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ABSTRACT

As the sample volume of a remote sensing instrument moves through sufficiently variable conditions, recent
work shows that the amplitudes and associated intensities can deviate significantly at times from expectations
based on Rayleigh signal statistics because fluctuations in the number of scatterers leads to a doubly stochastic
measurement process. While non-Rayleigh deviations yield average biases for both logarithmic and linear de-
tectors, perhaps of greater importance is the enhancement of the variance of the bias distribution for square law
detectors. In this work the authors explore the potential existence of non-Rayleigh effects even in the statistically
homogeneous rain when fluctuations in the number of scatterers should be much less than for the inhomogeneous
conditions used in earlier studies.

Moreover, in contrast to previous work, recent advances now permit the simulation of correlated rainfall
structures having the statistical characteristics of natural rain such as clustering intensity (ℵ) and coherence
length (xl ) consistent with observations. The primary objective of this work, then, is to clarify how ℵ, xl , and
the geometric parameters characteristic of remote sensing observations such as the distance over which an
estimate is made (L), the beamwidth (B), and the spatial displacement between successive independent samples
(D) affect non-Rayleigh signals statistics in statistically homogeneous rain.

This work shows that non-Rayleigh effects can appear whenever D # xl # L. Moreover, the magnitudes of
the non-Rayleigh deviations increase as ℵ and D/B increase. Although non-Rayleigh effects can be detected by
monitoring of the signals, keeping both D/B and L as small as possible while increasing sample independence
using chirp or signal whitening techniques, for example, should help to minimize non-Rayleigh effects for radars
even in statistically inhomogeneous rain.

1. Introduction

The assumption of Rayleigh statistics is a main stay
in much of remote sensing. The work of Lord Rayleigh
(1877) was extended to radar by Marshall and Hitschfeld
(1953) and subsequently expounded by many including
Doviak and Zrnić (1993) most recently. Rayleigh sta-
tistics, however, are based upon the Central Limit The-
orem applied to each of the two components of the
complex signal when conditions are ‘‘near’’ statistical
stationarity. Jameson and Kostinski (1996) explored the
meaning of near stationarity and concluded, for the sim-
ple case of drops of one size, that whenever the number
of ‘‘drops’’ within the beam fluctuated from sample to
sample by more than about 15% of the mean, non-Ray-
leigh effects could be detected. Why? Because now the
measurement not only depends upon the constructive
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and destructive interference of the waves scattered off
all the drops, it also depends upon the doubly stochastic
nature of the process (see Feller 1968, 53 for a discus-
sion on randomization and mixtures) in which the num-
ber of scatterers themselves becomes a random variable
largely because of the motion of the observation volume
between successive radar samples. These conclusions
have been substantiated using Monte Carlo experiments
of a radar beam moving across a linear gradient of the
logarithm of Z (Jameson and Kostinski 1996) consistent
with measurements (Schaffner et al. 1980; Schaffner et
al. 1983; Scarchilli et al. 1986).

While these latter simulations support the theory, they
are limited in two respects. Specifically, by simply im-
posing linear gradients of the logarithm of Z, it becomes
impossible to relate the presence and magnitudes of non-
Rayleigh effects to actual, natural rain structure char-
acterized by properties such as correlation length and
clustering intensity. Furthermore, had such gradients
been arbitrarily set to zero, non-Rayleigh effects could
not exist in the resultant spatially uniform rain. How-
ever, because rain is a stochastic quantity, it never ex-
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FIG. 1. The two-point autocorrelation function calculated for drop
counts per second for the indicated drop sizes for a 201-s rain event
observed by a video disdrometer. Time has been converted to distance
assuming a translation speed of 2 m s21. The dashed line at zero
indicates complete statistical independence as expected for a Poisson
distribution. Note the enhanced clustering even down to the 1-s (2
m) lag.

hibits true spatial uniformity but instead is uniform only
in the sense that it can be statistically homogeneous.
Even with this understanding, however, for convenience
it is frequently assumed that raindrops are distributed
according to Poisson statistics, the most ‘‘even’’ spatial
(and temporal) distribution of drops. Recent studies,
however, show that while such an assumption may oc-
casionally be valid in unusually steady rain (Kostinski
and Jameson 1997), the Poisson distribution utterly fails
to describe accurately the spatial structure and drop con-
centration fluctuations of natural, variable rain (Kostin-
ski and Jameson 1997; Kostinski and Jameson 1999;
Jameson et al. 1999).

The reason is that most variable rain is ‘‘clustered,’’
that is, the physical variations in concentration (number
per unit volume) exceed those anticipated for a Poisson
distribution. To demonstrate what is meant by clustered
raindrops, one begins with the product of the number
of drops in two identical volumes separated by a fixed
distance, j, and then subtracts the square of the average
value computed over the entire volume under study, V,
for an ensemble of several such pairs in V. That is, we
consider the quantity

f (j ) 5 ^k(0)k(j )& 2 m2, (1)

where k(0) and k(j ) are the number of drops in two
identical volumes separated by distance j, m is the mean
number over all of V, and the brackets denote an en-
semble average over many pairs. If the number of drops
in V are distributed evenly on average, then ^k(0)k(j )&
5 m2 so that f (j ) 5 0. If, on the other hand, there
were an ‘‘excess’’ number of drops in volumes separated
by scales of j on average, f (j ) would not equal zero,
that is, [^k(0)k(j )& ± m2]. In other words, there would
be a clustering of drops compared to the average number
expected for a uniform, statistical spatial (Poisson) dis-
tribution over V.

The statistical interpretation of (1) given in Kostinski
and Jameson (1997) is in terms of the excess two-point
correlation function given by

2[^k(0)k(j )& 2 m ]
h(j) 5

2m

^k(0)k(j )&
5 2 1. (2)

2m

For a Poisson distribution, k(0) and k(j ) would be sta-
tistically independent. Consequently, ^k(0)k(j )& 5 m2

and h(j ) 5 0 even though k fluctuates from location to
location. However, when h(j ) ± 0 there is correlation.
Hence, according to Kostinski and Jameson (1997), it
is the statistical correlation of drops in one volume on
the presence of drops in another that distinguish clus-
tering from a uniform Poisson distribution.

To illustrate, Fig. 1 is a plot of h(j ) estimated from
1-s temporal drop counts (Jameson et al. 1999) in a
3-min convective rain. An arbitrary distance scale is
calculated assuming a mean translation speed of 2 m

s21. Had the distributions been Poisson, h(j ) would be
zero (Kostinski and Jameson 1997). Instead there is sig-
nificant drop clustering. While the reader is referred to
Kostinski and Jameson (1997) for a more complete sta-
tistical description of clustering, Fig. 1 serves to high-
light two important quantities.

The first is ℵ [ s 2/m2[1 2 m/s 2] 5 h(0)[1 2 m/s 2]
where m and s 2(k) are the mean and variance, respec-
tively, of the number (counts) of drops in a unit volume
averaged over the entire observation. Thus, for Poisson
distributions, when there is no clustering, ℵ → 0, be-
cause s 2 5 m. On the other hand, when clustering is
occurring, as described by the geometric distribution for
example, then ℵ → h(0)[m/(1 1 m)] → 1 as can be
readily seen by substituting h(0) 5 s 2/m2 and by noting
that for the geometric distribution s 2 5 m 1 m2. In fact
for other negative binomial distributions, it is easy to
show that ℵ → h(0)[m/(m 1 m)] → 1/m as j → 0,
where m is the so-called shape parameter of the gamma
distribution transformed into a negative binomial dis-
tribution by the Poisson mixture process (for elaboration
see Kostinski and Jameson 1997, 2177–2178). Conse-
quently, the larger the ℵ, the smaller the m. Because of
the nature of the gamma distribution, this in turn means
that as ℵ increases, m decreases and the resulting shape
of the distribution of drop counts per unit volume chang-
es such that the tail of the distribution extends to larger
counts; simultaneously, the probability densities at small
values near zero also increases. This, of course, is what
is meant by the increased clustering or clumping of
raindrops. That is, there are simultaneously both more
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regions of lower concentrations of drops and more re-
gions of higher drop concentrations, that is, clusters.
Hence, as ℵ increases, the clustering of the raindrops
increases.

The second quantity is the coherence length xl , which
is the distance at which h(xl) becomes negligible. This
latter quantity then provides a measure of the average
scale or size of the clusters. These two variables (xl and
ℵ) are important because they provide a way of char-
acterizing clustering and, therefore, of generating re-
alistic structures of rain numerically even for statisti-
cally homogeneous rain. Hence, we can now explore
the relation between xl and ℵ (i.e., clustering) and radar
sampling even in statistically homogeneous rain, a task
not possible in previous studies.

Specifically, in this study we describe a method for
generating realistic rain structures having different xl

and ℵ. We identify the ‘‘geometric’’ scales important
to the observations as well as how the geometry and
spatial characteristics of the rain interact to yield non-
Rayleigh effects even in statistically homogeneous rain.
In addition, we briefly consider how correlated radar
samples increase the likelihood of non-Rayleigh effects.
Finally, using these results we suggest approaches for
minimizing potential non-Rayleigh effects for radars
and for other remote sensing instruments as well.

2. Monte Carlo simulations of radar
measurements in clustered rain

It is now well established in variable rain that drop
counts deviate from Poisson statistics and are often well
approximated by the geometric distribution (Kostinski
and Jameson 1999; Jameson et al. 1999). While it is
possible to readily generate uncorrelated pseudorandom
deviates of drop counts for Monte Carlo simulations
using a geometric distribution (e.g., Evans et al. 1993),
an important property of variable rain is that the drop
counts are correlated in time and space as just discussed.
In fact, drop concentrations in variable rain are usually
correlated not only at one size but also among sizes
(Jameson and Kostinski 1998). However, to reduce the
complexity of this study, we use only one drop size Dz

that represents the diameter contributing most to the
radar reflectivity factor (see Jameson and Kostinski
1996). Correlations even at one drop size, however, are
important because they introduce larger-scale structures
even in statistically homogeneous rain, thereby increas-
ing the likelihood of non-Rayleigh effects (changing
number of scatterers during sampling).

Before conducting Monte Carlo simulations of a radar
scanning clustered rain, it is necessary first to describe
briefly the generation of correlated rain samples having
variable xl and ℵ. We then identify scales important to
sampling, and we describe the Monte Carlo radar sam-
pling procedure. In later sections, simulation results are
presented and discussed.

a. Generation of realistic correlated rain structures

While there are several techniques in the literature
for generating correlated samples, one of the more rig-
orous approaches, and the one used in this study, is that
given by Johnson (1994). Although details may be found
in that work, the approach is described here very briefly.

Beginning with a family of exponential correlation
functions having different xl , the correlation matrix is
constructed. The root matrices for these correlation ma-
trices are computed and then multiplied by a series of
zero mean, unit variance random deviates drawn from
the geometric probability density function (PDF). The
variance of this series is then adjusted to yield the de-
sired ℵ, and the mean value is added to yield the final
correlated series of statistically homogeneous drop con-
centrations.

To illustrate these results, Fig. 2a is a plot of h(l )
[Eq. (2)] for the family of correlation functions used in
this study. In good agreement with observations (Fig.
1), this plot shows that we have successfully generated
clustered rain over a wide range of correlation lengths
and with values of ℵ near unity. (Observed values of
ℵ typically range from 0.5 to 2.5 but on some occasions
may achieve values as large as 6 or greater.) Further-
more, Fig. 2b illustrates that the simulated PDFs are
also quite geometric.

The results can also be displayed as a series (Fig. 3a)
having a mean value of m 5 355 drops of 2-mm di-
ameter per cubic meter for two different xl’s as a func-
tion of unitless distance. (Throughout this work, the
dimensions and distance are kept unitless, but the reader
may multiply by any comfortable value.) In this figure,
the region of rain to be scanned by the radar in the
Monte Carlo simulations is denoted by the shading. The
corresponding radar reflectivity factor series is also
shown in Fig. 3b for a 10-unit-wide beam. These struc-
tures can be assumed fixed for most remote sensing
measurements. That is, the correlation times of the struc-
tures are considerably longer [several seconds to min-
utes (Jameson and Kostinski 1998; Jameson et al. 1999)]
than the fraction of a second it usually takes a radar to
make an estimate. (This structure coherence time, how-
ever, should not be confused with the much shorter
‘‘time to independence’’ as the scatterers reshuffle phase
during sampling.) While the shaded region in Fig. 3a
was selected to provide a large signal, such fluctuations
of this magnitude are a characteristic of the geometric
distribution for which the variance scales as m2 rather
than simply m as for the Poisson distribution. Hence,
this region is not especially peculiar nor are such fluc-
tuations a rare occurrence in natural spatial distributions
of raindrops (e.g., see the variances in Fig. 6 in Kostinski
and Jameson 1997 and Fig. 2 in Jameson et al. 1999).

b. Radar scales and scanning

As illustrated in Fig. 4, when sampling by a remote
sensing instrument such as radar, there are three scales
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FIG. 2. (a) The two-point autocorrelation functions calculated for
the Monte Carlo simulations discussed in the text corresponding to
exponential correlation functions with the indicated coherence (1/e)
distance, xl . The distances are unitless as discussed in the text. (b)
A comparison between simulated and geometric probability density
functions for xl 5 9.3 and ℵ 5 1.

FIG. 3. (a) The number Nz of Dz 5 2 mm drops per cubic meter
as a function of unitless distance for two coherence distances and for
correlated drop counts drawn from one realization of a geometric
distribution. The shaded region denotes where radar measurements
were simulated for subsequent analyses, while the horizontal line
denotes the mean, m. (b) Plots of the radar reflectivity factor Nz

6Dz

as ‘‘observed’’ by a 10-unit-wide beam corresponding to (a).

of the measurement, namely the beam dimension B, the
incremental distance the beam moves between indepen-
dent samples D, and the total measurement length as-
sociated with an estimate derived from n samples, L 5
nD. What we will explore in this work is the relationship
of these quantities and their effects on signal statistics
to the intrinsic characteristics of the rainfall structure,
namely, the correlation length xl and the clustering in-
tensity ℵ as discussed above.

For linear and logarithmic detectors, an important ef-
fect of non-Rayleigh statistics is a deviation of the mea-
sured mean value from Rayleigh expectations. However,

for square law detectors this mean is unbiased so that
it is the non-Rayleigh enhancement of the variance s 2

of the bias PDF that becomes most important, as pointed
out in Jameson and Kostinski (1996). (For logarithmic
and linear detectors, there may actually be a narrowing
of the bias PDF, but then there are also simultaneous
significant bias shifts of the mean, unlike the case for
a square law detector.) While for completeness we il-
lustrate the mean biases with regard to logarithmic and
linear detectors, our chief concern here is the enhance-
ment of the variance of the bias for so-called unbiased
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FIG. 4. A schematic diagram defining the distance between suc-
cessive statistically independent pulses D, the beam width B, and the
distance L associated with an estimate calculated from many samples.

square law detectors. Why? Because normally a radar
makes only one pass across a region before conditions
change. Hence, a particular estimate can be viewed as
just one draw from the bias PDF, a distribution that is
different by the time the radar returns for another look
usually several minutes later. Therefore, any increase in
s 2 due to non-Rayleigh effects then increases the un-
certainty associated with that one particular estimate.

To determine the effects of this bias PDF on mea-
surements, and its relation to rain structure and mea-
surement geometry, we perform a series of Monte Carlo
experiments. Specifically, we scan a beam across the
shaded region in Fig. 3a several thousand times in order
to extract not only reliable estimates of mean bias, but
as importantly, reliable estimates of the variance en-
hanced beyond that anticipated for Rayleigh statistics.
To do this we consider a uniformly illuminated beam
10 units wide (B 5 10). At each point in Fig. 3a the
drop concentration is converted into radar reflectivity
factor Zi simply by multiplying Dz 5 2 mm raised to
the sixth power times the number of drops per cubic
meter, as illustrated in Fig. 3b. For each radar sample,
a random phasor Pi is generated at each of the 10 points
in the beam having a magnitude drawn from a Rayleigh
PDF consistent with each Zi but with a random phase
uniformly distributed over 0 to 2p. These 10 Pi’s are
then vector summed and the intensity is determined us-
ing the three different detectors, namely, the square law,
linear (amplitude), and logarithmic receivers. The beam
is then subsequently moved by D 5 N points (1 # N
# 9) and a new sample is made. Because of the random
distribution of phase, each sample is statistically inde-
pendent in a manner analogous to chirping the radar
frequency between from pulse to pulse. Finally, the sam-
ples are averaged to yield an estimate over L. Since we

know the true mean value of the statistically homoge-
neous rain, 20 000 such realizations are then used to
calculate the observed mean bias and bias variance for
the three different detectors. The results of a series of
experiments are discussed in the next section.

3. Results

In the first series of experiments, we let B 5 10, D
5 0.1B, and ki 5 10, where ki is the number of inde-
pendent samples so that D is the spatial separation be-
tween independent samples. The results for the mean
biases as functions of xl /L are plotted in Fig. 5a. As
expected (e.g., Jameson and Kostinski 1996), the mean
bias for the square law detector is unaffected by clus-
tering, while there are small but real deviations ap-
proaching 1 dB for both the log and linear receivers.
Again, however, it is important to remember that for
square law detectors the mean is not a very useful pa-
rameter for characterizing the bias PDF. Rather, the more
relevant quantity is the standard deviation of the PDF,
as illustrated in Fig. 5b. Note that both the mean biases
and standard deviations (s) approach the Rayleigh limit
as the correlation length exceeds the estimate distance,
that is, xl /L $ 1. This is consistent with the ‘‘patch’’
characterization of rain (Kostinski and Jameson 1997).
That is, within a patch the raindrop statistics should be
Poisson (i.e., there should be no clustering on average).
Thus, as long as L, the distance associated with an es-
timate, is less than the size of a patch, Rayleigh signal
statistics should apply. On the other hand, as xl , L,
there is mixing of measurements from several patches
so that the raindrop statistics deviate from Poisson. The
result is clustering, and non-Rayleigh effects begin to
appear as Fig. 5 illustrates. Note, however, that in this
particular case as xl → 0, the values do not go to the
Rayleigh limit because the beam still acts to correlate
fluctuations across the beam, that is, it averages all the
fluctuations across the beam simultaneously from sam-
ple to sample contributing to the estimate. On the other
hand, had there been, say, 1000 points in B instead of
the 10 as in this example, then the curves might well
approach the Rayleigh limit as xl → 0.

While the above example shows that non-Rayleigh
deviations depend upon xl /L, we next illustrate that their
magnitudes also depend upon ℵ, the clustering intensity.
In particular let xl /L 5 0.2, D 5 0.1B, ki 5 10, and L
5 10. Then as Fig. 6 illustrates, deviations from Ray-
leigh expectations increase with increasing ℵ. This, of
course, makes sense because the larger the ℵ, the greater
the clustering. Consequently, there will be larger fluc-
tuations in drop concentrations, greater fluctuations in
the radar reflectivity factor, and hence larger deviations
from Rayleigh statistics. Thus, while the results in Fig.
5 are for ℵ ; 1, observations (Kostinski and Jameson
1997; Jameson and Kostinski 1999) suggest that 2 #
ℵ # 8 may not be uncommon, particularly in the cores
of convective storms. If this is so, then the potential
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FIG. 5. (a) The average biases and (b) associated standard devia-
tions of the bias probability density functions (PDFS) as functions of
xl /L in statistically homogeneous rain computed from 20 000 reali-
zations of radar measurements over the shaded region in Fig. 3 as-
suming B 5 10, D 5 0.1B, and L 5 B and 10 independent samples
for square law, logarithmic, and linear detectors. The variable ℵ is
near unity. The dashed lines denote values expected for Rayleigh
statistics.

FIG. 6. (a) Values of the mean biases and (b) standard deviations
of the bias PDFs in statistically homogeneous, clustered rain as func-
tions of the clustering intensity ℵ, as described in the text.

effects of clustering on signals even in statistically ho-
mogeneous rain may be enhanced beyond the results
shown in Fig. 5.

Moreover, non-Rayleigh effects also depend upon the
ratio of the distance between independent samples to
the beam width, (D/B), as illustrated in Fig. 7 for xl /L
5 0.2, ki 5 10 5 constant and L 5 B 5 10. As one
might anticipate, deviations in the mean bias and s in-
crease with increasing D/B. This is sensible because as

D increases there are likely to be greater changes in the
rain field (decorrelation) and, therefore, greater differ-
ences in the number of scatterers from sample to sample.
However, Fig. 7 is somewhat misleading in that it as-
sumes that the number of independent samples is some-
how kept constant. In practice that would not be likely.
Often the pulse repetition frequency is maintained even
as the antenna rotation rate is increased. Consequently,
the interval D between independent samples would usu-
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FIG. 7. (a) The mean bias and (b) standard deviations of the bias
PDFs in statistically homogeneous, clustered rain as functions of the
ratio of the separation distance between successive, statistically in-
dependent samples (D) and the beam dimension B for xl 5 2 and ℵ
near unity when the number of independent samples per estimate is
kept fixed at 10.

FIG. 8. Similar to Fig. 7 except that the number of independent
samples varies as a function of D/B, as discussed in the text.

ally increase so that for a fixed L, there would actually
be a reduction in the number of independent samples.

To illustrate, Fig. 8 is a plot of the results for the
same situation as Fig. 7 except that the number of in-
dependent samples now decreases with increasing D/B
because of, say, increasing antenna rotation rate. Ob-
viously, the effects, which are now the combination of
clustering and a reduction in the number of independent
samples, can become quite substantial. [Note that while
s for the log and linear receivers actually decreases as
D/B increases in Figs. 7b and 8b, the average biases
(Figs. 7a and 8a) are changing as well so that even for

these receivers, the potential for error during measure-
ments is enhanced as D/B increases.]

Now in all the calculations above, B is kept constant
at 10. However, for the same rain field, Figs. 7 and 8
can be used to illustrate what happens as B decreases.
If the interval between independent samples is main-
tained as B shrinks, then D/B would obviously increase
along a curve similar to one of those in Fig. 7.

However, there is often a constraint to cover some
distance L, consisting of several estimate distances L,
in a fixed time T. (One example, for instance, might be
to insist on a complete volume scan every 8 min, say.)
If, for smaller B, the scan rate is increased to cover L
in time T, then D increases (and, of course, D/B in-
creases). Consequently, the tendency is for the number
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of independent samples per estimate to decrease, and
the appropriate curve is then more like one of those in
Fig. 8. Furthermore, because the beam filtering of fluc-
tuations is less effective the smaller the beam as dis-
cussed above, non-Rayleigh deviations are likely to be
more enhanced for smaller B. Hence, in that sense small-
er beams will usually tend to see larger fluctuations than
larger beams and, therefore, may be more influenced by
non-Rayleigh effects.

On the other hand, it is not too difficult to generate
scenarios in which D/B may become quite large even
for broad beams. Hence, in general to minimize non-
Rayleigh effects it is best to keep D/B K 1. In addition,
to reduce the influence of xl , it is best to keep L as
small as possible in an attempt approach the condition
that xl /L . 1 (Fig. 5). The first condition can be
achieved most readily using signal whitening (Schulz
and Kostinski 1997; Koivunen and Kostinski 1999) or
by implementing frequency chirp. The second condition
may be addressed using these same techniques as well
and by holding the beam nearly stationary while form-
ing an estimate. A good example of the latter approach
is the use of electronic antenna steering by spaceborne
remote sensing instruments in which the observation
volume is held nearly stationary during measurements
even as the satellite moves.

4. Summary and remarks

This study shows that even in a statistically homog-
enous rain field, the clustering of raindrops can lead to
biases enhanced beyond values expected assuming Ray-
leigh statistics. This result could not have been deduced
in any of the previous work on non-Rayleigh signal
statistics (Rogers 1971; Scarchilli et al. 1986; Jameson
and Kostinski 1996; Awaka and Iguchi 1997). It is only
because of recent advances in our understanding of the
natural structure of rain (Kostinski and Jameson 1997;
Jameson and Kostinski 1998; Kostinski and Jameson
1999; Jameson et al. 1999) that we can now identify
such effects. Yet, this finding may be significant since
even in fairly uniform-looking fields of reflectivity fac-
tor, some non-Rayleigh effects may still lurk. Further-
more, these effects of clustering are likely to be en-
hanced, sometimes considerably, by statistically inho-
mogeneous rain fields because of the greatly increased
variance associated with such fields (see Jameson and
Kostinski 1996).

It is also now clear that the magnitude of the non-
Rayleigh effects even in statistically homogeneous rain
depend upon the two different factors, namely the in-
trinsic spatial structure of the rain as characterized by
xl and ℵ as well as the geometry of the observations
as specified by D, L, and B. Since xl is not generally
known, reductions in potential non-Rayleigh effects
must be achieved by minimizing D and L using tech-
niques such as hold and sample, chirping, and signal
whitening. The D/B should also be kept to values K1.

It is not recommended to scan an antenna as rapidly as
possible in order to gather measurements over some
prescribed volume under a time constraint that may lead
to violations of either of these two conditions.

It is also worth mentioning that in all of this discus-
sion and in these Monte Carlo experiments, each sample
is independent so that D actually represents the incre-
mental distance between independent samples. For most
radars and other remote sensors, however, successive
samples are often highly correlated. For such correlated
samples, then, it may only be every fifth or tenth value
that is independent. In such rather typical cases, cor-
related samples effectively increase D/B thereby en-
hancing the likelihood and the magnitude of non-Ray-
leigh effects. It is already quite clear that those radars
such as NEXRAD that lack chirp or signal whitening,
for example, are likely to experience significantly more
non-Rayleigh deviations than are radars equipped to en-
sure the independence of each sample even in statisti-
cally homogeneous rain.

Even without these techniques, data can still be mon-
itored for non-Rayleigh effects. One of the insidious
aspects of non-Rayleigh signal statistics is that at times
even though the data may look ‘‘perfectly normal,’’ it
may actually deviate considerably from the intrinsic
‘‘true’’ values that one strives to measure, that is, an
estimate may be biased or may be very uncertain (large
s). While perhaps of less concern for qualitative ob-
servations, the increasing use of radar for more quan-
titative applications such as rainfall measurement may
require monitoring of the data for non-Rayleigh effects.
Yet many such deviations, while important, are likely
to remain invisible even to trained observers. Fortu-
nately, however, there are processing methods for mon-
itoring the data (Jameson and Kostinski 1996).

Finally, it is worth mentioning again that besides rain,
non-Rayleigh statistics can be expected to affect ob-
servations by many instruments other than radar when-
ever samples are collected while scanning across vari-
able conditions. These include observations by radi-
ometers, scatterometers, and lidars.
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