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ABSTRACT 

 

Autonomous steering control is one the most important features in autonomous vehicle 

navigation. The nature and tuning of the controller decides how well the vehicle follows a 

defined trajectory. A poorly tuned controller can cause the vehicle to oversteer or 

understeer at turns leading to deviation from a defined path. However, controller 

performance also depends on the state–feedback system. If the states used for controller 

input are noisy or has bias / systematic error, the navigation performance of the vehicle is 

affected irrespective of the control law and controller tuning. In this report, autonomous 

steering controller analysis is done for different kinds of sensor errors and the application 

of sensor fusion using Kalman Filters is discussed. Model-in-the-loop (MIL) simulation 

provides an efficient way for developing and performing controller analysis and 

implementing various fusion algorithms. Matlab/Simulink was used for this Model Based 

Development. Firstly, through experimentation the path tracking performance of the 

controller was analyzed followed by data collection for sensor, actuator and vehicle 

modelling. Then, the plant, actuator and controllers were modelled followed by the 

comparison of the results for ideal and non-ideal sensors. After analyzing the effects of 

sensor error on controller and vehicle performance, a solution was proposed using 1D-

Kalman Filter (KF) based sensor fusion technique. It is seen that the waypoint tracking 

under 1D condition is improved to centimeter level and the steering response is also 

smoothened due to less noisy vehicle heading estimation.  
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1 INTRODUCTION 

1.1 Autonomous Vehicles 

Autonomous vehicles are robots capable of operating on public roads by perceiving the 

environment using sensors i.e. GPS for real time positional information, perception devices 

to detect obstacles, signage, road geometry, inertial sensors for vehicle states, etc. and make 

decisions using complex algorithms to follow appropriate navigational paths.  

Autonomous vehicles can both be a boon and a bane for the society. Advantages of 

automated driving include better safety which is due to reduction in traffic collisions and 

related costs. Automated cars under certain predictable conditions tend to increase traffic 

flow which results in enhanced mobility for people and can relieve travelers from driving 

and navigation chores, increase fuel efficiency of a vehicle and facilitate business models 

for transportation industry. The disadvantages include high initial cost due to complexity 

in design, reliability under unpredictable conditions, legal framework and government 

regulations, costs associated with infrastructure and loss of driving-related jobs in the 

transportation industry. 

Autonomous vehicles can have varying degree of automated driving i.e. from no to semi-

autonomous to completely autonomous. SAE classifies the autonomous vehicles as 

follows, in table 1-1 based on different levels of driving automation [20]: 

 

Table 1-1: SAE Levels of Automated Driving [20] 

SAE 

Level 

Involvement of 

Human 

Function of Feature for 

Automated Driving 
Feature Example 

0 

Always be in control 

of the vehicle 

No support or automation -- 

1 
Provide warning and prompt 

for corrective action 

a) Blind spot warning 

b) Lane Departure Warning 

c) Cruise Control 

2 
Provide support in the form 

of steering / brake assist 

a) Lane Departure Assist 

b) Adaptive Cruise Control 

3 
Not driving when 

the feature is active, 

but requires human 

involvement when 

the feature requests 

Automated driving under 

certain conditions like 

highways, geo-fenced 

location, parking lots, etc. 

a) Traffic Jam Chauffeur 

b) Automated Valet Parking 

4 
Location specific driverless 

taxi service 

5 

No human 

involvement under 

any driving scenario 

The vehicle can drive under 

all conditions 

Driverless or Steering less 

vehicle 
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1.2 Typical System Architecture for Automated Driving 

 
Figure 1-1: Typical System Architecture for Automated Driving [21] 

From figure 1.2.1, the various stages of automated driving viz. from sensing to issuing 

commands for actuation is described as follows:  

Stage 1: Perception and Driver Monitoring – In this stage, the environment is perceived for 

pedestrians, nearby vehicles, obstacles, road geometry and signage, and the states related 

to the motion and position of the vehicle is measured. A sophisticated fusion algorithm is 

used to combine all the sensory data to remove noise and errors in the measured data and 

give a better estimate of the vehicles states and environment. Simultaneously, the state of 

driver is also perceived via. sensors or through driver inputs from HMI.    

Stage 2: Decision Making –Based on the inputs from the previous stage and stored road 

maps, decisions are made regarding the efficient and the safest path/route required for 

navigation, followed by the decisions for vehicle motion like velocity and steering angles. 

The algorithms used at this stage are very complex and of robust nature such that, failure 

of one sensor will not risk or affect the vehicle / driver.  

Stage 3: Vehicle Motion / Drivetrain Control –Based on the velocity and steering angle 

commands the required actuation signals are generated. 
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1.3 Sensors Used for Perception and Vehicle State Estimation 

a.) Environment Perception Sensors – Monocular / Stereo Camera, 2D/3D LIDAR, 

RADAR, Ultrasonic Sensors, Infrared Sensors. 

 

b.) Drive State Monitoring – Camera, Infrared Sensors, Body Sensors like heart rate 

monitor [21] integrated on the seats 

 

c.) Vehicle Position and Motion Sensors – Global Positioning Systems (GPS), Wheel 

Speed Sensors, Inertial Measurement Unit (IMU), Steering Angle Sensor 

Processing data from all these sensors is one of the biggest challenges in the areas of 

autonomous driving. Processing is generally done in two stages – conversion of bit stream 

to engineering units followed by filtering of noise. The second stage requires the high 

amount of processing power as it involves the use of complex algorithms to remove noise 

/ unwanted data.  

 

1.4 Research Organization and Objective 

This research is organized into 7 Chapters as depicted in Figure 1-2. The overall goal of 

this research is to highlight the effects of sensor errors on automatic steering control and 

improve the navigation performance by application of sensor fusion. This is done by 

conducting an experiment on a Remote Controlled (RC) vehicle, on which we installed the 

sensors, mentioned in section 3.4 having specification as per section 9.2.2 and bypassed 

the vehicle controller with our programmed controller, the specification of which is given 

in section 9.2.1. The results were analyzed in Chapter 3, followed by the modeling of the 

vehicle, actuators, sensors and the controllers in Chapter 4. The model was used to analyze 

steering controller performance under various path conditions for both ideal sensor 

feedback and noisy sensor feedback. The simulation results in Chapter 5 led to the 

implementation of sensor fusion via. Kalman Filter for 1-D waypoint tracking and vehicle 

heading estimation. The controller and vehicle model developed in chapter 4 is used in 

chapter 6 for tuning the filter for the specific application. The simulation results will show 

the improvement in waypoint tracking and vehicle heading estimation in the presence stray 

magnetic fields and disturbances.  

 

 

 

 



4 

 
Figure 1-2: Research Organization and Objective 
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2 LITERATURE REVIEW 

2.1 Autonomous Steering Controllers 

In autonomous driving steering controls play a major part when it comes to path following 

and vehicle trajectory control. It consists of an algorithm which generates the required 

control outputs in the form of vehicle steering angle based on path generated and the 

vehicle dynamics. Snider in [3] discusses the various steering methods used for 

autonomous driving. The steering controllers are classified into various categories: 

• Geometric 

• Kinematic 

• Optimal 

• Preview / Predictive Type 

A comparison between different types of controllers is made by Snider in Figure 48 of [3]. 

It can be seen that the Pure Pursuit controller which is a proportional controller, is robust 

to disturbances, no path requirements, and is best for slow or discontinuous path driving. 

However, the path tracking ability is degraded once the vehicle speed increases or if the 

path has sharp corners. The Stanley controller which is a non-linear feedback controller 

developed by Stanford University [5], is slightly superior to the pure -pursuit controller 

when it comes to high speed driving or cornering. However, it is less robust to disturbances 

and has high steady state error when speed increases. The kinematic controller, even though 

it includes the kinematic model of the vehicle and does not cut corners, has very less 

robustness to disturbances, requires path curvature and its two derivatives, suffers 

increased steady state errors at high speed and tends to overshoot during rapidly changing 

corners. The low robustness and in-accuracy of the Kinematic controller can be attributed 

to the fact that it does not consider the path dynamics and other dynamic effects during 

high speeds. Also, there is an increased computational cost and increased difficulty in 

implementation. The Linear Quadratic Regulator (LQR) controller implements a dynamic 

bicycle model of the vehicle. However, solving the LQR requires high computational 

power since, it is an optimal control theory and is required to be solved for optimal gains 

for every iteration. The LQR controller performs the worst compared to the previous three 

controllers due to its linear nature as it excludes the non- linear path dynamics. Snider tried 

to improve the controller by adding a feed-forward term which improves high speed 

driving, it has the least steady state errors and does not cut corners. However, this controller 

has the worst robustness to disturbances and has significant overshooting problems during 

rapidly changing curvatures. The preview type controller is similar to a linear model 

predictive controller which is also a type of an optimal controller with an advantage of 

prediction horizon or look ahead distance similar to the Pure-Pursuit controller [3][5] 

allowing to account for the path dynamics. This allows for better robustness compared to 

the LQR and Kinematic controller, least steady state error and better control during high 

speed driving. However, this controller has moderate overshooting issues and cutting 

corners for rapidly changing vehicle speed or road curvature. 
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It can be inferred from [3] that a controller with higher number of state feedback variables 

is not necessarily more robust to noise or disturbances but it definitely makes it more 

complicated to implement and increases the computation requirements. Also, the results 

for cross track error in [3] show that every controller performs differently for different 

values of gains, vehicle speed and for the given track geometry. Another important point 

which can be inferred from [3] is that, geometric controllers are better at rejecting 

disturbances. One appreciable method, as described in [6] is the use of hybrid controller 

between Pure Pursuit and Stanley controller. In this an adaptive weighting factor is used 

for both the controllers where more weight is given to the look ahead nature of pure pursuit 

during sharp changes in trajectory and as the path smoothens the weight is shifted to 

Stanley controller. Other types of advance rule-based path tracking controllers like fuzzy 

controllers are discussed in [14]. 

2.2 Types of Errors in Sensors 

In general, there are two primary kinds of errors associated with sensors: 

• Systematic Errors / Bias  

- Can be positive or negative 

- For some sensors, it can be removed by calibration 

• Noise or Random Errors 

- Can be reduced by the use of suitable signal filters 

- Can be improved by taking the average of multiple readings of the same 

parameter for the same system state, depending on sensor design and dynamics 

Depending on the application and the manufacturing process, one form of error can be 

dominant over the other.  

 

Navigational sensors like Global Positioning Systems (GPS) generally, have significant 

systematic errors. Section 9.2.2 of the appendix discusses the systematic error of the GPS 

under various operating conditions. Various studies have been done to identify the causes 

of systematic errors in GPS. Some of them are highlighted in [8] and [18]. One major 

reason as mentioned by Md. R. Islam and J.M. Kim in [8] is, distortion of the GPS signal 

by the US Department of Defense leading to selective availability to users. Another 

important source of error is propagation delay in the GPS signal. As mentioned in [18], 

humidity, hydrometeors, hygroscopic aerosol and particulates like sand, dust, aerosols, etc. 

in the atmosphere introduce microwave propagation delays due to refraction, dispersion 

and scattering of signal waves. This means that weather conditions like sandstorm, rain, 

hail and snowfall can also induce errors in GPS signals. Other error sources include satellite 

geometry i.e. number of satellite connections and their positions, multipath effect, clock 

inaccuracies, rounding errors, and receiver noise. 

Another sensor which is commonly used in autonomous vehicles is the Inertial 

Measurement Unit (IMU). It consists of the following: 
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• Magnetometer or Digital Compass – Used to measure earth’s magnetic field there 

by giving the orientation of the vehicle w.r.t the earth’s magnetic north 

• Accelerometer – Used to determine the acceleration values along the x,y,z axis 

• Gyroscope – Used to measure the rate of change of angle about the x,y,z axis and 

derive roll(φ), pitch(ϴ) and yaw values(𝜑̇) as shown in figure 2-1 

 
Figure 2-1: Vehicle Coordinate System 

Errors in magnetometer is of both systematic and of random nature [23]. The systematic 

sources of errors include hard irons errors, null shift errors, soft irons errors, and scale 

factor errors. While the time varying errors come from nearby electronics, such as current 

carrying wires, on-off transition of nearby device or stray magnetic fields.  

The accelerometers and gyroscopes are Micro Electro Mechanical Sensors (MEMS) [24] 

and these form the backbone of inertial measurements. As mentioned in [25], these sensors 

are fabricated on a silicon wafer using integrated circuit process sequences for electronic 

components and compatible micro-machining processes for micro-mechanical machining 

that selectively etch away parts of the silicon wafer or add new structural layers to form 

the mechanical and electromechanical devices. Since, machining is involved in its 

manufacturing, stresses are induced in the components which create bias or systematic 

errors in MEMS devices. Application of external forces or in-correct installations can also 

affect the systematic error. Random errors or noise in MEMS devices is generally due 

vibrations, errors from nearby electronics or by electro-magnetic interference (EMI). 

Sometimes in MEMS devices bias stability is an issue and they tend to drift over time. This 

means integration of acceleration to get velocity will induce a linear error and a quadratic 

error for distance. The same principle is valid, when deriving roll, pitch and yaw values 

from gyroscope.  

From the above, it can be seen that navigational performance of GPS is largely affected by 

systematic errors whereas IMU’s mostly have noise and drift over time. The systematic 

errors in GPS can be corrected by the use of Differential GPS or Real Time Kinematic 

(RTK) system which is a base station providing error correction signals to GPS. Although 

these methods require investment, they provide accuracy in the range of centimeters as 

mentioned in [16]. However, loss of signal or disconnection from the base-station is 

possible. The systematic errors in IMU can be removed by running internal calibration 

routines given by the manufacturer or by manually calibrating it by getting the mean of 
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data sampled over a large time interval and subtracting it from every data. The noises can 

be removed by using appropriate filters. Some manufacturers provide a built in Kalman 

Filter or Low Pass Filter which outputs processed data. However, these add to the cost of 

the device. 

2.3 Current Work in the areas of sensors and their limitations 

Significant amount of work has been done in the areas of sensor fusion for estimating and 

reducing the errors in vehicle states. The entire premise of combining multiple sensory data 

is to overcome the limitation of individual sensors. As discussed in [26], the data obtained 

by combining two or more sensors has lower variance in output than each of the individual 

sensors. Another motivation behind sensor fusion is to derive or estimate another state 

variables which cannot be measured by an individual sensor. As discussed in Chapter 1, a 

large array of sensors are used for autonomous navigation. However, the cost involved is 

also high, especially with perception sensors like 3D Lidar. As discussed by Vivacqua, 

Vassallo, and Martins in [1], a low-cost sensor fusion method is proposed where GPS data 

is combined with prior map data and with camera data by analyzing short range lane 

markings, is used for localization of the vehicle. Although, this method avoids the use of 

costly perception sensors, the use of camera leads to the requirement of higher processing 

power. A similar method involving lane detection is implemented in [11] where a camera 

detects the lane marking and the data combined with GPS data and data from road 

information file is used for localization. In [4], Kalman filters are used to estimate the Error 

in GPS data by combining data from camera which was used to detect curved lanes and 

stop lines at intersections so as to improve waypoint following. In this again, GPS + RTK 

was used to develop reference trajectory. However, it is mentioned that this method fails 

in discontinuous locations of downtown areas where GPS error models are not suitable. 

One low cost method discussed by Islam and Kim in [8] is the use averaging and estimation 

techniques to improve GPS accuracy. However, this method improves GPS accuracy only 

up to 4 meters at best, which is not suitable for autonomous driving. Another method 

involving sensor fusion between GPS and IMU using Kalman Filter is discussed in [9] 

where the role of IMU is to dead reckon the GPS signals. A novel concept of contextual 

filtering is discussed, where to improve filter performance the bad GPS data entering the 

filter is rejected. A similar approach using Kalman Filters is used in [10] where GPS and 

IMU data is combined to improve navigational performance. However, in this 2 GPS are 

used and the data generated for fusion is through DGPS method or via. Carrier Phase 

Method, both of which can affect the filter performance when there is a loss of GPS 

connection. Another work discussed in [13], involves multi-sensor fusion having GPS, 

IMU, Ultrasonic Sensor, Camera and Laser Scanner. In this, combining multiple sensors 

eliminates the use of DGPS and RTK systems as it considers data from both local frame 

and global frame of reference. Compared to the Kalman Filter based estimation, one major 

drawback of this method is robustness, as the algorithm is executed serially and failure of 

one sensor can negatively affect the controller performance as there is no means of state-

estimation. Some papers have also discussed about learning based methods. One of them 

is discussed in [2] which uses high precision RTK system to correct the GPS signals for 
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improving its accuracy along with high precision IMU to collect waypoints based on which 

a cubic B-spline curve is generated to create a road map. This was used to provide a preview 

point to the Stanley controller for improved path tracking of the generated map. Another 

method in [12] involves the use of a learning based non-linear model predictive control 

which is designed for navigation in GPS denied environment and minimize path tracking 

errors. It uses a pre-defined vehicle model and a learned disturbance model. An on-board 

stereo camera was used for learning the terrain. Since, it uses a stereo camera, the image 

processing requirements are very high. In [14] a fuzzy controller is implemented for path 

tracking but it uses the fusion of Camera, DGPS, IMU and RFID. However, the paper does 

not discuss the fusion process or the error types associated with sensors. A study discussed 

in [19] by Deilamsalehy and Havens discusses the fusion of IMU, Camera and Lidar using 

an Extended Kalman Filter used to estimate the position of a vehicle in a GPS denied 

environments.  

2.4 Summary 

All the sensor related works discussed in the previous section, have some form of limitation 

when it comes to real-time implementation. The use of Camera or other perception devices 

with GPS improves the localization of the vehicle. However, it also requires high 

computational power. Also, in environments like snow covered roads and off-road regions 

where there are no road features like lane, stop-line, side-walks, etc. the perception based 

fusion methods can fail. The Kalman filter based methods involving the fusion of GPS / 

IMU are good for navigation but have drawbacks when it comes to tuning for a specific 

application and array of sensors. Some methods also use pre-defined maps or a road 

information file which again creates a requirement for high storage memory and real-time 

processing power. The methods used for sensor fusion have also not been tested with 

different types of steering controllers in real time, as discussed in section 2.1, for 

autonomous navigation.  
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3 NEED FOR CONTROLLER PERFORMANCE ANALYSIS 

As discussed in previous sections, it is necessary to analyze controller performance by 

considering real sensor data. Sensors give the feedback of vehicle states. The output of a 

controller having a very high gain or an aggressive control action, can be affected by sensor 

errors leading to poor path tracking or navigational performance of the vehicle. Sensor 

noise can affect the steering ability or stability of the vehicle whereas systematic errors or 

bias would never allow the vehicle to have zero cross track or lateral error. Also, in [3], [6] 

& [14] the effects of steering actuator hysteresis and other dynamics are also not 

considered. 

This chapter investigates the need for controller performance analysis for sensor systematic 

errors and noise. It is also worth investigating the effects actuator hysteresis on controller 

performance. 

3.1 Experimental Setup 

The type of vehicle and the set of hardwares used for navigation are mentioned in section 

9.2 of the Appendix. The test location was APSRC, Michigan Tech. in Calumet, MI, as 

shown below in figure 3-1. 

 
Figure 3-1: Test Location for Getting Experimental Data 

A constant vehicle speed of 1m/s was used for the experiment. Due to the simple and 

versatile nature of PI control algorithm, it was used for steering control and waypoint 

navigation. Derivative part of the controller was not used since it would make the controller 

prone to high frequency noises. The code was developed in Python language and can be 

found in section 9.1 of the Appendix. 

The flowchart in figure 3-2 explains the python code for the implementation of PI control. 

The following terms were considered during the development of the controller. 
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- Distance to Target - Shortest straight-line distance between vehicle current 

position and target point. 

- Current Heading - Orientation of vehicle w.r.t North 

- Target Heading - Orientation or angle of target point w.r.t to north and vehicle 

position 

- Heading error - Target Heading – Current Heading 

 
Figure 3-2: Flowchart for Waypoint Navigation 
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3.2 Selection of Controller Parameters 

• PI Controller Gains 

  

P – Gain = 60/180 = 0.33 ~ 0.4 (Steering Angle / Degree Heading Error (HE)) , 

where 60° is the maximum possible angle sweep by the wheels and 180° is the 

maximum possible heading error, assuming the vehicle can take a U – turn. 

 

I – Gain was set to 0.001 to avoid unstable vehicle performance near waypoints or 

when the sign of heading error would change. 

 

•   Waypoint Tolerance 

 

It is the distance at which the vehicle stops before the waypoint. This was set to 2 

meters considering the systematic errors in GPS and magnetometer. This gives the 

controller a tolerance value for stopping around the waypoint. 

 

3.3 Controller Objective 

- Minimize the distance to target  

- Minimize the orientation or heading error  

3.4 Sensors Used 

• Global Positioning System (GPS) 

Specifications are given in appendix section 9.2.2 

Used to give the position feedback in terms of latitude and longitude which is 

converted to Cartesian coordinate system using the WGS84 model [30]. 

 

• Inertial Measurement Unit (IMU) 

Specifications are given in appendix section 9.2.3 

The magnetometer or the digital compass part of the IMU was used to determine 

the vehicle heading or yaw w.r.t magnetic north. 
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3.5 Test Results 

 
Figure 3-3: Test Result 1 - Comparison between Ideal Path and Actual Path 

 
Figure 3-4: Test Result 2 - Comparison between Ideal Path and Actual Path 

The path is divided into 5 segments, having a start point followed by 5 waypoints marked 

in blue as shown in figures 3-3 & 3-4. 
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3.6 Analysis 

From figures 3.2.1 & 3.2.2, it can be clearly seen that the path tracking / waypoint following 

performance of the vehicle is severely affected by the disturbances in the sensors and data 

acquisition system. There is an overshoot of approximately 5 meters in segment number 5 

of the path. For all the others segments the controller struggles to match with ideal 

trajectory and seems to have an offset. The bad performance of the steering controller can 

be attributed to the following factors: 

• Controller gains not tuned considering the dynamics of the steering actuator of the 

vehicle 

• Difference in update rates of the GPS @ 5 Hz and Magnetometer @ 10 Hz 

• Best possible GPS positional accuracy of around 3 mtrs. as given in appendix section 

9.2.2 

• Presence of noise and stray magnetic fields affecting Magnetometer performance 

All these factors show that there is a need for controller performance analysis for a given 

vehicle and sensor combination. 
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4 MODEL BASED CONTROLLER AND SENSOR 
ANALYSIS 

4.1 Selection of Steering Controllers for Analysis 

Based on the results in [3], [6] and the previous chapters, it can clearly be observed that 

from implementation perspective geometric controllers perform better compared to other 

controllers because of their simplicity and ability to be tuned for every track and velocity 

conditions. It might also be worth analyzing and tuning PI controller for waypoint 

navigation as they are simple and versatile when it comes SISO systems. The following 

controllers were selected for analysis: 

• PI Controller 

- A closed-loop linear feedback controller used to control the process variable by 

minimizing the error between the set point and the measured process value. 

- Mathematically, PI control action can be defined as follows: 

𝑢(𝑡) = (𝐾𝑝 ∗ 𝑒(𝑡)) + (𝐾𝑖 ∗  ∫ 𝑒(𝑡)𝑑𝑡) ……………… (1)  

where u(t) is the controller output, e(t) is error i.e. difference set value and 

process value, Kp is the proportional gain, Ki is the integral gain and dt is the 

time step. 

- Increasing the proportional gain Kp, increases the output value and vice-versa. 

Too high proportional gain can make the system unstable or can cause a large 

overshoot and too low value results in a small output response to a large input 

error leading to a less sensitive controller. A highly responsive controller is 

desirable for quick response to changes or disturbances in state. However, it 

may also be noted that an aggressive controller also responds to the noises in 

the measured variable. Proportional control action seizes to address the problem 

of steady state error, since a non – zero error is always needed to generate an 

output. 

- Integral control allows us to reduce the steady state error since, it is the sum of 

the instantaneous error over time which accumulates and provides the required 

control action to reduce the steady state error. A PI controller tends to be less 

responsive when the sign of the error signal changes due to the previously 

accumulated error by I control. This is known as Integrator Windup and takes 

time to unwind. Also, a very high value of Ki can make the system less 

responsive at start but highly unstable at the end due to accumulated error. 

 

- Implementation 

1. The controller output will be steering angle used to control the direction or 

current heading of the vehicle. 

2. The error term will be the difference between the target heading and the 

current heading. 
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3. The start and stop of the vehicle will be a rule based controller due to low 

velocity application. 

• Pure Pursuit Controller 

- It is a waypoint based proportional controller which assumes a kinematic 

bicycle model of a vehicle having Ackerman Steering geometry. 

- The control law as mentioned in [3], is given by: 

 

δ= tan-1 (
2*L* sin ∝(t)

𝐿𝑑
)……………… (2) 

 
where δ is the commanded steering angle, L is the wheelbase of the vehicle, α 

is the heading error between the vehicle’s current heading and the target point 

heading measured from the vehicle, Ld is the look ahead distance. 

- It can clearly be seen that steering angle is proportional to the heading error 

w.r.t to the vehicle. Also, the effect of look ahead distance can be illustrated in 

figure 4-1. 

 
                  Figure 4-1: Effect of Look Ahead Distance [27] 

- Due to the presence of the Tan inverse function and Ld in the denominator, a 

small value leads to aggressive steering control which is suitable for making 90 

Degrees turns. A large value of Ld leads to smooth control suitable for straight 

roads or smooth turns but will not be effective in tight corners or sharp turns. 

- The advantage of look ahead distance Ld is that it gives the controller a preview 

point which is similar to prediction horizon of a Model Predictive Control, 

thereby allowing the controller to determine the steering angle based on the path 

dynamics. 

- The obvious disadvantage is that for a given value of Ld, the control action will 

not be optimal for different road conditions, varying vehicle velocities and 

different distance to target values. 

 

- Implementation 

➢ The optimal value of Ld will be determined as a function of velocity and 

distance to target. 
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➢ The start and stop of the vehicle will be a rule-based controller due to low 

velocity application 

 

• Stanley Steering Controller 

- It is a path based non-linear feedback controller. It is developed by Stanford 

University and used in the DARPA Challenge. This model also assume a 

bicycle model of the vehicle. As described in [3] and [5], the control law is 

given by the equation 3 and figure 4-2: 

 

𝛿 =  𝜃𝑒 +  tan−1 (
𝑘∗𝑒𝑓𝑎(𝑡)

𝑣𝑥(𝑡)
)……………… (3) 

 
                     Figure 4-2: Path Parameters for Stanley Controller [3][5]               

where θe is the heading error between yaw or vehicle heading and path heading, 

efa(t) is the time varying cross track error or lateral path error w.r.t vehicle, vx(t) 

time varying longitudinal velocity of the vehicle and k is the controller gain 

which has the units of sec-1 , hence it can assumed to be similar to the time 

constant of the controller. A high value of k means lower time constant, quick 

response of the controller and a low value of k means higher time constant, 

sluggish response of the controller. 

- From the above equation, it can be seen that the Stanley controller is superior 

to the previous two controllers due to the inclusion of cross track error term. As 

the vehicle deviates from the path, the cross track error increases creating a 

steering angle output for the vehicle so as to merge to the path. 

- However, compared to Pure Pursuit Controller, it has more number of inputs, 

hence, this controller will be more prone to disturbances and noise. Also, the 

effects of systematic error in GPS will be more evident, since vehicle current 

position is required for the calculation of the cross track error takes into account 

the vehicle current position.  

 

- Implementation 

➢ A reference path is generated from the given waypoints and is used to 

determine the path heading and cross track error. 

➢ As mentioned in [3], different gain values are required for different vehicle 

velocities, hence, the gain will be proportional to Time to Target. 
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4.2 Modelling approach for sensors, actuators and vehicle 
kinematics 

After the selection of controllers, it was necessary to model the sensors and the 

actuator dynamics for analysis and tuning of controllers. The sensors can be 

modelled by the specifications given in the Appendix or by taking real test data for 

the individual sensors. The second method is chosen since, sensor output depends 

on the testing and the installation condition of the sensors. Figure 4-3 shows the top 

level of the model-based approach. 

 
Figure 4-3: Controller and Plant Model for Analysis 

4.2.1 Modelling approach for Global Positioning System (GPS) 

For obtaining the true values of coordinates X&Y from the GPS, the following 

time-based model can be used for analysis: 

 

𝐽𝑍𝑂𝐻(𝑡) = 𝑍𝑂𝐻 ( 𝐽(𝑡) + 𝑏 + 𝑛) ……………… (4) 

 

J(t) represents the ideal and continues time varying values of X&Y coordinates, b 

denotes the bias/systematic error, n denotes the noise which is modelled as 

Gaussian, JZOH(t) is the discretized value obtained after implementing the zero-

order hold function [29] for a sample period of 0.2 seconds / 5 Hertz. 

 

4.2.1.1 GPS Error Analysis 

The following test data was taken over a span of 20 minutes at a given position so 

as to determine the random errors in the GPS. For systematic error, it was assumed 

that the GPS is operating under WAAS mode and the systematic error in position 

is 3 meters. This leads to an error of 2.12 m in each x and y coordinates, since 

√(0 − 2.12)2 + (0 − 2.12)2   = 3 meters. For GPS, no dynamics were considered 

as there is no moving element inside the sensor. 
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Figure 4-4: Results for Standard Deviation Analysis in X & Y direction GPS sensor 

modelling 

 

Table 4-1: Sensor Errors for GPS Modelling 

Direction 
1σ - Standard 

Deviation (Meters) 

Variance in 

Position (Meters) 

Systematic Error in 

Position (Meters) 

x 1.08 1.17 2.12 

y 0.94 0.88 2.12 

Table 4-1 summarizes the standard deviation values obtained from figure 4-4. A 

random number generator takes the variance as input for modelling the GPS noise 

as Gaussian. 

4.2.2 Modelling approach for Magnetometer or Digital Compass 

The following model is used to determine the true current or vehicle heading values: 

 

𝐻𝑍𝑂𝐻(𝑡) = 𝑍𝑂𝐻(𝑆𝑎𝑡 (( (𝑉(𝑡) ∗ 𝑄𝑓𝑎𝑐𝑡𝑜𝑟) ∗ 𝑄𝑐𝑜𝑛𝑣) + 𝑏 + 𝑛)) ……………… (5) 

 

V(t) is the time varying voltage output from the sensor, Qfactor takes into account the 

quantization factor for the 16-bit ADC, Qconv is conversion factor to convert voltage 
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to degrees, HZOH(t) is the discretized value obtained after implementing the zero-

order hold function [29] for a sample period of 0.1 seconds / 10 Hertz, b and n 

represent the bias and Gaussian noise. Sat() function is used to keep the limit output 

to the range of 0 to 360 degrees. It is defined as follows: 

 

𝑆𝑎𝑡(𝐻) =  {
 𝐻                𝑖𝑓 0 ≤ 𝑡 ≤ 180,

 
     (360 + 𝐻) 𝑖𝑓 − 180 ≤ 𝑡 <  0 

……………… (6) 

 

For magnetometer, no dynamics were considered as there is no moving element 

inside the sensor. 

 

4.2.2.1 Error analysis for Magnetometer or Digital Compass 

The North direction reference for measurement was taken with the help of an 

Analog Magnetic Compass. For systematic error, the Magnetometer was aligned 

towards the north & the south direction and the average of the errors were taken. 

For noise, similar to GPS the test data was taken over a span of 20 minutes at the 

given position and orientation so as to determine the random errors. It was ensured 

that no stray magnetic field was present. 

 

 
Figure 4-5: Standard Deviation Analysis for Yaw or Current Heading 

 

Table 4-2: Sensor Errors for Magnetometer Modelling 

1σ-Standard in 

Deviation Orientation 

(Degrees) 

Variance in Orientation 

(Degrees) 

Systematic Error 

(Degrees) 

0.24 0.06 5 
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Table 4-2 summarizes the standard deviation values obtained from figure 4-5. A 

random number generator takes the variance as input for modelling the 

Magnetometer noise as Gaussian.  

4.2.3 Modelling approach for IMU (Inertial Measurement Unit) 

For modelling the various components of IMU viz. Accelerometer and Gyroscope, 

the following model was used to determine the true values of acceleration (for 

accelerometer) and true values of yaw-rate (for gyroscope): 

 

𝐽𝑍𝑂𝐻(𝑡) = 𝑍𝑂𝐻(𝑆𝑎𝑡 ( ((𝐿−1 (𝐻(𝑠) ∗ (𝐿(𝑉(𝑡) ∗ 𝑄𝑓𝑎𝑐𝑡𝑜𝑟)))) ∗ 𝑄𝑐𝑜𝑛𝑣) + 𝑏 + 𝑛)) … (7) 

 

V(t) is the time varying voltage output from the sensor, Qfactor takes into account the 

quantization factor for the 13-bit ADC, L() is the Laplace transform to convert t – 

domain to s- domain, H(s) is the transfer function taking into account the MEMS 

device dynamics, L-1() is the inverse Laplace to convert s-domain to t-domain, Qconv 

is conversion factor to convert voltage to engineering units, JZOH(t) is the discretized 

value obtained after implementing the zero-order hold function [29] for a sample 

period of 0.1 seconds / 10 Hertz, b and n represent the bias and Gaussian noise. 

 

Sat() function is used to limit output of accelerometer and gyroscope as per the 

specifications in Appendix 9.2.2. It is defined as follows: 

 

For Accelerometer, 

 

𝑆𝑎𝑡(𝐴𝑐𝑐) =  {

−78.48
𝑚

𝑠2                𝑖𝑓 𝐴𝑐𝑐 < −78.48,

                    𝐴𝑐𝑐                    𝑖𝑓 − 78.48 ≤  𝐴𝑐𝑐 ≤ 78.48,

78.48
𝑚

𝑠2                𝑖𝑓 𝐴𝑐𝑐 > 78.48

   ……... (8) 

 

For Gyroscope (Yaw-Rate), 

 

𝑆𝑎𝑡(𝑌𝑅) =  {

−2000 𝑑𝑝𝑠               𝑖𝑓 𝑌𝑅 < −2000,
                    𝑌𝑅                    𝑖𝑓 − 2000 ≤  𝑌𝑅 ≤ 2000,

2000 𝑑𝑝𝑠              𝑖𝑓 𝑌𝑅 > 2000
    ………... (9) 

 

4.2.3.1 Error analysis for Accelerometer 

 

Experiment 1: Standard Deviation Analysis  

For the accelerometer, the test was done on a flat surface for accelerations in the x 

& y directions. The flatness of the surface was ensured by a spirit level. The data 

was recorded for a span of 20 minutes without changing the orientation. Since, it is 
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a MEMS device, there will also be a transfer function associated along with 

systematic error and noise. 

 
Figure 4-6: Standard Deviation Analysis of Accelerometer in X & Y Direction 

 

Table 4-3: Sensor Errors for Accelerometer Modelling 

Direction 
1σ-Standard 

Deviation (m/s2) 

Variance (Degrees) 

(m/s2) 

Systematic 

Error (m/s2) 

X 0.074 0.0055 0.0099 

Y 0.013 0.0002 0.0099 

Table 4-3 summarizes the standard deviation values obtained from figure 4-6. It 

should also be noted that compared to GPS the systematic errors are negligible. The 

variance calculated was used for modelling the sensor noise as Gaussian.  

Experiment 2: Transfer Function Derivation  

In order to model the transfer function of accelerometer, the vehicle was 

commanded to move on a straight path at a constant speed of 1m/s. The acceleration 

plot from the test was used as basis for deriving the transfer function. The ideal 

accelerometer characteristics were approximated by the fact that, initially when the 

vehicle launches it will have maximum acceleration and while braking maximum 

deceleration. An input of ideal data was given, and the simulation output data was 

compared with real test data. Figure 4-7 shows a comparison between ideal, actual 

and simulated values of acceleration. 
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Figure 4-7: Straight Line Test @ 1m/s for Transfer Function Generation 

The Transfer function H(s) for accelerometer was found out to be: 

H(s) = 
1.08

0.007𝑠2+0.075𝑠+1
 ……………… (6) 

It should be noted the above transfer function is that of the accelerometer on vehicle 

and other high-resolution methods are needed to separately derive the transfer 

function of the vehicle. 

4.2.3.2 Error analysis for Gyroscope Yaw-Rate 

The Gyroscope is similar to accelerometer since, it is also a MEMS device. Hence, 

it will also have a transfer function along with systematic error and noise.  

 

Experiment 1: Standard Deviation Analysis  

Similar to the process of accelerometer, the IMU sensor was place on a flat surface 

and the data was recorded for a span of 20 minutes without changing the orientation. 

 
               Figure 4-8: Standard Deviation Analysis for Gyroscope Yaw-Rate 
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Table 4-4: Sensor Errors for Gyroscope Yaw-Rate Modelling 

1σ- Standard in 

Deviation Orientation 

(Degrees / Sec) 

Variance in Orientation 

(Degrees / Sec) 

Systematic Error 

(Degrees / Sec) 

0.058 0.003 -0.064 

Table 4-4 summarizes the standard deviation values obtained from figure 4-8, from 

which variance was obtained for modelling sensor noise as Gaussian.  

Experiment 2: Transfer Function Derivation  

In order to model the transfer function, the vehicle was tested on a circular path of 

diameter 4 meters at a constant steering angle and at a constant velocity of 1m/s. 

 
Figure 4-9: Circle Test Results 

From figure 4-9, it can be seen that when the vehicle travels in a circle i.e. North 

East, South and West, the yaw or current heading values go up to 360 Degrees and 

then again comes down to zero. For above highlighted portion, the slope is constant 

and it can be assumed that the yaw rate is constant, which can be calculated as 

follows. 

𝑇ℎ𝑒𝑜𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑌𝑎𝑤𝑟𝑎𝑡𝑒 =
359.5−46.9

75.43−64.73
= 29.22 𝑑𝑒𝑔/𝑠 ……………… (7) 
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Figure 4-10 gives the measured value of Yaw – Rate from the gyroscope: 

 
Figure 4-10: Gyroscope (Yaw-Rate) Output for Circle Test 

The theoretical Yaw – Rate obtained from equation (7) was used as ideal yaw rate 

and was modelled as a step function and the simulation output data was compared 

with real test data. Figure 4-11 shows a comparison between ideal, actual and test 

values of yaw-rate. 

 
Figure 4-11: Analysis of Test Data and Simulation Data for Transfer Function Generation 

for Gyroscope 
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The Transfer function H(s) for the gyroscope was found out to be: 

H(s) = 
0.8𝑠+1.005

2.3𝑠2+0.8𝑠+1
……………… (8) 

4.2.4 Modelling approach for Wheel Speed Sensor 

The wheel speed sensor is modelled similar to GPS with a sample period of 0.1 

seconds / 10 Hertz. The wheel speed sensor is a variable reluctance type sensor and 

can be simply modelled as having noise and zero systematic error. The noise in the 

sensor can be due to the presence of residual magnetic field. Table 4-5 summarizes 

the sensor errors. Due to technical reasons, the standard deviation analysis of wheel 

speed sensor could not be performed. 

 

Table 4-5: Sensor Errors for Wheel Speed Sensor Modelling 

1σ - Standard Deviation 

in Speed (m/s) 

Variance in 

Speed (m/s) 

Systematic Error 

(m/s) 

0.02 0.0004 0 

 

4.2.5 Steering System Actuator 

The steering actuator is a servo motor with a reduction gear ratio of 3:1, position of 

which is controlled by PWM signals from the controller. 

Prior to developing the actuator model, the operating range of the actuator duty 

cycle was found using the methods described in figure 4-12 and 4-13, having 2 

stages – decoding and verification. In order to determine the maximum range of 

steering angle and duty cycle range, the vehicle was suspended in air. 

 

 
             Figure 4-12: Schematic - Steering System Duty Cycle Decoding Process 
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Figure 4-13: Schematic - Steering System Duty Cycle Verification Process 

A linear map between steering angle (SA) and duty cycle (DC) was created, which 

is given by: 

DC = (0.1667 ∗ (SA)) + 26.067 ……………… (9)  

 

where a steering angle of -30 degrees corresponds to 21% DC and steering angle of 

30 degrees corresponds to 31% DC. The steering system can be modelled as 

follows: 

 

- Having hysteresis based on a certain road condition, i.e. for a commanded 

steering angle the actuator does not move exactly by that angle. The hysteresis 

was measured on asphalt road and table 4-6 was derived: 

 

Table 4-6: Commanded vs Actual Steering Angle 

Direction 
Commanded 

Steering Angle 

Commanded 

Duty Cycle (DC) 

Actual Steering 

Angle (SA) 

Left to 

Right 

30.0 31.0 24.0 

0.0 26.2 -2.0 

-30.0 21.0 -30.0 

Right to 

Left 

-30.0 21.0 -27.0 

0.0 26.2 1.5 

30.0 31.0 28.0 

From Table 4-6, the linear relation between duty-cycle and actual steering angle is 

given as follows: 

SAL-R = (5.4502*DC) – 144.73 ……………… (10) 

SAR-L = (5.4518*DC) – 141.28 ……………… (11) 
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- Having a delay instead of instantaneous response. This can be modelled as a 

first order transfer function. From appendix, Section 9.2.3, a 60° sweep of 

wheels, takes around 0.27 seconds. Hence, the ideal response could be modelled 

as a step function from 0 to 60° at a given instant, as shown in figure 4-14. 

 
Figure 4-14: Actual Response vs. Ideal Response Analysis for Transfer Function 

 

It can be seen the actual response reaches 58° SA at around 10.27 secs. The transfer 

function for the steering system is given by:  

𝐻(𝑠) =  
1

0.08𝑠+1
  ……………… (12) 

From equations 10 and 11, the actuator hysteresis implementation is described in 

the following flowchart: 

 
                Figure 4-15: Actuator Hysteresis Modelling 
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4.2.6 Modelling the Drivetrain 

Since, the entire analysis is being done on a RC vehicle and at low speeds, the 

dynamics can be modelled as a single order system with very fast dynamics shown 

in figure 4-16. 

 

 
Figure 4-16: Drivetrain Dynamics 

 

4.2.7 Modelling the Vehicle Kinematics 

As described in [28], a vehicle moving with low speed and having Ackermann 

steering geometry can be approximated as two – wheeled model / bicycle model 

with zero slip angle. Figure 4-17 shows the top-level view of the kinematics model. 

 

 
Figure 4-17: Vehicle Kinematics Model 

For the given values of steering angle and longitudinal speed, inverse kinematics 

equations for front steered vehicle can be used to determine the angular speed of 

front and rear wheels by the following equations: 

𝑤𝑓 =  
𝑉

𝑅∗𝑐𝑜𝑠(𝛿)
, and  𝑤𝑟 =

𝑉

𝑅
  , where wf and wr are angular velocities of front and 

rear wheels, V is the longitudinal velocity, R is the wheel radius and δ is the steering 

angle of the vehicle. 

After obtaining, front and rear angular velocities, the forward kinematics equations 

can be used to determine the velocities in longitudinal and lateral direction of the 

vehicle along with angular rotation about the vehicle’s perpendicular axis. This is 

shown in figure 4-18. 
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Figure 4.2.8.2: Representation of Linear and Angular Velocities [28] 

𝑉𝑙𝑜𝑛𝑔 =  
𝑅(𝑤𝑓 cos(∅𝑓)+𝑤𝑟)

2
 ……………… (13) 

𝑉𝑙𝑎𝑡 =  
𝑅 𝑤𝑓 sin (∅𝑓)

2
……………… (14) 

𝑤 =  
𝑅 𝑤𝑓 𝑠𝑖𝑛(∅𝑓)

𝐿
……………… (15) 

All these parameters can be represented graphically on the X & Y plane by the 

below figure, where θ is the Yaw or Current Heading w.r.t the X- Axis 

 
Figure 4.2.8.3: Graphical Representation of Vehicle in 2D Cartesian Coordinates 

The above velocities are in the vehicle frame of reference (X’ & Y’) and in order 

to determine the position of the vehicle in the reference coordinate system (X & Y), 

the components of the velocities have to be resolved in both X & Y direction. 

𝑉𝑥 = 𝑉𝑙𝑜𝑛𝑔 𝑐𝑜𝑠(𝜃) − 𝑉𝑙𝑎𝑡 𝑠𝑖𝑛(𝜃)……………… (16) 

𝑉𝑦 = 𝑉𝑙𝑜𝑛𝑔 𝑠𝑖𝑛(𝜃) + 𝑉𝑙𝑎𝑡 𝑐𝑜𝑠(𝜃)……………… (17) 

Integrating these equations gives us the X & Y coordinate of the vehicle at each 

time step. Differentiating these velocities gives us the acceleration of the vehicle 

w.r.t reference coordinates. Similarly,𝑌𝑎𝑤𝑓𝑖𝑛𝑎𝑙 = 𝑌𝑎𝑤𝑖𝑛𝑖𝑡𝑎𝑙 + ∫ 𝑤 𝑑𝑡
𝑑𝑡

0
, followed 

by conversion from radians to degrees. 
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Figure 4-18: Interfacing of Vehicle States with Sensor Blocks 

Figure 4-18 shows the ideal plant (vehicle) model states are being passed through 

the sensor block which adds the errors mentioned in section 4.2.1, 4.2.2 and 4.2.3, 

thereby representing the measured states or the sensor model data. 

4.2.8 Controller Modelling 

 

Controller modelling can be classified in the following parts: 

- Speed Controller 

- Navigation Monitoring 

- Waypoint Monitoring 

- Steering Controller 

 

4.2.8.1 Speed Controller 

Figure 4-19, shows a flowchart of the start-stop type speed control 

 
Figure 4-19: Start Stop type Speed Control 
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4.2.8.2 Navigation Monitoring 

This subsystem takes the current position and orientation of the vehicle and 

generates the target heading, path heading, and distance to target values and 

cross track-error. 

The distance to target is calculated by the formula, 

𝑑 =  √(𝑥𝑡 − 𝑥𝑐)2 + (𝑦𝑡 − 𝑦𝑐)2 ……………… (18) 

where xt yt are the target points and xc yc are the current vehicle coordinates. 

In order to calculate the cross-track error (XTE), it is assumed that the path 

between waypoints is a straight line. For a curved path, like real road conditions, 

it will consist of multiple points and it can be linearized for every two 

consecutive points to obtain a straight line. The XTE is calculated by 

establishing a relation between a point and a straight line and then finding the 

shortest perpendicular distance by the following relation: 

𝑋𝑇𝐸 =  
𝑎𝑥𝑐+𝑏𝑦𝑐+𝑐

√𝑎2+ 𝑏2
    ……………… (19) 

Where a, b, c are the coefficients of the equation of the straight line given by 

ax + by +c =0 between two path points x1 y1 and x2 y2. The following logic 

table is used to determine the sign of the XTE: 

 

                     Table 4-7: Sign Convention for Cross Track Error 

Nature of Slope Position of Point Sign of XTE 

+ Above Line - 

+ Below Line + 

- Above Line / Right Side + 

- Below Line / Left Side - 

                    

For calculating the target heading for waypoint-based controllers, the current 

heading, current vehicle position and target points are used. The trigonometric 

block atan2 has a range of (-Π to Π) radians. The flowchart in the figure 4-20 

is used to determine the target heading for waypoint-based controllers: 
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Figure 4-20: Flowchart to Determine Target Heading for Waypoint Based Controllers 

For calculating the path heading for Stanley controller, the slope between 

current target point and previous target point is calculated as shown in figure 4-

21. 

 
Figure 4-21: Flowchart to Determine Path Heading for Stanley Controller 
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Waypoint Monitoring 

For waypoint monitoring, distance to target and current waypoint number 

variable were taken as inputs. The following flowchart shows logic for 

waypoint monitoring: 

 
Figure 4.2.9.3.1: Flowchart Logic for Waypoint Monitoring 

4.2.8.3 Steering Controller 

 

- PI Controller 

As discussed in section 4.1, the controller is modelled as follows were Kp = 

1 and Ki = 0.3 are determined by Ziegler–Nichols method [17]. 

 
Figure 4-22: PI Controller Implementation 

As shown in figure 4-22, the integrator and the final output of the controller is 

saturated or limited by the physical limits of the steering actuator. 
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- Pure Pursuit Controller 

As discussed in Section 4.1, for different velocities and road geometry, the 

look ahead distance or the preview distance changes. This directly affects 

the response of the controller. Based on the required simulation conditions 

the look-ahead distance was defined as a function of velocity and distance 

to target given by the following relation: 

𝐿𝑑 =  
1

𝑤1
𝐷2𝑇

+ 
𝑤2∗ ∆𝑡

𝑣

  ……………… (20) 

Where Δt is the time-step, 𝑤1 & 𝑤2 are the weights associated distance to 

target & velocity (v) term. It is also worth noticing that for a given constant 

velocity, as the distance to target (D2T) of the vehicle decreases the Tan 

Inverse yields a very high steering angle. Also, giving a very high weightage 

to the velocity (v) term decreases the steering performance at different turns 

and waypoint due to constant value of look ahead distance. Based on trial 

and error, the weights 𝑤1 = 0.4 &𝑤2 = 0.6. Based on the scope of 

simulation, the look ahead distance was given a saturation limit of 0.7 to 1.2 

was used for optimal performance.  

 
                          Figure 4-23: Look Ahead Distance for Pure Pursuit Controller 

                     

Figure 4-23 shows the implementation of equation 20 for the calculation of 

the look ahead distance.  

Figure 4-24 shows the integration of look ahead distance calculator with the 

steering controller. 

 
Figure 4-24: Pure-Pursuit Controller Implementation 
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- Stanley Steering Controller 

Similar to the Pure-Pursuit controller, the gain values are different for 

different vehicle velocities and for different path geometries. The units of 

gain is Sec-1 hence, it might be more effective to implement the gain as time 

to target where, Gain k = 1 / T, where T = Time to Target given by D2T / v. 

Here, D2T is the distance to target of the vehicle from the waypoint and v is 

the vehicle speed. Again, based on the scope of simulation, a saturation limit 

of 2 to 4 was used for optimal performance. 

 
Figure 4-25: Stanley Controller Implementation 

4.2.9 Test Cases for Controllers 

All the 3 controllers were tested under 3 different path conditions, namely: 

• Custom Path (Figure 4-26) 

• Straight Path (Figure 4-27) 

• Dynamic Lane Change (Figure 4-28) 

The following sensors were used for the simulation: 

• GPS – X&Y coordinates 

• Magnetometer or Digital Compass – Vehicle Heading 

The performance of each controller is based on the following metrics: 

• Vehicle Trajectory 

• Cross – Track Error (XTE) or Lateral Distance for 2D condition 

• Distance between vehicle stop point and actual waypoint under 1D 

condition 

• Controller Response for Location Specific Noise 
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Path 1:  

 
Figure 4-26: Custom Path 

 

       Path 2:  

                 
Figure 4-27: Straight Path 
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Path 3:  

 

 
                  Figure 4-28: Dynamic Lane Change 
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5 SIMULATION RESULTS AND ANALYSIS 

5.1 Performance Analysis under Ideal Sensor Conditions 

5.1.1 Custom Path 

 
Figure 5-1: Path Tracking Performance of Controllers  

 
Figure 5-2: Cross Track Error of Vehicle on Custom Path 
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5.1.2 Straight Line 

 
Figure 5-3: Path Tracking Performance of Controllers on Straight Path 

 
Figure 5-4: Cross Track Error of Vehicle on Straight Path 
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5.1.3 Dynamic Lane Change 

 
Figure 5-5: Path Tracking Performance of Controllers for Dynamic Lane Change 

 
Figure 5-6: Cross Track Error of Vehicle for Dynamic Lane Change 
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From figures 5-1 to 5-6, the controller performance in terms of cross track error 

for various paths and controllers can be tabulated in Table 5-1. 

Table 5-1: Max. Cross Track Error (Meters) Results for Custom Path 

Path PI Controller 
Pure - 

Pursuit 
Stanley 

Custom 1 1.00 1.00 1.00 

Custom 2 -0.64 0.10 0.00 

Straight -0.05 0.08 0.08 

Dynamic 

Lane Change 
-0.05 0.08 0.08 

From table 5-1, it is seen that when path dynamics are significant, the PI controller 

performs the worst, as shown in section 1 and 2 for custom path in figure 5-1 and 

5-2. Pure Pursuit and Stanley Controller have similar performance. It can also be 

observed that all the 3 controllers perform similarly for Straight Path and Dynamic 

Lane Change. 

From figures 5-1 to 5-6, the path tracking performance of the controllers can be 

visualized. For the custom path region 1, all the controllers have the maximum 

deviation of 1 meter, but the PI controller converges very abruptly followed by an 

overshoot of 0.5 meter in the opposite direction. The other two controllers i.e. Pure 

Pursuit and Stanley converge smoothly converge with negligible overshoot. The 

Pure-Pursuit Controller convergence is due to the presence of Look Ahead Distance 

term. The Stanley controller converges faster than Pure-Pursuit Controller due to 

the presence of cross track error term as feedback. The performance analysis under 

ideal sensor condition validates the work done in [3] and [5]. 
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5.2 Performance Analysis Considering Sensor Errors 

In this, the controller analysis is done by including systematic error, noise and other 

dynamics in the sensor. Also, as discussed in section 4.2.10, a location specific 

random noise has been included in the custom path to consider the effects of stray 

magnetic fields. 

5.2.1 Custom Path 

 
Figure 5-7: Effect of Sensor Errors and Location Specific Noise on Navigation 

Performance 
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Figure 5-8: Effect of Sensor Errors on Cross Track Error for Custom Path 

 
Figure 5-9: Effect of Stray Magnetic Fields on Magnetometer Output for Vehicle 

Heading 

As seen in figure 5-7 and figure 5-8, the Stanley controller is affected the least by 

stray noise. From figure 5-9, the effect of stray fields can be seen in the vehicle 

heading values read by the magnetometer. From figures 5-7 to 5-8, the controller 

performance in terms of cross track error can be tabulated in Table 5-2. 
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Table 5-2: Max. Cross Track Error (Meters) Results for Custom Path Considering Sensor 

Errors 

 
PI 

Controller 

ΔXTE for 

PI 

Controller 

Pure – 

Pursuit 

(PP) 

ΔXTE for 

PP 

Controller 

Stanley 

ΔXTE for 

Stanley 

Controller 

1 1.7 - 1.7 - 2 - 

2 -2.6 0.9 -2.2 0.5 -2.3 0.3 

3 -2.8 0.2 -2.6 0.4 -2.8 0.5 

4 -0.3 2.5 -0.5 2.1 -0.9 1.9 

5 -1.6 1.3 -1.6 1.1 -1.7 0.8 

Data in Table 5-2 shows that systematic error in GPS majorly affects the 

navigational performance of all the controllers. For a positive systematic error in 

X&Y directions, the vehicle moves away from the path.  

The highlighted columns in table 5-2 compare the change in max. cross track error 

between the current segment and the prior segment. From Figure 5-7 and Table 5-

2, segment 4, it can be seen that the PI controller is affected the most by the noise 

i.e. 2.5 meters of deviation. The circled section in figure 5-7 and 5-8 shows the 

effect of stray magnetic field which causes the vehicle to take an abrupt turn.  

5.2.2 Straight Line Path 

 
Figure 5-10: Effect of Sensor Errors Navigation Performance under 1D condition 
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Table 5-3: Distance (Meters) between vehicle stop point and actual waypoint for straight 

line test for 1D condition 

Waypoint No. PI Pure Pursuit Stanley 

1 3.00 3.00 3.00 

2 2.90 2.77 2.77 

3 3.20 2.93 2.94 

4 2.72 2.93 2.91 

5 3.03 2.90 2.88 

Figure 5-10 and Table 5-3 clearly show that due systematic error in GPS x-

direction, the vehicle stops approximately 3 meters before the actual waypoint. 

 

5.2.3 Dynamic Lane Change 

 
Figure 5-112: Effect of Sensor Errors on Navigation Performance  
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Figure 5-123: Effect of sensor error on Cross Track Error 

From figure 5-13 and 5-14, the table 5-4 is derived which sums up maximum 

cross track error of the vehicle stop point from the actual path. 

 

Table 5-4: Max. Cross Track Error (Meters) Results for Dynamic Lane Change 

Considering Sensor Errors 

Segment PI Controller Pure Pursuit Stanley 

1 1.98 1.98 2.00 

2 2.11 2.21 2.21 

3 1.63 1.85 1.85 

4 1.94 2.01 1.98 

5 2.31 2.31 2.31 

6 2.13 2.14 2.14 

From table 5-4, and figures 5-13 and 5-14, it can be seen that the GPS systematic 

error pre-dominates over other sensor error. After deviation from the actual path, 

all the controllers maintain a similar offset from the path and follow the path 

trajectory. 
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6 IMPROVING NAVIGATION / WAYPOINT TRACKING 
USING STATE ESTIMATION APPROACH 

As seen in the previous section, the error in GPS signal affects the path tracking 

performance of the vehicle. Also, the presence of stray noise affects the steering 

performance and causes the vehicle to behave abruptly as seen in section 5.2.1.  

In order to improve the navigational performance of the vehicle, we need to 

improve the positional / localization accuracy of the vehicle. As discussed in section 

2.2, GPS has systematic error as dominant error, hence, localization using position 

data from GPS will always have some offset from the true position. Sensory data 

from accelerometers and wheel speed sensors can be combined with GPS Data to 

improve the accuracy in navigation. This can be achieved by using the concept of 

sensor fusion. Using the laws of motion and by assuming constant acceleration at 

every time step, we can model the position equation as follows: 

𝑆𝑓 = 𝑆𝑖 + 𝑢∆𝑡 +
1

2
𝑎∆𝑡2 ……………… (21) 

where Sf = Position at t + Δt, Si = Position at time t, u = velocity at time ∆t and a = 

acceleration at time step ∆t. 

It is also seen from the steering control laws, section 4.1, that vehicle heading 

sensed by the Magnetometer is an input to the controller, but it is affected by stray 

magnetic fields and sensor noise as seen in section 5.2.1. Hence, there is also a need 

to implement state estimation techniques, to generate noise free states for the 

controller. One method is to combine Magnetometer data with yaw-rate obtained 

from Gyroscope. The vehicle heading also known as Yaw has a linear relation with 

Yaw-Rate, given by, 

𝜑𝑓 =  𝜑𝑖 +  𝜑′ ∆𝑡 ……………… (21) 

where ψf = Yaw or Vehicle Heading at time t + Δt, ψi = Yaw or Vehicle Heading 

at time t and ψ’ is Yaw-Rate at time step ∆t. 

Combining sensory data allows choosing a state in between a measured value and 

state obtained by prediction from a model. For dynamic conditions, it is required to 

alter the weights at every time step depending upon the quality of measurement. If 

sensor data is good more weight should be given to it, else for poor sensor data, 

weightage is given to prediction. This can be achieved by the use of Kalman Filters. 

One might say, that using a model to predict the states should be sufficient, however 

system dynamics can never by modelled perfectly. Under such circumstances, even 

if the initial predictions are correct, the states would diverge from actual values due 

to non-linearities in the physical system. The use of measured value in the Kalman 

Filter prevents the predictions to diverge.   
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6.1 Kalman Filter Equations 

The Kalman Filter consists of 2 Stages: 

• Prediction – Uses model equations to predict the next system state based on 

current states. 

• Update – Update the current states based on weights assigned to measured 

values and predicted values 

The State Space equation is given by 𝑥𝑡+1̅̅ ̅̅ ̅̅ = 𝐴𝑥𝑡 + 𝐵𝑢𝑡,where, 𝑥𝑡+1̅̅ ̅̅ ̅̅  = Predicted 

System State at time t + 1 from previous state xt, A = State Transition Matrix, B = 

Control Matrix, ut = Input Matrix 

The filter will not be used to generate control inputs, so B = 0 

Hence, we get, 𝑥𝑡+1̅̅ ̅̅ ̅̅ = 𝐴𝑥𝑡 ………………..(22) 

𝑃̅ = 𝐴𝑃𝐴𝑡 + 𝑄………………..(23) 

𝑃̅ = Predicted State Co-Variance Matrix and P = State Co-Variance Matrix 

𝑄 = Process Noise or Noise in the Model 

Equations 22 & 23 form the prediction stage 

Residual, 𝑦 = 𝑍 −  𝐻 𝑥𝑡+1̅̅ ̅̅ ̅̅  ………………..(24), where Z = Measured states from 

sensor, H = Measurement function to scale predicted values as per Z 

Uncertainty, in measurement 𝑆 = 𝐻𝑃̅𝐻𝑡 +  𝑅−1 ………………..(25), where R = 

Measurement Noise Vector 

Kalman Gain K = 𝑃̅𝐻𝑡𝑆−1 ………………..(25), this is the step where the filter 

decides whether to give more weightage to measured value or predicted value. 

Higher the value of K, more value is given to measurement. 

𝑥𝑡 =  𝑥𝑡̅ + 𝐾𝑦………………..(27), new estimated state based on the Kalman Gain 

Updating the process co-variance, 𝑃 = (𝐼 − 𝐾𝐻)𝑃̅ ………………..(28) 

Equations 24, 25, 26, 27 & 28 form the update stage of the filter where the filter 

estimates the new states from noisy measurements and 𝑥𝑡 & 𝑃 are used for the next 

prediction. 

For the initial step / iteration the P and the x, matrices are required to initialize the 

filter. In the following iterations, the filter will estimate these values 
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6.2 Implementation of 1D – 2nd Order Kalman Filter for 
Improved Position Feedback in Straight Line Path 

The following matrices where defined and initialized: 

xt = [

𝑠𝑡

𝑣𝑡

𝑎𝑡

] = [
0
0
0

] since, at t=0, all the states start from 0 

A = [
1 ∆𝑡 ∆𝑡2/2
0 1 ∆𝑡
0 0 1

] using the equations of motion discussed earlier 

P = [

𝜎𝑥
2 0 0

0 𝜎𝑣
2 0

0 0 𝜎𝑎
2

], where the diagonals are the sensor variances for position, 

velocity and acceleration. 

Q = [

∆𝑡4/4 ∆𝑡3/2 ∆𝑡2/2

∆𝑡3/2 ∆𝑡2 ∆𝑡

∆𝑡2/2 ∆𝑡 1

] .∗ ∅2 , this is the piece-wise model as discussed in 

[26] for constant acceleration at a given time-step and but differs at every step. A 

more accurate model as described in [26] is the continuous time noise model Qc, 

which is used to find Q by integrating and for each time step using 𝑄 =

 ∫ 𝐹 𝑄𝑐 𝐹𝑇∆𝑡

0
 𝑑𝑡. This process is more computationally intensive. 

Z = [

𝑠𝑚𝑒𝑎𝑠

𝑣𝑚𝑒𝑎𝑠

𝑎𝑚𝑒𝑎𝑠

] and H = [
1 0 0
0 1 0
0 0 1

] 

R = [

𝜎𝑥
2 0 0

0 𝜎𝑣
2 0

0 0 𝜎𝑎
2

] .∗ 𝑀𝑅, where the diagonals are the sensor variances for 

position, velocity and acceleration. 

MR and Ø, are used to set Q and R matrix and tune the filter. 

It should be noted that high value of R, tells the filter that the measurement is noisy, 

and the filter will favor prediction at every step. A low value of Q tells the filter 

that the model defined in filter perfectly defines the system and to put more weights 

on the predicted value. A low value of R tells the filter that the measurement has 

less noise and the filter will favor sensor data at every step. A high value for Q tells 

the filter that the model is not accurate. Initially Ø = 0.05 and MR=10, since we 

know that the measurements are not perfect. 
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6.2.1 Filter Results for Various Controllers Under 1D conditions 

 
Figure 6-1: Controller Performance with 1D Kalman Filter, MR=10 

 

Table 6-1: Difference in distance between vehicle stop point and waypoint for various 

controllers with Kalman Filter MR=10 

Waypoint No. PI Pure Pursuit Stanley 

1 1.99 (33%) 1.99 (33%) 2.00 (33%) 

2 2.09 (27%) 1.97 (29%) 2.07 (25%) 

3 2.03 (36%) 2.15 (26%) 2.15 (27%) 

4 2.24 (17%) 2.22 (24%) 2.22 (24%) 

5 2.04 (32%) 2.19 (24%) 2.29 (21%) 

Compared to the table 5-3, the filter is able to reduce the difference in distance 

between the vehicle stop point and waypoint. The percentage improvement is given 

in the parenthesis. However, the filter starts lagging behind due to the systematic 

error in GPS affecting the filter during residual calculation. The next step would be 

to include the GPS systematic error in the filter’s Z matrix. This would allow the 

filter to have prior knowledge of the GPS systematic error.  

Z = [

𝑠𝑚𝑒𝑎𝑠 − 𝑔𝑝𝑠_𝑠𝑦𝑠_𝑥
𝑣𝑚𝑒𝑎𝑠

𝑎𝑚𝑒𝑎𝑠

] 
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Figure 6-2: Controller Performance with 1D Kalman Filter, MR=10 with GPS Error 

included 

 

Table 6-2: Distance (Meters) between vehicle stop point and waypoint for various 

controllers with Kalman Filter MR=10 with GPS Error included 

Waypoint No. PI Pure Pursuit Stanley 

1 0.20 0.20 0.20 

2 0.10 0.07 0.18 

3 0.12 0.15 0.15 

4 0.12 0.12 0.13 

5 0.22 0.09 0.09 

Compared to the results in Table 6-2, there is significant improvement in tracking 

performance and an accuracy at the centimeter level has been achieved. It should 

be noted that GPS systematic error depends on the satellite orientation and the 

signal quality, and this simulation shows a special case when the error in X&Y 

direction is 2.12 meters. 
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6.3 Implementation of 1st Order Kalman Filter for Vehicle 
Heading Improvement 

xt = [
𝜑

𝜑′] = [
0
0

] A = [
1 ∆𝑡
0 1

] using the linear relationship between yaw and yaw-rate 

P = [
𝜎𝜑

2 0

0 𝜎𝜑′
2 ] and R = [

𝜎𝜑
2 0

0 𝜎𝜑′
2 ] .∗ 𝑀𝑅,  

where the diagonals are the sensor variances for yaw and yaw-rate 

Q = [
∆𝑡4/4 ∆𝑡3/2

∆𝑡3/2 ∆𝑡2 ] .∗ ∅2  

Z = [
𝜑𝑚𝑒𝑎𝑠

𝜑′
𝑚𝑒𝑎𝑠

] and H = [
1 0
0 1

] 

From figure 5-9, it can be seen that the magnetometer readings have less noise but 

is affected by stray magnetic fields. So, it can be assumed that the measurements 

are of good quality when there is no noise and correction is only needed when there 

is an external disturbance. Using trial and error, the value of ∅ was chosen to be 4 

and the value of MR was chosen to be 0.5. The filter performance was evaluated 

on the custom path for PI controller as it was affected the most by the stray noise. 

6.3.1 Filter Implementation Results for Vehicle Heading 
Estimation 

 
Figure 6-3: Filter Performance for Vehicle Heading Estimation 
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From the figure 6-3, it can be seen that the filter performs well in estimating the 

vehicle heading under noisy conditions. 

As seen in figure 5-7 and 5-8, PI controller was affected the most by the stray 

magnetic fields. So, the navigational performance was also compared for PI 

controller for filtered and non-filtered condition. 

 
Figure 6-4: PI Controller Performance for Filtered Vehicle Heading 

In figure 6-4, the highlighted portion shows that, although the vehicle deviates from 

path, the steering response is not abrupt in nature and is able to smoothly converge 

with the trajectory of the previous controller performance. 
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7 CONCLUSION AND FUTURE SCOPE OF WORK 

In this report, the effects of actuator dynamics and sensor errors for autonomous 

navigation are analyzed for 3 different types of steering controllers. Initial analysis is 

done from experimental data and the factors for poor navigation are identified. Based 

on this, the need for model-based controller analysis was established. 

Sensors, actuators and the vehicle kinematics were modelled based on actual 

component test data followed by the implementation of steering controls i.e. PI, Pure-

Pursuit and Stanley controller along with Speed Controller, Navigation and Waypoint 

monitoring systems. These controllers were tuned for three different path conditions 

with cross-track error as the most important performance metric. 

From the results, it can be seen that all the controllers deviated from the desired path 

and there was an offset between vehicle trajectory and the ideal path. It can be 

concluded that localization using GPS is highly biased by the presence of systematic 

error. When comparing the response or control action of the controllers, Stanley 

controller and Pure-Pursuit controller were superior in performance as compared to PI 

controller. However, all the steering controllers were affected by stray magnetic fields, 

PI controller being affected the most due to the absence of path dynamics in the control 

law. 

It can be seen, that by the application of Sensor Fusion between GPS, Wheel Speed 

Sensor and Accelerometer via. 1D - 2nd Order Kalman Filter, the vehicle positional 

accuracy improves for 1D waypoint tracking, since, the filter was able to estimate the 

position of the vehicle from the noisy measurement. Also, by adding the knowledge of 

GPS systematic error in the filter, accuracy at centimeter level was achieved. It is also 

seen that by applying sensor fusion between Gyroscope and Magnetometer, the yaw or 

vehicle heading output is improved as the estimates are less affected by the stray 

magnetic fields. 

In the future, a learning-based technique will be developed to provide the GPS 

systematic error input for the Kalman Filter under various satellite and climatic 

conditions. This would be followed by the implementation of a 2D Kalman Filter for 

position estimation and localization in X&Y direction. After successful simulation 

work, the model will be modified for implementation on a real time vehicle ECU.  
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9. APPENDIX 

9.1 Python code used for initial vehicle test and analysis  

#Import Libraries 

import Adafruit_BBIO.ADC as ADC 

import Adafruit_BBIO.GPIO as GPIO 

import Adafruit_BBIO.PWM as PWM 

import serial 

import math 

import Adafruit_BBIO.UART as UART 

import time 

from time import sleep 

 

#Initialization of UART 

UART.setup("UART1")  #Initialize UART1 

UART.setup("UART4")  #Initialize UART4 

ser=serial.Serial('/dev/ttyO1',19200) #Initialize Serial Port at 19200 for Garmin GPS 

ser1=serial.Serial('/dev/ttyO4',115200) #Initialize Serial Port at 115200 for UM7 

 

#Assign DI, DO and PWM 

start_button="P8_8" 

okled_pin="P8_10" #red LED 

runled_pin="P8_12" #yellow LED 

esc_pin = "P9_21" 

ser_pin = "P8_13" 

GPIO.setup(okled_pin, GPIO.OUT) 

GPIO.setup(runled_pin, GPIO.OUT) 

GPIO.setup(start_button, GPIO.IN) 

GPIO.output(okled_pin, GPIO.LOW) 

GPIO.output(runled_pin, GPIO.LOW) 

 

#Reset PWM to default conditions 

dc_fbeep = 13.93 

dc_stop=11 

ser_dc = 26.2  

esc_f=90.9 

ser_f=181.2 

PWM.start(esc_pin, dc_fbeep, 90.9) #starting frequency and duty cycle for esc_pin 

time.sleep(3) 

PWM.start(ser_pin, ser_dc, 181.2) #starting frequency and duty cycle for ser_pin 

time.sleep(0.1) 

PWM.set_duty_cycle(esc_pin,float(dc_fbeep)) 

PWM.set_duty_cycle(ser_pin,float(ser_dc)) 



59 

PWM.stop(esc_pin) 

PWM.stop(ser_pin) 

 

#Initialize ESC and servo 

PWM.start(esc_pin, dc_fbeep, 90.9) 

time.sleep(3) 

PWM.start(ser_pin, ser_dc, 181.2) #starting duty cycle for ser_pin 

throttle=30 #Percentage of throttle 

throttle_dc=(0.0107*throttle)+13.93 #Throttle to duty cycle Linear Map 

steering_angle=0 # Initial steering position 

ser_dc=(0.1667*steering_angle)+26.2 #Steering Angle to duty cycle Linear Map 

 

#Open file for write 

f=open("Test.txt","a") 

f.write("LoopTime WaypointNo. CurrLat CurrLong TargetLat TargetLong TargetHeading 

CurrentHeading HeadingError distanceToTarget Speed Yaw_rate Ax Ay Az Magx Magy 

Magz\n") 

 

# Way point/map parameters 

WAYPOINT_DIST_TOLERANCE = 2 

HEADING_TOLERANCE = 10 

TarLat = [47.169502,47.169640,47.169795,47.169917,47.169934] 

TarLong = [-88.507541,-88.507583,-88.507640,-88.507768,-88.508037] 

x0 = 47.169502    # Vehicle start point   

y0 = -88.507711  

n=4 #number of waypoints, zero position being the first waypoint 

i=0 

t1=0 

t2=0 

 

#Empty the serial buffers for serial input 

ser.flushInput() 

ser.flushoutput() 

 

#General Parameters 

gpscount=3 

count=1 

d0=0    #starting point distance 

d_cal=0 

delta=0 

starttime=0 

looptime=0 

z=1 

speed=0 

integral=0 
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#Class for GPS Data Read 

class GPS: 

 def read(self): 

  ser.flushInput() 

  ser.flushOutput() 

  while ser.inWaiting()==0: 

   pass 

  self.NMEA1=ser.readline() 

  while ser.inWaiting()==0: 

   pass 

  self.NMEA2=ser.readline() 

  NMEA1_array=self.NMEA1.split(',') 

  NMEA2_array=self.NMEA2.split(',') 

 

  if NMEA1_array[0]=='$GPGGA': 

   self.latDeg=NMEA1_array[2][:-8] 

   self.latMin=NMEA1_array[2][-8:] 

   self.latHem=NMEA1_array[3] 

   self.lonDeg=NMEA1_array[4][:-8] 

   self.lonMin=NMEA1_array[4][-8:] 

   self.lonHem=NMEA1_array[5] 

   if NMEA1_array[7]==' ' or NMEA1_array[7]==0: 

    self.sat=0 

   else: 

    self.sat=NMEA1_array[7] 

   

  if NMEA2_array[0]=='$GPRMC':   

   self.latDeg=NMEA2_array[3][:-8] 

   self.latMin=NMEA2_array[3][-8:] 

   self.latHem=NMEA2_array[4] 

   self.lonDeg=NMEA2_array[5][:-8] 

   self.lonMin=NMEA2_array[5][-8:] 

   self.lonHem=NMEA2_array[6] 

   if NMEA2_array[7]==' ' or NMEA2_array[7]==0: 

    self.speed=0 

   else: 

    self.speed=NMEA2_array[7] 

    

  if NMEA2_array[0]=='$GPGGA': 

   self.latDeg=NMEA2_array[2][:-8] 

   self.latMin=NMEA2_array[2][-8:] 

   self.latHem=NMEA2_array[3] 

   self.lonDeg=NMEA2_array[4][:-8] 

   self.lonMin=NMEA2_array[4][-8:] 

   self.lonHem=NMEA2_array[5] 
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   if NMEA2_array[7]==' ' or NMEA2_array[7]==0: 

    self.sat=0 

   else: 

    self.sat=NMEA2_array[7] 

   

  if NMEA1_array[0]=='$GPRMC':   

   self.latDeg=NMEA1_array[3][:-8] 

   self.latMin=NMEA1_array[3][-8:] 

   self.latHem=NMEA1_array[4] 

   self.lonDeg=NMEA1_array[5][:-8] 

   self.lonMin=NMEA1_array[5][-8:] 

   self.lonHem=NMEA1_array[6] 

   if NMEA1_array[7]==' ' or NMEA1_array[7]==0: 

    self.speed=0 

   else: 

    self.speed=NMEA1_array[7] 

 

#Class for IMU Data Read 

class UM7(): 

 def read(self): 

  ser1.flushInput() 

  ser1.flushOutput() 

  ser1.flushInput() 

  ser1.flushOutput() 

  time.sleep(0.1) #Time delay to serial input / output buffers 

   

  while ser1.inWaiting()==0: 

    pass 

  self.NMEA3=ser1.readline()      #Read NMEA1  

  NMEA3_array=self.NMEA3.split(',') 

   

  while ser1.inWaiting()==0: 

    pass 

  self.NMEA4=ser1.readline()      #Read NMEA2 

  NMEA4_array=self.NMEA4.split(',') 

   

  while ser1.inWaiting()==0: 

    pass 

  self.NMEA5=ser1.readline()      #Read NMEA3 

  NMEA5_array=self.NMEA5.split(',') 

   

  while ser1.inWaiting()==0: 

    pass 

  self.NMEA6=ser1.readline()      #Read NMEA4 

  NMEA6_array=self.NMEA6.split(',') 
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  if NMEA3_array[0]=='$PCHRP': # Statement to check the condition of 

first NMEA sentence 

   if NMEA3_array[0]=='$PCHRP': 

    self.yaw=NMEA3_array[7] #Yaw or current heading 

    

   if NMEA4_array[0]=='$PCHRS': 

    self.yaw_rate=NMEA4_array[5] #Yaw Rate 

      

   if NMEA5_array[0]=='$PCHRS': 

    self.ax=NMEA5_array[3] #Acceleration in X Direction 

    self.ay=NMEA5_array[4] #Acceleration in Y Direction 

    self.az=NMEA5_array[5] #Acceleration in Z Direction 

      

   if NMEA6_array[0]=='$PCHRS': 

    self.magx=NMEA6_array[3] #Mag Sensor value in X 

Direction 

    self.magy=NMEA6_array[4] #Mag Sensor value in Y 

Direction 

    self.magz=NMEA6_array[5] #Mag Sensor value in Z 

Direction 

    

 

myGPS=GPS() 

imu=UM7() 

time.sleep(1) 

lat=0 

sat=0 

flag=0 

total_gain=0 

j_max=100 

sum_yaw_rate=0 

sum_ax=0 

sum_ay=0 

sum_az=0 

 

# Self routine having 100 iterations to check for GPS and IMU data integrity 

for j in range(0,j_max): 

 myGPS.read() 

 imu.read() 

 latprev=lat 

 myGPS.latMin=float(myGPS.latMin) 

 myGPS.latDeg=float(myGPS.latDeg) 

 myGPS.latMin = myGPS.latMin * 0.01666667     #Convert Minutes to Degrees 

for latitude 
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 lat = myGPS.latDeg + myGPS.latMin 

 GPIO.output(okled_pin, GPIO.LOW) 

 status=0 

 

 

if lat-latprev!=0: #Check GPS Data before proceeding 

 GPIO.output(okled_pin, GPIO.HIGH) 

 flag=1 

else: 

 GPIO.output(okled_pin, GPIO.LOW) 

 flag=0 

  

while(status==0 and flag=1): #Wait for the start button to be switched on 

 status=GPIO.input(start_button) 

 GPIO.output(okled_pin, GPIO.HIGH) 

 old_status=status 

 time.sleep(0.5) 

 

# Accelerometer and Gyroscope Self-Calibration routine  

for j in range(0,j_max): 

 imu.read() 

  

 yaw_rate=float(imu.yaw_rate) 

 sum_yaw_rate=sum_yaw_rate+yaw_rate 

  

 ax=float(imu.ax)*9.81 

 sum_ax=sum_ax+ax 

  

 ay=float(imu.ay)*9.81 

 sum_ay=sum_ay+ay 

  

 az=float(imu.az)*9.81 

 sum_az=sum_az+az 

 

yaw_rate_cal=sum_yaw_rate/j_max 

ax_cal=sum_ax/j_max 

ay_cal=sum_ay/j_max 

az_cal=sum_az/j_max 

  

#Main loop 

while(i<=n and status==1): 

 GPIO.output(okled_pin, GPIO.LOW) 

 GPIO.output(runled_pin, GPIO.HIGH) 

 PWM.set_duty_cycle(esc_pin,float(throttle_dc)) 

 t1=time.time() 
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 imu.read() 

 curr_hdng_deg=float(imu.yaw) 

 if curr_hdng_deg<0: 

  curr_hdng_deg=curr_hdng_deg+360 

 yaw_rate=(float(imu.yaw_rate))-yaw_rate_cal 

 ax=(float(imu.ax)*9.81)-ax_cal 

 ay=(float(imu.ay)*9.81)-ay_cal 

 az=(float(imu.az)*9.81)-az_cal 

 magx=float(imu.magx) 

 magy=float(imu.magy) 

 magz=float(imu.magz) 

 

 if z==1: 

  x = x0   # Vehicle start point #center point of the APSRC road 

  y = y0   

  d = d0 

  z=z+1 

 else: 

  myGPS.read() 

  myGPS.latMin=float(myGPS.latMin) 

  myGPS.lonMin=float(myGPS.lonMin) 

  myGPS.latDeg=float(myGPS.latDeg) 

  myGPS.lonDeg=float(myGPS.lonDeg) 

  speed=round(((float(myGPS.speed))*0.514444),2) 

  sat=float(myGPS.sat) 

 

  myGPS.latMin = myGPS.latMin * 0.01666667     #Convert Minutes to 

Degrees for latitude 

  myGPS.lonMin = myGPS.lonMin * 0.01666667     #Convert Minutes to 

Degrees for longitude 

  CurrLat = myGPS.latDeg + myGPS.latMin 

  CurrLong = myGPS.lonDeg + myGPS.lonMin 

  if myGPS.latHem=='S': #Convert latitude to -ve if in southern 

hemisphere 

   CurrLat = CurrLat * -1 

  if myGPS.lonHem=='W': #Convert longitude to -ve if in western 

hemisphere 

   CurrLong = CurrLong * -1 

  x=CurrLat 

  y=CurrLong 

  

 #Now calculations for Distance to Target 

 TarLat1 = math.radians(TarLat[i]) 

 TarLong1 = math.radians(TarLong[i]) 

 CurrLat1 = math.radians(x) 
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 CurrLong1 = math.radians(y) 

 delta = CurrLong1 - TarLong1 

 sdlong = math.sin(delta) 

 cdlong = math.cos(delta) 

 slat1 = math.sin(CurrLat1) 

 clat1 = math.cos(CurrLat1) 

 slat2 = math.sin(TarLat1) 

 clat2 = math.cos(TarLat1) 

 delta1 = (clat1 * slat2) - (slat1 * clat2 * cdlong) 

 delta1 = math.pow(delta1,2)  

 temp = clat2 * sdlong 

 delta1 = delta1 + math.pow(temp,2) 

 delta1 = math.sqrt(delta1) 

 denom = (slat1 * slat2) + (clat1 * clat2 * cdlong) 

 delta2 = math.atan2(delta1, denom) 

 distanceToTarget = delta2 * 6372795 

      

 #Now calculations for Target Heading 

 dlon = TarLong1-CurrLong1 

 a1 = math.sin(dlon) * math.cos(TarLat1) 

 a2 = math.sin(CurrLat1) * math.cos(TarLat1) * math.cos(dlon) 

 a2 = math.cos(CurrLat1) * math.sin(TarLat1) - a2 

 a2 = math.atan2(a1, a2) 

 if a2 < 0.0: 

  a2 = a2 + (2*math.pi) 

 targetHeading = math.degrees(a2) 

  

 #Calculate heading error for PID controller 

 headingerror = targetHeading - curr_hdng_deg 

  

 # adjust for compass wrap 

 if headingerror < -180:      

  headingerror = headingerror+360 

 if headingerror > 180: 

  headingerror = headingerror-360 

  

 # Steering system PID controller 

 p_gain = (headingerror*0.4) 

 integral = integral + headingerror*looptime 

 i_gain = 0.001*integral 

 # i_gain=0 

 total_gain=p_gain+i_gain 

 if distanceToTarget > WAYPOINT_DIST_TOLERANCE: 

  if abs(headingerror) <= HEADING_TOLERANCE: 
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   steering_angle=0 # -30 Degrees is extreme left and +30 degrees is 

extreme right 

   ser_dc==(0.1667*steering_angle)+26.2 

  else: 

   steering_angle = steering_angle + ((total_gain)) 

   ser_dc==(0.1667*steering_angle)+26.2 

   

  # Logic to Saturate the duty cycle within operating range  

  #21 being extreme left and 31 being extreme right # If heading error is 

negative turn servo to left and vice versa 

  if ser_dc<=21: 

   ser_dc = 21   

  if ser_dc>=31: 

   ser_dc = 31 

  PWM.set_duty_cycle(ser_pin,float(ser_dc)) 

  time.sleep(0.1) 

 elif distanceToTarget <= WAYPOINT_DIST_TOLERANCE: 

  PWM.set_duty_cycle(esc_pin,float(dc_stop)) 

  time.sleep(3) 

  i=i+1    

  

 #Calculation of loop-time 

 t2=time.time() 

 looptime=t2-t1 

  

 # Write to file 

 f.write("%0.2f %0.1f %0.8f %0.8f %0.8f %0.8f %0.2f %0.2f %0.2f %0.2f %0.2f 

%0.4f %0.2f %0.2f %0.2f %0.2f %0.2f %0.2f\n" 

%(looptime,i,x,y,TarLat[i],TarLong[i],curr_hdng_deg,targetHeading,headingerror,distan

ceToTarget,speed,yaw_rate,ax,ay,az,magx,magy,magz)) 

  

 # Monitor Emergency Stop Button Status 

 newstatus=GPIO.input(start_button) 

 if newstatus==0: 

  GPIO.output(okled_pin, GPIO.HIGH) 

  GPIO.output(runled_pin, GPIO.LOW) 

  time.sleep(1) 

  break 

while True: 

 PWM.set_duty_cycle(esc_pin,float(dc_stop)) 

 PWM.set_duty_cycle(ser_pin,float(26.2)) 

 PWM.stop(esc_pin) 

 PWM.stop(ser_pin) 

 PWM.cleanup() 

 f.close() 
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9.2 Hardware Specifications 

9.2.1 Controller Specification 

 
Figure 9.2.1.1: Beaglebone Black Micro-Controller - https://beagleboard.org/black  

  

Hardware Details: 

• Processor: AM335x 1GHz ARM® Cortex-A8 

• 512MB DDR3 RAM 

• 4GB 8-bit eMMC on-board flash storage 

• 3D graphics accelerator 

• NEON floating-point accelerator 

• 2x PRU 32-bit microcontrollers 

• USB client for power & communications 

• USB host 

• Ethernet 

• HDMI 

• 2x 46 pin headers 

Software Details: 

• OS: Debian / Ubuntu 

• Coding: C /C++ / Python 

https://beagleboard.org/black
https://www.ti.com/product/am3358
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9.2.2 Sensor Specifications 

GPS – Global Positioning System 

 
Figure 9.2.2.1: GPS - Garmin 18x - 5Hz - https://buy.garmin.com/en-

US/US/p/13195#overview  

 

PHYSICAL CHARACTERISTICS 

Size Φ 61mm , H=19.5mm 

Weight 161.6 grams 

ELECTRICAL CHARACTERISTICS 

Input Voltage 4.0 – 5.5 V 

Input Current 65mA @ 5.0V 

Signal Output Levels Asynchronous Serial, RS 232 

Supported Baud Rates 4800, 9600, 19200, 38400 bps 

ENVIRONMENTAL CHARACTERISTICS 

Operating Temperature -30°C to +80°C 

Storage Temperature -40°C to +90°C 

GPS PERFORMANCE 

Reacquisition Time  < 2 seconds 

Update Rate 5 Hz 

Accuracy: GPS Standard Positioning Service (SPS) < 15 mtrs. 95% 

Accuracy: Wide Area Augmentation System (WAAS) < 3 mtrs. 95% 

Table 9.2.2.1: GPS - Garmin 18x - 5Hz Specification - 

http://static.garmin.com/pumac/GPS_18x_DoC.pdf 

Commonly Used Output Data – Latitude, Longitude, Hemisphere, GPS Fix Type, No. of 

Satellites, Speed 

Output Type – NMEA Sentences or Binary Output 

https://buy.garmin.com/en-US/US/p/13195#overview
https://buy.garmin.com/en-US/US/p/13195#overview
http://static.garmin.com/pumac/GPS_18x_DoC.pdf


69 

IMU – Inertial Measurement Unit 

 
Figure 9.2.2.2: IMU - Redshift Labs UM7 - https://www.redshiftlabs.com.au/sensors/um7  

 

PHYSICAL CHARACTERISTICS 

Dimensions 27mm x 26mm x 6.5mm 

Weight 11 grams 

ENVIRONMENTAL CHARACTERISTICS 

Operating Temperature -40°C to +85°C 

PERFORMANCE 

Max. Binary Packet Output Rate 255 Hz. 

Max. NMEA Packets Output Rate 100 Hz 

HEADING SPECIFICATIONS 

Static Accuracy – Pitch and Roll ± 1 Degree * 

Dynamic Accuracy – Pitch and Roll ± 3 Degree * 

Static Accuracy – Yaw or Current Heading ± 3 Degree * 

Dynamic Accuracy – Yaw or Current Heading ± 5 Degree * 

Repeatability 0.5 Degree * 

Resolution < 0.01 Degree * 

GYROSCOPE SPECIFICATIONS 

Rate Noise Density 0.005 deg/s/rtHz * 

Total RMS Noise 0.06 deg/s-rms * 

Dynamic Range ± 2000 Deg/s 

Non-Linearity 0.2% 

ACCELEROMETER SPECIFICATIONS 

Rate Noise Density 400 µg / rtHz * 

Dynamic Range ± 8 g 

https://www.redshiftlabs.com.au/sensors/um7
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MAGNETOMETER SPECIFICATIONS 

Initial Scale Factor Tolerance ± 4% 

Initial Bias Tolerance ± 300 µT 

Dynamic Range ± 1200 µT 

ELECTRICAL SPECIFICATIONS 

Input Voltage 5 V 

Current Consumption 50mA @ 5V 

Signal Output 3.3V TTL UART, 3.3V SPI 

Default Baud rate 115200 bps 

Table 9.2.2.2: IMU - Redshift Labs UM7 - Technical Specification - 

https://www.redshiftlabs.com.au/files/index/download/id/1471348551/ 

 

* Data taken from catalog, actual parameters depend on installation and other operating 

conditions. Always perform tests on sensors to analyze data before using it for 

experimentation.  Other specs. can be taken from the datasheet 

Commonly Used Output Data – Euler Angles (Yaw), Gyro Data, Accelerometer Data 

Output Type – NMEA Sentences or Binary Output 

9.2.3 Test Vehicle Specification  

 
Figure 9.2.3.1: Test Vehicle - https://www.horizonhobby.com/desert-buggy-xl-e--1-5th-

4wd-eletric-rtr---black-los05012t1  

• Vehicle Type – 1/5 Scale RC Car, 4WD, Electric, 13.8 Kg. (30.5 lbs.), 844 x 

501 x 308mm 

• Motor – Non-Sensor Brushless Type, 800Kv, built in 160A Electronic Speed 

Controller ESC, Motor Gear Ratio – 3.33:1  

• Drivetrain – 4WD, Final Drive Ratio – 12.81 : 1 

• Steering Servo – Torque: 30 kg-cm @ 6.0V  

                            Response: 0.27 Sec / 60 Degree (On Dirt) 

https://www.redshiftlabs.com.au/files/index/download/id/1471348551/
https://www.horizonhobby.com/desert-buggy-xl-e--1-5th-4wd-eletric-rtr---black-los05012t1
https://www.horizonhobby.com/desert-buggy-xl-e--1-5th-4wd-eletric-rtr---black-los05012t1
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