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Abstract. Shear wave elastography (SWE) techniques have received substantial at-

tention in recent years. Strong experimental data in SWE suggest that shear wave

speed changes significantly due to the known acoustoelastic effect (AE). This presents

both challenges and opportunities toward in vivo characterization of biological soft

tissues. In this work, under the framework of continuum mechanics, we model a

tissue-mimicking material as a homogeneous, isotropic, incompressible, hyperelastic

material. Our primary objective is to quantitatively and qualitatively compare ex-

perimentally measured acoustoelastic data with model-predicted outcomes using mul-

tiple strain energy functions. Our analysis indicated that the classic neo-Hookean

and Mooney-Rivlin models are inadequate for modeling the AE in tissue-mimicking

materials. However, a subclass of strain energy functions containing both high-order

/exponential term(s) and second-order invariant dependence showed good agreement

with experimental data. Based on data investigated, we also found that discrepancies

may exist between parameters inversely estimated from uniaxial compression and SWE

data. Overall, our findings may improve our understanding of clinical SWE results.
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1. Introduction

In the last decade, significant research efforts have been devoted to applying ultra-

sound(US) based elastographic techniques (Shiina et al., 2015) to non-invasively quan-

tify viscoelastic properties of soft tissues in vivo. Among them, shear wave elastography

(SWE) (Gennisson et al., 2013) characterizes tissue elasticity mainly based on quan-

tification of propagating shear wave speed (SWS) inside the tissue of interest. Conse-

quently, tissue elasticity can be inferred from a material model relating the elasticity to

the SWS. Using acoustic radiation force (ARF) to excite soft tissues, Sarvazyan et al.

(Sarvazyan et al., 1998) first demonstrated that small-amplitude (typically micrometers)

shear waves could be generated and tracked using MR or optical scanners. Subsequently,

other research groups (Nightingale et al., 2003, Bercoff et al., 2004) showed that both

ARF pushing and ultrasonic tracking can be integrated into modern clinical ultrasound

scanners. Promising clinical results have been published in the recent literature on the

utility of SWE in the staging of liver fibrosis (Barr et al., 2015), breast lesion differentia-

tion (Chang et al., 2013), estimations of muscle loading (Hug et al., 2015), evaluation of

tendon damage (DeWall et al., 2014), and assessment of the risk of pre-term birth (Carl-

son et al., 2015). Successes of SWE have prompted releases of commercial SWE systems

from major vendors (e.g. Siemens, GE, SuperSonic Imagine and Philips). Currently,

SWE is frequently used as an adjunct to conventional US techniques in the routine

clinical evaluation of soft tissue elasticity.

Continued developments of SWE techniques are ongoing. Among them, estimation of

tissue hyperelastic parameters using the concept of acoustoelastic effect (AE) (Ogden,

2007) in conjunction with SWE data is particularly intriguing (Gennisson et al., 2007,

Jiang et al., 2015a, Bernal et al., 2016, Aristizabal et al., 2018). If successful, this ap-

proach could offer a viable option to estimate mechanical properties of many in vivo

biological tissues. The determination of mechanical properties of biological tissues has

broad applications far beyond clinical diagnoses mentioned above. For instance, com-

puter simulations of traumatic injury (e.g. traumatic brain injury owing to shocks or

blast waves in sports) and virtual surgery require precise knowledge of the detailed me-

chanical parameters of tissues involved.

Among those reports (Gennisson et al., 2007, Jiang et al., 2015a, Bernal et al., 2016,

Aristizabal et al., 2018), two AE formulations have been used to establish the relation-

ship between the SWS and elastic constants. In the formulation in (Gennisson et al.,

2007) is restricted to a strain energy function(SEF) that is a series expansion of the

Green strain tensor and has been linearized in order to establish the relationship be-

tween SWS and elastic constants as a function of load (i.e. stress), making the analysis

in principle limited to small strains. Under the framework of finite elasticity, an alter-

native formulation (Ogden, 2007) accepts any explicit definition of a SEF to determine

SWS as a function of deformation. The latter formulation was first introduced in the

context of SWE by Jiang et al. (Jiang et al., 2015a) and is here after referred to as

Ogden’s formulation. Because the latter formulation can be readily applied to conven-
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To be submitted to Physics in Medicine and Biology 3

tional hyperelastic constitutive models over their full elastic range, it has been adopted

for this study.

Toward this end, our primary objective is to evaluate several commonly-used and rep-

resentative hyperelastic SEFs in terms of their ability to represent AE using SWS data

(hereafter referred to as AE-SWS data) obtained from tissue-mimicking materials. This

is the first study where SEFs are compared against each other to investigate their fit-

ness to AE-SWS data. In order to do so, we adopted the small-on-large acoustoelastic

analysis framework (Norris, 2007, Ogden, 2007) and modeled the medium as a homo-

geneous, isotropic and incompressible, hyperelastic material. Such an evaluation study

will enable us to determine whether or not an “optimal” SEF exists. As of now, the

choice of SEF is not well understood and its implication for the estimation of nonlin-

ear elastic parameters is not fully investigated. The secondary objective of this study

is to investigate the consistency in terms of estimation of nonlinear elastic parameters

between AE-SWE and conventional uniaxial data (stress-strain data).

Our analysis will first be applied to previously reported AE-SWE data for a tissue-

mimicking phantom with the finite strain data required to apply the selected formula-

tion. We will then apply our analysis to our own in-house experiments, which extends

this formulation to three orthogonal shear wave propagation directions.

2. Shear Wave Propagation in Finitely Deformed Solids

The detailed derivation of the method has been well established by Odgen (Ogden, 2007)

and thus, we omit certain details.

2.1. Basics in Finite Elasticity

Our solid is initially at rest in the initial reference geometry (Br). By stressing the solid,

a finitely deformed geometry (B) can be obtained. A point initially at X in Br is at

x = χ(X) in B, where χ is a function for a one-to-one mapping from Br to B; see Fig 1.

The deformation tensor F describing the mapping is defined below,

F =
∂χ

∂X
(1)

where Fij = ∂xi
∂Xj

. In order to model mechanical behaviors of the solid, SEFs are often

formulated in various forms based on left/right Cauchy-Green tensor or its invariants and

principal stretch. Those SEFs fall into the category of phenomenological constitutive

modeling. The right Cauchy-Green tensor is defined below as

C = F TF (2)

Its three invariants can be subsequently defined as follows

I1 = tr(C), I2 = 1/2[I21 − tr(C2)], I3 = det(C) (3)
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To be submitted to Physics in Medicine and Biology 4

where det() and tr() are the determinant and trace operations respectively. In the case

of incompressibility, I3 = 1. The three invariants above can also be expressed in terms

of the principle stretches (λ1,λ2 and λ3) below,

I1 = λ21 + λ22 + λ23 (4)

I2 = λ21λ
2
2 + λ21λ

2
3 + λ22λ

2
3 (5)

I3 = 1 = λ21λ
2
2λ

2
3 (6)

where a principal stretch refers to the ratio of length change along one principal axis

between Br and B.

Given an arbitrary SEF, W , Eqn. (7) below introduces the elasticity tensor Ξ which is

a 4th rank tensor.

Ξαiβj =
( ∂2W

∂Fαi∂Fβj

)
(7)
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Invariant-based SEFs are popular because they offer simpler mathematical forms

and have few parameters. Table 1 lists nine (9) commonly used SEFs of this kind and

those SEFs will be evaluated in this study.

X

x

χ(X)

Incremental

χ(X) + χ̇(X, t)

Large

x ≈ x+ ẋ

Br B B′ ≈ B

Figure 1: An illustration of successive deformation patterns occuring in the soft solid:

first a large static homogeneous deformation and then an incremental deformation due

to the propagation of a small-amplitude shear wave.

2.2. Wave Equation in Finitely Deformed Media

When a shear wave travels through a finitely deformed medium, the wave causes a small

incremental deformation. This treatment of acoustoelasticity is known as small-on-large

acoustoelasticity (Ogden, 2007) as follows,

x = χ(X)→ x+ ẋ = χ(X) + χ̇(X, t) (8)

where a dot denotes an incremental quantity and the a right arrow indicates “is

incremented to”. Thus, the incremental deformation tensor Ḟ can be expressed as

follows,

Ḟ =
∂χ̇

∂X
(9)

where Ḟij = ∂ẋi
∂Xj

. In Eqn. (9), the above gradient is defined relative to the undeformed

reference configuration (Br). Practically, it would be more useful to use displacements

formulated relative to the deformed configuration (B) in the framework of AE-SWE.

This is because ultrasonically measured displacement and velocity data are relative to

the finitely deformed configuration. To proceed, we consider incremental displacement

induced by the shear wave in the Eulerian frame, u(x, t) ≡ χ̇(x, t), as formulated by

(Ogden2007), which is

u(x, t) = u(χ(X), t) = χ̇(χ−1(x)) (10)

The incremental deformation tensor relative to the deformed configuration Γ then

becomes
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To be submitted to Physics in Medicine and Biology 7

Γ =
∂χ̇

∂x
=

∂χ̇

∂X

∂X

∂x
= ḞF−1 (11)

Applying the incompressiblilty condition to Eqn. (11) yields

div(u) = tr(Γ) = 0 (12)

where div() stands for the divergence operation.

It has been demonstrated that the incremental analogue to the Cauchy stress, denoted

here by σ̇, can be defined in terms of Γ as follows (Ogden, 2007),

σ̇ = Ξ0Γ + pΓ− ṗI (13)

Here p and ṗ are Lagrangian multipliers that enforce incompressibility from the finite

and infintesmal deformations respectively. Likewise, Ξ0 is the elasticity tensor relative

to the deformed configuration (B), which has the following components

Ξ0piqj = J−1FpαFqβΞαiβj (14)

Neglecting body forces, the incremental equations of motion relative to σ̇ and u are then

div(σ̇) = ρu,tt (15)

Substitution of Eqn. (13) into Eqn. (15) produces

Ξ0piqjuj,pq − ṗ,i = ρui,tt (16)

Equation (16) is the wave equation for a statically pre-deformed incompressible, isotropic

medium, which will be used for subsequent analyses of the AE effect.

Under a 2D plane wave assumption, Ogden solved the wave equation developed in

Eqn. (16). The SWS c for a shear wave propagating within a plane defined by two

principle axes of the stretches λi and λj is (Ogden, 2007),

ρc2 = (α + γ − 2β)cos4(θ) + 2(β − γ)cos2(θ) + γ, (17)

α = Ξ0jiji, γ = Ξ0ijij, 2β = Ξ0iiii + Ξ0jjjj − 2Ξ0iijj − 2Ξ0ijji (18)

where ρ is the mass density and θ is the angle between the propagation direction and

the principle axis of λi. No summation is implied by the repeated indices in Eqn. (17).

For an isotropic solid, Ξ0 can be described to facilitate its use in conjunction with

invariant-based SEFs by (Ogden, 2007),

Ξ0lklk = λ2l
λl

∂W
∂λl
− λk ∂W∂λk

λ2l − λ2k
l 6= k λl 6= λk (19)

Combining basic expressions of invariants from Eqn. (4) and (5) with Eqn. (19)

produces

Ξ0lklk = 2λ2l (
∂W

∂I1
+
∂W

∂I2
λ−2l λ−2k ) (20)
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To be submitted to Physics in Medicine and Biology 8

Figure 2: A plot showing three possible configurations generating AE-SWE data in

a phantom experiment where the phantom is under an unaxial stress σ1. The three

resulting shear waves are designated as 12, 21, and 23 from the left to the right,

respectively. Thus, corresponding SWS values are designated as c12,c21 and c23 in

this article, respectively. m and n stand for polarization and shear wave propagation

directions, respectively.

2.3. The Role of the SEF in Analysis of AE-SWE Measurements

In this section, the theoretical framework laid out in the previous sections will be

developed into equations from which AE-SWE data (both published and in-house

phantom data) can be analyzed.

2.3.1. Considerations of AE-SWE Data Acquisition In the AE-SWE experiments

reported in the literature (Jiang et al., 2015a,b, Gennisson et al., 2007, Urban et al.,

2014), tissue-mimicking phantoms or ex vivo tissues were compressed along one

direction. Particularly, in the work by Jiang et al. (Jiang et al., 2015a), the compression

was applied by the face of the transducer and the off axis principle stretches were

parameterized as λ1 = λ, λ2 = λ−ξ, and λ3 = λ−1(1−ξ), where λ is the stretch along the

compression direction and ξ is a parameter having a value from 0 to 1. Note that this

parameterization satisfies Eqn. (6) so that incompressibility is enforced.

Other experiments have considered SWE measurements from three orthogonal imaging

planes (Gennisson et al., 2007, Urban et al., 2014) as illustrated in Fig. 2, though this

has yet to be considered in the context Ogden’s formulation and the large strain data

required to do so (maximum compressive strain in the range of 25-55%) is lacking. The

acoustoelastic equations for these three planes are produced by setting the indices in

Eqn. (17) to coincide with the relevant plane (i.e. 12, 21 or 23) and setting θ to zero.
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This produces the following three equations:

ρc212 = Ξ01212 = 2λ2
∂W

∂I1
+ 2λ2ξ

∂W

∂I2
(21)

ρc221 = Ξ02121 = 2λ−2ξ
∂W

∂I1
+ 2λ−2

∂W

∂I2
(22)

ρc223 = Ξ03232 = 2λ−2+2ξ ∂W

∂I1
+ 2λ2ξ

∂W

∂I2
(23)

Of note, by setting ξ = 0.5, Eqns. (21-23) represent SWS within three orthogonal planes

under the uniaxial loading case, i.e. λ2 = λ3.

2.3.2. The Role of SEFs A wide variety of functional forms for W have been proposed

for modeling biomaterials as an isotropic, hyperelastic, incompressible solid. A recent

review of these various models and their applications can be found elsewhere (Wex et al.,

2015). Below we briefly discuss some representative SEFs in two categories: polynomial

and exponential forms.

Polynomial Form SEFs of the polynomial form have been applied to mechanical test

data of breast tissue (Joseph and Abbas, 2009). The general representation of W in

terms of a polynomial series would be (Rivlin and Saunders, 1951)

W =
N∑

i+j=1

Cij(I1 − 3)i(I2 − 3)j (24)

A variety of common models can be arrived at in terms of this series. It is easy to

see both the classic Mooney-Rivlin (setting N to 1) and Neo-Hookean (eliminating

I2) models are special cases of Eqn. (24). Further expansion of the series to include

higher order terms is typical when it is desired that the model captures large strain

behaviors. However, inclusion of all possible polynomial coefficients in Eqn.( 24) at

higher values of N produces infeasible numbers of material parameters. Thus, the

order of the polymonial equation has to be reasonably small for practical reasons. As a

result, it is typical for certain coefficients to be neglected in polynomial models of higher

orders. For instance, the Yeoh model (Yeoh, 1990) and the polynomial representation of

the Arruda-Boyce(Arruda and Boyce, 1993) model retains only the coefficients exclusive

to I1 (i.e. Ci0). Table 1 lists several variants of Eqn. (24).

Exponential Form Models in this category first emerged as an attempt to incorporate

the exponential solution to Fung’s law (Fung, 1967) into a 3D continuum framework

(Demiray, 1972). The details of the mathematical form of these models have typically

been arrived at by guess work. More recently, a general expression for these kinds of

models has been formulated (Mansouri and Darijani, 2014). With some adjustments,

this general expression can be written as

W =
N∑
k

Ak(e
f(λ1,λ2,λ3) − 1) +

N∑
k

Bk(e
g(λ1,λ2,λ3) − 1) (25)
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Here, Ak and Bk are material parameters having units in kiloPascals, and f and g

are unitless functions that define the nonlinear elastic behavior of the model. A prior

publication (Mansouri and Darijani, 2014) outlined the mathematical restrictions on f

and g, as well as a wealth of permissible functions that meet these restrictions. Virtually

all of the exponential models that have been put to use in the soft tissue literature can

be represented from Ean. (25) when N is set to 1 and f and g are composed of a suitable

combination of α(Ii−3), α ln(Ii/3), and 0, where α is a unitless parameter. For instance,

the Veronda-Westman model (Veronda and Westmann, 1970), which is in common use

in strain elastography (Shiina et al., 2015), is produced from Eqn. (25) when f is set

to α(I1 − 3) and g is set to βln(I2/3). Note that the Mooney-Rivlin and Neo-Hookean

models can also be produced by Eqn. (25) by setting f to α ln(I1/3) and g to either

β ln(I2/3) or 0, respectively. In this sense, the Mooney-Rivlin and Neo-Hookean models

can be thought of as a special case of either Eqn. (24) or (25).

A Summary Statement Table 1 lists the exponential and polynomial models that were

evaluated in this study for their fitness in terms of analysis of AE. As established by

Eqns. (21-23), different response functions ∂W
∂I1

and ∂W
∂I2

induced by different SEFs lead

to different behaviors among acquired AE-SWE data. In Table 1, response functions
∂W
∂I1

and ∂W
∂I2

are also tabulated. By having the response functions tabulated as they

are, they can readily be applied to AE analysis and interpret experimentally obtained

AE-SWE data below.

3. Methods and Materials

3.1. Description of Tissue-mimicking Phantom Experiments

3.1.1. Experiments Reported by Jiang et al. (2015a) SWE measurements reported in

Jiang et al. were collected from a phantom constructed from cryogenically crosslinked

10 % polyvinal alcohol (PVA), and 3 % Sigmacell was used as the source of acoustic

scattering. The biaxial deformation of the phantom was parameterized by measuring the

relative motion of three wires embedded in the phantom and computing value for ξ from

these measurements. For our model fitting, we use the same biaxial parameterization

reported (i.e. ξ = 0.2). SWE measurements were performed using the Supersonic Shear

Imaging (SSI) technique using a vendor-supplied on-screen software package (SuperSonic

Imagine Inc., Aix-en-Provence, France). After SWE measurements, the phantom was

cut into smaller samples for uniaxial tensile tests to obtain stress-strain data. More

details can be found elsewhere (Jiang et al., 2015a).

3.1.2. In–house Experiments In–house data were collected from two cylindrical phan-

toms composed of 5 % and 10 % by weight of cross-linked gelatin. The phantom con-

struction process mostly followed that of Hall et al. (Hall et al., 1997).Cellulose particles
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(SigmaCell; Sigma-Aldrich Inc., MI, USA) were then mixed into the gelatin solution to

3% by weight and were the source of acoustic scattering. A cross-linker (formalin) was

also added at 0.047g of formaldehyde per a gram of dry weight gelatin. The resulting

gelatin solutions were congealed in silicon molds for cylindrical phantom shape (90 mm

height and 80 mm diameter).

To apply a uniaxial deformation to the phantoms during SWE measurements, the phan-

tom was placed between a lab jack and a stationary acrylic compression plate. During

measurements, a scale was placed underneath the lab jack to measure the load applied

to the phantom, while the lab jack was raised to deform the phantom and digital calipers

were used to record the height of the phantom. Then a single ultrasound transducer

(L7-4 linear array transducer, ATL, Phillips Inc., WA) held stationary in one of the

three orientations illustrated in Fig. 3. As illustrated, measurements collected on the

side of the phantom were made at approximately 28 mm from the top of the phantom

and the measurement made at the top of the phantom was collected through an opening

cut from the acrylic plate. A research ultrasound system (V1 system, Verasonics Inc.,

WA) equipped with the probe was used to obtain SWE measurements. The Verasonics

system was first used for the creation of one single push-pulse excitation followed by ul-

trafast imaging of the resulting waveforms. A published Fourier domain shift-matching

(FDSM) method (Rosen and Jiang, 2018) was used to estimate SWS. Both the SWE

data acquisition, the FDSM method and its validation can be found in our previous

publication (Rosen and Jiang, 2018).

A maximum of 40% compression was applied to each phantom with a load increment of

2.75% compression. In each orientation, the compression load stopped once the top of

the lab jack was nearly in contact with the transducer when the transducer was applied

to the side of the phantom image (i.e. c12 image plane in Fig. 3). Following the initial

SWE measurement, the deformation of the phantom was incremented by adjusting the

height of the lab jack. Once the reading on the scale reached steady-state, the load,

phantom height, and SWE measurements were recorded at the new deformation level.

In each orientation, the phantom was then decompressed to zero load after reaching

its maximal compression. Then, the transducer was adjusted to the next orientation.

Measurements were collected in the order c12, c23, c21. Regardless of the transducer

orientation, the distance between the focus of the pushing-pulse and the transducer

face was set to 19.7 mm. Both phantoms were stable under load repetitions because

variations in the initial phantom heights were less than 1.1% and 0.1% for the 5% and

10% gelatin phantoms, respectively. The height variation was measured by calculating

the maximum difference as a percentage of the mean phantom height. During the SWE

experiments, stress and strain values were converted from the above-mentioned load and

height readings.
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Figure 3: Cross-sectional illustration of the gelatin phantom experiments (not to scale).

For the measurements collected in the c21 orientation (a), the phantom was placed

underneath an opening in the acrylic plate that allowed for imaging from the top of the

phantom. For c12 (b) and c23 (c) orientations, the phantom was placed underneath a

flat portion of the acrylic plate. The vectors n and m denote the direction of shear wave

propagation and polarization, respectively.

3.2. Data Analysis

SWE and stress-strain data collected from the literature (Jiang et al., 2015a) was

digitized using a free online graph digitizer ‡ (WebPlotDigitizer v4.1, Automeris LLC).

In-house acquired using methods described above were all stored in a computer.

Parameters related to 9 different SEFs (see Table 1) were obtained by mathematical

optimization. More specifically, SWE and uniaxial stress-strain data were used to fit

respective SEFs by minimizing the sum of squared residuals between experimentally

obtained and model predicted values. This process was accomplished by using the

“fminunc” function in MATLAB (Version 2016a, Mathworks Inc., Natick, MA). The

starting parameters for each model was set to correspond to Neo-Hookean material

behavior. That is, all I2 dependent parameters were started at 0 and higher-order

or exponential strain stiffening terms set at or near their non-stiffening limit. During

model fitting of SWE measurements, models were fixed at zero strain to the mean SWE

measurement at no deformation.

To assess the fitness/merits of each of 9 SEFs, the root mean squared residual was

calculated as follows:

RMSR =

√∑n
i=1(d̂m − de)2

n
(26)

Here d stands for SWE or mechanical testing data, subscripts m and e denote the

individual model-predicted and experimentally-obtained SWS or mechanical testing

estimates, respectively. In Eqn. (26), n is the number of experimentally obtained SWS

or mechanical testing estimates .

‡ https://automeris.io/WebPlotDigitizer
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4. Results

4.1. Reanalysis of Data from Jiang et al. (2015a)

Model fitting of AE-SWE data from a published article (Jiang et al., 2015a) are plotted

in Fig. 4. In order to make the plot more readable, the hyperelastic SEFs are separated

into those that are functions of only I1 (Fig. 4a) and those that are functions of

both I1 and I2 (Fig. 4b). The motivation for this separation will be more apparent

when considering the multiple orientations considered in the in-house data. From these

results, it can be seen that all model fits incorporating second-order polynomial terms or

exponential strain stiffening matched AE-SWE data well. In contrast, the neo-Hookean

and Mooney-Rivlin models produced comparatively poor fits to the observed AE-SWE

data.

Hyperelastic parameters were also obtained by using uniaxial tension data. Fig. 5

overlays fitted tensile stress-strain curves with experimental ones (Jiang et al., 2015a).

It can be seen that the fitted tensile stress-strain curves for all models except the neo-

Hookean and Mooney-Rivlin models tracked the tensile stress-strain data within one

standard deviation.

Estimated hyperelastic parameters for all 9 SEFs (see Table 1) are displayed in Table 2

for both AE-SWE data and uniaxial stress-strain data fitting. It is interesting to note

that the resulting parameters showed variable agreement between estimates from AE-

SWE data and uniaxial tensile test data. Particularly, little consistency was found when

the Mooney-Rivlin model was used.

4.2. In-House Data

Fig. 6 shows the AE-SWE results and model fitting of SEFs for the 5 % and 10 %

gelatin phantoms. In contrast to the previous data set, when the models were fit-

ted to three wave orientations, a clear distinction in the performance within the 2nd-

order/exponential models is apparent. In particular, the models which lack I2 in their

SEFs (Fig. 6) where unable to accommodate deviation between c21 and c23, whereas the

model which did incorporate I2 in the SEF were able to fit the two wave orientations

just fine. This was the case even for the Yeoh model, which has the same number of

parameters as the Vito, Veronda-Westmann and Rivlin models.

When considering the model estimated using uniaxial compression data collected from

the 5 % and 10 % gelatin phantoms (Fig. 7), model’s performance was comparable to

what was observed in a prior publication(Jiang et al., 2015a). Note that, even though

the Mooney-Rivlin model incorporates I2 in its SEF, it was unable to fit the three wave

orientations. This can be attributed to the absence of higher-order polynomial terms or

exponential terms in its SEF.
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Figure 4: Fitting of SEFs listed in Table 1 to AE-SWE data from a published study

(Jiang et al., 2015b). Curves are separated into models with no I2 dependence (a) and

models with I2 dependence (b).

Table 3 tabulates RMSR values for all SEFs when they are fitted to both to AE-

SWE and uniaxial tension/compression tests. These values support the observations

made thus. In all cases, the Neo-Hookean and Mooney-Rivlin models produced the

largest RSMR values. Additionally, the exponential and higher-order polynomial models

that lack I2 produced larger RSMR values for the two gelatin phantoms as compared

to other RSMR values obtained from other models (1.1196-3.0428 kPa versus 0.1716-

0.5817 kPa, respectively). Likewise, when uniaxial stress-strain data had been fitted,

RMSR values were comparable.

Page 15 of 28 AUTHOR SUBMITTED MANUSCRIPT - PMB-107918.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



To be submitted to Physics in Medicine and Biology 16

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Strain (unitless)

0

1

2

3

4

5

6

N
o
m

in
a
l 
S

tr
e
s
s
 (

k
P

a
)

Figure 5: A plot comparing model-predicted mechanical behaviors under uniaxial

tension with experimentally-measured ones (Jiang et al., 2015a). The solid blue circles

denote the mean and one standard deviation of the nominal stress measured as a function

of tensile strain. Figure legends were the same as those used in Fig. 4.
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Figure 6: AE-SWE measurements collected from in-house 10 % gelatin (top row) and

5 % gelatin (bottom row) compressed elastography phantoms. Model fits are separated

between models which do not include I2 in their SEF (column 1) and models which do

(column 2)
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Figure 7: Combined compressive stress-strain data from 5 % gelatin (a) and 10 %

gelatin (b) phantoms. Hyperlastic SEFs estimated from uniaxial compression data were

used to predict compressive stress-strain curves and those predictions were overlaid with

experimentally-obtained ones.
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Table 4 displays the fitted parameters produced from the separate fitting of the three

imaging planes, as opposed to the combined fitting applied to produce the hyperelastic

parameters reported in Table 2. In general, the estimated parameters tended to vary

between fits to individual imaging planes as well as relative to the combined fitting,

though the variation tended to depend on the model. For instance, the full second-order

polynomial model tended to vary substantially within its terms, while the parameters in

the Veronda-Westmann model were fairly similar to each other with exception to the fit

of c12 in the 5 % gelatin phantom. Additionally, it is interesting to note that, for several

of the models, fitting to c21 alone tended to produce hyperelastic parameters similar

to those produced from those obtained by fitting SEFs to uniaxial stress-strain data.

For instance, in the 5 % gelatin phantom, the parameter α in the Demiray-Fung model

was similar when estimated from the uniaxial data and from c21 alone (1.200 vs 1.167,

respectively). In contrast, estimates from c12 and c23 (2.737 and 2.275, respectively) show

a more substantial difference to the uniaxial data. Clear exceptions to this observation

included the Mooney-Rivlin, Vito and full second-order polynomial models.

5. Discussion

Although there are considerable interests in the estimation of hyperelastic material

parameters (Samani and Plewes, 2004, Goenezen et al., 2012, Jiang et al., 2015a,

Aristizabal et al., 2018), determination of such an appropriate SEF has not been fully

explored. It is a challenge to introduce such a SEF in the elasticity imaging community

because the SEF needs to meet the following two expectations: (1) capturing material

behaviors and (2) having parameters that could provide insight to pathological and/or

biological processors and are easy to understand by clinicians. It would be problematic

if a selected SEF that is used to inversely estimate nonlinear mechanical properties

cannot accurately represent mechanical behaviors. In regards to the first expectation,

although biological tissue is likely to have more complex constitutive behavior than the

tissue-mimicking phantom materials considered in this study, evaluating SEFs in these

simple materials suggests some basic characteristics of SEFs to consider in AE-SWE

investigations of complex biological media. Our overall observation (see Table 3) in

this study is that SEFs containing the second invariant and second-order polynomial

or exponential terms fitted experimental AE-SWE data better than those lacking one

or both of these features. This difference can readily be observed in Fig. 6 and was

the case even for the Yeoh model, which has the same number of parameters as the

Veronda-Westmann model, but lacks second-invariant dependence. In particular, the

full second-order polynomial SEF gave the best agreement with the experimental data,

producing the lowest RMSR values. However, for fitting a single imaging plane, it

produced comparatively less consistent results (Table 4). While the 3 parameter models,

such as the Veronda-Westman or the Rivlin models, produced slightly higher RMSR

than the full second-order polynomial model (e.g. in the %10 gelatin phantom, 0.582

kPa and 0.271 kPa, respectively versus 0.194 kPa ), they were generally able to represent
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Table 4: A summary of hyperelastic parameters estimated only from AE-SWE data in

our image plane defined in Fig. 2

5% Gelatin 10 % Gelatin

Model Parameter c21 c23 c12 c21 c23 c12
Neo-Hookean

C1 (kPa) 1.075 1.124 0.884 4.325 4.403 4.225

Demiray-Fung

A1α (kPa) 1.075 1.124 0.884 4.325 4.403 4.225

α 1.167 2.275 2.737 0.726 1.686 0.823

Arruda-Boyce

µ 2.15 2.248 1.768 8.651 8.805 8.451

λm 0.550 0.417 0.339 0.642 0.458 0.544

Yeoh

C10 (kPa) 1.075 1.124 0.844 44.325 4.403 4.225

C20 (kPa) 0.624 2.458 2.019 1.371 6.687 0.580

C30 (kPa) 0.325 -0.326 -1.808 0.666 -1.909 3.706

Mooney-Rivlin

C1 (kPa) -0.616 4.07 -0.827 0.746 11.71 2.206

C2 (kPa) 1.691 -2.946 1.711 3.579 -7.307 2.167

Veronda-Westmann

A1α (kPa) 0.880 1.980 -0.355 4.945 6.965 6.158

B1β (kPa) 0.195 -0.856 1.239 -0.6203 -2.563 -1.933

α 1.240 1.263 -3.303 0.735 0.884 0.973

Vito

A1 (kPa) 0.772 1.502 1.066 6.897 7.799 7.095

α 1.183 1.268 -0.075 0.720 0.876 0.866

β 0.209 -0.520 0.904 -0.092 -0.311 -0.271

Full 2nd Order Poly

C10 (kPa) 0.906 2.322 0.872 4.302 8.414 5.138

C01 (kPa) 0.169 -1.198 0.012 0.23 -4.011 -0.913

C20 (kPa) 6.298 20.913 2.886 -22.663 43.064 -64.389

C02 (kPa) 3.505 -1.543 -1.777 -11.200 -4.860 -40.227

C11 (kPa) -8.8778 -21.068 1.088 33.163 -42.487 103.813

Rivlin

C10 (kPa) 1.698 1.428 0.312 6.362 6.185 6.724

C01 (kPa) -0.623 -0.304 0.572 -2.037 -1.783 -2.499

C20 (kPa) 1.242 2.042 1.067 3.031 4.263 3.805
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the AE-SWE data in all three imaging planes. Now referring to the second expectation,

the selection of Veronda-Westman model for AE-SWE could be justifiable because its

parameters can be explained in terms of the small strain modulus and a parameter

related to the representation of strain-stiffening behavior Samani and Plewes (2004),

Goenezen et al. (2012).

We also found material parameters estimated from AE-SWE and uniaxial compression

data could be significantly different though the same material model was used (see

Table 2). For instance, when the classic Mooney-Rivlin model was used, in the tissue-

mimicking gelatin, estimated C1 and C2 values were inconsistent, whereas parameters

estimated from the Arruda-Boyce model were remarkably consistent. This is not

entirely surprising because the SWS data acquired from three image planes and uni-

axial compression data were used to estimate hyperelastic parameters, respectively. In

the continuum mechanics literature, it is well understood that estimated hyperelastic

parameters in some SEFs could be sensitive to the loading conditions (Ogden et al.,

2004). Because there are great interests in estimating those nonlinear hyperelastic

parameters using both nonlinear modulus inversion (Goenezen et al., 2012, Samani and

Plewes, 2004) and AE-SWE data (Jiang et al., 2015a, Aristizabal et al., 2018), evaluating

the consistency between two different approaches, i.e. mechanical testing, and AE-SWE

data may shed light on this topic. In the future, this topic should be expanded into a

comparison between nonlinear modulus inversion and hyperelastic parameter estimation

using AE-SWE data.

In this study, SEFs were evaluated relative to their ability to model all three wave

orienations represented in Fig. 2 simultaneously. Given the availability of 3D ultrasound

data, it is feasible to obtain 3D elastographic data in the clinical workflow (Wang et al.,

2013, Peng et al., 2017, Gennisson et al., 2015), though this capability is still emerging.

Since SWE data in the clinical workflow typically were acquired from one of those three

image planes, we also investigated this matter and found that, using only AE-SWE data

acquired from one plane, the estimated nonlinear elastic parameters could substantially

vary compared to those obtained by using 3 planes of AE-SWE Data (Table 2 vs.

Table 4). By observation, we noted that, for most of the models, fitting to c21 alone

seemed to produce parameter estimates in better agreement with the uniaxial results

than the other two orientations. This would suggest that while parameter estimation

from c21 alone may not capture the full constitutive characteristics relevant to AE-SWE,

it may still produce a useful characterization of the uniaxial behavior of the material.

This is important since c21 is most commonly used for AE-SWE characterization.

Furthermore, it is probably wise to be cautious when AE-SWE data are acquired from

different scanning views relative to a known or suspected load, since SWS will depend

on the propagation direction relative to the load (e.g. c12 versus c23). For instance,

liver ultrasound scanning can be done from multiple views (e.g. parasagittal scan

vs. subcoastal scan) and a variety of factors known to alter SWS, such as phase

of the subject’s breath cycle and posture (Goertz et al., 2012), could be related to

deformation of the liver. Acoustoelastic theory would suggest that variation due to
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these factors should also depend on the ultrasonic scanning plane (i.e. plane of shear

wave propogation) used at the time of measurement.

Equations used here are adopted from Ogden (Ogden, 2007) and are appropriate

for a simplified scenario, i.e. a plane shear wave propagation in 2D isotropic, incom-

pressible and homogeneous media. Some issues have to be addressed if we want to

apply this theory to biological tissues. First, complicated wave propagation phenomena

such as mode conversion and wave splitting existing in heterogeneous and perhaps lo-

cally anisotropic media have not been counted. Second, only shear wave propagation in

planes of axial deformation (i.e. stretches along constant and spatially uniform princi-

ple axis) were considered. Given lessons learned from the rubber mechanics literature,

further evaluations of those SEFs under more complex loading conditions (e.g. the in-

clusion of shearing) are necessary. Based on several excellent reviews (e.g. (Boyce and

Arruda, 2000, Martins et al., 2006, Steinmann et al., 2012)), it was reported that “a

large number of well-known SEFs are not reliable on the entire ranges of strain and

different modes of deformation, simultaneously” (Mansouri and Darijani, 2014). Par-

ticularly, significant errors between SEF-predictions and mechanical testing data were

observed when silicone rubber and soft tissues were deformed between 0-25% uniaxial

deformation (Martins et al., 2006). Further errors could be introduced given more com-

plex loading conditions. For instance, local shearing is common when heterogeneous

tissues are deformed.

Given our preliminary data reported above, further studies will be focused on two as-

pects using biological tissues. First, further evaluations of SEFs under more complex

loading/stress conditions will be performed. Second, comparing hyperelastic parameters

estimated by the AE-SWE method and the uniaxial compression test method (Samani

and Plewes, 2004) will also be conducted.

6. Conclusion

It was observed that, once all three image planes are considered, SEFs including the

second invariant model tissue-mimicking materials better. Also, regardless of material

models, material parameters calculated based on uni-axial compression could be quite

different as compared to material parameters inversely estimated from AE-SWE data

when the same material model was used. Implications of this observation should

be further examined for inversely estimating nonlinear elastic parameters in strain

elastography and SWE.
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