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Bounds on Spectral Dispersion from Fermi-Detected Gamma Ray Bursts

Robert J. Nemiroff, Ryan Connolly, Justin Holmes, and Alexander B. Kostinski

Department of Physics, Michigan Technological University, 1400 Townsend Drive, Houghton, Michigan 49931, USA
(Received 23 September 2011; revised manuscript received 27 March 2012; published 8 June 2012)

Data from four Fermi-detected gamma-ray bursts (GRBs) are used to set limits on spectral dispersion of

electromagnetic radiation across the Universe. The analysis focuses on photons recorded above 1 GeV for

Fermi-detected GRB 080916C, GRB 090510A, GRB 090902B, and GRB 090926A because these high-

energy photons yield the tightest bounds on light dispersion. It is shown that significant photon bunches in

GRB 090510A, possibly classic GRB pulses, are remarkably brief, an order of magnitude shorter in

duration than any previously claimed temporal feature in this energy range. Although conceivably a > 3�

fluctuation, when taken at face value, these pulses lead to an order of magnitude tightening of prior limits

on photon dispersion. Bound of �c=c < 6:94� 10�21 is thus obtained. Given generic dispersion relations

where the time delay is proportional to the photon energy to the first or second power, the most

stringent limits on the dispersion strengths were k1 < 1:61� 10�5 sec Gpc�1 GeV�1 and k2 < 3:57�
10�7 sec Gpc�1 GeV�2, respectively. Such limits constrain dispersive effects created, for example, by the

spacetime foam of quantum gravity. In the context of quantum gravity, our bounds set M1c
2 greater than

525 times the Planck mass, suggesting that spacetime is smooth at energies near and slightly above the

Planck mass.

DOI: 10.1103/PhysRevLett.108.231103 PACS numbers: 98.70.Rz, 03.30.+p, 04.60.Pp, 14.70.Bh

Gamma-ray bursts (GRBs) are the furthest known ex-
plosions in the Universe. Their rapid variability and great
distances make them useful as probes of light properties as
well as the intervening space. Were light to have funda-
mentally different speeds at different wavelengths (spectral
dispersion), distant GRBs might show persistent energy-
dependent arrival patterns [1]. Spacetime foam inherent in
some formulations of quantum gravity, for example, might
cause spectral dispersion [2–4]. Other properties of light or
the Universe might also cause different wavelengths to
propagate at different speeds [5,6].

GRBs have already been used to limit the cosmological
density of compact objects through the nondetection of
their gravitational lensing [7]. Lag-minimizing algorithms
have been previously designed to search for quantum
gravity based dispersion effects [8]. Although bounds on
quantum-gravity dispersion in Fermi GRBs have been ex-
plored previously for two different Fermi GRBs [9,10], the
present work limits more general parameters, considers
four Fermi GRBs, considers only super-GeV photons,
and yields substantially tighter bounds.

Given that two photons of different energies �E are
emitted at the same place and time, the gap �t between
their arrivals can be quantified as

�t ¼ knDnE
n�1�E; (1)

where kn is the dispersion strength and Dn is a cosmologi-
cal lookback distance that also depends on the nature of the
photon dispersion [11]. Specifically,

Dn ¼ c

Ho

Z z

0

ð1þ z0Þndz0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Mð1þ z0Þ3 þ��

p ; (2)

where Ho is the present value of Hubble’s constant, and
�M and�� are the present values of the matter density and
cosmological constant density [11,12] in a geometrically
flat universe [13].
For clarity and following theoretical precedents

[11,14,15], only three cases will be considered here:
n ¼ �1, n¼1, and n ¼ 2. The first case, n ¼ �1, is for
a universe with no chromatic dispersion. Then, k�1 ¼ 0
and D�1 corresponds with the classic cosmological look-
back distance [12]. In the second case, n ¼ 1, the disper-
sion delay scales with the energy difference between
photons, a primary case expected were spacetime to have
the foaminess inherent in some models of quantum gravity
[15]. The third case, n ¼ 2, is considered in some models
of quantum gravity [15]. It will be assumed here that
dispersion occurs uniformly along the light paths.
For a group of photons emitted over a source of finite

size, an upper limit on �t might relate primarily to an
upper limit on source size and not to dispersion properties
of light. Given limited information, one might not be able
to disentangle the various contributions to �t. Surely,
though, an observed bound on �t would constrain the
combined processes, thereby limiting the individual mag-
nitudes. An exception to this would be if the source and
universe dispersion effects were of similar magnitudes but
of opposite sign, a coincidence that is testable with a larger
data set but here considered unlikely.
Because the largest energy ranges occur most commonly

in the GRBs with the highest energy photons, and since
these GRBs with many high-energy photons are rare,
GRBs with numerous high-energy photons were initially
sought—to find the finest temporal feature of statistical
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significance. A useful previous search included one by
Rubtsov et al. [16] of the Fermi LAT photon database,
although other previous studies also were influential
[9,17,18]. Another clue came from a visual inspection of
Fig. 1 of Abdo et al. [10], where a striking clustering of
photons above 1 GeV was spotted for GRB 090510A.
Other reasons for our 1 GeV threshold include the lower
photon background at higher energies, and the possibility
of extremely brief GRB pulses at higher energies. Four
candidate GRBs eventually emerged: GRB 080916C, GRB
090510A, GRB 090902B, and GRB 090926A. ‘‘Pass 7’’
data from these GRBs were downloaded from the Fermi
web interface at NASA’s Goddard Space Flight Center in
February 2012. Only photons within a 95% energy-
dependent error radius of the sky position of the optical
counterpart were considered. This error radius was inter-
polated from Fermi performance data given by Ref. [19].

The bottom four panels of Fig. 1 show time series for the
arrivals of photons of the four Fermi GRBs. The origin
t ¼ 0 indicates the time that the GRB triggered on Fermi’s
GLAST Burst Monitor (GBM). On the left, at negative
times, is 100 s of Fermi LAT data that occurred before the
trigger time while on the right, at positive times, is 100 s of
data that occurred after the trigger time. Individual counts
are shown as vertical line segments. The height of the line
segment indicates the recorded energy of the photon
detected. Inspection of Fig. 1 shows that the background
for stray photons, prior to the trigger time, for example, is
very low. The top panel of Fig. 1 shows a closeup of the 1 s
of GRB 090510A when the bunched photons arrived.

For a (short) GRB 090510A, consider the first 11 pho-
tons arriving over a �T ¼ 0:1745 s. The post-trigger
arrival times of these photons were 3.702 234, 3.702 783,
3.706 941, 3.719 431, 3.763 108, 3.764 177, 3.799 190,
3.799 319, 3.800 096, 3.816 729, 3.875 767 s, respectively.
For comparison, the next five photons, photons 12 through

16, arrived at 3.925 311, 3.953 093, 4.037 660, 4.140 611,
and 4.152 783 s. The eighth photon had the unusually high
energy of 30.9 GeV. Of the 11 photons considered, six
photons arrived before the temporal midpoint and five
photons arrived later. Notable is the closeness in arrival
times of three photon groups. These groups are defined by
the first and second photons, the fifth and sixth photons,
and photons seven through nine. The time between the first
and last photons in these groups are 0.549 ms, 1.069 ms,
and 0.906 ms, respectively.
Is this arrival pattern of remarkably brief doublets sepa-

rated by long pauses significant? Do these three brief
pulses define the finest time scale yet? We argue that
such ‘‘rhythm’’ is, most likely, not spurious. As shown
below, this group of 11 photons is consistent with a con-
stant overall arrival rate. Yet, the following simple, albeit
crude, analytical argument shows that the odds of a uni-
formly emitting source producing the pattern described
above, are below 3�. This is then confirmed by a detailed
Monte Carlo simulation.
For a perfectly random (Poisson) process, the waiting

times (t) between consecutive photon arrivals are exponen-
tially distributed and a sum ofm such times is �-distributed
with exponent m (convolution of m exponential variates).
Given an estimated mean waiting time � ¼ 0:1745=10 s,
the probability of waiting t � � is t=�. For example,
consider t < 1:069 ms a ‘‘success.’’ The probability of
success is then � 0:1069=1:750 ¼ 0:0613 for the 11 pho-
ton group. Then the (binomial) probability of at least 4
‘‘successes’’ in 10 trials (10 waiting times between the
11 photons) is Pð4; 11Þ ¼ 1=455. If one counts the triplet
as three successes, the odds drop to Pð5; 11Þ ¼ 1=5000.
These crude estimates bracket the result of the 109 uni-
formly random Monte Carlo runs, indicating that the
chance that five photons would trail other photons by
1.069 ms or less occurs in only about 1 in 1190 trials
(about 3:34�). A sceptic might object that the mean rate
need not be uniform, that both the first and the 11th arrivals
ought to be regarded as fixed, etc. To that end, we now
describe our data analysis as well as more elaborate
Monte Carlo simulations in more detail.
To determine the briefest yet statistically meaningful

time interval �t in the data, we proceeded as follows.
Groups of consecutive photon arrival times were consid-
ered, starting from the three photons arriving closest in
time, then the four closest photons, and subsequently all
numbers of GRB-associated photons for 500 s following
the trigger. To ensure relatively uniform average arrival
rates, we chose photon groups with roughly equal numbers
of photon arrivals before and after the temporal midpoint
of the group. Formally, a two-bin �2 statistic was com-
puted. Given the single degree of freedom, ‘‘flat’’ groups
with �2 < 1 were considered as statistically consistent
with a flat distribution, and then the search for �t proper
ensued, aided by a Monte Carlo simulation as follows.
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FIG. 1. Time series of photon arrivals for the four Fermi GRBs
analyzed. Top panel is a closeup of the 1 s of GRB 090510A,
containing the finest temporal features.
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For each photon in the time series except the last, the
number of trailing photons arriving within a time window
T was counted, for a wide range of Ts. This photon count
was compared to that expected from a uniformly random
arrival time distribution. The comparison distribution
typically involved 106 trial time series. To avoid spurious
bunching, only �t delays such that the associated number
of real photons was found in less than 1% of the equivalent
Monte Carlo distributions, were considered for further
analysis.

Returning to the GRB 090510A 11 photon group, do the
three brief pulses define the finest time scale of signifi-
cance? Could a variable mean rate, perhaps, produce such a
pattern? To that end, we assumed that each of the three
photon groups was randomly chosen from a single parent
pulse form. This pulse form is the generic GRB ‘‘Norris
pulse’’ shape first suggested by Norris [20] for the instance
found most common by Nemiroff [21], specifically,

P ¼ Ae�t=���=t, where P is the photon count rate, A is
the pulse amplitude, t is time during the pulse, and � is the
time scale of the pulse. To be conservative, we will focus
on the broadest photon group, the central pair separated by
1.069 ms.

A simple simulation shows that randomly chosen pairs
of photons from a Norris pulse form have a mean pair
separation of about 1:20�. Additionally, in a Norris pulse,
68.2% of the photons arrive within a total time window of
1:74� surrounding the pulse peak, here called the pulse
‘‘width.’’ Therefore, a parent pulse with width of �t ¼
ð1:74=1:20Þ1:069 ms ¼ 1:55 ms would yield a mean pair
separation of 1.069 ms, the longest time between first and
last photons of the three close photon groups of GRB
090510A. Therefore, in subsequent analysis, we will use
�t ¼ 1:55 ms.

The conservative value of �t estimated above for GRB
090510A is about a factor of 10 smaller than even the least
conservative limit on �t listed by Ref. [10] in row 5 of
Table S1. A primary reason for this is that Ref. [10] mea-
sured the limiting �t essentially as the time difference
between the start of a sub-MeV spike and a possibly
associated 0.75 GeV photon. Our analysis differs from
this earlier analysis of GRB 090510A in that they looked
at photons over a wide range of energies, whereas we
looked at only the most energetic photons (> 1 GeV)
because the pulse durations are known to decrease greatly
as photon energy is increased, so the tightest limits on
the dispersion delays will come from the highest energy

photons. Therefore, the small �t values presented here
focus on extremely short doublets prominent at very high
energies.
Of the four GRBs considered, only GRB 090510A and

GRB 090902B have photons arriving close enough in
time to eclipse the 0.01 s previously reported [10] as the
smallest �t record. We therefore conclude that analyzing
the other GRBs at most increased the number of trials to
two, which would decrease the statistical significance of
the�treported here for GRB 090510A to about 3:14�, still
above 3�.
For GRB 080916C, GRB 090902B, and GRB 090926A,

none of the photon groups for which the two-bin �2 test
was less than unity showed significant bunching on any
time scale. On longer time scales, clearly distinct photon
groups have their �t values recorded in Table I.
Table I lists the measured parameters for the four GRBs

selected. Column 1 lists the title of the GRB, coded with its
date of detection. The �t values as well as the number of
photons N on which they are based as listed in columns 2
and 3, respectively.
Another measured parameter that limits spectral disper-

sion is �E, the energy between the highest and lowest
energy photons arriving from the GRB in the �t time
window. Conservative 2� values of the lowest and highest
energy photons—E (low) and E (high)—are given, assum-
ing a 10% single � energy measurement uncertainty. They
are listed in columns 4 and 5 of Table I. Values for the GRB
redshifts were obtained by others from follow-up observa-
tions of the GRB optical afterglows and the 2� lower limits
are listed in column 6 of Table I, with references.
The ratio of �t and �E has been used to set limits on

Lorentz invariance previously, where Boggs et al. [25]
derived an upper limit of �t=�E of 0:7 s=GeV for GRB
021206. For GRB 090510A, Ref. [10] lists �t=�E<
0:03 s=GeV at the 99% confidence level as their conserva-
tive limit (no least conservative limit is listed). The tightest
bound from Table I, however, involving the upper limit on
�t for GRB 090510A, is �t=�E< 6:71� 10�5 s=GeV,
an improvement of greater than 2 orders of magnitude.
From the measured parameters listed in Table I, derived

and limited parameters were computed and listed in
Table II. Values of D�1, D1, and D2 were computed from
Eq. (2) under the assumption of a flat concordance cos-
mology with�M ¼ 0:3,�� ¼ 0:7, and a Hubble constant
Ho of 72 km s�1 Mpc�1, and are listed in columns 2, 4, and
7 of Table II, respectively.

TABLE I. Measured parameters of selected high-energy Fermi GRBs.

GRB name �t s N E (low) GeV (2�) E (high) GeV (2�) z [Ref.] (2�)

080916C 37.9 14 1.32 10.6 4.05 [22]

090510A 0.00155 11 1.58 24.7 0.897 [10]

090902B 23.9 33 1.20 9.02 1.82 [23]

090926A 3.00 7 1.38 2.15 2.106 [24]
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Given the above data, it is possible to place bounds for
the difference between the speeds of light at different
energies: �c=c. Assuming �c results from an inherent
property of electromagnetic radiation itself, then the look-
back distance each photon has traveled is D�1 as given by
Eq. (2) [12]. Defining lookback time as t ¼ D�1=c, the
time differential yields �c=c ¼ c�t=D�1. Limits on
�c=c, computed using our strictest upper limit on �t, are
listed in column 3 of Table II.

A previous limit on �c=c using GRBs was obtained in
1999 by Schaefer [14], where an analysis of GRB 930229
yielded �c=c < 6:3� 10�21 for photons of energies be-
tween 30 and 200 KeV. A comparable limit for �c=c <
6:94� 10�21 is derived here from the�t listed in column 2
of Table I for GRB 090510A for photons of energy differ-
ence �E * 23:5 GeV.

Alternatively, it can be assumed that it is the intervening
space that causes differential speed for photons of different
energies. Following Eq. (2) and approximating E� �E, it
is clear that kn < �t=ðDn�E

nÞ. In other words, were kn
greater than this, the Universe would have separated pho-
tons of an energy difference greater than �E by more than
�t. For n ¼ 1 and n ¼ 2, using the �t limits listed in
column 2 of Table I, limiting k1 and k2 values are listed
in Table II’s columns 5 and 8, respectively.

The k1 parameter effectively limits dispersion expected
in some versions of quantum gravity [15]. In particular,
given that �t� ð�E=M1c

2ÞðD1=cÞ as delineated in
Ref. [10], then M1c

2 ¼ ðk1cÞ�1. In this parametriza-
tion, M1c

2 is a minimum energy scale of the inherent
foaminess of spacetime responsible for the dispersion.
Note that the above data places an upper limit on k1 which
translates into a lower limit on M1c

2. Similarly, it is found

that M2c
2 ¼ ð3k2c=2Þ�1=2. The limiting values of M1c

2

and M2c
2 are listed in Table II’s columns 6 and 9,

respectively.
Prior to NASA’s Fermi, GRB published lower limits for

M1=MPlanck and M2=MPlanck were on the order of 0.04 and
4� 10�12, respectively [14,25], where MPlanckc

2 ¼
1:22� 1019 GeV. Using Fermi data for GRB 090510A,
however, the authors of Ref. [10] foundM1=MPlanck > 102,
while this was relaxed to M1=MPlanck > 1:19 for more
conservative assumptions. Note that using the most strin-
gent upper limit on�t found here for conservative assump-
tions results in a rather tight bound of M1=MPlanck > 525,
suggesting that space is smooth even at energies near and
slightly above the Planck mass.
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