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ABSTRACT

The objective of this work is to explore relationships between the microphysical properties of precipitation
and optimal polarizations. The dependence of three optimal polarization parameters (asymmetry ratio A,
optimal tilt 7., and optimal ellipticity ¢,,) on the reflectivity-weighted mean drop shape, mean canting angle,
and standard deviation of a Gaussian canting angle_ distribution is studied. This is accomplished by using
computer simulations that provide the rms scattering matrix for an ensemble of canted drops with a prescribed
two-parameter canting angle distribution. Also examined are the effects of propagation on the polarization
parameters for nonattenuating wavelengths.

The asymmetry ratio A is simply the ratio of the maximal to minimal total backscattered energy (ratio of
the largest and smallest eigenvalue of the Graves power matrix G = $'S). Similar to Zpg, this ratio decreases
with increasing mean axial ratio, but unlike Zpg, it is not affected by canting ( for a single drop). The dependence
of A on the reflectivity-weighted mean drop shape is examined, and 2 power-law relationship similar to that
which exists for Zpg is established. The asymmetry ratio A can be regarded as a generalization of Zpg because
it requires only a measurement of linear depolarization ratio (in addition to Zpg ), is independent of the prop-
agation phase, and is less sensitive to canting. In a similar manner, the dependence of optimal ellipticity and
tilt on the microphysical parameters is studied. In particular, it appears that the rms tilt of the optimal polarization
ellipse is proportional to the variance of the canting angle distribution. Several other promising relationships
between optimal polarizations and the microphysical variables of an ensemble of hydrometeors are also discussed.
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The Use of Optimal Polarizations for Studying the Microphysics of Precipitation:

1. Introduction

The usefulness of polarimetric methods in radar
sensing of precipitation has been demonstrated not only
in numerous recent articles (Zrié et al. 1993; Holt
1992; Hubbert et al. 1993; Vivekanandan et al. 1991;
Aydin and Zhao 1990) but in recent textbooks and
monographs as well (Doviak and Zmi¢ 1993; Sauva-
geot 1992; Bringi and Hendry 1990; Jameson and
Johnson 1990). Polarimetric quantities such as CDR
(circular depolarization ratio) (McCormick and Hen-
dry 1975), Zpg (differential reflectivity) (Seliga and
Bringi 1976), LDR (linear depolarization ratio) (e.g.,
Battan 1973), propagation differential phase (Seliga
and Bringi 1978; Jameson 1985b), and time series of
the polarimetric quantities (Bringi et al. 1983) have
been used to deduce microphysical parameters from
radar measurements. There seems to be a trend toward
increasingly sophisticated polarimetric signatures in an
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attempt to recover the microphysics of the precipita-
tion. For instance, a recent article by Hubbert et al.
(1993) is devoted mostly to separation of backscatter
and propagation differential phases, Motivated by this
trend, this work focuses on the following general ques-
tion: What additional microphysical information is
contained in the full polarization scattering matrix §?
Thus, the purpose of this research is to develop a sys-
tematic methodology to search for new polarimetric
signatures.

In order to understand the microphysical informa-
tion contained in the polarization scattering matrix,
we choose to examine its eigenvalues and eigenvectors.
This is a natural choice for several reasons. First of all,
eigenvectors and eigenvalues contain the same infor-
mation as the matrix itself, but it is in a form that
allows separation of the orientation-invariant quanti-
ties. For example, the eigenvalues (and their combi-
nations, €.g., trace and determinant ) are invariant with
respect to rotations performed on 8. This may allow
separdtion of shape and canting effects, thereby pro-
viding an easier interpretation of the microphysical pa-
rameters. Eigenvalue computations for a 2 X 2 matrix
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involve only quadratic equations and can be performed
simply and in real time. Also, there is an appealing
physical interpretation that relates the eigenvalues and
eigenvectors of the Graves power matrix G = S'S
(Graves 1956) (“1” denotes Hermitian adjoint) to ex-
trema of total backscattered energy and to the trans-
mitted polarizations corresponding to these extrema
(Kostinski and Boerner 1986; Ishimaru 1991, p. 506).
Furthermore, the eigenvectors can be expressed in the
form of two parameters of the polarization ellipse (el-
lipticity and tilt), which separate shape and orientation
on the level of the wave itself (Born and Wolf 1980;
Azzam and Bashara 1977). Thus, the objective of this
work is to explore how the physical properties of pre-
cipitation such as the canting angle distribution of hy-
drometeors, their shape, etc., affect the eigenpolariza-
tions of the Graves power matrix G = S'S.

In order to gain insight into the dependence of op-
timal polarizations on microphysical parameters, we
concentrate on a familiar form of precipitation: rain.
The rain drops are modeled as oblate spheroids, and
scattering amplitudes can be calculated numerically
(e.g., see section 4a where the T-matrix method is
used). Calculations have been performed for S band
that provide the scattering matrix as a function of sev-
eral microphysical parameters, including mean axial
ratio (through the rain rate), the mean and standard
deviation of a one-dimensional canting angle distri-
bution, and the rate of propagation differential phase
shift. The S band was chosen because the backscatter
phase shift and attenuation due to propagation can be
ignored. (See appendix D for possible effects of differ-
ential attenuation. )

This paper is an attempt to explore the connection
between the microphysical parameters of an ensemble
of hydrometeors—for example, canting angle distri-
bution, mean axial ratio, propagation differential phase
shift, and optimal polarization parameters defined be-
low. Although rain has been chosen as our test media,
our goal is to explore the dependence of the new po-
larization parameters on the characteristics of precip-
itation in general. Therefore, the microphysical pa-
rameters are pushed to values that one would not nor-
mally find in rain but that might occur in other forms
of precipitation.

In the following section, specific background infor-
mation is given on the polarimetric variables, their re-
lationship to microphysical parameters, and the basic
theory behind the calculations for the scattering matrix
for a single raindrop and for an ensemble of drops.

2. Background

For the sake of completeness, some basic definitions
of radar polarimetry used in this paper are included in
appendix A. For the reader’s convenience the optimal
polarization approach is briefly reviewed next.
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a. Optimal polarizations

The eigenpolarization approach used here and de-
scribed in Kostinski and Boerner (1986 ) and Ishimaru
(1991, p. 506) is based on the consideration of extrema
of total backscattered energy as a function of trans-
mitted polarization. The method results in an eigen-
value problem for a Hermitian power (Graves) matrix
(Graves 1956):

G=-8'S,

where S is the complex scattering matrix (see appendix
A). The eigenvalues of G are always real and equal to
the maximum and minimum of scattered powers, while
the eigenvectors are the corresponding polarization
states of the transmitted wave. The optimal polarization
is defined to be that transmitted polarization that max-
imizes (minimizes) the total backscattered intensity in
free space.! Note that the emphasis here is on retrieving
microphysics not on radar reception. The optimal po-
larization gives the maximum total backscattered en-
ergy in free space, and this wave can still be
(mis)matched at the receiving antenna (e.g., Collin
1985, p. 303).
The solutions to the eigenvalue problem

Gx = Ax

are the polarization vectors E;, E, (eigenvectors) and
the scattered powers A, A; (eigenvalues) of the max-
imal (minimal) transmit polarizations. From E; and
E,, we calculate the ellipticity € and tilt 7 of the polar-
ization ellipse, which yields the maximum (minimum)
scattered power. The ellipticity and tilt of the maximum
eigenvector (the eigenvector associated with the max-
imal eigenvalue) are labeled as ¢, and 7, respectively.
The ratio of the maximal to minimal eigenvalues
(asymmetry ratio) is denoted as A = A;/\,. The vari-
ables A, €,p, and 74, are the polarization parameters
that are examined in this paper.

b. Connection to precipitation microphysics

We now describe the scattering of completely po-
larized waves from a volume of precipitation and relate
the microphysics of precipitation to elements of the
scattering matrix. The scattering matrix in its normal-
ized form is

1 be™ '
S= [be’“’ ae“‘] (1)
where a and b are magnitudes equal to | Syy|/| Sux|
and | Syy|/| Suxl, respectively (see appendix A for
details).

! This technique has been used for determining polarizations that
enhance contrast in radar imaging (Kostinski et al. 1988).
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The phase differences in the normalized scattering
matrix (1) have specific physical significance in pre-
cipitation. Differential phase shifts can be produced by
two mechanisms: scattering and propagation. The dif-
ferential phase shifts due to backscatter are defined as
é for the copolarized and v for the cross-polarized
components in the scattering matrix. Therefore (1) can
represent scattering from a single drop or an ensemble
of drops while neglecting propagation effects.

As a wave propagates through a volume of precipi-
tation, the propagation differential phase shift between
the vertical and horizontal polarized components ¢ is
given as twice the rate of (or specific) propagation dif-
ferential phase shift ® (relative to HH) times the one-
way propagation distance L; that is, ¢ = 2L®. The
propagation differential phase shift for the cross-po-
larized components in S is one-half that of the copo-
larized phase shift (Doviak and Zrni¢ 1993, p. 244).
The scattering matrix of an ensemble of scatterers in-
cluding propagation effects is then written as

1 beir+e/2)

S (2)

T | peitrterd)  gpits+e)
Note that since the matrix is normalized by the HH
element, the differential phase is defined as ¢ = ¢y
- $un.

In this paper, we restrict ourselves to nonattenuating
wavelengths. For our test case we choose'S band (2.80
GHz, A = 10.7 cm). At this wavelength, several sim-
plifications to the scattering matrix (2) can be made.
Both differential phase shifts due to backscatter (8 and
) can be generally ignored in rain at this frequency,
because even in the heaviest rain § does not exceed 1°.
Attenuation, in general, can be ignored at this wave-
length as well (Bringi and Hendry 1990). (See appendix
D for possible effects of differential attenuation.)
Therefore, the only effect of propagation is the accu-
mulation of propagation differential phase shift ¢. The
simplified scattering matrix can now be written as

bel(¢/2)
ae'@® |-

1

S= [be’“’/z’ (3)

Having introduced the optimal polarization quan-
tities A, 74p, and €.p, the next step is to determine what
information they contain about the size, shape, and
orientation of the scatterers. As was mentioned in the
introduction, the motivation for using the eigen-po-
larization approach as opposed to other polarization
quantities such as Zpr (log ratio of horizontal to ver-
tical radar returns) is rotational invariance. For in-
stance, for a single drop, the asymmetry ratio A (a
function of eigenvalues) decreases as the drop axial
ratio increases, as does Zpg; however, it is independent
of rotations (e.g., Strang 1988, p. 304) performed on
the scattering matrix, unlike Zpg. This fact is likely to
help in retrieval of canting parameters as well. Indeed,
canting of hydrometeors has been examined in (Holt
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1984; Aydin and Zhao 1990; Jameson 1985a) using
rotation matrices acting on S.

Thus, our focus is on the dependence of the three
optimal polarization quantities A, ¢,,, and 7., on four
microphysical parameters of an ensemble of raindrops:
reflectivity-weighted mean axial ratio &, the mean
canting angle 3, the standard deviation of the canting
angle distribution o, and the propagation differential
phase shift ¢.

To gain basic physical insight into the dependence
of the polarization parameters on the microphysical
properties of raindrops, we begin with a single drop
and then extend the discussion to an ensemble of drops.
The drop shape used in this work is that of an oblate
spheroid, but the results for a single drop as stated in
section 3 are valid for a more general class of particles
(with perpendicular symmetry planes). In the next
section, the dependence of A, ¢,,, and 74, On the scat-
tering matrix of a single canted hydrometer is studied
in some detail (before discussing the ensemble case)
in order to establish a physical connection between the
optimal polarization parameters and the drop char-
acteristics.

3. Single-canted hydrometeor

In the single drop case, it is expected by symmetry
that the polarization that maximizes the scattered
power is along the major axis of the drop. This is casily
visualized in the Rayleigh region,? where the drop can
be thought of as composed of two simultaneously os-
cillating dipoles along the principal axes. A linearly
polarized wave aligned along the longer principal axis
of the drop is then associated with the strongest echo.
It is shown below that this conclusion remains valid
in the Mie region.

In this section the solution to the optimal polariza-
tion problem for a single spheroidal hydrometeor is
presented. For simplicity of interpretation, the hydro-
meteors are constrained to cant only in the plane of
polarization throughout the rest of this paper. When
the drop is aligned with its symmetry axis along the
local horizontal and vertical (the polarization basis used
here), the scattering matrix is diagonal (e.g., van de
Hulst 1981; Bohren and Huffman 1983) and can be

written as
Sy O
S0 = , (4
[ o so, (4)
where the principal plane complex scattering ampli-
tudes and the matrix are denoted with a superscript 0.

2 The term Rayleigh scattering is used here when the particle size
is sufficiently small compared to the wavelength so that two orthog-
onally polarized incident waves induce dipoles oscillating in phase
with the incident field. In this region no differential phase shift can
occur (for a single particle).
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Following standard matrix techniques (e.g., Strang
1988, p. 167) as well as several meteorological inves-
tigations (van de Hulst 1981; Holt 1984; Aydin and
Zhao 1990), a single symmetrical scatterer canting in
the plane of polarization (Fig. 1) can be described by
a rotation operation on the principal plane scattering
matrix S°. The rotation operator R with canting angle
B is given as

R = [cosﬁ

sinf8

—sinf
cosB |’

The scattering matrix for a canted hydrometeor can
then be expressed as

S=R!SR = [S”” S”V] )

5
Svu Sy (%)

This scattering matrix represents the particle at an ar-
bitrary orientation in the plane of polarization. The
elements of $ become

Sy = Sy cos?B + 8% sin?p (6)
Suy = Syn = (S?/V - S(I)-IH) cosf3 sin3 (7)
SVV = S(}){H sinzﬁ + S([)/V 00526. (8)

The quantities S%z and S% , are the principal plane
complex scattering amplitudes and 8 is the canting an-
gle in the plane of polarization. The canting angle 3 is
taken to be positive clockwise from the vertical axis
while looking at the drop in the direction of the incident
wave’s Poynting vector. It should be noted that this
formulation is valid for other types of scatterers having
orthogonal planes of symmetry (van de Hulst 1981)
(ellipsoids and circular cylinders, for example ) regard-
less of size relative to the wavelength.

a. Optimal polarizations for canted particle

Rewriting the principal plane scattering matrix for
a single drop (4) in the normalized form yields

1 0
$ = [0 aoe“o} ’

where a® = | S% | /| S%u|. The phase 8° is the phase
difference between the vertical and horizontally polar-
ized signals when the drop is in its principal orientation.
The Graves matrix can be found for an arbitrary cant-
ing angle from S° as

G = S'S = (R'S'R)'R'S’R
= R'S"'S’R = R"'GR.

Thus, the Graves matrix for an arbitrary canted particle
can be written in terms of the Graves matrix obtained
from the principal plane scattering matrix S° and the
rotation matrix R. The Graves matrix G° can be ex-
pressed in terms of the elements of 8% in (9), is also a
diagonal matrix, and reduces to

(9)
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FiG. 1. Single oblate drop canted in the plane of polarization. The
canting angle 8 is defined clockwise from the local vertical. The in-
cident wave is propagating into the page.

o |1 0
ol o] w
The principal plane matrix G° is independent of the
phase 6°, and therefore, G and the optimal polariza-
tions are independent of the phase as well. Since G is
obtained from an orthogonal transformation on G°,
the eigenvalues of G are simply 1 and (a°)? (e.g., Strang
1988, 304).

The asymmetry ratio defined as the ratio of G ei-
genvalues is

1
(a®)?*"

The eigenvectors associated with the maximal and
minimal eigenvalues are found to be

(11)

1 1
B = (1 + tan?g)!/? [tanﬁ] ’

1 1
Ey=———s . 12
27 (1 + cot?B)'2 [cotﬁ] (12)
A recipe for calculating eigenvectors can be found in
linear algebra texts (e.g., Strang 1988, p. 246). The
corresponding tilts and ellipticities are given by (see
appendix B for details)

=" (13)
7 =90°— 8 (14)
e =¢6=0. (15)
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Since the ellipticity is zero, the polarizations that max-
imize or minimize the scattered energy are always /in-
ear regardless of the differential backscatter phase 6°.
This is a somewhat counterintuitive result.® The two
tilts depend only on the canting angle 8 and are or-
thogonal as expected.

As was anticipated, the optimal tilt and ellipticity
are independent of particle size and shape. The asym-
metry ratio, however, is a function of particle size and
shape and is independent of orientation. For Rayleigh
particles, a° is proportional to the axial ratio of the
drop and is independent of size. When the particle is
large, however, a° no longer has a simple dependence
on the drop shape. _

In summary, these results show that for any single
scatterer fulfilling the symmetry condition for a prin-
cipal plane scattering matrix, the effects of orientation
size, and shape are separated using this approach. These
results hold for particle sizes in the Rayleigh as well as
in the Mie regions. Next, the optimal polarizations for
an oblate spheroid are studied since this particle shape
is the basis of our ensemble calculations later in the
paper.

3 This result is reminiscent of the helicity argument-symmetry
condition given in Huynen (1978, p. 659).
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b. Optimal polarizations for oblate spheroid at 5
band

Oblate spheroids are used here to model raindrops
with equilibrium shapes. Although drops having cusps
(Pruppacher-and-Pitter drops; Pruppacher and Beard
1970) have been used in models in the past (e.g., Ogu-
chi 1977), for this study oblate spheroidal equilibrium
shapes are sufficient.

In the principal plane scattering matrix S° (9), a°
will be less than unity since the horizontal axis of the
drop is larger than the vertical. Calculations show that
a° remains below unity even for the largest drops con-
sidered in this study. The differential backscatter phase
difference 6° is negligible for drops even as large as 6
mm at S band and is ignored in the rest of this work.
The asymmetry ratio ( 1 1) becomes, using the definition

of a%in (9),
1 IS%Hl)z
A = = (L2aml)
(ao)z (‘S%H _

(16)

Thus, the asymmetry ratio »A is simply the ratio of the
squared magnitudes from the horizontal and vertical
principal plane returns analogous to Zpg [ the ratio of
the | Sux|? and | Sy |? elements of S in (5)]. Unlike
Zpr, however, A is independent of the canting angle

. B (a mathematical property of eigenvalues). The re-

Mean of p = 0.0° 0= 4.0°

0.925

E A
£ 0875 %
E Y |
E \ ) ] i 8= 8, s S Htims
<
SN
o 0825 s
= B -
& ~
0.775
0 50 100 150

200

Rain Rate, mm h™*

FIG. 2. The ratio of Syvmms and Sgrms Matrix elements, @ versus the rain rate R (mm h™!). The
frequency of the incident wave is 2.80 GHz (A = 10.7 cm) and the index of refraction is assumed
that of water at a temperature of 7' = 0.0°C (Ray 1972). Note that for low rain rates, when most
drops are small and spherical, the ratio tends toward unity.
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lationship between the asymmetry ratio and differential

reflectivity is discussed in more detail in a later section.
The eigenvector that corresponds to the maximum

scattered power is labeled as E,, and is given as

1 1
E,=—7F—5 . 17
P (1 +tan?B)'/? [tanﬁ] a7)
The corresponding optimal tilt and optimal ellipticity
are

(18)

(19)

That is, the optimal tilt is identical to the canting angle.
(The minus sign results because the canting angle is
defined from the local vertical and tilt is defined from
the local horizontal; see Fig. 1.)

In the single-scatterer case, the optimal tilt is similar
to the canting parameter

'Y = |SHV‘2
18wy — Sunl?

proposed in Jameson (1985a). The subscript § is used
to distinguish between canting in a plane and true
canting (not constrained to a plane) that was used in
Jameson (1985a). This parameter depends only on 8,
in the single drop case and, therefore, must be related
to optimal tilt. In fact, for small 8, v '/? reduces to 7.
A comparison between the two parameters is made in
a later section when an ensemble of drops is considered.

Top = _6

€p = 0.

= cos*(B) sin*(B8) (20)

4. Ensemble of hydrometeors

While a single drop is easier to interpret, natural
rain consists of a distribution of drops of various sizes
and shapes, and the previous analysis must be extended
to an ensemble of raindrops. Using the principal plane
scattering amplitudes calculated by the T-matrix
method, the scattering matrix of an ensemble of drops
is computed following the model introduced in Jame-
son (1985a, 1986). Only a brief description is given
here, and the reader is referred to that paper for details.

The model used in Jameson (1985a, 1986) includes
three-dimensional canting and nonzero radar elevation
angles, and parameterizes the effects of drop oscilla-
tions. Here the model is simplified in an attempt to
obtain a better understanding of the basic physics of
the polarization parameters relationships to hydro-
meteor characteristics. The key assumptions in our
simplified model are as follows.

e The drops are modeled as equilibrium-shaped ob-
late spheroids. The effects of drop oscillations are not
included.*

4 Calculations parameterizing the effects of drop oscillations show
that at the heaviest rain rate the magnitudes and phases of the scat-
tering matrix elements differed less than 1% when compared with
the simplified model used here. Consequently, the results given here
may apply to a less restricted and more realistic ensemble of drops.
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e The drops are constrained to cant only in the plane
of polarization. The radar elevation angle is zero.

¢ The canting angle distribution is assumed
Gaussian with mean canting angle § and standard
deviation og.

The principal plane scattering matrices are modified
by average values of geometric coefficients to yield the
average scattering matrix for an ensemble of raindrops.
The simulated scattering matrices are then used to cal-
culate the polarization parameters A, €y, and 74,
versus mean axial ratio (through the rain rate) with
B and o, as parameters.

a. Details of calculations

The computations of the principal plane complex
scattering amplitudes for both H and V polarizations
are carried out using the T-matrix method (e.g., Wa-
terman 1965, 1971; Warner and Hizal 1976; Barber
and Hill 1990) for oblate spheroids. The axial ratios
used are those of equilibrium shaped drops; that is, the
axial ratio is a linear function of the equal-volume drop
diameter D (e.g., Pruppacher and Beard 1970; Oguchi
1977):

r(D)=1.03-0.62D, D=0.1cm. (21)

Drop diameters range from 0.01 to 0.6 cm. The fre-
quency of the incident wave is 2.80 GHz (A = 10.7
c¢m), and the index of refraction is assumed that of
water at a temperature of 7= 0.0°C (Ray 1972). Both
the backward and forward complex scattering ampli-
tudes (magnitude and phase) are calculated over the
range of drop diameters specified. For this wavelength,
the backscatter differential phase shift  can be ne-
glected and is not considered in further calculations.
The drop size distribution used in this model is of the
form

N(D)dD = Nye™*PdD, (22)

where Ny = 0.07R%¥ cm™ and A = 38R *"“ cm™!.
These values have been used to characterize thunder-
storms (Sekhon and Srivastava 1971). The rain rate
R is expressed in millimeters per hour and, for this
study, ranges from 1 to 180 mm h~'. Since this drop
size distribution is exponential, the smallest drops occur
much more frequently than the larger ones. It is these
larger drops with axial ratios deviating most strongly
from unity, however, that determine the polarization
characteristics of the precipitation.

The magnitudes of the scattering amplitudes are cal-
culated for three elements of the scattering matrix (the
matrix is assumed symmetric). Since most radars
measure power, the magnitudes are calculated in an
rms sense; that is, each squared magnitude is weighted
by both the average values of the canting angle distri-
bution and the drop size distribution. The weighted
squared magnitudes are then added and normalized to
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Mean of p = 0.0° o= 4.0°

0.017

0.015

0.013
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/ ; b= SHVrms/SHHrms

0.011 ’{’
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0.009 f

0.007
0 50

100 150 200
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F1G. 3. The ratio of Syyms and Syums matrix elements b is shown versus the rain rate R
(mm h™'). The frequency of the incident wave is 2.80 GHz (A = 10.7 cm) and the index of refraction
is assumed that of water at a temperature of T = 0.0°C (Ray, 1972). Note that for low rain rates
when most drops are spherical, the ratio approaches zero because there are fewer canted oblate
drops to produce a cross-polarized component in the scattered wave.

obtain the average rms amplitudes of the scattering
matrix. These real quantities are denoted as Swprms,
S¥vems, and Sgiems. Note that all averaging is performed
over drops, and therefore, the rms values should be
interpreted as resulting from spatial averaging. Assum-
ing ergodicity, these rms amplitudes are equivalent to
time averages. Such an averaging scheme was examined
in Schroth et al. (1988; see, in particular, p. 811 de-
scribing the average relative S matrix) for use with the
DLR radar. We note, in passing, that no assumptions
on correlations between matrix elements are made.
Rates of propagation phase shift are computed for the
copolarized elements from the forward-scattering am-
plitudes of each drop weighted by the drop size distri-
bution (e.g., Aydin and Zhao 1990). The model scat-
tering matrix for the ensemble is therefore

1 be'/?

Sims = [bew/z aei(¢)} ] (23)
where a and & are now rms magnitudes equal to Sy vims/
SHrrrms and Seryems/ Stams, T€spectively (Schroth et al.
1988). Since the magnitudes of the elements are rms
values, the matrix is denoted as S,,,,. We stress that
the sign information about the canting angle is lost.
Therefore, we give ¢,, and 7, the labels apparent op-
timal ellipticity and tilt in the ensemble case. The mea-
surement of these rms quantities is discussed in sec-
tion 4d.

Plots of the calculated rms matrix elements versus
rain rate are presented in Figs. 2 and 3 for a canting
distribution with mean 8 = 0.0° and ¢4 = 4.0° (Beard
and Jameson 1983). Figure 2 shows the value of a
(proportional to Zpg ) over the entire range of rain rates.
The curve tends toward unity at small rain rates be-
cause the majority of drops are spherical. At larger rain
rates, more of the drops are oblate and a deviates from
unity. In Fig. 3, the off-diagonal term & (proportional
to LDR) is plotted as a function of rain rate. Here b
is small at low rain rates since no cross-polarized returns
are expected from spherical drops. As the rain rate in-
creases, so does the number of large oblate drops, some
of which are canted and cause a cross-polarized echo.
The rate of propagation differential phase shift is pre-
sented in Fig. 4. Note that ® is a rate in degrees per
kilometer. Since & is defined as V'V — HH, this be-
comes more negative with increasing rain rate.

b. Neglecting propagation phase

In this section propagation phase effects are ignored
entirely in order to gain insight into the dependence
of the optimal polarizations on the canting angle dis-
tribution. The phase ¢ in (23) is set to zero, and we
regard the measurement as being made in the first rain
gate. Note that in the absence of propagation phase
S is real and requires only the measurement of the
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FIG. 4. Rate of propagation differential phase shift ® versus rain rate (mm h™'). The frequency
of the incident wave is 2.80 GHz (A = 10.7 ¢m) and the index of refraction is assumed that of
water at a temperature of T = 0.0°C (Ray 1972). Note that & is presented as a rate with units of
degrees per kilometer. Also note that & is defined as &, — &, because S is normalized by Sy.

three rms magnitudes. Using the simulated scattering
matrices for the range of rain rates mentioned above,
the polarization parameters A, e, and 7,, can be cal-
culated.

1) ASYMMETRY RATIO AND Zpg

Given the fact that the asymmetry ratio (in decibels)
in the absence of canting is equivalent to the differential
reflectivity, it is natural to compare the two. The asym-
metry ratio and Zpy are calculated as functions of the
rain rate and the canting angle parameters. Since equi-
librium shapes are used, the rain rate R depends on
the mean drop size and shape through the drop size
distribution. The mean axial ratio is of physical im-
portance, and since radars measure reflectivity, we ex-
amine the dependence of A on the reflectivity-weighted
mean axial ratio & (e.g., Jameson 1983). This is de-
fined as

[ r) 42N (DYaD
R

[ 188DyN DD

Figure 5 shows the asymmetry ratio (dB) plotted versus
A (dB). The canting angle parameters have been fixed
at 6 = 0° and o5 = 4.0°. There exists an almost linear

relationship between the two on a log scale. This leads
to a power-law relationship of the form A = R*, with
x = —2.28 as shown in Fig. 5 (for the 4° standard
deviation of canting angles typical of rain). Compar-
ison of A with Zpg (Fig. 5) shows that the asymmetry
ratio seems to contain the same information about the
mean shape as does Zpg (at least in rain when standard
deviations of canting angles are small). The differential
reflectivity is, however, more sensitive to the canting
angle distribution than is A, as illustrated in Figs. 6
and 7.

The dependence of A and Zpgr on the mean canting
angle § is shown in Fig. 6 for two rain rates of 6.4 and
29.1 mm h~'. The standard deviation o is held con-
stant at 4°. Values of § have been chosen to vary from
0° to 10°. The values of 3 are extended beyond the
physically plausible range for rain but could occur in
wet hail, etc. As expected, Zpg decreases with increasing
B since the returns due to canted drops have a cross-
polarized component. The asymmetry ratio A is prac-
tically constant for 8 < 4° and then increases slightly.
As in a single drop case, changing 8 does not appear
to affect A greatly. While the reason for the small
gradual increase requires further investigation, it is ev-
ident that changes in g affect A only slightly.

The dependence of the A and Zpy on the standard
deviation of the canting angle o is shown in Fig. 7 for
the same two rain rates as in Fig. 6. Values of og as
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FiG. 5. The asymmetry ratio A (dB) and Zpg versus the reflectivity-weighted mean axial ratio
A (dB). Both curves are shown along with their power-law fits (y = &%).

high as 30° do not normally occur in rain but might
be typical of other forms of precipitation. Setting the
mean canting angle to zero, the asymmetry ratio A at
a constant rain rate increases slightly as g5 increases.
This is in contrast with Zpg, which decreases sharply
as og increases. These results are similar to the depen-
dence of A and Zpr on the mean canting angle. Again,
the mechanism responsible for the slight increase of A
with o, is not clear. We suspect that this might be an
artifact caused by the loss of canting angle sign infor-
mation in the rms model.

2) APPARENT OPTIMAL ELLIPTICITY AND TILT

Next we examine the relationships between e, and
7op and the three microphysical parameters %, 8, and
og. In this section, the effects of the rms scattering ma-
trix are more apparent. Indeed, in spite of the fact that
drops cant in both positive and negative directions, the
sign information is lost in the process of computing
the rms scattering matrix. As a result, the optimal po-
larization tilts are always positive and must, therefore,
also be interpreted in the rms sense.

As expected from the single drop case, the apparent
optimal tilt and ellipticity are fairly insensitive to R
and therefore rain rate (they vary by less than 1°).
Consequently, the ¢, and 7., versus R plots are not
included. However, this insensitivity is illustrated for
the tilt in Figs. 8 and 9 where rain rate is used as a
parameter.

Figure 8 is a plot of 7., versus § for four rain rates

(6.4, 29.1, 58.5,94.6 mm h~'). Note that for small
B, the tilt does not approach zero and is, in fact,
slightly larger than o4. This fact must be interpreted
in the rms sense (see also section 4d); that is, all
drops are canted in a positive direction with an ef-
fective average angle slightly larger than 0. At larger
angles, the behavior of the apparent (rms) optimal
tilt shows an almost linear dependence for large mean
canting angles (8 = 4°). This is reminiscent of the
single drop case. One interesting feature of this graph
is the insensitivity of the apparent optimal tilt to the
rain rate. This suggests that it can be used as a mea-
sure of mean canting at least in the absence of any

" propagation phase shift.

The dependence of the apparent optimal tilt 7,
on gy is shown in Fig. 9. The standard deviation of
the canting angle distribution is plotted versus the
tilt at the same four rain rates as in Fig. 8. The mean
canting angle in this case is zero. As expected,
70p => 0 as o5 = 0, since in that case all drops have
a canting angle of 8 = 0°. The tilt has an almost
linear dependence on the standard deviation for
small 8 at all rain rates. The linear depolarization
ratio [LDR = 10 log(5?)] is plotted along with 7.
The canting parameter <y, (introduced in Jameson
1985a), which is a function of the canting distribu-
tion only, is also plotted for comparison. The optimal
tilt appears to be the variable of choice to use as an
estimate of o5. Another interesting feature of Fig. 9
is the apparent tilt’s insensitivity to 7 and thus rain
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FIG. 6. The asymmetry ratio .4 (dB) and Zpg versus mean canting angle § for two rain rates
of 6.4 and 29.1 mm h™". The standard deviation of canting angles o, has been set at 4°. In each
case, A remains fairly constant while Zpg decreases.

rate. This seems to suggest a measurement of ¢4 di-
rectly from 7,, when the propagation differential
phase shift and 8 are small.

The apparent ellipticity ¢,, {(not shown) is not a
function of either § or g4 in the absence of propagation
differential phase shift. In fact, since 8 consists of only
real quantities in this case, the apparent optimal ellip-
ticity is identically zero. Hence, plots of ¢, are not
shown.

In summary, the asymmetry ratio .A has a power-
law-type relationship with the reflectivity-weighted
mean axial ratio. The asymmetry ratio gives a slight
improvement over Zpg as a measure of & and is less
affected by particle canting, particularly when oy is
large. The asymmetry ratio does, however, require
the additional measurement of the cross-polarized
power. In fact, an expression for A has been derived
in terms of the rms amplitudes and is given in ap-
pendix C.

The apparent optimal tilt is a function of both the
mean canting angle 8 and the standard deviation of
the canting angle a5. Since the mean canting angles of
hydrometeors are typically close to zero (e.g., Jameson
1985a), however, the apparent optimal tilt can be used
to measure o4. The apparent optimal ellipticity on the
other hand has a rather striking insensitivity to both
B and a5 when ¢ is negligible. In the next section it is
shown that propagation phase affects both the apparent
optimal ellipticity and tilt.

¢. Including propagation effects

In order to analyze backscattering from range gates
farther into the medium one has to consider the inci-
dent wave traversing through a distance 2 L containing
rain (L is the one-way propagation distance in kilo-
meters). For the purposes of this propagation study,
we assume the mean canting angle of the precipitation
to be zero and concentrate on the variance of the dis-
tribution. The dependence of the apparent optimal tilt
and ellipticity on o4, in the presence of propagation
phase, is discussed next.

Calculations have been performed for L = 8 km
(the total propagation distance is 2 L). The propagation
differential phase shift ¢ = 2L®, where ® is the rate
of propagation differential phase shift. The resulting
rms scattering matrices have been used to calculate the
polarization parameters A, 7,,, and ¢,. The asym-
metry ratio A is not affected by propagation effects;
that is, it is not a function of propagation distance L
and will not be considered any further in this section
(see appendix C).

The response of 7,, to canting shows a greater de-
pendence on rain rate when including propagation ef-
fects, because the specific propagation differential phase
shift ® is highly dependent on rain rate (see Fig. 4).
This dependence of ® on R is amplified in the scattering
matrix by the 8-km total pathlength. (Our model in-
cludes the two-way propagation distance but results
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FIG. 7. The asymmetry ratio A (dB) and Zpg versus the standard deviation of the canting
angle distribution g, for the same two rain rates as in Fig. 6. The propagation phase shift has

been set to zero and o =

are in terms of L the one-way propagation distance.)
Figure 10 shows 7,, versus gz when including propa-
gation effects for four rain rates. The propagation dif-
ferential phase has the effect of spreading out the curves
when compared with Fig. 9. If the propagation phase

" effects could be removed by measuring the propagation
phase independently, however, 7, could still be used
to determine canting parameters. Note that curves for
LDR and v; are not present in Fig. 10, since by defi-
nition both are independent of propagation differential
phase shift.

In the absence of propagation phase, the ellipticity
is not a function of the canting parameters [ see section
4b(2)]. When propagation phase is present, however,
the ellipticity is a measurable function of both B and
og. For example a plot of the apparent optimal ellip-
t1c1ty versus oy is shown in Fig. 11 for the same four
rain rates as in Fig. 10. The apparent optimal ellipticity

now depends on rain rate for the same reason as tilt,
namely, the fact that the specific propagatlon differ-
ential phase shift is a function of rain rate. For high
rain rates and large oy, €, can be several degrees. This,
however, may not be large enough for practical mea-
surements [although differential phase measurements
of 1° or less have been reported (Doviak and Zrni¢
1993)1.

‘We next examine the dependence of the optimal
polarizations on the one-way propagation distance
L and, thus, the propagation differential phase shift
¢. Scattering ‘matrices (23) are computed for a con-

= 4°, Again, Zpg decreases rapidly while A is less affected by op.

stant rain rate but for a range of propagation dis-
tances. The apparent optimal tilt and ellipticity are
then determined from each matrix. Figure 12 shows
the dependence of the apparent tilt and ellipticity on
the one-way propagation path L for a distance out
to 100 km for a rain rate of 94.6 mm h~'. Of course,
one is unlikely to ever encounter a one-way propa-
gation path of 100 km in 94.6 mm h™' rain. Nev-
ertheless, the propagation path is extended to this
exaggerated value simply to illustrate the periodic
dependence of ¢,, and 7,, on L. The canting angle
parameters are set at 8 = 0° and o5 = 4°. The de-
pendence of both ellipticity and tilt on L appear sur-
prisingly sinusoidal. In retrospect, this cyclic behav-
ior should be anticipated as ¢ rotates through 360°
over sufficiently long propagation distances. It is in-
teresting to note that the amplitudes of the Top and
€op Curves are the same (approximately 4.5°) while
they differ in phase by about 40 km. This functional
dependence prompted us to examine the relationship
of ellipticity and tilt to the propagation differential
phase more closely. As shown in the previous section,
the apparent ellipticity is independent of the canting
parameters, while the apparent tilt does depend on
the canting distribution. In an attempt to find an
optimal polarization parameter that will provide us
with a measure of propagation phase, we concentrate
on the apparent optimal ellipticity because it is not
a measurable function of canting in the absence of
propagation phase.
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FIG. 8. The apparent optimal tilt 7., versus the mean canting angle B for four rain rates (6.4,
29.1, 58.5, 94.6 mm h™'). The propagation phase shift has been set to zero and o5 = 4°. The
behavior of the apparent optimal tilt shows an almost linear dependence for large mean canting
angles (8 = 4°). One interesting feature of this graph is the insensitivity of the apparent optimal
tilt to the rain rate. Note that for small £ the tilt does not approach zero and is, in fact, slightly
larger than g, This occurs because of the rms artifacts present whenever the standard deviation

of the canting angles is not zero.

A sinusoidal-type dependence of the apparent op-
timal ellipticity on the propagation differential phase
suggests a simple dependence on the matrix elements
of S;ms (23). To explore this dependence, we have
used a symbolic manipulator (Macsyma) to deter-
mine algebraically the dependence of ¢, on all the
elements of the scattering matrix; that is, ¢;, = €op(a,
b, ¢). The amplitude of ¢,, oscillations appear to be
a function only of the magnitudes a and b, while the
lag of the ¢,, curve depends only on the propagation
differential phase shift ¢. Since ¢ can be expressed
as ¢ = 2L®, where ® is the rate of propagation dif-
ferential phase shift in degrees per kilometer, the pe-
riod of the sine wave depends on ®. The steps in
obtaining ¢, as a function of a, b, and ¢ along with
the explicit expression for e, are given in appendix
C. In typical experiments, ¢,, would probably not be
detectable until its magnitude is larger than about
1°. At a rain rate of 94.6 mm h™!, this does
not happen until the propagation distance exceeds
3 km.

In summary, the study of the optimal polarization
parameters dependence on the characteristics of the
precipitation including the canting angle distribution
and propagation effects leads to the following con-
clusions. The asymmetry ratio A is a function of the

reflectivity-weighted mean axial ratio & and there-
fore a function of rain rate, but it is less sensitive to
canting than Zpgr. Furthermore, A is independent
of the propagation phase. Thus, the asymmetry ratio
can be regarded as a generalization of Zpy (at least
for S band) because it is a combination of Zpg
and LDR and it reduces to Zpgr in the no-canting
limit.

The apparent optimal polarization parameters 74p
and e, are both functions of the canting distribution
parameters and the propagation phase; however, both
are weak functions of the rain rate and R. The re-
lationships are simplified considerably, however, in
the case of zero mean canting angle. It is therefore
possible to envision estimating oz and ¢ based on
measurements of 7., and ¢,,. In the previous sections,
the behavior of the optimal polarization parameters
has been examined while holding g4 or ¢ fixed. The
functional relationships between these variables can
be rather complex, but when combined with other
quantities 7,, and ¢,, might prove to be of practical
use. If it is assumed that the mean canting angle of
hydrometeors is close to zero, then 7., and ¢,, depend
only on ¢4 and the phase ¢. In principle, it should
be possible to estimate both o4 and the propagation
phase ¢ using 7, and ¢, if these latter two quantities
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FIG. 9. The apparent optimal tilt ,, versus the standard deviation of the canting angle distribution
o5 for the same four rain rates as in Fig. 8. Note the two y axes needed to put all three curves on
the same plot. The propagation phase shift has been set to zero and B = 0°. The tilt (using the
left y axis) has an almost linear dependence on the standard deviation for all rain rates. One
observes that the apparent optimal tilt is nearly independent of rain rate. The LDR and v, have
also been plotted on this graph (using the right y axis). Note that LDR varies considerably with
rain rate and v, depends only on the canting distribution.

can be readily measured from the rms matrix ele-
ments.

d. On a possible measurement scheme

Obviously, any new variable is most useful if it can
be measured. Here we give examples of measurement
schemes that will allow the determination of A, ép,
and 7, from real radar data. In order to measure these
parameters, one needs either the average rms (see also
Schroth et al. 1988) or the instantaneous full scattering
matrix. While the former is easier to measure (and is
our focus here), the latter contains more information.
As demonstrated in this paper, the rms scattering ma-
trix calculated from the average powers at horizontal
and vertical copolarizations and the average power at
cross-polarization can be used to obtain A, ¢,,, and
Top in the absence of propagation effects. Such rms
measurements are possible on several research radars
today operating at S band and would provide the mi-
crophysical information discussed above. In fact, such
a scheme was proposed in Schroth et al. (1988) but
for C band where backscatter differential phase and
attenuation effects are not negligible. It should be noted,
however, that these three measurements are sufficient
to calculate only the rms values of the optimal polar-
ization parameters because of the loss of:sign infor-

mation as discussed in section 4a.’ This provides mo-
tivation to look at an instantaneous measurement of
S that will be a subject of a future publication. For
now, we will confine ourselves to brief remarks.

Assume that a radar is capable of measuring the
full scattering matrix (amplitudes and phases) either
by switching the transmitted polarization states well
below the decorrelation time of the precipitation or
by obtaining an instantaneous scattering matrix with
interpolation (e.g., Chandrasekar et al. 1993). Fur-
thermore, envision a time series of these matrices
measured for a given range and elevation angle, that’
is, 81, S, ..., Sn. For each S, the three polarization
parameters A, , €p;, and 7,p; can be calculated. These
calculations involve the solution of a simple 2 X 2
eigenvalue problem; in particular, the asymmetry
ratio can be obtained simply from a quadratic equa-
tion involving the elements of G. The ellipticity and
tilt are calculated from the eigenvectors using inverse
trigonometric functions.

The calculations result in a fluctuating time series
for each polarization parameter. For example, the op-
timal tilt will fluctuate in time giving positive and neg-
ative values. The mean value of 7, should be zero on

5 Also note that the interpretation of the rms scattering matrix as
an operator acting on some polarization vector is no longer clear.
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FIG. 10. The apparent optimal tilt 7, versus the standard deviation of the canting angle dis-
tribution o, for the same four rain rates as in Fig. 9. Again § = 0°, but the one-way propagation
distance L = 8 km. In comparison with Fig. 9, the tilt is no longer completely insensitive to rain
rate but the curves are still separated by less then 1°. The propagation phase spreads out the

curves slightly.

average because just as many drops will cant positively
as will cant negatively. In order to connect the mea-
surements to calculations presented in this paper, each
element in the series can be squared, the results added,
and the square root taken to yield the rms values. Thus,
the three polarization parameters can be defined in
terms of their time series as

1/2

1 2 12 1 2
'ﬂ=('ﬁzﬂx) 5 T°p=(]—VZT°pi) 5

1 1/2
éop = (]T[ z Ggpi) .
i

Work is in progress to model such matrices and to
process real measurements from a limited number of
research radars having the necessary capabilities.

5. Summary

Our goal here has been to explore the feasibility
of optimal polarizations as a tool for retrieval of mi-
crophysical information. Although rain has been
used as a test medium for these new parameters, their
usefulness is not restricted to it and the estimation
of microphysical parameters from other hydrome-
teors such as wet or dry hail can be examined with
the same tools. Perhaps the most significant contri-

bution is a critical one: one has to be cautious in
interpreting results when combining the concepts of
a scattering matrix (operator) and rms-type power
averaging because the angular sign information is
lost and the optimal eigenvectors always end up with
positive tilts.

It is found that the optimal polarization parameters
(asymmetry ratio A, apparent optimal tilt 7,,, and
apparent optimal ellipticity ¢,,) are related to the mi-
crophysical parameters of the ensemble of drops (the
reflectivity-weighted mean axial ratio 7, the mean
canting angle 3, the standard deviation oy, and the
propagation differential phase ¢). When propagation
effects can be ignored, the polarization variables can
be obtained by simply measuring the copolarized and
cross-polarized powers. Furthermore, the asymmetry
ratio can be viewed as a generalization of Zpg because
it combines Zpr and LDR and it is unaffected by prop-
agation phase.

The relationships are summarized here for an
ensemble of drops with prescribed canting parame-
ters.

e The asymmetry ratio A is a good indicator of R.
It is less sensitive to canting than Zpg and it is inde-
pendent of propagation effects. Also, in addition to
Zpr, it requires only one measurement ( the cross-po-
larized power).
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FIG. 11. The apparent optimal ellipticity e, versus o, for the same four rain rates as in Fig. 8.
Again, § = 0° and the one-way propagation distance L = 8 km.

¢ In the absence of propagation effects, the apparent
optimal tilt is not sensitive to rain rate and the optimal
ellipticity is identically zero. _

¢ The apparent optimal tilt 7, is a function of 3,
ag, and ¢. Assuming 8 = 0, however, the tilt depends
on ag and ¢ only; that is, 7o, = Top( 04, ¢).

e The apparent optimal ellipticity ¢, is 2 function
of B, o5, ¢. Assuming 8 = 0, ¢, depends on o5 and ¢
only; that is, ,, = €p( 05, ¢).

¢ Both ¢,, and 7, exhibit a sinusoidal-type depen-
dence on the propagation differential phase shift.

The asymmetry ratio gives a measure of the reflec-
tivity-weighted mean axial ratio that is less affected by
canting than would a measurement based on Zpg. In
fact, in the cases examined here, A seems to be better
suited to measure microphysical characteristics. The
only drawback is that the entire scattering matrix must
be measured. This is not a serious problem, however,
since several research radars have the ability to obtain
the three average power measurements required for
the rms scattering matrix at S band.®

The apparent optimal ellipticity and tilt are functions
of both canting parameters and of propagation phase,
but these dependencies can be considerably simplified
under the assumptions given above. We are left with

6 Note that at higher frequencies A would also depend on the
backscatter differential phase shift.

two measurables and two unknowns, and there is the
possibility of recovering the standard deviation of the
canting angle distribution and the propagation phase
from ¢,, and 7., measurements.

We conclude by pointing out the limitations of
our study. The differential attenuation was assumed
negligible at S band, but in some cases, and certainly
at smaller wavelengths, this is not a valid assumption.
Possible effects of differential attenuation are dis-
cussed in appendix D. Backscatter differential phase
shifts were also neglected in this work (S band),
which may be invalid in scattering by, for example,
large hail. Our preliminary calculations for X band
(not included here) indicate that the backscatter
phase does not significantly change the conclusions
reported in this study.
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FIG. 12. The apparent optimal ellipticity ¢, and tilt 7, versus the one-way propagation distance
L (km). The mean canting angle 8 = 0°, the standard deviation o5 = 4°, and the rain rate R
= 94.6 mm h™!. The two polarization parameters exhibit a sinusoidal dependence on L. Note
that while one is unlikely to ever encounter a one-way propagation path of 100 km in 94.6
mm h~! rain, the propagation path is extended to this exaggerated value simply to illustrate the

periodic dependence of ¢, and 7o, on L.

APPENDIX A
Polarimetric Definitions

Here basic definitions of radar polarimetry (Bringi
and Hendry 1990; Ishimaru 1991; Kostinski et al.
1993), such as polarization vectors, the definition of
the scattering matrix, and the optimal polarization
technique are reviewed so that the eigenpolarizations
can be related to the parameters of the polarization
ellipse. These parameters are used to retrieve infor-
mation about the hydrometeors.

a. Polarization vectors

The polarization of a plane electromagnetic wave is
described using the polarization or Jones vector (e.g.,
Azzam and Bashara 1977; Born and Wolf 1980). This
isa 2 X 1 complex vector and in a linear basis can be
written as

1 | Ex|
E= < | .
(IExIZ + |Ey|2)1/2|:|Ey|eu$:| (Al)

The magnitudes of the x and y components are | E,|
and | E, |, respectively. The phase  represents the phase
difference between the x and y components of the wave.

In this paper, we consider a linear basis consisting of
horizontally H (x) and vertically V' ( y) polarized signals.

The polarization of the wave can also be described by
a single complex number, X (Azzam and Bashara 1977),

_ IEyleié
|Exf

which is used to recover the parameters of the polarization
ellipse (see, for example, appendix B). Both representa-
tions uniquely describe the polarization state of the wave.

The shape of the polarization ellipse itself (Fig. Al)
can be specified by two parameters; ellipticity € and tilt
7 (Born and Wolf 1980; Azzam and Bashara 1977).
The ellipticity is the “fatness™ of the ellipse, and the
tilt is the angle between the ellipse’s major axis and the
local horizontal. The original intent in introducing
these parameters was probably to separate the shape
and orientation of the polarization ellipse at the level
of the wave (Born and Wolf 1980). It seems that such
shape versus orientation decoupling is important at the
scattering level as well because these parameters sep-
arate effects of particle shape from particle orientation.
It therefore appears natural to express the eigenpolar-
izations in terms of ellipticity and tilt and to determine
their dependence on such microphysical parameters as
particle canting and shape.

(A2)
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FI1G. A1. General case of elliptical polarization for a complex electric
field vector E. Ellipticity e (“fatness” of the ellipse) and tilt 7 (incli-
nation of the major axis) are shown.

The ¢ and 7 parameters have ranges of —w/4 < ¢
< m/4 and —7/» < 7 < =/3. They completely as well as
uniquely describe all possible states of polarization. The
sign of ¢ determines the sense of rotation of E, that is,
right- or left-handed polarizations.”

b. Scattering matrix

" The scattering of a polarized wave by a target can
be described by a 2 X 2 complex scattering matrix act-
ing on the 2D complex polarization vectors defined in
the previous section. The scattering matrix can be
written in a linear basis (e.g., Bohren and Huffman
1983; Ulaby and Elachi 1990) as

S = [SHH SHV]
SVH SVV ’

where each element consists of a magnitude and phase;
that is, Sy = | Syu|e®#. The subscripts HH, HV,
V H, V'V represent the polarizations used to measure
the matrix; that is, HH denotes a horizontal transmitted
and received signal and the §’s with subscripts denote
the corresponding phases.

It is advantageous to normalize the matrix by the
(1, 1) element to give

7 We note in passing that the helicity or handedness of the wave
is defined here not only by the polarization vector (A1) but also by
the direction of propagation (see, e.g., Collin 1985, p. 303).
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S = l: 1 SHV/SHH}
SVH/SHH SVV/SHH .

The overall phase 4 is not a measurable and can be
set to zero. The phases in the matrix are now phase
differences (relative to HH). To simplify the notation,
the scattering matrix above is rewritten as

y
S- 1. be. ,

be™ ae®
where a and b are magnitudes equal to | Syy|/| Syl
and | Syx|/| Suul|, respectively. The phase v represents
the total phase difference between Syy-and Syy, while
4 is the total phase difference between Sy and Syy.
At this point, no assumptions have been made about

the physics of the scatterer, and (A3 ) is the most general
form of the normalized symmetric scattering matrix.

(A3)

APPENDIX B
Optimal Ellipticity and Tilt

Here a brief description of the method to obtain the
optimal ellipticity and tilt from the eigenvectors of G
is given. These parameters of the polarization ellipse
are recovered from the eigenvectors of G by using X
as defined in (2). Note that this method is independent
of the optimal polarization technique and can be used
to obtain the ellipticity and tilt from a general polar-
ization vector.

Given the graves matrix G, the eigenvalues and ei-
genvectors are found by solving

Gx = A\x (B1)

(see, e.g., Strang 1988, chapter 5). Matrix G is obtained
from S (G = S'S), and in the case of a single canted
drop, the elements of S are given in terms of the prin-
cipal plane scattering amplitudes and the canting angle
8 [Egs. (6)-(8)]. For a single canted drop, the two
eigenvectors that satisfy (B1) are repeated here:

| 1
= (1 +tan?p)'/? [tanﬁ] ’

1 1
£ = (1 + cot?B)!/? [cotﬁ] ’

The corresponding complex number representation of

the polarizations are
X; = tanf; X, = cotf. (B2)

This complex number can be related to the ellipticity
e and tilt 7 of the polarization ellipse by Azzam and
Bashara (1977, p. 29):

tan7 + i tan
- T (B3)
1 — i tant tane

When X is real as is the case for our single canted drop,
(B3) reduces to -
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X = tan(7).

Consequently, the tilts of the two polarizations are
found to be

1= —0
72 = 90° — 6.

The ellipticities are identically zero when X is real.

In the general case of complex X, the ellipticity and
tilt can be recovered using Azzam and Bashara (1977,
33-34):

2 Re(X)
tan2r = 1= %12 X2 (B4)
. 2 Im(x)
sin2e = Tlxlz . (BS)

Here Re and Im denote the real and imaginary parts
of X, respectively.

APPENDIX C
Symbelic Calculations

The use of symbolic software provides the oppor-
tunity to examine the explicit dependence of the op-
timal polarizations ¢, and 7., on the elements of the
scattering matrix 8. Here we outline the steps that pro-
duce the optimal ellipticity as a function of the three
variables a, b, and ¢ in the scattering matrix. The
expression for S [Eq. (1)] is repeated here for conve-
nience:

be'®!?
ae® |’

1
S= [be‘“”2

First, the Graves matrix is determined from S (G
= 8'S). From G we then determine the eigenvalues
and eigenvectors in terms of a, b, and ¢. The asym-
metry ratio A can then be expressed from the eigen-
values as

_(a+ D[4b*+(a—1)*]"2+ 20 +a* + 1
—(a+ D402+ (a— 1) ]2+ 262+ a2+ 1
(C1)

Note that this expression is independent of ¢.

To determine the ellipticity, the complex polariza-
tion parameter X is found for both the minimal and
maximal polarization vectors. The ellipticity can then
be obtained from X using Azzam and Bashara (1977):

1 in“’[ 2 Im(X)] .

) 1+ |x]|? (€2)

s
2
The explicit expression for €., as given in terms of the
elements of S, 1S

1. _l(c . ¢)
€p = = sin! = sin=|.

2 d 2 (©3)
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The values of ¢ and d depend only on the magnitudes
of the copolarized and cross-polarized components of
S and are given as

c=[4b*+(a—1)*1"*+a—1

(a— 1)[4b% + (a — 1)?]'?
_ +2b2+ (a— 1)
d b{ 5 +1{.

While (C3) is not in general sinusoidal, it appears si-
nusoidal for ¢/d < 1. Typical values of ¢/d for S band
are much less then unity. The argument of the sine
function is simply ¢/2. In terms of the propagation
path L and the rate of propagation phase shift ® the
argument becomes L®. This relationship can be in-
verted to provide the propagation phase in terms of
the optimal ellipticity

=2 sin“(gsinZeop) . (C4)

APPENDIX D
Possible Effects of Attenuation

While differential attenuation caused by propagation
has been ignored in this preliminary study, it might be
significant in many realistic situations. Here we ex-
amine the effects of attenuation on the asymmetry ra-
tio. It is well known that LDR is much more affected
by the differential attenuation than Zpr [and A de-
pends on both through a and b; see Eq. (C1)]. Thus,
in so far as differential attenuation affects LDR, the
asymmetry ratio is also affected. Below we give a nu-
merical illustration of the sensitivity of A to differential
attenuation.

The data are taken from Bringi and Hendry (1990,
Fig. 2.7, p. 162), where both Zpr and LDR are plotted
as a function of rainfall rate with propagation distance
as a parameter. This plot was produced by assuming
Marshall-Palmer raindrops with a Gaussian distribu-
tion of polar canting angles and ¢ = 10°. We have
taken examples from the extreme cases of 1- and 20-
km propagation distances using a rain rate of 30
mm h™'.

At a propagation distance of 1 km, values of Zpg
and LDR are 1.625 and 1.3 X 1073, respectively. Note
that the values are on a linear scale. At 20 km, Zpg
and LDR are 1.59 and 6.76 X 1073, respectively. The
corresponding value of A [Eq. (C1)] at 1 km is 1.67
and at 20 km is 1.81. Observe that Zpg changed by
only 2%, while LDR changed by 135%. The corre-
sponding change in A is 8%. It therefore appears that
A is only slightly more sensitive to differential atten-
uation then Zpp in spite of huge effects on LDR (an
8% versus 135% change).
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