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THE CATALAN CASE OF ARMSTRONG’S CONJECTURE ON

SIMULTANEOUS CORE PARTITIONS

RICHARD P. STANLEY AND FABRIZIO ZANELLO

Abstract. A beautiful recent conjecture of D. Armstrong predicts the average size of a

partition that is simultaneously an s-core and a t-core, where s and t are coprime. Our goal

is to prove this conjecture when t = s + 1. These simultaneous (s, s + 1)-core partitions,

which are enumerated by Catalan numbers, have average size
(

s+1

3

)

/2.

1. Introduction and some simple cases

Let λ = (λ1, λ2, . . . , λm) be a partition of size n, i.e., the λi are weakly decreasing positive

integers summing to n. We can represent λ by means of its Young (or Ferrers) diagram,

which consists of a collection of left-justified rows where row i contains λi cells. To each of

these cells B one associates its hook length, that is, the number of cells in the Young diagram

of λ that are directly to the right or below B (including B itself). Figure 1 represents

the Young diagram of the partition λ = (5, 3, 3, 2) of size 13; the number inside each cell

represents its hook length.

Let s be a positive integer. We say that λ is an s-core if λ has no hook of length equal

to s (or equivalently, equal to a multiple of s). For instance, from Figure 1 we can see that

λ = (5, 3, 3, 2) is an s-core for s = 6 and for all s ≥ 9. Finally, λ is an (s, t)-core if it is

simultaneously an s-core and a t-core.

The theory of (s, t)-cores has been the focus of much interesting research in recent years

(see [5, 6, 8] for some of the main results). In particular, when s and t are coprime, there

exists only a finite number of (s, t)-core partitions. In fact, there are exactly
(

s+t

s

)

/(s + t)

such cores (see [5]), the largest of which has size (s2−1)(t2−1)/24 [8]. More generally, a nice

result of J. Anderson [5] provides a bijective correspondence between (s, t)-cores and order

ideals of the poset of the positive integers that are not contained in the numerical semigroup

generated by s and t, which we write as P(s,t). The partial order on P(s,t) is determined by

specifying that a covers b whenever a− b equals either s or t. (Our poset terminology follows

[9, Chap. 3].)

For instance, let s = 3 and t = 5. Then P(3,5) = {1, 2, 4, 7}, where 7 > 4 > 1 and 7 > 2.

Figure 2 represents the Hasse diagram of the poset P(3,5), rotated 45◦ counterclockwise from
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Figure 1. The Young diagram of λ = (5, 3, 3, 2). The number inside each

cell indicates its hook length.
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Figure 2. The Hasse diagram of the poset P(3,5).

the usual convention. The order ideals of P(3,5) are the following 1
3+5

(

3+5
3

)

= 7 subsets:

∅, {1}, {2}, {2, 1}, {4, 1}, {4, 2, 1}, and {7, 4, 2, 1}. Notice that from this diagram it is clear

that if an element a of P(3,5) belongs to a given order ideal I, then all elements immediately

to the right or below a also belong to I.

Anderson’s result then gives that (s, t)-cores correspond bijectively to the order ideals of

P(s,t) by associating the ideal {a1, . . . , aj}, where a1 > · · · > aj , to the (s, t)-core partition

(a1 − (j − 1), a2 − (j − 2), . . . , aj−1 − 1, aj). For instance, the (3, 5)-cores are the following

seven partitions: ∅ (corresponding to the order ideal ∅ of P(3,5)), (1) (corresponding to {1}),

(2) (corresponding to {2}), (1, 1) (corresponding to {2, 1}), (3, 1) (corresponding to {4, 1}),

(2, 1, 1) (corresponding to {4, 2, 1}), and (4, 2, 1, 1) (corresponding to {7, 4, 2, 1}).

The following conjecture of D. Armstrong, informally stated sometime in 2011 and then

recently published in [6], predicts, for any s and t coprime, a surprisingly simple formula for

the average size of an (s, t)-core.

Conjecture 1.1. For any coprime positive integers s and t, the average size of an (s, t)-core

is (s+ t+ 1)(s− 1)(t− 1)/24. Equivalently, the sum of the sizes of all (s, t)-cores is

(1)
(s+ t + 1)(s− 1)(t− 1)

24(s+ t)

(

s+ t

s

)

.

For instance, the seven (3, 5)-cores computed above are of size 0, 1, 2, 2, 4, 4, and 8, with

average size 3, as predicted by Armstrong’s conjecture.

One of the interesting aspects of this conjecture, besides the partition-theoretic result

that it predicts, is the extra combinatorial information that it would imply on numerical

semigroups generated by two elements. In fact, even though one would generally expect
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these semigroups to be very well understood, Armstrong’s conjecture had until now resisted

all attempts of significant progress.

The main goal of this paper is to show the conjecture in what is probably its most inter-

esting case, namely that of (s, s+1)-cores. The number of these cores is the Catalan number

Cs := 1
s+1

(

2s
s

)

, and the corresponding posets P(s,s+1) present a particularly nice structure,

which will allow us to use induction in the proof.

We now wrap up this first section by briefly discussing Armstrong’s conjecture in a few

initial cases. For any given s, in principle the conjecture can be verified computationally for

all (s, t)-cores, given how explicitly one can determine these cores by means of Anderson’s

bijection. In fact, the authors of [6] indicate that C. Hanusa has verified the conjecture

for small values of s, though they provide no details in the paper. (We thank C. Hanusa

for subsequently informing us that he had checked the conjecture on Mathematica for all

(s,ms+1)-cores and (s,ms−1)-cores, when s ≤ 10.) We also wish to remark here that, since

this paper has appeared as a preprint, lots of work has already been done that has applied

or extended our ideas. For instance, for a nice proof of the case (s,ms + 1) of Armstrong’s

conjecture, for arbitrary s and m ≥ 1, see [3], while for two interesting works on multiple

simultaneous cores, see [4, 11]. Instead, for a complete proof of the analogous of Armstrong’s

conjecture for the case of self-conjugate (s, t)-cores (also stated in [6]), see [7].

In this section, we will just present a short proof of the case (3, t) of Armstrong’s conjecture

(the case (2, t) being trivial), which also gives us the opportunity to state a simple but useful

fact on arbitrary (s, t)-cores that seems to have not yet been recorded in the literature. We

will provide this lemma without proof, since the argument is analogous to the classical proof

that if λ is an s-core, then it is also an ms-core, for all m ≥ 1 (see e.g. the first author’s

[10], Exercise 7.60 and its solution on pp. 518–519). In principle, the use of this lemma

would considerably simplify a “brute-force” proof for any given s, and indeed the case s = 4

is still relatively quick to prove along the same lines; nonetheless, for higher values of s the

computations remain extremely unpleasant.

Lemma 1.2. If a partition λ is an (s, t)-core, then it is also an (s, s+ t)-core.

Proposition 1.3. Armstrong’s conjecture holds for all (3, t)-cores.

Proof. Let s = 3. We will show Formula (1) for t = 3n − 2, the case t = 3n − 1 being

entirely similar. Notice that by Lemma 1.2 all (3, 3n− 2)-cores are (3, 3n + 1)-cores. Thus

by induction, proving the result is now equivalent to showing that the sum of the sizes of

the (3, 3n+1)-cores that are not also (3, 3n−2)-cores is the difference between the two total

sums predicted by Armstrong’s conjecture, namely

∆(n) =
(3n+ 5) · 2 · 3n

24(3n+ 4)

(

3n + 4

3

)

−
(3n + 2) · 2 · (3n− 3)

24(3n+ 1)

(

3n+ 1

3

)

=

(

3n+ 2

3

)

.

Figure 3 represents the Hasse diagrams of P(3,10) and P(3,13). From these diagrams, we can

see that the order ideals of P(3,13) that are not also in P(3,10) are exactly the six principal
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Figure 3. The Hasse diagrams of P(3,10) (on the left) and P(3,13).

ideals generated by 11, 14, 17, 20, 23, and 10, plus the seven ideals generated by {2, 10},

{5, 10}, {8, 10}, {11, 10}, {14, 10}, {17, 10}, and {20, 10}.

In a similar fashion, it can be seen that the order ideals of P(3,3n+1) but not of P(3,3n−2)

are exactly the n + 2 principal ideals generated by 3n − 1, 3n + 2, ..., 6n − 1, and 3n − 2,

and the 2n− 1 ideals generated by {2, 3n− 2}, {5, 3n− 2}, ..., {6n− 4, 3n− 2}.

A standard computation now gives that ∆(n), i.e., the sum of the elements of the above

order ideals I minus
(

#I

2

)

, where #I denotes the cardinality of I, is given by

∆(n) = (2 + 5 + · · ·+ (3n− 1)) +

2n−1
∑

i=n

[(2 + 5 + · · ·+ (3i+ 2)) + (1 + 4 + · · ·+ 3(i− n) + 1)]

+2n(1 + 4 + · · ·+ (3n− 2)) +

2n−2
∑

i=0

(2 + 5 + · · ·+ (3i+ 2))

−

[

(

n

2

)

+

2n−1
∑

i=n

(

2i− n+ 2

2

)

+

2n−1
∑

i=0

(

n+ i

2

)

]

.

Showing now that the right-hand-side is equal to
(

3n+2
3

)

is a routine task that we omit.

This completes the proof. �

We only remark here that using Lemma 1.2, Armstrong’s conjecture can also be verified

relatively quickly for s = 4, i.e., for all (4, 2n + 1)-cores (though the computations are of

course already much more tedious than for s = 3). In fact, by Formula (1), in this case one

has to show that the sum of the sizes of all (4, 2n + 1)-cores equals S(n) := (4n + 6)
(

n+3
4

)

.
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Figure 4. The Hasse diagram of T5.

It is easy to check (see also [1]) that, for all n ≥ 7, the sequence S(n) satisfies the following

curious recursive relation:
6
∑

i=0

(−1)i
(

6

i

)

S(n− i) = 0.

It would be very interesting to combinatorially explain this identity in the context of

(4, 2n+ 1)-cores, and thus give an elegant proof of Armstrong’s conjecture for s = 4.

2. The Catalan case

The goal of this section is to show Armstrong’s conjecture for (s, s+1)-cores. We denote by

Ts := P(s,s+1) the corresponding poset according to Anderson’s bijection [5]. For simplicity,

we will draw the Hasse diagram of Ts from top to bottom; thus, each element of Ts covers

the two elements immediately below, and the elements increase by s at each step up and to

the left, and by s+ 1 at each step up and to the right. (See Figure 4 for the Hasse diagram

of T5.)

Let us define the functions

gj :=
j(j − 1)

12

(

2j

j

)

,

fj :=
j2 + 5j + 2

8j + 4

(

2j + 2

j + 1

)

− 4j,

hj := 22j−1 −

(

2j + 1

j

)

+

(

2j − 1

j − 1

)

,

where by convention we set h0 := 0. We need the following two identities. We thank Henry

Cohn for verifying them for us on Maple.

Lemma 2.1.

fs =
s
∑

i=1

Cs−i(2fi−1 + hi−1).

Proof. This is the Maple code that verifies the identity (it gives 0 as output):

g := j -> binomial(2*j,j)*j*(j-1)/12;

f := j -> binomial(2*j+2,j+1)*(ĵ 2+5*j+2)/(8*j+4)-4̂ j;
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h := j -> 2̂ (2*j-1)-binomial(2*j+1,j)+binomial(2*j-1,j-1);

C := j -> binomial(2*j,j)/(j+1);

simplify(sum(C(s-i)*(2*f(i-1)+h(i-1)),i=2..s)-f(s)); �

Lemma 2.2.

gs =

s
∑

i=1

2Cs−igi−1 + 2(s− i+ 1)Cs−ifi−1 + (s− i+ 3)Cs−ihi−1 + (i− 1)Cs−iCi−1 − hs−ihi−1.

Proof. This is the Maple code that verifies the identity (it gives 0 as output):

g := j -> binomial(2*j,j)*j*(j-1)/12;

f := j -> binomial(2*j+2,j+1)*(ĵ 2+5*j+2)/(8*j+4)-4̂ j;

h := j -> 2̂ (2*j-1)-binomial(2*j+1,j)+binomial(2*j-1,j-1);

C := j -> binomial(2*j,j)/(j+1);

simplify(sum(2*C(s-i)*g(i-1)+2*(s-i+1)*C(s-i)*f(i-1)+(s-i+3)*C(s-i)*h(i-1) + (i-1)*C(s-i)*C(i-

1)-h(s-i)*h(i-1),i=2..s-1) + 2*C(0)*g(s-1)+2*(1)*C(0)*f(s-1)+(3)*C(0)*h(s-1)+ (s-1)*C(0)*C(s-

1) - g(s)); �

Theorem 2.3. Armstrong’s conjecture holds for all (s, s+ 1)-cores.

Proof. For any given s, and for any weight function w : Ts → Z, define the two functions

fs(w) :=
∑

I∈J(Ts)

∑

a∈I

w(a),

gs(w) :=
∑

I∈J(Ts)

(

∑

a∈I

w(a)−

(

#I

2

)

)

= fs(w)−
∑

I∈J(Ts)

(

#I

2

)

,

where as usual J(P ) denotes the set of order ideals of a poset P .

We consider three weight functions on Ts. The weight σ is the “standard weight” that

associates, to each element of Ts, itself as a weight; i.e., σ(a) = a, for all a ∈ Ts. The weight

τ is identically 1; i.e., τ(a) = 1, for all a ∈ Ts. Finally, ρ records the ranks of the elements of

Ts, when we see this latter as a ranked poset whose minimal elements have rank 0. Figure 5

represents the Hasse diagrams of T5, where the elements are being weighted according to τ

and ρ.

Showing Armstrong’s conjecture for (s, s + 1)-cores in the form of Formula (1) is tanta-

mount to proving that

gs(σ) = gs =
s(s− 1)

12

(

2s

s

)

.

Notice that the elements of rank 0 of Ts are 1, 2, . . . , s − 1. We can partition J(Ts) as

J(Ts) =
⋃

i Ji(Ts), where Ji(Ts) is the set of those order ideals of Ts whose least element that

they do not contain is i. Notice that either 1 ≤ i ≤ s− 1, or we are considering order ideals
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Figure 5. The poset T5 with weights ρ(a) on the left and τ(a) on the right.

whose least missing element i (if any) has positive rank. With some abuse of notation, in

this latter case we set by convention i := s, so that we can write

J(Ts) =
s
⋃

i=1

Ji(Ts).

Notice that, given i, the elements I of Ji(Ts) must contain all of 1, 2, . . . , i − 1, cannot

contain any element covering i (this is an empty condition for i = s), and may or may not

contain any other element. Figure 6 gives the Hasse diagram of T10; for i = 5, it indicates by

squares the elements of T10 that must belong to any given order ideal I ∈ J5(T10), by open

circles the elements that cannot be in I, and by solid circles the elements that may or may

not be in I.

It follows that any given order ideal I ∈ Ji(Ts) can be partitioned into the disjoint union

of two order ideals, say I1 and I2, plus the elements 1, 2, . . . , i− 1. Notice that, in the Hasse

diagram of Ts, I1 belongs to a poset that is isomorphic to Ti−1 and sits to the left of i

(starting in rank one), and I2 belongs to a poset that is isomorphic to Ts−i and sits to the

right of i. The posets T1 and T0, which arise when i = 1, i = 2, i = s − 1, or i = s, are

empty. (See again Figure 6 for the case n = 10 and i = 5.)

Given this, it is a simple exercise to show that the sum of the elements of Ts that belong

to a given order ideal I = I1 ∪ I2 ∪ {1, 2, . . . , i− 1} ∈ J(Ts) is given by:

∑

a∈I

σ(a) =
∑

a∈I1

w(a) +
∑

a∈I2

w(a) +

(

i

2

)

,

where the weight function w is defined as

w := σ + (s+ 1)τ + (s− i+ 1)ρ

over I1, and by

w := σ + iτ + iρ

over I2. Further, notice that, given i, we can choose the order ideals I1 ∈ J(Ti−1) and

I2 ∈ J(Ts−i) independently. Therefore, the elements a ∈ I1 will appear a total of Cs−i times

in the order ideals I of Ts, and similarly, the elements a ∈ I2 will appear a total of Ci−1

times in the order ideals I of Ts.
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Figure 6. The possible elements of the order ideals I ∈ J5(T10). Elements

that must appear in I are indicated by squares, that cannot appear by open

circles, and that may or may not appear by solid circles.

Therefore, the contribution of any given i to the desired function gs(σ) is given by

(2) m(i, s)−
∑

I1∈J(Ti−1),I2∈J(Ts−i)

(

#I1 +#I2 + i− 1

2

)

,

where we have

m(i, s) :=
∑

I1∈J(Ti−1)

Cs−i

(

∑

a∈I1

w(a) +

(

i

2

)

)

+
∑

I2∈J(Ts−i)

Ci−1

∑

a∈I2

w(a)

= Cs−i(fi−1(σ) + (s+ 1)fi−1(τ) + (s− i+ 1)fi−1(ρ))

+Cs−iCi−1

(

i

2

)

+ Ci−1(fs−i(σ) + ifs−i(τ) + ifs−i(ρ)).

Let us now consider, again for a fixed i, the term that is being subtracted in Formula (2).

Notice that
(

#I1 +#I2 + i− 1

2

)

=

(

#I1
2

)

+

(

#I2
2

)

+(i−1)#I1+(i−1)#I2+(#I1)(#I2)+

(

i− 1

2

)

.

Thus, once we sum over all I1 and I2, similar considerations to the above on the number

of such order ideals give us that
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∑

I1∈J(Ti−1),I2∈J(Ts−i)

(

#I1 +#I2 + i− 1

2

)

=
∑

I1∈J(Ti−1)

Cs−i

((

#I1
2

)

+ (i− 1)#I1

)

+
∑

I2∈J(Ts−i)

Ci−1

((

#I2
2

)

+ (i− 1)#I2

)

+





∑

I1∈J(Ti−1)

#I1









∑

I2∈J(Ts−i)

#I2



+Cs−iCi−1

(

i− 1

2

)

.

Essentially by definition, we have
∑

I1∈J(Ti−1)
#I1 = fi−1(τ), and likewise,

∑

I2∈J(Ts−i)
#I2 =

fs−i(τ). Also, it is a known fact (see e.g. [2]) that the function fj(τ) appearing in the above

formula for m(i, s) satisfies

fj(τ) = 22j−1 −

(

2j + 1

j

)

+

(

2j − 1

j − 1

)

.

As for determining fj(ρ), by employing the above decomposition of the order ideals I and

summing over all i, with a similar argument we can see that:

fs(ρ) =
s
∑

i=1

Cs−i(fi−1(ρ) + fi−1(τ)) + Ci−1fs−i(ρ),

which, by rearranging the indices, yields:

fs(ρ) =
s
∑

i=1

Cs−i(2fi−1(ρ) + fi−1(τ)).

Therefore, by induction, if we apply Lemma 2.1 with fj = fj(ρ) and hj = fj(τ), we

promptly get the following formula for fj(ρ):

fj(ρ) =
j2 + 5j + 2

8j + 4

(

2j + 2

j + 1

)

− 4j .

Finally, notice that gi−1(σ) = fi−1(σ)−
∑

I1∈J(Ti−1)

(

#I1
2

)

, and similarly for gs−i(σ).

Therefore, by Formula (2) and the subsequent formula for m(i, s), if we sum over i =

1, 2, . . . , s, after some tedious but routine computations (that include rearranging the indices

where necessary) we obtain:

gs(σ) =

s
∑

i=1

[2Cs−igi−1(σ) + 2(s− i+ 1)Cs−ifi−1(ρ)

+(s− i+ 3)Cs−ifi−1(τ) + (i− 1)Cs−iCi−1 − fi−1(τ)fs−i(τ)].

The theorem now follows by induction on s, if we apply Lemma 2.2 with fj = fj(ρ),

gj = gj(σ), and hj = fj(τ). �
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