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ON THE CONVERGENCE OF A HEURISTIC PARAMETER
CHOICE RULE FOR TIKHONOV REGULARIZATION∗

MARK S. GOCKENBACH† AND ELAHEH GORGIN‡

Abstract. Multiplicative regularization solves a linear inverse problem by minimizing the prod-
uct of the norm of the data misfit and the norm of the solution. This technique is related to Tikhonov
regularization with the parameter chosen to make the data misfit and regularization terms (of the
Tikhonov objective function) equal. This suggests a heuristic parameter choice method, equivalent
to the rule previously proposed by Reginska. Reginska’s rule is well defined provided the data is suffi-
ciently close to exact data and does not lie in the range of the operator. If a sufficiently large portion
of the data error lies outside the range of the operator, then the solution defined by Reginska’s rule
converges weakly to the exact solution as the data error converges to zero. The regularization param-
eter converges to zero like the square of the norm of the data noise, leading to under-regularization
for small noise levels. Nevertheless, the method performs well on a suite of test problems, as shown
by comparison with the L-curve, generalized cross-validation, quasi-optimality, and Hanke–Raus pa-
rameter choice methods. A modification of the approach yields a heuristic parameter choice rule
that is provably convergent (in the norm topology) under the restrictions on the data error described
above, as long as the exact solution has a small amount of additional smoothness. On the test prob-
lems considered here, the modified rule outperforms all of the above heuristic methods, although it
is only slightly better than the quasi-optimality rule.

Key words. inverse problems, Tikhonov regularization, convergence analysis

AMS subject classifications. 65J22, 65R32

DOI. 10.1137/17M1138698

1. Introduction. The most popular regularization methods for inverse prob-
lems are based on optimization, with the objective function consisting of two parts.
The first part measures how well the proposed solution fits the given data, and the
second part (the regularization term) penalizes undesirable properties of the pro-
posed solution (such as a large norm or nonsmoothness). Typically these two terms
are added together with a weighting parameter multiplying the regularization term.
A large parameter implies more regularization (that is, a smaller or smoother solu-
tion). The classic method of Tikhonov regularization, which we now describe, is a
prime example of this approach.

We will discuss linear inverse problems of the form Tx = y, where T : X → Y is
a bounded linear operator and X and Y are Hilbert spaces. We assume that there
exist exact data y∗ ∈ Y and an exact solution x∗ ∈ X such that Tx∗ = y∗, that y ∈ Y
is a measurement of y∗, and it is desired to estimate x∗ by solving (in some sense)
Tx = y. We will assume throughout that y∗ 6= 0 (and hence also x∗ 6= 0). If the null
space N (T ) is nontrivial, then we assume that x∗ ∈ N (T )⊥. Since Tx = y may not
have a solution, it is natural to consider the least-squares problem

min
x∈X
‖Tx− y‖2Y .(1)
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CONVERGENCE OF A HEURISTIC PARAMETER CHOICE RULE A2695

However, (1) has a solution if and only if y belongs to the subspace R(T ) ⊕R(T )⊥,
where R(T ) denotes the range of T . When R(T ) fails to be closed, R(T ) ⊕ R(T )⊥

is a proper dense subspace of Y , and hence a measurement y of y∗ is likely to lie
outside of this set. Moreover, the pseudoinverse T † of T , which maps y ∈ D(T †) =
R(T )⊕R(T )⊥ to the unique solution of (1) of smallest norm (that is, to the minimum-
norm least-squares solution of Tx = y), is unbounded when R(T ) fails to be closed.

Tikhonov regularization addresses the shortcomings of the least-squares approach
by replacing (1) with

min
x∈X
‖Tx− y‖2Y + λ‖x‖2X ,(2)

which has a unique solution xλ,y = (T ∗T + λI)−1T ∗y for each y ∈ Y , provided
the regularization parameter λ is positive. Tikhonov regularization can be viewed as
replacing the unbounded operator T † with the bounded operator (T ∗T + λI)−1T ∗.
It can be shown that Tikhonov regularization is effective in the sense that xλ,y → x∗

as y → y∗, provided λ is chosen appropriately. Since we will frequently refer to the
operator T ∗T + λI, we introduce the notation

Nλ = T ∗T + λI.(3)

A significant drawback for methods such as Tikhonov regularization is the need
to choose the regularization parameter. Various approaches have been proposed to
address this problem; these techniques can be classified depending on what informa-
tion they use about the noisy data vector y. If λ is the regularization parameter and
δ = ‖y − y∗‖Y , where y∗ is the exact data vector, then a parameter choice rule takes
one of the following forms: λ = λ(δ), λ = λ(δ, y), and λ = λ(y). Engl, Hanke, and
Neubauer [6] call such rules a priori, a posteriori, and error-free, respectively. For the
third type of parameter choice method, the term heuristic is also used.

It should be noted that one would not expect to know the exact value of ‖y−y∗‖Y .
Thus, in practice, δ is taken as an estimate of this error, and it is usually assumed
that ‖y − y∗‖Y ≤ δ holds.

One of the most fundamental facts about heuristic parameter choice methods is
that they cannot be convergent. We say that a parameter choice method λ = λ(δ, y)
is convergent if for each sequence (δn, yn) ∈ [0,∞)× Y such that

δn → 0+ and ‖yn − y∗‖Y ≤ δn,

we have
xλ(δn,yn),yn → x∗ = T †y∗.

Bakushinskii [3] showed that a parameter choice rule of the form λ = λ(y) cannot be
convergent in this sense (because, as one can show, it would have to choose λ = 0
for y ∈ R(T ), implying that the regularized solution is T †y for y ∈ R(T ); but T † is
unbounded on R(T )). Nevertheless, it is possible to prove convergence for a heuristic
parameter choice rule provided some assumptions are made about how the noisy data
y converges to y∗. We will mention several existing results of this type below, and
the convergence results in this paper are of this type.

A popular a posteriori method is the Morozov discrepancy principle [22], which
chooses the regularized solution that produces an error in the data of the same size
as the given estimate. Heuristic methods include the L-curve criterion (Hansen [13];
see also [16]), the generalized cross-validation (GCV) rule (Wahba [32]), the quasi-
optimality criterion (Tikhonov and Arsenin [29, pp. 93–94]), and the Hanke–Raus
rule (Hanke and Raus [12]).
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A2696 MARK S. GOCKENBACH AND ELAHEH GORGIN

The L-curve is a graph of the regularization term versus the residual in the data.
This graph frequently has a characteristic L shape, and the corner corresponds to
the point where further reduction in the residual comes only at the expense of a
drastic increase in the regularization term (that is, in undesirable properties of the
regularized solution). The L-curve criterion chooses the regularization parameter that
corresponds to this corner (which is usually defined as the point of maximum curvature
of the L-curve in a log-log plot).

GCV, which applies when Y is a finite-dimensional space, is based on minimizing
an estimator of the predictive mean-square error ‖Txλ,y − y∗‖2Y , the residual with
respect to the exact data y∗. This estimator is

V (λ) =

 ‖Txλ,y − y‖Y
trace

(
λ
m (TT ∗ + λI)

−1
)
2

,

where m is the dimension of Y (see [6, section 4.5]).
The quasi-optimality criterion chooses the regularization parameter to minimize

ψλ = λ

∥∥∥∥ ∂∂λ (xλ,y)

∥∥∥∥
X

.

This parameter choice method was apparently developed without a strong intuitive
or theoretical basis; in fact, Morozov [23, pp. 239–240] wrote, “Unfortunately, it has
not been possible to justify this technique for choosing the parameter although it is
widely used for unstable problems.” However, Kitagawa [21] and Hansen [13] have
shown that the quasi-optimality approach seeks to approximately minimize the total
error in xλ,y. Kindermann and Neubauer [20] proved that the method is convergent
under certain assumptions on the spectral properties of the noise in the data. In
the case that T is a compact operator, these assumptions imply that the Fourier
components of the noisy data do not decay to zero too quickly (that is, that the noisy
data has significant high-frequency content). Neubauer generalized these results to
a family of abstract regularization methods in [24]. Hämarik, Palm, and Raus [10]
provide an analysis of a family of minimization-based strategies that include the quasi-
optimality approach. Their results show that the quasi-optimality method converges
at an optimal worst-case rate provided the minimum value of ψλ satisfies ψλ ∼ δ/

√
λ.

However, it is not clear how to guarantee this condition. (The result of [10] is similar
to that of Hanke–Raus, described in the next paragraph and in more detail following
Theorem 8 below.)

The Hanke–Raus [12] rule chooses λ > 0 to minimize

φλ = λ
[〈
y, (TT ∗ + λI)−3y

〉
Y

]1/2
.(4)

This heuristic method is derived from an optimal order a posteriori parameter choice
rule, which in turn is a modification of the Morozov discrepancy principle. (For the
original a posteriori rule, see [25], [7], or [5]. The heuristic rule (4) is derived in section
2.1 of [12].) Under the hypotheses of our Theorem 7 below, Theorem 3.3 of [12] shows
that xλ,y, with λ chosen by minimizing (4), converges to x∗ in norm as y → y∗. We
discuss this in more detail following the proof of Theorem 8, but the key hypothesis is
that y 6∈ R(T ) and, moreover, that y does not follow a path that is tangent to R(T )
as it approaches y∗.

Kindermann [18] proved that the Hanke–Raus and quasi-optimality rules, along
with certain other minimization-based rules, can be guaranteed to converge provided
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CONVERGENCE OF A HEURISTIC PARAMETER CHOICE RULE A2697

that the noise in the data is of a certain type. Specifically, suppose λ = λ(y) is chosen
by minimizing a functional ψ(λ, y) and that the regularized solution is denoted by
Rλy. It is assumed that y → y∗ in such a way that

inf
λ>0

ψ(λ, y) < lim inf
λ→0

ψ(λ, y)(5)

(that is, that only data y that satisfy (5) are admitted) and also that ψ satisfies

lim
(λ,y)→(0,y∗)

ψ(λ, y) = 0 ⇒ ‖Rλy −Rλy∗‖X → 0.

Under these assumptions, Kindermann proved that the parameter choice rule is con-
vergent. In [19], Kindermann extended his analysis to finite-dimensional problems,
deriving results that are independent of the discretization. In addition to the Hanke–
Raus and quasi-optimality rules, he extended the analysis to the GCV rule, although
obtaining only partial results.

Each of the methods described above has its own difficulties. The obvious problem
with Morozov discrepancy principle is that a good estimate of the error in the data
may not be available. While the L-curve criterion works well for many problems, it has
been shown to perform poorly on certain problems (see [31], [11]), and there is little
theory supporting this approach. For a discussion of the strengths and weaknesses of
the L-curve criterion, see section 4.5 of the book by Engl, Hanke, and Neubauer [6],
which also discusses the other heuristic methods considered here. The GCV functional
is often nearly constant near the minimizer and can have multiple nearby local, non-
global minimizers. The quasi-optimality method requires minimization of a function
that frequently has multiple local minima (see [15, p. 183]); moreover, according to
the authors’ tests, sometimes two local minima give similar values of the objective
function. Recent work by Raus and Hämarik [26] does show that one of the local
minimizers of the quasi-optimality function is always pseudo-optimal, that is, its error
is at most a constant times the sum of the regularization error and the perturbation
error. They also propose algorithms for computing a good local minimizer.

Because of the difficulties associated with choosing an appropriate regularization
parameter, van den Berg, van Broekhoven, and Abubakar [30] (see also [1]) proposed
incorporating the regularization penalty into the objective function by multiplying
the data misfit term by it, rather than by adding it. In our context, this implies
seeking a nonzero local minimizer of

J(x; y) = ‖x‖2X‖Tx− y‖2Y .(6)

This approach, which is described in detail below, does not require any regularization
parameter and therefore avoids the problems discussed above. We will refer to this
approach as multiplicative regularization. The work in [30] and [1] was in the context
of total variation regularization, and the authors provided examples showing that the
approach can work well in practice.

As we will show below, multiplicative regularization is closely related to a heuristic
parameter choice rule for Tikhonov regularization, namely the rule that chooses λ > 0
to satisfy the fixed point equation

λ =
‖Txλ,y − y‖2Y
‖xλ,y‖2X

.(7)

Assuming such a value of λ exists, it depends on y only, not on δ; in other words, (7)
defines a heuristic parameter choice rule that we will denote by λ = Λ(y).
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A2698 MARK S. GOCKENBACH AND ELAHEH GORGIN

Reginska [27] analyzed a similar approach to regularization. She defined an
objective function

φ(λ) = ‖xλ,y‖2X‖Txλ,y − y‖2Y
and proposed choosing λ by minimizing this function. (More generally, she also con-

sidered minimization of φβ(λ) = ‖xλ,y‖2βX ‖Txλ,y − y‖2Y for β > 0.) It is easy to see
that any stationary point of φ satisfies (7), and therefore Reginska’s formulation leads
to the same parameter choice rule as does multiplicative regularization.

Multiplicative regularization has been studied in the Ph.D. dissertation of Orozco
Rodŕıguez [28]. He compared the performance of multiplicative regularization with
the L-curve criterion for an image deblurring problem and, emphasizing the original
formulation as an optimization problem, derived conditions for the existence and
identification of a nontrivial minimizer of J(·; y).

The purpose of this paper is to provide an analysis of (7) and, in particular, show
that it is convergent under a simple restriction on the noise. Specifically, if R(T ) is a
proper subspace of Y , y 6∈ R(T ), and y converges to y∗ in such a way that the angle
that y makes with R(T ) is sufficiently large, then Λ(y) ∼ ‖y − y∗‖2Y as y → y∗ (here
Λ(y) denotes the solution of (7)) and

xΛ(y),y → x∗ weakly as y → y∗

(see Theorem 7). We can obtain this result because the assumptions on data mean
that an estimate of δ such that δ ≥ ‖y − y∗‖Y is implicitly available (although not
used directly).

As is well known, to guarantee that xλ,y → x∗ strongly, λ must be asymptotically
larger than ‖y − y∗‖2Y ; specifically, we need

λ→ 0+ and
‖y − y∗‖2Y

λ
→ 0 as y → 0.

We can improve on the weak convergence offered by (7) by modifying the fixed point
equation to

λ =
‖Txλ,y − y‖2µY
‖xλ,y‖2µX

,(8)

where µ ∈ (1/2, 1) is a constant. We will show that if the true solution x∗ has some
extra smoothness (for instance, if x∗ ∈ R(T ∗) or more generally x∗ ∈ R((T ∗T )ν) for
ν > 0), then (8) defines a unique parameter λ = Λµ(y) satisfying

‖y − y∗‖2µY
Λµ(y)

≤ c

for some c > 0 and hence

xΛµ(y),y → x∗ strongly as y → y∗.

Moreover, we can derive the worst-case rate of convergence of xΛµ(y),y to x∗, which
turns out to be optimal for ν ∈ (0, 1/2) and suboptimal for ν ≥ 1/2. Once again, we
must assume that y → y∗ in such a way that y 6∈ R(T ) and y does not follow a path
that is tangent to R(T ) as it approaches y∗.

The convergence results just described suggest that the parameter choice rules
defined by (7) and (8) may not be effective when R(T ) is dense in Y (since in that
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CONVERGENCE OF A HEURISTIC PARAMETER CHOICE RULE A2699

case y must lie in R(T )). More generally, the same difficulty is encountered if Tx = y
is discretized as Ax = y (A ∈ Rm×n), where y lies in col(A). For problems presenting
this issue, we propose to ensure that the discretization satisfies m > n, where m is the
number of data samples collected. Implemented in this fashion, (7) and (8) appear to
be effective even for such problems.

As noted above, (7) is essentially equivalent to Reginska’s approach. However, it
is emphasized that the rule (8) is not equivalent to minimizing Reginska’s modified
objective function. This rule appears not to have been considered previously.

In addition to proving the theoretical results described above, we perform nu-
merical experiments to show that these heuristic rules are effective, comparing their
performance to the L-curve, GCV, quasi-optimality, and Hanke–Raus criteria on a
collection of 20 test problems. We will see that (7) does work well in many cases,
although not quite as well as the L-curve and quasi-optimality approaches (it seems
clearly superior to the GCV and Hanke–Raus methods, at least on our test prob-
lems). However, for µ close to but smaller than 1, (8) defines a parameter choice rule
that seems to outperform the L-curve, GCV, and Hanke–Raus rules, and which is
approximately as effective as the quasi-optimality rule.

2. Analysis of the parameter choice methods. As noted above, we assume
that T : X → Y is a bounded linear operator from one Hilbert space to another,
y ∈ Y is given, and x is to be determined as an approximate solution of Tx = y.
Multiplicative regularization determines x by solving

min
x∈X

J(x; y),(9)

where J(x; y) = ‖x‖2X‖Tx − y‖2Y . Similar to Tikhonov regularization, multiplicative
regularization tries to identify a value of x that makes the residual Tx−y small, while
simultaneously not allowing x to be large. We notice, however, that (9) always has
the global solution x = 0, which is not a meaningful solution to the inverse problem,
so we interpret (9) as asking for a nonzero local minimizer of J .

To analyze (9), we notice that

J(x; y) = ‖x‖2X‖Tx− y‖2Y = 〈x, x〉X (〈x, T ∗Tx〉X − 2 〈T ∗y, x〉X + 〈y, y〉Y ) .

We then have

∇J(x; y) = 2
(
‖Tx− y‖2Y x+ ‖x‖2X (T ∗Tx− T ∗y)

)
and, assuming x 6= 0,

∇J(x; y) = 0⇔ ‖Tx− y‖2Y x+ ‖x‖2X (T ∗Tx− T ∗y) = 0

⇔ T ∗Tx− T ∗y +
‖Tx− y‖2Y
‖x‖2X

x = 0.

This optimality condition reduces to the pair of simultaneous equations

T ∗Tx+ λx = T ∗y, λ =
‖Tx− y‖2Y
‖x‖2X

.

The first equation means that x = xλ,y for a certain value of λ; the second equation
constrains that value of λ. It is a value of λ for which
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A2700 MARK S. GOCKENBACH AND ELAHEH GORGIN

λ =
‖Txλ,y − y‖2Y
‖xλ,y‖2X

⇔ ‖Txλ,y − y‖2Y = λ‖xλ,y‖2X .(10)

We see that multiplicative regularization is related to Tikhonov regularization when
the regularization parameter λ is chosen by the rule (10). The reader will notice that
this rule chooses λ by requiring the two terms in the regularized objective function
to have equal value. Henceforth, we restrict our attention to this parameter choice
method (rather than studying (9) directly). Since, as we pointed out above, (10)
already arose in Reginska’s work, we will refer to it as Reginska’s parameter choice
rule.

Given any y ∈ Y , we will always write y for the orthogonal projection of y onto
R(T ) and ŷ = y − y for the orthogonal projection of y onto R(T )⊥. We will need
several standard results about Tikhonov regularization and the operator Nλ defined
in (3) (see, for example, Chapter 3 of [8]):

‖N−1
λ T ∗‖ ≤ 1

2
√
λ

for all λ > 0,(11)

‖TN−1
λ T ∗‖ ≤ 1 for all λ > 0,(12)

√
λN−1

λ T ∗ → 0 pointwise as λ→ 0+,(13)

Txλ,y → y as λ→ 0+ for all y ∈ Y,(14)

xλ,y − T †y = −λN−1
λ T †y for all y ∈ D(T †),(15)

‖xλ,y‖X ≤ ‖T †y‖X for all y ∈ D(T †) and all λ > 0.(16)

Here is a preliminary result about Reginska’s parameter choice rule.

Lemma 1. If ‖ŷ‖Y > 1
2‖y‖Y , then (10) has no solution.

Proof. Assume that y ∈ Y \ R(T ) is given and λ > 0 satisfies (10). Since

‖Txλ,y − y‖2Y = ‖Txλ,y − y‖2Y + ‖ŷ‖2Y ,

(10) implies that
‖ŷ‖2Y ≤ λ‖xλ,y‖2X .

Applying (11), we see that

λ‖xλ,y‖2X = λ‖N−1
λ T ∗y‖2X ≤ λ

(
1

2
√
λ
‖y‖Y

)2

=
1

4
‖y‖2Y .

It follows that if λ satisfies (10), then

‖ŷ‖2Y ≤
1

4
‖y‖2Y ,

and the result follows.

It follows that the most we can hope for is that (10) has a solution for all y
sufficiently close to a given y∗ ∈ R(T ), which we prove below in Theorem 5. Writing
Λ(y) for this value of λ, we will also show that, under certain restrictions on the noisy
data y, Λ(y) ∼ ‖y − y∗‖2Y . Since this value of λ is too small to guarantee strong
convergence of xλ,y to x∗, we propose to modify (10) to

λ =
‖Txλ,y − y‖2µY
‖xλ,y‖2µX

,(17)
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CONVERGENCE OF A HEURISTIC PARAMETER CHOICE RULE A2701

where µ ∈ (1/2, 1) is a constant. We can perform much of the analysis of (10) and
(17) together by allowing µ = 1 in (17). It turns out to be easier to analyze (17) in
the form

λ1/µ =
‖Txλ,y − y‖2Y
‖xλ,y‖2X

.(18)

We will refer to the rule that chooses λ to satisfy (17) or (18) as the modified Reginska,
or MR, rule.

We begin by showing that (18) has a solution for all y sufficiently close to y∗.
Equation (18) is equivalent to fµ(λ, y) = ‖ŷ‖2Y , where fµ : [0,∞)×Y → R is defined by

fµ(λ, y) =

{
λ1/µ‖xλ,y‖2X − ‖Txλ,y − y‖2Y if λ > 0,

0 if λ = 0.

Lemma 2. If µ ∈ (0, 1], then fµ is continuous.

Proof. It is straightforward to show that fµ is continuous for λ > 0. Therefore,
given y0 ∈ Y , we must show that fµ(λ, y) → 0 = fµ(0, y0) as (λ, y) → (0, y0). We
have

Txλ,y − y = Txλ,y0 − y0 + Txλ,y−y0 − y + y0 → 0 as (λ, y)→ (0, y0)

(applying (12) and (14)). Also,

√
λxλ,y =

√
λxλ,y0 +

√
λxλ,y−y0

⇒
√
λ‖xλ,y‖X ≤

√
λ‖xλ,y0‖X +

√
λ‖xλ,y−y0‖X

⇒
√
λ‖xλ,y‖X ≤

√
λ‖N−1

λ T ∗y0‖X +
√
λ‖N−1

λ T ∗(y − y0)‖X

⇒
√
λ‖xλ,y‖X ≤

√
λ‖N−1

λ T ∗y0‖X +
1

2
‖y − y0‖Y

⇒ λ‖xλ,y‖2X → 0 as (λ, y)→ (0, y0)

(by (11) and (13)). Since, for µ ∈ (0, 1), λ1/µ = o(λ), it follows immediately that

λ1/µ‖xλ,y‖2X → 0 as (λ, y)→ (0, y0)

and hence that
lim

(λ,y)→(0,y0)
fµ(λ, y) = 0 = fµ(0, y0).

Thus fµ is continuous.

To prove that (18) has a solution for 1/2 < µ < 1, we have to assume that the
true solution x∗ = T †y∗ has some extra smoothness. We will use the following result.

Lemma 3. Suppose x∗ ∈ R((T ∗T )ν) for some ν > 0. Then

ν ∈
(

0,
1

2

)
⇒ ‖Txλ,y∗ − y∗‖2Y = o

(
λ1+2ν

)
and

ν ≥ 1

2
⇒ ‖Txλ,y∗ − y∗‖2Y ∼ λ2.
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For a proof of this result, see Theorem 4.3, together with Remarks 4.15 and 4.19, of [6].
(Theorem 4.3 gives the corresponding “big-oh” estimate in the case that ν ∈ (0, 1/2),
but Remark 4.19 suggests how to improve the estimate to “little-oh,” as stated above.)

Lemma 4.
1. There exists λ > 0 such that f1(λ, y∗) = 0 and f1(λ, y∗) > 0 for all λ in the

interval (0, λ).
2. Suppose x∗ ∈ R((T ∗T )ν) and

0 < ν <
1

2
and

1

1 + 2ν
≤ µ < 1

or

ν ≥ 1

2
and

1

2
< µ < 1.

Then there exists λ > 0 such that fµ(λ, y∗) = 0 and fµ(λ, y∗) > 0 for all
λ ∈ (0, λ).

Proof.
1. Since ‖N−1

λ ‖ ≤ λ−1, it follows that

xλ,y∗ → 0 and λ‖xλ,y∗‖2X → 0 as λ→∞

and hence that

‖Txλ,y∗ − y∗‖2Y → ‖y∗‖2Y as λ→∞.

Therefore,

f1(λ, y∗) = λ‖xλ,y∗‖2X − ‖Txλ,y∗ − y∗‖2Y → −‖y∗‖2Y < 0 as λ→∞.

On the other hand,

f1(λ, y∗) = λ
(
‖xλ,y∗‖2X − λ−1‖Txλ,y∗ − y∗‖2Y

)
= λ

(
‖xλ,y∗‖2X − λ−1‖Txλ,y∗ − Tx∗‖2Y

)
= λ

(
‖xλ,y∗‖2X − λ−1‖T

(
λN−1

λ x∗
)
‖2Y
)

= λ
(
‖xλ,y∗‖2X − ‖

√
λTN−1

λ x∗‖2Y
)

(where we have used (15)). Since

‖xλ,y∗‖X → ‖x∗‖X > 0 and
√
λTN−1

λ → 0 pointwise as λ→ 0+,

it follows that f1(λ, y∗) > 0 for all λ > 0 sufficiently small. We can define

λ = sup{λ̂ > 0 : f1(λ, y∗) > 0 for all λ ∈ (0, λ̂)},

and the proof is complete.
2. As before, fµ(λ, y∗) < 0 for all λ > 0 sufficiently large. Suppose first that
ν ≥ 1/2 and µ > 1/2. By the preceding lemma, there exists C > 0 such that

‖Txλ,y∗ − y∗‖2Y ≤ Cλ2.

It follows that
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CONVERGENCE OF A HEURISTIC PARAMETER CHOICE RULE A2703

fµ(λ, y∗) = λ1/µ
(
‖xλ,y∗‖2X − λ−1/µ‖Txλ,y∗ − y∗‖2Y

)
≥ λ1/µ

(
‖xλ,y∗‖2X − Cλ2−1/µ

)
.

Since ‖xλ,y∗‖2X → ‖x∗‖2X > 0 and λ2−1/µ → 0 as λ → 0+, it follows that
fµ(λ, y∗) > 0 for all λ > 0 sufficiently small.
Now suppose that 0 < ν < 1/2 and µ ≥ 1/(1 + 2ν). Then

fµ(λ, y∗) = λ1/µ

(
‖xλ,y∗‖2X −

‖Txλ,y∗ − y∗‖2Y
λ1/µ

)
≥ λ1/µ

(
‖xλ,y∗‖2X −

‖Txλ,y∗ − y∗‖2Y
λ1+2ν

)
.

Since ‖xλ,y∗‖2X → ‖x∗‖2X > 0 and λ−(1+2ν)‖Txλ,y∗ − y∗‖2Y → 0 as λ → 0+

(by the previous lemma), it follows that fµ(λ, y∗) > 0 for all λ > 0 sufficiently
small.
In either case, the proof follows as before.

We can now prove the existence of solutions of (10) and (17). In the following
theorem, Bε(y

∗) denotes the open ball of radius ε centered at y∗.

Theorem 5.
1. There exist ε > 0 and λ∗ > 0 such that for all y ∈ Bε(y∗) \R(T ), there exists
λ ∈ (0, λ∗) such that λ‖xλ,y‖2Y = ‖Txλ,y − y‖2Y .

2. Suppose x∗ ∈ R((T ∗T )ν) and

0 < ν <
1

2
and

1

1 + 2ν
≤ µ < 1

or

ν ≥ 1

2
and

1

2
< µ < 1.

Then there exist ε > 0 and λ∗ > 0 such that for all y ∈ Bε(y∗) \ R(T ), there
exists λ ∈ (0, λ∗) such that λ‖xλ,y‖2µY = ‖Txλ,y − y‖2µY .

Proof.
1. Let λ be the value from the previous lemma; then we have

f1(0, y∗) = f1(λ, y∗) = 0

and f1(λ, y∗) > 0 for all λ ∈ (0, λ). Since f1(·, y∗) is continuous, it achieves
its maximum on [0, λ]; let M = max{f1(λ, y∗) : 0 ≤ λ ≤ λ} and define

λ∗ = sup{λ̂ > 0 : f1(λ, y∗) < M for all λ ∈ (0, λ̂)}.

Since f1 is continuous, there exists ε1 > 0 such that for all y ∈ Bε1(y∗),
f1(λ∗, y) ≥M/2. Define

ε = min

{
ε1,

√
M

2

}
.

If y ∈ Bε(y∗) \ R(T ), then

f1(λ∗, y) ≥ M

2
≥ ε2 > ‖ŷ‖2Y > 0.
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A2704 MARK S. GOCKENBACH AND ELAHEH GORGIN

Since f1(λ, y)→ 0 as λ→ 0+, it follows that

Λ = sup{λ̂ ∈ (0, λ∗) : f1(λ, y) < ‖ŷ‖2Y for all λ ∈ (0, λ̂)}

is well defined and satisfies Λ ∈ (0, λ∗), f1(Λ, y) = ‖ŷ‖2Y , and f1(λ, y) < ‖ŷ‖2Y
for all λ ∈ (0,Λ). Since λ‖xλ,y‖2X = ‖Txλ,y − y‖2Y if and only if f1(λ, y) =
‖ŷ‖2Y , the proof is complete.

2. The proof is essentially the same as that of the first part.

From now on, ε > 0 and λ∗ will have the values from the previous theorem and
we always assume that µ ∈ (1/2, 1]. We define Λµ : Bε(y

∗) \ R(T ) → (0, λ∗) by the
condition that λ = Λµ(y) is the smallest solution of (18) in (0, λ∗). When µ = 1, we
will sometimes write Λ(y) in place of Λ1(y).

Corollary 6. Let {yn} ⊂ Bε(y
∗) \ R(T ) satisfy yn → y∗ as n → ∞. Then

Λµ(yn)→ 0 as n→∞.

Proof. We will write λn = Λµ(yn) for each n ∈ Z+. Since {λn} ⊂ (0, λ∗), without

loss of generality, there exists λ̂ ∈ [0, λ∗] such that λn → λ̂. Since fµ is continuous, it
follows that

lim
n→∞

fµ(λn, yn) = fµ(λ̂, y∗).

But fµ(λn, yn) = ‖ŷn‖2Y → 0 as n → ∞ and therefore fµ(λ̂, y∗) = 0. Since the only

value λ ∈ [0, λ∗] such that fµ(λ, y∗) = 0 is λ = 0, it follows that λ̂ = 0 and Λµ(yn)→ 0
as n→∞.

We now define

S = Sy∗,ε,s = {y ∈ Bε(y∗) : ‖ŷ‖Y ≥ s‖y − y∗‖Y },

where s ∈ (0, 1) is a constant. Notice that if y ∈ S, then the angle θ between y and
R(T ) satisfies sin (θ) ≥ s. We can now prove that (10) and (17) define convergent
parameter choice rules if y approaches y∗ from within S.

Theorem 7.
1. Let s satisfy 1/2 < s < 1 and consider S = Sy∗,ε,s. If {yn} ⊂ S and yn → y∗,

then
Λ(yn) ∼ ‖yn − y∗‖2Y as n→∞.

Moreover,
xΛ(yn),yn → x∗ weakly as n→∞.

2. Suppose x∗ ∈ R((T ∗T )ν) and

0 < ν <
1

2
and

1

1 + 2ν
≤ µ < 1

or

ν ≥ 1

2
and

1

2
< µ < 1.

For any s > 0,

{yn} ⊂ Sy∗,ε,s, yn → y∗ ⇒ Λµ(yn) ∼ ‖yn − y∗‖2µY as n→∞.

Moreover,

{yn} ⊂ Sy∗,ε,s, yn → y∗ ⇒ xΛµ(yn),yn → x∗ as n→∞,

where now the convergence is in the norm topology.
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CONVERGENCE OF A HEURISTIC PARAMETER CHOICE RULE A2705

Proof.
1. We must show that there exist constants c1 > 0 and c2 > 0 such that

c1 ≤
Λ(yn)

‖yn − y∗‖2Y
≤ c2 for all n ∈ Z+.

To prove that such a constant c1 exists, we argue by contradiction and assume
(without loss of generality) that

Λ(yn)

‖yn − y∗‖2Y
→ 0 as n→∞.

For any y ∈ Y , we have xλ,y = xλ,y − xλ,y∗ + xλ,y∗ = N−1
λ (y − y∗) + xλ,y∗

and therefore, applying (11) and (16),

‖xλ,y‖X ≤ ‖N−1
λ T ∗(y − y∗)‖X + ‖xλ,y∗‖X

≤ 1

2
√
λ
‖y − y∗‖Y + ‖x∗‖X ,

which implies

λ‖xλ,y‖2X ≤
1

4
‖y − y∗‖2Y +

√
λ‖x∗‖X‖y − y∗‖Y + λ‖x∗‖2X .

We apply this inequality to y = yn with λ = λn = Λ(yn). Then, since

Λ(yn) = o(‖yn − y∗‖2Y ),

we obtain√
λn‖x∗‖X‖yn − y∗‖Y = o(‖yn − y∗‖2Y ) and λn‖x∗‖2X = o(‖yn − y∗‖2Y ).

It follows that for any δ > 0,

λ‖xλn,yn‖2X ≤
(

1

4
+ δ

)
‖yn − y∗‖2Y for all n sufficiently large.

On the other hand, we have

‖Txλn,yn − yn‖2Y = ‖Txλn,yn − yn‖2Y + ‖ŷn‖2Y ≥ ‖ŷn‖2Y .

Therefore,

λn‖xλn,yn‖2X = ‖Txλn,yn − yn‖2Y ≥ ‖ŷn‖2Y ≥ s2‖yn − y∗‖2Y

and we obtain

s2‖yn − y∗‖2Y ≤ λn‖xλn,yn‖2X ≤
(

1

4
+ δ

)
‖yn − y∗‖2Y for all n sufficiently

large.⇒ s2 ≤ 1

4
+ δ.

Moreover, this must hold for all δ > 0. Since s > 1/2 by assumption, this is
a contradiction. It follows that there must exist c1 > 0 such that

Λ(yn)

‖yn − y∗‖2Y
≥ c1 for all n ∈ Z+.
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A2706 MARK S. GOCKENBACH AND ELAHEH GORGIN

It now follows from the standard theory of Tikhonov regularization that
xλn,yn → x∗ weakly. To be specific,

yn → y∗, λn → 0, and
‖yn − y∗‖2Y

λn
≤ c−1

1 ⇒ xλn,yn → x∗ weakly

(see, for example, Theorem 3.20 of [8]).
Now we show that there exists c2 > 0 such that

Λ(yn)

‖yn − y∗‖2Y
≤ c2 for all n ∈ Z+.

Still writing λn = Λ(yn), xλn,yn → x∗ weakly implies that

‖x∗‖X ≤ lim inf
n→∞

‖xλn,yn‖X

⇒ lim inf
n→∞

(2‖xλn,yn‖2X − ‖x∗‖2X) ≥ ‖x∗‖2X .

It follows that there exists n0 sufficiently large that

2‖xλn,yn‖2X − ‖x∗‖2X ≥
1

2
‖x∗‖2X for all n ≥ n0.

Since xλn,yn is the minimizer of ‖Tx− yn‖2Y + λn‖x‖2X ,

‖Txλn,yn − yn‖2Y + λn‖xλn,yn‖2X ≤ ‖Tx∗ − yn‖2Y + λn‖x∗‖2X
= ‖yn − y∗‖2Y + λn‖x∗‖2X .

Moreover, we have ‖Txλn,yn − yn‖2Y = λn‖xλn,yn‖2X . Therefore, for n ≥ n0,

2λn‖xλn,yn‖2X ≤ ‖yn − y∗‖2Y + λn‖x∗‖2X
⇒ (2‖xλn,yn‖2X − ‖x∗‖2X)λn ≤ ‖yn − y∗‖2Y

⇒ 1

2
‖x∗‖2Xλn ≤ ‖yn − y∗‖2Y for all n ≥ n0

⇒ λn ≤
2

‖x∗‖2X
‖yn − y∗‖2Y for all n ≥ n0.

It follows that there exists c2 > 0 such that

λn ≤ c2‖yn − y∗‖2Y for all n ∈ Z+

and the proof is complete.
2. We must show that there exist constants c1 > 0 and c2 > 0 such that

c1 ≤
Λµ(yn)

‖yn − y∗‖2µY
≤ c2 for all n ∈ Z+.

To prove that such a constant c1 exists, we argue by contradiction and suppose
that there exist s > 0 and {yn} ⊂ S = Sy∗,ε,s such that

yn → y∗ and λn = o(‖yn − y∗‖2µY ),

where λn = Λµ(yn). We now argue much as in the proof of the first part of
the theorem. We have
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CONVERGENCE OF A HEURISTIC PARAMETER CHOICE RULE A2707

λ1/µ
n ‖xλn,yn‖2X
≤ λ1/µ

n (‖xλn,yn−y∗‖X + ‖xλn,y∗‖X)
2

= λ1/µ
n ‖xλn,yn−y∗‖2X + 2λ1/µ

n ‖xλn,y∗‖X‖xλn,yn−y∗‖X + λ1/µ
n ‖xλn,y∗‖2X

≤ λ1/µ
n

(
1

2
√
λn
‖yn−y∗‖Y

)2

+ 2λ1/µ
n ‖x∗‖X

(
1

2
√
λn
‖yn−y∗‖Y

)
+ λ1/µ

n ‖x∗‖2X

=
λ

1/µ−1
n

4
‖yn − y∗‖2Y + λ1/µ−1/2‖x∗‖X‖yn − y∗‖Y + λ1/µ

n ‖x∗‖2X .

Since λn = o(‖yn − y∗‖2µY ), it is easy to see that each of the three terms on
the right is o(‖yn−y∗‖2Y ). Therefore, there exists a sequence {αn} of positive
numbers such that

αn → 0 and λ1/µ
n ‖xλn,yn‖2X ≤ αn‖yn − y∗‖2Y for all n ∈ Z+.

On the other hand,

λ1/µ
n ‖xλn,yn‖2X = ‖Txλn,yn − yn‖2 = ‖Txλn,yn − yn‖2 + ‖ŷn‖2Y

≥ ‖ŷn‖2Y
≥ s2‖yn − y∗‖2Y .

It follows that

s2‖yn − y∗‖2Y ≤ λ1/µ
n ‖xλn,yn‖2X ≤ αn‖yn − y∗‖2Y for all n ∈ Z+.

Since αn → 0 and s > 0, this is impossible; thus we have obtained the desired
contradiction. This shows that there exists c1 > 0 such that

c1 ≤
λn

‖yn − y∗‖2µY
for all n ∈ Z+.

Because µ ∈ (0, 1), it follows immediately that

‖yn − y∗‖2Y
λn

=
‖yn − y∗‖2µY

λn
‖yn−y∗‖2−2µ

Y ≤ c−1
1 ‖yn−y∗‖

2−2µ
Y → 0 as n→∞.

Therefore, by the standard theory of Tikhonov regularization (for example,
Theorem 3.19 of [8]),

yn → y∗, λn → 0, and
‖yn − y∗‖2Y

λn
→ 0 ⇒ ‖xλn,yn − x∗‖X → 0.

Now we wish to show that there exists c2 > 0 such that

λn

‖yn − y∗‖2µY
≤ c2 for all n ∈ Z+.

We will argue by contradiction and assume, without loss of generality, that

‖yn − y∗‖2µY
λn

→ 0 as n→∞.

D
ow

nl
oa

de
d 

02
/2

6/
19

 to
 1

41
.2

19
.4

4.
85

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A2708 MARK S. GOCKENBACH AND ELAHEH GORGIN

This is equivalent to

‖yn − y∗‖2Y
λ

1/µ
n

→ 0 as n→∞.(19)

We have

λ1/µ
n ‖xλn,yn‖2X − ‖Txλn,yn − yn‖2Y = ‖ŷn‖2Y ≤ ‖yn − y∗‖2Y ,

which implies that

‖yn − y∗‖2Y
λ

1/µ
n

≥ ‖xλn,yn‖2X −
‖Txλn,yn − yn‖2Y

λ
1/µ
n

.

Since xλn,yn → x∗ as n → ∞, we will obtain the desired contradiction if we
can prove that

‖Txλn,yn − yn‖2Y
λ

1/µ
n

→ 0 as n→∞.

We have

‖Txλn,yn − yn‖2Y
λ

1/µ
n

≤ 2‖Txλn,y∗ − y∗‖2Y
λ

1/µ
n

+
2‖Txλn,yn−y∗ − (yn − y∗)‖2Y

λ
1/µ
n

.

(20)

Next, we show that

‖Txλn,y∗ − y∗‖2Y
λ

1/µ
n

→ 0 as n→∞.

We must consider two cases. If 0 < ν < 1/2, then Lemma 3 yields

‖Txλn,y∗ − y∗‖2Y = o(λ1+2ν
n ),

which, in turn, implies that

‖Txλn,y∗ − y∗‖2Y
λ

1/µ
n

≤ ‖Txλn,y
∗ − y∗‖2Y

λ1+2ν
n

→ 0 as n→∞.

If ν ≥ 1/2 and µ > 1/2, then Lemma 3 implies that

‖Txλn,y∗ − y∗‖2Y = O(λ2
n).

Therefore,

‖Txλn,y∗ − y∗‖2Y
λ

1/µ
n

= O(λ2−µ−1

n )→ 0 as n→∞,

and the result holds in this case also.
We also have

‖Txλn,yn−y∗ − (yn − y∗)‖2Y = ‖(TN−1
λ T ∗ − I)(yn − y∗)‖2Y ≤ ‖yn − y∗‖2Y

since ‖TN−1
λ T ∗ − I‖ ≤ 1. It then follows from (19) that

‖Txλn,yn−y∗ − (yn − y∗)‖2Y
λ

1/µ
n

≤ ‖yn − y
∗‖2Y

λ
1/µ
n

≤ ‖yn − y
∗‖2Y

λ
1/µ
n

→ 0 as n→∞.
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CONVERGENCE OF A HEURISTIC PARAMETER CHOICE RULE A2709

Therefore, by (20), we have

‖Txλn,yn − yn‖2Y
λ

1/µ
n

→ 0 as n→∞,

which completes the proof by contradiction.

We now derive the rate of convergence for the MR rule. We note that, for x∗

belonging to R((T ∗T )ν), 0 < ν < 1, the optimal worst-case rate of convergence of
xλ,y to x∗ is

‖xλ,y − x∗‖X = o
(
‖y − y∗‖2ν/(2ν+1)

Y

)
,

and it is ‖xλ,y − x∗‖X = O(‖y − y∗‖2/3Y ) if ν = 1 (see, for instance, [6] or [8]).
For x∗ ∈ R((T ∗T )ν), Theorem 7 shows that the MR rule is guaranteed to be

convergent if µ satisfies
1

1 + 2ν
≤ µ < 1 if 0 < ν <

1

2
or

1

2
< µ < 1 if ν ≥ 1

2
.

The following theorem derives the corresponding rate of convergence.

Theorem 8.
1. If x∗ ∈ R((T ∗T )ν) for some ν ∈ (0, 1/2) and µ = 1/(1 + 2ν), then, for any
s > 0, {yn} ⊂ Sy∗,ε,s and yn → y∗ imply

‖xΛµ(yn),yn − x
∗‖X = O

(
‖yn − y∗‖2ν/(2ν+1)

Y

)
as n→∞.

Moreover, this value of µ gives the optimal worst-case rate of convergence for
x∗ ∈ R((T ∗T )ν).

2. If x∗ ∈ R((T ∗T )ν) for some ν ≥ 1/2, ε ∈ (0, 1/2), and µ = 1/2 + ε, then, for
any s > 0, {yn} ⊂ Sy∗,ε,s and yn → y∗

‖xΛµ(yn),yn − x
∗‖X = O

(
‖yn − y∗‖1/2−εY

)
as n→∞.

Proof. Given µ satisfying the requirements of Theorem 7, we have

λn = Λµ(yn) ∼ ‖yn − y∗‖2µY .

Therefore,

‖xλn,yn − x∗‖X ≤ ‖xλn,yn − xλn,y∗‖X + ‖xλn,y∗ − x∗‖X

= O

(
‖yn − y∗‖Y√

λn

)
+O (λνn)

= O
(
‖yn − y∗‖1−µY

)
+O

(
‖yn − y∗‖2νµY

)
= O

(
‖yn − y∗‖min{1−µ,2νµ}

Y

)
.

Suppose now that 0 < ν < 1/2. It is easy to show that the solution of

max min{1− µ, 2νµ}

s.t. µ ≥ 1

1 + 2ν
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A2710 MARK S. GOCKENBACH AND ELAHEH GORGIN

is µ = 1/(1 + 2ν), which yields min{1− µ, 2νµ} = 2ν/(2ν + 1) and hence

‖xλn,yn − x∗‖X = O
(
‖yn − y∗‖2ν/(2ν+1)

Y

)
.

This proves the first result. On the other hand, if ν ≥ 1/2 and µ = 1/2 + ε, then
min{1− µ, 2νµ} = 1/2− ε, and the second result follows.

Theorem 8 suggests that the rate of convergence achieved by the MR rule can be

arbitrarily close to O(‖yn−y∗‖1/2Y ), but that this latter rate cannot be obtained. The
MR rule yields the optimal worst-case rate of convergence only for 0 < ν < 1/2; for
ν ≥ 1/2, the rate of convergence is suboptimal.

Hanke and Raus also use the hypothesis {yn} ⊂ Sy∗,ε,s to analyze their heuristic
parameter choice rule. In Theorem 3.1, Corollary 3.2, and Theorem 3.3 of [12], they
showed that {yn} ⊂ Sy∗,ε,s and yn → y∗ imply that xλ,y → x∗ (in norm) when λ is
chosen by the Hanke–Raus rule. Moreover, they showed that for all ν ∈ (0, 1] there
exists a constant c > 0 (depending on x∗) such that

‖xλ,y − x∗‖X ≤
c

s
δ

2ν/(2ν+1)
∗ .(21)

Here δ∗ = max{ηλ, ‖y − y∗‖Y }, where

ηλ =
[〈
y, (TT ∗ + λI)−3y

〉
Y

]1/2
.

If it were possible to prove that ηλ ∼ ‖y − y∗‖Y , this result would yield the optimal
worst-case rate of convergence for all ν ∈ (0, 1]. However, this has not been proved.
(We recall that there is another analysis of the Hanke–Raus rule, due to Kindermann
[18] and discussed in section 1, that uses different assumptions about the allowable
data. We also note that Hämarik, Palm, and Raus [10] proved an estimate of the form
(21), valid for a family of minimization-based parameter choice rule that include the
quasi-optimality approach. As in the Hanke–Raus estimate, δ∗ includes a quantity
that must be of order δ to obtain the optimal rate of convergence. However, the
analysis in [10] does not rely on the assumption that {yn} ⊂ Sy∗,ε,s.)

In spite of this theoretical foundation, the Hanke–Raus rule did not perform as
well in our experiments as most of the other parameter choice methods considered
in this paper; in particular, it performed poorly compared to the Reginska and MR
rules.

The condition that the noisy data satisfy ‖ŷ‖Y ≥ s‖y− y∗‖Y for some s > 1/2 is
sufficient to guarantee weak convergence, in rule (10), as y → y∗. Although we cannot
prove that this condition is necessary, it is not difficult to show that ‖xΛ(yn),yn‖X
can grow without bound if ‖ŷn‖Y is too small compared to ‖yn − y∗‖Y . We will
demonstrate this by example. We choose any sequence {yn} ⊂ R(T ) such that

yn → y∗ and ‖T †yn‖X →∞ as n→∞

and consider data of the form yn + z, where z ∈ R(T )⊥ remains to be chosen. (We
are assuming that R(T ) is not closed, so that T † is unbounded and it is possible to
choose {yn} to satisfy these conditions.) For each fixed value of n, we have

Λ(yn + z)→ 0 as z → 0

and hence
xΛ(yn+z),yn

→ T †yn as z → 0.
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CONVERGENCE OF A HEURISTIC PARAMETER CHOICE RULE A2711

Now choose z sufficiently small that

‖xΛ(yn+z),yn
‖X ≥

1

2
‖T †yn‖X

and define yn by yn = yn + z for that value of z. Since xΛ(yn),yn = xΛ(yn),yn
for each

n, it follows that

‖xΛ(yn),yn‖X →∞ as n→∞,

as desired.
The fact that ‖y − y∗‖2Y /Λ(y) is only bounded (when y is restricted to lie in the

set S) as y → y∗ suggests that (10) will produce under-regularized solutions when the
error ‖y− y∗‖Y is small. We will perform numerical experiments to determine how it
performs, in practice, on discretized inverse problems.

Before we proceed to the numerical experiments, we must deal with the fact that
(10) and (17) do not define parameter values when ‖y − y‖Y is too large. In this
case, we wish to choose a value of λ that comes as close as possible to satisfying the
fixed point equation (10) or (17). Numerical experience suggests that we do this by
minimizing

log

(
‖Txλ,y − y‖2µY
‖xλ,y‖2µX

)
− log(λ).

Specifically, we take the smallest local minimizer of this function as our definition of
λ when (10) or (17) has no solution.

One other issue that must be addressed: If the noisy data vector y happens to
lie in R(T ), then the parameter choice rules defined here do not apply—the smallest
solution of either (10) or (17) is λ = 0. If we discretize Tx = y to obtain a matrix-
vector equation Ax = y, then this problem arises when y ∈ col(A) (the column space
of A). If A ∈ Rm×n, rank(A) < m, and the noise in y is random, then the probability
that y lies in col(A) is nearly zero and the difficulty does not arise. However, if Tx = y
is only mildly ill-posed, then the corresponding matrix A might have full column
rank. In such a case (which we encounter in some of our numerical experiments),
a discretization for which m = n is problematic. Therefore, in our experiments, we
ensure that A has more rows than columns; then col(A) is a proper subspace of Rm
and a vector y that contains random noise is unlikely to lie in col(A). (To be clear,
this was done only when necessary.) This is equivalent to choosing a discretization of
the solution space X that is not too fine compared to the amount of data that can be
collected.

If R(T ) = Y , then Theorem 7 does not apply; hence the theorem is not applicable
to every problem. Nevertheless, by discretizing Tx = y in such a way as to obtain
Ax = y, A ∈ Rm×n with m > n, the method appears to work even in such cases.

3. Numerical experiments. To test the performance of Reginska’s rule and
the modified Reginska rule, we applied it to 20 test problems, all of which are dis-
cretizations of first-kind integral equations. Sixteen are one-dimensional problems, 11
chosen from Hansen’s suite of test problems [14] (we omitted the problem parallax,
for which no exact solution is available, and the two-dimensional image-reconstruction
problems blur and tomo), and 5 from various research papers found in the litera-
ture. The other 4 problems are two-dimensional integral equations defined by various
kernels.
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A2712 MARK S. GOCKENBACH AND ELAHEH GORGIN

Each (discretized) problem is of the form Ax = y, where the exact data vector
y∗ and solution x∗ are known and the dimensions m, n of the problem (A ∈ Rm×n,
y ∈ Rm) can be chosen. For each test problem, we chose values of m,n and then
generated noisy vectors y for nv = 8 different relative noise levels

δ =
‖y − y∗‖
‖y∗‖

,

namely, δ = 2 · 10−1, 10−1, 10−2, 10−3, 10−4, 10−5, 10−6, 10−7 (using the Euclidean
norm). The components of the noise vector y−y∗ were uniformly distributed pseudo-
random numbers selected from an interval centered at zero and generated by MAT-
LAB (using the default random number generator in version 9.0). For each noise
level, we generate ne = 10 instances of the test problem. We regard each noise level
for each test problem as one experiment and ranked the parameter choice methods as
described below.

We compared the solutions produced by the Reginska and MR rules with those
produced by the L-curve, GCV, quasi-optimality, and Hanke–Raus criteria. The L-
curve and GCV solutions were computed using Hansen’s Regularization Toolbox [14]
(with one slight modification described below) and the others by Matlab code imple-
mented in a similar manner. In particular, values of λ were sought in the interval
[16εσ1, σ1], where σ1 is the largest singular value of A and ε is machine epsilon. For
the quasi-optimality and Hanke–Raus criteria, the global minimizer of the correspond-
ing objective function was chosen if it lay in the interior of the interval [16εσ1, σ1].
Otherwise, the value of λ corresponding to the smallest (interior) local minimum was
chosen. For the L-curve and GCV methods, Hansen’s algorithms were used, except
that the search interval was always chosen to be [16εσ1, σ1]. (In some cases, his code
would choose a more restricted interval, but our experiments showed that the larger
interval gave better overall results, at least for these test problems.)

Our experiments suggest that the performance of the MR rule is relatively insen-
sitive to the value of µ in the interval [0.85, 0.95]. For the numerical results presented
here, we used µ = 0.93.

Since each experiment consists of ten trials, we have to rank the methods some-
how. We used three measures:

• the mean error ratio;
• the median error ratio;
• a Borda-type count.

The error ratio is defined to be the error in xλ,y divided by the error in the optimal
Tikhonov solution xλ∗,y:

‖xλ,y − x∗‖L2

‖xλ∗,y − x∗‖L2

.(22)

Note that we can compute xλ∗,y because x∗ is known in our test problems. The Borda
count was computed as follows: the methods were ranked on each trial from first to
last (with ties allowed). A method that was, for example, first three times, second six
times, and third one time would have a Borda count of 3 · 1 + 6 · 2 + 1 · 3 = 18. For
each criterion (including the Borda count), we define “better” to mean at least 10%
better; when the difference is less than 10%, we regard the performance of the two
methods as essentially the same. One method was regarded as better than another if
it was better on at least two of the three measures defined above.

The one-dimensional test problems are baart, baker3, deriv2, foxgood, grav-
ity, groetsch2.3, groetsch2.5, heat, ilaplace, indramm, phillips, shaw, spikes,
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CONVERGENCE OF A HEURISTIC PARAMETER CHOICE RULE A2713

ursell, wazwaz2, and wing, and the two-dimensional problems are WangXiao,
Gaussian2Dver1, Gaussian2Dver2, and LogisticKernel2D. The appendix con-
tains a description or a reference for each test problem.

Overall results. We performed 160 experiments (20 test problems with 8 noise
levels for each problem). Table 1 shows how many times each parameter choice
ranked first, second, and so forth. For these test problems, the MR rule performed
the best, though not by a wide margin, followed by the quasi-optimality and L-curve
criteria. Reginska’s rule was somewhat less effective, while the Hanke–Raus and GCV
rules were much less effective.

Table 2 shows the mean and median error ratio and the Borda count for each
method over all 1600 trials. These data also suggest that the MR rule performs the
best on these test problems, although the quasi-optimality rule has a slightly smaller
median error ratio and also a slightly smaller Borda count. The L-curve and Reginska
rules are next best, with the Hanke–Raus and GCV rules appearing least effective.

Comparison of the mean and median error ratios suggests that some of the meth-
ods fail badly for certain trials. Table 3 shows the number of times each method
produced an error ratio greater than R for R = 10, 100, 1000. The results show that
the MR is the most robust method, followed by the L-curve, Reginska, and Hanke–
Raus rules. The quasi-optimality rule is noticeably less robust, and the GCV approach
is the least robust of all.

Finally, Tables 4 and 5 show the results for all methods, organized by noise
level. For larger errors, the L-curve and quasi-optimality criteria define the best

Table 1
The number of times each parameter choice rule achieved each rank in the 160 experiments.

Ties were allowed. (Thus each row sums to 160, but the columns need not sum to 160.)

Method 1st 2nd 3rd 4th 5th 6th
MR 92 20 23 23 2 0
Quasi-optimality 87 16 13 32 5 7
L-curve 84 24 12 22 17 1
Reginska 79 22 18 17 11 13
Hanke–Raus 55 9 10 11 42 33
GCV 30 9 10 19 41 51

Table 2
The mean and median error ratios and total Borda count for all methods over all trials.

Method Mean error ratio Median error ratio Borda count
MR 1.743 1.181 2439
Quasi-optimality 5.052 1.123 2334
L-curve 1.995 1.212 2652
Reginska 2.152 1.229 2875
Hanke–Raus 3.066 1.411 3377
GCV 489.3 1.447 3707

Table 3
The number of times each method produced an error ratio greater than R.

Method R = 10 R = 100 R = 1000
GCV 128 27 15
Quasi-optimality 73 42 0
Hanke–Raus 58 0 0
Reginska 43 0 0
L-curve 30 0 0
MR 7 0 0
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A2714 MARK S. GOCKENBACH AND ELAHEH GORGIN

Table 4
The results for all trials, organized by noise level δ (larger values of δ).

δ Method
Mean

error ratio
Median

error ratio
Borda
count

2 · 10−1 L-curve 1.434 1.140 269
Quasi-optimality 1.391 1.144 294
Reginska 1.570 1.207 322
MR 1.657 1.243 374
GCV 2422 1.313 422
Hanke–Raus 2.462 1.845 510

10−1 Quasi-optimality 1.512 1.148 297
L-curve 1.686 1.136 285
Reginska 1.648 1.154 289
MR 1.840 1.228 351
GCV 946.9 1.415 453
Hanke–Raus 2.841 1.934 535

Table 5
The results for all trials, organized by noise level δ (smaller values of δ).

δ Method
Mean

error ratio
Median

error ratio
Borda
count

10−2 MR 1.532 1.074 266
L-curve 1.527 1.166 288
Quasi-optimality 2.459 1.142 289
Reginska 1.611 1.152 303
GCV 435.0 1.669 452
Hanke–Raus 4.968 1.822 504

10−3 Quasi-optimality 7.371 1.142 282
MR 2.007 1.149 302
L-curve 2.262 1.236 359
Reginska 2.360 1.253 392
Hanke–Raus 6.828 1.405 436
GCV 45.99 1.589 502

10−4 MR 1.888 1.236 299
Quasi-optimality 7.214 1.123 309
L-curve 2.336 1.236 380
Hanke–Raus 2.080 1.363 373
Reginska 2.845 1.250 414
GCV 50.87 1.646 507

10−5 MR 1.986 1.103 297
Hanke–Raus 1.777 1.236 355
Quasi-optimality 6.828 1.125 307
L-curve 2.433 1.236 370
Reginska 2.514 1.242 403
GCV 5.252 1.410 472

10−6 MR 1.561 1.100 281
Quasi-optimality 6.923 1.095 290
Hanke–Raus 1.886 1.236 345
L-curve 2.406 1.236 343
Reginska 2.522 1.236 361
GCV 4.547 1.411 450

10−7 MR 1.475 1.051 269
Quasi-optimality 6.722 1.064 266
Hanke–Raus 1.688 1.156 319
L-curve 1.879 1.230 358
Reginska 2.148 1.236 391
GCV 3.850 1.405 449
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CONVERGENCE OF A HEURISTIC PARAMETER CHOICE RULE A2715

rules, at least on these test problems. Since the MR rule was devised to ensure strong
convergence as the noise level δ goes to zero, it is not surprising that it is the best
method for smaller values of δ. Nevertheless, it performs reasonably well for larger
values of δ (and better than the Hanke–Raus and GCV rules). As expected from the
fact that Λ(y) ∼ ‖y− y∗‖2Y as y → y∗, Reginska’s rule is less effective for small values
of δ (although at no noise level is it the worst method).

4. Discussion. The method of multiplicative regularization suggests a method
for choosing the regularization parameter in Tikhonov regularization. We have pre-
sented an analysis that shows that this method, which we call Reginska’s rule because
it is equivalent to the approach in [27], is well defined provided the data y is suffi-
ciently close to exact data y∗ ∈ R(T ). The analysis shows that the regularization
parameter converges to zero like O(δ2), where δ is the noise level in the data, pro-
vided the component of y that is orthogonal to R(T ) is sufficiently large compared
to ‖y − y∗‖Y . This shows that xλ,y is guaranteed (under the given conditions on the
noise) to converge weakly to x∗, but it also suggests that the method will produce
under-regularized estimates.

On a collection of 20 test problems, the Reginska’s rule performed reasonably well
when compared to four popular parameter choice rules. However, unsurprisingly, its
relative performance deteriorated for smaller noise levels.

When it performs poorly, Reginska’s rule tends to choose regularization parame-
ters that are too small. For this reason, a modification is proposed: In place of

λ =
‖Txλ,y − y‖2Y
‖xλ,y‖2X

,

we can define λ by the fixed point equation

λ =
‖Txλ,y − y‖2µY
‖xλ,y‖2µX

,

where 1/2 < µ < 1. A value of µ in the range 0.85 ≤ µ ≤ 0.95 seems to work well and
results in a method that outperformed Reginska’s rule, the Hanke–Raus rule, and the
GCV approach, and slightly outperformed the quasi-optimality and L-curve criteria.

We wish to emphasize that the numerical experiments included in this study
are not extensive enough to determine which heuristic parameter choice rule is most
effective. With only 20 problems in the test set, the outcome can be changed by
making small changes in the collection. For instance, the quasi-optimality method
performed especially poorly on problem groetsch2.5, whereas the MR rule did poorly
on the problems gravity and phillips. By including or omitting a few problems, we
could produce a set of test problems that favors either of the two rules.

Nevertheless, the MR rule seems to be at least competitive with other popular
heuristic parameter choice rules. Moreover, this method has a strong theoretical
foundation: as long as y does not follow a path tangent to R(T ) in converging to y∗,
xλ,y is guaranteed to converge (in norm) to x∗, assuming x∗ ∈ R((T ∗T )ν for ν > 0
sufficiently large. The worst-case rate of convergence is optimal provided 0 < ν < 1/2
and µ = 1/(1 + 2ν); for ν ≥ 1/2, the rate of convergence is suboptimal.

A more extensive numerical comparison of parameter choice rules, including the
Reginska, quasi-optimality, and GCV rules, was given in [4]. (Note that the authors
referred to Reginska’s rule as the L-curve criterion, since it can be viewed as one
approach to choosing the corner of the L-curve.) In that study, the quasi-optimality

D
ow

nl
oa

de
d 

02
/2

6/
19

 to
 1

41
.2

19
.4

4.
85

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A2716 MARK S. GOCKENBACH AND ELAHEH GORGIN

approach was the best, GCV was noticeably less effective, and Reginska’s rule was
much less effective than GCV. However, it is difficult to compare their results with
ours because their test problems were so different from ours. The authors considered
randomly generated ill-conditioned systems Ax = b with the singular values of A ∈
Rn×n of the form σk ≈ k−µ. The chosen values of n and µ were such that all the test
matrices A were of full numerical rank and most had a condition number of less than
108. By contrast, of the 20 test matrices considered in this paper, 15 were numerically
singular and most of these had a large null space. As noted above, it is expected that
Reginska’s rule will perform poorly on a square system based on a full-rank matrix.

Hämarik, Palm, and Raus [10] studied the performance of numerous parameter-
choice rules, including the quasi-optimality and Hanke–Raus rules, on ten problems
from Hansen’s test set. With respect to the quasi-optimality rule, their results are
generally consistent with ours, but they found the Hanke–Raus rule to perform much
worse than we did.

Appendix: Test problems. The problems baart, deriv2, foxgood, gravity,
heat, ilaplace, phillips, shaw, spikes, ursell, and wing are taken from Hansen’s
collection [14] of test problems. Each problem was discretized so that the approximate
solution lay in R100 and, for all but two, so that the data also lay in R100. The prob-
lems deriv2, heat, and phillips were discretized to produce matrices A ∈ R200×100

because the matrices are full rank, or nearly so. The problem ursell is defined by the
same operator as in [14], but a square-integrable solution (namely, f(t) = t(1 − t))
was chosen.

baker3 [2]. Discretization of the integral equation∫ 1

0

estf(t) dt =
es+1 − 1

s+ 1
, 0 < s < 1.

The exact solution is f(t) = et. The discretization is performed by the midpoint rule
on a uniform mesh of 100 elements.

groetsch2.3 [9]. Discretization of the integral equation∫ 100

0

se−s
2/(4t)

2
√
πt3/2

f(t) dt = g(s), 0 < s < 100.

The exact solution is

f(t) = 40 + 5 cos ((100− t)/5) + 2.5 cos (2(100− t)/2.5) + 1.25 cos (4(100− t)/2).

The operator is discretized by the midpoint rule on a mesh with 200 elements and the
exact data is generated by applying the discretized operator to the exact solution.

groetsch2.5 [9]. Discretization of the integral equation∫ π

0

k(s, t)f(t) dt = g(s), 0 < s < π,

where the kernel k is defined by

k(s, t) = − 2

π

∞∑
n=1

sin (ns) sin (nt)

n
.

For our computations, we approximate k by the first 100 terms of this series, and
discretize the integral equation using the midpoint rule on a uniform mesh of 100
elements. The exact solution is f(t) = t(π − t) and the exact data is generated by
applying the discretized operator to the exact solution.
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Fig. 1. The mesh for problems WangXiao, Gaussian2Dver1, Gaussian2Dver2, and Lo-
gisticKernel2D.

indramm [17]. Discretization of the integral equation∫ 1

0

e−stf(t) dt =
1− (s+ 1)e−s

s2
, 0 < s < 1.

The exact solution is f(t) = t. The equation is discretized by the midpoint rule on a
uniform mesh with 100 elements.

wazwaz2 [34]. Discretization of the integral equation∫ π

0

cos (s− t)f(t) dt =
π

2
cos (s), 0 < s < π.

The exact solution is f(t) = cos (t). The equation is discretized by the midpoint rule
on a uniform mesh with 100 elements.

The 4 remaining test problems are all first-kind integral equations defined on the
unit square (0, 1)× (0, 1); that is, each asks for an estimate of f in the equation∫ 1

0

∫ 1

0

k(x, y, s, t)f(s, t) ds dt = g(x, y), (x, y) ∈ (0, 1)× (0, 1),

from a measurement of the right-hand side g. The kernel k and the data g differ for
each problem. Each was discretized by projecting the kernel onto the tensor-product
finite element space defined by continuous piecewise linear function on the mesh shown
in Figure 1. This mesh has 400 triangular elements and 221 nodes, which means that
the discretized operator is represented by a 221× 221 matrix.

WangXiao [33]. The kernel is k(x, y, s, t) = e−80[(x−s−0.5)2+(y−t−0.5)2] and the
exact solution is

f(s, t) =

(
e−(s−0.3)2/0.03 + e−(s−0.7)2/0.03

0.9550408
− 0.052130913

)
e−(t−0.3)2/0.03.

Gaussian2Dver1. The kernel is K(x, y, s, t) = k0(x− s, y − t, 0.15), where

k0(s, t, σ) =
1

2πσ2
e−(s2+t2)/(2σ2).

The exact solution is f(s, t) = k0(s− 0.25, t− 0.5, 0.1).
Gaussian2Dver2. The kernel is the same as in the previous problem, except

with σ = 0.3. The solution is f(s, t) = k0(s− 0.65, t− 0.35, 0.15).
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LogisticKernel2D. The kernel is

k(x, y, s, t) =
2e−(x−s)

(1 + e−(x−s) + e−(y−t))3
,

and the exact solution is f(s, t) = k0(s− 0.75, t− 0.8, 0.1) + k0(s− 0.2, t− 0.6, 0.15).
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