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Abstract. Shear wave elastography (SWE), techniques have received substantial at-
tention in recent years. Strong experimental data4n SWE suggest that shear wave
speed changes significantly due to the known acoustoelastic effect (AE). This presents
both challenges and opportunities, toward in_vivo characterization of biological soft
tissues. In this work, under the framework of continuum mechanics, we model a
tissue-mimicking material as a homogeneous, isotropic, incompressible, hyperelastic
material. Our primary ©Objective is'to quantitatively and qualitatively compare ex-
perimentally measured acoustoelastic'data with model-predicted outcomes using mul-
tiple strain energy functions. “Our analysis indicated that the classic neo-Hookean
and Mooney-Rivlin models are inadequate for modeling the AE in tissue-mimicking
materials. However,.a subclass of strain energy functions containing both high-order
/exponential term(s) and second-order invariant dependence showed good agreement
with experimental data. Based on data investigated, we also found that discrepancies
may exist between p}fameters inversely estimated from uniaxial compression and SWE
data. Overall, our findings may improve our understanding of clinical SWE results.
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1. Introduction

In the last decade, significant research efforts have been devoted to<applying wltras
sound(US) based elastographic techniques (Shiina et al., 2015) to non-invasively quans
tify viscoelastic properties of soft tissues in vivo. Among them, shear wave elastography
(SWE) (Gennisson et al., 2013) characterizes tissue elasticity mainly-based on quan-
tification of propagating shear wave speed (SWS) inside the tissué of interest. Conse-
quently, tissue elasticity can be inferred from a material model relating the elasticity to
the SWS. Using acoustic radiation force (ARF) to excite softfissues, Sarvazyan et al.
(Sarvazyan et al., 1998) first demonstrated that small-amplitude (typically micrometers)
shear waves could be generated and tracked using MR or optical seanners. Subsequently,
other research groups (Nightingale et al., 2003, Bercoff ethal., 2004) showed that both
ARF pushing and ultrasonic tracking can be integrated into modern clinical ultrasound
scanners. Promising clinical results have been published in the recent literature on the
utility of SWE in the staging of liver fibrosis (Barzet,al.32015), breast lesion differentia-
tion (Chang et al., 2013), estimations of muscle/loading (Hug et al., 2015), evaluation of
tendon damage (DeWall et al., 2014), and,assessment of the risk of pre-term birth (Carl-
son et al., 2015). Successes of SWE have prompted releases of commercial SWE systems
from major vendors (e.g. Siemens, GE, SuperSonic Imagine and Philips). Currently,
SWE is frequently used as an adjunet.to conventional US techniques in the routine
clinical evaluation of soft tissue elasticity.

Continued developments of SWE techniqueés,are ongoing. Among them, estimation of
tissue hyperelastic parameters using the concept of acoustoelastic effect (AE) (Ogden,
2007) in conjunction with SWE data is,particularly intriguing (Gennisson et al., 2007,
Jiang et al., 2015a, Bernal et a,L, 2016, Aristizabal et al., 2018). If successful, this ap-
proach could offer a viable option to estimate mechanical properties of many in vivo
biological tissues. The.determination of mechanical properties of biological tissues has
broad applications far beyond elinical diagnoses mentioned above. For instance, com-
puter simulations of traumati¢ injury (e.g. traumatic brain injury owing to shocks or
blast waves in sports) andwvirtual surgery require precise knowledge of the detailed me-
chanical parameters,of tissues involved.

Among those reports. (Gennisson et al., 2007, Jiang et al., 2015a, Bernal et al., 2016,
Aristizabal ethal., 2018), two AE formulations have been used to establish the relation-
ship between the"'SWS and elastic constants. In the formulation in (Gennisson et al.,
2007) is restricted to a strain energy function(SEF) that is a series expansion of the
Green strain'tensor and has been linearized in order to establish the relationship be-
tween SWS and elastic constants as a function of load (i.e. stress), making the analysis
in prineiple limited to small strains. Under the framework of finite elasticity, an alter-
native formulation (Ogden, 2007) accepts any explicit definition of a SEF to determine
SWS as a function of deformation. The latter formulation was first introduced in the
context of SWE by Jiang et al. (Jiang et al., 2015a) and is here after referred to as
Ogden’s formulation. Because the latter formulation can be readily applied to conven-
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tional hyperelastic constitutive models over their full elastic range, it has been adopted
for this study.

Toward this end, our primary objective is to evaluate several commonly-used and xep-
resentative hyperelastic SEF's in terms of their ability to represent AE using SWS data
(hereafter referred to as AE-SWS data) obtained from tissue-mimickingimaterials.» This
is the first study where SEFs are compared against each other to investigate their fit-
ness to AE-SWS data. In order to do so, we adopted the small-on-large a¢oustoelastic
analysis framework (Norris, 2007, Ogden, 2007) and modeled the medium as a homo-
geneous, isotropic and incompressible, hyperelastic material. Such gn evaluation study
will enable us to determine whether or not an “optimal” SEE exists{ As of now, the
choice of SEF is not well understood and its implication for the estimation of nonlin-
ear elastic parameters is not fully investigated. The secondary objective of this study
is to investigate the consistency in terms of estimation of monlinear elastic parameters
between AE-SWE and conventional uniaxial data ($tress-strain data).

Our analysis will first be applied to previouslysreported AE-SWE data for a tissue-
mimicking phantom with the finite strain data required to apply the selected formula-
tion. We will then apply our analysis tofour own in-house experiments, which extends
this formulation to three orthogonal shear wawe propagation directions.

2. Shear Wave Propagation in Finitely Deformed Solids

The detailed derivation of the methed has been well established by Odgen (Ogden, 2007)
and thus, we omit certain details.

N
2.1. Basics in Finite Elasticity

Our solid is initially @t rest imithe initial reference geometry (B,). By stressing the solid,
a finitely deformed geometrys(53) can be obtained. A point initially at X in B, is at
x = x(X) in B, where ¥'is a function for a one-to-one mapping from B, to B; see Fig 1.
The deformation tensor F describing the mapping is defined below,

Ix
F=—-—= 1
0X (1)
where Fj; = g—f(z. In order to model mechanical behaviors of the solid, SEFs are often

formulatedin various forms based on left /right Cauchy-Green tensor or its invariants and
principal stretch. Those SEFs fall into the category of phenomenological constitutive
modeling. /The right Cauchy-Green tensor is defined below as

C=F'F (2)
Its three invariants can be subsequently defined as follows

I = tr(C), I = 1/2[I} — tr(C?)], Iy = det(C) (3)
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where det() and tr() are the determinant and trace operations respectively. In
of incompressibility, I3 = 1. The three invariants above can also be expressec
of the principle stretches (A1,A and A3) below, L 4

Li=MN+XA+)
I = AIA\3 4+ M3 + A3

Iy =1= XA\ (6)
where a principal stretch refers to the ratio of length change ncipal axis
between B, and B.

Given an arbitrary SEF, W, Eqn. (7) below introduces the ici nsor = which is

a 4th rank tensor.

2
anj::(ggi%g%;) (7)
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Invariant-based SEFs are popular because they offer simpler mathematic
and have few parameters. Table 1 lists nine (9) commonly used SEFs of thistk

those SEF's will be evaluated in this study. L 4
B, \

incremental deformation. Thi
acoustoelasticity (Ogden,

b= x(X) +X(X,1) (8)

where a dot denot mental quantity and the a right arrow indicates “is

incremented to”. ncremental deformation tensor F' can be expressed as

follows,
— A 9
5X 9)
where Fm = 4 . (9), the above gradient is defined relative to the undeformed
referen on (B,). Practically, it would be more useful to use displacements
formul e to the deformed configuration (B) in the framework of AE-SWE.

ultrasonically measured displacement and velocity data are relative to
the finitely deformed configuration. To proceed, we consider incremental displacement
ind the shear wave in the Eulerian frame, u(z,t) = x(z,t), as formulated by
en2007), which is

u(@, t) = u(x(X),t) = x(x "' (=) (10)

he incremental deformation tensor relative to the deformed configuration I' then
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_ X ONOX

= = — = 11
Odxr  0X Ox (LY

Applying the incompressiblilty condition to Eqn. (11) yields
div(u) =tr(I') =0 (12)

where div() stands for the divergence operation.
It has been demonstrated that the incremental analogue to the Cauch‘x stress, denoted
here by &, can be defined in terms of I" as follows (Ogden, 2007),

&=l +pl — pl (13)

Here p and p are Lagrangian multipliers that enforce incompressibility from the finite
and infintesmal deformations respectively. Likewise, & isithe €lasticity tensor relative
to the deformed configuration (B), which has the following components

Sopiai = J 7 FpaFysZais 3 (14)
Neglecting body forces, the incremental equations of motion relative to ¢ and u are then

div(6) = puy (15)
Substitution of Eqn. (13) into Eqn,(15) produces

EopiqjUjpg — Di = PUitt (16)

Equation (16) is the wave equation for a statically pre-deformed incompressible, isotropic
medium, which will be used forrsubsequent analyses of the AE effect.

Under a 2D plane wave assumption; Ogden solved the wave equation developed in
Eqn. (16). The SWS ¢ for a shear wave propagating within a plane defined by two
principle axes of the strefches'\; and A; is (Ogden, 2007),

pc® =@+~ =28)cos*(0) +2(8 — ~)cos®(0) + 7, (17)
o = Ejigis = Zoijijs 20 = Zoiui + Z0jjjj — 2Z0iij; — 220455 (18)
where p is the mass density and 6 is the angle between the propagation direction and
the principle axis of Aj=«INo summation is implied by the repeated indices in Eqn. (17).

For an isotropic' solid, =g, can be described to facilitate its use in conjunction with
invariant-based SEES by (Ogden, 2007),

N\, W
Sk = Nt LEE N #E N (19)
Ik
Combining basic expressions of invariants from Eqn. (4) and (5) with Eqn. (19)
produces
Sotkik = 2/\?(2—]“1/ + g—IM:Az_QAf) (20)
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Figure 2: A plot showing three possible configuratiens generating AE-SWE data in
a phantom experiment where the phantom is undersan wunaxial stress ;. The three
resulting shear waves are designated as 12, 21, and 23.fr0m the left to the right,
respectively. Thus, corresponding SWS walues are designated as cio,c01 and cp3 in
this article, respectively. m and n stand fer pelarization and shear wave propagation
directions, respectively.

2.3. The Role of the SEF in Analysis of AE-SWE Measurements

In this section, the theoretical”framework laid out in the previous sections will be
developed into equations from which "AE-SWE data (both published and in-house
phantom data) can be analyzeds

2.3.1. Considerations of AE-SWE Data Acquisition In the AE-SWE experiments
reported in the literature, (Jiang et al., 2015a,b, Gennisson et al., 2007, Urban et al.,
2014), tissue-mimicking, phantoms or ex wvivo tissues were compressed along one
direction. Partiéularly, in/the work by Jiang et al. (Jiang et al., 2015a), the compression
was applied by the face of the transducer and the off axis principle stretches were
parameterized a§ Ay = X, = A€, and A3 = A1179) where \ is the stretch along the
compression direction and £ is a parameter having a value from 0 to 1. Note that this
parameterization satisfies Eqn. (6) so that incompressibility is enforced.

Otherexperiments have considered SWE measurements from three orthogonal imaging
planes (Gennisson et al., 2007, Urban et al., 2014) as illustrated in Fig. 2, though this
has yet to/be considered in the context Ogden’s formulation and the large strain data
required to do so (maximum compressive strain in the range of 25-55%) is lacking. The
acoustoelastic equations for these three planes are produced by setting the indices in
Eqn. (17) to coincide with the relevant plane (i.e. 12, 21 or 23) and setting 6 to zero.

Page 8 of 28
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This produces the following three equations:
ow ow
= Soiz12 = 2\ ——— + 20% — 21
0012 Zo1212 8]1 al, ( )
ow ow
51 = oz = 220 E —— + 2272 22
PCa 02121 al, 8[2 (22)
ow ow
2 == =9\~ 242677 2)\2{_ 23
PCa3 03232 8 I, al, ( )
Of note, by setting £ = 0.5, Eqns. (21-23) represent SWS within three.orthogonal planes
under the uniaxial loading case, i.e. Ay = \3. o

2.3.2. The Role of SEFs A wide variety of functional forms for W ‘have been proposed
for modeling biomaterials as an isotropic, hyperelastic, meompregsible solid. A recent
review of these various models and their applications ¢an be found elsewhere (Wex et al.,
2015). Below we briefly discuss some representativesSEFs in two categories: polynomial
and exponential forms.
L

Polynomial Form SEFs of the polynomial form have been applied to mechanical test
data of breast tissue (Joseph and Abbas, 2009). The general representation of W in
terms of a polynomial series would be (Rivlin and,Saunders, 1951)

W = Z Gy ([, —3)' (I — 3)’ (24)
i+j=1

A variety of common models can be arrived at in terms of this series. It is easy to
see both the classic MooneysRivlin (setting N to 1) and Neo-Hookean (eliminating
I;) models are special casestofiEqn. (24). Further expansion of the series to include
higher order terms is typicalswhen it is desired that the model captures large strain
behaviors. However, inclusion of all possible polynomial coefficients in Eqn.( 24) at
higher values of N produces infeasible numbers of material parameters. Thus, the
order of the polymoénialequation has to be reasonably small for practical reasons. As a
result, it is typical for certain coefficients to be neglected in polynomial models of higher
orders. For instanceptheYeoh model (Yeoh, 1990) and the polynomial representation of
the Arruda-Boycé(Arruda and Boyce, 1993) model retains only the coefficients exclusive
to I, (i.e._Cip) Table 1 lists several variants of Eqn. (24).

Exponential Form Models in this category first emerged as an attempt to incorporate
thelexponential solution to Fung’s law (Fung, 1967) into a 3D continuum framework
(Demiray, 1972). The details of the mathematical form of these models have typically
been arrived at by guess work. More recently, a general expression for these kinds of
models has been formulated (Mansouri and Darijani, 2014). With some adjustments,

this general expression can be written as
N

W = ZA FA1,A2,A3) 1) + ZBk(eg(Al,)\zJ\B) _ 1) (25)
k
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Here, A, and Bj are material parameters having units in kiloPascals, and f andyg
are unitless functions that define the nonlinear elastic behavior of the models A prior
publication (Mansouri and Darijani, 2014) outlined the mathematical restrictions on«f
and g, as well as a wealth of permissible functions that meet these restrictions. Virtually
all of the exponential models that have been put to use in the soft tisstie literature can
be represented from Ean. (25) when N is set to 1 and f and ¢ are composed of a suitable
combination of a(l; —3), aIn(7;/3), and 0, where « is a unitless parameter. For instance,
the Veronda-Westman model (Veronda and Westmann, 1970), which is in.€ommon use
in strain elastography (Shiina et al., 2015), is produced from/ Eqn¢ (26 when f is set
to a(l; — 3) and g is set to SIn(l3/3). Note that the Moonéy=Rivlin and Neo-Hookean
models can also be produced by Eqn. (25) by setting f to aIn(f,/3) and ¢ to either
p1n(l5/3) or 0, respectively. In this sense, the Mooney-Rivlin and/Neo-Hookean models
can be thought of as a special case of either Eqn. (24) or(25).

A Summary Statement Table 1 lists the exponentiaband,polynomial models that were
evaluated in this study for their fitness in terms of analy’sis of AE. As established by
oW

Eqns. (21-23), different response functions g, and gTVZ induced by different SEFs lead

to different behaviors among acquired AE-SWE data. In Table 1, response functions

?)TWI/ and ZTM; are also tabulated. By having the response functions tabulated as they

are, they can readily be applied t6-AE amalysis and interpret experimentally obtained
AE-SWE data below.

3. Methods and Materials
N
3.1. Description of Tissue-mimicking Phantom FExperiments

3.1.1. Ezxperiments RéportedibyJiang et al. (2015a) SWE measurements reported in
Jiang et al. were collected. from a phantom constructed from cryogenically crosslinked
10 % polyvinal alcohol (PVA), and 3 % Sigmacell was used as the source of acoustic
scattering. Thebiaxial deformation of the phantom was parameterized by measuring the
relative motion of three wires embedded in the phantom and computing value for £ from
these measurements. For our model fitting, we use the same biaxial parameterization
reportedd(i.e. £€=0:2). SWE measurements were performed using the Supersonic Shear
Imaging (SSI) technique using a vendor-supplied on-screen software package (SuperSonic
Imagitie Tne., Aix-en-Provence, France). After SWE measurements, the phantom was
cut into smaller samples for uniaxial tensile tests to obtain stress-strain data. More
details,can be found elsewhere (Jiang et al., 2015a).

3.1.2."In—house Fzxperiments In-house data were collected from two cylindrical phan-
toms composed of 5 % and 10 % by weight of cross-linked gelatin. The phantom con-
struction process mostly followed that of Hall et al. (Hall et al., 1997).Cellulose particles

Page 10 of 28
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(SigmaCell; Sigma-Aldrich Inc., MI; USA) were then mixed into the gelatin solation to
3% by weight and were the source of acoustic scattering. A cross-linker (formialin) was
also added at 0.047g of formaldehyde per a gram of dry weight gelatin. The resulting
gelatin solutions were congealed in silicon molds for cylindrical phantomsshape,(90 mm
height and 80 mm diameter).

To apply a uniaxial deformation to the phantoms during SWE measurémentsy the phan-
tom was placed between a lab jack and a stationary acrylic compression plate. During
measurements, a scale was placed underneath the lab jack to measure.thedoad applied
to the phantom, while the lab jack was raised to deform the phantom and digital calipers
were used to record the height of the phantom. Then a single ultrasound transducer
(L7-4 linear array transducer, ATL, Phillips Inc., WA) held stationary in one of the
three orientations illustrated in Fig. 3. As illustrated, measurements collected on the
side of the phantom were made at approximately 28/mm from the top of the phantom
and the measurement made at the top of the phantem was collected through an opening
cut from the acrylic plate. A research ultrasound system, (V1 system, Verasonics Inc.,
WA) equipped with the probe was used to obtain SWE measurements. The Verasonics
system was first used for the creation of gne single push-pulse excitation followed by ul-
trafast imaging of the resulting waveforms., Aipublished Fourier domain shift-matching
(FDSM) method (Rosen and Jiang, 2018) was used to estimate SWS. Both the SWE
data acquisition, the FDSM method andpits validation can be found in our previous
publication (Rosen and Jiang, 2018).

A maximum of 40% compression was applied'to each phantom with a load increment of
2.75% compression. In each orientation, the compression load stopped once the top of
the lab jack was nearly in contact with the transducer when the transducer was applied
to the side of the phantomdmage.(i.ef ;o image plane in Fig. 3). Following the initial
SWE measurement, the deformation of the phantom was incremented by adjusting the
height of the lab jagks Once the reading on the scale reached steady-state, the load,
phantom height, and SWE measurements were recorded at the new deformation level.
In each orientation, the phantom was then decompressed to zero load after reaching
its maximal compression. Then, the transducer was adjusted to the next orientation.
Measurementg'were collected in the order cis, co3, co1. Regardless of the transducer
orientation, [the /distancesbetween the focus of the pushing-pulse and the transducer
face was_set t0 19.7 mm. Both phantoms were stable under load repetitions because
variations in the initial phantom heights were less than 1.1% and 0.1% for the 5% and
10% gelatin phantoms, respectively. The height variation was measured by calculating
the maximum difference as a percentage of the mean phantom height. During the SWE
experiments, stress and strain values were converted from the above-mentioned load and
height readings.
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Figure 3: Cross-sectional illustration of the gelatin phantom experiments (not to scale).
For the measurements collected in the ¢y, orientation4(a), the phantom was placed
underneath an opening in the acrylic plate that allowedsfor imaging from the top of the
phantom. For ¢i5 (b) and ce3 (c) orientations, the phantomwas placed underneath a
flat portion of the acrylic plate. The vectors n and m denote the direction of shear wave
propagation and polarization, respectively. IS

3.2. Data Analysis

SWE and stress-strain data collected from"the literature (Jiang et al., 2015a) was
digitized using a free online graph digitizer T (WebPlotDigitizer v4.1, Automeris LLC).
In-house acquired using methods described above were all stored in a computer.
Parameters related to 9 differenthySEFs (see Table 1) were obtained by mathematical
optimization. More specifically, SWE,and uniaxial stress-strain data were used to fit
respective SEFs by minimizing, the sum of squared residuals between experimentally
obtained and model predicted values. This process was accomplished by using the
“fminunc” function in MATLAB /(Version 2016a, Mathworks Inc., Natick, MA). The
starting parameters for eachimodel was set to correspond to Neo-Hookean material
behavior. That isgall Tondependent parameters were started at 0 and higher-order
or exponential strain stiffening terms set at or near their non-stiffening limit. During
model fitting of SWE measurements, models were fixed at zero strain to the mean SWE
measurement at no deformation.

To assess the fitness/merits of each of 9 SEFs, the root mean squared residual was

RMSR = \/ ZLl(d;’l” — de)? (26)

Here d stands for SWE or mechanical testing data, subscripts m and e denote the

calculated as follows:

individual model-predicted and experimentally-obtained SWS or mechanical testing
éstimates, respectively. In Eqn. (26), n is the number of experimentally obtained SWS
or mechanical testing estimates .

i https://automeris.io/ WebPlotDigitizer
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4. Results

4.1. Reanalysis of Data from Jiang et al. (2015a)

Model fitting of AE-SWE data from a published article (Jiang et al., 2015a) are.plotted
in Fig. 4. In order to make the plot more readable, the hyperelastic SEFs are separated
into those that are functions of only I; (Fig. 4a) and those that are functions of
both I; and I (Fig. 4b). The motivation for this separation will. be more apparent
when considering the multiple orientations considered in the in-house data: From these
results, it can be seen that all model fits incorporating second-order'polynomial terms or
exponential strain stiffening matched AE-SWE data well. In contrastysthe neo-Hookean
and Mooney-Rivlin models produced comparatively poor fits to the,observed AE-SWE
data.

Hyperelastic parameters were also obtained by usiig uniaxial tension data. Fig. 5
overlays fitted tensile stress-strain curves with experimental ones (Jiang et al., 2015a).
It can be seen that the fitted tensile stress-strain curves for all models except the neo-
Hookean and Mooney-Rivlin models tracked the tensile stress-strain data within one
standard deviation.

Estimated hyperelastic parameters for all 9 SEFEs (see Table 1) are displayed in Table 2
for both AE-SWE data and uniaxial stress-strain data fitting. It is interesting to note
that the resulting parameters showed. variable agreement between estimates from AE-
SWE data and uniaxial tensile test data. Particularly, little consistency was found when
the Mooney-Rivlin model was used.

4.2. In-House Data

Fig. 6 shows the AE-SWE res;lts and model fitting of SEFs for the 5 % and 10 %
gelatin phantoms. In, contrast to the previous data set, when the models were fit-
ted to three wave orientations, a clear distinction in the performance within the 2nd-
order/exponential mmodels is.apparent. In particular, the models which lack 5 in their
SEFs (Fig. 6) where unable to accommodate deviation between cg; and ca3, whereas the
model which did-inecorporate I, in the SEF were able to fit the two wave orientations
just fine. This was the ease even for the Yeoh model, which has the same number of
parameters asithe Vito, Veronda-Westmann and Rivlin models.

When ¢onsidering the model estimated using uniaxial compression data collected from
the 5 % and 10 % gelatin phantoms (Fig. 7), model’s performance was comparable to
what was observed in a prior publication(Jiang et al., 2015a). Note that, even though
the Mooney-Rivlin model incorporates I, in its SEF, it was unable to fit the three wave
orientations. This can be attributed to the absence of higher-order polynomial terms or
exponential terms in its SEF.
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Figure 4: Fitting of SEFs listed in Table 1 tol AESSWE data from a published study
(Jiang et al., 2015b). Curves are separated.into models with no I, dependence (a) and
models with I dependence (b).

Table 3 tabulates RMSR values for, all SEFs when they are fitted to both to AE-
SWE and uniaxial tension/c@mpression tests. These values support the observations
made thus. In all cases, the Neo-Hookean and Mooney-Rivlin models produced the
largest RSMR values. Additionally, the.exponential and higher-order polynomial models
that lack I, produced larger. RSMR values for the two gelatin phantoms as compared
to other RSMR values obtained from other models (1.1196-3.0428 kPa versus 0.1716-
0.5817 kPa, respectively). Likewise, when uniaxial stress-strain data had been fitted,
RMSR values were comparable.
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Figure 6: AESSWE measurements collected from in-house 10 % gelatin (top row) and

5 % gelatin (bottom tow)icompressed elastography phantoms. Model fits are separated
between medels which do not include I in their SEF (column 1) and models which do

(column 2)
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Table 4 displays the fitted parameters produced from the separate fitting of the three
imaging planes, as opposed to the combined fitting applied to produce the hyperelastic
parameters reported in Table 2. In general, the estimated parameterstended to wvary
between fits to individual imaging planes as well as relative to the combined fitting;,
though the variation tended to depend on the model. For instance, the full second-order
polynomial model tended to vary substantially within its terms, whilethe parameters in
the Veronda-Westmann model were fairly similar to each other with exception to the fit
of ¢15 in the 5 % gelatin phantom. Additionally, it is interesting 46 note.that, for several
of the models, fitting to c¢o; alone tended to produce hyperelastie pa}ameters similar
to those produced from those obtained by fitting SEFs to4imiaxial stress-strain data.
For instance, in the 5 % gelatin phantom, the parameter « in the:Demiray-Fung model
was similar when estimated from the uniaxial data and frem co; alone (1.200 vs 1.167,
respectively). In contrast, estimates from c¢;2 and co3 (2. 737 and 2.275, respectively) show
a more substantial difference to the uniaxial data. €lear exceptions to this observation
included the Mooney-Rivlin, Vito and full second-order p(ilynomial models.

5. Discussion

Although there are considerable interests ‘in thesestimation of hyperelastic material
parameters (Samani and Plewes, 42004y, Goenezen et al., 2012, Jiang et al., 2015a,
Aristizabal et al., 2018), determinationief such an appropriate SEF has not been fully
explored. It is a challenge to imtroduce suchia SEF in the elasticity imaging community
because the SEF needs to meet.the following two expectations: (1) capturing material
behaviors and (2) having parameters that could provide insight to pathological and/or
biological processors and arereasy.to understand by clinicians. It would be problematic
if a selected SEF that is used to inversely estimate nonlinear mechanical properties
cannot accurately represent mechanical behaviors. In regards to the first expectation,
although biological tissue is likely to have more complex constitutive behavior than the
tissue-mimicking phantem materials considered in this study, evaluating SEF's in these
simple materialg, suggests some basic characteristics of SEFs to consider in AE-SWE
investigations<ofrcomplex biological media. Our overall observation (see Table 3) in
this study is that SEFs containing the second invariant and second-order polynomial
or exponential‘terms fitted experimental AE-SWE data better than those lacking one
or both'of these features. This difference can readily be observed in Fig. 6 and was
the case even for the Yeoh model, which has the same number of parameters as the
Veronda-Westmann model, but lacks second-invariant dependence. In particular, the
full second-order polynomial SEF gave the best agreement with the experimental data,
produeing the lowest RMSR values. However, for fitting a single imaging plane, it
produced comparatively less consistent results (Table 4). While the 3 parameter models,
such as the Veronda-Westman or the Rivlin models, produced slightly higher RMSR
than the full second-order polynomial model (e.g. in the %10 gelatin phantom, 0.582
kPa and 0.271 kPa, respectively versus 0.194 kPa ), they were generally able to represent
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g Table 4: A summary of hyperelastic parameters estimated only from AE-SWE/datain
6 our image plane defined in Fig. 2

7

g 5% Gelatin 10 % Gelatin

10 Model Parameter C21 23 c12 Co1 23 12
11 Neo-Hookean

12 C; (kPa) 1.075 1.124  0.884  4.325 4.403 4.225
13 Demiray-Fung

. Ara (kPa) 1.075 1124 0884 4325 4403 4.225
16 « 1.167 2.275  2.737  0.726 1.686 0.823
17 Arruda-Boyce

18 7 2.15 2.248 1.768 8.651 8.805 3.451
19 Am 0.550 0.417  0.339 0.642 0:458 0.544
20 Yeoh

;; Cho (kPa) 1.075 1.124 0.844  44.325 4.403 4.225
23 Cyo (kPa) 0.624 2.458  2.019 1371 6.687 0.580
24 C3o (kPa) 0.325 -0.326  -1.808 £0.666 1, “51.909 3.706
25 Mooney-Rivlin

26 C1 (kPa) -0.616  4.07 40827 07464 11.71  2.206
;; C, (kPa) 1.691  -2.946 17110, 3.579  -7.307  2.167
29 Veronda-Westmann

30 Aja (kPa) 0.880 1.980=0.355,  4.945 6.965 6.158
31 B8 (kPa) 0.195 -0.856°»,1.239°-0.6203 -2.563  -1.933
32 « 1.240 1.263 -3.303 0.735 0.884 0.973
33 Vito

g‘S‘ A; (kPa) 0.772 471.502,. 1.066 6.897  7.799  7.095
36 « 1.183 1.268 1 -0.075  0.720 0.876 0.866
37 I5] 0.209 =0:520¢ 0.904 -0.092 -0.311 -0.271
38 Full 2nd Order Poly

39 Co (kPa) 0.906 2.322 0.872 4.302 8.414 5.138
40 Co1 (kPa) 0.169 °-1.198 0.012  0.23  -4.011 -0.913
2; Cy (kPa) 6.298 20.913 2.886 -22.663 43.064 -64.389
43 Co2 (kPa) 3.505 -1.5643  -1.777 -11.200 -4.860 -40.227
42 C1y (kPa) 8.8778 -21.068 1.088 33.163 -42.487 103.813
45 Rivlin

46 Cho (kPa) 1.698 1.428 0.312 6.362 6.185 6.724
47 Coi(kPa) -0.623  -0.304 0.572 -2.037 -1.783  -2.499
jg Gao (kPa) 1.242  2.042 1.067 3.031 4263  3.805
50

51

52

53

54

55

56

57

58

59
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the AE-SWE data in all three imaging planes. Now referring to the second expectation,
the selection of Veronda-Westman model for AE-SWE could be justifiable because its
parameters can be explained in terms of the small strain modulus and a parameter
related to the representation of strain-stiffening behavior Samani and Plewes, (2004);
Goenezen et al. (2012).

We also found material parameters estimated from AE-SWE and uniaxial Gempression
data could be significantly different though the same material model was used (see
Table 2). For instance, when the classic Mooney-Rivlin model was used, in the tissue-
mimicking gelatin, estimated C; and Cy values were inconsistent, whereas parameters
estimated from the Arruda-Boyce model were remarkablyhconsistent. This is not
entirely surprising because the SWS data acquired from three image planes and uni-
axial compression data were used to estimate hyperelastic parameters, respectively. In
the continuum mechanics literature, it is well understoodsthat estimated hyperelastic
parameters in some SEFs could be sensitive to the loading eonditions (Ogden et al.,
2004). Because there are great interests in estimating,those nonlinear hyperelastic
parameters using both nonlinear modulus inversion (Goengzen et al., 2012, Samani and
Plewes, 2004) and AE-SWE data (Jiang etral., 2015a, Aristizabal et al., 2018), evaluating
the consistency between two different approaches, i.e. mechanical testing, and AE-SWE
data may shed light on this topic. In the future, this topic should be expanded into a
comparison between nonlinear modulus inversion and hyperelastic parameter estimation
using AE-SWE data.

In this study, SEFs were evaluated relative to their ability to model all three wave
orienations represented in Fig. 2ssimultaneously. Given the availability of 3D ultrasound
data, it is feasible to obtain 3D elastographic data in the clinical workflow (Wang et al.,
2013, Peng et al., 2017, Gennisson.et.al., 2015), though this capability is still emerging.
Since SWE data in the clinical workflow typically were acquired from one of those three
image planes, we alse investigated this matter and found that, using only AE-SWE data
acquired from one planeythe estimated nonlinear elastic parameters could substantially
vary compared to'these obtained by using 3 planes of AE-SWE Data (Table 2 vs.
Table 4). By observation, we noted that, for most of the models, fitting to c¢y; alone
seemed to preoduce parameter estimates in better agreement with the uniaxial results
than the other two eriemtations. This would suggest that while parameter estimation
from co; alene may not capture the full constitutive characteristics relevant to AE-SWE;,
it may still produce a useful characterization of the uniaxial behavior of the material.
This is important since cy; is most commonly used for AE-SWE characterization.
Furthermore, it is probably wise to be cautious when AE-SWE data are acquired from
different scanning views relative to a known or suspected load, since SWS will depend
on the propagation direction relative to the load (e.g. c¢jo versus cp3). For instance,
liverpultrasound scanning can be done from multiple views (e.g. parasagittal scan
vs. subcoastal scan) and a variety of factors known to alter SWS, such as phase
of the subject’s breath cycle and posture (Goertz et al., 2012), could be related to
deformation of the liver. Acoustoelastic theory would suggest that variation due to

Page 22 of 28



Page 23 of 28

oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - PMB-107918.R1

To be submitted to Physics in Medicine and Biology 23

these factors should also depend on the ultrasonic scanning plane (i.e. plane oOf shear
wave propogation) used at the time of measurement.

Equations used here are adopted from Ogden (Ogden, 2007) and ‘are. appropriate

for a simplified scenario, i.e. a plane shear wave propagation in 2D isotropie, incoms
pressible and homogeneous media. Some issues have to be addressed if we want to
apply this theory to biological tissues. First, complicated wave propagation phenomena
such as mode conversion and wave splitting existing in heterogeneous and perhaps lo-
cally anisotropic media have not been counted. Second, only shear wave propagation in
planes of axial deformation (i.e. stretches along constant and spatiall?uniform princi-
ple axis) were considered. Given lessons learned from the rabber mechanics literature,
further evaluations of those SEFs under more complex loading eonditions (e.g. the in-
clusion of shearing) are necessary. Based on several excellent reviews (e.g. (Boyce and
Arruda, 2000, Martins et al., 2006, Steinmann et ali; 2012)), it was reported that “a
large number of well-known SEFs are not reliablefon the entire ranges of strain and
different modes of deformation, simultaneously’#(Mansowri and Darijani, 2014). Par-
ticularly, significant errors between SEF-predictions and mechanical testing data were
observed when silicone rubber and soft tissues were deformed between 0-25% uniaxial
deformation (Martins et al., 2006). Further errers could be introduced given more com-
plex loading conditions. For instance, local\shearing is common when heterogeneous
tissues are deformed.
Given our preliminary data reported abeve, further studies will be focused on two as-
pects using biological tissues! FKirst, furtherrevaluations of SEFs under more complex
loading/stress conditions will besperformed. Second, comparing hyperelastic parameters
estimated by the AE-SWE method andithe uniaxial compression test method (Samani
and Plewes, 2004) will alsosbe eonducted.

6. Conclusion

It was observedsthat, once all three image planes are considered, SEFs including the
second invariamtrmodel tissue-mimicking materials better. Also, regardless of material
models, material{parameters calculated based on uni-axial compression could be quite
different as_compared to material parameters inversely estimated from AE-SWE data
when the same material model was used. Implications of this observation should
be further examined for inversely estimating nonlinear elastic parameters in strain
elastography and SWE.
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