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T his paper has established a connection with pre-
vious work in stochastic collision–coalescence
(e.g., Telford 1955; Robertson 1974) and the

broader field related to the Erlang and generalized-
Erlang distributions such as statistical signal process-
ing and queueing theory (Evans et al. 2000; Porter and
Ogilvie 2000; Syski 1986). In that spirit we illustrate how
a droplet size distribution is obtained from the gener-
alized Erlang distributions described in the main paper.

Note that Eq. (SB1.1) is a distribution of times
rather than a number dis-
tribution of drop sizes. The
latter may be useful (e.g.,
Telford 1955; Robertson
1974) because one may
wish to know how the drop
size distribution evolves
with time. The size of a col-
lector drop is easily calcu-
lated if we know the number
of collisions it has experi-
enced (ignoring condensa-
tion and drop breakup).
Therefore, we know the size
distribution if we can ob-
tain the distribution of the
number of coalescence
events for a given time.

We begin with the cu-
mulative distribution, Eq.

(SB2.2). This gives us the fraction of drops that have
experienced N collisions as a function of time, de-
noted p(t|N), with a separate curve corresponding to
each N. Using the curves for N = 1 . . . • and choos-
ing a single time t, it is possible to find the distribu-
tion of the number of collisions given t, p(N|t). A
subtlety arises, however, because any drop that has ex-
perienced N coalescences also has experienced N – 1
coalescences. To find the probability density of a drop
experiencing exactly N coalescence events after time

FIG. S1. (left) Each curve is a probability density of N coalescence events at a
given time (t = T/32, t = T/16, and t = T/8, where T = tttttppppp 2/6). This is obtained by
taking the difference between successive cumulative pdf’s of collision times at
a given number of collisions N. (right) Drop size distribution at the same times
as in the left panel. The distribution is normalized such that it may be inter-
preted as a probability density of droplet size.



FEBRUARY 2005|ES2

t we must find the difference p(N|t) = P(t|N) – P(t|N
+ 1). The entire size distribution, then, can be calcu-
lated by repeating this for N = 0 . . . • . In practice it
is necessary only to calculate this difference for the
range of N that results in numbers less than the de-
sired resolution in the drop size distribution. This new
distribution is properly normalized and can be trans-
formed to a traditional drop size distribution, -1c -dc

dr, by
converting the number of collisions to the drop size
via rn = ro(n + 1)1/3.

An example of p(N|t) is shown in the left panel of
Fig. S1, where the mean collision times are assumed
to vary as in series (3). The point farthest to the left
represents those drops that have experienced N = 0
collisions and is obtained by calculating p(N = 0|t) = 1
– P(t|N = 1). The corresponding size distribution is
shown in the right panel of Fig. S1. Note the long tails,
representing the lucky drops. Finally, we must keep
in mind that while the lucky 10–6 droplets undergo all
128 coalescence events, about 85% of all droplets un-
dergo no coalescence at all. Thus, the size distribu-
tions obtained here remain accurate as long as we re-
strict ourselves to precipitation initiation.

The restriction to short times relative to the aver-
age growth time leads to yet another powerful sim-
plification. Recall that to obtain a size distribution one
need only find differences of cumulative generalized
Erlang distributions for the relevant N. But calculat-
ing these distributions, while straightforward on a
computer, does not pass as a “back of the envelope”
or even a pocket-calculator operation. For t n t,
however, the distribution tails reduce to a much sim-
pler form, as suggested in Fig. S2. Clearly at small t
the droplet fraction has a power law dependence. In
fact, the result is remarkably simple and is obtained
by expanding the exponential functions in Eq. (8) as
Nth-order Taylor series, resulting in P(t|N) ª N!(t/t)N.
Calculating the droplet fraction and the requisite dif-

FIG. S2. The fraction of droplets (cumulative general-
ized Erlang distribution) that have experienced N col-
lisions as a function of time. The figure is expanded and
plotted on a log–log scale to emphasize the power law
short-time tails of the distribution. One may wish to
think of the curves as corresponding to systems with
equal liquid water contents, but progressively divided
into fewer, larger droplets, such that fewer collisions
are necessary to reach the same final drop size. For a
final radius of 50 mmmmmm, the N = 128 curve corresponds to
an initial radius of r ªªªªª 10 mmmmmm, N = 64 to r ªªªªª 12.6 mmmmmm, N =
32 to r ªªªªª 15.9 mmmmmm, and N = 16 to r = 20 mmmmmm. As in Fig. 2,
the abscissa is time relative to the total average growth
time, such that the relative importance of the fluctua-
tions may be compared. Clearly, as equal liquid water
content is divided into larger (fewer) drops the impor-
tance of early luck becomes more pronounced. The
simple power law tails at small t allow this luck to be
calculated analytically in a straightforward way.

ferences for the size distribution is thereby greatly
simplified. Furthermore, this approximate, analytical
result may be of broader utility in calculations of pre-
cipitation initiation, as discussed in Fig. S2.
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