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FLUCTUATIONS AND LUCK 
IN DROPLET GROWTH BY 

COALESCENCE 
BY ALEXANDER B. KOSTINSKI AND RAYMOND A . SHAW 

Simple theoretical arguments quantify the "luck" required for warm rain initiation, regardless 
of whether that luck comes from giant nuclei or occasional "fast eddies." 

n a recent article in this magazine (Stevens et al. 
2003) describing a major field campaign devoted 
to the study of stratocumulus clouds, the authors 
noted: 

One of the remarkable impressions left on the inves-
tigators was how the apparent uniformity of the 
cloud top viewed from above could mask enormous 
variations in the microphysical structure within the 
cloud layer. 

How can such "enormous variations" arise from 
seemingly identical mean-field thermodynamic con-
ditions? For example, why does one such stratocumu-
lus cloud drizzle while another one does not? Part of 

the answer, we think, is in pronounced fluctuations 
(deviations from the mean), and methods of statisti-
cal physics may be helpful. In particular, the initia-
tion of drizzle or rain is reminiscent of colliding gas 
molecules insofar as to form a 1-mm raindrop in a 
warm (no ice) cloud requires that a million 10-^m 
droplets coalesce. The case for fluctuations in cloud 
physics is, of course, not new. In fact, the notion of 
statistically fortunate droplets (ones that grow much 
faster than average) is an important part of the cur-
rent understanding as indicated by many texts in 
cloud physics (e.g., Houghton 1985, 272-277; Mason 
1971, 145-155; Pruppacher and Klett 1997, section 
15.3; Rogers and Yau 1989, 134-136; Wallace and 
Hobbs 1977, 172-181; Young 1993, 180-185). Yet, a 
quantitative theory of warm rain initiation remains 
elusive. For example, Blyth et al. (2003) write 

A significant part of precipitation that falls in the 
Tropics is warm rain formed by coalescence of cloud 
droplets. Despite 50 years of research on this topic 
we still do not possess a quantitative understanding 
of the production of warm rain. 

Indeed, most results are not easy to interpret, even 
in the simplest collector drop scenario of one drop 
falling through a cloud of identical, smaller droplets, 
used in Telford's (1955) classic treatment. All of the 
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above-mentioned textbooks resort to computer simu-
lations when examining the role of fluctuations. For 
example, Rogers and Yau (1989) refer to Robertson 
(1974) who used a Monte Carlo simulation to calcu-
late the number of collisions required before the con-
tinuous coalescence equation can be used without se-
rious errors. Because of this almost exclusive reliance 
on computers, statements made in many cloud phys-
ics texts concerning fluctuations are often obscure. 
Consider, for example, the following statement from 
a recent cloud physics text (Young 1993, p. 185) in 
the section on pure stochastic versus quasi-stochas-
tic models (collection refers to collision and coales-
cence): 

This represents an average drop concentration of 
1000 drops per m3. What is the expected range in 
the concentration of drops of this size due to the 
stochastic nature of the process? . . . 1000 ± 10~3 

drops mr3. It may be concluded that the differences 
due to the stochastic nature of the collection pro-
cesses are negligible and that the cloud behavior 
may be adequately described by the quasi-stochastic 
treatment. 

Natural clouds do not, of course, have each cubic 
meter containing exactly a thousand droplets (with 
radius within 48-50 ium) to within 10~3 droplets.1 Such 
confusion about droplet number fluctuations is vex-
ing and may be caused, in part, by the rather compli-
cated formalism that surrounds stochastic coalescence 
(even the terminology is obscure: stochastic, pure sto-
chastic, quasi stochastic, discrete versus continuous 
collection, collection versus coalescence, etc.). This 
has convinced us to adopt, at least as a first step, the 
simpler collector drop scenario in favor of the 
Smoluchowski integro-differential equation ap-
proach. The latter has been the primary focus of re-
search on droplet coalescence in clouds since the 
1960s but it does not provide simple solutions for re-
alistic coalescence rates (kernels) (Drake 1972). Thus, 
we agree with Cotton and Anthes (1989, p. 90), who 
wrote 

However, for complicated cloud or mesoscale mod-
els, there remains a strong desire to develop simpli-
fied techniques for predicting the evolution of the 
droplet spectrum to form rain along with its sedi-
mentation through the cloud. 

This paper represents our attempt to gain physi-
cal insight into the role of fluctuations in droplet 
growth by coalescence. In order to develop simple 
closed-form expressions allowing such insight, 
throughout the paper we seek clarity of the final ap-
proximate expressions, sometimes at the expense of 
details. In particular, we wish to separate effects of 
fluctuations in droplet growth from those of the av-
erage droplet growth. Recall from the opening para-
graph that the typical fraction of large drops required 
to initiate warm rain is about 10~6 of all cloud drop-
lets. Therefore, from the outset we focus on the one-
in-a-million fraction of fastest growing (henceforth 
called lucky) droplets, and ask about their growth 
time rather than the average droplet growth time. 
Indeed, in the long run the latter is irrelevant because 
the remaining droplets are collected by the lucky ones 
anyway. Our task, then, requires clean separation of 
fluctuation effects from the mean growth of the col-
lector drop. To that end, we begin with the probabil-
ity distribution of intercoalescence times. 

D I S T R I B U T I O N O F T I M E S T O C O A L E S -
C E N C E . Consider a statistically homogeneous cloud 
containing droplets of the same radius (r). The drop-
lets are assumed to be perfectly randomly distributed 
in space. Now, a collector drop of twice the volume 
(a result of coalescence of two droplets) is introduced 
and allowed to fall through the cloud of droplets. The 
growth of such a droplet is punctuated by coalescence 
events. 

In accordance with the assumption of perfect spa-
tial randomness, the consecutive random time inter-
vals between coalescence events are statistically inde-
pendent random variables. Let the mean time to the 
first coalescence be T. Again, because of the perfect 
spatial randomness, the probability density function 
of times to first coalescence (describing an ensemble 
of test drops) is given by the exponential distribution 

p ( f ) = ^ e x p | - ^ J . (1) 

This is, perhaps, best understood by noting that 
this distribution is memoryless.2 This lack-of-memory 
property is both fundamental and ubiquitous in ap-
plications; for example, see the cover of the text by 
Balakrishnan and Basu (1995). 

1 The confusion, we think, is caused by misinterpreting the variance-mean (Poisson) relation a2 - jLL, which does not simply scale 
with volume because jd and <7n

2 are both unitless (unlike concentration). 
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It is important to note the skewness of (1) from the 
outset because it is associated with the lucky droplets 
that grow more rapidly. When exponentially distrib-
uted random numbers are displayed as time series, 
there are frequent excursions below the mean and rare 
but large excursions above the mean. For example, the 
10~6 fraction of fastest droplets undergo the first coa-
lescence in one-millionth of the mean time to coales-
cence because P(t) = \t0p(s)ds = 1 - exp(-f/r) ~ t/r, for 
t < r. These are the lucky drops as they begin to grow 
more rapidly. What about the 10~6 fastest growing 
droplets over, say, six consecutive coalescence inter-
vals? How is the luck redistributed? One possibility 
is to be among the fastest 10% in each of the six con-
secutive (and independent) collisions, yielding (0.1)6. 
In other words, the one-in-a-million fraction of drop-
lets can be expected to grow roughly 10 (versus 106) 
times faster than the average, over the six consecutive 
collisions with equal T. These estimates are not exact, 
of course, because after each coalescence the expected 
time to the subsequent event must be recalculated. 
However, insofar as the first few coalescence events 
dominate cumulative growth time, as we shall see in 
the next section, the rough estimate is not far from 
the exact result (see the sidebar on the "Distribution 
of Times for N Encounters"). We now proceed to ob-
tain an expression for r, the mean time to coalescence, 
as a function of the droplet radius. 

M E A N T I M E T O N E X T C O A L E S C E N C E . As 
in the kinetic theory of gases, the mean time to colli-
sion r satisfies z= L/u where L is the mean free path 
and u is the relevant speed (e.g., see Reif 1965, chap-
ter 12). For gravitational sedimentation, the expected 
time to first coalescence is 

T = (COuE) (2) 

each coalescence, so does the expected time for the 
subsequent collision because <r, u, and E have changed 
(given the 10~6 fraction, c is assumed constant 
throughout the paper). Our next task, therefore, is the 
development of a simple approximation for r as a 
function of the droplet size r. 

To that end, let us start with a cloud of identical 
droplets (single size) but pick a collector drop that 
starts the process by undergoing a single coalescence 
event and acquiring volume v1 = 2v, where v is the 
initial volume for all of the cloud droplets. The sub-
script 1 in the volume refers to the drop having un-
dergone one coalescence event.3 Then, the collector 
drop volume after n coalescence events is simply vn = 
(n + l)v. For drops between 10 and 50 jjm in radius, a, 
w, and E each scale approximately as r2 yielding r6 de-
pendence for the collision rate (Pruppacher and Klett 
1997, p. 618). Thus, r~l oc r6, and, therefore, zn oc ; 
that is, the expected time between the (n- l)th and nth 
coalescence, rn, decreases approximately as the inverse 
square volume: zn = v"2 x n1 - (nv)~2 where the 
notation is such that zl = T involves the original vol-
ume vQ = v, and rn depends on the [n - l)th volume. 

Observe that for a droplet to grow from 10 to 
50 iim (drizzle size is about 100 jum in diameter and 
above), the radius must increase fivefold. This implies 
53 = 125 coalescence events. Hence, the mean cumu-
lative time to nth coalescence, T = <t+t + ... +t > = n 1 2 n 
tx+t2+ . . . +rn, can be approximated by an infinite sum, 
using Euler's = (7T2)/6, as 

n=l n-1 

1 1 1 

2 3 n 
(3) 

where c is the number concentration of droplets, a is 
the effective cross section, u is the relative velocity, and 
E is the coalescence efficiency (e.g., Rogers and Yau 
1989). As the collector drop volume changes after 

( tt1 \ 71 

V ° J 
1.6T, 

where angular brackets denote averaging over the 
drops.4 The relative importance of early collisions is 

2 Denote the cumulative distribution function by P(t) so that p(t) = dP(t)/dt and define the distribution tail P(tQ) = 1 - P(tQ) = 
prob(£ > f ) , that is, the probability that an observed time interval is larger than t. A random variable X is memoryless if P(X > s 
+ t\X > t) = P(X > s) where the vertical bar denotes conditional probability. There is no memory because waiting does not affect 
the current probability. Lack of memory is the defining feature of the exponential distribution because P(tl + t2) = P(t )F(t ) is 
satisfied when P(t) is exponential. The sufficient part is clear from e{x+y) = e?ey. An exponential P(t) yields negative exponentialp(t) 
because the latter is the negative derivative of the former. Hence, pure randomness and additivity yield lack of memory. 

3 The collector drop formation is addressed in a later section but for now the reader can imagine particles being advected into each 
other by the airflow, or condensing on giant nuclei. 

4 The first 125 terms account for 99.5% of the infinite sum (3). 
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appreciated by noting that the sum of the first five 
terms is 89% of the infinite sum ( f2) or 90% of the 
growth time from 10 to 50 /im, while the first 11 terms 
account for over 95% of the total growth time. This 
dominance of the early terms, combined with the 
skewness of the exponential distribution, suggests that 
droplets must not just be lucky but must be lucky 
early, for example, within the first six or so coales-
cence events. 

But how are the collisions initiated if the droplets 
are all the same size? After all, the first term contrib-
utes more than one-half of the entire series but this is 
the only term where the relative settling velocity is 
infinite if all droplets are exactly the same size. We 
propose an explanation in a subsequent section, but 
typically this problem of initiation of the process is 
bypassed by postulating a larger collector drop intro-
duced by outside factors. For example, if we invoke 
giant nuclei or hygroscopic seeding and increase the 
collector drop volume to 2v or 12.5 pm, the series (3) 
can be recalculated by subtracting the first term from 
7r2/6, that is, subtracting unity from both sides. In this 
case, the (new) first term is not quite as dominant, 
accounting for about 39% of the cumulative time 
while the first two terms contribute about 56%. One 
can proceed in this manner to any size collector drop, 
subtracting more leading terms from the series (3), 
with progressively diminishing importance of the 
early collisions because the "luck" is now supplied 
externally by other means. In other words, the pres-
ence of giant nuclei or precipitation seeds reduces the 
stochastic element of the coalescence process, by sup-
plying the luck externally.5 

We are now in a position to pose and answer 
Robertson's (1974) question analytically: At what n 
can one switch to the continuous coalescence equa-
tion without a significant loss of accuracy? In other 
words, when can fluctuations in the time to nth coa-
lescence be neglected? To that end, we make use of 
the following observations: 

i) cumulative growth time is a sum of exponentially 
distributed random variables; 

ii) the variance of the exponential probability den-
sity function equals the square of its mean (cr2 = 
T2); and 

iii) variances due to independent causes add. 

Hence, from Eq. (3), the variance of the (random) 
cumulative time to Mh coalescence, o-2(TN), is given by 

tf2orv)=i>„2 

«=i 

~ T X , 
90 

where, again, we have approximated the finite sum 
(e.g., 125 terms) with the infinite one. The relative 
fluctuation for the entire growth (cr/r, cumulative 
standard deviation relative to the mean) is 6/V90 ~ 
0.63.6 

The same quantity for the first 15 collisions is about 
0.66 (within 5% of the limit) so the continuous ap-
proach can be tolerated, but recall that these 15 colli-
sions contribute over 96% of the total growth time. 
Thus, while the continuous coalescence approach is 
valid for the later part of the series on a term-by-term 
basis, this is the part of the series that contributes 
negligibly to the total growth time. In other words, 
early fluctuations in coalescence times can never be 
neglected. 

As an example of the physical insight to be gained 
from the simple approach considered here, consider 
the redistribution of liquid water content [in the spirit 
of Twomey (1966)]. What happens if we hold cloud 
liquid water content constant but vary droplet size, 
for example, let all droplets combine into doublets of 
twice the volume (2v), but with half the concentra-
tion? This may help in studies of the secondary aero-
sol indirect effect or can be viewed as an extreme case 
of droplet clustering when the collector drop encoun-
ters two droplets at once. 

... + — + ...) (4) 
n 

5 The rate of decay of T. with increasing coalescence number in (3) determines the importance of early collisions, but the numeri-
cal value of the exponent is not critical to arguments that follow. Should the r~6 collision rate be deemed unsuitable, for example, 
in other collision mechanisms such as turbulence or Brownian motion (Seinfield and Pandis 1998, section 12.3), our method is 
readily generalized to another polynomial fit, resulting in X^J n~\ where s & 2. This sum can be obtained by looking up corre-
sponding values of the Reimann zeta function /(s) = For s < 1 the infinite series diverges, hinting perhaps that such a 
collision process is not dominated by early events. 

6 This is unlike a single exponential probability distribution with cr/r = 1. This is also in contrast to a sum of exponential distribu-
tions with equal Ts, where the central limit theorem predicts cf/t ~ l/VN~and o/T approaches zero with increasing N. Hence, the 
memory of the early collisions persists. 
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The coalescence rate changes because the concen-
tration decreases by a factor of 2 while droplet cross 
sections, settling velocities, and efficiencies go up by 
a factor of 22/3 each. The net result is a decrease by a 
factor of 2 in r. Otherwise, the series (3) remains un-
changed, except for the number of terms needed to 
reach the 50-^m radius (64 versus 128). We see, then, 
that the redistribution of liquid water content only 
results in rescaling the characteristic time scale T, but 
does not alter the essential structure of the series (3) 
and, therefore, the role of fluctuations in early colli-
sions. This is the benefit of the decoupling of the mean 
behavior from fluctuations. Hence, while we expect 
the doublets to grow on average twice as fast as the 
singlets, the fastest 10"6 doublets will be just as lucky 
as the fastest 10~6 singlets, relative to their own mean 
time rloublet. While such analysis is helpful, further 
progress requires the probability distribution of the 
time required for several encounters (coalescence 
events), generalizing (Eq. 1). This is done in the next 
section. 

D I S T R I B U T I O N O F T I M E S T O D R I Z Z L E : 
T H E L U C K F A C T O R . Rain or drizzle formation 
requires hundreds of droplet coalescence events and 
we therefore consider the cumulative time to nth coa-
lescence, T = t, + + . . . + t. When viewed as a sum n 1 2 n 
of independent random variables, the probability dis-
tribution of Tn might be expected to approach the 
bell-shaped (Gaussian) form, whose variance dimin-
ishes with the increasing number of terms as l/^IW, 
as implied by the famous central limit theorem. 
However, the theorem conditions are violated be-
cause the early terms dominate so that our sum of 
random variables is unequally weighted. Yet, it is still 
possible to derive the distribution of times for a test 
drop to undergo N collisions as outlined in the 
sidebar Distribution of Times for N Encounters. The 
resulting (generalized Erlang) probability distribu-
tions are shown in Fig. 1 for several N (number of 
coalescence events), where we see rapid convergence 
to the asymptotic limit. These distributions are dis-
cussed in greater detail in the sidebar on the Distri-
bution of Times for N Encounters. We note here, 
however, that the variance of the distributions is still 
given by the expression in Eq. (4), confirming our 
earlier and simpler arguments. 

Next, to explore the role of fluctuations, we ask: 
how fast is the one-in-a-million fastest fraction of 
(lucky) droplets? To that end, we need an expression 
for the fraction of drops at a given time that have ex-
perienced N encounters: this fraction is the cumula-
tive probability distribution, shown in Fig. 2 (the blue 

FIG. I . A family of general ized Er lang probability distri-
butions (density functions). T h e unitless abscissa is a 
fraction of the mean t i m e to first coalescence and the 
curves are distributions of dimensionless t imes required 
for the col lector drop to undergo N = I, 2, 8, 32, 128 
coalescence events. T h e N = I curve is an exponential 
distribution, and the other curves m a y be thought of 
as convolutions of exponentials with m e a n r s varying 
according to series (3). Rapid convergence with increas-
ing n u m b e r of coalescence events ( N ) is observed. F o r 
compar ison, an ordinary Er lang ( g a m m a ) distribution 
is shown whose mean t i m e to coalescence is set to 
so that the cumulat ive growth t i m e is equal to that of 
the N = 128 curve. T h e one-in-a-mill ion fastest ( lucky) 
droplets for the c o n s t a n t - c o a l e s c e n c e - t i m e scenar io 
( g a m m a ) are seen to be far less lucky than the corre-
sponding droplets with realistic, rapidly decreasing coa-
lescence rates (general ized Er lang with N = 128). 

curve) for N = 128 coalescence events, with r varying 
as the series (3). The unitless abscissa, corresponding 
to a given droplet fraction, may be regarded as a luck 
factor 0 for that droplet fraction. For example, the blue 
curve intersects the 10~6 line at about 0 - 0 . 1 , corre-
sponding to <frl = 10 or 10 times faster than the aver-
age pace of growth (regardless of the mean time T). 
Thus, the 10~6 lucky drops are expected to reach 50 ^m 
in time 0r rather than ror 10 times faster than typical 
droplets.7 The changing role of luck as quantified by 
0 can be seen in the other three curves in Fig. 2, which 
correspond to series (3) with the first one, two, and 

7 It is often of interest to obtain the drop size distribution at a 
given time rather than the distribution of times for a given 
number of collisions as considered here. The former is obtained 
in the online supplement. 
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FIG. 2. T h e fraction of droplets that have exper ienced 
128 e n c o u n t e r s ( c u m u l a t i v e probabi l i ty d istr ibut ion) 
c o r r e s p o n d i n g to the genera l i zed E r l a n g distr ibution 
(density function) of Fig. I. Each curve is for 128 coa-
lescence events but with a varying n u m b e r ( 0 - 3 ) of the 
leading t e r m s of series (3) r e m o v e d . L o g a r i t h m i c co-
ordinates are used in o r d e r to clearly show the lucky 
(I0~6) fraction. T h e abscissa is a unitless fraction: the 
ratio of actual cumulat ive growth t i m e to the average 
cumulat ive growth t ime. F o r fair comparison, t i m e for 
each curve is n o r m a l i z e d by its average g r o w t h t i m e 
[(TT2/6)T, (/T2/6 - I )T, (k2I6 - I - I/4)T, a n d (TT2/6 - I - 1/4 

- I/9)T, respectively, f r o m left to right]. F o r all curves, 
the abscissa of a given fraction may be thought of as a 
luck factor 0 for that fraction. F o r e x a m p l e , the blue 
curve crosses the 1 f r a c t i o n at about 0 « 0.1, corre-
sponding to 0_l = 10 t imes faster than the average pace 
of g rowth (regardless of the m e a n t i m e r). T h u s , the 
\0~6 lucky drops are expected to reach 50 ^ m in t i m e 
0 r rather than r o r 10 t imes faster than typical drop-
lets. Also, we see that the 10-6 luckiest fraction of drops 
is progressively luckier, o r farther f r o m the mean, as 
the col lector drops approach the size of the col lected 
drops . A s e x p e c t e d , the p r e s e n c e of large c o l l e c t o r 
drops, such as giant nuclei, reduces the importance of 
fluctuations in the formation of precipitation. 

FIG. 3. T h e luck factor 0 vs the n u m b e r of coalescence 
events for the general ized Er lang distribution. T h e ac-
tual speedup is given by 0_l so that 0 = 0.1 implies a fac-
tor of 10 faster than the mean growth rate. A n asymp-
totic approach to a l imit with the increasing n u m b e r 
of coa lescence events is observed. T h e curves c o r r e -
spond to four different fractions of the lucky particles. 
T h e 10"5 and 10-6 fractions are in a g r e e m e n t with ob-
servations of relative drop and droplet concentrations. 
T h e one-in-a-billion droplet (associated with occasional 
d r i z z l e o r a lonely r a i n d r o p ) is only about 2.5 t i m e s 
faster than the one-in-a-thousand droplet. T h e depen-
dence on the n u m b e r of coalescence events is rather 
weak, (e.g., in o r d e r to half the luck factor, the num-
ber collisions must be decreased f r o m 125 to about 9). 
T h e s e curves are a result of the clear separation of fluc-
tuat ions ( r a n d o m variable t i m e s ) f r o m the m e a n be-
h a v i o r ( p a r a m e t e r of t h e d i s t r i b u t i o n s r) . Y e t , th is 
" d e c o u p l i n g " is rather subtle because, say, a seventh 
t e r m in the m e a n growth series (3), is not entirely neg-
ligible for the growth of the 10-6 fastest droplets (de-
s p i t e c o n t r i b u t i n g o n l y 1.2% t o t h e t o t a l a v e r a g e 
g r o w t h ) . 

a simple discussion of rain initiation versus droplet 
size solely in terms of the physics of the mean colli-
sion time r, as discussed next. 

Our examination of the role of fluctuations in sto-
chastic coalescence is now concluded. It culminates 
with Fig. 3 and a rather robust conclusion that the 
fastest 10 -6 cloud droplets grow about 10 times faster 
than the average droplets ( 0 - 0 . 1 ) . 

three terms removed: meaning the collector drops 
start with volumes 2v, 3v, and 4v, respectively. The 
growth time of the 10~6 fraction of lucky droplets 
steadily approaches the mean growth time, confirm-
ing that fluctuations in growth time are less promi-
nent when the growth process is short-circuited by 
the initial presence of larger droplets. The luck fac-
tor 0 versus the number of coalescence events is 
shown in Fig. 3 for four different lucky fractions. We 
see that 0 approaches a limit as the number of coales-
cence events increases. Simply taking the asymptotic 
value (0 = 0.087 for the one-in-a-million curve) allows 

D I S C U S S I O N : C A N IT R A I N IN 30 MINUTES? 
While the average growth time from 10 to 50 fim is 
about (f-2)r, the lucky one-in-a-million droplets (suf-
ficient to initiate rain) accomplish this in time 0(f-2)r. 
Henceforth, the discussion is concerned with the av-
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mmm 

O u r goal is to obtain the probability distribution for the (random) cumulative growth time Tn = t, + t2 + . . . 
+ tn. Recall that a sum of independent random variables has a probability distribution that is a convolution 
of the individual distributions. For identically distributed (exponential) random variables with equal aver-
ages (T), the Erlang probability density results. This is also known as the G a m m a density for an integer 
number of events, originally obtained by A. K. Erlang, when considering the distribution of waiting times 
for telephone networks in the early twentieth century (Evans et al. 2000; Porter and Ogilvie 2000). 

The Erlang distribution becomes progressively narrower as the number of terms increases and ap-
proaches an extremely narrow bell-shaped curve in the limit. Not so in our case because of the unequal 
weighting (different rs) of the terms in the sum Tn = r, + t2 + . . . + Tn. T h e inhomogeneous Poisson process 
provides the proper framework because of statistical independence and variable but known mean times. 
The individual exponential distributions p(t,) . . . p(tN) with different TS can then be convolved to yield the 
generalized Erlang distribution [Ventzel and Ovcharov (1988, pp. 359, 367); see also Syski (1986 p. 51), but 
note the omission of the alternating sign]: 

KT M ~%it 

L k~x,k* j 

where A = T~'. Figure I provides several illustrations of the Erlang distribution. Closer inspection reveals 
similarity to expressions derived by Telford (1955), as detailed in the online supplement, but connection to 
work done by Erlang and others in the fields of queuing theory and statistical signal processing does not 
appear to have been appreciated (e.g., Gross and Harris 1998, especially section 6.2.1). 

In order to evaluate the fastest one-in-a-million droplet growth rate, we require the cumulative prob-
ability density for the generalized Erlang distribution, which is given by 

XT NT -, ~<M 1-e 
p(t,N)=(-1 r n 4 X a r r ~ (SB 1 -2) 

where again A. = T"1. This function is shown in Fig. 2 for a variety of scenarios. In the limit of t < T, which is 
valid for coalescence initiation, these distributions reduce to the simple form P(t,.N) ~ N\(tlr)N (see the 
online supplement). 

T o gain an intuitive appreciation of these distributions, let us return to the case of equal TS. Since 
individual probabilities are equal and independent, the I0-6 probability (lucky fraction) is a product of equal 
fractions for each individual step; or ptp2p3 . . . pN = pN = I0-6. For the 128 collisions considered in Fig. 2 this 
suggests a crude estimate of 0 = (| 0~6)(l/l28) = 0.9 or 90%. T h e fact that the one-in-a-million fastest droplet is 
only 10% faster than the mean for the 128 collisions reflects the narrowness of the corresponding bell-
shaped probability density function [this distribution, with a mean collision time set to ( f 2 ) - ^ for consistent 
comparison, is shown in Fig. I]. T h e relative fluctuations decay as l/VN" and are quite small for N = 128 
coalescence events. 

The actual coalescence growth, however, is dominated by the early history where the droplets must 
invest most of the available luck. Crudely, one can divide the series into two parts: the first, say, six events 
and the rest of the series, with the former accounting for 90% of the cumulative mean time. Then, the 10~6 

fraction is distributed as (O.I)6 over the first part of the series and the remaining 10% are simply ignored. 
This is in rough agreement with the factor-of-10-speedup of the lucky droplets, undergoing 128 coales-
cence events. T h e speedup (0 -1) is shown in Fig. 3 and discussed in the main text. 

erages only. Therefore, all that remains for an expla-
nation of warm rain initiation in cumulus clouds is 
that the lucky droplets grow to raindrops within com-
monly observed times ( -30 min). The essential point 
here is that it is 0(|-2)r, rather than (|-2)t, that needs to 
be set to 30 min = 1800 s. Is the acceleration factor of 
10 (0 1 ) sufficient to explain the apparently often ob-
served warm rain initiation in 30 min? To that end, 
we require 

K 
0 — T < 30 min or r < 3 hr, (5) 

6 

which, combined with Eq. (2), yields a bound on the 
efficiency-velocity product (denoted ubound): 
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ALESCENCE INITIATION IN A FAST EDDY 
Consider the traditional turbulent energy cascade, with energy dissipation occurring on length and velocity 
scales of AO and uAo. This viscous dissipation (Kolmogorov) scale, AO - I m m , is 10-100 times larger than the 
droplet size scale A, at which collisions occur. Smoothness of the viscosity-dominated velocity field allows 
one to expand the velocity difference of the droplets, separated by distance A, in powers of A. Keeping the 
first term in the series yields uA = UAOA/Ao as shown in Landau and Lifshitz (1959, section 32) where another 
argument leading to this result is also given. Traditional energy cascade arguments then relate uA to large-
scale variables as 

u, =-AUR\ ( S B 2 . I ) 

where, again, the quantity of primary interest to us, uA, is the velocity difference at points separated by 
distance A. T h e distance L is the large sale of the energy-injecting eddies, A U is the mean velocity differ-
ence at points separated by L, and R = LAU/v is the turbulence Reynolds number. 

One expects the length scales of energy injection in cumulus clouds to be buoyancy driven and associ-
ated with up- and downdrafts and we pick the typical L = 200 m, A U = 2 m s-1 (e.g., see Houghton 1985, 
p. 286, Fig. 8.2; Emmanuel 1994, 194-196), corresponding to e = 400 cm2 s~3 and turbulent diffusivity 
K = 400 m 2 s~'. For A = 4 * r = 40 jum, these numbers yield uA ~ 2 m m s - '. 

As shown in the main text, the velocity difference needed for warm rain initiation is ubound = ( I0 4 s)/ncr, 
which is about 300 jum s_l, so that turbulence provides uA « 2 m m s_l, which is about seven times larger. 
This means that the coalescence efficiency of about 0.15 is sufficient to initiate rain in 30 min, even for a 
cloud of a single droplet size. Furthermore, increasing A U by a factor of 22/3 or, say, doubling the liquid 
water content (w) to 2 g m~3, lowers the required coalescence efficiency to 0.07 (while holding the t ime to 
rain to 30 min). Nevertheless, the actual efficiency of shear-induced coagulation may be lower still and we 
must examine the question explicitly versus the droplet size. 

T o that end, we return to the redistribution-of-liquid-water-content scenario by keeping w constant but 
varying the concentration and (single) droplet size accordingly. Observe that, for fixed w, ubound = ( I0 4 s)lca 
depends linearly on the droplet size r. Indeed, for fixed w, c - r~3, a ~ r2, and therefore, ubound — r1. O n the 
other hand, uA = j-AUR112 a\so depends linearly on r because we set A = 4r. Therefore, an important conclu-
sion is that the ratio ub /u ,̂ which is the lower bound on the coalescence efficiency, is independent of the 
droplet size. W e are now able to express this threshold efficiency (Ebound) in terms of the observed time for 
rainfall ( T ), the fractional water volume (co = wlp), and a large eddy turnover time (TL = L/AU): 

bound 
ft2 t 1 II 

72 CO JR robs 72 10-3 j t f ^obs T 

10 10 
• x — - x - (SB2.2) 

obs 

In contrast, the actual efficiency is likely to have a strong dependence on r (e.g., r2 for gravitational coagula-
tion between 10 and 50 /zm). Hence, only those clouds will rain whose droplet sizes correspond to coales-
cence efficiency exceeding ubound/uA. Thus, for a given (macroscopic) AU (L) , warm rain is initiated by droplet 
sizes whose coalescence efficiency exceeds Ebound, given by (10). Seen from this perspective, rare but 
vigorous vortices (fast eddies) could promote droplet growth even more efficiently than giant condensa-
tion nuclei. 

This bound can be viewed as the minimal droplet 
relative velocity necessary for warm rain to occur in 
cumulus clouds within 30 min. As an illustration, in-
serting numerical values for 10-jum droplets and 1 g m~3 

liquid water content (concentration of about 240 drop-
lets cm-3) yields ub uin l of 265 jum s"1. Thus, in order to 
produce rain in 30 min with the help of the factor-
of-10 growth acceleration of the lucky droplets, we re-
quire wbound on the order of 300 jum s"1, over separation 
distances of 40 ^m or so (i.e., two droplet diameters). 

It is now time to face the problem of collision 
initiation. The equation r = (cow£)_1 involves relative 
settling velocity u. The latter, technically, is zero when 
collector drop and droplet are equal in size. There are 
several ways around this difficulty. Realistic droplet 
size distributions have some dispersion caused by the 
initial aerosol size distribution and by fluctuations in 
the condensation growth process. Also, one may as-
sume (as is usually done) that the collector is some-
what larger—perhaps because of a giant cloud con-
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densation nucleus. Increasing the collector drop den-
sity (mineral or salt is twice as heavy as water and so 
is the corresponding terminal speed) or, say, doubling 
the volume (12.6 jum) removes the difficulty, where-
upon series (3) can be resummed by subtracting the 
first term from /r2/6, that is subtracting unity from 
both sides, as discussed earlier. Nevertheless, in or-
der to explore the fundamental lower bound for a 
variety of growth scenarios, we will continue with the 
assumption of a single droplet size and focus on the 
crucial genesis stage of coalescence. 

Can the required wbound be attributed to a physical 
mechanism different from gravitational coagulation? 
For example, can the mean shear in a cumulus cloud 
supply sufficient relative velocities (spatial velocity 
differences) at interdroplet distances on the order of 
10-100 jjm via the traditional turbulent energy cascade? 
Our general conclusion is that for sufficiently vigor-
ous (yet realistic) turbulence the answer is yes and the 
supporting physical arguments are given in the 
sidebar on Coalescence Initiation in a Fast Eddy. 
Thus, even a cloud of single-size droplets can rain 
within 30 min. Note that we are invoking neither still-
controversial turbulence-induced inertial effects nor 
any other kind of spatially clustered droplets, merely the 
traditional turbulent energy cascade. Seen from this 
perspective, rare but vigorous vortices could promote 
growth just as efficiently as giant condensation nuclei. 

C O N C L U D I N G R E M A R K S . The importance of 
the stochastic element in growth by coalescence has 
been known at least since Telford (1955) and in the 
online supplement we discuss how our expressions re-
late to those of Telford for the droplet size distribu-
tion, modified for realistic collision rates. Taking the 
stochastic element as a starting point, we decoupled 
the effects of fluctuations from those of the mean 
growth, doing so with a plausible functional form for 
the collision rate, obtaining nevertheless simple ana-
lytical expressions. Our approach is readily general-
ized to coalescence time distributions other than ex-
ponential, thereby allowing the introduction of 
droplet clustering, negative spatial correlations, etc. 
Furthermore, decoupling of fluctuations from the 
mean allows simple exploration of the effect of liquid 
water redistribution with droplet size. Finally, it al-
lows us to focus on the mechanisms for those critical 
initial collisions via Eq. (6). 

The generalized Erlang distribution function per-
mits straightforward consideration of the "lucky" frac-
tion, whether this is the fastest 10"6 droplets required 
for warm rain initiation, the 10~9 fraction needed for 
patchy drizzle formation, or the 10~12 fraction of 

lonely drops occasionally falling from seemingly thin 
clouds. The role of the initial size of collector drops 
can be clearly traced by deleting the corresponding 
terms from the coalescence time series. This has im-
plications for the importance of the stochastic treat-
ment when large particles are present in sufficient 
quantities to act as precipitation seeds (e.g., hygro-
scopic seeding, ultragiant nuclei, etc.). 

Finally, a compelling conclusion is that the factor-
of-10 acceleration in the growth of the lucky drop-
lets, combined with traditional turbulent cascade ideas 
puts us, at least, within striking distance of initiating 
rain from turbulent clouds in 30 min with 10-^m drop-
lets and 1 g m~3 liquid water content. This is despite 
having no size dispersion, no clustering, and no giant 
nuclei. Indeed, rare, fast eddies may be more effective 
in initiating warm rain than rare, giant condensation 
nuclei. 
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