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ABSTRACT

The application of the Wiener–Khintchine theorem for translating a readily measured correlation function

into the variance spectrum, important for scale analyses and for scaling transformations of data, requires that

the data be wide-sense homogeneous (stationary), that is, that the first and secondmoments of the probability

distribution of the variable are the same at all times (stationarity) or at all locations (homogeneity) over the

entire observed domain. This work provides a heuristic method independent of statistical models for eval-

uating whether a set of data in rain is wide-sense stationary (WSS). The alternative, statistical heterogeneity,

requires 1) that there be no single global mean value and/or 2) that the variance of the variable changes in the

domain. Here, the number of global mean values is estimated using a Bayesian inversion approach, while

changes in the variance are determined using record counting techniques. An index of statistical heterogeneity

(IXH) is proposed for rain such that as its value approaches zero, the more likely the data are wide-sense

stationary and the more acceptable is the use of the Wiener–Khintchine theorem. Numerical experiments as

well as several examples in real rain demonstrate the potential of IXH to identify statistical homogeneity,

heterogeneity, and statistical mixtures. In particular, the examples demonstrate that visual inspections of data

alone are insufficient for determining whether they are wide-sense stationary. Furthermore, in this small data

collection, statistical heterogeneity was associatedwith convective rain, while statistical homogeneity appeared

in more stratiform or mixed rain events. These tentative associations, however, need further substantiation.

1. Introduction

There is strong interest in understanding the temporal

and spatial scales of rainfall. Observations and numerical

models produce results onmany different scales, extending

from that of a single rain gauge up to scales of one to

hundreds of kilometers from forecastmodels. A significant

challenge, then, is to retain fidelity when translating among

all of these different scales. In particular, more realistic

forecast model results often depend upon integrating ob-

servations into the model, while the utility of numerical

forecasts often depends upon the translation of model

output down to scales of, say, urban flooding.

One of the most powerful tools for investigating various

scales in rain is, of course, the power spectrum (e.g., Crane

1990; Kiely and Ivanova 1999), the Fourier transformof the

relatively easily observed autocorrelation function (via the

Wiener–Khintchine theorem; Wiener 1930; Khintchine

1934). The latter often provides the most convenient route

to the power spectrum from observations, while filtered

power spectra can yield autocorrelation functions useful for

interpreting measurements collected over finite temporal

or spatial domains of different sizes.

However, the validity of the Fourier transform relation

between the autocorrelation function and the variance

spectrumdepends upon the data being statistically stationary
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in time or homogeneous in space (Jerison et al. 1997).

Stationarity (homogeneity) can have a much more de-

manding strict sense meaning and a weaker wide-sense

meaning. In the strict sense, all moments of the probability

distribution of a variable are the same everywhere or at all

times over a domain in its entirety, while in the wide-sense

stationarity (WSS), it is sufficient to have a constant global

mean and constant variance everywhere or at all times

over all the samples. What is meant by ‘‘mean value?’’

Over a domain there arewhat can be called ‘‘globalmean’’

values applicable over the entire domain.At any particular

location, however, there are local mean (LM) values,

which represent the spatially and temporally correlated

statistical mixtures of these global means. The LMs do not

represent real changes in the global mean values, however.

Obviously, then, thedefinitionofWSS is necessarily scale

dependent, since all sets of samples are finite in size so that

when these terms are used, it is implicitly understood that

they apply from the smallest resolved scales up to the

largest dimension of the sample domain even though cor-

relations can introduce local variability into the LMs, for

example. To rephrase slightly, WSS can apply when there

are no temporal or spatial variations or gradients of the

global means or changes in the variance over the largest

dimensions. This does not mean, however, that gradients in

the set of observed LMs cannot exist depending upon the

particular expression of the correlation functions.

In natural rain it is highly unlikely that the much more

demanding strict sense stationarity (homogeneity) ever

occurs (Nason 2006, p. 4; Schleiss et al. 2014; Serinaldi et al.

2018). The complex four-dimensional structure of rain will

often produce statistical mixtures exhibiting correlations.

Fortunately, the Wiener–Khintchine theorem requires

only WSS. However, in rain, one cannot simply look at a

set of data and tell whether it is WSS, as we will clearly

demonstrate later. Yet, in almost all studies of rain, these

conditions are assumed to be true in no small part because

of the lack of a method to test the data.

The determination of whether data are WSS is not a

trivial problem (Nason 2006, p. 2.):

A tricky question is how can you know whether a time
series is stationary or not? There are various tests for
stationarity. As well as suffering from all of the usual
issues of statistical testing . . . tests of stationarity tend to
test against particular alternative models of particular
types of non-stationarity. For example, test A might well
be powerful at picking up non-stationarities of typeA, but
it has no power at detecting those of type B.

Thus, most approaches toward determining stationarity

(homogeneity) that are found in the literature depend

upon developing a statistical model of the data. As

stated above, sometimes they work and sometimes they

do not, and they all make assumptions about the data.

Hence, in this work we focus on using the data itself

without any assumptions or potentially misleading

models. This is done by looking directly for changes in

the global mean values and the variance. When found,

one then knows whether to attempt to remove these

effects so that the Wiener–Khintchine theorem can be

applied safely. For example, Schleiss et al. (2014) de-

velop one such approach for some circumstances.

The purpose of this work, then, is to suggest a method

and an index for evaluating the temporal statistical

stationarity or the spatial statistical homogeneity of rain

observations in order to detect when data are or are not

appropriate for the Wiener–Khintchine transform be-

tween the correlation function and the power spectrum

without further processing of the data. This will be ac-

complished by looking at a measure of changes in the

variance of the observed variable and by looking for any

evidence of multiple global mean values that could in-

dicate shifting global means. (Note that in this work, while

technically sloppy, statistical stationarity and statistical ho-

mogeneity are used interchangeably for convenience,

noting that when we use one of the terms, we are really

talking about both simultaneously.Wewill useWSS in this

sense throughout the remainder of the article.) However,

before looking at real rain, in the next section a back-

ground discussion is provided to clarify the subsequent

analyses of both simulated data and several real observa-

tions in rain.

2. Background

As just discussed, there are, then, two components to

WSS that have to be evaluated, namely, the global mean

and the variance. Recently, a straightforward method for

detecting changes in the variance of a variable were de-

veloped in Anderson and Kostinski (2010, 2011). In that

approach successive record highs and record lows are

counted in both the forward andbackwarddirections.When

the data areWSS, the total counts (T) in each direction will

be nearly the same so that a 5 Tforward 2 Tbackward ap-

proaches zero. They show that deviations from the null

depend upon two factors, namely, 1) the statistical fluctua-

tions (measured by the standard deviation, sa) which, in

turn, are functions of the length of the time series (the total

number of observations); and 2) the success in removing any

trends in the LMs that can distort a. It is important, there-

fore, to compute the LM curve and to subtract this curve

from the raw data in order to get the fluctuations unbiased

by any underlying structure of correlated LMs or systematic

changes in the global mean values when there is more than

one such value. We assume, therefore, that the curve can

be divided into a component associatedwith changes in the
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LMs and/or global means and a fluctuating component.

We then estimate this mean curve by computing a least

squares weighted spline fit over a distance sufficient to

yield a zero mean distribution of fluctuations (usually

on the order of 1–2 times the observed decorrelation

length). The record statistics are then determined for the

fluctuating component calculated as the difference be-

tween the observed and the mean curve.

This assertion was tested using numerical experiments

by constructing several different random time series for

Gaussian, gamma, uniform, and exponential distributions

of a random variable each having a different but constant

mean. These series were then exponentially correlated

using the copula technique using different times to

decorrelate for each. The comparison of the uncorrelated

and correlated times series yielded the same a. Moreover,

this was true regardless of the underlying distribution of

the random variable as pointed out by Anderson and

Kostinski (2010). This is important because the distribu-

tion fora often appears to beGaussianwith zeromean but

having a variance dependent on the sample size as dis-

cussed further below. Therefore, throughout the remain-

der of this work, whenwe refer toa, wemean thea for this

fluctuating component of the observations. We will also

assume that the distribution ofawill beGaussianwith zero

mean when testing whether the data are WSS.

Furthermore, Anderson and Kostinski (2010, 2011) show

that the frequency distribution of a is often well approxi-

matedby thenormal distributionhaving zeromeanwhenall

the trends have been accounted for properly. Thus, we will

consider deviations as being statistically significant only

when they exceed 1.5sa. Thus, departures from constant

a will be considered to be significant only when the relative

dispersion RDa 5 jaj/sa . 1.5. It is also important to point

out here that this approach applies only to continuous var-

iables, such as the rainfall rate or raindrop concentrations.

Anderson and Kostinski (2010, 2011) argue that

when statistical stationarity prevails, sa depends on

only the length of the observations regardless of the

underlying frequency distribution of the data.We have

verified this by simulating random samples drawn

over a wide range of different frequency distributions

of the data. Furthermore, for a series having N ele-

ments, Glick (1978) derived the variance for the

number of records, say, in the forward direction F,

namely,

s2
F 5 2

 
�
N

i51

1

i
2 �

N

i51

1

i2

!
. (1)

The factor of 2 occurs because the records consist of new

highs and new lows that are statistically independent. As

Glick (1978) shows, whenN is sufficiently large, the first

term in the brackets goes to ln(N) 1 Euler’s constant

(0.5772. . .), while the second terms goes to p2/6.

Since a is the difference between the forward and

backward B direction, it follows that

s2
a 5s2

F 1s2
B 2 2r

FB
s
F
s
B
, (2)

where rFB is the correlation coefficient between the

standard deviations of the record counts in opposite

directions. It is not obvious what rFB should be. In-

stead, we use numerical simulations to derive sa as a

function of the sample sizeN as plotted in Fig. 1. When

we compare the numerical results with the theory, we

find that at large N the two agree when rFB 5 0, so the

forward and backward counts are statistically in-

dependent random variables. Expression (2) then

becomes

s2
a 5 2s2

F,B 5 2

 
�
N

i51

1

i
2 �

N

i51

1

i2

!
, (3)

where the subscripts F, B refer to the forward or back-

ward directions, respectively. While the summations are

not all that difficult, it is often simpler to find a para-

metric fit that covers most realistic values ofN. One such

fit that is justified theoretically is shown in Fig. 1. For

large N the leftmost sum in (3) approaches 4 ln(N)14g,

where g is theEuler constant 0.5772. . . , while the rightmost

sum approaches a constant value 4p2/6 (see Glick 1978;

FIG. 1. The relation between the standard deviation sa of a toN

observations determined from theory and confirmed using nu-

merical simulations. The various lines are explained in the text, but

the equation is used in the subsequent analyses.
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Anderson and Kostinski 2010). When all of these terms are

combined, we have that

s
a
5 [4 ln(N)2 4:271�1/2. (4)

This theoretical equation matches the numerical simu-

lations, deviating at the most by less than 2% for N5 9,

so this expression is completely adequate for N $ 9 as

clearly demonstrated in Fig. 1.

As one might expect, sa grows with increasing N be-

cause there are thenmore opportunities for fluctuations.

Hence, in these analyses, a is first calculated for the

fluctuations from the LM curve. The absolute value of

a is then divided by the expected sa computed using (4)

to yield the relative dispersion RDa. Values less than 1.5

are taken to be just a reflection of statistical random

fluctuations, while values greater than 1.5 are taken to

indicate values 87% likely to be real and not as a result

of statistical fluctuations. Of course, one is free to

select a different threshold and, obviously, when Nc .1

(number of global means) this contribution usually be-

comes of more academic interest, since we already

know, then, that the data cannot be WSS except for

statistical mixtures.

As mentioned, the other component of WSS to con-

sider is the global mean value. It would seem almost

trivial to fit a ‘‘mean’’ curve to a plot of observations to

determine whether the global mean value is changing.

This is a misconception because the local means are

statistical fluctuations that are spatially and temporally

correlated. Even data that are WSS can exhibit signifi-

cant and systematic fluctuations about one global mean

value just because random realizations can have spatial

and temporal correlations. So, how do we detect the set

and number of contributing global mean values?

In past work (Jameson 2007; Jameson andHeymsfield

2013, 2014; Jameson 2015) a Bayesian inversion method

was developed for estimating the probability distribu-

tion of the globalmean values of a series of observations.

While details may be found in the references just men-

tioned, briefly, one considers a range of global mean

values for an assumed particular form of a distribution

(the so-called likelihood distribution). Each observation

can then be associated with each of these global mean

values to some degree of probability. As discussed in the

abovementioned references, the form of the assumed

distribution is not critical as long as it is physically rea-

sonable and single peaked. Here we use a normal dis-

tribution. Over the entire set of observations, the

probabilities at each mean value are then summed and

normalized to unity to yield a final estimate of the

probability distribution P(C) of the mean values, C,

themselves. The most likely component mean values

Nc are those associated with local maxima in this dis-

tribution determined from first derivatives and second

derivatives (see the appendix).

Sometimes, though, the components are not of sufficient

magnitude to produce distinct maxima. In those cases, the

combinations of components often produce inflections in

the distribution that can, then, often be identified using

second derivatives as illustrated in the appendix. The de-

tection of these features depends on them being suffi-

ciently separated with respect to the variance used in the

Bayesian likelihood distribution. Since this variance is an

independent parameter, it can be specified optimally to

take into account the width of the distribution of the data

and the total number of observations. This is discussed in

further detail in the appendix. It is important to point out,

however, that the results are not sensitive to correlations

because they do not depend upon whether the observed

values are clustered or spread out in time or space.

Thewhole idea, then, is that statistical heterogeneity can

occur if there is more than one global mean value, that is,

when Nc .1. This test may fail, however, for statistical

mixtures that areWSS.However, even in that event, at any

one instant of data collection by sensors in a network, the

local mean values will, of course, vary from location to

location, so in that sense even then those observations

may be considered statistically heterogeneous.

The remaining alternative is thatNc 5 0; that is, there

are no peaks in the distribution of themeans. In that case

every point is a new extremum in a set of monotonically

increasing or decreasing values. Hence, the data are

changing everywhere, so they cannot possibly be WSS.

In such circumstances RDa would also be large as

pointed out by Anderson and Kostinski (2010).

In addition to these considerations of the global mean

values, statistical heterogeneity can also result from the

variance of the observable changing over the domain.

Because of statistical fluctuations, we consider only

a$ 1.5sa to be a real indicator of the presence of trends in

the data. Table 1 summarizes the domains of statistical

homogeneity and heterogeneity based upon the values for

Nc and RDa.

For convenience these two quantities can be poten-

tially combined in many different ways into a single

number or an index of statistical heterogeneity (IXH).

One possible definition is

IXH5

H
RD

a

1:5
2 1

� �
RD

a

1:5
2 1

� �
1 (N

c
2 1)

2

2
664

3
775, (5)

where H is the Heaviside unit step function, so RDa

contributes only when it exceeds 1.5.
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This definition is not entirely arbitrary. Obviously for

the data to be WSS, there can be only one global mean

value; that is, Nc must equal unity unless the relative

dispersion is zero (Table 1). Second, for the commonly

observed normal distribution of a, we have specified ar-

bitrarily that RDa must exceed 1.5, so statistical fluctua-

tions will exceed this value only about 13% of the time.

Hence, IXH has that kind of statistical accuracy as well.

This, of course, can be adjusted by the user.

Aside from the special case discussed above when

Nc 5 0, there are also a few special cases to consider as

well, such as when Nc and RDa are contradictory, that

is, when

N
c
5 1, RD

a
$ 1:5, (6a)

N
c
$ 1, RD

a
, 1:5: (6b)

When Nc 5 1 but RDa . 1.5, then the data are sta-

tistically heterogeneous solely because of the changes in

the variance. On the other hand, when RDa , 1.5 while

Nc .1, there is, then, more than one contributing global

mean value, so we can identify these data as likely

being a statistical mixture.

This index in (5) is chosen, in part, because a value of

IXHgreater than 0.0 can then be taken as ameasure of the

statistical heterogeneity. IXH will be this small only when

Nc 5 1 and RDa , 1.5. As values of IXH increase, then,

the more likely it is that the data are statistically hetero-

geneous as the statistical reliability of RDa increases. In

this work, therefore, we consider IXH . 0.0 to be a min-

imum indicator of statistical heterogeneity. Larger values

suggest that the data should first be processed in some

manner (e.g., the removal of any trends) before applying

the Wiener–Khintchine theorem. In the next section we

apply these discussions to real observations in rain.

Examples of the entire analysis using numerical simula-

tions for both statistically heterogeneous and homogeneous

cases are presented below (Figs. 11 and 12).However, there

are other considerations as well. The observed Nc will

depend upon howmuch each component contributes to the

overall distribution P(C) of global mean values C. As the

contribution from one component decreases, it may well

become invisible. At that point, however, initial calcula-

tions show that when they become less than 10%–20% of

P(C), their contributions to statistical heterogeneity be-

come negligible as well. It is also possible that even with

equal contributions from, say, two components, as the

peaks associatedwith eachmove closer and closer together,

one peak may well disappear into the other, once again

becoming invisible. However, again, the contributions of

the two are then essentially merged, so trying to distinguish

homogeneity from heterogeneity based upon Nc becomes

academic with likely little effect on whether one should use

the Wiener–Khintchine theorem, depending upon the sta-

tistics of a. These possibilities should always be kept in

mind, however. Thus, the approach used here, then, may

technically miss some cases of statistical heterogeneity, but

those that are detected are likely correct and those that are

missed are probably not all that important with regard to

the use of the Wiener–Khintchine theorem.

3. Observations in rain

a. Single time series observations

In this section we will look at 11 sets of rain obser-

vations. The first is of Joss–Waldvogel (JW) impact

disdrometer data provided by the late Professor Carlton

Ulbrich (Clemson University) of almost a 17-h rain ob-

served at 1-min temporal resolution. The rainfall rates

R were calculated for each of the 1-min samples (Fig. 2).

Looking at the observations by themselves, the data ap-

pear to be statistically heterogeneous with a positive

gradient = (slope of a linear fit) over all the data. Indeed,

a is found to be 44, so the RDa is 9.10. Nevertheless, the

Bayesian inversion yields only one component near

2mmh21. Consequently, IXH 5 2.53, so the statistical

heterogeneity is driven by the changes in the variance of

the rainfall as discussed regarding (6a).

We next consider a rain event with an initial convective

component followed by a showery period and finally a

period of stratiform rain (Fig. 3) measured over a small

network of disdrometers located near Charleston, South

Carolina [for a complete description, see Jameson et al.

(2015)]. Obviously there is considerable variability in the

average rain rate, so we expect the rain to be statistically

heterogeneous. The Bayesian inversion reveals several

components to the distribution of the global mean values,

so IXH 5 7.42—a very large value. Hence, when consid-

ered in their entirely, these data are statistically heteroge-

neous (nonstationary). However, sometimes subdividing

the data can be very useful.

TABLE 1. Domains of statistical heterogeneity and homogeneity

defined by the values of Nc and RDa. Statistical mixtures can be

either homogeneous or heterogeneous depending on whether all

the components have the same correlation function.

No. of

components RDa # 1.5 RDa . 1.5

Nc 5 0 Not WSSs Not WSS

Nc 5 1 WSSs Not WSS

Nc $ 1 If RDa 5 0, then

WSS=otherwise, not WSS

Not WSSs
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For example, we can divide the data in Fig. 3 into

a convective period (0–115min), a stratiform period

(308–430min), and a transition period that is a mixture

of the two (190–308min). As Fig. 4 shows for the con-

vective data, much of the statistical heterogeneity of

these data derives from the variability of the global

mean values. The statistics were computed for each of

the 19 detectors over the time period and then averaged

to yield the average values indicated in the figure by the

brackets ,.... For this component, then, the average

IXH is computed to be 2.50—well within the domain of

statistical heterogeneity. Since RDa is not all that large,

we conclude the heterogeneity of these data is being

driven largely by the significant number of different

components (Nc 5 6) contributing to the rain.

In contrast, in Fig. 5 the stratiform component appears

quite steady, having a very small overall gradient=. Just as

for the convective rain, RDa ffi 1—a statistically marginal

value. However, unlike the convective rain, there is now

only one component in the Bayesian inversion. Conse-

quently, the average IXH is 0.0, so these data are WSS.

If we then look at the transition or mixed region

(Fig. 6), we might expect to find something in between

these two domains. We do not. Even though apparent

spikes in the rainfall rate appear presumably as small

convective elements pass through the stratiform rain,

there is only a weak overall negative gradient and there

is still only one component in the distribution of the

global mean values from the Bayesian inversion.

Moreover, this time the influence of a is even smaller,

since RDa5 0.55, so IXH5 0. Thus, in spite of spikes in

the rainfall rate, the data are WSS, so one cannot simply

tell necessarily by a visual inspection of the measure-

ments whether statistical homogeneity prevails.

This realization is substantiated by another example

(Fig. 7) of a mixture of bursts of heavier rain embedded

FIG. 4. The first approximately 120min of the data in Fig. 3 for the

convective rain in which the data are statistically heterogeneous.

FIG. 3. The average values over a small network of 19 video

disdrometers of a convective–stratiform rain event lasting 440min

as described further in the text. These data as a whole are statis-

tically heterogeneous, but they can be divided into a statistically

homogeneous section and a statistically heterogeneous section as

presented next.

FIG. 2. Observations of rain in South Carolina. Despite there

being only one Bayesian component, these data show significant

statistical heterogeneity because of the increasing variance in time.

The shading in the inset represents 99% of the distribution of the

global mean values inferred from the Bayesian inversion. The term

R has units of mmh21, and = is the gradient of the linear fit across

the data (green).
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in a background of steadier rain collected over the network

of disdrometers beginning at 1747UTC26December 2013

during an 80-min period (previously described in Jameson

et al. 2015). While the linear trend in the data (=) remains

small, it is not as tiny as for stratiform rain. Furthermore,

there are three peaks in the Bayesian inversion, but this

time the changes in the variance are also substantial with

RDa 5 2.75. Consequently, even though appearing quite

similar to the data in Fig. 6, these data are significantly

statistically heterogeneous with IXH 5 1.88.

There are other examples as well from a different

source, namely, JW disdrometer measurements from

the National Aeronautics and Space Administration

(NASA) rain facility at Wallops Island, Virginia, kindly

provided by David Wolff. On 6 March 2013 a winter

storm in the Ohio River valley made its way eastward

toward the East Coast. Ahead of the storm center a

warm front moved up the East Coast. A line of con-

vection formed ahead of the warm front, and as it moved

over Wallops Island, it produced two hours of heavier

rain with another two hours of less intense rain. First, we

consider the more intense rain in Fig. 8. In this case, the

rain has a meaningful RDa 5 1.80 as well as three main

contributions to the distribution of the global mean

values of R (Nc 5 3). Consequently, these data are sta-

tistically heterogeneous (IXH 5 1.10).

On the other hand, in the second 2-h period of lighter

rain, there is one global mean value with correlated

random fluctuations about that global mean that gives

rise to a small =. These LM values (red line) are sub-

tracted before computinga. The plot then reveals a clear

trend in the variance. Indeed, RDa 5 2.70, but in this

case Nc 5 1. The result is that IXH5 0.40, so these data

are statistically heterogeneous because of changes in the

variance. Hence, at all times one must consider both

RDa and Nc (Fig. 9), but they may be considered to be

a statistical mixture because RDa 5 0.

b. Multiple simultaneous time series observations

While these examples above show the potential appli-

cability of IXH, another factor that deserves consideration

is the potential dependency of IXH onmeasurements by a

single instrument; that is, rain is, of course, multidimen-

sional, so a reasonable question is, Just how sensitive is

IXH to a particular location and to the particular set of

observations by one instrument?

This is a difficult question to address in general,

However, we can get a feeling for potential sensitivity of

IXH to spatial variations by returning once again to the

observations from the disdrometer network already

previously considered except that this time we can

consider each instrument independently. In other words,

we first perform this same kind of analysis on the tem-

poral data from each instrument and then combine them

spatially through interpolation using commercially

available software and the conservative interpolation

scheme of Sibson (1981) and Watson (1992). This in-

terpolation does not create artificial features, such as

artificial spatial maxima or minima, yet it precisely re-

tains all the observations.

FIG. 6. The mixed period of rain (;200–300min) in the 440-min

rain event when background rain has occasional convective rain

elements moving through, giving the appearance of being statisti-

cally heterogeneous. Despite this, the data are also statistically

homogeneous as discussed in the text.

FIG. 5. Analysis of the stratiform period of rain during the 440-min

rain event shows that it is statistically homogeneous as confirmed by

the analyses of the global mean and fluctuating components as dis-

cussed in the text.
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We begin with the convective rain as illustrated in

Fig. 10a. As expected from Fig. 4, strong statistical het-

erogeneity extends across most of the entire area.

A striking feature, though, is the apparent variability of

IXH even across the 100m 3 72m area, showing the

danger of considering using results from one instrument as

representing what is happening over an area. Specifically,

in this case over all instruments the average IXH 5 2.33

but with a minimum of 0.50 and a maximum of 3.54 over

just this small area and over almost two hours.

These values can then be compared to those for the

stratiform rain plotted in Fig. 10b. The entire rain field is

WSS, so any spatial variations among the different de-

tectors are not nearly as important as in the convective

rain. For this rain the average IXH is only 0.002, while

the minimum and maximum values are 0 and 0.018, re-

spectively. Essentially, then, there is no variation of IXH

in this stratiform rain.

c. Evaluating IXH over larger areas

So far the focus has largely been on time series ob-

servations. There are occasions, however, when it might

also be useful to evaluate IXH over an area at one time,

such as one scanned by a radar or perhaps over a large

network of rain gauges.

However, before pursuing this, we first consider some

synthesized data both in 1D and 2D simulations for which

the inputs are known; that is, we know ahead of time

whether the data are statistically heterogeneous or WSS.

For the two 1D examples, we have expectations based

upon the results in the previous sections. Indeed, Fig. 11

shows that these expectations are met in one dimension,

giving credence to the methodology. The application of

the technique, however, is a little more complicated in

two dimensions as discussed next.

In this first example, a random field of rainfall rates is

correlated (Fig. 12) using the square root matrix method

as described in Jameson and Heymsfield (2014) and

Jameson (2015). Any apparent ‘‘blocking’’ of the data is

due to the spatial resolution used as discussed in Jameson

and Heymsfield (2013, 2014) and Jameson (2015). This

data field has a global mean value of 100mmh21, al-

though this particular value does not matter; 10mmh21

could have been used just as easily. First, let us evaluate

the a statistics. This is done by proceeding along a con-

tinuous path in the north–south direction beginning at the

top and then reversing direction at the bottom bymoving

over one column and then going back toward the top.

This minimizes artificial jumps in the counting process at

the boundaries of the domains. For convenience we will

refer to this as our north–south path. However, there are

two dimensions, so we repeat the process going east and

west as well to produce our east–west path for a better

sampling of the data field; the total path is the combination

of the two paths. An LM curve (a least squares error

or a local regression spline spanning twice the observed

decorrelation distance) is fit and the fluctuation curve is

calculated as before. Thea values are then computed.Here

we note that other paths are possible, of course. What is

important is that whatever path is chosen it should span the

FIG. 8. Data from the NASAWallops Island rain facility through

a convective rainband passage preceding a warm front. These data

are clearly statistically heterogeneous as discussed in the text.

FIG. 7. As in Fig. 6, this is an 80-min mixture of different rain

intensities on 26 Dec 2013, but unlike Fig. 6, this rain is statistically

heterogeneous.
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entire domain, remembering thatsa depends upon the total

N. The statistical likelihood that the total path value of a is

random can then be estimated using a normal distribution

having zero mean as discussed previously. If one were dis-

satisfied with the result along one path, then one is always

free to choose another as long as it spans the entire domain.

In Fig. 12a the total a over both paths is 0, while sa

for 80 000 samples is 6.394. Consequently, RDa 5 0.

Moreover, as expected from the data construction, the

Bayesian inversion yields Nc 5 1, so we conclude that

the data are WSS (IXH5 0) in accordance with (5) and

in agreement with the input conditions.

In Fig. 12b the same calculations are performed but

for an input of statistically heterogeneous conditions. In

this case RDa 5 13/6.394 5 2.03 while the Bayesian

inversion yields Nc 5 2, so that again the statistically

heterogeneous data are correctly identified. Conse-

quently, there is some justification for proceeding to the

analyses of real 2D observations using this procedure.

Figure 13a is a plot of data collected in rain in

Colorado on 12 September 2005 using the Colorado

State University–University of Chicago–Illinois State

Water Survey (CSU–CHILL) radar now operated in

Greeley, Colorado, by Colorado State University for the

National Science Foundation. The radar measured the

radar reflectivity factor Z that has been converted into

estimates of the rainfall rate using the relation of Sekhon

and Srivastava (1971) [R5 (Z/300)0:741]. Applying the

same approach as described above, a 5 0, so RDa 5 0.

On the other hand, the Bayesian inversion reveals two

significant peaks to the 99% significance level, that is,

99% of the distribution. Hence, IXH5 0.5, so these data

are statistically heterogeneous, but they may be con-

sidered to be a statistical mixture because RDa 5 0.

As an another example, R is plotted in Fig. 13b for a

storm on 6 July 2005 near Greeley, again observed using

the CHILL radar and converting Z into R as described

above. The total awas 13, so RDa513/5.6755 2.291. On

the other hand, Nc was 3. The size of RDa indicates that

these data are statistically heterogeneous at the 99%

level of statistical reliability even aside from the largeNc.

As a final example, we consider another case from6 June

2005 as illustrated in Fig. 13c. For these data, jaj 5 1 with

sa 5 4.32. Thus, RDa5 0.232, whileNc5 4 (viz., 9, 18, 54,

FIG. 10. (a) The 2D interpolated fields of the temporal average

rainfall rate and IXH (red lines) for the convective rain during the

440-min rain event using each of the values of each instrument (or-

ange crosses) separately. Clearly, depending upon location, there is

significant variability in both the global mean rainfall rate and IXH,

although all values of IXH are consistent with statistical heteroge-

neity. (b) The 2D interpolated fields of the temporal global mean

rainfall rate and IXH for the stratiform rain during the 440-min rain

event. The spatial variability is less than in (a), and the values of IXH

over the entire area are consistent with statistical homogeneity.

FIG. 9. A second set of data fromWallops Island is shown. The

data are statistically heterogeneous because of the change

in the variance of the fluctuations responsible for the significant

a. The likelihood that this is a random occurrence is only

about 2%.
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and 108mmh21). IXH is then 1.5 so that these data appear

to be statistically heterogeneous with the heterogeneity

being driven exclusively by the number of Bayesian com-

ponents, that is, by the variability in the globalmean values.

However, the small value of the relative dispersion suggests

that these data may also be a statistical mixture.

In summary, then, the validity of this approach is sub-

stantiated by numerical simulations of rain data such as

in Figs. 11 and 12. More importantly, however, several

samples in real rain of the application of this approach

yielded seven examples of statistically heterogeneous

rain and three examples of rain events that are WSS.

This is still a small set of data, so the representativeness

of these data remains to be determined through con-

tinued analyses. Statistically heterogeneous rain ap-

peared to be mostly, but not exclusively, associated

with convective rain. This statistical heterogeneity is

sometimes driven by the variability in the global mean

values and sometimes by the variability in the variance.

Hence, both quantities must be monitored. This im-

plies that the Wiener–Khintchine theorem may not

always be applicable when attempting to derive scaling

FIG. 12. Synthesized 2D rain fields (a) of a WSS rain field having

a 5 0 and Nc 5 1 so that IXH 5 0 and (b) of a statistically hetero-

geneous rain field having a 5 14, RDa 5 2.03, and Nc 5 2 so that

IXH 5 0.77, which is in agreement with the assumed inputs in

both cases.FIG. 11. Two one dimensional examples of synthesized data for

(a)WSSdatahavinga5 2,RDa5 0.41, andNc5 1 so that IXH5 0and

for (b) statistically heterogeneous data having a 5 14, RDa 5 2.90, and

Nc 5 2, so that IXH5 1.70 in agreement with the input assumptions in

both cases. As before, the red line denotes theWLSE local regression fit

spanning twice the decorrelation length.
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relations for the rainfall rate. In statistically heteroge-

neous rain, the Fourier transform of the observed

correlation functions need not correspond to the actual

variance spectrum of the rain, so such derivations may

be misleading, particularly for larger IXH.

4. Conclusions

Up to now there has been no model independent

method for evaluating whether a set of data in rain

was WSS. This work provides one such method for

determining the validity of an assumption of WSS. An

index of statistical heterogeneity (IXH) is devel-

oped such that as its value approaches zero, the

more acceptable is the assumption of WSS and the

more acceptable is the use of the Wiener–Khintchine

theorem. This approach also has potential implica-

tions with regard to other commonly used techniques,

such as kriging and autoregressive modeling, for

example.

Several examples from real rain measurements dem-

onstrate the potential applicability of this approach to

actual observations of rain. It seems likely, too, that a

statistically heterogeneous set of data can sometimes be

subdivided into separate statistically homogeneous and

statistically heterogeneous portions (e.g., see Figs. 3–6)

so that the Wiener–Khintchine theorem can be applied

to at least some of the data. It is also shown that when

there is statistical heterogeneity, the value of IXH for a

single instrument can depend on the location of that

instrument even when a location may vary by only tens

to hundreds of meters (Fig. 10).

FIG. 13. Examples of rainfall rate estimated from the radar reflectivity. (a) For these data, RDa 5 0 and Nc 5 2.

Hence, IXH 5 0.5, so these data are statistically heterogeneous, but they may be considered to be a statistical

mixture because RDa 5 0. (b) In this case RDa 5 2.29 and Nc 5 3. Consequently, IXH 5 1.26, so these data are

statistically heterogeneous. (c) As in Fig. 12b, but for a different storm. While RDa 5 0.232 is small, Nc 5 4, so

IXH 5 1.5. These data, therefore, exhibit statistical heterogeneity because of different contributing components,

but they may also almost be considered to be a statistical mixture.
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In addition to developing a broader base of examples in

order to get a better feel for the frequencies and meteo-

rological conditions associated with statistical homoge-

neity, heterogeneity, and mixtures, it is also necessary to

study how the magnitude of IXH is related to the signif-

icance of any errors through the misapplication of the

Wiener–Khintchine theorem—in other words, when does

statistical heterogeneity become a serious problem and

how serious is it? This is clearly a research project in itself

that will be addressed in future work under preparation.
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APPENDIX

Numerical Examples of Analysis Procedures

a. Resolution optimization for the Bayesian inversion
procedure

Resolution is an important consideration in the

Bayesian inversion process. When using the normal dis-

tribution for such inversions, the resolution is controlled

by the standard deviation s. The process of inversion is

analogous to the binning of data for a histogram in that the

optimum s is one that involves a reasonable number of

data points but not so many that it smooths out significant

details of the distribution. For the binning of histograms,

Freedman and Diaconis (1981) devised an algorithm that

depends upon the width of the data distribution between

the first and third quartile [interquartile range (IQR)] as

well as the number of observations n, namely,

s5
2(IQR)ffiffiffi

n3
p . (A1)

A multitude of blind numerical experiments (gen-

erated independently by one of the authors) over

dozens of different scenarios having different numbers

of contributing components, each having different

fractional contributions to themean values and different

variance structures, revealed that for our purposes it is

more appropriate with respect to the inversion process

FIG. A1. (a) The time series plot of statistically homogeneous

correlated rainfall rate shows no particular average value. (b) The

frequency histogram for the data plotted in (a), suggesting one or

two peak values. (c) The Bayesian inversion (black) distribution

 
P(C) of the global mean values C as well as the first (blue) and

second (red) derivatives. The first derivative shows only one zero

crossing, indicating one component as confirmed by the one

minimum in the second derivative.
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to double that value and then to require that 0.05 #

s # 5.0. Values outside of either of these bounds were

then set to the appropriate limits. Still in order to be

detected successfully, it must be remembered that two

or more components contributing to a distribution have

to be sufficiently separated by an amount dependent

upon their relative magnitudes. The approach used here

appears to produce reasonable results over dozens of

numerical tests and with respect to the observed data. It

is also worth repeating that if components are so close so

as to become inseparable, it is likely that any associated

statistical heterogeneity will not preclude the successful

application of the Wiener–Khintchine theorem; or, to

put it another way, such data are effectively statistically

homogeneous whether or not there are detectable in-

dividual components.

b. Examples of the component detection procedure

There are several approaches for detecting peaks in-

dicating components. The first and most obvious one is

to look for descending zero crossings of the first deriv-

ative. Sometimes, though, the peaks are hidden, so one

must resort to looking at the second derivatives (e.g.,

Arteaga-Falconi et al. 2015; Slodzinski et al. 2013). Ex-

amples of the usefulness of this approach are illustrated

below. Finally, if there is still a question, one can use the

residual technique, that is, looking at the residual curve

after subtracting fits for the other components from

P(C) as was done, for example, in Jameson (2007). This

is also illustrated below.

1) AN EXAMPLE OF STATISTICALLY

HOMOGENEOUS DATA

We begin by taking draws from a single normal distri-

bution of R to produce a correlated time series shown in

Fig. A1a. From this plot alone there is no way to tell how

many components might be contributing to the dataset.

This is not clear even looking at the frequency histogram

given in Fig. A1b. However, the Bayesian inversion

clearly shows only one component as confirmed by the

single zero crossover for the first derivative of P(C) and

the single minimum in the second derivative.

2) AN EXAMPLE OF STATISTICALLY

HETEROGENEOUS DATA

The results are plotted in Fig. A2. This time draws from

two different normal distributions were used. Again, the

time series in Fig. A2a reveals nothing about the com-

ponents contributing to the data. However, in this case

the histogram in Fig. A2b strongly suggests the presence

of at least two components. The results of the Bayesian

inversion (Fig. A2c) confirm this conclusion. While there

is only one zero crossover for the first derivative, there are

FIG. A2. As in Fig. A1, but for (a) a two-component statistically

heterogeneous set of values. (b) The histogram clearly shows that

there are likely two components. (c) However, the first derivative

indicates only one component, but the second derivative detects

the presence of both components, thus illustrating the importance

of looking at the second derivate as well as the first derivative.
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two minima in the second derivative, indicating the

presence of the two components, one of which is only

sufficient to produce an inflection in P(C). Often, how-

ever, the histogram is not all that helpful in guessing what

might be happening as illustrated next.

3) A MORE SUBTLE EXAMPLE OF STATISTICALLY

HETEROGENEOUS DATA

As in the previous example, draws from two different

normal distributions are combined, leading to the results

plotted in Fig. A3. This time not only is the time series

(Fig. A3a) uninformative but neither is the histogram

(Fig. A3b), which suggests a single or perhaps more com-

ponents.Whether there ismore than one component is not

clear until we perform the Bayesian inversion (Fig. A3c).

This timeP(C) almost looks as though it consists of a single

component with a slight distortion on the left side of the

distributions. The second derivative shows, however, that

there is a second component. This plot also shows that

attention must be paid to relative minor minima in the

second derivative, especially when they appear to be as-

sociated with more unusual structures in the first de-

rivative. It is also possible to use the residual detection

technique of fitting the one component and subtracting

that from P(C) as illustrated in Fig. A3d. The residual

clearly supports the detection by the second derivative of a

second component.
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