2012a); in addition, the newly 
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derived latent variables are usually difficult to interpret in the real-world applications. The 

most popular methods in this category include Principal Component of Phenotypes (PCP) 

(Aschard et al., 2014), Principal Component of Heritability (PCH) (Klei et al., 2008; Wang 

et al., 2016; J. J. Zhou et al., 2015), and Canonical Correlation Analysis (CCA) (Ferreira 

et al., 2008; Tang et al., 2012). Compared with the other two strategies, the strategy 

involving regression models seems relatively complicated to implement but there have 

been a lot of R or SAS packages readily available for use. Regression models are able to 

handle a wide variety of single phenotype data types such as continuous, categorical, or 

survival, but not a mixture of them (Q. Yang et al., 2012b). Common models in this 

category include linear and generalized mixed effects models (Korte et al., 2012; Z. Zhang 

et al., 2009; X. Zhou et al., 2014), frailty models (Wienke, 2010; Q. Yang et al., 2012a), 

and Generalized Estimating Equations (GEE) (Zeger et al., 1986; Y. Zhang et al., 2014). 

Hierarchical Clustering (HC) is a cluster analysis approach that builds a hierarchy 

of clusters (Ding et al., 2002; Johnson, 1967; Karypis et al., 1999; Rokach et al., 2005). 

There are two main types of hierarchical clustering: agglomerative (bottom-up) and 

divisive (top-down). An agglomerative method starts with each phenotype as a single 

cluster and merges the two clusters that have the smallest distance at each step of the 

clustering iteration until a given stopping criterion is met or there is only one cluster left. 

A divisive method starts with all phenotypes belonging to the same cluster and repeatedly 

partitions a cluster into two such that the distance between the two new clusters are 

maximized in each step of the iteration until a given stopping criterion is met or each 

phenotype is in its own singleton cluster. Traditional hierarchical clustering algorithms 
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often merge or split one cluster at a time. In addition, there are many ways of defining 

distance between clusters; these distances are often referred to as link functions. The most 

popular distances used for hierarchical clustering are single-link distance, complete-link 

distance, and average-link distance (Ding et al., 2002). The arrangement of the clusters 

generated by hierarchical clustering can be easily visualized in a dendrogram, a tree-like 

hierarchical taxonomy that records the sequences of merges or partitions. In the world of 

data mining and statistics, the smallest distance in each step of the iteration is usually 

referred to as the height of the merged cluster in the dendrogram. For both types of 

hierarchical clustering approaches, the number of clusters does not need to be specified in 

advance, however, a termination condition of the clustering process is required. In practice, 

the clustering iteration stops at the step that provides maximum cluster separation. 

Clustering Linear Combination (CLC) is a recently developed approach which 

combines individual test statistics for joint analysis of multiple phenotypes in association 

analyses (Sha et al., 2018b). CLC works particularly well with phenotypes that have natural 

groupings. In the CLC step, individual test statistics are combined linearly within each 

cluster and cluster-specific effects are then combined in a quadratic form. CLC has shown 

to be not only robust to different signs of the means of individual statistics, but also reduces 

the degrees of freedom of the test statistic. In addition, CLC can be theoretically proven to 

be the most powerful test among all tests that have certain quadratic forms. 

In this paper, we provide an innovative method for joint analysis of multiple 

phenotypes using an HC approach followed by a CLC method. We have named our 

proposed method HC-CLC. Extensive simulation studies have been conducted to evaluate 
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the performance of HC-CLC. Five competitive methods for joint analysis of multiple 

phenotypes, i.e., MANOVA (Cole et al., 1994), MultiPhen (Guo et al., 2015; O’Reilly et 

al., 2012), TATES (van der Sluis et al., 2013), AFC (Liang et al., 2016), and CLC (Sha et 

al., 2018b), have been applied for comparison with our proposed method. Our results 

indicate that HC-CLC can control Type I error rates very well in all simulation scenarios 

and is either the most powerful method or has statistical power that is very similar to the 

most powerful method among the five existing methods we have compared it with. We 

also validate our proposed method by applying it to a COPDGene real dataset. 

1.2 Methods 

Consider a sample of 𝑛𝑛 unrelated individuals, where each individual has been genotyped 

at a genetic variant and has 𝐾𝐾  potentially correlated phenotypes. Let 𝒙𝒙 = (𝑥𝑥1, … , 𝑥𝑥𝑛𝑛)𝑇𝑇 

denote the genotypic score of the 𝑛𝑛 individuals at the genetic variant of interest, where 𝑥𝑥𝑖𝑖 ∈

{0, 1, 2} is the number of minor alleles that the 𝑖𝑖𝑡𝑡ℎ individual carries at the genetic variant. 

Let 𝒀𝒀 = (𝒀𝒀1, … ,𝒀𝒀𝐾𝐾) denote the 𝑛𝑛 × 𝐾𝐾  phenotype matrix, where 𝒀𝒀𝒌𝒌 = (𝑦𝑦1𝑘𝑘, … ,𝑦𝑦𝑛𝑛𝑛𝑛)𝑇𝑇  is 

the 𝑘𝑘𝑡𝑡ℎ phenotype of the 𝑛𝑛 individuals. 

In this study, we first apply a HC method (Liang et al., 2018) to partition the original 

𝐾𝐾 phenotypes into 𝑀𝑀 disjoint clusters; the phenotypes within each cluster highly correlate 

with each other, while the phenotypes between clusters are much less likely to be 

correlated. More specifically, in the HC step, an agglomerative hierarchical clustering is 

directly applied on a phenotypic distance matrix 𝐷𝐷, whose (𝑖𝑖, 𝑗𝑗)th entry 𝑑𝑑𝑖𝑖𝑖𝑖 is the distance 

between the 𝑖𝑖th  phenotype and the 𝑗𝑗th phenotype. We use correlation between the two 
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phenotypes to define the distance, 𝑑𝑑𝑖𝑖𝑖𝑖 = 1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝒀𝒀𝑖𝑖,𝒀𝒀𝑗𝑗) , where 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  denotes 

correlation. We estimate the phenotypic distance matrix 𝐷𝐷 through the sample correlation 

matrix of the 𝐾𝐾  phenotypes. That is, 𝐷𝐷� = 𝐽𝐽𝐾𝐾 − 𝐶𝐶𝑠𝑠(𝒀𝒀), where 𝐽𝐽𝐾𝐾  is a 𝐾𝐾 × 𝐾𝐾  matrix and 

each entry equals 1, and then 𝐶𝐶𝑠𝑠(𝒀𝒀) is the sample correlation matrix of the phenotypes. 

We define the distance between any two clusters to be the average linkage of the 

two clusters. For example, the distance between cluster 𝐶𝐶𝑚𝑚 and cluster 𝐶𝐶ℓ is calculated by 

the following equation: 

𝐷𝐷(𝐶𝐶𝑚𝑚,𝐶𝐶ℓ) =
1

|𝐶𝐶𝑚𝑚| ∙ |𝐶𝐶ℓ| � 𝑑𝑑𝑖𝑖𝑖𝑖
𝑖𝑖∈𝐶𝐶𝑚𝑚,𝑗𝑗∈𝐶𝐶ℓ

, (1) 

where |𝐶𝐶𝑚𝑚| denotes the number of phenotypes in cluster 𝐶𝐶𝑚𝑚 and where |𝐶𝐶𝑙𝑙| denotes the 

number of phenotypes in cluster 𝐶𝐶𝑙𝑙. The agglomerative hierarchical clustering starts with 

each phenotype as a singleton cluster, and then successively merges pairs of clusters that 

have the smallest distance until a given stopping criterion is met or all clusters have been 

merged into a single cluster that contains all phenotypes. 

We determine the total number of clusters (i.e., the value of 𝑀𝑀) in the HC step by 

using a stopping criterion that maximizes cluster separation (Bühlmann et al., 2013; Liang 

et al., 2018). Let 𝑑𝑑𝑏𝑏 denote the smallest distance between any two clusters in the 𝑏𝑏th step 

of iteration (𝑏𝑏 ≥ 1). If we let 

𝑏𝑏� = arg max
𝑏𝑏≥1

(𝑑𝑑𝑏𝑏+1 − 𝑑𝑑𝑏𝑏), (2) 

then the total number of clusters yielded at the step 𝑏𝑏� is our desired value for 𝑀𝑀. 
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Next, we incorporate the hierarchical clustering information from the HC step to 

the CLC method. We refer to the combination of the HC method and the CLC method as 

HC-CLC. First, we give a brief introduction of the CLC method recently developed by our 

group (Sha et al., 2018b). 

In Sha et al. (Sha et al., 2018b), we developed a statistical method for jointly 

analysis of multiple phenotypes in association studies. First, we cluster 𝐾𝐾 phenotypes into 

𝐿𝐿 clusters (𝐿𝐿 = 1,⋯ ,𝐾𝐾) using the hierarchical clustering method with the same distance 

as we described above. Then we use 𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐿𝐿 = (𝑊𝑊𝑊𝑊)𝑇𝑇(𝑊𝑊Σ𝑊𝑊𝑇𝑇)−1(𝑊𝑊𝑊𝑊)  to test the 

association between a genetic variant and the 𝐾𝐾 phenotypes with 𝐿𝐿 clusters, where 𝑇𝑇 =

(𝑇𝑇1,⋯ ,𝑇𝑇𝐾𝐾)𝑇𝑇 and 𝑇𝑇𝑘𝑘 is the score test statistic to test the association between the genetic 

variant and the 𝑘𝑘th phenotype (𝑘𝑘 = 1,⋯ ,𝐾𝐾) under the generalized linear model (Nelder et 

al., 1972), 𝑔𝑔�𝐸𝐸(𝑦𝑦𝑖𝑖𝑖𝑖|𝑥𝑥𝑖𝑖)� = 𝛽𝛽0𝑘𝑘 + 𝛽𝛽1𝑘𝑘𝑥𝑥𝑖𝑖; 𝑊𝑊 = 𝐵𝐵𝑇𝑇Σ−1, where 𝐵𝐵 is a 𝐾𝐾 × 𝐿𝐿 matrix with the 

(𝑘𝑘, 𝑙𝑙)𝑡𝑡ℎ entry denoted by 𝑏𝑏𝑘𝑘𝑘𝑘 with 𝑏𝑏𝑘𝑘𝑘𝑘 = 1 if the 𝑘𝑘𝑡𝑡ℎ phenotype belongs to the 𝑙𝑙𝑡𝑡ℎ cluster 

or otherwise 𝑏𝑏𝑘𝑘𝑘𝑘 = 0, and Σ is the variance-covariance matrix of 𝑇𝑇 and can be estimated by 

the sample correlation matrix of the 𝐾𝐾 phenotypes. Under the null hypothesis that none of 

the phenotypes are associated with the genetic variant, 𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐿𝐿  follows a chi-square 

distribution with degrees of freedom equal to 𝐿𝐿. We use 𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶 = min
1≤𝐿𝐿≤𝐾𝐾

𝑝𝑝𝐿𝐿 as the final test 

statistic of CLC, where 𝑝𝑝𝐿𝐿 denotes the p-value of 𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐿𝐿  for 𝐿𝐿 = 1,⋯ ,𝐾𝐾. Since 𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶 does 

not have an asymptotic distribution, we use a simulation procedure to evaluate the p-value 

of 𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶. 
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In this paper, instead of considering all possible number of clusters in HC, we use 

a stopping criterion to determine the number of clusters. Suppose that the number of 

clusters using the stopping criterion in HC is 𝑀𝑀 . Then we can use 𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝑀𝑀 =

(𝑊𝑊𝑊𝑊)𝑇𝑇(𝑊𝑊Σ𝑊𝑊𝑇𝑇)−1(𝑊𝑊𝑊𝑊)  to test the association between multiple phenotypes and the 

genetic variant. Therefore, our HC-CLC test statistics is given by 

𝑇𝑇𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 = (𝑊𝑊𝑊𝑊)𝑇𝑇(𝑊𝑊Σ𝑊𝑊𝑇𝑇)−1(𝑊𝑊𝑊𝑊), (3) 

Under the null hypothesis that none of the 𝐾𝐾 phenotypes are associated with the genetic 

variant of interest, 𝑇𝑇𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 follows a chi-square distribution with degrees of freedom equal 

to 𝑀𝑀. Comparing with CLC, HC-CLC does not need to use a simulation procedure to 

evaluate the p-value, so it is computationally more efficient than CLC. 

We compare the performance of our HC-CLC method with those of the other five 

existing methods: MANOVA, MultiPhen, TATES, AFC, and CLC. Since we have 

previewed CLC approach in the method section, here, we briefly introduce the other four 

methods as they apply to the current study. 

MANOVA (Cole et al., 1994): Consider a multivariate simple linear regression 

model: 𝑌𝑌 = 𝒋𝒋𝒋𝒋𝟎𝟎𝑇𝑇 + 𝒙𝒙𝜷𝜷𝑇𝑇 + ℰ , where 𝒋𝒋 is an 𝑛𝑛-dimensional vector of all 1’s; 𝜷𝜷𝟎𝟎  is a 𝐾𝐾-

dimensional intercept vector and 𝜷𝜷𝟎𝟎 = (𝛽𝛽01,⋯ ,𝛽𝛽0𝐾𝐾)𝑇𝑇 ; 𝜷𝜷 is a 𝐾𝐾-dimensional vector of 

coefficients with the 𝐾𝐾 elements corresponding to the 𝐾𝐾 phenotypes; while ℰ is an 𝑛𝑛 × 𝐾𝐾 

residual matrix, with each row following an independent identically distributed (i.i.d.) 

multivariate normal distribution with mean 0 and a constant variance-covariance matrix. 

To test 𝐻𝐻0: 𝜷𝜷 = 𝟎𝟎, the Wilk’s Lambda test statistic is commonly used, which is equivalent 
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to the test statistic of the likelihood ratio test. Under the null hypothesis, the MANOVA 

test statistic has an asymptotic 𝜒𝜒𝐾𝐾2  distribution. 

MultiPhen (O’Reilly et al., 2012): MultiPhen uses the ordinal regression (also 

known as proportional odds logistic regression) and inverts the general linear regression 

model of a single phenotype on multiple genotypes. That is, MultiPhen treats the genetic 

variant of interest as an ordinal response variable and the multiple correlated phenotypes 

as regressors. A likelihood ratio test is then used to test association between the genetic 

variant and the phenotypes. The resulting test statistic asymptotically follows a chi-square 

distribution with degrees of freedom equals to the number of phenotypes (𝐾𝐾). 

TATES (van der Sluis et al., 2013): TATES combines phenotype-specific p-values 

obtained from standard univariate GWAS while considering the correlations between 

components. Denote 𝑝𝑝𝑘𝑘 the p-value of the test statistic to test the association between the 

𝑘𝑘th phenotype and the genetic variant, 𝑝𝑝(𝑘𝑘) the 𝑘𝑘𝑡𝑡ℎ smallest p-value among all 𝑝𝑝𝑘𝑘′𝑠𝑠, where 

𝑘𝑘 = 1, 2, … ,𝐾𝐾 . Then, the p-value of TATES is given by min
1≤𝑘𝑘≤𝐾𝐾

�𝑚𝑚𝑒𝑒𝑝𝑝(𝑘𝑘)

𝑚𝑚𝑒𝑒(𝑘𝑘)
� , where 𝑚𝑚𝑒𝑒 

represents the effective number of independent p-values among all 𝐾𝐾 p-values, and 𝑚𝑚𝑒𝑒(𝑘𝑘) 

represents the effective number of independent p-values among the first smallest  𝑘𝑘 p-

values. 

AFC (Liang et al., 2016): The AFC method combines p-values obtained in standard 

univariate GWAS by using the optimal number of p-values which is determined by the 

data. Using the same notations in TATES, let 𝑝𝑝(𝑘𝑘) denote the 𝑘𝑘𝑡𝑡ℎ smallest p-value among 

all 𝑝𝑝𝑘𝑘’s, where 𝑘𝑘 = 1, 2, … ,𝐾𝐾, and let 𝑝𝑝𝑇𝑇𝑘𝑘 denote the p-value of 𝑇𝑇𝑘𝑘 . The statistic of AFC 
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is given by 𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴 = min
1≤𝑘𝑘≤𝐾𝐾

𝑝𝑝𝑇𝑇𝑘𝑘 . A permutation procedure is then used to evaluate the p-

values of  𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴. 

SIMULATION STUDIES 

Simulation settings 

To evaluate the Type I error rates and the statistical power of our proposed method, we 

simulate genotype and phenotype data for 𝑛𝑛 unrelated individuals. The genotype of each 

individual at a variant of interest is generated based on minor allele frequency (MAF) 

assuming Hardy Weinberg equilibrium. The phenotypes of each individual are generated 

according to the following factor model (Wang et al., 2016) 

𝒚𝒚 = 𝝀𝝀𝑥𝑥 + 𝑐𝑐𝑐𝑐𝒇𝒇 + �1 − 𝑐𝑐2 × 𝜺𝜺 
 

(4) 

where 𝒚𝒚 is a vector of phenotypes and 𝒚𝒚 = (𝑦𝑦1, … ,𝑦𝑦𝐾𝐾)𝑇𝑇; 𝑥𝑥 is the genotypic score at the 

genetic variant; 𝝀𝝀 is the effect sizes of the genetic variant on the 𝐾𝐾 phenotypes and 𝝀𝝀 =

(𝜆𝜆1, … , 𝜆𝜆𝐾𝐾)𝑇𝑇; 𝑐𝑐 is a constant; 𝛾𝛾 is a 𝐾𝐾 × 𝑅𝑅 block diagonal matrix used for setting up various 

simulation scenarios; 𝒇𝒇 is a vector of factors and 𝒇𝒇 = (𝑓𝑓1, … ,𝑓𝑓𝑅𝑅)𝑇𝑇~𝑀𝑀𝑀𝑀𝑀𝑀𝑅𝑅(𝟎𝟎,Σ), where 

𝑅𝑅 is the number of factors, Σ = (1 − 𝜌𝜌)𝐼𝐼 + 𝜌𝜌𝜌𝜌, 𝐼𝐼 is an identity matrix, 𝐽𝐽 is a matrix with 

elements of all 1’s, and 𝜌𝜌 is the correlation between factors; 𝜺𝜺 is a vector of residuals and 

𝜺𝜺 = (𝜀𝜀1, … , 𝜀𝜀𝐾𝐾)𝑇𝑇 , where 𝜀𝜀1, … , 𝜀𝜀𝐾𝐾  are pairwise independent and each 𝜀𝜀𝑘𝑘~𝑁𝑁(0,1) , 𝑘𝑘 =

1, … ,𝐾𝐾. Based on equation (4), we consider the following four models for which the 

within-factor correlation equals 𝑐𝑐2 and the between-factor correlation equals 𝜌𝜌𝑐𝑐2. 



12 

 

Model 1: There is only one factor and the genetic variant impacts all of the 𝐾𝐾 phenotypes 

but with different effect sizes. That is, 𝑅𝑅 = 1, 𝜆𝜆 = 𝛽𝛽(1,2, … ,𝐾𝐾)𝑇𝑇, and 𝛾𝛾 = (1, … ,1)𝑇𝑇. 

Model 2: There are two factors and the genetic variant impacts one of the factors. That is, 

𝑅𝑅 = 2 , 𝜆𝜆 = �0, … ,0,𝛽𝛽, … ,𝛽𝛽�����
𝐾𝐾 2⁄

�
𝑇𝑇

, and 𝛾𝛾 = 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝐷𝐷1,𝐷𝐷2) , where “𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏” indicates the 

block diagonal matrix, and 𝐷𝐷𝑖𝑖 = �1, … ,1���
𝐾𝐾 2⁄

�
𝑇𝑇

 for 𝑖𝑖 = 1, 2. 

Model 3: There are five factors and the genetic variant impacts two of the factors. That is, 

𝑅𝑅 = 5 , 𝜆𝜆 = (𝛽𝛽11, … ,𝛽𝛽1𝑘𝑘,𝛽𝛽21, … ,𝛽𝛽2𝑘𝑘,𝛽𝛽31, … ,𝛽𝛽3𝑘𝑘,𝛽𝛽41, … ,𝛽𝛽4𝑘𝑘,𝛽𝛽51, … ,𝛽𝛽5𝑘𝑘)𝑇𝑇 , and 𝛾𝛾 =

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝐷𝐷1,𝐷𝐷2,𝐷𝐷3,𝐷𝐷4,𝐷𝐷5), where 𝐷𝐷𝑖𝑖 = �1, … ,1���
𝐾𝐾 5⁄

�
𝑇𝑇

 for 𝑖𝑖 = 1, … ,5, 𝑘𝑘 = 𝐾𝐾
5
, 𝛽𝛽11 = ⋯𝛽𝛽1𝑘𝑘 =

𝛽𝛽21 = ⋯ = 𝛽𝛽2𝑘𝑘 = 𝛽𝛽31 = ⋯ = 𝛽𝛽3𝑘𝑘 = 0 , 𝛽𝛽41 = ⋯ = 𝛽𝛽4𝑘𝑘 = −𝛽𝛽 , and (𝛽𝛽51, … ,𝛽𝛽5𝑘𝑘) =

2𝛽𝛽
𝑘𝑘+1

∗ (1, … ,𝑘𝑘). 

Model 4: There are five factors and the genetic variant impacts four of the factors. That is, 

𝑅𝑅 = 5 , 𝜆𝜆 = (𝛽𝛽11, … ,𝛽𝛽1𝑘𝑘,𝛽𝛽21, … ,𝛽𝛽2𝑘𝑘,𝛽𝛽31, … ,𝛽𝛽3𝑘𝑘,𝛽𝛽41, … ,𝛽𝛽4𝑘𝑘,𝛽𝛽51, … ,𝛽𝛽5𝑘𝑘)𝑇𝑇 , and 𝛾𝛾 =

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝐷𝐷1,𝐷𝐷2,𝐷𝐷3,𝐷𝐷4,𝐷𝐷5), where 𝐷𝐷𝑖𝑖 = �1, … ,1���
𝐾𝐾 5⁄

�
𝑇𝑇

 for 𝑖𝑖 = 1, … ,5, 𝑘𝑘 = 𝐾𝐾
5
, 𝛽𝛽11 = ⋯𝛽𝛽1𝑘𝑘 =

0, 𝛽𝛽21 = ⋯ = 𝛽𝛽2𝑘𝑘 = 𝛽𝛽, 𝛽𝛽31 = ⋯ = 𝛽𝛽3𝑘𝑘 = −𝛽𝛽, 𝛽𝛽41 = ⋯ = 𝛽𝛽4𝑘𝑘 = − 2𝛽𝛽
𝑘𝑘+1

∗ (1, … ,𝑘𝑘), and 

(𝛽𝛽51, … ,𝛽𝛽5𝑘𝑘) = 2𝛽𝛽
𝑘𝑘+1

∗ (1, … ,𝑘𝑘). 

To evaluate Type I error rates, we let 𝛽𝛽 = 0, 𝑀𝑀𝑀𝑀𝑀𝑀 = 0.3, and vary the significance 

level 𝛼𝛼, the total number of phenotypes 𝐾𝐾, and sample size 𝑛𝑛. To evaluate statistical power, 
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we set sample size 𝑛𝑛 = 5,000, 𝑀𝑀𝑀𝑀𝑀𝑀 = 0.3, and vary the values of 𝛽𝛽, the total number of 

phenotypes 𝐾𝐾, the within-factor correlation 𝑐𝑐2, and the between-factor correlation 𝜌𝜌𝑐𝑐2. 

Simulation results 

In each simulation scenario, the p-values of the test statistics of MANOVA, MultiPhen, 

TATES, and HC-CLC are estimated based on their asymptotic distributions. The p-values 

of AFC and CLC are estimated using 10,000 permutations. 

We use 10,000 replicated samples to evaluate the Type I error. For 10,000 

replicated samples, the 95% confidence intervals (CIs) for Type I error rates at the nominal 

levels 0.05, 0.01, and 0.001 are (0.0457, 0.0543), (0.0080, 0.0120), and (0.0004, 0.0016), 

respectively. Table 1.1 summarizes the estimated Type I error rates of HC-CLC. The 

results indicate that all of the estimated Type I error rates are within the 95% CIs, which 

confirms that HC-CLC is a valid method. 

For power comparisons, we use a 5% significance level. The power of each method 

under four different models is estimated using 1,000 replicated samples. Figure 1.1 and 1.2 

provide the power comparisons of the six methods (MANOVA, MultiPhen, TATES, AFC, 

CLC, and HC-CLC) as a function of genetic effect size 𝛽𝛽, with 20 phenotypes and 40 

phenotypes, respectively. From these two figures, we can see that HC-CLC is the most 

powerful test among all six methods we compared with under the four models. CLC is the 

second most powerful method among the six methods. MANOVA and MultiPhen have 

similar statistical power under all four models; these two methods have power close to the 

most powerful test (HC-CLC) under model 1 but are the least powerful methods under 
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model 2 where the genetic variant has effect on only half of the phenotypes. TATES and 

AFC have similar power under models 1 to 3. Under model 4, where the genetic variant 

has effect on part of the phenotypes with different the effect sizes and different directions 

of the effects, AFC performs better than TATES. TATES and AFC are the least powerful 

methods under model 1 and perform better that MANOVA and MultiPhen under model 2. 

As anticipated, when the effect size increases, the statistical powers of all six methods 

increase. 

Figure 1.3 and 1.4 provide the power comparisons of the six methods as a function 

of the within-factor correlation 𝑐𝑐2, with 20 phenotypes and 40 phenotypes, respectively. 

The pattern of the powers of the six models are similar to these observed in Figure 1.1 and 

1.2 except that under model 1, when the within-factor correlation is small (< 0.2), AFC 

and CLC are more powerful than the other four methods. In general, the powers of all six 

methods decreases as the within-factor correlation increases. 

We also provide the power comparisons of the six methods as a function of the 

between-factor correlation 𝜌𝜌𝑐𝑐2 , with 20 phenotypes and 40 phenotypes, respectively 

(Figures B.1.1 and B.1.2). The pattern of the powers of the six models are similar to these 

observed in Figure 1.1 and 1.2. When the between-factor correlation 𝜌𝜌𝑐𝑐2 increases, the 

statistical power of the six methods stay at almost the same levels, indicating that these 

methods are not sensitive to the changes in between-factor correlation, as they are to the 

changes due to within-factor correlation. 
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1.3 Real Data Analysis 

1.3.1 COPD Data Set 

Chronic Obstructive Pulmonary Disease (COPD) is a chronic inflammatory lung disease 

that obstructs airflow (Chu et al., 2014b). Possible signs and symptoms of COPD include 

breathing difficulty, cough, mucus (sputum) production, and wheezing (Chung et al., 

2008). People with COPD have a higher risk of developing heart disease, lung cancer, and 

numerous other afflictions. Though cigarette smoking is commonly recognized as a trigger 

for COPD, genetic risk factors also seem to play an important role in the development of 

the disease (Mannino et al., 2007; Pillai et al., 2009; Regan et al., 2011; Sandford et al., 

1997; Schellenberg et al., 1998; Silverman et al., 1998; Silverman et al., 2004). The 

COPDGene is one of the largest studies to uncover the underlying genetic factors of COPD 

and other smoking-related diseases; important information that is routinely applied to 

develop new therapeutic approaches to cure those diseases. There was a total of 10,192 

smokers who were potentially affected by COPD, of which 6,784 were non-Hispanic white 

and 3,408 were African-American, recruited for the COPDGene study (Chu et al., 2014b). 

In this paper, we apply six methods, MANOVA, MultiPhen, TATES, AFC, CLC, 

and HC-CLC, to the non-Hispanic white cohort of the COPDGene study to discover 

genetic variants associated with COPD-related phenotypes. Following a similar study 

(Liang et al., 2016) and the literature on which it was based, we select seven quantitative 

COPD-related phenotypes and four covariates. The seven phenotypes are % predicted 

FEV1 (FEV1), Emphysema (Emph), Emphysema Distribution (EmphDist), Gas Trapping 

(GasTrap), Airway Wall Area (Pi10), Exacerbation Frequency (ExacerFreq), and Six-
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minute Walk Distance (6MWD). The details of these seven phenotypes are shown in Figure 

A.1.1 (Chu et al., 2014a). With reference to a previous study (Chu et al., 2014a), we 

perform a log transformation on the phenotype EmphDist. The correlation plot of the seven 

phenotypes is given in Figure B.1.3. We also change the signs of phenotypes FEV1 and 

6MWD because their correlations with the other five phenotypes are negative. After this 

modification, the pair-wise correlations between phenotypes are all positive. The four 

covariates considered in this study are BMI, Age, Pack-Years (PackYear), and Sex. We 

eliminate participants with missing SNPs and missing values in any of the 11 variables. 

After the data preprocessing steps, there remains a total of 5,430 subjects and 630,860 

SNPs. For each of the seven phenotypes, we adjust the phenotype values for the four 

covariates through a linear regression (Sha et al., 2018a). All the subsequent analyses are 

based on the adjusted phenotypes. To identify SNPs associated with the seven COPD-

related phenotypes, we use the standard genome-wide significance p-value threshold of 

5 × 10−8 to account for multiple testing. 

1.3.2 Real Data Analysis Results 

In the COPDGene real data analysis, HC divides the seven phenotypes into five clusters, 

that is, 𝑀𝑀 = 5. The dendrogram of HC on the seven phenotypes is given in Figure B.1.4. 

One of the clusters contains phenotypes FEV1, Emph, and GasTrap, while the other four 

clusters each contain only a single phenotype. This finding is aligned with a previous study, 

which showed that GasTrap is a “hub” in the phenotypic network; the pairings of GasTrap 

with FEV1 and GasTrap with Emph are both highly correlated in the race-specific networks 

(Chu et al., 2014b). Table 1.2 summarizes the 14 significant SNPs that have been identified 
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by at least one of the six methods. All of these 14 SNPs were previously reported to be 

associated with COPD (Brehm et al., 2011; Cho et al., 2010; Cho et al., 2014; Cui et al., 

2014; Du et al., 2016; Hancock et al., 2010; Li et al., 2011; Liang et al., 2018; Lutz et al., 

2015; Pillai et al., 2009; Sha et al., 2018a; Sha et al., 2018b; Wilk et al., 2009; Wilk et al., 

2012; Young et al., 2010; J. Zhang et al., 2011; A. Z. Zhu et al., 2014). As seen in Table 2, 

MultiPhen identifies 14 SNPs; HC-CLC, CLC, and MANOVA each identifies 13 SNPs; 

AFC identifies 12 SNPs; and TATES identifies nine SNPs. The reason that TATES only 

identifies nine SNPs may be due to the fact that this method depends heavily on the smallest 

among the seven p-values from the univariate analysis results. The results of the real data 

analysis are consistent with the findings from our simulations, corroborating that the HC-

CLC has similar or superior performance to that of the other five methods. 

1.4 Discussion 

In this paper, we develop a novel method, HC-CLC, for joint analysis of multiple 

phenotypes in genetic association studies. HC-CLC has several important advantages over 

existing methods. First of all, HC-CLC takes advantage of the natural grouping information 

of the phenotypes, which can be easily obtained from hierarchical clustering. In addition, 

HC-CLC is easy to implement and computationally efficient for GWAS. HC-CLC avoids 

the computational burden of AFC and CLC, which use permutation to evaluate the p-values 

of their test statistics; instead, HC-CLC has an asymptotic distribution. Furthermore, HC-

CLC does not require access to individual phenotypes themselves; it only requires a 

distance matrix of phenotypes. When individual phenotype data is not available, this 
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distance matrix of phenotypes can be estimated from the summary statistics of univariate 

GWAS (X. Zhu et al., 2015b). 

Our simulation results demonstrate that HC-CLC has controlled Type I error rates 

effectively and almost always exceeds the other five competing methods in terms of 

statistical power within various simulation scenarios. Additionally, the real data analysis 

results indicate that HC-CLC has great potential for GWAS. 

In this study, we use the bottom-up hierarchical clustering method to cluster 

phenotypes in the HC step. For future studies, we can explore other clustering approaches 

and incorporate the corresponding clustering information into the CLC step. 

In addition, we choose the average linkage as the distance between two clusters in 

this study. In fact, we can also choose other linkages; for example, single linkage, complete 

linkage, or average linkage. However, the outcome of applying other linkages within our 

proposed method still needs further investigation. 
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1.5 Tables and Figures 

Table 1.1. The estimated Type I error rates of HC-CLC, where MAF is 0.3, and the number 
of replications is 10,000. 𝐾𝐾 is the number of phenotypes, and 𝛼𝛼 is the significance level. 
All estimated Type I error rates are within the corresponding 95% CIs. 

𝑲𝑲 𝜶𝜶 Sample Size Model 
1 2 3 4 

20 

0.050 2000 0.0473 0.0528 0.0516 0.0477 
5000 0.0505 0.0482 0.0520 0.0493 

0.010 2000 0.0099 0.0114 0.0104 0.0100 
5000 0.0111 0.0099 0.0104 0.0106 

0.001 2000 0.0008 0.0007 0.0011 0.0011 
5000 0.0014 0.0011 0.0009 0.0010 

40 

0.050 2000 0.0497 0.0481 0.0489 0.0498 
5000 0.0484 0.0495 0.0520 0.0470 

0.010 2000 0.0096 0.0083 0.0098 0.0113 
5000 0.0090 0.0114 0.0110 0.0099 

0.001 2000 0.0004 0.0010 0.0005 0.0011 
5000 0.0008 0.0012 0.0004 0.0009 
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Table 1.2. Significant SNPs and the corresponding p-values in the COPDGene real data 
analysis. The p-values of MANOVA, MultiPhen, TATES, and HC-CLC are estimated 
based on their asymptotic distributions and the p-values of AFC and CLC are estimated 
using 10,000 permutations. The graying out p-values indicate values greater than  5 ×
10−8. 

Chr Position Variant identifier MANOVA Multiphen TATES AFC CLC HC-CLC 

4 145431497 rs1512282 1.69E-09 1.03E-09 5.77E-09 1.10E-08 0 5.28E-10 

4 145434744 rs1032297 6.52E-14 7.69E-14 6.22E-13 0 0 1.17E-13 

4 145474473 rs1489759 1.11E-16 1.22E-16 2.52E-16 0 0 0 

4 145485738 rs1980057 6.68E-17 8.14E-17 9.35E-17 0 0 0 

4 145485915 rs7655625 7.12E-17 9.13E-17 1.64E-16 0 0 0 

15 78882925 rs16969968 1.32E-11 7.84E-12 2.98E-08 0 0 6.18E-11 

15 78894339 rs1051730 1.41E-11 8.16E-12 2.63E-08 0 0 3.18E-11 

15 78898723 rs12914385 1.76E-12 1.48E-12 5.14E-10 0 0 1.09E-12 

15 78911181 rs8040868 2.74E-12 2.59E-12 2.40E-09 0 0 2.96E-12 

15 78878541 rs951266 1.77E-11 1.02E-11 5.17E-08 0 0 6.36E-11 

15 78806023 rs8034191 2.14E-10 7.74E-11 1.02E-07 1.40E-08 0 8.08E-10 

15 78851615 rs2036527 3.99E-10 1.77E-10 1.56E-07 2.90E-08 8.33E-10 1.21E-09 

15 78826180 rs931794 2.35E-10 9.09E-11 1.18E-07 6.30E-08 0 3.63E-09 

15 78740964 rs2568494 1.05E-07 4.23E-08 2.88E-05 5.00E-06 3.98E-07 1.23E-06 
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Figure 1.1. The power comparisons of the six methods for 20 quantitative phenotypes 
assessed at a 5% significance level. Statistical power varies with the effect size 𝛽𝛽, where 
MAF is 0.3, the sample size is 5,000, the number of replications is 1,000, the within-factor 
correlation is 0.5 (𝑐𝑐2 = 0.5), and the between-factor correlation is 0.1 (𝜌𝜌𝑐𝑐2 = 0.1). 
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Figure 1.2. The power comparisons of the six methods for 40 quantitative phenotypes 
assessed at a 5% significance level. Statistical power varies with the effect size 𝛽𝛽, where 
MAF is 0.3, the sample size is 5,000, the number of replications is 1,000, the within-factor 
correlation is 0.5 (𝑐𝑐2 = 0.5), and the between-factor correlation is 0.1 (𝜌𝜌𝑐𝑐2 = 0.1). 
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Figure 1.3. The power comparisons of the six methods for 20 quantitative phenotypes 
assessed at a 5% significance level. Statistical power varies with the within-factor 
correlation 𝑐𝑐2, where MAF is 0.3, the sample size is 5,000, the number of replications is 
1,000, and the between-factor correlation is 0.1 (𝜌𝜌𝑐𝑐2 = 0.1). 

 
  



24 

 

Figure 1.4. The power comparisons of the six methods for 40 quantitative phenotypes 
assessed at a 5% significance level. Statistical power varies with the within-factor 
correlation 𝑐𝑐2, where MAF is 0.3, the sample size is 5,000, the number of replications is 
1,000, the between-factor correlation is 0.1 (𝜌𝜌𝑐𝑐2 = 0.1). 
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Chapter 2: UKB-PheCLC 

Application of UKBiobank Data for Phenome-Wide Association Studies 

With the development of high throughput, massively parallel sequencing technologies, 

GWAS has become a very effective tool in identifying genetic components underlying 

complex diseases. To date, the GWAS catalog contains more than 3,600 publications and 

roughly 90,000 unique SNP-trait associations. The greatest advantage of GWAS is that it 

can discover novel genes and pathways involved in disease pathogenesis. The greatest 

limitation of GWAS is that it primarily focuses on a pre-defined and limited phenotypic 

domain. A complementary approach to GWAS is the PheWAS, in which the association 

between genomic markers and a diverse range of phenotypes are investigated. PheWAS 

has recently become feasible due to the wide availability of the electronic health records 

(EHR), which usually involves using the International Classification of Disease (ICD) 

codes, a standardized coding system for defining disease status as well as for billing 

purpose. The UK Biobank is a population-based cohort study with a wide variety of genetic 

and phenotypic information collected on ~ 500K participants from multiple sites across the 

United Kingdom, aged between 40 and 69 years when recruited in 2006–2010 (Sudlow et 

al., 2015). In this manuscript, we have redesigned the PheCLC (Phenome-wide association 

study that uses Clustering Linear Combination) method which was previously developed 

by our research group. The refined method is then applied on the UKBiobank data to test 

the validity and understand the limitations of the proposed method. We have named our 

new method UKB-PheCLC. The UKB-PheCLC method is an EHR-based PheWAS. In the 

first step, it classifies all phenotypes (the whole phenome) into numerous phenotypic 
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categories according to the UK Biobank ICD-10 level 2 code. In the second step, the 

Clustering Linear Combination (CLC) method is applied to each phenotypic category to 

derive a CLC-based p-value for testing the association between the genetic variant of 

interest and all phenotypes in that category. In the third step, the CLC-based p-values of 

all categories are combined by using a strategy resemble that of the Adaptive Fisher's 

Combination (AFC) method. The biggest advantage of UKB-PheCLC is that it takes into 

account the possibility that phenotypes are from different phenotypic categories, which is 

very common and readily available in EHR-based PheWAS. Moreover, UKB-PheCLC can 

handle both qualitative and quantitative phenotypes since we only need to classify the 

univariate test statistics. Following the same logic, UKB-PheCLC doesn’t require raw 

phenotype information and it can work on summary test statistics from other studies. 

Furthermore, the permutation procedure that UKB-PheCLC adopted to generate the 

empirical null distribution of the final test-statistic only needs to be done once for different 

genetic variants. The real data analysis results confirm that the proposed method is more 

powerful than the existing methods we have it compared with. Thus, UKB-PheCLC can 

serve as a compelling method for phenome-wide association study. 
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2.1 Introduction 

A full understanding of the impact of genetics on phenotypic and disease variation, and its 

potential interactions with other factors is very crucial and is in urgent need in the scientific 

community as it helps us understand the etiology behind complex diseases and provides 

important information on precise medicine development. Technological advances have 

made genome sequencing a reality and open up many new possibilities for identifying 

genetic variants associated with complex diseases. To date, the GWAS catalog collects 

more than 3,600 publications and roughly 90,000 unique SNP-trait associations 

(https://www.ebi.ac.uk/gwas/). GWAS has enjoyed its popularity for its capability of 

discovering novel genes and pathways involved in disease pathogenesis. GWAS 

commonly starts with a single phenotype and tests the genetic association between the 

phenotype of interest and a broad spectrum of genetic variants across the genome. In 

contrast to GWAS, PheWAS starts with a single genetic variant and test the genetic 

association between the genetic variant of interest and a wide range of phenotypes across 

the phenome. 

PheWAS has recently become feasible due to the wide availability of the electronic 

health records (EHR), which usually involves using the International Classification of 

Disease (ICD) codes. ICD coding system is an international standard for reporting diseases 

and health conditions. In addition to indicate disease status, ICD codes are also widely used 

by hospitals and insurance companies for billing purpose. Currently, there are two versions 

of ICD codes, i.e., ICD-9 and ICD-10, where the ICD-10 is an updated version of ICD-9 

and can be used to include more diseases types. The two versions of codes are not one-to-

https://www.ebi.ac.uk/gwas/
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one exchangeable. As the emerging of EHR data, researchers have come to the realization 

of the importance of mining the information contained in the ICD codes to aid in searching 

for robust SNP-disease associations. 

UK Biobank is a large cohort study with deep genetic and phenotypic information 

collected on ~500K participants between age 40-69 (Bycroft et al., 2018). At recruitment, 

participants have provided detailed information about themselves (e.g., socio-

demographics, lifestyle, health-related factors), undergone a wide range of physical 

measures, donated blood, urine and saliva samples for analysis, and signed consent to have 

their health information followed (i.e., allow follow-up through linkage to their health-

related records). The primary goal of UK Biobank is to help improve the prevention, 

diagnosis and treatment of a wide range of serious and life-threatening illnesses, for 

example, cancer, heart diseases, stroke, diabetes, arthritis, osteoporosis, eye disorders, 

depression and forms of dementia. 

There are two general approaches for PheWAS, i.e., univariate approach and 

multivariate approach. Univariate approach tests the association between the genetic 

variant of interest and each phenotype individually and use Bonferroni correction to adjust 

multiple testing. Numerous studies in GWAS have shown that univariate tests have some 

intrinsic drawbacks and are not as powerful as multivariate tests. Moreover, emerging 

evidence suggests that pleiotropy (Gratten et al., 2016), the phenomenon of one genetic 

variant affect multiple phenotypes, is widespread, especially in complex human diseases. 

Therefore, analyzing one phenotype at a time may lose statistical power to identify the 

underlying genetic mechanism, especially when causal variants have weak effects 
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(Sivakumaran et al., 2011). By contrast, multivariate approaches test the association 

between the genetic variant of interest and all the phenotypes across the phenome jointly, 

which is likely to boost the power performance of association testing. 

In this manuscript, we have redesigned the PheCLC (Phenome-wide association 

study that uses Clustering Linear Combination) method which was previously developed 

by our research group. The refined method is then applied on the UKBiobank data to test 

the validity and understand the limitations of the proposed method. We have named our 

new method UKB-PheCLC. The UKB-PheCLC method is an EHR-based PheWAS. In the 

first step, it classifies all phenotypes (the whole phenome) into numerous phenotypic 

categories according to the UK Biobank ICD-10 level 2 code 

(http://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=41202&nl=1). In the second step, the 

Clustering Linear Combination (CLC) method (Sha et al., 2018b) is applied to each 

phenotypic category to derive a CLC-based p-value for testing the association between the 

genetic variant of interest and all phenotypes in that category. In the final step, the CLC-

based p-values of all categories are combined by using a strategy resemble that of the 

Adaptive Fisher's Combination (AFC) method (Liang et al., 2016). 

We have compared the performance of UKB-PheCLC with that of two popular 

multivariate analysis methods commonly used in GWAS. That is, the Trait-based 

Association Test that uses Extended Simes procedure (TATES) (van der Sluis et al., 2013) 

and the O’Brien’s method (OB) (O’Brien, 1984). The two methods mentioned above either 

combine univariate p-values or univariate test statistics. They are very similar to our 

proposed UKB-PheCLC method. Our results confirm that the proposed method is more 

http://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=41202&nl=1
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powerful than the existing methods we have it compared with. Thus, UKB-PheCLC can 

serve as an alternative multivariate method for joint analysis of multiple phenotypes. 

Furthermore, we have demonstrated the feasibility of UKB-PheCLC in phenome-wide 

association study. 

In summary, we have showed the following advantage of UKB-PheCLC in this 

study. 

1. UKB-PheCLC can harness the powerful data sources, e.g., a wide of range of electronic 

health records, of the UK Biobank. 

2. UKB-PheCLC considers the possibility that phenotypes can be grouped into different 

phenotypic categories, which is very common in EHR-based PheWAS. 

3. Moreover, UKB-PheCLC can handle both qualitative and quantitative phenotypes 

because we only need to classify the univariate test statistics. Following the same logic, 

UKB-PheCLC doesn’t require raw phenotype information and it can work on summary 

test statistics from other studies. 

4. In addition, the permutation procedure UKB-PheCLC adopted to generate the 

empirical null distribution of its final test-statistic only needs to be done once for 

different genetic variants. 
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2.2 UK Biobank Data Pre-processing 

2.2.1 Introduction of UK Biobank Phenotypes 

Phenotype data can be downloaded from the UK Biobank Showcase system, it needs 

decryption before use. The data can be converted into different formats (e.g., csv, docs, 

sas, stata, or r). File size is ~12GB. 

The phenotype data is stored in a matrix-like form, with each row corresponding to 

an individual, each column corresponding to a feature/property of individuals. Each 

individual has an eid number and 7197 data fields. The eid numbers are anonymous 

identities of participants and the data fields are the Unique Data Identifiers (UDIs) of the 

participants’ phenotypic information. Each data field is composed of three components: 

field ID, instant index, and array index. All data fields are labelled with the format 

“FieldID-InstantIndex.ArrayIndex”. Instant index indicates assessment instance (or visit). 

Array index indicates multiple answers to the same question. It is worth noting that all 

indices start from the value of 0, rather than 1. 

Let’s use data field 41202-0.0 as an example to demonstrate the components and 

the meaning of each component of a data field. The first component 41202 is the field ID, 

represents “Diagnoses - main ICD10”. The second component 0 is the instant index, 

represents “baseline measurement”. The third component 0 is the array index, represents 

“first measurement taken”. If we extend this example to a more general situation, an instant 

index of 1 can be used to indicate repeated measurements, an instant index of 2 can be used 

to indicate imagine measurements. In UK Biobank, data fields of phenotypes always 
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appear in instance and array order. i.e., all the measurements taken on the first instance 

appear first, followed by the second, third, fourth instance and so on. Moreover, UK 

Biobank releases its phenotypic and genotypic information separately. But an individual’s 

phenotypic information and genotypic information can be linked through eid number in 

phenotype data, and FID (family ID) and IID (individual ID) in genotype data. For instance, 

a patient with eid 1000018 in the phenotype will have an FID 1000018 and IID 1000018 

in the genotype data. Here, FID and IID are the same for this individual because we assume 

all the participants in the study are unrelated.  

There are a total of 972 distinct fields, covering 502,591 participants. In this study, 

we define phenotypes based on all data fields in the field 41202 (Diagnoses - main ICD10) 

and field 41204 (Diagnoses - secondary ICD10). The array indices for field 41202 run from 

0 to 379. The array indices for field 41204 run from 0 to 434. That is, we consider data 

fields 41202-0.0, 41202-0.1, 41202-0.2,  , 41202-0.379 and 41204-0.0, 41204-0.1, 

41204-0.2,  , 41204-0.434. A sample of phenotype data in the field 41202 is shown in 

table B.1.6, and a sample of phenotype data in the field 41204 is shown in table B.1.7. 

Next, we convert the selected data fields which are in the format of ICD-10 codes 

to case-control phenotypes. 

Step 1: Trunk each full ICD-10 code to UK Biobank ICD-10 level 2 code. For example, 

we convert Z36.3, K50, D25.92 to Z36, K50, D25, respectively. 

Step 2: Let each unique truncated ICD code be a column name of phenotype. In our study, 

we have a total of 1869 unique truncated ICD codes, thus we will have 1869 unique 
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phenotypes, with the column names of these phenotypes being the unique truncated ICD 

codes. 

Step 3: For each individual, if a certain truncated ICD code ever appears, we denote the 

disease status for that individual as “1” for that phenotype, otherwise, we denote the disease 

status for that individual as “0” for that phenotype. 

2.2.2 Introduction of UK Biobank Genotypes 

There are two types of genotype data available in UK Biobank. The regular genotype data 

(in Binary PED format) and the imputed genotype data (in Oxford format). Both types of 

genotypes are segmented into different chromosomes. 488,377 participants have regular 

genotype data. 487,327 participants have imputed genotype data.   

Registered researchers can download the genotype information either using the 

ukbgene utility or from the EGA website. The size of the regular genotype ranges from 

1.3-7.3GB per chromosome. The size of the imputed genotype ranges from 36.4-188GB 

per chromosome. In this study, we only consider the regular genotyped data and the SNPs 

located in autosomal chromosomes. To avoid the heavy computation burden, we further 

restrict the SNPs of interest to GWAS Catalog significant SNPs. That is SNPs with p-

values less than 85 10−× . As of Oct. 21st, 2018, GWAS catalog contains 3640 publications, 

62099 SNPs, and 78161 unique SNP-trait associations. Digging further into the GWAS 

Catalog, we have a total of 90428 data entries, covering 61613 unique SNPs. Among all 

entries, 49451 of them with p-values less than 85 10−× , including 29297 unique SNPs. For 

the rest of data process and analysis, we only consider the 29297 significant SNPs.  
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2.2.3 Introduction of Covariates of UKB-PheCLC 

In this study, we consider age, sex, genotyping array, and the first 10 genetic principal 

components (PCs) as covariates. UK Biobank genetic data were assayed using two 

different genotyping arrays, the UK BiLEVE Axiom Array and UK Biobank Axiom Array 

(Bycroft et al., 2018). Participants assayed by UK BiLEVE Axiom Array was primarily 

recruited to study lung diseases. Marker contents of UK Biobank Axiom Array was 

designed to capture genome-wide genetic variation (SNPs) and short insertions and 

deletions (indels). Thus, it is important to adjust the variations in samples when performing 

association studies.  

2.2.4 Quality Controls 

Next, we performed quality controls (QCs) on both markers and samples. The detailed 

steps are shown below.  

Step 1:  Preprocess genotype data using the following criteria. 

--geno 0.05: filters out variants with missingness exceeding 0.05. (70,551 SNPs 

removed) 

--hwe 1e-6: filters out variants which have Hardy-Weinberg equilibrium exact test 

p-value below 610− . (182,847 SNPs removed) 

--maf 0.05: filters out variants with minor allele frequency below 0.05. (280,008 

SNPs removed) 
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--mind 0.05: filters out samples with missingness exceeding 0.05. (21,797 samples 

removed) 

--nosex: remove individuals with ambiguous sex. (81 individuals removed)  

250,850 SNPs and 466,501 individuals are kept after the first step of QC. It is worth 

noting that some SNPs violate multiple QC criteria. Thus, the total number of SNPs we 

start with minus the sum of SNPs need to be removed doesn’t necessarily equal to the 

number of SNPs we keep.  

Step 2: Restrict genetic variants of interest to GWAS Catalog significant SNPs. 

Among the 250,850 SNPs left in the first step of QC, 3267 of them also were 

reported as significant SNPs in GWAS Catalog. Thus, we will only consider those SNPs 

in the rest of the analysis.  

Step 3: Preprocess the phenotype data using the following criteria. 

in_white_British_ancestry_subset: restrict samples to participants who self-

report themselves from a white British ancestry. (92,919 samples removed) 

used_in_pca_calcuation: restrict samples to individuals who have very similar 

ancestry based on a principle component analysis of the genotypes (Bycroft et al., 

2018). (95,405 samples removed) 

het_missing_outliers:  only consider individuals who are not marked as outliers 

for heterozygosity or missing rates. (968 samples removed) 
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excess_relative: exclude participants who have been identified to have ten or more 

third-degree relatives. (14,440 samples removed) 

recommend_removal: remove individuals that recommended for removal by the 

UK Biobank.  (480 samples need to be removed) 

After the third step of QC, 337,285 individuals are kept. Again, it is worth noting 

that some individuals violate multiple QC criteria. Thus, the total number of individuals 

we start with minus the sum of individuals need to be removed doesn’t necessarily equal 

to the number of individuals we keep.  

Step 4: Keep individuals who have both genotype and phenotype information. (322,607 

participants satisfy this condition)  

Step 5: Sort the genotype data such that each person’s phenotype and genotype are matched 

and linked through the eid number in phenotype data, and FID and IID in genotype data. 

Table 2.1. shows the number of autosomal SNPs in each chromosome before and after 

QCs.  

2.2.5 Hierarchical Groups of UK Biobank ICD-10 Codes 

As UKB-PheCLC plans to take advantages of the clustering information of UK Biobank 

ICD codes, here we briefly discuss how we classify the UK Biobank phenotypes into 

different groups.  

ICD coding system is an international standard for reporting diseases and health 

conditions. ICD-10 codes are in hierarchical order, with five levels in total. The top level 
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has 22 chapters. Level 1 has 263 disease blocks. Level 2 covers 2070 different diseases. 

Level 3 can denote ~12384 different diseases. Level 4 is the most bottom level. Not every 

disease has such detailed subcategory information. Table 2.3 is a demonstration of the 

hierarchical ICD-10 coding system.  

It has been noted that when case-control ratio is too small, normal approximation 

of score test statistics will have inflated type I error (Dey et al., 2017). Therefore, we 

remove phenotypes with number of cases less than 50 to avoid the potential problems. 

After removing phenotypes with number of cases less than 50 in the UKB Biobank data, 

we have a total of 1101 phenotypes, distributed in 223 disease blocks. 

In summary, after performing all data pre-process procedures, we have matched 

genotype, phenotype, and covariates information for a total of 322,607 individuals, where 

each individual has 3267 SNPs, 1101 case-control phenotypes, and 13 covariates. 

2.3 Methods 

Consider a sample of n  unrelated individuals, indexed by 𝑖𝑖 = 1,2, … , 𝑛𝑛. Each individual 

has a total of K phenotypes and a genetic variant of interest. Suppose the K  phenotypes 

can be divided into M  phenotypic categories in which the effects of genetic variant might 

be different. Suppose that there are mK  phenotypes in the thm  category, where  𝑚𝑚 =

1,2, … ,𝑀𝑀 = 223 and 1 1101MKK K+ = =+ . Let imky  denote the thk  phenotype in the 

thm  category of the thi  individual and ix  denote the genotype at the variant of interest for 

the thi  individual. We incorporate covariates adjustment into our analyses according to 



38 

 

Price et al. (2006) and Sha et al. (2012). Suppose that there are p  covariates, 1 ,,i ipz z… , for 

the thi  individual, we regress both the genotypes and phenotypes on the covariates through 

the following linear models 

0 1 1 ...imk mk mk i pmk ip imky z zα α α ε= + + + +  and 0 1 1 ...i i p ip ix z z τγ γ γ= + + + +  

For easier demonstration, we assume all the phenotypes and genotypes have been 

covariates-adjusted. Then the score statistics to test for association between the thk  

phenotype in the thm  category and the variant of interest under the generalized linear model 

0 1( ( | ))i mk mi k ikmg E y x xββ= +  is given by 

mkmk mkT VU=  , 

where 1
( )( )n

mk imk mk ii
U y xy x

=
= − −∑  

and 22
1 1
( ) ( )n n

mk imk mk ii i
V y x nxy

= =
= − −∑ ∑ . Under the 

null hypothesis that there is no association between the genetic variant and the thk  

phenotype in the thm  category (i.e. 𝛽𝛽𝑚𝑚𝑚𝑚1 = 0), mkT  asymptotically follows the standard 

normal distribution. Following the same univariate association testing procedure, we obtain 

𝐾𝐾𝑚𝑚 such score test statistics in the 𝑚𝑚𝑡𝑡ℎ category. Next, we define an overall test statistic 

for each category by combining the univariate test statistics in each category through the 

CLC (Clustering Linear Combination) method. 

For the thm  category, we apply CLC method to combine 
1 2
, , ,

Kmm m mT T T  and 

obtain a CLC test statistic. In general, CLC can cluster 
1 2
, , ,

Kmm m mT T T  to s  clusters, 

where 1,..., .ms K=  Let sCLC  and msp  denote the CLC test statistic and p-value when 

CLC method clusters 
1 2
, , ,

Kmm m mT T T into s  clusters. Then, the CLC test statistic for the 
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thm  category is given by 1  ( 1,2, ,min ).
mm s K msT p m M≤ ≤= =   Let 1 ,, Mp p… be the p-values of 

1 ,, MT T… and (1) (2) ( ), , , Mp p p be the order statistics of 1 ,, Mp p…  such 

that ( ) ( )1 .Mp p≤ ≤ For a predefined integer L , we define the summation of negative 

( )log mp  at cut-off point l  as 

( )
1
lo , , .g 1, 

l

m
m

lw p l L
=

= − = …∑  

Let lP  denote the p-value of lw . Then, our proposed test statistic of PheCLC for 

testing the association between the genetic variant and all phenotypes across the phenome 

is given by 

1min l L lT P≤ ≤= . 

To calculate the p-value of 𝑇𝑇, we adopt the “one-layer” permutation procedure 

previously developed by our research group (Liang et al. 2016). Here, we briefly review 

the permutation steps. Suppose that we perform 𝐵𝐵 times of permutations. 

Step 1. In each permutation, randomly shuffle the genotypes and recalculate 1 ,, .MT T…  

Let ( )b
mT  and 𝑤𝑤𝑙𝑙

(𝑏𝑏)  (𝑏𝑏 = 0,1, … ,𝐵𝐵 ) denote the value of mT  and 𝑤𝑤𝑙𝑙  based on the 𝑏𝑏𝑡𝑡ℎ 

permuted data, where 𝑏𝑏 = 0 indicates calculating mT  and 𝑤𝑤𝑙𝑙 using the original data. 

Step 2. Transfer ( )b
mT  to ( )b

mp  by 

𝑝𝑝𝑚𝑚
(𝑏𝑏) = #{d:𝑇𝑇𝑚𝑚

(𝑑𝑑)<𝑇𝑇𝑚𝑚
(𝑏𝑏)  𝑓𝑓𝑓𝑓𝑓𝑓 𝑑𝑑=0,1,…,𝐵𝐵}+1

𝐵𝐵+1
. 
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Step 3. Let 𝑝𝑝(1)
(𝑏𝑏),𝑝𝑝(2)

(𝑏𝑏), … ,𝑝𝑝(𝑀𝑀)
(𝑏𝑏)  be order statistics of ( ) ( )

1 ,,b b
Mp p…  such that 𝑝𝑝(1)

(𝑏𝑏) ≤ ⋯ ≤

𝑝𝑝(𝑀𝑀)
(𝑏𝑏) . Define ( )

( )
( )

1
log

l
b

l
m

b
mw p

=

= −∑ . We transfer 𝑤𝑤𝑙𝑙
(𝑏𝑏) to 𝑃𝑃𝑙𝑙

(𝑏𝑏) by 

𝑃𝑃𝑙𝑙
(𝑏𝑏) = #{d:𝑤𝑤𝑙𝑙

(𝑑𝑑) >𝑤𝑤𝑙𝑙
(𝑏𝑏)  𝑓𝑓𝑓𝑓𝑓𝑓 𝑑𝑑=0,1,…,𝐵𝐵}+1
𝐵𝐵+1

. 

Step 4. Let 𝑇𝑇(𝑏𝑏) = min
1≤𝑙𝑙≤𝐿𝐿

𝑃𝑃𝑙𝑙
(𝑏𝑏). Then, the p-value of 𝑇𝑇 is given by 

#{𝑏𝑏:𝑇𝑇(𝑏𝑏)<𝑇𝑇(0) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑏𝑏=1,2,…,𝐵𝐵}+1
𝐵𝐵+1

. 
 

2.4 Methods Comparison 

We compare the power of the proposed method UKB-PheCLC with that of the following 

methods: Trait-based Association Test that uses Extended Simes procedure (TATES) (van 

der Sluis et al., 2013) and O’Brien’s method (OB) (O’Brien, 1984), whose test statistic is 

either a linear combination of univariate test statistics or p-values. 

Here, we review the TATES and OB methods. Assume there are K  phenotypes in 

a phenotypic category. Denote 𝑝𝑝𝑘𝑘 the p-value of the test statistic to test the association 

between the 𝑘𝑘th phenotype and the genetic variant, 𝑝𝑝(𝑘𝑘) the 𝑘𝑘𝑡𝑡ℎ smallest p-value among all 

𝑝𝑝𝑘𝑘′𝑠𝑠, where 𝑘𝑘 = 1, 2, … ,𝐾𝐾. 

TATES (trait-based association test that uses Extended Simes procedure): 

Calculate the univariate p-values 1 2( , , , )T
Kp p p p=  and order the univariate p-values 

such that (1) (2) ( )Kp p p≤ ≤ . The TATES p-value is given by ( )

( )

min( )e k

e k

m p
m

, where em  and 
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( )e km  are effective numbers of independent p-values among all K  and the top k  

phenotypes, respectively. 

OB (O’Brien’s Method): Calculate the univariate test statistics 1 2( , , , )T
KT T T T=   

for the K  phenotypes. Then test statistic 1 1~ (0, )T T
OBT e T N e e− −= Σ Σ , where (1, ,1)Te = 

, Σ  is the covariance matrix of T . 

In this study, TATES and OB were first adopted to test association between the 

genetic variant and phenotypes in each category. That it, for each phenotypic category, we 

obtain a TATES (or OB) p-value corresponding to it. Let mp  denote the p-value of the thm  

category. Let ( ) ( )1 ,, Mp p…  be the order statistics of 1 ,, Mp p…  such that ( ) ( )1 Mp p≤ ≤ . For 

any predefined integer L (in this study, we let 10L = ), we define the summation of 

negative ( )log mp  at cut point l  as 

( )
1
log

l

l
m

mw p
=

= −∑  , , 11, 0l L == … . 

Let lP  denote the p-value of lw . Then, the test statistic of TATES and OB for 

testing the association between the genetic variant and all phenotypes across the phenome 

is given by 1min l L lT P≤ ≤= . 

To calculate the p-value of 𝑇𝑇, we use a slightly different permutation procedure 

from the one we used for UKB-PheCLC. But the essence of the two permutation 

procedures are the same, that is, using the AFC method to obtain the overall p-value for 

testing the association between the genetic variant and all phenotypes across the phenome. 

The reason we vary the details of permutation is that we try to avoid the computational 
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burden of permuting twice for UKB-PheCLC because the p-value of OB for each 

phenotypic category can be estimated using its asymptotic distributions and TATES has its 

own way to compute its p-values without the need of permutation. List below are the details 

of the permutation procedures of TATES and OB.  

Step 1. In each permutation, we randomly shuffle the genotypes and recalculate 

𝑝𝑝(1), … ,𝑝𝑝(𝑀𝑀) and 𝑤𝑤1, … ,𝑤𝑤𝐿𝐿. Suppose that we perform 𝐵𝐵 times of permutations. Let 𝑤𝑤𝑙𝑙
(𝑏𝑏) 

(𝑏𝑏 = 0,1, … ,𝐵𝐵 ) denote the value of 𝑤𝑤𝑙𝑙  based on the 𝑏𝑏𝑡𝑡ℎ  permuted data, where 𝑏𝑏 = 0 

represents the original data. 

Step 2. Transfer 𝑤𝑤𝑙𝑙
(𝑏𝑏) to 𝑃𝑃𝑙𝑙

(𝑏𝑏) by 

𝑃𝑃𝑙𝑙
(𝑏𝑏) = #{d:𝑤𝑤𝑙𝑙

(𝑑𝑑) >𝑤𝑤𝑙𝑙
(𝑏𝑏)  𝑓𝑓𝑓𝑓𝑓𝑓 𝑑𝑑=0,1,…,𝐵𝐵}
𝐵𝐵

.  

Step 3. Let 𝑇𝑇(𝑏𝑏) = min
1≤𝑙𝑙≤𝐿𝐿

𝑃𝑃𝑙𝑙
(𝑏𝑏). Then, the p-value of 𝑇𝑇 is given by 

#{𝑏𝑏:𝑇𝑇(𝑏𝑏)<𝑇𝑇(0) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑏𝑏=1,2,…,𝐵𝐵}
𝐵𝐵

.  

 
2.5 Results 

To evaluate UKB-PheCLC, we use a fast but efficient way to compare its performance 

with that of other two competing methods. For each method, we do the follows. 

Step1. Permutation 100 times, we select SNPs with p-value less or equal 0.02. 

Step2. Permutation 1,000 times, we select SNPs with p-value less or equal 0.002. 

Step3. Permutation 10,000 times, we select SNPs with p-value less or equal 0.0002.   
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Step4. Permutation 100,000 times, we select SNPs with p-value less than 0.05
3267

≈ 1.53 ×

10−5 (Note: 3267 is the total number of SNPs we considered). 

We summarize the results as follows.  

1. When B=100, UKB-PheCLC identifies 671 significant SNPs. OB identifies 798. 

TATES identifies 1,125. 

2. When B=1,000, UKB-PheCLC identifies 435 significant SNPs. OB identifies 505. 

TATES identifies 836. 

3. When B=10,000, UKB-PheCLC identifies 381 significant SNPs out of the 435 

significant SNPs from the previous step. OB identifies 391 significant SNPs out of 

490 significant SNPs from the previous step. TATES identifies 526 significant 

SNPs out of 636 significant SNPs from the previous step. 

Based on the results, we can draw the following conclusion that even though UKB-

PheCLC method fail to identify as many SNPs as the other two competing methods when 

number of permutation B is small, however, as B increases from 10,000, UKB-PheCLC 

gradually shows its better performance over TATAS and OB. Due to computational 

consideration, we skip the case when B=100,000. But we firmly believe the pattern of 

UKB-PheCLC method’s superior performance over other methods will continue because 

we have theoretically proved that CLC is the most powerful methods among all tests that 

have certain quadratic forms (Sha et al., 2018). 
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2.6 Discussion 

With the advancement of next-generation sequencing (NGS), GWAS has become a very 

popular tool for detecting genetic elements underlying complex diseases. Up to now, the 

GWAS catalog contains more than 3,600 publications and roughly 90,000 unique SNP-

trait associations. A huge advantage of GWAS is that it can detect new genes and pathways 

involved in disease pathogenesis. However, a big limitation of GWAS is that it only 

focuses on a pre-defined phenotypic domain. As a complementary approach to GWAS, 

PheWAS investigates the association between genomic markers and a diverse range of 

phenotypes. PheWAS has recently become possible due to the emerging use of electronic 

health records (EHR), which commonly use the International Classification of Disease 

(ICD) codes, a standardized coding system for defining disease status as well as for billing 

purpose for hospitals and insurance agencies. The UK Biobank is a population-based 

cohort study with deep genetic and phenotypic information collected on ~ 500K 

participants from multiple sites across the United Kingdom, aged between 40 and 69 years 

when recruited in 2006–2010 (Sudlow et al., 2015). In this manuscript, we have redesigned 

the PheCLC (Phenome-wide association study that uses Clustering Linear Combination) 

method which was previously developed by our research group. The refined method is then 

applied on the UKBiobank data to test the validity and understand the limitations of the 

proposed method. We have denoted our new method UKB-PheCLC. The UKB-PheCLC 

method is a typical example of EHR-based PheWAS. In the first step, it classifies all 

phenotypes across the whole phenome into numerous phenotypic categories according to 

the UK Biobank ICD-10 level 2 code. In the second step, the Clustering Linear 
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Combination (CLC) method is applied to each phenotypic category to derive a CLC-based 

p-value for testing the association between the genetic variant of interest and all phenotypes 

in that category. In the third step, the CLC-based p-values of all categories are combined 

by using a strategy resemble that of the Adaptive Fisher's Combination (AFC) method. The 

biggest advantage of UKB-PheCLC is that it considers the possibility that phenotypes are 

from different phenotypic categories, which is very common and readily available in EHR-

based PheWAS. Moreover, UKB-PheCLC can handle both qualitative and quantitative 

phenotypes since we only need to classify the univariate test statistics. By the same token, 

UKB-PheCLC doesn’t require raw phenotype information and it can work on summary 

test statistics from other studies. Furthermore, the permutation procedure that UKB-

PheCLC adopted to generate the empirical null distribution of the final test-statistic only 

needs to be done once for different genetic variants. The real data analysis results confirm 

that UKB-PheCLC is more powerful than TATES and OB. Thus, UKB-PheCLC can serve 

as a new method for PheWAS and an alternative method for joint analysis of multiple 

phenotypes. 

Even though UKB-PheCLC has been very successful in discovering new disease-

SNP associations, it still faces interpretation challenges. When we detect a strong 

association between a genetic variant and the phenome, we cannot point out which disease 

or diseases the genetic variant has impact on. 

As a future study, we can consider more phenotypic information rather than just the 

ICD-10 codes. For example, it has been noticed that verbal interview answers can provide 
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additional information about disease diagnosis and status and likely to boost the 

performance of robust SNP-trait association (Cassidy et al., 2016, Howard et al., 2017). 

In addition, in this study, we only consider the direct genotyped data of UK 

Biobank, which contains roughly 800K SNPs. However, the full release of the UK Biobank 

imputed genotype data has roughly 90 million SNPs, which is very likely to contain more 

useful information. However, the performance of the proposed method on the UK Biobank 

imputed genotype data still needs further investigation.  
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2.7 Tables and Figures 

Table 2.1. The number of autosomal SNPs in each chromosome for the 488,377 genotyped 
participants. 

 Chr Count  
 Before QC After QC  
 1 63,487 43,805  
 2 61,966 42,764  
 3 52,300 36,409  
 4 47,443 33,519  
 5 46,314 32,541  
 6 53,695 36,671  
 7 42,722 29,349  
 8 38,591 27,534  
 9 34,310 23,672  
 10 38,308 26,535  
 11 40,824 27,416  
 12 37,302 25,764  
 13 26,806 18,053  
 14 25,509 17,405  
 15 24,467 16,628  
 16 28,960 19,257  
 17 28,835 18,229  
 18 21,962 15,628  
 19 26,186 15,776  
 20 19,959 14,049  
 21 11,342 7,932  
 22 12,968 8,841  
 Total 784,256 537,777  

 

Note. the applied QC filters include --geno 0.05, --hwe 1e-10, --keep founders, --maf 
0.0001, --mind 0.1.  
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Table 2.3. Hierarchical structure of ICD-10 coding system  

ICD-10 
Hierarchical Levels # of Categories Examples 

Top level 22 Chapter I, Chapter II, Chapter XXII 
Level 1 263 Block A00-A09, Block A15-A19 
Level 2 2070 A00, A01, A09 
Level 3 ~12,384 S06.2, S06.3, S06.4 
Level 4 ~4425 S06.20, S06.21, S06.30, S06.40 

 

Figure 2.1. Histogram of # of cases of the 1869 phenotypes in the UKBiobank data. 
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Appendix A: Supplementary Tables 

Table A.1.1. Description of COPD-related phenotypes  

Phenotypes Descriptions 

Gas Trapping (GasTrap) Air trapping at -856 Hounsfield units (HU) 
on expiratory chest CT scan 

Exacerbation Frequency (ExacerFreq) Number of COPD exacerbations during the 
year before study enrollment 

Emphysema (Emph) % Emphysema at -950 HU 

Airway Wall Area (Pi10) 
Square root of the wall area of a 
hypothetical 10 mm internal perimeter 
airway 

Emphysema Distribution (EmphDist) 
Log ratio of emphysema at -950 HU in the 
upper 1/3 of lung fields compared to the 
lower 1/3 of lung fields 

Six Minute Walk Distance (6MWD) Measure of exercise capacity 

FEV1 
Observed FEV1 (liters)/predicted FEV1 
(liters), with predicted values from 
Hankinson reference equations 
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Appendix B: Supplementary Figures 

Figure B.1.1. The power comparisons of the six methods for 20 quantitative phenotypes 
assessed at a 5% significance level. Statistical power varies with the between-factor 
correlation 𝜌𝜌𝑐𝑐2, where MAF is 0.3, the sample size is 5,000, the number of replications is 
1,000, and the within-factor correlation is 0.5 (𝑐𝑐2 = 0.5). 
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Figure B.1.2. The power comparisons of the six methods for 40 quantitative phenotypes 
assessed at a 5% significance level. Statistical power varies with the between-factor 
correlation 𝜌𝜌𝑐𝑐2, where MAF is 0.3, the sample size is 5,000, the number of replications is 
1,000, and the within-factor correlation is 0.5 (𝑐𝑐2 = 0.5). 
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Figure B.1.3. The correlation plot of the seven COPD-related phenotypes. 
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Figure B.1.4. The dendrogram based on the agglomerative hierarchical clustering of the 
seven COPD-related phenotypes.    
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Figure B.1.5. A Sample of UK Biobank ICD-10 billing code 

C301 C30.1Middle ear 

C31 C31 Malignant neoplasm of accessory sinuses 

C310 C31.0 Maxillary sinus 

C311 C31.1Ethmoidal sinus 

C312 C31.2 Frontal sinus 

C318 C31.8 Overlapping lesion of accessory sinuses 

C319 C31.9 Accessory sinus, unspecified 

C32 C32 Malignant neoplasm of larynx 

C320 C32.0 Glottis 

C321 C32.1 Supraglottis 

C322 C32.2 Subglottis 

C323 C32.3 Laryngeal cartilage 

C328 C32.8 Overlapping lesion of larynx 

C329 C32.9 Larynx, unspecified 

C33 C33 Malignant neoplasm of trachea 

C34 C34 Malignant neoplasm of bronchus and lung 

C340 C34.0 Main bronchus 

C341 C34.1 Upper lobe, bronchus or lung 

C342 C34.2 Middle lobe, bronchus or lung 

C343 C34.3 Lower lobe, bronchus or lung 

C348 C34.8 Overlapping lesion of bronchus and lung 

C349 C34.9 Bronchus or lung, unspecified 

C37 C37 Malignant neoplasm of thymus 

C38 C38 Malignant neoplasm of heart, mediastinum and pleura 

C380 C38.0 Heart 

C381 C38.1 Anterior mediastinum 
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Figure B.1.6. Example of UKB ICD-10 main diagnosis  

ID 41202-0.0 41202-0.1 41202-0.2 41202-0.3 41202-0.4 ⋯ 41202-0.379 

1 I841 H55 H251     

2 R002       

3 Z038 R500 R074 N390    

4        

5 Z098 K811 C509     

6 Z368 Z363 O0469 N871 D122 ⋯ C61 

7        

8 G473 R195 M159 D120    

9 R55 R074 K210     

10        

11 M751 C189 T842 D693    

12 N47 K802 J154     

13 R69 J348      

14 T812 K922 K861 K85 R194   
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Figure B.1.7. Example of UKB ICD-10 secondary diagnosis  

ID 41204-0.0 41204-0.1 41204-0.2 41204-0.3 41204-0.4 ⋯ 41204-0.379 

1 Z961 Z836 H353     

2 Z824 Z035 R072 R074 F419   

3 Z886 Z034 R31 M6099 K219 ⋯ C509 

4 R55       

5 I10       

6 Z864 M199 N950 N816    

7 K573       

8        

9 E669 Z880      

10 N210 Z921 Z867     

11 E109 I10      

12 K297       

13 Y428 T388 N840     

14 Z922 Z871 Z720 G409 E780 ⋯ E86 
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Figure B.1.8. Ethnic background of UK Biobank participants (UK Biobank, 2015). 

Self-reported ethnicity Representation (%) 

White  94.06  

 British  88.07 

 Irish  2.63 

 Any other white background  3.36 

Asian  2.28  

 Indian  1.18 

 Pakistani  0.37 

 Bangladeshi  0.05 

 Chinese  0.31 

 Any other Asian background  0.37 

Black  1.61  

 African  0.68 

 Caribbean  0.90 

 Any other Black background  0.03 

Mixed  0.59  

 White and Asian  0.17 

 White and Black African  0.08 

 White and Black Caribbean  0.12 

 Any other mixed background  0.22 
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