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On the Enhanced Temporal Coherency of Radar Observations in Precipitation

A. R. JAMESON

RJH Scientific, Inc., El Cajon, California

A. B. KOSTINSKI

Michigan Technological University, Houghton, Michigan

(Manuscript received 28 September 2009, in final form 30 March 2010)

ABSTRACT

In this work, the authors present observations of enhanced temporal coherency beyond that expected using

the observations of the standard deviation of the Doppler velocities and the assumption of a family of ex-

ponentially decaying autocorrelation functions. The purpose of this paper is to interpret these observations by

developing the complex amplitude autocorrelation function when both incoherent and coherent backscatter

are present. Using this expression, it is then shown that when coherent scatter is present, the temporal co-

herency increases as observed. Data are analyzed in snow and in rain. The results agree with the theoretical

expectations, and the authors interpret this agreement as an indication that coherent scatter is the likely

explanation for the observed enhanced temporal coherency. This finding does not affect decorrelation times

measured using time series. However, when the time series is not available (as in theoretical studies), the times

to decorrelation are often computed based upon the assumptions that the autocorrelation function is

a member of the family of exponentially decaying autocorrelation functions and that the signal decorrelation

is due solely to the Doppler velocity fluctuations associated with incoherent scatter. Such an approach, at

times, may significantly underestimate the true required times to decorrelation thus leading to overestimates

of statistical reliability of parameters.

1. Introduction

The autocorrelation function (AC) of complex am-

plitudes is well established in radar meteorology for

incoherent scatter. Regardless of the form of AC, when

one looks at the products of complex amplitudes, whether

it be for calculating the backscattered intensities or the

complex amplitude autocorrelation functions, time aver-

aging has always been used to argue that the fluctuating

components of each arising from differential particle

velocities all averaged to naught (e.g., Lhermitte 1960;

Atlas 1964, p. 396; Sauvageot 1992, p. 50). While a few

investigators recognized that some particles could be

moving at the same velocity (e.g., Sauvageot 1992, p. 50),

it was then usually argued that because of their random

spatial positions these equal velocity particles would make

no net contribution to the average backscattered power.

Indeed it can be shown theoretically that this is true

when there is no spatial correlation on any scale among

the scatterers over a large domain (a near impossibility

in the atmosphere), but it is not true when there are

spatial correlations of the structures of the precipitation

on scales of the radar wavelength. The existence of

candidate structures is readily apparent in the passage of

backlit snow and as waves of rain sweeping across the

pavement. If the scales of these structures are in reso-

nance with the wavelength, then coherent backscatter

can occur (Jameson and Kostinski 2010).

While the purpose of Jameson and Kostinski (2010)

was to report the apparent existence of radar coherent

backscatter from precipitation, the primary purpose of

this paper is to develop theoretical expressions for the

complex amplitude autocorrelation function when both

incoherent and coherent backscatter are present, which

was not done in the previous work. We then show how

the presence of coherent scatter leads to the enhanced

temporal coherence of the signals as actually observed

in data.

To that end, we compare the results of the theory with

the set of observations used by Jameson and Kostinski
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(2010). The radar data in both rain and snow were col-

lected using the National Science Foundation Colorado

State University–University of Chicago–Illinois State

Water Survey (CSU–CHILL) Radar Facility at Greeley,

Colorado. This radar has a 1.18 beamwidth. It operates

at a frequency of 2.725 GHz corresponding to a nominal

wavelength of 11.01 cm. While the antenna was held

stationary, time series observations of the backscattered

complex amplitudes (I, Q pairs, where I and Q indicate

the real and imaginary parts, respectively) were col-

lected 1024 times a second at vertical polarization. In the

rain, observations were collected over 332 bins of 150-m

range over a distance of about 3–53 km from the radar.

The elevation angle was 1.828 so the bottom of the main

lobe of the beam was around 600 m above the surface at

about 30-km range. These measurements are through

weak convection containing a few convective cores. Like-

wise, observations were gathered in snow over 218 bins

of 150-m range over a distance of about 3.30–36 km

from the radar. The elevation angle was 2.548 so the

bottom of the main lobe of the beam was around 700 m

above the surface at about range 20 km.

Before discussing these data further, however, we first

look at the theory for an autocorrelation function when

both incoherent and coherent backscatter is occurring.

2. Theory

The net electric field at a location produced by spa-

tially distributed scatterers can be expressed as

E(t) 5�
i

a
i
e j(v

i
t�2k�r

i
), (1)

where ai is the amplitude of the field scattered by the ith

particle at location ri from the observer, vi is its Doppler

angular frequency, and k is the wavenumber along the

direction of propagation and the factor of 2 accounts for

a round trip. Similarly at time (2t), where t is a lag time,

we have that
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where h�i represents the time average over the obser-

vation interval. It is shown in appendix A in Jameson

and Kostinski (2010) that coherent scatter is possible

when vi 5 vm. Consequently, the second term in (3) can

be separated into two components; namely,
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The time average of the last term in (4) approaches the

null after sufficient averaging (;50–100 ms), and we are

then left with

hE*(t) 3 E(t � t)i5 �
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5 hAC(t)i, (5)

where AC is the complex amplitude autocorrelation

function. Since the average complex amplitude is null,

the mean values that normally appear in the definition

of an autocorrelation function do not appear in (5). The

vo correspond to the Doppler velocity of the different

grids of scatterers associated with coherent scatter so

the Kronecker delta function simply denotes that it is

only those frequencies that contribute to (5). In contrast

to purely incoherent scatter, coherent scatter introduces

a second term into AC. The first term in (5) corresponds

to the incoherent scatter component of the autocorrela-

tion function (its Fourier transform is the incoherent

scatter component of the Doppler spectrum). The second

term corresponds to the coherent scatter component of

autocorrelation function (its Fourier transform is the co-

herent scatter component of the Doppler spectrum).

AUGUST 2010 J A M E S O N A N D K O S T I N S K I 1795



Ignoring the small changes in particle radar cross sec-

tions arising from oscillations or tumbling, (5) can be sim-

plified even further since the ais are then independent of t.

While the (ri 2 rm)s are also independent of t, they may

still depend weakly on time because the vs of particles

within the clusters may vary slightly from the mean v0.

Hence, using the results in Jameson and Kostinski (2010,

appendix A), we have that
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where the h�i indicate time average, and the summation

is now over velocities v0 and IC is the intensity of the

coherent backscatter given by Eq. (A16) in Jameson and

Kostinski (2010). Because all of these quantities are

complex numbers, by the triangle inequality, the mag-

nitude of the left-hand side is less than or equal to the

sum of the magnitudes of each of the terms on the right-

hand side of (6). However, the minimum contribution

that coherent scatter can make occurs when it is or-

thogonal to the incoherent component in the complex

plane. Hence, at the very least we have

hAC(t)ij j
hAC(t)ij j

Incoherent

5 1 1
AC(t)j j

Coherent

hAC(t)ij j
Incoherent

. (7)

Consequently, when coherent scatter is present the mag-

nitude of the autocorrelation function is enhanced beyond

what it would have been if only incoherent scatter were

present for any t. However, this is somewhat misleading

because what we are really interested in are the mag-

nitudes r of the autocorrelation functions normalized by

the total power at t 5 0.

Rewriting (7) we then have
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or more simply

r 5 (1� F)r
Incoherent

1Fr
Coherent

, (9b)

where F 5 IC/(IC 1 I0) is the fractional contribution of

the coherent power to the total power, while I0 and IC

refer to the incoherent and coherent backscattered in-

tensities, respectively.

Now let us consider examples for which F is fixed but

the rs change. Suppose there is a ‘‘coherent target’’ such

as an airplane embedded within precipitation (see Figs.

1a,b). That is, the precipitation can reshuffle but the

parts of the aircraft do not, much to the relief of the

passengers. (Actually, the aircraft can ‘‘decorrelate,’’ for

example, in that its radar cross section can change in

time, but, as Fig. 1b illustrates, that is usually a slow

process, depending upon the radar perspective.) Now if

rCoherent 5 rIncoherent, then r 5 rIncoherent so there would

be no difference from pure incoherent scatter in conflict

with our suppositions that we have added coherent

scatter and that the passengers are not in real trouble.

That is, everything would reshuffle as though no aircraft

had been added, which is clearly not the case in Fig. 1b.

If rCoherent , rIncoherent then r , rIncoherent, and it would

mean that somehow the addition of the aircraft actually

enhanced decorrelation in conflict with the physics and

with observations of aircraft embedded within pre-

cipitation (Fig. 1b). The remaining possibility is that

rCoherent . rIncoherent; so r . rIncoherent when a coherent

target is present as observed in the case of an aircraft.

We expect the same thing to happen when there are

grids of particles producing coherent scatter that do not

reshuffle as rapidly as the incoherent scatterers so the

time it takes to decorrelate to any level will increase

when coherent scatter is present. This is illustrated in

Fig. 1c using (9) where the incoherent component is cal-

culated after a partial filtering of the low-frequency

components of the reflectivity power spectrum Z(f), as

discussed in Jameson and Kostinski (2010, appendix B).

That is (and without going into details here), partial fil-

tering means that the spectral power attributable to co-

herent scatter has been removed from those f associated

with the coherent scatter and r is then recomputed for this

filtered time series. [The ratio IC/(I0 1 IC) is estimated

using Z(f) as discussed in Jameson and Kostinski (2010).]

Unlike an aircraft, however, the particle grids thought

to be responsible for the coherent scatter come and go, so

r varies more than for an aircraft as Fig. 1c illustrates.

3. Some observations

Using the data described above, the 1000-point Doppler

spectra were calculated and then used to compute the
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observed power-weighted standard deviations of the ve-

locities sV, as can be found in many references in radar

meteorology including Doviak and Zrnić (1993, p. 135)

and Sauvageot (1992, p. 183). These, in turn, were used

to calculate the expected 1/e times to decorrelation

(where e is Euler’s number) using the standard deviation

of the velocities assuming that the Doppler spectra have

exponentially decaying autocorrelation functions (dis-

cussed below and in the appendix). [The decorrelation

time is simply the time (pulse to pulse lags) it takes for

the complex amplitudes–powers to become statistically

independent because of particle relative motions.] That

is, using the relation (6.24) in Atlas (1964, and many

other references), but corrected for a missing factor offfiffiffi
2
p

as discussed in the appendix, it is easy to show that

t
1/e

5
1.125l

s
V

, (10)

where l is the radar wavelength in centimeters, sV is in

meters per second, and t is in milliseconds. Note that

the directly measured decorrelation times for the am-

plitudes include the decorrelation due to noise. That

same noise decorrelation appears in the Doppler spectra

as expressed through sV in (10), and it must be included

for a fair comparison (described below) of the two sets

of t1/e.

The reason for using the 1/e time to decorrelation is

that, unlike the time to 0.01 decorrelation, it is relatively

easy to measure directly [independent of (10)] from the

autocorrelation function (r) of the magnitudes of the com-

plex amplitudes when it drops below 1/e. For incoherent

scatter and in so far as the Doppler spectra were as-

sociated with exponentially decaying r, the values for

t1/e computed from the Doppler velocity standard de-

viations and those directly measured using r should be

quite similar. That is not what Jameson and Kostinski

(2010) found as repeated below but corrected for the

factor of
ffiffiffi
2
p

.

With a range of the observed standard deviations of

the Doppler velocities on the order of up to a few meters

per second in both the snow and the rain, one would

 
FIG. 1. (a) Doppler velocity spectra before an aircraft penetrated

the radar sample volume (21–22 s) and while an aircraft was

present (27–28 s). (b) The magnitudes of the complex autocorre-

lation function r corresponding to the two cases in (a) as well as the

recalculated r corresponding to the incoherent rain signal after

removal of the airplane signal. Note the similarity between the

prior aircraft and recomputed r. (c) The r for the total coherent

plus incoherent signals in snow, the estimated r corresponding to

recalculated incoherent component, and that for the coherent

component derived using (8). The contrast with an airplane is clear.
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expect the usual 1/e decorrelation times of around

5–11 ms at the most. While 5–6 ms is the mean in Fig. 2

observed directly in the rain, the peak calculated using

sV is only 4 ms (76% of the calculated ts are #5 ms).

Moreover, 45% of the observed values are larger than

5 ms with 5% of the values $10 ms. The snow is even

more remarkable with a peak in the histogram fre-

quency (Fig. 2b) of the directly observed values of 20 ms

and a mean of about 21 ms, yet the mean value derived

using sV is only 5.6 ms (74% of the calculated t

are #6 ms). Furthermore, 30% of the observed values

occur at t $ 25 ms. These t are significantly greater than

one would expect for the traditional, incoherent scatter

decorrelation. For example, in the snow at range bin 131

between 28 and 29 s, the observed standard deviation of

the velocity was 1.50 m s21 [over the velocity domain of

27.022 to 0.000 m s21; for a plot of this spectrum, see

Fig. B1 in Jameson and Kostinski (2010)]. According to

classical theory [as modified in (10)], this implies 1/e

decorrelation time of about 8 ms, yet the observed value

was 16 ms. Clearly, the observed large values cannot be

used as a measure of the time to decorrelation for the

incoherent component. The sV is the power-weighted

value computed from the Doppler spectrum as discussed

earlier, while the t1/e is computed directly from the

magnitude (r) of the complex autocorrelation function.

There are two possibilities for this discrepancy. One

obviously is that r need not be exponentially decaying.

Indeed, that is, in part, the case as we show next by

considering the generalized exponential (e.g., Kostinski

and Koivunen 2000) given by

r(t) 5 exp(�Cta), (11)

where C and a are constants, and t is the lag time. For

example, for a Gaussian autocorrelation function, a 5 2;

while for a simple exponential, a 5 1. Kostinski and

Koivunen (2000) show that, when a 5 2, the sample-

covariance matrix is ill conditioned so for real data a

should be ,2. While inspections of the r in rain and

snow all show an ‘‘exponential like’’ decay at the smaller

lags, it is often followed by much slower or, at times,

even increasing r at longer lags, particularly in snow.

To understand what is happening, we estimate a from

observations using the relation

ln ln[r(t)]j jf g5 ln(C) 1 aln(t). (12)

Two examples, one from snow and the other from

rain, are shown in Fig. 3. In both cases there are two

components of r just as in (6). The first is over domains

in t where the r seem to be represented by (11). The

second components we attribute to nonvelocity intensity

oscillations.

In the snow example, the observed slopes were a 5

1.70 for 3 # t # 20 ms, while in rain a 5 1.908 for 1 #

t # 10 ms. These are clearly not Gaussian and only

partially exponentially decaying. What else does this fig-

ure show? The dash–dot line corresponds to an estimate

of what r would have been had it been purely incoherent.

[This estimate is the r recomputed after partial filtering

of the lower frequencies of Z( f ), as discussed above.]

As the zero ordinate ( y) line shows in Fig. 3, appar-

ently, only when the coherent scatter is present do the

a decrease and the t1/e increase [i.e., the ln(t)y50 is larger],

in these observations. Hence, we attribute the increase in

decorrelation times to the presence of coherent scatter.

[These findings are also consistent with our observation

that partial filtering of the lower frequencies in Z( f )

associated with apparent coherent scatter significantly re-

duces the time to decorrelation, e.g., Fig. 1b in this paper

and Fig. B1c in Jameson and Kostinski (2010).]

Actually, the results are even stronger than Fig. 3

implies. To show this, we note that the decorrelation to

some level L at lag t . 0 requires a phase difference of

Df(t). Regardless of a, however, all decreasing expo-

nentials, such as those in the family defined by (11), re-

quire that Df(t) 5 1 rad to reach the 1/e decorrelation.

But what do the data show?

As mentioned above, we directly observe the standard

deviation of the Doppler velocity spectrum sV and the

1/e time to decorrelation of the lag t1/e, which is the lag at

which the observed r drops below 0.3679. From those

two observations, it is possible to estimate the rms phase

change Df1/e. This provides a measure of the amount of

particle reshuffling with respect to the wavelength re-

quired to achieve the 1/e decorrelation as discussed in

the appendix. Specifically, (A10) can be written as

Df
1/e

5
4p

l

t
1/e

s
yffiffiffi

2
p

� �
,

where the variables have all been previously defined and

the quantity in parentheses is the rms reshuffling dis-

tance. In Fig. 4 the values of Df1/e corresponding to the 1

minute of snow and 1 minute of rain data (Jameson and

Kostinski 2010) are presented. The differences between

rain and snow are obvious. In particular, in the snow

almost all cases the Df1/e are greater, sometimes far

greater, than the value required for the family of expo-

nentially decaying autocorrelation functions denoted by

the dashed line. In the rain the same is true, but the

values are generally smaller than for the snow and many

more of them lie near 1 rad. In general, though, in both
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FIG. 2. The histograms of the 1/e times to decorrelation for (a) 15 600 samples in the rain and

(b) 10 400 samples in the snow. The expected t are calculated using the observed standard

deviations of the Doppler velocities and the new expression (10). The excess observed corre-

lation in both rain and snow indicates the presence of an additional source of coherence.
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cases the decorrelation is slower, often much slower,

than can be described using a family of decaying expo-

nentials. While some of this increase likely reflects the

influence of noise, such noise should be unbiased and

small so the clear excess beyond unity is likely real. (For

1000-point FFTs, sV should be known to within better

than 65% while t1/e is likely known to within 615% in

agreement with the thickness of the band near the bot-

tom of Fig. 4b.) Because of the substantial preponderance

of nonexponential behavior, it is unlikely that they can

be explained assuming the usual models of velocity fluc-

tuation spectra associated with incoherent scatter. Rather,

as in Fig. 3, it is likely that the second component of r

associated with the coherent backscatter is responsible

for the enhanced temporal coherency expressed by the

enhanced Df1/e. These conclusions are consistent with

the theory in the previous section. We discuss this fur-

ther below.

4. Discussion

For classic incoherent scatter it turns out that the time

to decorrelation is nothing but the consequence of the

power weighting of the differential frequencies f. That

is, if we just consider incoherent scatter for the moment

in (6) and if we drop the brackets, the magnitude of the

incoherent autocorrelation function is given by

r(t) 5

�
i

a4
i

�
i

a2
i

� �2 1 �
i6¼

�
j

a2
i a2

j cos[(v
i
� v

j
)t]

�
i

a2
i

� �2

8>>><
>>>:

9>>>=
>>>;

1/2

5

�
i

a4
i

�
i

a2
i

� �2
1 �

i 6¼
�

j

a2
i a2

j cos[(4p f t)]

�
i

a2
i

� �2

8>>><
>>>:

9>>>=
>>>;

1/2

. (13)

Using this form of r, it is the second term under the

square root that determines the temporal characteristics

of the autocorrelation function and represents the power

weighting by the differential frequencies, f as has been

known for years (e.g., Atlas 1964 and references therein).

As a simple example, a Gaussian Doppler velocity spec-

trum is plotted in Fig. 5 along with the corresponding r2

calculated using (13). The Fourier transform of that r2

yields the so-called fluctuation spectrum arising from the

velocity differences among the particles (e.g., see Atlas

1964). But do these fluctuations explain all of the tem-

poral decorrelation? We believe not.

For lower frequencies, the phases among the particles

take longer to change over time. Thus, as calculations

using (13) confirm, the more the smaller differential fre-

quencies are weighted, the longer the decorrelation times.

This makes physical sense because Df increases with in-

creasing t and increasing differential frequencies f. The

narrower the Doppler spectra, the more the smaller f are

weighted, so it takes more time (t) for Df to reach levels

for significant decorrelation. That is, the time to decor-

relation is longer. For broad Doppler spectra, the op-

posite holds true because the larger f contribute more, so

it takes less time (t) to decorrelate because the phase

changes more rapidly. Thus, for any peaked Doppler

power spectrum, the small differential f are going to the

FIG. 3. Plots for determining a for an autocorrelation function of

the form r(t) 5 exp(�Cta) in (a) snow and (b) rain. Note that r

has two components and that the part associated with a constant a

is connected to the incoherent scatter component as discussed in

the text.
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FIG. 4. Plots of the change in phase Df1/e in the autocorrelation function r required to

achieve decorrelation to the 1/e level: (a) snow and (b) rain. For the family of decaying ex-

ponentials, Df1/e 5 1 rad. The excess Df1/e in the observations most likely arises from the

second component of r, associated with coherent scatter.
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ones most heavily power weighted thus producing a r

peaked at zero.

However, that is not what is causing the enhanced

temporal coherence. We note that the Fourier transform

of (6b) yields a Doppler velocity spectrum of the in-

coherent part plus a sum of d(v 2 v0) spikes (where d is

the Kronecker delta) corresponding to the coherent

backscatter components moving at their respective ve-

locities v0 (Jameson and Kostinski 2010). These are the

statistically meaningful spikes in excess of those ex-

pected for the Erlang probability distribution function

(pdf) (associated with the Rayleigh signal statistics of

measurements using a stationary antenna) sometimes

observed in real Doppler spectra (e.g., Jameson and

Kostinski 2010, their Fig. B3). Because they are so nar-

row they contribute to the weighting function (fluctua-

tion spectrum) at the smaller differential frequencies

along with those associated with incoherent scatter.

However, it is important to note that it is not these

Doppler velocity spikes that are responsible for the

observed spectral powers of Z( f) at lower frequencies as

has been verified by removing them from the Doppler

spectra and then recalculating Z( f). Rather, as Jameson

and Kostinski (2010) show (e.g., see their Fig. 3), it is the

non-Doppler velocity oscillations in Z( f) hypothesized

to be induced by the motion of the coherent scatter grids

themselves that strongly power the lower frequencies of

Z(f) well beyond the spectral power contribution of any

velocity fluctuations and that produce the extended times

to decorrelation. As reflected in wavelet analyses (Jameson

2010) as modulations of wavelet strength, these fluc-

tuations in Z appear as oscillations of the intensity of

those Doppler spectral spikes associated with the co-

herent scatter.

This may, at times, have important implications re-

garding the theoretical treatment of errors in radar

meteorology that are all based upon the assumption that

the signal decorrelation is due solely to the Doppler

velocity fluctuations associated with incoherent scatter.

Given the apparent frequency of occurrence of coherent

scatter (Jameson and Kostinski 2010, their Fig. 7a), it is

likely that such calculations may, at times, significantly

underestimate the true required times to decorrelation

and, hence, to overestimates of statistical reliability of

the measurements. That is, if one is able to compute the

decorrelation time directly from the time series, the

classical signal statistics are correct since the sources of

 
FIG. 5. (a) A plot of a Gaussian Doppler spectrum, (b) r2 cal-

culated using (13) corresponding to the spectrum in (a), and (c) the

fluctuation spectrum corresponding to (b).
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the coherent scatter act like ‘‘big drops’’ moving in the

wind like any other scatterer. This is true regardless of

whether the antenna is stationary or moving [although

moving antennas causes the statistics to be non-Rayleigh

(Jameson and Kostinski 1996, 2008; Jameson 2008);

while a moving antenna essentially makes it impossible

to detect the coherent scatter, it is still there]. There is no

separable coherent scatter effect on t1/e although co-

herent scatter may still affect the power observations. If,

however, one is performing theoretical calculations or

one only has the variances of Doppler velocities from

some real data but no access to the time series, in-

ferences of the times to decorrelation and the number of

independent samples will likely be in error. Figure 1

suggests that in snow the number of independent sam-

ples would be a factor of 4 or 5 smaller than one would

have estimated while in rain, such estimates could be

smaller by a factor of 3 or more. However, we emphasize

that the most important development in this work is (6)

and the questions that have been raised. Hopefully,

whatever follows as a consequence will be enlightening.
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APPENDIX

The Variance of the Fluctuation Spectrum
and the rms Fluctuation Velocity

The remark that the variance of the fluctuation spec-

trum is twice that of the associated Doppler velocity

spectrum is stated in the readily available literature with-

out any accompanying derivation. Likewise the discussion

of the differential phase associated with the decay of the

autocorrelation function is also confusing and often vague.

The purpose of this brief appendix is to present a concise

development of these two concepts.

For the Doppler spectral velocities y, we have that

Dy
i
5 y

i
� y and Dy

j
5 y

j
� y. (A1)

Hence, y
i
5 Dy

i
1 y and y

j
5 Dy

j
1 y, so (A2)

y
i
� y

j
5 Dy

i
� Dy

j
.

Let V 5 yi 2 yj be the fluctuation velocity. Remembering

that for every 1V there is a 2V we know that the

fluctuation spectrum must be symmetric about zero with

mean zero. The variance of V is then given by

(y � y)2
5�

i
�

j
(y

i
� y

j
)2

5�
i

�
j

(Dy2
i 1 Dy2

j)� 2Dy
i
Dy

j
. (A3)

Since the is and js are independent we can rewrite this

to be

s2
V 5�

i
Dy2

i 1�
j

Dy2
j � 2�

i
�

j
(y

j
� y)(y

j
� y)

5 s2
y 1 s2

y � 2�
i

�
j

(y
i
� y)(y

j
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j
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(y2 � y2 � y2 1 y2) 5 0, so

(A5)

s2
V 5 2s2

y . (A6)

Hence, the variance of the fluctuation spectrum is, in-

deed, twice the variance of the Doppler spectrum re-

gardless of the form of that spectrum. Furthermore, since

the average V is zero, we have

V2 5 2s2
y so that

ffiffiffiffiffiffi
V2

q
5

ffiffiffi
2
p

s
y
. (A7)

Hence, the rms phase shift at lag t is simply

Df(t) 5

ffiffiffi
2
p

s
y
2pt

l
; (A8)

or, in a form more compatible with past expressions,

Df(t) 5
4ps

y
t

l
ffiffiffi
2
p . (A9)

In particular, then, when t is the 1/e decorrelation time

of the magnitude of the autocorrelation function, it

follows that

Df
1/e

5
4ps

y
t

1/e

l
ffiffiffi
2
p , and (A10)

t
1/e

5
l
ffiffiffi
2
p

Df
1/e

4ps
y

(A11)
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for any Doppler spectrum. For those having an expo-

nentially decaying autocorrelation function, Df1/e 5 1.
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