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Abstract
A simple geometric argument relating to the liquid water content of clouds is given. The phase
relaxation time and the nature of the quasi-steady approximation for the diffusional growth of
cloud drops are elucidated directly in terms of water vapor concentration. Spatial gradients of
vapor concentration, inherent in the notion of quasi-steady growth, are discussed and we argue
for an occasional reversal of the traditional point of view: rather than a drop growing in
response to a given supersaturation, the observed values of the supersaturation in clouds are the
result of a vapor field adjusting to droplet growth. Our perspective is illustrated by comparing
the exponential decay of condensation trails with a quasi-steady regime of cirrus clouds. The
role of aerosol loading in decreasing relaxation times and increasing the rate of growth of the
liquid water content is also discussed.

Keywords: cloud, diffusion, droplet growth

Cloud descriptions in the atmospheric science literature often
begin with the observation that cloud water volume fraction
f is quite small, on the order of ×10−6 and the distance
between droplets is about hundred times their average size,
(e.g., Srivastava 1989, p 870). Also, all cloud physics texts
begin the topic of diffusion growth with the case of a single
drop and then discuss assembly of droplets (e.g., see Rogers
and Yau 1989, chapter 7). Here we shall suggest a collective
view on f as a direct result of thermal interaction between
drops via latent heat.

Let humid air, initially at dew point, cool suddenly by
�T , e.g. forming a contrail. As droplets begin to form and
grow by condensation, latent heat � is released and raises the
temperature back to Tdew so that no other droplet can grow
in the vicinity of a given droplet. The ‘vicinity’ here refers
to the inverse concentration, n−1 ≡ V ; volume of air cell
per cloud drop (inverse of number density). In other words,
the system (drop) responds to environmental cooling via Le
Chatelier’s principle, by opposing the changes and the released
latent heat is spent on warming the air ‘exclusion sphere’ V
and the droplet itself. This yields

vρw� = (vρwcpw + Vρacpa)�T (1)

where v is the droplet volume, ρw and ρa are water and air
densities while cpw and cpa are the specific heats of water

and air densities respectively, and � is the latent heat of
condensation (at 0 ◦C): � = 2.5 × 106 J kg−1. Neglecting heat
spent on warming the droplet, and denoting Qin = m�, results
in

Qin = vρw� = Qout ≈ ρaV ca�T (2)

where ρ and c denote density and heat capacity, respectively,
and subscripts a and w, refer to air and water, respectively
(dropping the subscript ‘p’ for pressure). Thus, for the
volume fraction of liquid water in air, we obtain a convenient
approximation:

f = v/V ≈ (ρa/ρw)
ca�T

�
≈ 0.4 × 10−6�T (3)

or, in conventional units, 1 g of liquid water per kg of air
for �T = 2.5 ◦C. The 10−6 value is comprised roughly
of the product of two factors of 10−3. The second factor
illustrates the enormity of water’s latent heat of condensation
(lvap./cair = 2500 K). The volume fraction f ∼ 10−6 implies
inter-drop distance about 100 average droplet diameters as is
typically observed. Yet, despite this separation, the growth
of the drops is collective insofar as the thermal interaction is
mediated by the release of latent heat and defines the ‘sphere of
influence’ per drop (e.g., because of lower latent heat, methane
clouds can be less dilute).
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So far the cooling mechanism is left unspecified
(e.g., adiabatic parcel ascent, radiative cooling, or mixing).
Specializing to adiabatic ascent should yield adiabatic liquid
water content. In this case, temperature lapse rate � ≡ dT/dz,
�T and the cloud depth are related via �T ≈ �H , yielding
f ≈ (0.4 × 10−6�)H . This is the volume fraction analogy
of the adiabatic liquid water content and f increases with
cloud height as expected. When expressed in differential form
(d/dz), this is similar to analytic expressions for the adiabatic
liquid water content found in the literature (e.g., Pontikis 1996,
p 2630 or Goody 1995, p 223).

We digress briefly to make two comments. The ‘thermal
interaction’ with neighbors associates certain randomness with
the notion of cloud condensation nucleus (CCN), (defined in
terms of activation supersaturation only) because latent heat
released by nearest neighbors may raise the temperature above
the dew point (in addition to competing for water vapor),
thereby depriving a given embryo of an opportunity to grow.
In addition to variable vertical velocity, the thermal interaction
between nearest neighbors is an alternative way to cause the
‘poor empirical correlation between cloud droplet and cloud
condensation nuclei concentrations’, (e.g., see Chuang et al
1997). Indeed, the ‘luck’, associated in spatial proximity to
one’s neighbors becomes a factor in CCN potential, in addition
to chemical composition and size. Also, spatial statistics
of droplets can become sub-Poisson during early growth as
neighbors are ‘repelled’ via the thermal exclusion. In calm
radiative cooling conditions, this may cause increased optical
extinction of fog (see Kostinski 2002, figure 3 on p 2524).

We next address the question: how quickly is this water
volume fraction f attained and does the rate depend on the
aerosol concentration? To that end, we begin by gaining an
intuitive appreciation for the so-called phase relaxation time
and for typical values of supersaturation: the reader is referred
to Squires (1952) and, in particular, to Korolev and Mazin
(2003), for an authoritative discussion. In contrast to prior
literature, we shall work directly with concentration and will
be able to avoid the r = const assumption (e.g., Squires 1952,
Korolev and Mazin 2003, p 2959) in deriving and interpreting
the quasi-steady growth regime.

For clarity, let us examine droplets of single size and
again consider a droplet of volume v, growing in a suddenly
supersaturated environment, denoting n−1 ≡ V , air volume
per drop. For example, at t = 0, T and therefore, Ceq(T ),
the equilibrium concentration of water vapor, is lowered as
warm and humid jet engine exhaust is suddenly exposed to
cold environment, and begins to form contrails. The integral
mass balance gives

dm

dt
= − 1

n

dC

dt
= −V

dC

dt
(4)

where C is the average water vapor concentration in V .
The drop grows in V at the expense of the diminishing
concentration in V , according to mass conservation and
disregarding spatial concentration gradients. On the other
hand, according to the local mass conservation, the droplet
grows because of the incoming water vapor flux:

dm

dt
= 4πr 2

(
D

r

)
(C − Ceq) = 4πr D�C (5)

where Ceq is again the equilibrium concentration, maintained
at the growing droplet surface (at t = 0, Ceq < C). The
Maxwellian expression (D/r)�C for the vapor flux j for a
sphere was used (no time lag for diffusion) and we neglected
Laplace and Raoult’s terms and the effects of latent heat (see
below). The condition for validity of the Maxwellian flux
(quasi-stationary approximation) is 1/r(dr/dt)τdiff � 1, that
is, the droplet boundary moves ‘slowly’ w.r.t. to the diffusion
time τdiff ∝ r 2/D. The sufficient condition is ρvapor �
ρwater (Twomey 1977, pp 71–74) and is practically always
satisfied in cloud physics. More importantly, note that it is
the difference (C − Ceq) rather than the ratio (supersaturation)
(C − Ceq)/Ceq that drives the diffusional growth.

As Ceq is constant in time in this case (it was suddenly
changed at t = 0 but remains constant thereafter because
ambient temperature and pressure are assumed independent of
time), dC/dt = d(C − Ceq)/dt . Then, equating the right-
hand-sides of equations (4) and (5) leads to simple exponential
relaxation of quantity φ ≡ (C(t) − Ceq) to zero (saturation),
with the characteristic time constant

τ = 1

4πr Dn
. (6)

This is the ‘internal’ characteristic timescale of the system
(assembly of drops) response to external change.

Next, let Ceq change with time, in order to mimic natural
variations such as adiabatic ascent or radiative cooling. This
introduces an external timescale into the problem. Note that
dC/dt no longer equals d(C − Ceq)/dt , and the equation
obtained by equating the RHS of equations (4) and (5) is:

dC

dt
= − 1

τ
(C − Ceq) ≡ − 1

τ
�C (7)

where C , Ceq, and τ are all functions of time. Our view
is that the time-dependence of Ceq, is prescribed by the
changing environmental P(t) and T (t) and C(t) responds
to this external ‘forcing’ by Ceq(t) with the characteristic
timescale τ (t). Then, the natural form of equation (7) is

τ
dC(t)

dt
+ C(t) = Ceq(t) (8)

so that the ‘driving force’ is on the RHS. This is a 1st order
linear ODE but with a variable and unknown coefficient as
τ ∝ [r(t)]−1 is not a known function of time. An efficient
approximate scheme can be set up to solve equation (8) via
the method of an integrating (exponential) factor (e.g., Boas
2006, p 401). Treating τ as a given parameter yields a 1st order
solution as C(t) = [τ−1 exp(−t/τ)] ∫

Ceq(t) exp(t/τ) dt and
the driving force Ceq(t) can often be assumed exponential (see
below). Then, quasi-steady growth of r(t) can render τ a
variable but known function of time, etc.

Although working directly in terms of concentration has
important advantages, in order to connect with the existing
literature, we shall proceed in terms of the saturation ratio
C/Ceq or supersaturation S −1 = (C −Ceq)/Ceq ≡ (�C)/C .
(In contrast, conventional S is defined at a point, e.g., satisfying
S = 1 on a droplet boundary at all times.) As the ‘pursuit’ of
Ceq(t) by C is conducted with the ‘agility’ τ−1, one intuitively
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expects asymptotic �C to increase with τ . To see this, divide
both sides of equation (7) by C and then approximate C by Ceq

in the denominator of the RHS as the difference is known to be
less than a per cent from observations. This results in

C − Ceq

Ceq
= −τ

d[ln(Ceq/Cref)]
dt

≡ τ

T
(9)

where the logarithmic form is convenient because of the
Arrhenius dependence Ceq(t) = Cref exp −(�/RT ). While
our derivations require neither r = const nor dS/dt = 0, the
conclusion �C/C ∝ (nr)−1 is in agreement with modeling
results in the literature (e.g., Rogers 1975, p 200). The quasi-
steady value of S − 1 in equation (9) can also be understood
as ατ , where α−1 is the externally imposed timescale. For the
example of uniform adiabatic ascent, �/RT = �/RTref(1 −
αt)−1, as T = Tref(1 − αt). As (1 − αt)−1 ≈ (1 +
αt), Ceq acquires exponential dependence on time, with the
time constant α−1 = (�u)/Tref, where � and u are the
temperature lapse rate and the updraft speed, respectively.
Then, (C − Ceq)/Ceq = (�/RTref)ατ . The pre-factor is about
(5290 K/T ) ≈ 20. With the internal timescale τ being on the
order of 20 s (see below for the effects of latent heat on τ ),
and α−1 being above 104 s (value for strong updrafts of several
meters per second), one readily obtains a reasonable 1% order
of magnitude upper bound on supersaturation.

Let us compare the above interpretation with the
traditional one for quasi-steady growth (e.g., Korolev and
Mazin 2003, p 2959 or Squires 1952), that is the condition of
steady supersaturation, dS/dt = 0, typically interpreted as a
relative humidity increase balanced by the depletion of water
vapor via droplet growth. The condition dS/dt = 0 states
that the ratio of C(t) to Ceq(t) becomes independent of time.
Working in reverse, it follows from our equation (7) that this
regime is satisfied when Ceq(t) depends on time exponentially
(if the weak dependence of τ on t is neglected). As we
have just seen, this is the correct external driving for uniform
adiabatic ascent where Ceq(t) acquires exponential dependence
on time. From this perspective, conditions for quasi-steady
growth are not so constraining. Also, this is in agreement
with the picture of the ‘pursuit’ of Ceq(t) by C with the
‘agility’ τ−1, because in the case of exponential dependence
the system can lag behind and yet stay in constant ratio to the
forcing. Indeed, if C lags behind Ceq(t) by τ , then, for large
t , C(t) ∝ exp(−α(t − τ )) while Ceq(t) ∝ exp(−αt) and the
ratio is 1 + ατ for small ατ . Hence, we once again obtain:
S − 1 ∝ ατ .

How does the release of latent heat by the growing droplet
affect the quasi-steady growth regime? By warming the
surrounding air, it softens the rate of adiabatic cooling (e.g. for
dry adiabatic lapse rate to the moist one) but the exponential
driving in time still holds approximately. By the Le Chatelier
principle again, the emission of latent heat should oppose the
external changes. Indeed, it does, by increasing the relaxation
time τ as the latter is no longer entirely system-dependent but
acquires external parameters as follows:

τ = 1 + (γ �D)/k

4πr Dn
(10)

where γ = dCeq/dT ≈ 10−6 g cm−3 K−1 in the tropospheric
temperature range (a useful rule-of-thumb is doubling of Ceq

every 10 K), D is the diffusion coefficient and k is the thermal
conductivity of air. As might be expected, the effect of
latent heat is appreciable (γ �Dk−1 ≈ 2), roughly tripling the
relaxation time. The derivation of the result (10) for τ , in
addition to local mass balance (5), requires local heat balance:

�
dm

dt
= 4πr 2

(
k

r

)
(Td − Ta) (11)

where Td and Ta are the drop and air temperatures, respectively
as the drop is now warmer than the surrounding air. Then,
Ceq in the material balance equation (5) can be evaluated as
Ceq(Td) ≈ Ceq(Ta) + (dCeq/dT )(Td − Ta). To get from
temperature to concentration difference in equation (11) and
get the modified τ from equation (5), introduce β = (Ca −
Ceq(Td))/(Ca − Ceq(Ta)) so that dm/dt = 4πr Dβ(Ca −
Ceq(Ta)). Then, noting that � = k(Td − Ta)/D(Ca − Ceq(Td))

so that Td − Ta = �(D/k)(Ca − Ceq(Ta)) leads to the
modified expression (10) for τ . Equation (10) decouples basic
thermodynamic properties of the 2nd term from those of the
system (size and concentration). Environmental properties
such as an updraft and lapse rate, enter α in the expression
for quasi-steady supersaturation.

Having included the effects of latent heat, we return to
physical interpretation of the quasi-steady growth regime. As
discussed above, uniform adiabatic ascent yields Ceq(t) ∝
exp(−αt), thereby providing ‘driving conditions’ appropriate
for quasi-steady growth so that the ‘system response’, C(t)
remains in constant ratio to Ceq, the former lagging behind
the latter. Perhaps, the most important sense in which the
growth is quasi-steady is the steadiness of the spatial pattern
and gradients of concentration. The physical picture is that
of growing drops with C(x, t) = Ceq(x, t) maintained at the
drop boundary at all times and C(x, t) far away (many drop
diameters), exceeding the boundary value by �C ∝ τ as given
by equation (9).

We now turn to interpreting these results in terms of
supersaturation. This transition is not quite as trivial as
might appear at first sight as the notion of supersaturation
S − 1 = �C/Ceq combines the ‘driving force’ Ceq(t) and
the ‘system response’ C(t). Insofar as it is the observed
values of supersaturation S − 1 = �C/Ceq that are
maintained by the growing drops, phrases such as ‘a drop
growing in response to a supersaturated environment’ are
imprecise because supersaturation away from the droplet is
already implied by the growth. In addition, S cannot be
regarded a local quantity within the quasi-steady growth
approximation because S − 1 = 0 at the drop boundary at
all times but several droplet radii away, S − 1 = �C/C
as given by equation (9). Thus, the spatial variation is
prescribed rather then independently varying at each spatial
point as might appear from its definition as the ratio of
pressures or concentrations. Also note the associated gradient
of temperature: a growing drop is ≈0.058 K warmer at
supersaturation of 0.3%, i.e., practically never exceeding a
tenth of a degree in still air.

In view of the above remarks, the frequent interpretation
of a droplet, growing in a given supersaturation field (e.g.,
Twomey 1977, p 97) can be viewed as follows: there is a

3
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spatial gradient of S, given by equation (9) and maintained by
the quasi-steady growth of droplets. Therefore, the notion of
‘microscopic supersaturation’ (e.g., Srivastava 1989, p 869),
that is, ‘supersaturation in the vicinity of a drop rather than a
macroscopic supersaturation’ is misleading because the spatial
gradient required by the very process of growth, ‘occupies’
at least several drop radii. To ‘smooth out gradients of
supersaturation between drops . . .’ would contradict the notion
of growing drops as well as the thermal ‘exclusion sphere’ as
discussed above. In this sense, the conventional separation
in cloud physics texts into individual growth followed by
collective growth discussion (e.g., see Rogers and Yau 1989)
can be modified to emphasize that the quasi-steady value of S
is determined by the collective growth.

Note also, that the notion of supersaturation is fundamen-
tally of limited spatial resolution, quite aside from the quasi-
steady growth regime. Consider, for example, the statement
S = C/Ceq = 0.1% = 10−3; a numerical value often used
in articles and texts (e.g., Rogers and Yau 1989, p 88) or the
discussion of kinetic limitations in Chuang et al (1997). Then
recall that the relative fluctuation of the number of molecules
n (actual rather than average value of C) in a given volume
scales as n−1/2 (Poisson law), requiring, in turn, a cubic micron
of air (107 molecules) or so, to attain the required accuracy in
S. Hence, 1 μm spatial fuzziness of S is implied, rendering
the notion of microscopic supersaturation questionable at such
scales.

In order to illustrate the possible importance of
the perspective suggested here, consider the so-called
supersaturation puzzle (Gao et al 2004, Peter et al 2006).
This refers to unexpectedly high and unexplained relative
humidities (RH) of 130% up to 300% observed in cirrus clouds
and jet contrails. Gao et al (2004) give the range of 5–40 min
for the contrail age at the time of observation.

Note that from the present perspective, emphasizing initial
conditions directly in terms of concentration, the contrail case
is essentially different from the cirrus cloud case. Indeed, the
former corresponds to the exponential decay of �C with T
and, therefore, Ceq(T ) suddenly and drastically drops (once
ejected from the aircraft engine) while the latter involves
gradual decrease of Ceq with time. Furthermore, in the contrail
case, taking environmental temperature of 202 K (see Gao et al
2004) and initial jet exhaust temperature of about 350 K, yields
the initial S ∼ 104.

The question then is: how long does it take for the
enormous initial supersaturation of the hot jet exhaust air to
decay down to, say, 1.3 (RH of 130%)? Taking a droplet
concentration of 102 cm−3 and r = 1 μm, (Gao et al 2004,
p 517), we obtain τ ≈ 2.5 min for the relaxation time. Within
the range of 5–40 min for the contrail age, this yields 2.5 to 13
(1/e) times. Note that 104 × e−10 ≈ 3.2 so that, for example,
a 25 min old contrail may still leave one with RH of 300%.

In contrast, in cirrus clouds, the initial value of S is not
nearly as high but the equilibrium value S ∝ τ ∼ n−1 is larger
as the number concentration is much lower. In fact, according
to equation (9), the quasi-steady value of (S − 1) ∼ ατ ∼
�u/nr is in the 10–100% range for low concentrations of a
few ice particles per liter. Furthermore, such concentrations

yield relaxation times from hours to days so that the observed
cirrus clouds may still be relaxing.

We now turn to examining the role of aerosol
concentration in drop growth by condensation, e.g., when
comparing marine and continental clouds or the effect of
pollution on urban clouds. To that end, observe that the
relaxation time τ depends on concentration via equation (10).
As τ ∝ (nr)−1, response of the system is more nimble as the
relaxation time decreases with increasing concentration. On
the other hand, according to equation (9), the observed quasi-
steady supersaturation S − 1 ∝ τ , decreases with increasing
concentration. This is in agreement with results in Korolev and
Mazin (2003, equation (14), pp 2959–2960) if r is identified
with the integral radius.

To isolate the effect of concentration more clearly, let the
initial droplet radius be r0 and compare two clouds with the
same initial liquid water content or volume fraction f but with
different number concentrations. Then, for the rate of increase
of cloud water n(dm/dt) ∝ nr0 while keeping nr 3

0 constant,
we obtain

n
dm

dt
∝ r0n ∝ n2/3 (12)

so that the finely dispersed cloud begins to grow faster.
Similarly, the relaxation time τ ∝ (r0n)−1 ∝ n−2/3 when nr 3

0
is held constant. Thus, the finely dispersed system has a greater
specific surface area and is more nimble (shorter τ ). Hence, the
lag between Ceq(t) and C(t) ∼ exp(−α(t − τ )) is shorter,
resulting therefore, in a lower quasi-steady supersaturation,
despite the faster growth.

What is the nature of condensational growth before the
quasi-steady regime is reached? Here aerosols play a critical
role as well. The phase relaxation time τ [r(t)] depends on the
radius of the growing droplet and is on the order of 10 s for
concentrations of 100 cm−3 and r = 10 μm but on the order
of minutes during the early growth when droplets are smaller:
r ≈ 1 μm. Thus, during the first few seconds of an ‘early
growth’ period, one can regard Ceq(t) decaying exponentially
in time because of, say, air cooling due to uniform adiabatic
ascent and C not reacting yet, as vapor field depletion due
to droplet growth can be neglected. In this regime, C − Ceq

increases rapidly as 1 − e−t ∼ t . As a crude estimate, this
regime exists until τ (r(t)) ≈ t is reached by the growing
droplets.

Neglecting water vapor depletion due to droplet growth
may seem to contradict the frequently made statement that
droplet growth is rapid for small droplets and slows down
later. Observe, however, that the implied measure of droplet
growth is dr/dt , while the more suitable rapidity criterion for
our problem is the rate of mass growth dm/dt ∝ d(r 3)/dt .
Also note that the ubiquitous parabolic growth r ∼ t−1/2 is
based on constant S and does not hold for the early growth
regime. Instead, r−1(dm/dt) ∝ t , as shown in the previous
paragraph, so that r ∼ t during the early growth regime.

The r ∼ t scaling may have implications for the vexing
puzzle of size-distribution broadening. Indeed, droplet surface
area no longer grows linearly with time. Unlike the classic
parabolic regime (e.g., Srivastava 1991, p 1597), the difference
of square radii of two growing drops (variance) does not
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remain constant during growth (as the mean of size distribution
increases), and therefore, the relative width of the size
distribution need not narrow. Furthermore, the thermal
exclusion, as discussed above, causes non-uniformity in the
timing of growth initiation. Finally, if the size distribution is
sampled over long enough distance so that updraft fluctuations
become significant, the r(t) ∝ t dependence renders the
subsequent growth more sensitive to such fluctuations.

To conclude, we suggested a geometric (thermal exclusion
sphere) perspective on the liquid water content in clouds.
We then examined the phase relaxation time and quasi-
steady growth in terms of simple albeit possibly crude
approximations. One can see, for example, that quasi-steady
growth is an exact solution for the case of exponential ‘driving’
of Ceq in time: a case of rather general applicability. Our
simple expression for the quasi-steady supersaturation, S−1 =
τ
T , based on equation (9), decouples environmental properties
(updraft velocity and lapse rate) entering T , from cloud
properties (size and concentration), entering the denominator
of τ and from thermodynamic values, entering the 2nd term
in τ . We also suggested a resolution for the ‘supersaturation
puzzle’ by treating contrails and cirrus clouds as dissimilar:
exponential relaxation versus exponential driving, respectively.
Finally, we illustrated the new perspective by viewing a finely
dispersed ‘polluted’ cloud as a more nimble one (shorter
relaxation time τ ) so that the lag between Ceq(t) and C(t) ∼
exp(−α(t −τ )) is shorter, resulting therefore, in a lower quasi-
steady supersaturation for such a cloud (compared with cloud
with the same liquid water content but with fewer larger drops),
despite the faster acquisition of liquid water in such a cloud.
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