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Fluctuation Properties of Precipitation. Part VI: Observations of Hyperfine Clustering
and Drop Size Distribution Structures in Three-Dimensional Rain

A. R. JAMESON

RJH Scientific, Inc., Alexandria, Virginia

A. B. KOSTINSKI

Department of Physics, Michigan Technological University, Houghton, Michigan

(Manuscript received 2 December 1998, in final form 16 April 1999)

ABSTRACT

In past work it is argued that rain consists of patches of coherent, physical drop size distributions passing in
an unpredictable fashion for an unknown duration over a sensor. This leads to the detection both of correlations
among drops and of clustering. While the analyses thus far support this characterization, in this final paper in
this series, techniques are developed demonstrating that clustering of drops of a specific size in rain is occurring
even on scales as small as a few centimeters. Moreover, using video disdrometer data processed to achieve high
temporal resolution, it is shown that drops of different sizes are also cross correlated over times from 0.01 to
several seconds.

It is then shown that physical patches of drop size distributions (often exponential in form) exist and can be
measured even over time periods as small as 2–3 s. Such distributions may be the result of enhanced drop
interactions due to clustering or perhaps simply stochastic ‘‘accidents’’ brought about by some ‘‘clustering’’
mechanism. Since most drop spectra are measured over considerably longer intervals, however, observed dis-
tributions are likely probability mixtures of many short duration spectra. Such mixed distributions exhibit
enhanced variance and curvatures reminiscent of gamma spectra often described in the literature. Thus, as
measurement intervals increase, the form of the observed drop distributions apparently changes from an ex-
ponential-like distribution, to a mixture of distributions, finally returning once again to an exponential when the
averaging is over very long intervals and a wide variety of conditions.

It is also shown that for these data, much of the variability in rainfall rate arises due to concentration fluctuations
rather than to changes in the average drop size. For completeness, it is also shown that the dimensionality of
drop counts and rainfall rate are consistent with Euclidean scaling over distances from centimeters to kilometers.

Finally, a specific example of drop clustering in wide sense statistically stationary rain is also given. These
observations cannot be explained in terms of a nonhomogeneous Poisson process. Consequently, it appears most
appropriate to characterize clustering and the structure of rain in terms of correlations and probability ruling
discussed here and in previous papers in this series. This approach can be used to simulate rain numerically in
order to explore not only the statistical properties of the rain itself, but also to achieve a better understanding
of the effect of raindrop clustering and rainfall variability on a variety of topics, such as signal statistics and
interpretations of remote sensing measurements.

1. An overview

The curtains of drops sweeping across the pavement
as well as the pulsations on the car windshield when
driving in rain are common manifestations of the natural
‘‘clustering’’ of raindrops. In previous parts of this series
of papers, it is shown that such clustering is an ex-
pression of the correlation among the number of drops
in one unit volume with those in neighboring unit vol-
umes separated by distance l.

Corresponding author address: Dr. A. R. Jameson, 5625 N. 32nd
St., Arlington, VA 22207-1560.
E-mail: jameson@rjhsci.com

Specifically, if we represent the random number of
drops of a single size in a unit volume by, say, n, then
for a statistically homogeneous random field, the joint
probability P(1, 2) of finding two particles in small vol-
umes dV1 and dV2 is given by (e.g., see Green 1969,
62–63)

P(1, 2) 5 n dV1 dV2 [1 1 h(l)],2 (1)

where h(l) is the so-called pair correlation function (in
the theory of liquids) or the two-point correlation func-
tion (in astronomy). Note, however, that statistical ho-
mogeneity does not imply nor require physical homo-
geneity. ‘‘Patchy,’’ physically inhomogeneous rain can
be fully consistent with statistical homogeneity. More-
over, it is often assumed in many fields of science that
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over some interval, usually much greater than some
characteristic correlation length, a physical process can
be well described by statistical homogeneity (i.e., the
mean and the variance are unaffected by shifts in the
choice of origin); that is, no ‘‘trend’’ appears, whether
it be light years in the case of astronomy or the dimen-
sions of molecules in liquids. One of the objectives for
this current work is to push the resolution in rain mea-
surements to even finer limits than in past work in order
to extend the entire range considered in this series of
papers from a few centimeters to kilometers. It is hoped
that this will enhance the likelihood that statistical ho-
mogeneity applies to some scale in this range and, there-
fore, that these results are not some kind of statistical
artifact. As we shall see, the findings here not only
support, but also amplify previous conclusions.

In practice h(l) is estimated operationally from a se-
ries of measurements in space by

23n(l)n(0) 2 n 4 n(l)n(0)
h(l) [ 5 2 1. (2)2 2n n

This also applies to a time (t) series of observations in
which l 5 tV, where V is a known or constant velocity.
For rain that is distributed in space such that n(l) are
all independent for all l (as would be the case for the
Poisson distribution), then, obviously, h → 0. However,
when h ± 0, then we may say that the drops are ‘‘cor-
related’’ [(1)] and clustered [(2)] in that ^n(l)n(0)& is
either greater or less than (n)2.

This discussion is not new and has been presented in
the previous papers in this series. In Part I (Kostinski
and Jameson 1997), several arguments, including (2),
indicate that the statistics of drop counts at one size are
consistent with the arrival of random patches of random
duration. However, it is noted that the ‘‘coherency’’
times at different drop sizes vary. Consequently, in Part
II (Jameson and Kostinski 1998), it is shown that h can
be modified to become

3n (l)n (0) 2 n n 42 1 1 2 n (l)n (0)2 1V(l) [ 5 2 1, (3)
n n n n1 2 1 2

where the subscripts refer to drops of two different sizes.
As with h, whenever V ± 0, the number of drops at
the different sizes are statistically correlated leading to
the definition of ‘‘drop size distribution’’ patches, that
is, regions in which the drop size spectrum remains
coherent. From such correlation we infer that these spec-
tra are ‘‘physical’’ distributions, presumably resulting
from the interaction among drops of different sizes. This
contrasts with most measured drop size distributions,
which are averages over intervals much longer than the
coherency lengths of each contributing physical distri-
bution.

The results in Parts I and II, however, are based on
1-min sampling of Joss–Waldvogel (1967) disdrometer
observations over several hours corresponding to a min-
imum spatial sampling of a few hundred to several hun-

dreds of meters. Furthermore, the observations in Part
II indicate that the coherency times for the physical drop
size distributions are often less than the 1-min sampling
available using the Joss–Waldvogel disdrometer. In or-
der to achieve finer resolution, video disdrometer mea-
surements over several minutes are analyzed at 1-s res-
olution in Part IV (Jameson et al. 1999).

The instrument used in that study is the University
of Iowa, Iowa Institute of Hydraulic Research video
disdrometer.1 Briefly, two light sources generate or-
thogonal light sheets that are projected through narrow
slits onto two line scan cameras, that is, horizontal, lin-
ear arrays of light sensitive detectors sampled on the
order of 30 ms to yield a continuous data stream having
no ‘‘dead’’ times. The optics are designed so that, seen
through the camera lens, the slits appear evenly and
brightly lit. Particles falling through the beams of light
appear as dark silhouettes against this background. The
light sources and cameras form the sensor unit that is
then exposed to the precipitation. Thus, the operation
is similar to a flatbed scanner except that the hydro-
meteors move rather than the line scan camera and light
sheet. The effective sample area observed by both cam-
eras is approximately 10 cm 3 10 cm or twice that of
a Joss–Waldvogel disdrometer. The time series of par-
ticle images observed by both cameras are then pro-
cessed to yield the location (to within 0.2 mm horizon-
tally), size, and other parameters describing the parti-
cles. This information is normally integrated from 15 s
to hours to yield other quantities such as rainfall rate.
However, for our purposes, we instead return to the
original stored data and retrieve the recorded time of
arrival to the nearest millisecond, as well as the size of
each drop to form a time series. In Part IV, these drops
are ‘‘binned’’ to yield the number of drops per second
in categories 0.25 mm wide in 0.25-mm steps from
0.625 mm up to whatever the largest size happens to
be, and to produce statistics of 1-s counts without the
masking effects of ‘‘ringing’’ and dead times encoun-
tered when using the Joss–Waldvogel disdrometer
(Sheppard and Joe 1994).

In Jameson et al. (1999) it is shown that drops of one
size are correlated not only down to 1-s times (corre-
sponding to a few to several meters spatially), but also
that the coherence times of the physical drop size dis-
tributions last often only several tens of seconds. More-
over, since the coherence times of the drop size distri-
butions are determined by the smallest correlation time
of the contributing drops, Part IV suggests that some
drop size distributions may only be observed over in-
tervals of seconds. Hence, sampling even over 10 s is
sometimes likely too coarse to resolve clearly all the
physical drop size distribution patches.

This poses two interesting questions: namely, is there

1 Visit http://ias.tu-graz.ac.at/distro.html for further information.
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FIG. 1. The 1-s rain rates measured using the University of Iowa
video disdrometer during (a) a brief convective shower and (b) a
more extended less convective rain.

FIG. 2. The pair correlation at three sizes of drops for a temporal
counting sample of 0.1 s. The dotted line at zero corresponds to values
for Poisson statistics.

some resolution at which clustering is no longer ap-
parent, and what is the finest temporal (spatial) scale
over which individual drop size distributions can be
associated with real, physical patches, assuming they
can be at all? In addressing these questions, we find
some remarkable results.

Specifically, in order to detect clustering on even finer
scales and to determine more precisely the coherence
times of drop size distributions, we look at 0.1-s and
0.01-s counts at different drop sizes. In the next section
we first consider h and clustering for drops of one size.
We then look at drops of different sizes, beginning with
calculations of V and then searching for actual physical
drop size distributions on the finest possible scales. Fi-

nally, for completeness we determine the geometric di-
mensionality of the flux of individual drop sizes and of
the summation of all these fluxes, that is, the rain rate,
using the box-counting technique.

2. Analysis of high-resolution video disdrometer
data: Single drop sizes

To explore further, we consider the 18-min period of
rain discussed in Parts IV and V (Jameson and Kostinski
1999a). While there was also a ‘‘transition’’ period of
continuous but lighter rain, for clarity only the ‘‘main’’
events of rain are illustrated in Fig. 1. [As an aside,
even the highly variable first rain event in Fig. 1a is
accurately simulated using a statistically homogeneous
(stationary) process in Part V, implying a wide tolerance
in nature for the meaning of such terms. Correlated
fluctuations should not be confused with nonstationary,
‘‘meteorological structure.’’ See the appendix.]

Using the entire rain event, we first compute the pair
correlation function h at 0.1-s resolution (Fig. 2) for
drops having mean diameters of 0.625, 1.125, and 2.125
mm, the largest drop size with events occurring at a
frequency sufficient for analyses. Obviously, there is
clustering even over times of only 0.1 s. For the nominal
terminal velocities corresponding to the largest and
smallest diameters, this temporal scale then corresponds
to vertical scales of 26–70 cm. (One might argue that
these scales are too fine and that the appropriate distance
scale should be that corresponding to the horizontal ad-
vection across the detector. However, even an advection
speed of 10 m s21 is of the same order as the terminal
velocity of the largest drops so that such arguments are
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FIG. 3. The pair correlation function for the largest and smallest
drop sizes for a temporal sampling of 0.01 s over the entire period
of observations.

FIG. 4. An overlay of the pair correlation functions at three different
temporal resolutions for 0.625-mm-diameter drops. There are no sig-
nificant differences among them as h continues to increase at de-
creasing lags of ever finer resolutions.

FIG. 5. The accumulated counts at 0.01-s resolutions for the entire
period of observations. The line is through a region where the ac-
cumulated counts are increasing at a constant mean rate.

really rather pedantic, particularly since clustering is
occurring even over a few centimeters, as shown below.)

We next consider 0.01-s data and find that pair cor-
relation is still occurring apparently even down to scales
of 2.6–7 cm (Fig. 3). Note that the form of h is not
significantly affected by changes in the resolution (Fig.
4) (see Kostinski and Jameson 2000, hereafter KJ00)
with the important exception that clustering is still ap-
parent at ever finer resolutions.

To demonstrate the meaning of h physically, we next
consider a time segment in which the accumulation of
counts of drops of one size appears to be quite steady,
as illustrated in Fig. 5. The slope of this line corresponds
to a mean flux of 2.314 s21. (Critical inspection shows
that there are little wiggles, but that is precisely our
point. Rain is never really smooth at resolutions below
the coherence distance, that distance when h first crosses
zero, for example.) Over this interval of ‘‘constant
flux,’’ the ‘‘counts’’ occurring during each 0.01 s are
plotted in Fig. 6 and compared to those expected had
each event (drop arrival) been statistically independent
(‘‘binomial’’ expectations). Obviously the observed
counts in some intervals far exceed those expected as-
suming statistical independence. More precisely, the
probabilities of seeing a count of three, four, or five
drops in a single 0.01-s interval are 1.5 3 1026, 5.9 3
1029, and 1.3 3 10211, respectively. For the 21 000
0.01-s intervals in this example, then, one such event
at the three, four, or five level should only occur at
probabilities of 3 in 100, one in a million, and one in
ten million, respectively. Consequently, the probabilities
of the total number of events at the three, four, or five
levels actually observed in Fig. 6a are only 3 in 100
billion, 7 in 10 trillion and one in 10 trillion, respec-

tively. Obviously, we must conclude that the correlation
and clustering of raindrops on these scales of a several
centimeters is statistically very significant and real. [It
turns out that this is to be expected according to the
fluctuation-correlation theorem (for discussion, see
KJ00), which implies that clustering must occur on all
scales less than the coherence length of h.] Hence, in
answer to one of the two original questions, it appears
that clustering indeed occurs on scales from several cen-
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FIG. 6. (a) Counts per 0.01-s interval through the region of steady
flux in Fig. 5 and (b) expected counts if the drops appeared completely
independently of each other (uncorrelated) for the same mean flux
of about one drop every 50 intervals. The differences are statistically
highly significant (see text) so that clustering is occurring on time-
scales corresponding to centimeters.

FIG. 7. The pair cross-correlation function between 0.625- and
2.125-mm-diameter drops at a temporal resolution of 0.1 s, indicating
significant cross correlation even at scales as small as a few 0.1 s.

FIG. 8. Similar to Fig. 7 except that the resolution is 0.01 s, in-
dicating that significant cross correlation exists even down to a few
0.01 s corresponding to distances of centimeters.

timeters (this work), to meters (this work and Part IV),
up to a few kilometers (Part I).

But what about drops having different diameters? In
the next section, we explore correlated behavior among
different sizes of drops. In particular, we demonstrate
the existence of physical drop size distributions appar-
ently lasting, at times, no more than a few seconds. Even
more significantly, it appears that the model of drop size
distribution patches presented in Parts II and IV is valid.
Some implications are also discussed below.

3. Analysis of high-resolution video disdrometer
data: Multiple drop sizes

To begin, using the entire dataset, the pair cross-cor-
relation function (V) between the largest and smallest
sizes is illustrated in Fig. 7. Even at a temporal sampling
of 0.1 s, significant cross correlation exists between
these drops. Moreover, strong cross correlation still ap-
pears (Fig. 8) even when the resolution is reduced to
only 0.01 s. These high-resolution observations suggest
that it should be possible to identify coherent patches
of physical drop size distributions over periods as brief
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FIG. 9. Accumulated counts of 0.625-mm-diameter drops are plot-
ted as a function of accumulated counts of those at 2.125-mm di-
ameter. There are several regions of linear relations between the two
counts consistent with the presence of steady drop size distributions.
The times denote the duration of each linear region.

FIG. 10. An expanded plot of the linear region 2 in Fig. 9. Note
the several smaller linear regions, some lasting only a few seconds.
Also note the slopes of the lines change, indicating that the ‘‘slopes’’
of the distributions themselves are different.

as seconds. [While drop size distributions are normally
computed for drop concentrations, we avoid uncertain-
ties in the conversion from flux to concentration here
simply by computing flux distributions directly. Such a
procedure is justified in Part III of this series (Kostinski
and Jameson 1999), where it is shown that the forms
of the ‘‘flux’’ and ‘‘concentration’’ distributions are
nearly identical over this range of sizes.]

The ratio of fluxes at two different sizes should re-
main constant for a well-defined drop size distribution
so that accumulated counts at one size plotted as a func-
tion of those at another size should increase linearly.
Such linearity, then, can be used to locate ‘‘stable’’ drop
size distributions. For these data, the accumulated
counts at the smallest and largest sizes are plotted in
Fig. 9.

Within this rain there are indeed linear regions con-
sistent with physical drops size distributions. However,
within each of these regions, there appear to be even
finer structures. As an illustration the particularly
‘‘smooth’’ location numbered 2 is enlarged in Fig. 10.
Amazingly, there are even more readily identifiable, dis-
tinct small patches lasting on average only about 8 s
(excluding transition spectra) but varying in duration
from a mere 2.69 s up to 18.74 s. While Part IV hinted
at likely subminute variations in the drop size distri-
butions over tens of seconds, the brevity of some of
these intervals is surprising. It is noteworthy that the
slopes change from location to location and that these
‘‘regular’’ distributions are separated by transition spec-
tra lacking numerous larger drops but showing an abun-
dance of drops at the smaller sizes. While this finding

is encouraging, do these patches really represent co-
herent, physical drop size distributions?

Apparently they do. For example, the drop size dis-
tributions from period 2 for three such patches (increas-
ing in durations by factors of 2 approximately) are il-
lustrated in Fig. 11. Not only are the spectra well defined
at 8.99 s, at 4.19 s, and even down to durations of only
2.69 s, they are also nearly exponential. Moreover, in-
spection shows that the transition distributions, which,
in this example, last from a few to tens of seconds,
consist of a greatly reduced total number of drops (n)
associated with distributions having significantly steeper
slopes (smaller average diameters D). It is also worth
noting that the regular distributions occur during more
intense rainfall rates (in this case ;25–30 mm h21) as
opposed to the transition spectra found when the rain
rate is lighter (in this case ;2–5 mm h21).

There are at least two interesting implications. First,
exponential distributions are thought to emerge as the
result of drop coalescence and breakup only over con-
siderable intervals (and distances) as the distribution
approaches equilibrium. These times and distances,
however, appear to be so long, in fact, that such equi-
librium, exponential distributions are not even thought
to exist in the real atmosphere (Srivastava 1971; Valdez
and Young 1985; Hu and Srivastava 1995). We hy-
pothesize here, however, that large-scale convection
characterized by significant vorticity likely acts to con-
centrate or cluster drops into preferred regions so that
drop size distributions perhaps may evolve toward ex-
ponential forms much more quickly that previously
thought. On the other hand, they may simply be sto-
chastic ‘‘accidents’’ brought about by some clustering
mechanism.
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←

FIG. 11. Three drop size distributions corresponding to linear regions
in Fig. 10 are plotted (solid lines). Poissonian error bars denote the
one-standard-deviation uncertainty associated with each flux. Inter-
vals were chosen to represent approximate powers (factors) of 2. Also
included are the measured mean rainfall rate and the exponential
distribution parameters (see text), as well as the correlation coefficient
r. The accumulated fractional deviation from exponential (see Jame-
son et al. 1999; Kostinski and Jameson 1999, for details) are also
given. The distributions appear to be highly exponential even over
periods as small at 2–3 s corresponding to scales of around 20 m.

Second, if, as it appears, rain indeed consists of these
short duration, physical drop size distributions having
an exponential form lasting seconds, then the many re-
ports of broader spectra such as gamma distributions
can now be readily understood.

That is, such ‘‘observed’’ spectra are likely the result
of a statistical mixing of other briefer, component dis-
tributions. These sometimes appear to be exponential of
the form (Kostinski and Jameson 1999)

1 D
N(D) 5 n exp 2 , (4)1 2[ ]D D

where n is the total number of drops per unit volume
and D is the mean drop diameter. [Note that the brack-
eted expression represents the probability density func-
tion (pdf ) of D]. More precisely, most observed distri-
butions are then likely of the form

`

N(D) 5 N(D | D ) f (D ) dDE
0

` n(D ) D
5 exp 2 f (D ) dD, (5)E 1 2D D0

where f (D) is the probability distribution of D and n(D)
simply denotes the n that is associated with a particular
D (i.e., contributing distribution). This can be expressed
more clearly by letting g(D) 5 n(D) f (D) so that

` `

g(D ) dD 5 n(D ) f (D ) dD 5 N .E E
0 0

Normalizing g(D) by N so that G(D) 5 g(D)/N inte-
grates to unity from zero to infinity allows (5) to be
written as

` 1 D
N(D) 5 N exp 2 G(D ) dD. (6)E 1 2D D0

Although mixtures of other distributions are possible
via (5), using (6) we can consider an observed drop size
distribution that is a probability mixture of several ex-
ponential pdf’s. One consequence of such mixing is that
the variance is enhanced beyond that for a simple ex-
ponential. Specifically (Ochi 1990, 65–66),

var[N(D)] 5 1 varD(E[D | D]), (7)E [var(D | D)]D
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FIG. 12. (a) Plot of the drop size distribution (solid) resulting from
a probability mixture of exponential distributions (see text) as com-
pared to a fitted pure exponential (dot–dash). Note the curvature as
a consequence of mixing distributions. (b) The observed distribution
during the passage of a squall line at Wallops Island, VA (see Kos-
tinski and Jameson 1997; Jameson and Kostinski 1998). Note the
similar form of the two curves.

where the first term on the rhs of (7) may be associated
with the ‘‘usual’’ variance for an exponential pdf of D
[bracketed expression in the rhs of (4)], while the last
term represents the enhancement due to the variance of
D (and n associated with each D).

As an illustration of such mixing, suppose G(D) is a
simple exponential of the form

1 D
G(D ) 5 exp 2 , (8)1 2m m

where m is the average D during the entire interval for
some N . Substituting into (6) and integrating yields

D D
N(D) 5 2N Y 2 , (9)11 2! !m m

where Y1 is the modified Bessel function of the second
kind (sometimes referred to as the Weber function). To
illustrate, we set m 5 0.2 mm and N 5 234 s21 and
plot the results in Fig. 12a. The curvature is reminiscent
of some observed gamma distributions (Ulbrich 1983).
In particular, for comparison we show actual disdro-
meter observations collected at Wallop’s Island, Virgin-
ia, using a Joss–Waldvogel mechanical disdrometer dur-
ing the passage of a squall as discussed in Kostinski
and Jameson (1997) and Jameson and Kostinski (1998)
(Fig. 12b). The similarity is striking. With different
G(D), mixing [i.e., (6)] likely yields a wide variety of
distributions with different curvatures having different
magnitudes.

It seems, therefore, that the spectrum of measured
drop size distributions can be segmented into three re-
gimes. At the finest measurement intervals, observations
capture the apparently often exponentially shaped, phys-
ical distributions having durations from a few to several
seconds. As the measurement intervals increase, how-
ever, there appears to be a gradual transition to more
curved gammalike distributions (Ulbrich 1983), likely
resulting from the mixture of several physical distri-
butions as expressed by (5) and (6), for example. Finally,
when averaging extends over very long intervals, the
drop size distributions once again return to an expo-
nential form because of statistical effects alone (Kos-
tinski and Jameson 1999).

While it is not possible to illustrate the full range of
spectra using these data, the transition from exponential,
physical distributions to ‘‘mixture’’ distributions is ap-
parent as illustrated in Fig. 13. As the measurement
interval increases from about 3 to 1100 s, the expo-
nential fit no longer falls within the one-standard-de-
viation error bars of the observations, and Fig. 13d
shows a statistically significant curvature away from any
pure exponential form.

These data also show a few other noteworthy features.
In terms of the exponential parameters in (4) [viz., the
total particle concentration (or flux) n and the average
drop size D] it is not D but rather n that changes most
over time (Fig. 14). In these data, for example, it is the

change in n that ‘‘explains’’ the factor of 5 difference
in the measured rainfall rates between the shortest and
longest measurement intervals. This is also illustrated
as well in Fig. 15, showing n and D as functions of
time over the entire period of observations. Whereas D
is almost entirely confined to values from 0.5 to 1 mm,
n varies by orders of magnitudes. In these data, then, it
is n that is largely responsible for the variability in the
rainfall rate (Fig. 1). That is, over short intervals, the
rain really does arrive in true ‘‘bursts’’ or ‘‘gushes.’’ It
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FIG. 13. A sequence of drop size distributions for increasing measurement intervals for (a) 2.69, (b) 4.19, (c) 122.95, and (d) 1100.77 s.
The error bars are one standard deviation using Poissonian estimates in (a), (b), but using observations in (c), (d). Note the decreasing
statistical significance of the exponential with increasing measurement interval. (c), (d) The effects of increased mixing of several physical
distributions. Also note the change in the mean rainfall rates and in the total number flux for the exponential fit, n, even while D remains
nearly constant (see Kostinski and Jameson 1999, 112).

is likely that many of the ‘‘spikes’’ in Fig. 1 are real
and not simply statistical artifacts.2

2 The fluctuations in n are also likely responsible for much of the
variability in the coefficients in Z–R relations, where Z is the radar
reflectivity factor and R is the rainfall rate. Specifically, for a typical
relation of the form Z 5 aR1.35, it can be shown readily that a }
n20.35(D)0.88. While n may easily vary by factors of 10–100, D will
vary at most by only around a factor of 2. In these data D remains
nearly constant while n varies by a factor of 5 so that a changes by
a factor of 1.75 in going from scales of meters to kilometers all

It appears, then, that rain physically consists of rel-
atively short-term drop size distributions that are often
well matched by an exponential function. In the past,
such physical distributions have not been observed be-

because of n. Moreover, since the expected values R and Z based on
(19) in Kostinski and Jameson (1999) can be written as
E(R)}E(n)E(D3Vt ), where Vt is the terminal fall speed while
E(Z)}E(n)E(D6), the ratio E(Z)/E(R) is independent of E(n). That is,
proper Z–R relations are linear and completely independent of drop
concentration.
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FIG. 14. The exponential parameters corresponding to Fig. 13 plot-
ted as a function of time. Note weak changes in D over time compared
to the large changes n.

FIG. 15. Time series of n and D for the entire period of observation.
Whereas D lies within 633% of the mean (0.75 mm), n varies over
more than two orders of magnitude (100). Therefore, D (diameter

3

contribution to the rainwater content) varies by about a factor of 2
K 100. The cross-correlation coefficient between n and D is only
20.07, which is not consistent with N0 5 n/D 5 constant (implying
n and D fluctuate in unison and, hence, exhibit strong positive cor-
relation). It is, however, in agreement with simulations of the Wald-
vogel jumps reported in Kostinski and Jameson (1999).

cause the measurement interval normally extends from
minutes to hours, days, and even seasons. Much of the
discussion, then, has focused on the form of such ‘‘av-
erage’’ distributions. We suggest here that the brief,
physical exponential-like distributions arise perhaps be-
cause of enhanced interactions in preferred regions of
clustering. After all, convective turbulence is not just
any random process, but rather is one characterized by
enhanced vorticity. On longer measurement scales, other
forms, such as the gamma distribution, arise because of
a statistical mixing of many short duration, physical
distributions over the measurement interval. As the av-
eraging extends to even longer intervals, however, the
distribution may once again appear exponential because
of the emergence of complete statistical independence
after averaging over a wide variety of conditions (Kos-
tinski and Jameson 1999).

Aside from drop spectra, it appears that not only are
raindrops of a single size clustered, but also that clus-
tering among raindrops of different size is correlated
leading to the clustering of rain and to rain gushes on
scales from centimeters to kilometers. While such clus-
tering is symptomatic of fractal structures, it is not a
condition sufficient to justify such a purely geometric
description of rain. Therefore, while of less significance
but for the sake of completeness, in the next section we
consider, briefly, the geometric dimensionality of these
rain observations.

4. On the geometric dimensionality of rain

Obviously there is extreme variability associated with
the patchiness of rain, as one should expect based on
earlier work (Parts I–V). Yet in spite of this, it is possible
to measure a geometric dimensionality using the usual
‘‘box-counting’’ methodology. To illustrate, we begin
first with drops of one size. That is, starting with the
first drop, we count the number of drops over a fixed

time interval. We then shift this ‘‘box’’ over one sam-
pling resolution interval and count again. We then do
this for all the data and compute the ensemble ‘‘average
number’’ of drops corresponding to that resolution.
Next, we increase (say, double, for illustration) the
counting-box resolution. We would then expect that
‘‘normally,’’ the ensemble average number of drops
would double as well. However, if the rain were ‘‘frac-
tal,’’ the average number of drops in the sampling in-
terval would increase only by a factor of, say, 1.6, in-
stead of 2. Consequently, if the mean number of drops
is plotted as a function of counting-box measurement
length, then normal geometry would yield a line with
the slope of unity. On the other hand, if the plot is curved
and the logarithm of the number of counts versus the
logarithm of the length of the resolution counting-box
yields a line with a slope that differs from unity, then
the geometry is fractal (e.g., see Lovejoy and Schertzer
1990). If, in this example, such a trend were to persist
over all measurement resolutions, then the geometry of
the rain structure would have a fractal dimension of 0.8
instead of unity.

In Fig. 16 the results of such a box-counting proce-
dure using the video disdrometer data are shown for the
two rain events illustrated in Fig. 1 for drops having a
mean diameter of 0.625 mm. Excluding those regions
at both ends of the timescale affected by sampling (at
the smallest end by the limited number of drops and at
the larger end by the limited number of samples (see
Lovejoy and Schertzer 1990), we conclude that the flux-
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FIG. 16. The ensemble average number of 0.625-mm-diameter
drops in the (a) first and (b) second rain events illustrated in Fig. 1
as a function of box-counting length in seconds. The durations of the
two events were 201 and 773 s, respectively. Note the regions where
counts are statistically reliable and the slope is unity.

FIG. 17. Similar to Fig. 15 except that the total counts (rain flux)
are plotted. Again, where the counts are reliable, the slope is unity,
indicating that the rain flux itself scales in an Euclidean manner.

es increase linearly [slope (power) of unity] so that these
data are not fractal.

But rather than just restricting ourselves to drops of
one size, consider instead the summation of fluxes over
all sizes. This amounts to considering the dimensionality
of the rainfall rate itself. These results are plotted in
Fig. 17.

The total rain flux (rain rate) also appears to obey
Euclidean (nonfractal) scaling at least in these mea-
surements. Since the smallest time interval corresponds
to 0.01 s while the longest duration with adequate sam-
pling (Fig. 16b) lasts for 580 s, it appears that Euclidean

geometric scaling extends over scales from centimeters
to several kilometers even in clustered rain.

5. Concluding discussion

In this series of articles we have attempted to take an
unbiased and fresh look at the spatial–temporal nature
of rain. In the course of these studies, we have applied
many techniques from different fields of physical sci-
ences. In that sense, much of what we have done is ‘‘not
new’’ except for its application to physical meteorology.
Yet, in the process, it is hoped that we have at least
offered a rich alternative to the classic, uniform, Pois-
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sonian perspective usually assumed in cloud and pre-
cipitation physics. In the process, many interesting ques-
tions concerning the meaning of statistical ‘‘homoge-
neity,’’ ‘‘stationarity,’’ and ‘‘average’’ have cropped up.
When are conditions really stationary/homogeneous and
when are they not? An answer is not always as trans-
parent as it may seem at first inspection. For example,
in Fig. 1a many would claim that the process is abso-
lutely statistically ‘‘nonstationary.’’ Yet the physical and
statistical properties are accurately reproduced in a nu-
merical simulation in which statistical stationarity is as-
sumed (Part V, Jameson and Kostinski 1999a). The rea-
son is that many processes that perhaps appear nonsta-
tionary may, in fact, be just a few realizations (coher-
ence lengths) of a process that is fundamentally
stationary over a length much greater than the duration
of the observations, that is, lengths that are tens or hun-
dreds of coherence intervals. Specifically, if some por-
tion of a time series extends over only a few ‘‘coherence
lengths,’’ for example, correlated fluctuations may give
the appearance of a deceptively ‘‘reasonable trend’’ in
the data when, in fact, none exists (see the appendix for
further discussion). If, on the other hand, a time series
extends over many, many coherence lengths and there
is still a clear and obvious trend, then the process may
well be nonstationary. Nevertheless, as the appendix
demonstrates, clustering and apparent structures cannot
always be attributed to statistical inhomogeneity/non-
stationarity.

In other respects, confusion arises because of the
dominance of the Poissonian simplicity. For example,
even after a rigorous explanation and acceptance as to
why Poissonian statistics do not apply to a particular
set of observations, we are then often immediately asked
to demonstrate the statistical reliability of a measure-
ment in terms of Poissonian statistics. The point we are
trying to make, of course, is that the normal application
of Poissonian statistics, such as the decrease of the rel-
ative variance with increasing drop concentration, usu-
ally does not apply to most observations of cloud drop-
lets and raindrops. To reemphasize this, we briefly sum-
marize the major points in this series of papers in hopes
of providing a cohesive, overall perspective relevant to
the structure of rain and clouds up to this moment.

In Part I (Kostinski and Jameson 1997), it is shown
that drops of one size arrive in patches that exhibit en-
hanced concentrations (clustering) as a result of a dou-
bly stochastic process in which not only the number of
drops fluctuates, but so do the means. This perspective
has met with objections that the ‘‘instantaneous’’ counts
of the number of drops may well show non-Poissonian
fluctuations, but still the ‘‘means’’ can be known simply
by analyzing a time series of observations.

However, in response, the fact that a mean can be fit
in retrospect does not preclude what actually happens
in nature. That is, given past information, neither the
mean nor the instantaneous counts are deterministic
from one moment to the next. That is, the flux mea-

surement at one moment does not permit a meaningful
prediction either of the mean nor of the instantaneous
flux in the next moment. In that sense curves of the
average, while easy to generate, are statistically mean-
ingless in that they only appear to, but, in fact, cannot,
separate a drop count into one component due to chang-
es in the mean value and the other being a ‘‘random’’
variation. This is the key difference between our per-
spective and that of a nonhomogeneous Poisson process
(Ochi 1990, p. 437) in which the mean varies in a de-
terministic fashion, for example. (See the appendix for
an example that cannot be described by a nonhomo-
geneous process.) While ex post facto fits can be used
to estimate averages, such curves can never really en-
tirely separate fluctuations in the mean from other ran-
dom fluctuations. Such information is simply not avail-
able. As it occurs in nature, therefore, it is our position
that drop counts at one size must be viewed as a ‘‘doubly
stochastic’’ process.

In Part II (Jameson and Kostinski 1998), this per-
spective is applied to different sizes of drops. It is dem-
onstrated that drops having different diameters are si-
multaneously clustered and correlated. This leads to the
natural identification of entities called physical drop size
distributions that, because of their correlation, may in
part be the consequence of drop interactions. These are
to be distinguished from the oft reported ‘‘measured’’
or average distributions that represent a combination of
many different physical distributions into some kind of
mean size spectrum. As with Part I, however, the mea-
surement interval is restricted to one minute so that a
clear resolution of physical drop distributions on finer
scales could not be explored.

In Part III (Kostinski and Jameson 1999a), it is noted
not only that the frequently reported exponential drop
size distribution can be cleanly separated into a con-
centration term times the pdf of the diameter, but also
that over extensive averaging periods, a mean expo-
nential distribution is to be expected strictly because of
statistical independence and ‘‘lack of memory’’ regard-
less of any drop microphysics. It is also observed that
the rainfall rate exhibits greatly enhanced fluctuations
in clustered versus Poissonian (‘‘steady’’) rain. Hence,
steady rain can be defined according to whether or not
the statistics of the drop counts are essentially Poisson-
ian. We also note here that there is a slight anticorre-
lation (20.07) between the total number density (n) and
the mean drop diameter (D) (see Fig. 15). This is not
consistent with the Marshall–Palmer assumption (i.e.,
N0 5 n/D is a constant, as discussed in Part III, which
in turn implies strong positive correlation between n
and D) and confirms results of simulations of the Wald-
vogel jumps presented in Part III.

A frequently repeated objection to the results in Parts
I and II is that the long time series of 1-min Joss–
Waldvogel disdrometer measurements ‘‘must’’ include
effects induced by statistical nonstationarity. Still the
entire 900-min time period contains between only 30
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and 45 coherence intervals, making it virtually impos-
sible to determine whether a particular meteorological
structure is really associated with nonstationarity or is
simply a manifestation of ‘‘correlated fluctuations’’ dur-
ing a very long stationary process (see the appendix).
Yet by confining much of the analyses in those two
papers to intervals of only a few coherence lengths, it
is not unreasonable to expect that any nonstationary
mean component, if present, is likely to be changing
only very slowly at most. The data and the analyses,
then, should be dominated by ‘‘local,’’ albeit perhaps
correlated, fluctuations. Indeed, this view appears well
vindicated by the detection of raindrop clustering over
intervals as brief as a minute as demonstrated by the
pair correlation and cross-correlation functions.

Nevertheless, we felt pressed to reduce the interval
even further to minimize any potential influence of non-
stationarity. Hence, in Part IV (Jameson et al. 1999),
data are analyzed at greatly increased resolution using
video disdrometer observations at an effective clock rate
that is on the order of megahertz. Beginning conser-
vatively, resolutions on the order of 1 s show that pair
correlations for drops of one size as well as pair cross
correlations among different sizes exhibit clustering on
scales of meters. Moreover, physical drop size distri-
butions exist and last over times of tens of seconds.
These observations confirm the findings reported in
Parts I and II. Yet even at 1-s intervals, it is clear that
interesting processes are likely occurring at even finer
resolutions.

In Part V (Jameson and Kostinski 1999a), simulations
based on earlier results are used to demonstrate practical
implications with regard to the statistical characteristics
of the rainfall rate. More relevant here, however, is that
simulations assuming statistical stationarity (homoge-
neity) accurately reproduce the highly variable condi-
tions in Fig. 1a. Most of the variability is due to vari-
ations in the total number of drops with fluctuations in
average drop size playing a relative minor role. It is
also shown that, because of clustering, one can expect
an increased frequency of both low and high rainfall
rates. (That is, the rainfall rates are also clustered as we
observe in this paper.) These findings conflict with a
lognormal pdf of rainfall rates, which has a low fre-
quency at small rain rates and too great a frequency at
very large rain rates. Lognormal distributions, therefore,
are not consistent with observations of the statistical
physics occurring in natural, clustered rain.

Finally, then, we arrive at Part VI. In this paper, much
finer temporal resolutions are used to demonstrate clus-
tering and correlation on scales from centimeters to ki-
lometers. That is, while rain appears to obey Euclidean
scaling, it can still exhibit correlation and clustering.
Thus, we believe that the proper characterization and
simulation of clouds and rain is best approached using
correlation functions and probability theory rather than
through geometric considerations alone.

Furthermore, we have shown that rain consists of

patches of coherent physical drop size distributions hav-
ing diverse coherence times (distances) as proposed and
discussed in the previous papers in this series. It also
appears that in many instances over periods of several
seconds these drop size spectra are well approximated
by the exponential distribution. The detailed physics
behind this is not entirely understood since normally
‘‘equilibrium’’ exponential drop size distributions are
thought to be the results of drop collisions and breakup
over extended periods often exceeding natural con-
straints. It seems reasonable, however, to propose that
convective and turbulent high-vorticity structures some-
how produce preferred locations where drops cluster.
This likely leads to enhanced interactions among drops
over relatively short times and, consequently, to ex-
ponential-like (albeit probably nonequilibrium) drop
distributions.

Furthermore, because drop size distributions are nor-
mally measured over periods from several minutes to
hours to days, these observed distributions are likely
the consequence of combining, as a statistical mixture
[(5) and (6)], many different physical distributions
yielding results often described by the gamma distri-
bution in the literature. In the extreme case when data
are combined over very extended periods such as
months and seasons, it is further argued (Kostinski and
Jameson 1999) that the exponential distributions once
again reappear but this time as a consequence of sta-
tistical rather than physical processes.

In short, then, this series of articles presents a new
paradigm of rain that likely has important implications
to cloud and precipitation physics, as well as to practical
applications of remote sensing and hydrology. To name
a few, the clustering of drops and patchiness of rain
affects the signal statistics of many remote sensing in-
struments (Jameson and Kostinski 1996; Jameson and
Kostinski 1999b), the characterization of the distribu-
tion of rain rates (Jameson and Kostinski 1999a), and
even our understanding of the icing process (Jameson
and Kostinski 2000).

Furthermore, algorithms requiring the combination of
data using instruments with vastly different resolutions
are also likely affected by the patchiness of the rain. A
classic example is that of constructing radar Z–R rela-
tions of the form Z 5 aRb. As discussed in the footnote,
in conditions of natural clustering, gauges with 8-in.
orifices ‘‘see’’ a rain with an a that is entirely different
from that a radar sees over billions of cubic meters.
While appreciated previously in terms of Poissonian sta-
tistics, we can only now begin to really understand and
account for the true magnitude of these random char-
acteristics of rain.

The essence of this work, then, is that while clustering
is inevitable in statistically inhomogeneous/nonstation-
ary processes, it also occurs even in statistically ho-
mogeneous/stationary processes on all scales less than
the coherence length of either the pair correlation or
autocovariance function. (If there are several such zero-
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FIG. A1. The time series of 1-s counts of 0.625-mm-diameter drops
observed using the video disdrometer for the period 460–660 s in
Fig. 5. The dashed line denotes the mean value over the interval.

FIG. A2. The ensemble average of the mean (n ) number of counts
per second and standard deviation (s) for five 40-point groups of
data. The constancy of s and n indicate wide sense stationarity over
the interval. Also note that the observed average variance (computed
using each value individually) is over three times the mean, i.e., over
three times that expected for a Poisson distribution.

crossings, then clustering appears over several scales as
well.) It is important to remember, however, that under
some circumstances the size of the resolution volume
may exceed the coherence length so that no correlation
appears. Yet correlation and clustering may still be oc-
curring on smaller scales. In such cases it is always
important to check to see if the variance exceeds the
mean by 10%–20%. If so, then correlation and cluster-
ing are still occurring but simply are not observable
without finer resolution, as pointed out in KJ00.
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APPENDIX

An Example of Non-Poisson Statistics and
Raindrop Clustering in Statistically Stationary

Rain

A common response when presenting this material is
that whenever similar values of a quantity such as drop
counts are found in a sequence of observations, for ex-
ample, then the resulting structure must necessarily be
the consequence of an inhomogeneous (nonstationary)
statistical process. From this perspective, such obser-
vations must then, at some level, have a deterministic
origin to be discovered given sufficient resolve and data
resolution. This is the essence of attempts to describe
such observations as a nonhomogeneous Poisson pro-
cess (see Ochi 1990, 427). The alternative suggestion
that such structures may simply be the expression of
correlated fluctuations of a much longer statistically ho-
mogeneous (stationary) process are rarely considered.
Yet the simple observation of structure is insufficient to
distinguish between a stationary as opposed to a non-
stationary processes, and, in fact, can be quite mislead-
ing. Wunsch (1999, 245) recently stated this in the fol-
lowing manner.

But purely random processes, particularly those that have
even mildly ‘‘red’’ spectra, have a behavior that comes
as a surprise to many, and there is a great risk of mis-
interpretation. That is, the purely random behavior of a
rigorously stationary process often appears visually in-
teresting, particularly over brief time intervals, and cre-
ates the temptation to interpret it as arising from specific
and exciting deterministic causes.

The reason that a distinction between stationary and
nonstationary is important here is that deviations from
Poisson statistics occur in both cases. For a statistically
nonstationary process, the distribution of drop counts
broadens, and correlations appear among counts in

neighboring time intervals in a manner reminiscent of
a mixture process (Kostinski and Jameson 1997) for a
statistically stationary process. While this distinction
seems somewhat academic with respect to the reality of
raindrop clustering, such a question becomes paramount
in the search for deeper understanding of the physical
origins of clustering.
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FIG. A3. The observed probability density distribution (bars) is
compared to a Poisson distribution having the same mean as observed.
Note the increased frequencies at both lower and higher counts com-
pared to a Poisson distribution, indicating raindrop clustering and
significant deviations from Poisson statistics. Also note that the ob-
served variance s 2 is three times larger than the Poisson variance
( ).2s P

In that spirit, the purpose of this appendix is to pro-
vide an example of raindrop clustering and deviation
from Poisson statistics during a wide sense stationary
(the mean and variance are independent of origin) flux
of 0.625-mm-diameter raindrops over a 201-s interval
observed by the video disdrometer (460–660 s in Fig.
5). While a much longer period of observations will be
sought in future data, we remind the reader that brevity
alone cannot be invoked to dismiss these high-resolution
measurements particularly by those who are then just
as quick to embrace the ‘‘clearly nonstationary’’ nature
of the 201-s event illustrated in Fig. 1a [an event, it
turns out, just as readily recreated by correlated fluc-
tuations of a statistically stationary process as demon-
strated in Jameson and Kostinski (1999a)]. We also note
that while this segment is only a fraction of the entire
period, that does not mean that the sequence as a whole
is nonstationary. It may well be that, like Fig. 1a where
the variability is much greater, these data can still be
considered the realization of a much longer stationary,
random process exhibiting correlated fluctuations.

Figure A1 is the time series of drop counts illustrating
the apparent constancy of both the mean and the vari-
ance, required for wide sense stationarity. This con-
stancy is confirmed rigorously in Fig. A2. For the ob-
served coherence length of 4 s, the mean and standard
deviations are plotted as a function of five statistically
independent groups each containing 40 data points hav-
ing an ‘‘effective’’ number of 10 independent values.
The error bars for the mean correspond to plus or minus
one standard deviation computed using the variance

measured for each separate group assuming 10 inde-
pendent values. The error bars for the standard deviation
are calculated using the variance of the variance of the
five sets of 40 points.

No statistically meaningful trends appear in these
data; that is, the mean and standard deviation remain
constant. It is noteworthy, however, that the global var-
iance is still three times the mean; that is, it is three
times the variance for a Poisson distribution. This sug-
gests raindrop clustering and a non-Poisson distribution
of drop counts.

Such a conclusion is substantiated by looking at the
density distributions of counts illustrated in Fig. A3.
The deviation of the observed distribution from the
Poisson is obvious in both the enhanced frequencies at
low counts and at higher counts. It is no accident, then,
that the variance of the observed distribution is three
times that of the ‘‘equivalent’’ Poisson distribution, that
is, the Poisson distribution having the identical mean
(with the variance equal the mean).

Hence, this example illustrates that raindrop cluster-
ing does occur in the atmosphere in statistically sta-
tionary conditions as proposed in Kostinski and Jame-
son (1997), Jameson and Kostinski (1998), KJ00, and
Jameson et al. (1999). Moreover, these observations
cannot be explained in terms of a nonhomogeneous
Poisson process.

Regardless of the origin of the clustering, however,
it should be remembered that these same works show
the existence of raindrop clustering over a wide range
of scales.
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