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Partially Coherent Backscatter in Radar Observations of Precipitation

A. R. JAMESON

RJH Scientific, Inc., El Cajon, California

A. B. KOSTINSKI

Michigan Technological University, Houghton, Michigan

(Manuscript received 28 September 2009, in final form 23 December 2009)

ABSTRACT

Classical radar theory only considers incoherent backscatter from precipitation. Can precipitation generate

coherent scatter as well? Until now, the accepted answer has been no, because hydrometeors are distributed

sparsely in space (relative to radar wavelength) so that the continuum assumption used to explain coherent

scatter in clear air and clouds does not hold.

In this work, a theory for a different mechanism is presented. The apparent existence of the proposed

mechanism is then illustrated in both rain and snow. A new power spectrum Z( f), the Fourier transform of the

time series of the radar backscattered reflectivities, reveals statistically significant frequencies f of periodic

components that cannot be ascribed to incoherent scatter. It is shown that removing those significant fs from Z( f)

at lower frequencies greatly reduces the temporal coherency. These lower frequencies, then, are associated with

the increased temporal coherency. It is also shown that these fs are also directly linked to the Doppler spectral

peaks through integer multiples of one-half the radar wavelength, characteristic of Bragg scatter. Thus, the

enhanced temporal coherency is directly related to the presence of coherent scatter in agreement with theory.

Moreover, the normalized backscattered power spectrum Z( f ) permits the estimation of the fractional

coherent power contribution to the total power, even for an incoherent radar. Analyses of approximately

26 000 one-second Z( f ) in both rain and snow reveal that the coherent scatter is pervasive in these data. These

findings present a challenge to the usual assumption that the scatter of radar waves from precipitation is

always incoherent and to interpretations of backscattered power based on this assumption.

1. Introduction

Because radars first detected signals backscattered from

storms, scientists have been trying to interpret them quan-

titatively. The earliest breakthrough came when the ap-

proach of Rayleigh’s (1945) treatment of the scatter of

sound waves was applied to the scattering of microwaves

by precipitation (e.g., Marshall and Hitschfeld 1953). An

essential characteristic responsible for the apparent suc-

cess of this theory is that the scattering by each particle is

incoherent (i.e., independent of all the other scatterers).

However, there are now reasons to question the general

validity that all backscatter from precipitation must al-

ways be incoherent. Is it possible, then, that backscatter by

precipitation can sometimes be partially coherent? What

does this mean?

The concept of ‘‘coherence’’ plays a central role in

modern physical science. It is multifaceted because there

can be spatial coherence, temporal coherence, ensemble

coherence, partial coherence, and others [e.g., Wolf (2007)

or Ishimaru (1997, p. 78), where coherent field is simply

defined as the ensemble average one]. In radar meteorol-

ogy, coherence is often used to denote different concepts.

For example, Doppler radar is termed coherent, but it is

‘‘looking’’ at incoherent targets (precipitation).

Consider, for example, the definition in the first text-

book on radar meteorology, Battan (1973, p. 33):

A target composed of distributed targets which move
with respect to one another is said to be incoherent. A
solid object, such as a metal sphere, would be regarded as
a coherent target.

By this commonly accepted definition, precipitation

always produces incoherent scatter simply because its

constituents move with respect to each other. However,

what about partial coherence? Part of our motivation for
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the research described herein stems from the feeling

that the previous definition is unduly restrictive. Why?

Because precipitation is not perfectly random but has

spatial texture. Any such texture can be regarded as a

superposition of ‘‘spatial gratings’’ of different strengths

and wavelengths. Albeit fleeting, such spatially coherent

patterns can resonate with the radar wavelength and

produce spatially coherent backscatter, similar to laser

speckle in optics (another example is X-ray scattering

by amorphous solids: although crystalline solids have

a well-defined Bragg scatter structure, the X-ray scatter

by amorphous solids is less well defined; however, X-ray

scatter is widely used, nevertheless, for material analy-

sis). In radar meteorology, the situation is even more

subtle as the ‘‘amorphous Bragg scatter’’ changes with

time. However, let us elaborate on the spatial texture of

precipitation first.

Previous research has shown that cloud and precipi-

tation are not perfectly random as an ideal gas but rather

possess texture: spatial correlations between particle posi-

tions. This has a variety of causes. For example, raindrop

breakup forms clusters of fragments. Patchiness of cloud

particles is caused by the turbulent air, in which these

particles are immersed: that is, the formation of patches

and filaments is due to the interplay of intense and spotty

random vorticity and drop inertia as they fall through the

eddies while being partially entrained by them.

As mentioned earlier, such structures imply spatial

correlations that are conveniently characterized using

the pair correlation function h (see appendix A). We

note that perfect randomness means that the pair cor-

relation function vanishes at all scales. This is a rather

stringent condition; as with any perfection, perfect ran-

domness is difficult to attain. Because of the Wiener–

Khintchine theorem, the existence of Fourier spectral

components and hence the presence of spatial period-

icities is implied whenever there is a deviation from

perfect randomness on some scales.

Our main motivation then is the notion of spatially

periodic (albeit fleeting) elements present in precipita-

tion and capable of backscattering in spatially coherent

diffraction-like patterns. Although radar returns are still

incoherent by the Battan definition because raindrops

move with respect to one another, spatial coherence may

nevertheless be out there. How do we detect it?

To that end, we ask the reader to consider a periodic

spatial pattern of intensities produced by a distant diffrac-

tion grating. Then imagine an observer at a point, moving

with a constant velocity across such a pattern. Clearly, the

observer will detect time-periodic intensity oscillations.

Now, let us next choose a frame of reference that moves

with the observer. In this case, the observer (analogous to

our radar) is stationary, but the distant diffraction grating is

in motion. The detected signal, however, will still be time

periodic. This simple gedanken experiment suggests that, if

we allow some precipitation to be spatially correlated with

all the elements of the gratings moving at the same Doppler

velocity (see appendix A), then that precipitation may act

like diffraction gratings (albeit fleeting at times) thereby

producing time-periodic radar echoes. However, detection

is a difficult task because the temporal periodicity is even-

tually destroyed by reshuffling. Furthermore, despite the

coherence, the usual in-phase and quadrature statistics of

the real and imaginary components of the complex am-

plitudes (I and Q) still hold as our gratings (‘‘superdrop’’

elements) obey the same rules as the raindrops themselves

(e.g., they move around, reshuffle, and scatter indepen-

dently). In fact, even when an airplane goes through the

radar resolution volume, I and Q statistics still remain

Gaussian (illustrated later in Fig. 10). Thus, would the sta-

tistics of I and Q alone suggest that a moving airplane is an

incoherent target? This is just another illustration of the

difficulty with the notion of coherence.

Returning to our spatial periodicities, however, if these

gratings reshuffle more slowly than the raindrops them-

selves, the backscatter may be proportional to N2 rather

than N, the number of raindrops in a sample volume. The

main goal of this research is to present evidence for the

coherent component in radar backscatter. Admittedly,

the separate items presented later may not seem conclu-

sive; however, the totality of evidence and the variety of

‘‘symptoms’’ present for rain, snow, and rain–airplane

combinations of these pieces deliver a compelling picture.

The symptoms of partially coherent scatter may be as

follows:

Time periodicity may have symptoms of Bragg scatter

by having maxima associated with multiples of half-

integer radar wavelength.

The periodic structure in precipitation, because of

spatial extent, may take longer to reshuffle. In other

words, signal coherence in time as evidenced by

increased coherence time reflects structural co-

herence in space.

These conditions are presented formally in appendix A.

Currently, however, incoherent scatter is assumed by

some to be all that there is. The concept of incoherent

scatter has an interesting history in radar meteorology

extending all the way back to the work on sound by

Rayleigh (1945) in 1871. In particular we quote from

Rughaven (2003, p. 17):

If we assume that the scattering is incoherent, i.e. the
particles are randomly placed and the phases of the
echoes from individual scatterers are distributed over an
interval 2p, the total back scatter cross section is the sum
of the individual cross sections.
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The author is completely honest in that the key word

here is ‘‘assume,’’ because the validity of the assumption

of incoherent scatter has yet to be proven. In fact, if one

returns to the earliest work on radar scattering, the

possibility of coherent scatter is recognized and de-

veloped (Siegert and Goldstein 1990) where, because

of the spatial structures in precipitation, ‘‘ . . . a certain

amount of coherent scatter can be expected.’’

The difficulty was and still is that there was never a way

to determine how much of the scatter by precipitation

was coherent. Consequently, over time the second term

in Eq. (15) in Siegert and Goldstein (1990) was simply

ignored, and it became that mantra in the field that all

scatter was incoherent. This approach was reinforced by

two other factors. The first factor is the apparent success in

describing the observed signal fluctuations (e.g., Marshall

and Hitschfeld 1953; Lhermitte and Kessler 1966) devel-

oped assuming the scatter was incoherent. We show here,

however, that classical signal statistics cannot be used to

disprove the presence of coherent scatter, because the

coherent scatterers act like superdrops moving in the wind

just like any other scatterer. Consequently, the signal sta-

tistics remain unaltered (some argue that the statistics

should be Ricean, but that is incorrect as we discuss later in

the paper). The second factor is the resurrection of the

work of Siegert and Goldstein by Gossard and Strauch

(1983), as we discuss next.

Coherent scatter is not new to atmospheric measure-

ments by radar, of course. Following the general formal-

ism of Tatarskii (1961), signs of coherent scatter in clear air

have been interpreted in terms of the index of refraction

fluctuations caused by the turbulent energy cascade (e.g.,

Gossard and Strauch 1983). Some investigators have ex-

tended this approach to explain (e.g., Erkelens et al. 2001)

apparent radar coherent scatter in clouds (see Knight and

Miller 1993) and smoke (Rogers and Brown 1997) by

treating the particles as a continuum in which the inho-

mogeneities in the spatial concentration of the droplets are

equivalent to fluctuations in the index of refraction oc-

curring on the appropriate Kolmogorov turbulent scales.

As Gossard and Strauch (1983) point out, however, such an

approach cannot produce coherent scatter in precipitation,

because hydrometeors are distributed too sparsely in space

(relative to radar wavelength) for the continuum assump-

tion to hold. However, Kostinski and Jameson (2000) sug-

gested a different mechanism.

The theory for this alternative mechanism for the gen-

eration of coherent scatter from precipitation is presented

in appendix A. This approach requires neither the con-

tinuum assumption nor Kolmogorov turbulent scaling,

and it incorporates the effect of velocities ignored by

Gossard and Strauch (1983). However, it does require

both temporal coherency and spatial coherency; that is,

radar coherent backscatter is possible when elements of

a structure all move at nearly the same Doppler velocity

over at least a brief interval and when the elements of

the spatially correlated structures of precipitation are in

resonance with the radar wavelength. In that case,

hIi5 �
i

a2
i

� �
1 hI

B
(t)i

5 Na2 1 N
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5 I
incoherent
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where h�i represents the time average over an ensemble

of observations, and FB given by

F
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(t) 5
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0

lh(l) sin(�2kl) dl, (2)

where l is the separation distance between scatterers in

the direction of the transmission, h measures the cor-

relation in the number of drops between disjoint ele-

mental volumes separated by l, k is the wavenumber, a2

is the mean squared scattered amplitude, and N is the

mean total number of particles in sample volume V. Note,

too, that the incoherent part goes as N while IB } N
2

(see

appendix A). The remainder of this paper is devoted to

illustrating this mechanism in both rain and snow.

In the next section, we present several independent lines

of evidence, all of which point toward the presence of co-

herent scatter. We begin with the most direct evidence first.

2. Observations

In this section, radar data in both rain and snow were

collected using the National Science Foundation Colorado

State University–University of Chicago–Illinois State Wa-

ter Survey (CSU-CHILL) radar facility at Greeley, Colo-

rado, which is operated by the Colorado State University.

This radar has a 1.18 beamwidth. It operates at a frequency

of 2.725 GHz, corresponding to a nominal wavelength of

11.01 cm. Time-series observations of the complex back-

scattered amplitudes (I–Q pairs) were collected holding the

antenna stationary, 1024 times per second at vertical po-

larization. [Note that the analyses presented below will not

function for a moving antenna because such motion, which

is not considered here, injects non-Rayleigh signal statistics

(see Jameson and Kostinski 1996) into the problem. Co-

herent scatter is still present, but it is then not measurable

using these techniques.] In the rain, observations were col-

lected over 332 bins of 150-m range over a distance of about

3–53 km from the radar. The elevation angle was 1.828 so

that the bottom of the main lobe of the beam was around

600 m above the surface at about 30-km range. These

measurements are through weak convection containing
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a few convective cores. Likewise, observations were gath-

ered in snow over 218 bins of 150-m range over a distance

of about 3.30–36 km from the radar. The elevation angle

was 2.548 so that the bottom of the main lobe of the beam

was around 700 m above the surface at about a range of

20 km.

Throughout this paper, the analyses focus largely on

the radar backscattered intensities Z with little refer-

ence to the Doppler information. One of the important

exceptions is that the 1000-point Doppler spectra were

calculated and then used to compute the observed stan-

dard deviations of the velocities sy . These, in turn, were

used to compute the expected 1/e times to decorrelation

(where e is Euler’s number) using standard formulas de-

vised assuming that the Doppler spectra were Gaussian

[the decorrelation time is simply the time (pulse to pulse

lags) it takes for the complex amplitudes–powers to be-

come statistically independent because of particle rela-

tive motions]; that is, using the relation (6.24) in Atlas

(1964, and many other references), it is argued that

t
1/e

5
0.796l

s
y

, (3)

where l is the radar wavelength in centimeters, sy is in

meters per second, and t is in milliseconds.

The reason for using the 1/e time to decorrelation is

that, unlike the time to 0.01 decorrelation, it is relatively

easy to measure directly from the complex autocorrela-

tion function magnitudes r of the of the complex ampli-

tudes independent of (3). For incoherent scatter and for

approximately Gaussian Doppler spectra (an assumption

made throughout the radar meteorology literature and,

e.g., one of the primary justifications for pulse pair pro-

cessing for Doppler velocity information), the values for

t computed from the Doppler velocity standard devia-

tions and those directly measured using r should be quite

similar. Surprisingly, that is not what Fig. 1 shows.

With a range of the observed standard deviations of the

Doppler velocities approximately up to a few meters per

second in both the snow and the rain, one would expect

the usual 1/e decorrelation times of around 4–8 ms at the

most. Although 5–6 ms are the mean and peak frequency

values in Fig. 1 observed directly in the rain, the peak cal-

culated using sy is only about 3 m s21 (70% of the calcu-

lated t values are #3 ms). Moreover, 45% of the observed

values are larger than 5 ms with 5% of the values $10 ms.

The snow is even more remarkable with a peak in the

histogram frequency (Fig. 1b) of the directly observed

values of 20 ms and a mean of about 21 ms; however, the

mean value derived using sy is only 4 m s21 (again, 70% of

the calculated t values are #4 ms).

Furthermore, 30% of the observed values occur at

t $ 25 ms. These t values are much, much larger than

one would expect for the traditional, incoherent scatter

decorrelation. For example, in the snow at range bin (RB)

131 between 28 and 29 s, the observed standard deviation

of the velocity was 1.50 m s21. According to classical

theory, this implies 1/e decorrelation time of about 6 ms;

however, the observed value was 16 ms. Clearly, the ob-

served large values cannot be used as a measure of the

time to decorrelation for the incoherent component.

More importantly, why are these decorrelation times

so much larger than particle reshuffling would imply?

What is the origin of the extra coherence evident in both

FIG. 1. The histograms of the 1/e times to decorrelation for (a)

15 600 samples in the rain and (b) 10 400 samples in the snow. The

expected values of t are calculated using the observed standard

deviations of the Doppler velocities. The excess observed corre-

lation in both rain and snow indicates the presence of an additional

source of coherence.
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the rain and the snow observations? These values would

be easy to understand if a coherent target such as an

airplane was in every sample volume. The coherency of

the airplane would greatly extend the observed time to

decorrelation of any precipitation. However, aside from

the absurdity of finding a coherent target in every ob-

servation, potential ground clutter and other targets

(such as airplanes) were easily identified and removed

from further analyses as discussed in appendix C. These

differences are real and perplexing. Is there another

source of coherency? As will be shown, the answer ap-

pears to be yes.

One clue to the origin of added coherency appears in

Fig. 2 using observations in range bin 131 in the snow.

The periodicities of the oscillations in Z are readily ap-

parent. For completely incoherent scatter having no cor-

relation, one would expect random spikes. Incoherent

data, of course, can be correlated as just discussed. How-

ever, although such correlation can smooth over some of

the spikes by effectively bunching similar data together,

there is little reason to expect such correlation alone to

generate what appears to be some striking periodicities in

Fig. 2.

To study the spectral components of these modula-

tions we take the Fourier transform of the radar back-

scattered power Z( f) normalized by the total power as

illustrated in Fig. 3 (note that this is not equivalent to the

Doppler spectrum, which is the Fourier transform of the

backscattered complex amplitudes as discussed at the end

of appendix A). The quantity Z( f ) is similar to the so-

called fluctuation spectrum arising from differential

particle velocities (e.g., Atlas 1964, 397–403) where f is

the differential frequency for purely incoherent scatterer,

but it differs in important ways. Although the fluctua-

tion spectrum is based solely on Doppler information,

Z(f) includes non-Doppler information; that is, when-

ever coherent scatter is present, there is an additional

component to Z( f) because the backscattered power can

oscillate regardless of any differential velocities. This is

important because the differential velocity spectrum can

then be calculated independently of the Fourier transform

of the reflectivity time series so that the comparison of

Z(f) to the fluctuation spectrum can identify those spec-

tral features not associated with differential velocities.

For incoherent scatter alone in which each sample is

statistically independent from the others, any frequency

can occur but Z( f) will appear nearly flat. In reality,

however, there is usually a Doppler spectrum that im-

plies the existence of signal correlation. This, in turn,

leads to a ‘‘coloration’’ of f at lower frequencies; that is,

the relative powers at different fs increase as f decreases.

In spite of this rising incoherent scatter ‘‘noise’’ level as f

decreases, Fig. 3 shows that, when coherent scatter is

present, the observed powers in the lower fs can signif-

icantly exceed what would be expected from differential

velocities alone; that is, in Fig. 3 we compute the Z( f)

from the observed Doppler velocities and compare it to

the Fourier transform of the observed time series of the

radar reflectivity. Obviously, the velocities alone cannot

FIG. 2. The time series of the radar-backscattered intensity mea-

sured in snow at RB 131 that exhibits clear and striking periodicity.
FIG. 3. An example of the radar backscatter power spectrum

Z( f ) in snow at RB 131 plotted as a function of frequency. The

horizontal line is the threshold used to separate coherent scatter

from incoherent scatter noise, as discussed in appendix C. The Z( f )

resulting from velocity fluctuations alone is plotted as well. Clearly,

the observed Z( f ) far exceeds that which can be attributed to

velocity fluctuations.
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explain the significant fluctuations of Z( f) in Fig. 3.

(Because we must take the direct Fourier transform of

the time series of reflectivity measurements to see po-

tential coherent scatter, we must then take into account

noise that does not appear in the usual methods for

calculating the differential velocities fluctuation spec-

trum; this is addressed using thresholds in appendix C.)

Specifically, in appendix C it is shown that a spectral

power thresholds T can be defined [one for rain (0.018)

and one for snow (0.022)] above which incoherent scatter

is largely (but not perfectly) excluded. Figure 3 suggests

that these thresholds are likely conservative, so that

should be kept in mind in the subsequent discussion.

Therefore, Z(f) is a new useful radar power spectrum in

which the fs are now those of the oscillations in Z (and in

the magnitudes of the amplitudes) rather than those as-

sociated with the usual Doppler velocity power spectrum.

However, the integration over Z(f) over all the fre-

quencies gives the total backscattered power just as for

the Doppler spectrum.

Thus, in Fig. 3 the presence of statistically significant

spectral powers rising well above the threshold and those

resulting from velocity-induced oscillation alone can be

attributed to the only other kind of scatter there is (see

appendix A): namely, coherent scattering. Moreover, Z(f)

can be used to estimate the coherent power contribution

to the total power or, in our case, the fractional coherent

power contribution F to the total normalized spectrum as

discussed in appendix C.

The difference between Z(f) for data containing a

mixture of incoherent and coherent scatter (see appendix

A) and those for purely incoherent scatter is shown in

Fig. 4 for the data in Fig. 3 but using the accumulated

spectral powers [SZ(f)Df ]. The upper line is for the snow

observations of Figs. 2–3, whereas the lower line corre-

sponds to a t calculated using the observed Doppler ve-

locity standard deviation as discussed earlier. This latter

time to decorrelation is taken to represent t of the in-

coherent scatterers. Clearly, these data cannot be ex-

plained by incoherent scatter. Also note that the lower

frequencies contribute much more to the total power in

the snow data than they do to the purely incoherent

scatter (also, see the end of appendix C). For comparison

in Fig. 5, we show Z(f )Df and SZ(f )Df for some rain

observations. Note the much more important 20–100-Hz

contributions in rain as opposed to the 1–50-Hz contri-

butions in snow. Also notice that, at larger frequencies,

the power rapidly drops to the white noise level. The

fractional coherent contribution to the total power F is

estimated as discussed in appendix C. Moreover, lower

bound values of F can be computed also as discussed in

appendix C. For these two examples, the lower bounds of

F corresponding to the data in Fig. 6 are 0.64 and 0.46 in

snow and rain, respectively. It is not surprising, then, that

the actual values in Fig. 6 are even larger.

Although the results thus far certainly indicate the

presence of coherent scatter, further evidence is offered

next. It comes from the pervasiveness of coherent scatter

in both types of precipitation; that is, rather than just

looking at individual cases, the analysis method just de-

scribed can be applied to all the available rain and snow

data. First, one must remember that we are only looking

at 2 min of data albeit over several range bins. Hence,

these findings should be viewed with that in mind. Using

T for separating coherent from incoherent fluctuations in

the normalized Z(f), Fig. 7 shows that coherent scatter is

ubiquitous in these observations (for a demonstration

showing that these results are not overly dependent on

the selected threshold, see the equivalent plot of the

lower bound histograms in Fig. C3). We also remind the

reader that, as Fig. 3 suggests, these estimates are likely

conservative.

We note that, with the exception of about 11% of the

rain data, none of the radar backscatter is purely in-

coherent. Furthermore, there appear to be substantial

differences between the snow and rain observations (in

both Figs. 7a,b) perhaps reflecting different responses of

the two types of hydrometeors to eddies in the wind.

Thus, the examples discussed earlier are not exceptional.

FIG. 4. Plots of the accumulated spectral power Z( f)Df for the

snow example and for purely incoherent scatter having the decor-

relation time (5 ms) calculated from the observed standard deviation

of the Doppler velocities. Note the much larger contributions of

spectral power at frequencies less than about 50 Hz in the data than

occurs for purely incoherent scatter (also see Fig. C2). Even when

the observed correlation time of 20 ms is assigned entirely (but

unrealistically) to the incoherent scatter alone, the shape of the in-

coherent scatter curve still does not approach the observed curve.

JUNE 2010 J A M E S O N A N D K O S T I N S K I 1933



In addition, radar meteorologists have often noticed

the textural differences in the displays of the echoes from

snow and those from rain with the former often appearing

noticeably ‘‘fuzzier.’’ Although some of this difference

arises simply from the different dynamic ranges used to

display snow and rain data, the results in Fig. 7 suggest

that, at least in part, this difference may also be attributed

to the greater frequency of what may be called ‘‘coherent

speckle’’ in snow as compared to rain.

Finally, we consider one other piece of evidence for

connecting periodic clustering of hydrometeors to ra-

dar coherent scatter by considering a serendipitous ex-

periment as a jet airliner from the Denver International

Airport passed though one of our sampling volumes.

Specifically, we focus on the data over a 90-s interval in

range bin 311 (49.35 km from the radar with a sample

volume of 8.74 3 107 m3) from the rain data described

earlier. These measurements were in convective rain.

It is well known that, aside from other perturbations,

aircraft produce vortices emanating from their wing tips:

the larger the aircraft, the more intense and large the

vortices, which can extend 10 km or more behind the

aircraft (e.g., Kelly and Handelsman 1974; Civil Avia-

tion Authority of New Zealand 2008). Figure 8 is an

example of the effect on clouds of the vortices found

behind even a small Lear jet. Although the vortices stir

the clouds, such stirring does not lead to greater spatial

uniformity [see also, Myers et al. (1999) for a study of

Bragg scatter off of aircraft wake vortices of the atmo-

spheric water vapor]. Rather there is increased cluster-

ing in regions of lower vorticity and higher strain rates as

many investigators have noticed studying the stirring of

inertial particles (analogous to raindrops in the wind) in

fluids (e.g., Squires and Eaton 1991). Furthermore, air-

liners with their larger and more intense wake vortices

are likely to influence rain over a considerable distance

behind their paths through an entire radar sample vol-

ume. The central question becomes, then, do these wake

vortices and other perturbations generate new periodic

FIG. 5. (a) The power spectrum Z( f ) of oscillations in the radar

backscattered power (obviously related to those in the amplitude)

for a case in rain at RB 211. (b) A plot of the accumulated power

spectrum corresponding to (a) for the data and for purely in-

coherent scatter simulated using the decorrelation time calculated

from the observed standard deviation of the Doppler velocities.

Compared to the snow case, note that much of the difference

occurs between 20 and 100 Hz (see also Fig. C2).

FIG. 6. Two examples of the radar backscatter power spectrum

Z( f ) for observations in snow (dashed–dotted lines) and rain (solid

lines) at the indicated RBs. The coherent contributions are found

over different frequencies, as noted previously.
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clustering in rain capable of increasing radar coherent

backscatter via the mechanism just discussed?

Figure 9 illustrates the passage of the aircraft through

range bin 311 captured in both the main, first, and pos-

sibly second side lobes of the radar beam as well. The

largest shaded region denotes when the aircraft could be

seen in the Doppler spectrum over a period of 23 s. The

inner dashed region denotes 7 s of missing data during

a transition between two datasets. In addition we plot

the observed decorrelation times of the complex am-

plitudes. Although one would normally expect that an

aircraft would increase the stirring of the rain and that

this would lead to a decrease in the decorrelation time,

what we see is just the opposite. How can this be?

Although one cannot completely rule out pure coinci-

dence, our interpretation is that the passage of the aircraft

led to enhanced periodic clustering of the rain and conse-

quently not only to the enhancement of the coherent

scatter as indicated by the calculated F in Fig. 9 but also to

the increased decorrelation times. This is easy to imagine

when the airplane is in the rain. Because of the coherency

of the aircraft, the decorrelation time can greatly increase

the more the aircraft dominates the signal. When there is

no airplane, however, a similar phenomenon can occur by

having two groups of scatterers, one with a short decorre-

lation time and one with a longer one, both weighted

equally, say, in power, in the sample volume. The net de-

correlation time will be longer than for the shorter and

shorter than for the longer. Thus, we attribute the en-

hanced decorrelation times in Fig. 1 to the presence of

coherent scatter, which extended the decorrelation times

well beyond those anticipated for purely incoherent scat-

ter. Similarly, the increase in the decorrelation time in

Fig. 9 is consistent with the appearance of increased co-

herent scatter.

We think that the increases in Fig. 9 are significant,

even though the aircraft only influences a small portion of

the total sample volume. At the range observed, the main

lobe radar beam was about 860 m in diameter. An air-

craft such as a Boeing 757 leaves two wake vortices, each

about 30 m in diameter. This means that at a minimum

FIG. 7. (a) The histograms of the estimated fractional coherent

scatter contribution to the total backscattered power in approxi-

mately 15 600 and 10 400 one-second samples in rain and snow,

respectively, using the thresholds as discussed in appendix C. (b) A

plot of the accumulated frequencies of the fractional coherent

contribution to the total backscattered power for rain and snow

corresponding to (a). These and the plots in Fig. C3 suggest that

coherent scatter is quite prevalent and significant in these 2 min of

observations.

FIG. 8. Wake vortices in clouds produced by a Lear jet. Note the

enhanced clustering within the vortices particularly on the left.

Heavier jets produce much larger, more intense wake vortices that

can extend 10 km and that are capable of disturbing precipitation-

sized particles (picture by permission of Paul Bowen; available

online at http://www.airtoair.net).
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the vortices could influence a volume on the order of

about 1–2 3 106 m3 or about 1%–2% of the total sample

volume in this case. Of course, an aircraft can leave other

trailing vortices as well. However, although the affected

volume is likely small, remember that coherent power

goes as N
2

(see appendix A) so that an aircraft can still

generate a detectable effect even in a large volume of

incoherent scatterers. In this case, the coherent scatter

contribution increased by about 10%, which is consistent

with the likely small portion of the sample volume actu-

ally involved.

The presence of an aircraft also serves to illustrate the

subtle nature of radar coherent scatter. In Fig. 10a, it is

easy to pick out the aircraft in the Doppler spectrum as

separate from the rain signals. However, when one looks

at a scatter diagram of the I and Q channels (Fig. 10b),

the distribution of points appears to be a 2D Gaussian

just as though the scatter was entirely from incoherent

scatterers. Although it is well known that, a fixed co-

herent target embedded in incoherent scatterers is de-

scribed by the Rice probability distribution (Rice 1945)

such that the 2D Gaussian would be displaced from the

origin, which does not happen here. The subtle difference

is that even though the airplane is a coherent scatterer in

the sense defined by Battan (1973), as discussed in the

opening of this work, the aircraft moves and this washes

out any net displacement of the origin from (0, 0). The

same is also true for radar coherent backscatter by pre-

cipitation. The intermittent grids move so that using the

I and Q values are of no help in identifying coherent

backscatter; that is, the distributions of I and Q are not

Ricean but instead remain Gaussian as though there was

no coherent scatter even when, in this case, an airplane is

clearly detected.

Finally, it is important to remember that temporal and

spatial coherency alone is symptomatic but not sufficient

to demonstrate coherency. However, in appendix B, the

association among Doppler spectral power peaks (re-

flecting the nearly constant velocities and the presence of

periodic spatial structures in resonance with the wave-

length as required in appendix A), the peak frequencies

in Z(f) and their association with integer multiples of l/2,

where l is the radar wavelength, is illustrated. It is shown

that the major peaks in Z(f) associated with coherent

scatter are directly related to the peaks of the Doppler

velocity spectrum through integer multiples of half of the

radar wavelength, as required for Bragg scatter. The

spacing in the grids in this example apparently range from

1.045 m down to 16.5 cm in this snow example and from

1.5 m down to 38 cm in the rain example in appendix B.

These are the dimensions projected along the beam axis

so that the actual spacing is likely to be larger.

FIG. 9. Profiles of the radar backscattered power, decorrelation times, and calculated least

squared weighted average fractional coherent scatter contribution to the total power F for RB

311, as discussed in the text. The increases in F and t after the passage of the aircraft are on the

order of 0.1.
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FIG. 10. (a) The Doppler spectrum containing both rain and aircraft signals. The gray curve is

an additional plot of the rain signal just before aircraft penetration. (b) The scatter diagram of

I and Q pairs corresponding to the Doppler spectrum in (a) containing the aircraft signal. There

is no statistically significant displacement of the mean values from (0, 0), that is, the signals

remain Gaussian.
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3. Discussion

This work presents a mechanism for the generation of

radar coherent scatter in precipitation. The theory sup-

porting this mechanism shows that the coherent scatter

can be generated by spatially correlated precipitation

structures acting like diffraction gratings in resonance with

the radar wavelength and with elements of the structures

all moving at the same velocity. Such diffraction gratings

are well known to produce fields of maxima and minima of

backscattered intensities. As they move through the radar

beam, these fields produce distinctive power oscillations

of frequencies f that cannot be attributed to incoherent

scatter (i.e., to velocity fluctuations).

A new backscattered power spectrum Z(f) is then de-

fined. This power spectrum is the distribution of the total

backscattered power over the power oscillations charac-

terized by f. [Classically, for pure incoherent scatter, Z(f)

is similar to the fluctuation spectrum arising from dif-

ferential velocities; however, in our case Z( f ) is more

general, because it includes additional non-Doppler fluc-

tuations from coherent scatter.] This spectrum allows us

to estimate the coherent scatter contribution to the total

backscattered power. It also has the advantage that it can

be computed even for incoherent radars, because Doppler

information is not required.

We also note that, when coherent scatter is present, the

usual relations between the standard deviation of the

Doppler velocity and decorrelation time in common use

are no longer valid. This is important, because it is nor-

mally assumed that the decorrelation time is inversely

proportional to the standard deviation of the velocity

spectrum. When coherent scatter is present, however, this

is no longer true, because the signal temporal coherency

is enhanced by the presence of wave coherent scatter

sometimes well beyond that reflecting normal particle

reshuffling as discussed at the end of section 2. Because

the backscattered power consists of the coherent and

incoherent components, the normal particle reshuffling

times characteristic of the incoherent component can then

only be estimated using Doppler observations.

Data in snow and rain were analyzed. Coherent scatter

was found to be pervasive throughout these 2 min of data

with only up to at most 11% of the rain observations being

examples of pure incoherent scatter. Because coherent

scatter appeared to be more pervasive in snow than in rain,

the ‘‘fuzzier’’ appearance of radar echoes of snow com-

pared to the radar echoes of rain may, in part, be due to the

greater frequency of ‘‘coherent speckle’’ in the snow. This

may be due to the enhanced responsiveness of the lighter

snow to turbulent eddies (Kolmogorov 1941a,b), which

leads to increased concentration of particles in regions of

high strain and low vorticity (Squires and Eaton 1991).

Although these analyses are consistent with this mecha-

nism, we also wanted to see if we could further characterize

these diffraction gratings and explicitly detect resonance

with the radar wavelength. This is done in appendix B for

examples from snow and rain. There are many other ex-

amples as well, which cannot be presented in the space

allotted to this work. Hence, we conclude that partially

coherent backscatter is frequently present in these data.

To summarize, then, it has been shown that removing

the significant fs from Z( f) at lower frequencies greatly

reduces the temporal coherency (Fig. B1c). Thus, these

lower frequencies are associated with the increased

temporal coherency. It has also been shown that these fs

are also directly linked to the Doppler spectral peaks

through integer multiples of l/2, characteristic of Bragg

scatter (Fig. B2). Thus, we conclude that the enhanced

temporal coherency can be directly linked to the pres-

ence of wave coherent scatter in agreement with the

findings in appendix A. Indeed, recent research to ap-

pear in a subsequent paper (because there are so many

appendices in this article already) will show that the

presence of wave coherent scatter is directly related to

the increased temporal coherency. Moreover, a separate

paper currently in review provides a direct calculation of

such coherent scatter so that we know it exists.

It seems, then, that radar coherent scatter from precipi-

tation exists and is generated by the mechanism introduced

here. Moreover, it appears to be pervasive in these data.

However, because this only represents a few minutes of

observations, one should not overgeneralize. Much work

remains to be done if we are to fully explore the extent and

statistical characterization of radar coherent scatter. The

potential application of this approach to observations in

clouds also needs exploration. At a minimum, though, these

findings present a challenge to the assumption that the

scatter of radar waves from precipitation is always in-

coherent; if prevalent, these findings will also require the

reevaluation of many current approaches toward the quan-

titative interpretation of radar observations of precipitation.
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APPENDIX A

Bragg Scatter from Distributed Scatterers

Gossard and Strauch (1983) derived the first ex-

pression for coherent Bragg scatter from particles, so
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why do it over? There are several justifications. First

and foremost, this derivation includes the presence of

Doppler velocity not considered before. This turns out to

be very important with regard to coherent scatter by

precipitation. Second, this derivation comes from a more

statistical–physical approach that incorporates the pair

correlation function in a very natural manner. Finally,

this derivation serves to emphasize that the radar back-

scattered signal consists of two components, the so-called

incoherent part and a second term that is usually dis-

carded in classical treatments of the radar backscatter

from particles. We show here that discarding it is not al-

ways appropriate.

The net electric field at a location produced by spa-

tially distributed scatterers can be expressed as

E 5 �
i

a
i
e j(v

i
t�2k�r

i
), (A1)

where ai is the amplitude of the field scattered by the

ith particle at location ri from the observer, vi is its

Doppler angular frequency, and k is the wavenumber

along the direction of propagation and the factor of

two accounts for a round trip. The instantaneous in-

tensity I is then given by the complex product EE*

so that

I 5 EE* 5 �
i

�
m

a
i
a

m
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i
� r

m
)]
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i
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j
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However, this sum consists of two components: namely,

when i 5 m and when i 6¼ m. Furthermore, when i 6¼ m,

the summation can be separated into another two com-

ponents: namely, one in which vi 5 vm and one in which

vi 6¼ vm. Consequently, we then have
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where h�i represents the time average over an ensemble of

observations. However, because of the differential angular

frequencies, the last term rapidly (on the order of 50 ms for

a stationary antenna) goes to zero so that (A3) becomes

hIi5 �
i

a2
i

� �
1 �

i
�
m6¼i

a
i
a

m
exp[ j2k � (r

i
� r

m
)]

* +
.

(A4)

If we collect a time series of observations in which the

particles are allowed to reshuffle a sufficient number of

times, the first term will converge toward the mean Na
2
,

where N is the mean number of particles in the sample

volume V. This represents the usual incoherent scatter

component of the intensity.

The second term is interesting because it represents

the interference among the waves scattered by the dif-

ferent particles and is independent of particle reshuffling

decorrelation. Because the cross sections and positions

are assumed to be independent, the second term can be

reexpressed as

�
i

�
m6¼i

a
i
a

m
exp[ j2k � (r

i
� r

m
)]

* +

5 a2 �
i

�
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i
� r

m
)]

* +
. (A5)

Now let us define lm 5 rm 2 ri. Furthermore, in order to

progress, let us assume statistical homogeneity in the

direction of propagation and consider elemental volume

dV located at (lm, u, u) from the ith particle such that

they contain either one or no particles. The probability

that an elemental volume located distance l away from

the ith particle contains a particle is given by

P
m

5
NdV

V
[1 1 h(l)] 5 n[1 1 h(l)] dV, (A6)

where N is the total mean number of particles in sample

volume V and h(l) is the pair correlation function. Now,

because either dV contains a particle or not, integrating

Pm over V will allow us to evaluate the second summa-

tion in (A4), which now becomes

hIi5 a2
N

V
�

i
�
m6¼i

[1 1 h(l
m

)] exp[� j2k � l
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] dV
m

* +

hIi5 a2
N

V
N �

m6¼i
exp(� j2k � l

m
) dV

m
1 N �

m6¼i
h(l

m
) exp(� j2k � l

m
) dV

m

* +
or

(A7)
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Now consider the case when h(l) is identically zero ev-

erywhere. Then (A8) reduces to

hIi5 a2
N

2

V
�
m 6¼1

exp(� j2k � l
m

) dV
m

* +
. (A9)

Because there is no correlation (since h(l) 5 0 on all

scales), all the contributions are statistically indepen-

dent, and we may bring the bracket within the summa-

tion: that is,

hIi5 a2
N

2

V
�
i 6¼i

exp(� j2k � l
m

)
� �

dV
m

. (A10)

We now note that the expected value of each exponential

will be zero. We then note that, because this term is the

same regardless of h(l), it must always be zero. Conse-

quently, we are then left with the second term in (A8).

However, in this case the brackets cannot be brought

within the summation because of h(l). This term, there-

fore, will exhibit coherency in a time series because of the

spatial structure of the scatterers. We can, therefore,

identify this as the Bragg scatter component of the in-

tensity. We focus exclusively on this term later.

Now because dV is so small that it contains either one

or no drops, we can replace the second summation in

(A8) with integrals over the sample volume V so that

hI
B
i5 a2

N
2

V

ð
V

h(l) exp(� j2k � l
m

) dV

� �
. (A11)

The integral can be computed as follows: Using our

spherical coordinates, we can now write

dy 5 l2dl sinu du du, (A12)

where u is the orthogonal angle to u, the angle between k

and l. Because k � l 5 kl cos u and because the particles

can assume all relative angles while l can go from 0 to very

large values, the equation can be rewritten to become

hI
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Now
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so that
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where l is the separation distance between scatterers in

the direction of the transmission. This is similar to the

expression of Gossard and Strauch [1983, Eq. (2–14b)]

using the substitution

h(l) 5
s2(n)

n2
C(l),

except that we now have a better physical understanding

of the origin of the relation and the role that Doppler

velocity plays.

In particular, the brackets in (A16) denote a tempo-

ral average. This arises because the elements of these

structures all move at the same Doppler velocity so that

they are not rapidly torn apart by particle reshuffling.

However, they then act like diffraction gratings capable

of inducing oscillations in the magnitudes of the back-

scattered radar amplitudes at frequencies less than those

destroyed by particle reshuffling as discussed further in

the text. Although a time dependence in (A16) is not

explicit, it is implicit because coherent scatter from the

grid of particles will produce a Fraunhofer-like spatial

intensity pattern. As the grid moves, the intensity will

oscillate at a period t 5 l/yr, where yr is the radial velocity

of the grid and l is the apparent spacing of the grid ele-

ments, each with respect to the radar. (There can also be

oscillations even when the grid only moves perpendic-

ular to the radial as well, but then there is no way to

estimate the apparent grid spacing.) Moreover, if it

should happen that more than one grid occurs simulta-

neously, there can be beat frequency modulations to the

intensity as well, although this is thought to be relatively

rare given the intermittency of the grids (shown by wavelet

analysis not included here) and the findings in appendix B.
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Consequently, IB is really IB(t) so that the total back-

scattered power is then the sum

hIi5 �
i

a2
i

� �
1 I

B
(t)

� �
5 hIi

incoherent
1 hI

B
(t)i, (A17)

The coherent power, then, comes from periodic struc-

tures of particles characterized by h if they exist and if

they are in resonance with the radar wavelength.

It is also worth repeating that these amplitude fre-

quencies are not Doppler frequencies. This is easy to

appreciate by simply considering, say, a metalized, os-

cillating (expanding–contracting again and again) bal-

loon moving at some velocity. While the Doppler velocity

remains constant, the radar cross section is oscillating at

a frequency independent of the Doppler velocity so that

this frequency oscillation will not show up as a feature in

the Doppler spectrum.

APPENDIX B

On the Apparent Link between Coherent Scatter and
Precipitation Diffraction Gratings

Although the backscattered power spectrum Z(f) can

be used to measure the coherent scatter contribution to

the total backscattered power, even for an incoherent ra-

dar, to gain further insights into the characterization of the

gratings and to connect the power spectral peaks to a res-

onance with the radar wavelength, Doppler radar obser-

vations are required. Specifically, the Doppler velocity

spectrum of the coherent scatter component is computed

from the difference between the complete Doppler spec-

trum and that corresponding to the incoherent scatter.

This latter spectrum is computed by first replacing all

frequencies , 1/(2t) in the amplitude frequency spectrum

by white noise (see Fig. 2 for an example of this spectrum).

The time series of the complex amplitudes for this in-

coherent component is then reconstructed using the pha-

ses of the original amplitudes. A normal Fourier transform

is then used to yield the incoherent scatter Doppler

spectrum that is then removed from the complete Doppler

spectrum to yield the coherent power Doppler spectrum

 
FIG. B1. (a) The coherent backscatter power Doppler velocity

spectrum for snow at RB 131 at 28–29 s. The significant Doppler

spectral peaks are denoted by the crosses at the top of the figure.

(b) The backscattered power spectrum corresponds to the data

in (a). The significant peaks in Z( f ) are obvious and are used in

Fig. B2. (c) The effect of removing the significant lower frequencies

in (b) is to markedly reduce the time to decorrelation as shown in

the magnitudes of the autocorrelation function of the amplitudes r.
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plotted in Fig. B1a. Here it is worth pointing out that,

when the important lower frequencies evident in Fig. B1b

are partially removed, the time to decorrelation drops

from 20 ms to about 10 ms (Fig. B1c). Thus, the important

frequencies in Z(f) are directly linked to the enhanced

temporal coherence.

The significant Doppler spectral peaks are denoted by

the crosses at the top of the figure. Because the particles

have to be moving at essentially the same velocity (see

appendix A) and they have to be in resonance with the

radar wavelength (see appendix A), these power spikes

should be associated with coherent scatter. To see this, let

us consider Z(f) given in Fig. B1b. These frequencies are

then denoted by the vertical gray lines in Fig. B2. In ad-

dition, for each of the radial velocities yr corresponding to

the peaks in Fig. B1a and for the radar wavelength l, we

calculate the number of l/2 from the relation n 5 2yr/fl.

The curves for all the significant Doppler spectral peaks

are plotted in Fig. B2.

Although n can assume any real or integer value, we

denote the intersections of the significant frequencies of

Z(f) with the velocities of the Doppler spectral peaks by

circles centered on these intersections. These values fall to

within 60.02 of the integer value (calculations show that

there is less than a 1 in 100 billion probability that all of

these circles would fall to within those bounds by chance

alone). Because each velocity peak in the Doppler ve-

locity can be associated with peaks in Z(f) at exact integer

multiples of l/2 (to within 60.02 of the integer), it appears

that the coherent scatter is likely coming from Bragg-like

diffraction gratings moving in the embedding wind and

producing the spectral peaks in the intensity oscillations

described by Z(f) with little if any from beat frequencies

among simultaneous grids. Moreover, the spacing in the

grids apparently range from 1.045 m down to 16.5 cm.

However, these are the dimensions projected along the

beam axis so that the actual spacing is likely to be larger

(by a factor of 1.4 if the average viewing angle is 458).

Finally, for completeness we consider another Doppler

spectrum, this time in rain (Fig. B3) where the statistically

significant spectral peaks are associated with the corre-

sponding integer multiples of the radar half-wavelength.

The total spectral power is spread out over all the velocity

bins but obviously not uniformly. Consequently, mean

FIG. B2. A plot of the number of radar half-wavelengths as a function of the backscattered

coherent power spectral peaks in Fig. B1b for the Doppler velocity spectral peaks in Fig. B1a.

The circles denote the intersections of these velocity curves with the backscattered coherent

spectral peaks. The circled values all lie to within 60.02 of an integer value. These intersections

occur at integer numbers of half-wavelengths as expected for Bragg scatter.
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spectral powers corresponding to the velocity bins were

computed using a least squares error fit. Moreover, be-

cause the antenna is stationary, Rayleigh signal statistics

apply to each velocity bin. Now, because the intersample

interval was approximately 1 ms, the 1000 sample spectra

of these data yield, on average, one statistically inde-

pendent sample per velocity bin. However, this varies, so

that the average number of samples across the part of the

spectra with significant power was determined using his-

tograms of the sample to sample velocity data. In this

case, there were, on average, 10 samples at the significant

Doppler velocity bins. Moreover, these samples were

found to be statistically independent, occurring at widely

disparate times because of phase randomness. Thus, for

each mean power in each velocity bin, one can compute

the statistical properties for the corresponding Erlang

distribution (e.g., Evans et al. 1993, 55–56) with 10 sta-

tistically independent samples. The appropriate Erlang

distributions are the source of the confidence limit curves

plotted in Fig. B3; that is, points found lying above a

particular confidence level are likely not due to statistical

fluctuations to that degree of confidence.

To summarize, then, it has been shown that removing the

significant f from Z(f) at lower frequencies greatly reduces

the temporal coherency. Thus, these lower frequencies are

associated with the increased temporal coherency. It has

also been shown that these fs are directly linked to the

Doppler spectral peaks through integer multiples of l/2,

characteristic of Bragg scatter. Thus, the enhanced tem-

poral coherency can be directly related to the presence of

wave coherent scatter in agreement with the findings in

appendix A.

APPENDIX C

On the Analyses of the Data

The analyses of these data consisted of three compo-

nents: namely, the calculations, the data editing, and fi-

nally the frequency analyses. The data were the I and Q

components of the complex amplitudes, which were then

used to calculate the radar power intensities Z every

millisecond. To survey these data, they were all processed

in blocks of 1000 ms to yield several parameters including

the observed 1/e time to decorrelation t, the maximum

fluctuation in the amplitude MA beyond a lag of 20 ms for

rain and 40 ms for snow, and the coherent fractional

contribution to the total power F using a procedure

FIG. B3. The analyses of a Doppler spectrum in rain. Values of the integer number of radar

half-wavelengths are indicated for the four most statistically significant spectral peaks, as dis-

cussed in the text.
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described in detail here. Scatterplots of MA versus t

quickly revealed the domain of data unaffected by aircraft

or clutter. Only data satisfying MA # 0.37 and t # 20 ms

in rain and 40 ms in snow were kept. (Subsequent calcu-

lations showed that setting the upper limits even as high as

100–200 ms had little effect on the results in, e.g., Fig. 7,

because of the limited occurrences of such data.) All other

data were rejected. This left 26 000 one-second values in

the rain and snow for further analyses.

Perhaps one of the most challenging aspects of these

analyses was the separation of presumed coherent from

incoherent scatter fluctuations in the spectra of the in-

tensities Z(f), where f is the frequency in hertz. Although

for purely incoherent scatter having no sample to sample

correlation there are no preferred frequencies (white

noise) so that the power spectra should be flat, in reality

samples are usually correlated as shown in Fig. 2. Such

correlation can produce colored noise such that, in this

case, the spectral magnitudes increase as the frequency

decreases. This was explored using numerically generated

correlated samples. For the 1000-point sample length used

here, coloration increases in importance with increasing t

(i.e., increasing correlation). As Fig. 1 shows, t corre-

sponding to the incoherent component of the backscatter

is on the order of 3 ms in rain and 4 ms in snow. Nor-

malized (total spectral power 5 1) Z(f) spectra were

computed using 50–1000 data samples of numerically

simulated correlated incoherent scatter (our ‘‘noise’’) at

both t. From these spectra, we considered only those

frequencies # 50 Hz, the band most often found to con-

tain most of the oscillation frequencies. We then com-

puted the percentage of times the fluctuations lay below

various thresholds of Z(f), as illustrated in Fig. C1. The

horizontal line denotes when 90% or more of the in-

coherent Z(f) lie below the thresholds so that at least 90%

of the observed values above these thresholds likely have

a physical cause. The thresholds used for rain and snow in

the computations were 0.018 and 0.022, respectively.

(Although one could insist on, e.g., a 99% exclusion, much

real data would also be eliminated by too stringent a re-

quirement.) Furthermore, as Fig. 3 suggests, these thresh-

olds are likely conservative, because the actual Z( f )

arising from fluctuation velocities alone are likely much

smaller than the approach here suggests.

So, then, how is the fractional coherent scatter con-

tribution F estimated? Because Z( f) is a power spec-

trum, we can then estimate the coherent power ZC and

the incoherent power ZI from

Z
C

5 �
f max

1
Z( f jZ $ T) and (C1)

Z
I
5 �

f max

1
Z( f jZ , T), (C2)

FIG. C1. A plot of the percentages of observations of Z( f ) at

frequencies #50 Hz lying below a particular threshold for pure

incoherent scatter estimated from an ensemble of correlated

Gaussian simulations having 1/e decorrelation times characteristic

of rain (3 ms) and of snow (4 ms) based on the mean values of Fig.

1. The dashed line indicates when random fluctuations of Z( f ) in

this frequency range remain below a threshold of 0.018 in rain and

0.022 in snow 90% of the time so that at least 90% of the observed

values above these thresholds likely have a physical cause. These

thresholds were used in computing Fig. 7a.

FIG. C2. Plots of the accumulated differences between the nor-

malized spectral powers Z( f ) for the rain and snow examples in

Fig. 6 and the average normalized spectral incoherent scatter noise

N( f ) calculated for 50 spectral realizations having t 5 2 ms. As

discussed in the text, each peak yields a lower bound estimate of

the fractional coherent contribution to the total power F.
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where fmax is the maximum spectral frequency limit and

T is the threshold discussed earlier [one could use the

1/(2t) frequency limit in (C1), but it turns out not to

matter because the powers at higher frequencies all lie

well below T ]. The fractional coherent contribution is

then given by the ratio F 5 Zc/(Zi 1 Zc).

It is also worth noting that the tails of the normalized

Z( f) are suppressed according to the magnitude of F.

This is evident in many of the figures. For normalized

spectra, F can be computed as

F 5 �
f max

1
[Z( f )�N( f )], (C3)

where N( f) is the spectrum of the incoherent noise.

Because Z( f) and N( f) are both normalized, this sum

over all frequencies would always be zero. However,

there will be a maximum before the noise contribution

starts to catch up to the coherent power contribution.

This is illustrated in Fig. C2 for the two examples in

Fig. 6 using the t for incoherent scatter noise component

based on the observations.

The peaks indicate that the lower bound fractional

coherent power contributions FLB in the snow and

rain are 0.64 and 0.46, respectively. The reason that

these are lower bounds is simply that the equal nor-

malized powers for both the signal and the noise are

simultaneously equal to the total power. In effect, this

removes any of the real difference that may exist be-

tween the total powers Z and N. Such differences must

always produce F . FLB, because in normalized spec-

tra the signal takes power from the noise or there would

be no signal.

Moreover, as a check on Fig. 7a, we also computed the

histograms for these FLB. These are shown in Fig. C3.

Although there is a general shift to the left of the dis-

tributions compared to those in Fig. 7a because FLB , F,

it is clear that they possess the same shapes as the dis-

tributions in Fig. 7a. Consequently, the thresholds ap-

pear adequate.
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