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Abstract

We employ record-breaking statistics to study spatial correlations of record-setting
terrestrial surface temperatures. To that end, a simple diagnostic tool is devised, remi-
niscent of a pair-correlation function. Data analysis reveals that while during the hottest
years, record-breaking temperatures arrive in “heat waves”, extending throughout almost
the entire continental United States, this is not so for all years, not even recently. Record-
breaking temperatures generally exhibit spatial patterns and variability quite different
from those of the mean temperatures.

Keywords: Record-setting, spatial correlation.

1. Introduction

Based on predictions of climate models, heat waves are widely expected to become more fre-
quent and pronounced in the near future as climate change intensifies, e.g., Meehl and Tebaldi
(2004). In the US, for example, last year was marked by extreme weather including droughts
and record breaking heat in the middle west and Superstorm Sandy in the East. Thus, the
perennial question on the public’s mind is whether the anthropogenic climate change is re-
sponsible. This question of attribution is difficult as natural variability must be disentangled
from the effects of a trend (i.e., global warming). Recent attempts to do so include work
by Rahmstorf and Coumou (2011) who propose a statistical model that yields an increase
of extreme events in the warming world. Most recently however, the mean global tempera-
tures seem to have reached a plateau, e.g. see the recent perspective in Nature, entitled “The
cause for the pause” (Held 2013). Perhaps one should pause for the cause instead. As a step
toward disentangling natural variability from the possible trend, here we examine available
evidence in terms of the “most extreme” variables, namely, record-breaking monthly temper-
atures within the continental United States.

http://www.jenvstat.org
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Recent years have seen many applications of record-breaking to statistical physics and mete-
orology e.g. Wergen (2013); Edery, Kostinski, Majumdar, and Berkowitz (2013). Here our
emphasis is on surface temperatures and here too, record-breaking statistics have been used,
e.g. Benestad (2004); Meehl, Tebaldi, Walton, Easterling, and McDaniel (2009); Anderson
and Kostinksi (2010). However, while the spatial distribution of records has been explored,
e.g. Elguindi, Rauscher, and Giorgi (2012); Meehl, Arblaster, and Branstator (2012), to the
best of our knowledge, spatial correlations in record-setting have not been examined quanti-
tatively.

For the reader’s convenience we briefly summarize essential definitions and mathematical
results. The ith entry in a time-series, xi, is a record-breaking event (record) if it exceeds all
prior values in the sequence, that is, xi is a record high if

xi > max(x1, x2, . . . xi−1) (1)

and is a record low if
xi < min(x1, x2, . . . xi−1) (2)

The first entry is always a record high and a record low by convention.

The crucial observation is the so-called reshuffling argument, namely, that for independent,
identically distributed (i.i.d.), and continuous random variables, the nth trial has an equal
chance of having the greatest value (denoted as Pn(R)) as all preceding trials, that is, 1/n.

Pn(R) = 1/n (3)

The expected number of records in a time series is the sum over trial probabilities of being a
record. Thus the expected number of records, E(R), for a time-series with n events is given
by the harmonic series

E(R) = 1 + 1/2 + 1/3 . . .+ 1/n (4)

and, by Euler’s formula for large n

E(R) = ln(n) + γ (5)

where γ = 0.577..., the Euler constant. These results are occasionally attributed to Rényi
(1962) but in fact, originate with Foster and Stuart (1954). We stress the distribution in-
dependence of these results, i.e., they hold for any continuous probability densities. If the
i.i.d. assumption is violated by a trend or by correlations, the number of records will deviate
from the logarithmic dependence in Equation 5 and trends can, perhaps, be detected in a
distribution-independent manner.

2. Problem Statement and Data Analysis

We shall now specialize the discussion, turning to terrestrial surface temperatures. Given
the typical 100 years or so of temperature values, it becomes progressively less likely for any
weather station to set a record high (or low), decaying as 1/n for stationary time series. In
this sense, the classic lament by the elderly, e.g., “summers were hotter in my youth” is statis-
tically valid insofar as record-breaking probabilities diminish as 1/n for stationary situations.
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Global warming, of course, being a trend, works against the 1/n decay and much work has
been done recently (some of it by us, Anderson and Kostinksi (2010)) to extract trends this
way e.g. Benestad (2004); Redner and Petersen (2006); Wergen and Krug (2010); Rowe and
Derry (2012). A brief consideration of the extreme cases of steep and weak trend limits will
provide some perspective. In the steep trend limit (regardless of whether the trend is linear),
every value is a record high and the expected number of records then scales as E(R) ∼ n1

while in the stationary case E(R) ∼ ln(n) so one can expect the general behaviour E(R) ∼ nα
with 0 < α < 1 but with a generally n-dependent pre-factor (Edery, Kostinski, and Berkowitz
2011).

The simplest description of a global warming trend buried in noise can be incorporated via
the temperature time series of the form (Ballerini and Resnick 1985)

Tk = Tsk + ck (6)

where Tsk is the stationary (random) value, k is an integer and c represents the “drift”,
characterizing global warming. Of course, Tk and, therefore, Tsk being random variables, are
associated with some standard deviation (natural variability) σ and one expects the parameter
C ≡ c/σ to figure prominently in the modified record-breaking statistics (see, for example,
Newman, Malamud, and Turcotte (2010) for a straightforward approach to C). Indeed, for
the linear Gaussian drift model, for example, in the C << 1 approximation, one obtains
(Franke, Wergen, and Krug 2010)

Pn ≈
1

n
+
c

σ

2
√
π

e2

√
ln(

n2

8π
) (7)

Details of a specific model are not important for our purposes and the essential aspect is that
while the drift c is viewed as “global”, natural variability σ depends strongly on the location
of a weather station as well as on the averaging period (e.g., daily vs. monthly temperatures).
The latter is due to the range of temperature fluctuations e.g., being narrower near coasts, as
well as by asymmetry of low and high temperatures, etc. A typical numerical value for the
normalized drift c/σ, relevant to us below, is about 0.01 degrees per year (Wergen, Hense, and
Krug 2013). However, as we noted earlier, the natural variability σ is not drawn from an er-
godic ensemble because weather stations, say in coastal areas, differ greatly from those in the
desert in Arizona. So the question is: given the the spatially heterogeneous natural variability,
will the observed global drift alone suffice to set records in waves? Alternatively, can the nor-
malized drift C ≡ c/σ be regarded as a global parameter? If so, record-setting temperatures
should arrive in bunches and wide-spread clusters on the entire globe. However, to the best
of our knowledge, spatial correlations in record-setting have not been examined quantitatively.

A related question is: will record-breaking heat occur with spatial correlations similar to those
of average monthly temperatures themselves? The answer is not obvious. Indeed, consider
two nearby weather stations, say one in Chicago and another one in Milwaukee. Suppose
that in 1921 (a relatively hot year), a heat wave reached and passed Chicago on the 17th
of September but did not quite reach Milwaukee as the boundary of an associated front was
sharper than the distance between the two cities. Hence, Chicago set a record high for that
day but Milwaukee did not. Thus, the entire subsequent history of record-breaking in the
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two cities for all the 17 of September values were affected until such a time (if any) when
a new record high occurred in both stations on Sept. 17. Clearly, although the underlying
variables themselves (temperatures) are, likely, correlated because of the physical proximity
of the two cities, it is not necessarily the case that the corresponding time-series of record-
breaking events are similarly correlated.

It is well known that temperatures at nearby weather stations are correlated, e.g., the twin
cities, St. Paul and Minneapolis, will have coinciding hot and cold years. Will the neigh-
bouring stations also set records in unison? Correlation radius for monthly temperatures has
already been studied rather thoroughly, for example Hansen and Lededeff (1987), who found
that temperatures tend to be correlated up to a distance of 1200 km in mid to high latitudes
(the correlation coefficient threshold was was set at 0.5). If temperatures are correlated out to
1200 km, are record breaking events similarly correlated? In fact, reflecting on the question
leads one to realize that the very notion of the correlation coefficient is inadequate for the task
at hand as record-breaking events depend heavily on prior history and, therefore, represent
non-stationary time series even if the parent variable is a stationary one. To that end, below
we propose a tool for characterizing such situations.

To address the above questions we use monthly mean temperatures from the United States
Historical Climatology Network, version 2.5.0.20130501 (USHCN) (Menne, Williams, and
Vose 2009). The US is chosen for this analysis because it is the densest region of stations
extending back to 1900. Since our focus is on spatial correlation, a dense collection of stations
is preferable. We use time series that have at least 90 years of data between the years 1900
and 2010 and expect 5.09 to 5.31 record-breaking events in a stationary and independent time
series with 90 to 113 values. This results in 8290 time series (station-months) from about 690
stations (each month comprises its own time series); 38% of station-months were too short in
duration and were excluded from the study. We use the adjusted data set, which accounts
for irregularities in the raw data such as time of observation bias. Values that are estimates
or are missing more than three entries in a monthly average are not used in this study, see
Menne et al. (2009) and Menne, Williams, and Palecki (2010) for details regarding estimates
and adjustments.

So, do record-setting temperatures arrive in spatial clusters and, if so, what is the cluster
size? To answer these questions, we begin by examining the fraction of weather stations
setting record highs and lows in the USHCN data. As a benchmark, we perform correspond-
ing analyses for an independent, identically distributed (i.i.d.) Monte Carlo ensemble of the
same dimensions as the used USHCN data, see Figure 1, panel (a). Immediately, the far
greater variability of the fraction of stations with a record (y axis) in the USHCN data than
the benchmark i.i.d. ensemble becomes evident. We see that the variability of both, record
highs (orange) and record lows (blue) is much greater for USHCN than an i.i.d. Monte Carlo
ensemble of the same dimensions. This contrast suggests that record-setting occurrences in
USHCN time series are, indeed, correlated and, therefore cluster. Can the observed global
warming trend (drift c) alone account for this? Panel (b) shows that the observed drift
(mean trend, characterizing global warming) can not deliver such variability and, therefore,
implicates spatial coherence of natural variability. The interplay is subtle, however, since the
records certainly “know” about the mean trend: in panel (a) we see that between 1960 and
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1980 there are several years with a deficiency of record highs and between 1998 and 2012
there is a deficiency of record lows. These are known cool and warm periods respectively, e.g.
Shen, Lee, and Lawrimore (2012).

To test further, we mimic the mean trend in the USHCN data, e.g. Trenberth et al. (2007),
and add a linear trend to an otherwise i.i.d. Monte Carlo ensemble (same dimensions are
USHCN). We assume a normal distribution with an initial standard deviation equal to the
average standard deviation for all series used in USHCN, 1.91◦C. The results are also shown
in Figure 1, see panel (b). We use two trends mimicking those reported in IPCC for land in
the Northern hemisphere: ∆µ1 = 0.063◦C/decade, 1850-2005, and ∆µ2 = 0.344◦C/decade,
1979-2005 (Trenberth et al. 2007). We see that with the simulated IPCC trends, the frac-
tion of stations with a record has less variability than observed in the USHCN data and the
fraction values are less extreme. Furthermore, i.i.d. Monte Carlo ensembles with piecewise
trends have the same result – much less variability of fraction of highs or lows. Even when
we compute a (LOWESS) smoothed trend based on USHCN anomalies and substitute it for
a trend, we do not achieve the variability observed in the data. So, it is unlikely that the
correlation, evident in the variability of results of Figure 1) is the result of the temporal trend
alone. We now proceed to examine the likely spatial coherence in more detail.

To that end, we examine the behavior of records on either side of the boundary for correlation
of the mean monthly temperatures themselves. Hansen and Lededeff (1987) found monthly
temperatures to be correlated for about 1200 km (taking the threshold as correlation coeffi-
cient > 0.5). Therefore, we examined neighbouring stations in two categories: (1) neighbours
with strongly correlated mean monthly temperatures (0-1200 km) and (2) neighbours with
weakly correlated mean monthly temperatures (beyond 1200 km). As a benchmark, the cor-
responding analyses for i.i.d. Monte Carlo ensembles of the same dimensions as the used
USHCN data are also shown in Figure 2. The analysis is as follows: for a single year, say
1950, for each record-breaking station, we compute the fraction of its neighbours (first nearer
than 1200 km, panel (a), then farther than 1200 km, panel (b)) that also set temperature
records. Then we compute the average of these fractions, to obtain the y-axis value in Figure
2. One expects that the closer stations are, the more likely they are to set records in unison.
Indeed, in panel (a) we see, almost exclusively, an excess of records – when a station sets
a record, its neighbours are more likely to set a record. This is true for both record highs
and lows. Meanwhile, in panel (b) the message changes – distant neighbours do not always
set records in unison, but instead may be more likely not to set a record. In fact, they are
somewhat anti-correlated.

While Figure 2 suggests that 1200 km is a reasonable division between correlated and uncor-
related record-breaking, we want to look closer, considering the fractions of neighbours with
records in concentric rings around a home station. Figure 3 demonstrates how we propose to
do this. This is motivated by the notion of pair-correlation or radial distribution functions,
often used in condensed matter physics. To find the fraction of records occurring as a function
of distance from the base station at the origin, we consider concentric circles as depicted in
panel (a). In panel (b), for each (base) station with a record-breaking high, we compute the
fraction of its neighbours that also have a record high and then plot the average fraction. Note
that for an extreme year like 2012 (the hottest in continental U.S. since 1900), the correlation
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Figure 1: Fraction of stations setting records vs. the calendar year. Panel (a): the fraction
of stations with a record high (orange) and low (blue) is shown per year for USHCN. Results
for an i.i.d. Monte Carlo ensemble of the same dimensions as the used USHCN data is
also shown (black). Panel (b): record breaking highs (orange) and lows (blue) for Monte
Carlo ensembles of independent time series with two linear trends are shown that mimic
trends reported by IPCC: 0.063◦C/decade for 1850-2005 and 0.34◦C/decade for 1979-2005
(Trenberth et al. 2007). For reference, results for USHCN record highs (gray filled circles)
and lows (gray open circles) and an i.i.d. Monte Carlo ensemble (black) are included (same
as in in panel (a)). The far greater variability of the fraction of stations with a record in the
USHCN data versus the benchmark i.i.d. (identical and independently distributed) ensemble
suggests that records in USHCN are correlated and, therefore, come in “bunches”. Panel (b)
shows that the observed mean trends alone do not account for the observed variability.
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Figure 2: Same data as in the panel a of Figure 1 but separated into two parts: stations within
1200 km of each other (panel a) and the rest (figure b). The 1200 km boundary is chosen
because it characterizes correlation radius for the monthly mean temperatures (see text).
Record breaking highs and lows are spatially correlated out to at least 1200 km on average.
The average fraction of neighbouring stations that set a record breaking high (orange) or low
(blue) is shown for all stations that set a record breaking high. Neighbours in each panel
are (panel a) those with correlated mean monthly temperatures (0-1200 km) and (panel b)
stations with uncorrelated temperatures (1200 km and beyond); see text. Averages of the
benchmark i.i.d. Monte Carlo ensembles are shown in black.
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Hottest Years Coldest Years Median Years

Rank Year Relative Rank Year Relative Rank Year Relative Rank

1 2012 1 of 113 1917 18 of 18 1927 9 of 28
2 1998 1 of 99 1912 13 of 13 1942 18 of 43
3 2006 2 of 107 1924 23 of 25 1963 27 of 64
4 1931 1 of 32 1904 5 of 5 2008 53 of 109
5 1921 1 of 22 1978 75 of 79 2009 52 of 110

Table 1: In Figure 4 we examine records in three groups: 5 hot, 5 cold, and 5 typical years.
The relative ranks for these years (hottest to coldest) are given here. The median years are
listed chronologically rather in order of rank.

radius for record-setting temperatures far exceeds that of the monthly mean temperatures.
Is this true for all years? Not so.

It turns out that the results of analysis illustrated in Figure 3 vary a great deal from year
to year and this variation is summarized in Figure 4. We chose five hot, five cold and five
unremarkable years to compute the correlation radius. These years are shown in Table 1 and
Figure 4. The ranking is based on analysis of our USHCN subset (see above). Note, however,
that other studies find slightly different rankings. For example, hottest years given by Shen
et al. are 1998, 2006, 1934, 1921, 1999, etc. and the coldest years are 1917, 1895, 1912, 1924,
1903, etc., for the period 1985-2008, Shen et al. (2012).

It is evident from the panel (a) of Figure 4 that, during the hot years, spatial correlation
extends well beyond 1200 km so that record-breaking heat arrives in huge waves. Somewhat
surprisingly, in panel (b) we see similar pattern for record highs in one cold year (1904) but
a much more rapid drop-off for other years. Overall, one expects fewer record highs in a cold
year and this expectation is not in conflict with Figure 4. Observe also that if there is a
record low set at the central station, its neighbours are likely to also set record lows. The
correlation radius for these years appears to be well below the average for the five hottest
years. Similarly, panel (c) shows that natural variability, as manifested by variation of the
spatial correlation length from year to year, is remarkably pronounced. In passing, we note
that Monte Carlo i.i.d. ensembles involve averaging over the number of stations with a record
and with neighbours. The number of stations with records is constant along the x axis
(approximately 1/n, where n is number of years in time series, dictated by year), but the
number of neighbours is not. The latter begins to drop off around 2500 km, and therefore,
variability increases there (approximately 1/

√
N , where N is the number of neighbours.)

The data are very interesting and somewhat puzzling. Why should the remarkably hot
(hottest year on record) 2012 be almost matched in the spatial coherence of record-setting
temperatures by the seemingly unremarkable 2009 (Figure 4, panel c)? Should the record-
setting be attributable mostly to the global warming trend (drift) C in an otherwise random
and spatially incoherent random field, the correlation radius would presumably follow the
“heat” rank of the year. This does not appear to be the case and the underlying spatial
coherence of the natural variability σ plays an important role.
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Figure 3: Average fraction of record-setting neighbours versus the distance from a given
record-setting station. Panel (a): Computing the fraction of records occurring as a function
of distance from a station at the origin, by counting within the concentric circles as depicted.
A record-breaking station (black diamond) is at the origin and its neighbours are examined.
Small circles represent stations, filled circles are stations with records. As illustrated in this
figure, the fraction of record-breaking stations nearest to the station at the origin (within
0-50 km) is 1/6; 0/2 stations are between 50-100 km have a record and 1/2 stations between
100-150 km have a record. Panel (b): For each station with a record-breaking high, the
fraction of its neighbours that also have a record high, is computed. The average fraction
is depicted. A vertical line is shown at 1200 km, the point at which monthly temperatures
drop below correlation coefficient of 0.5) (Hansen and Lededeff 1987). For an extreme year
like 2012 (the hottest in continental U.S. since 1900), the correlation radius for records is
considerably longer than anticipated by studies of the mean monthly temperatures.
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Figure 4: All panels: Average fraction of record-setting stations versus the distance from the
base station. Panel (a): 5 hottest years. Panel (b); 5 coldest years. Panel (c): 5 typical years.
1900-2012. The average fraction of neighbouring stations that have a record breaking high is
shown for all stations that have a record breaking high. A vertical line is shown at 1200 km,
the point at which station temperature variables are considered to be uncorrelated (correlation
defined as coefficient > 0.5) (Hansen and Lededeff 1987). Note that the correlation radius
varies a great deal from year to year, indicating pronounced natural variability. I.i.d. Monte
Carlo ensembles are included for reference, see the text for details. The grey shaded regions
demonstrate the expected average fraction of neighbours with simultaneous record breaking.
The upper limit corresponds to the shortest time series displayed, 22 years for (a), 5 years
for (b), and 28 years for (c). Black horizontal lines below the upper limit correspond to
expectations for longer time series corresponding again to the longer time periods shown.
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3. Concluding Remarks

Viewing the attribution problem in terms of the competition between the global trend c
and natural variability σ, the following question was posed here: given the the spatially
heterogeneous natural variability, will the observed global drift alone suffice to set records
in waves as observed? Alternatively, can the normalized drift C ≡ c/σ be regarded as a
global parameter? If so, record-setting temperatures should arrive in bunches and wide-
spread clusters on the entire globe. However, spatial correlations in record-setting have not,
to the best of our knowledge, been previously examined. Therefore, we used record-breaking
statistics to examine spatial coherence of record-setting terrestrial surface temperatures, with
the eye toward disentangling effects of global warming (mean drift or trend) from natural
variability.

Devising an analogue of a pair-correlation function we have been able to examine record-
setting temperatures by quantifying the size of underlying spatial clusters. We find that
record-breaking of average monthly temperature time series exhibit spatial correlations quite
different from those of the temperatures themselves. In particular, the variability of the
correlation radius is much more pronounced for the record-breaking events. Furthermore,
there is no clear correspondence between the extent of spatial correlations and the heat rank
of the year, thereby indicating that the spatial coherence of natural variability plays an
important role in setting up “waves” of extreme events.
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