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SIAM J. NUMER. ANAL. c\bigcirc 2018 Society for Industrial and Applied Mathematics
Vol. 56, No. 5, pp. 2776--2795

APPROXIMATING THE GENERALIZED SINGULAR VALUE
EXPANSION\ast 

MARK S. GOCKENBACH\dagger AND MATTHEW J. ROBERTS\dagger 

Abstract. The generalized singular value expansion (GSVE) simultaneously diagonalizes a pair
of operators on Hilbert space. From a theoretical point of view, the GSVE enables a straightforward
analysis of, for example, weighted least-squares problems and the method of Tikhonov regularization
with seminorms. When the operators are discretized, an approximate GSVE can be computed from
the generalized singular value decomposition of a pair of Galerkin matrices. Unless the discretiza-
tion is carefully chosen, spurious modes can appear, but a natural condition on the discretization
guarantees convergence of the approximate GSVE to the exact one. Numerical examples illustrate
the pitfalls of a poor discretization and efficacy of the convergence conditions.

Key words. singular value expansion, convergence, Galerkin discretization

AMS subject classifications. 65J22, 47A52

DOI. 10.1137/18M1163713

1. Introduction. Many problems in computational mathematics require the
simultaneous analysis of two operators defined on a Hilbert space. Perhaps the most
common example is a linear inverse problem Tx = y, in which it is desired to estimate
the solution x from a (noisy) data vector y. A true inverse problem is unstable (that
is, x does not depend continuously on y); for this reason, it is common to choose a
regularization operator L with the property that Lx is small for reasonable solutions
x and large for those dominated by undesirable features (most commonly, L is a
derivative operator). The solution x is then estimated by solving

(1) min
x

\| Tx - y\| 2 + \lambda \| Lx\| 2,

where \lambda > 0 is a constant. This approach is called Tikhonov regularization with semi-
norms; the idea is to choose x so that Tx is close to y, while simultaneously requiring
that Lx is not too large.

Closely related to the problem just described is the following weighted least-
squares problem:

min \| Lx\| 2Z
s.t. x is a least-squares solution of Tx = y.

(2)

Indeed, the goal of solving (1) is to estimate the solution of (2) for y = y\ast , where y\ast 

is the exact data.
One more problem that involves the two operators T and L is the following

equality-constrained least-squares problem:

min \| Tx - y\| 2Y
s.t. Lx = z.

(3)

\ast Received by the editors January 3, 2018; accepted for publication (in revised form) June 28,
2018; published electronically September 11, 2018.
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\dagger Department of Mathematical Sciences, Michigan Technological University, Houghton, MI 49931-
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APPROXIMATING THE GSVE 2777

The generalized singular value expansion (GSVE) of an operator pair (T, L), intro-
duced in [6], allows the two operators to be simultaneously diagonalized and thereby
makes much desired analysis relatively transparent. To describe the GSVE, we es-
tablish the following conditions on the operators T and L; these conditions will be
assumed throughout the paper. Let X, Y , and Z be separable Hilbert spaces, let
T : X \rightarrow Y be a compact linear operator, and let L : D(L) \rightarrow Z be a closed linear
operator, where D(L) is a dense subspace of X. We assume that there exists \gamma > 0
such that

(4) \langle Tx, Tx\rangle Y + \langle Lx,Lx\rangle Z \geq \gamma \| x\| 2X for all x \in D(L).

Condition (4) is a common assumption that guarantees, among other things, that the
regularized problem (1) has a unique solution for each \lambda > 0. It has been the basis for
much analysis; see, for instance, [10, Chapter 1] (which refers to (4) as the completion
condition), [7, Chapter 5], or [5, Chapter 8]. We define the inner product \langle \cdot , \cdot \rangle \ast on
D(L) by \langle x, y\rangle \ast = \langle Tx, Ty\rangle Y + \langle Lx,Ly\rangle Z and write \| .\| \ast for the corresponding norm.
It is well known that D(L) is a Hilbert space under the inner product \langle \cdot , \cdot \rangle \ast (see, for
instance, [9] or section 5.2 of [7]). For future reference, we introduce the notation T\#

for the adjoint of T with respect to the \ast -inner product:

\langle Tx, y\rangle Y =
\bigl\langle 
x, T\#y

\bigr\rangle 
\ast for all x \in D(L), y \in Y.

The following theorem expresses the GSVE of (T, L).

Theorem 1 ([6, Theorem 4.2]). There exist a complete orthonormal set \{ \phi k :
k \in I\} for D(L), where I is a countable index set, a partition M0 \cup Ma \cup Mb of I,
orthonormal sets \{ \psi k : k \in M0 \cup Mb\} \subset Y , \{ \theta k : k \in M0 \cup Ma\} \subset Z, and subsets
\{ ak : k \in I\} and \{ bk : k \in I\} of \BbbR such that

T =
\sum 

k\in M0\cup Mb

ak\psi k \otimes \ast \phi k,

L =
\sum 

k\in M0\cup Ma

bk\theta k \otimes \ast \phi k,

and 0 \leq ak, bk \leq 1, a2k + b2k = 1 for all k \in I.

Here, \otimes \ast refers to the outer product with respect to the \ast -inner product.
As an example of the utility of the GSVE, we note that, for

x =
\sum 
k\in I

\alpha k\phi k \in D(L),

we have

\| Tx - y\| 2Y + \lambda \| Lx\| 2Z =
\sum 
k\in M0

\bigl\{ 
(ak\alpha k  - \langle \psi k, y\rangle Y )

2 + \lambda b2k\alpha 
2
k

\bigr\} 
+

\sum 
k\in Mb

(ak\alpha k  - \langle \psi k, y\rangle Y )
2 +

\sum 
k\in Ma

\lambda b2k\alpha 
2
k + \| \^y\| 2Y ,

(5)

where \^y is the projection of y onto \scrR (T )\bot . It then follows easily that the solution of
(1) is

x\lambda ,y =
\sum 
k\in M0

ak
a2k + \lambda b2k

\langle \psi k, y\rangle Y \phi k +
\sum 
k\in Mb

\langle \psi k, y\rangle Y
ak

\phi k.
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2778 MARK S. GOCKENBACH AND MATTHEW J. ROBERTS

The use of GSVE reduces (1) from a problem of minimizing over all x \in D(L) to that
of minimizing over each \alpha k individually, the key being that each \alpha k appears in only
one term on the right-hand side of (5). From this formula for x\lambda ,y, various properties
of the solution can be examined.

The purpose of this paper is to propose and analyze a general approach to esti-
mating the GSVE of an operator pair (T, L). Two approaches were presented in [6].
The first is based on recognizing that the pairs \alpha 2

k, \phi k, k \in I (with ak = 0 for k \in Ma),
are the eigenpairs of the compact self-adjoint operator T \sharp T . These eigenpairs can be
estimated using the general theory for symmetric, variationally posed eigenvalue prob-
lems, as presented in [4]. However, this approach has two shortcomings. We must
choose a finite-dimensional subspace \^X of D(L) with basis \{ x1, x2, . . . , xn\} and solve
the generalized (matrix) eigenvalue problem

G\alpha = \lambda M\alpha ,

where G \in \BbbR n\times n and M \in \BbbR n\times n are defined by

Gij = \langle xj , xi\rangle \ast and Mij = \langle Txj , Txi\rangle Y .

The first issue with this approach is the need to compute the matrixM ; generally, this
matrix is expensive to compute. For example, if T is a Fredholm integral operator,
then eachMij is defined by a triple integral. The second difficulty is that, in the typical
application (\scrR (T ) infinite-dimensional and not closed), M0 has infinite cardinality
and ak \rightarrow 0. It follows that by using an algorithm that computes a2k (instead of
computing ak directly), we artificially restrict the ability to compute small singular
values; roughly speaking, at best we can compute values of ak down to

\surd 
u (where u

is the unit round), rather than down to u itself.
It should be noted that the approach described in the previous paragraph, which

is described fully in [6], does have the advantage that its convergence follows directly
from the theory of symmetric, variationally posed eigenvalue problems.

The second approach described in [6] is based on reducing the computation to that
of a (matrix) generalized singular value decomposition (GSVD). Here is one version
of the GSVD.

Theorem 2 ([3, Theorem 22.2]). Let A \in \BbbR m\times n and B \in \BbbR p\times n be given matrices
such that m \geq n and \scrN (A) \cap \scrN (B) = \{ 0\} . Then there exist a nonsingular matrix
W \in \BbbR n\times n, matrices U \in \BbbR m\times n and V \in \BbbR p\times p with orthonormal columns, and
diagonal matrices C \in \BbbR n\times n and S \in \BbbR p\times n such that

A = UCW - 1 and B = V SW - 1.

Moreover, the diagonal entries of C and S are nonnegative and satisfy

CTC + STS = I.

In the next section, we will show how to compute the GSVE of a discretization
(Tj , Lj) of the operator pair (T, L) by computing the GSVD of a pair of matrices.
This is essentially the second approach taken in [6], although here we allow for a
more general discretization. In the following sections, we present conditions on the
convergence of Tj to T and Lj to L under which the GSVE of (Tj , Lj) is guaranteed
to converge to the GSVE of (T, L). We also give examples of both convergence and
nonconvergence.
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APPROXIMATING THE GSVE 2779

2. Discretization. To discretize (T, L), we assume that \{ Xj : j \in \BbbZ +\} is a
sequence of finite-dimensional subspaces of D(L) with the property that

\infty \bigcup 
j=1

Xj is dense in D(L).

For each j, we assume that \{ x(j)1 , x
(j)
2 , . . . , x

(j)
nj \} is a basis for Xj . Similarly, we assume

that
Yj = sp

\Bigl\{ 
y
(j)
1 , y

(j)
2 , . . . , y(j)mj

\Bigr\} 
and

Zj = sp
\Bigl\{ 
z
(j)
1 , z

(j)
2 , . . . , z(j)pj

\Bigr\} 
are subspaces of Y and Z, respectively, for each j, and that

\infty \bigcup 
j=1

Yj is dense in Y and
\infty \bigcup 
j=1

Zj is dense in Z.

For each j \in \BbbZ +, let Tj : Xj \rightarrow Yj and Lj : Xj \rightarrow Zj be linear operators that
approximate T and L in some sense. In the next section, we present conditions on
\{ Tj\} and \{ Lj\} that guarantee that the GSVE of (Tj , Lj) converges to the GSVE of
(T, L) as j \rightarrow \infty . First, however, we show how to compute the GSVE of (Tj , Lj) by
computing the GSVD of a related pair of matrices.

We will need the discrete version of the \ast -inner product defined by

\langle x, y\rangle \ast j
= \langle Tjx, Tjy\rangle Y + \langle Ljx, Ljy\rangle Z for all x, y \in Xj .

In general, \langle \cdot , \cdot \rangle \ast j
need not be positive definite on Xj . To ensure that \langle \cdot , \cdot \rangle \ast j

does
define an inner product, we will assume that

\scrN (Tj) \cap \scrN (Lj) = \{ 0\} for all j \in \BbbZ +.

The conditions that we impose on \{ Tj\} and \{ Lj\} in the next section will ensure that
this holds at least for all j sufficiently large. It then follows that \langle \cdot , \cdot \rangle \ast j

defines an

inner product on Xj for each j \in \BbbZ +.
The following result shows how to compute the GSVE of (Tj , Lj). The Gram

matrix for a basis \{ x1, x2, . . . , xn\} is G \in \BbbR n\times n defined by Gij = \langle xi, xj\rangle , where we use
the inner product from the space to which the linearly independent set \{ x1, x2, . . . , xn\} 
belongs.

Theorem 3. Define Aj \in \BbbR mj\times nj and Bj \in \BbbR pj\times nj by

(Aj)k\ell =
\Bigl\langle 
Tjx

(j)
\ell , y

(j)
k

\Bigr\rangle 
Y
, (Bj)k\ell =

\Bigl\langle 
Ljx

(j)
\ell , z

(j)
k

\Bigr\rangle 
Z
.

Let Hj and Jj be the Gram matrices for \{ y(j)1 , y
(j)
2 , . . . , y

(j)
mj\} and \{ z(j)1 , z

(j)
2 , . . . , z

(j)
pj \} ,

respectively, and let

H
 - 1/2
j Aj = UCW - 1, J

 - 1/2
j Bj = V SW - 1

be the GSVD of (H
 - 1/2
j Aj , J

 - 1/2
j Bj). Define

\~U = H
 - 1/2
j U and \~V = J

 - 1/2
j V.
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2780 MARK S. GOCKENBACH AND MATTHEW J. ROBERTS

Then the GSVE of (Tj , Lj) is

Tj =

nj\sum 
k=1

a
(j)
k \psi 

(j)
k \otimes \ast j

\phi 
(j)
k , Lj =

min\{ pj ,nj\} \sum 
k=1

b
(j)
k \theta 

(j)
k \otimes \ast j

\phi 
(j)
k ,

where

\phi 
(j)
k =

nj\sum 
i=1

Wikx
(j)
i , \psi 

(j)
k =

mj\sum 
i=1

\~Uiky
(j)
i , \theta 

(j)
k =

pj\sum 
i=1

\~Vikz
(j)
i

and a
(j)
1 , . . . , a

(j)
nj and b

(j)
1 , . . . , b

(j)
nj are the diagonal entries of C and S, respectively.

We assume that mj \geq nj. If pj < nj, then b
(j)
pj+1, . . . , b

(j)
nj are defined to be 0.

The proof of Theorem 3 is similar to that of Theorem 4.4 of [6]. In that paper,
we considered only discretization Tj = PYj

T | Xj
, Lj = PZj

T | Xj
, where PYj

and PZj

denote the orthogonal projection operators onto Yj and Zj , respectively. However,
the derivation of the GSVE in the case of an arbitrary discretization Tj , Lj is similar
to the special case covered in [6]. For this reason, the proof of Theorem 3 will be
omitted.

In Theorem 3, the sets \{ \phi (j)k \} , \{ \psi (j)
k \} , and \{ \theta (j)k \} are orthonormal with respect to

the \ast j-, Y -, and Z-inner products, respectively. To compute these orthonormal bases,
it is necessary to compute H1/2 and J1/2. In discretizations based on finite element
spaces, the Gram matrices H and J are tridiagonal or at least banded, and it is com-
putationally feasible to compute their square roots using the spectral decomposition.

As noted above, our main goal is to analyze the convergence of the GSVE of
a discretization (Tj , Lj) of (T, L). Before proceeding to the analysis, we present an
example to show that a seemingly natural discretization need not lead to convergence.

Example 1. Let X = D(L) = H1(0, 1) and Y = Z = L2(0, 1). Define operators
T : X \rightarrow Y and L : D(L) \rightarrow Z by Tx = x and Lx = x\prime , respectively. By Rellich's
lemma, T (the identity operator) is compact. In this example, the \ast -norm is precisely
the H1(0, 1)-norm.

We can easily derive the GSVE of (T, L) using Fourier analysis; the result is

T =

\infty \sum 
k=0

ak\psi k \otimes \ast \phi k, L =

\infty \sum 
k=1

bk\theta k \otimes \ast \phi k,

where, for k \geq 1,

\phi k(t) =

\sqrt{} 
2

k2\pi 2 + 1
cos (k\pi t), \psi k(t) =

\surd 
2 cos (k\pi t), \theta k(t) =  - 

\surd 
2 sin (k\pi t),

ak =
1\surd 

k2\pi 2 + 1
, bk =

k\pi \surd 
k2\pi 2 + 1

,

and \phi 0(t) = 1, \psi 0(t) = 1, a0 = 1, b0 = 0. It can be verified that \{ \phi k\} \infty k=0, \{ \psi k\} \infty k=0,
and \{ \theta k\} \infty k=1 are orthonormal in the \ast -, Y -, and Z-inner products, respectively. Also,

a2k + b2k = 1, T\phi k = ak\psi k, and L\phi k = bk\theta k for all k \in \BbbZ +.

In the notation of Theorem 1, we have M0 = \BbbZ +, Ma = \emptyset , and Mb = \{ 0\} .
We discretize (T, L) by defining Xj = Yj = Zj to be the space of continuous

piecewise linear functions on a uniform mesh with j elements. Let \{ x0, x1, . . . , xj\} 
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Fig. 1. The computed values of \phi 
(j)
1 (top), \psi 

(j)
1 (middle), and \theta 

(j)
1 (bottom) for Example 1,

together with the corresponding exact functions \phi 1, \psi 1, and \theta 1. In each graph, the approximate
function is the solid curve and the exact function is the dashed curve. The approximate and exact
curves are indistinguishable at this scale.
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Fig. 2. The computed values of \phi 
(j)
2 , \psi 

(j)
2 , and \theta 

(j)
2 for Example 1, together with the corre-

sponding exact functions \phi 2, \psi 2, and \theta 2. In each graph, the approximate function is the solid curve
and the exact function is the dashed curve. The approximate and exact curves are indistinguishable
at this scale.
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Fig. 3. The computed values of \phi 
(j)
3 , \psi 

(j)
3 , and \theta 

(j)
3 for Example 1, together with the corre-

sponding exact functions \phi 3, \psi 3, and \theta 3. In each graph, the approximate function is the solid curve
and the exact function is the dashed curve.

be the standard nodal basis. Define Tj to be T restricted to Xj , and define Lj by
Lj = PZj

L| Xj
, where PZj

is the orthogonal projection operator onto Zj . We take

j = 100 and compute the GSVE of (Tj , Lj) as described in Theorem 3 and graph \phi 
(j)
k ,

\psi 
(j)
k , and \theta 

(j)
k for k = 1, 2, 3 (see Figures 1--3).

We see that \phi 
(j)
1 , \psi 

(j)
1 , \theta 

(j)
1 and \phi 

(j)
2 , \psi 

(j)
2 , \theta 

(j)
2 are accurate approximations of
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2782 MARK S. GOCKENBACH AND MATTHEW J. ROBERTS

the corresponding exact functions, but \phi 
(j)
3 , \psi 

(j)
3 , \theta 

(j)
3 are completely wrong. The

behavior seen in Figure 3 is consistent with the type of ``spurious modes"" observed
in the numerical solution of variationally posed eigenvalue problems (see [4]). The
spurious mode persists as the mesh is refined.

Although we do not show any more results here, in fact every triple (\phi 
(j)
k , \psi 

(j)
k , \theta 

(j)
k )

for k > 3 is far from the exact value. Moreover, this behavior is not eliminated by
refining the mesh. Every fourth singular mode is spurious.

In the next section, we analyze the convergence of the GSVE of (Tj , Lj) to that of
(T, L), presenting a condition on the convergence of (Tj , Lj) to (T, L) that guarantees
that the corresponding GSVEs converge. We will see that the condition fails for the
discretization in Example 1 and also see how to modify the discretization to obtain
convergence.

3. Convergence of the approximate GSVE.

3.1. Definition of convergence. Before we can analyze the convergence of the
GSVE of (Tj , Lj) to that of (T, L), we must define what it means for a sequence of
GSVEs to converge to a given GSVE. The issues are comparable to those faced in
approximating the eigenvalues and eigenvectors of a linear operator A : X \rightarrow X by
the eigenvalues and eigenvectors of an approximation Aj of A. We refer the reader
to Boffi's survey article [4] for a detailed discussion. In the case of eigenvalues and
eigenvectors, we can expect that the eigenvalues of Aj converge to the corresponding
eigenvalues of A in the expected manner. However, since a given eigenspace does not
have a unique basis, there is no reason that the computed basis of the corresponding
eigenspace of Aj can be compared directly to a given basis of an eigenspace of A.
Therefore, we have to refer to convergence of a sequence of subspaces to a given sub-
space, not the convergence of individual eigenvectors. Moreover, if \lambda is an eigenvalue
of A of multiplicity k, there are probably k simple eigenvalues of Aj that converge to
\lambda as j \rightarrow \infty . We will have to take this into account below.

When discussing the convergence of the GSVE, we have an additional complica-
tion, namely, that both T and L can have a nontrivial null space. It is straightforward
to show that \scrN (L) must be finite-dimensional (otherwise, inequality (4) is incompat-
ible with the compactness of T ). However, \scrN (T ) could be infinite-dimensional. We
will assume throughout our discussion that \scrR (T ) is infinite-dimensional, since this is
the interesting case in applications.

In terms of the GSVE

T =
\sum 

k\in M0\cup Mb

ak\psi k \otimes \ast \phi k, L =
\sum 

k\in M0\cup Ma

bk\theta k \otimes \ast \phi k,

the singular values of T and L have the following properties:

k \in Mb \Rightarrow ak = 1 and bk = 0,

k \in M0 \Rightarrow 0 < ak, bk < 1,

k \in Ma \Rightarrow ak = 0 and bk = 1.

To compare the singular values of (Tj , Lj) with those of (T, L), we have to order the
singular values consistently. Since \scrN (L) is finite-dimensional, we will assume that
dim(\scrN (L)) = \ell and that Mb = \{ 1, 2, . . . , \ell \} . Since \scrR (T ) is infinite-dimensional by
assumption, we will define the index set M0 by M0 = \{ \ell + 1, \ell + 2, . . .\} and assume
that a\ell +1 \geq a\ell +2 \geq \cdot \cdot \cdot . Since a2k + b2k = 1, this implies that b\ell +1 \leq b\ell +2 \leq \cdot \cdot \cdot .
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With these definitions for Mb and Ma, we see that \{ ak : k \in \BbbZ +\} is a non-
increasing sequence and \{ bk : k \in \BbbZ +\} is a nondecreasing sequence. However, if
Ma is nonempty (that is, if T has a nontrivial null space), then there is no natural
definition for Ma that maintains the monotonicity of the sequences \{ ak\} and \{ bk\} .
Therefore, we will continue to denote Ma as a (countable) abstract index set. We can
now write the GSVE of (T, L) as

T =

\infty \sum 
k=1

ak\psi k \otimes \ast \phi k, L =

\infty \sum 
k=1

bk\theta k \otimes \ast \phi k +
\sum 
k\in Ma

\theta k \otimes \ast \phi k.

For each j, let

Tj =

nj\sum 
k=1

a
(j)
k \psi 

(j)
k \otimes \ast j

\phi 
(j)
k , Lj =

min\{ pj ,nj\} \sum 
k=1

b
(j)
k \theta 

(j)
k \otimes \ast j

\phi 
(j)
k

be the GSVE of (Tj , Lj), written so that

a
(j)
1 \geq a

(j)
2 \geq \cdot \cdot \cdot \geq a(j)nj

and b
(j)
1 \leq b

(j)
2 \leq \cdot \cdot \cdot \leq b(j)nj

.

To describe the convergence of the singular vectors of (Tj , Lj) to those of (T, L),
we will use the concept of the gap between two subspaces (see [4]).

Definition 4. Let H be a Hilbert space, and let U and V be subspaces of H. The
gap between U and V is \^\delta (U, V ), where

\delta (U, V ) = sup
u\in U

\| u\| H=1

inf
v\in V

\| u - v\| H ,

\^\delta (U, V ) = max(\delta (U, V ), \delta (V,U)).

It can be shown (in the Hilbert space setting, as we consider here) that

\delta (U, V ) = \delta (V,U),

provided \delta (U, V ), \delta (V,U) < 1 holds (see [8]).
Given the sequences \{ ak\} and \{ bk\} of singular values and the sequences \{ \phi k\} ,

\{ \psi k\} , and \{ \theta k\} of singular vectors of (T, L), we make the following definitions:

Sk(\phi ) = sp\{ \phi i : ai = ak\} ,
Sk(\psi ) = sp\{ \psi i : ai = ak\} ,
Sk(\theta ) = sp\{ \theta i : ai = ak\} .

Typically, if ak is a multiple singular value (that is, dim(Sk(\phi )) > 1), say,

\{ i \in \BbbZ + : ai = ak\} = \{ k1, k2, . . . , kq\} ,

then each a
(j)
kr

will be a simple singular value of (Tj , Lj), meaning that

dim(sp\{ \phi (j)i : a
(j)
i = a

(j)
k \} ) = 1.

For this reason, we define

S
(j)
k (\phi ) = sp\{ \phi (j)i : a

(\ell )
i \rightarrow ak as \ell \rightarrow \infty \} ,

S
(j)
k (\psi ) = sp\{ \psi (j)

i : a
(\ell )
i \rightarrow ak as \ell \rightarrow \infty \} ,

S
(j)
k (\theta ) = sp\{ \theta (j)i : a

(\ell )
i \rightarrow ak as \ell \rightarrow \infty \} .
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2784 MARK S. GOCKENBACH AND MATTHEW J. ROBERTS

Note that because a2k+b
2
k = 1 for all k \in \BbbZ +, \{ i \in \BbbZ + : ai = ak\} = \{ i \in \BbbZ + : bi = bk\} .

Therefore, we could have defined the above subspaces with reference to \{ bk\} instead
of \{ ak\} .

We can now define what it means for the GSVE of (Tj , Lj) to converge to the
GSVE of (T, L).

Definition 5. We say that the GSVE of (Tj , Lj), j \in \BbbZ +, converges to the
GSVE of (T, L) if, for all N \in \BbbZ + and all \epsilon > 0, there exists j0 such that all of the
following are true for all j \geq j0 and all k = 1, 2, . . . , N :\bigm| \bigm| \bigm| a(j)k  - ak

\bigm| \bigm| \bigm| < \epsilon ,
\bigm| \bigm| \bigm| b(j)k  - bk

\bigm| \bigm| \bigm| < \epsilon ,

\^\delta 
\Bigl( 
S
(j)
k (\phi ), Sk(\phi )

\Bigr) 
< \epsilon , \^\delta 

\Bigl( 
S
(j)
k (\psi ), Sk(\psi )

\Bigr) 
< \epsilon , \^\delta 

\Bigl( 
S
(j)
k (\theta ), Sk(\theta )

\Bigr) 
< \epsilon .

In computing the gaps, we use the \ast -, Y -, and Z-norms for

\^\delta 
\Bigl( 
S
(j)
k (\phi ), Sk(\phi )

\Bigr) 
, \^\delta 

\Bigl( 
S
(j)
k (\psi ), Sk(\psi )

\Bigr) 
, and \^\delta 

\Bigl( 
S
(j)
k (\theta ), Sk(\theta )

\Bigr) 
,

respectively.

Notice that Definition 5 does not refer to \{ \phi k : k \in Ma\} or \{ \theta k : k \in Ma\} . Our
theory will show that, in the representation

T =

\infty \sum 
k=1

ak\psi k \otimes \ast \phi k, L =

\infty \sum 
k=1

bk\theta k \otimes \ast \phi k +
\sum 
k\in Ma

\theta k \otimes \ast \phi k,

the series for T and the first series in the representation of L are approximated. It is
not guaranteed that we can approximate the second series in the representation of L.

For each j \in \BbbZ +, we refer to three different inner products on the space Xj ,
namely, the \ast -inner product, the \ast j-inner product, and the X-inner product. There-
fore, there are three different adjoint operators for the operator Tj . The adjoint of T
with respect to the \ast -inner product is denoted by T\#, the adjoint of Tj with respect

to the \ast j-inner product by T
\#j

j , and the adjoint of T with respect to the X-inner
product by T \ast . To study the convergence of the GSVE of (Tj , Lj) to that of (T, L),

we consider the operators T
\#j

j Tj and T\#T . Using the expansion for T above, we

see that the eigenpairs of T\#T are a2k, \phi k, k = 1, 2, 3, . . . . Similarly, the eigenpairs

for the operator T
\#j

j Tj are a2k,n, \phi k,n, k = 1, 2, . . . , nj . Our goal is to show that the

eigensystem of T
\#j

j Tj converges to that of T\#T ; we can then show that the GSVE of
(Tj , Lj) converges to the GSVE of (T, L).

We note that the operators T
\#j

j Tj : Xj \rightarrow Xj and T
\#j

j TjPXj
: X \rightarrow X, where

PXj
is the orthogonal projection onto Xj (with respect to the X-inner product), have

the same eigenpairs. Indeed, since T
\#j

j Tj is just the restriction of T
\#j

j TjPXj
to Xj ,

it is immediate that an eigenpair of T
\#j

j Tj is an eigenpair of T
\#j

j TjPXj
. Conversely,

if T
\#j

j TjPXjx = \lambda x, then since T
\#j

j TjPXj maps X into Xj , it follows that x \in Xj ,

and hence \lambda , x is also an eigenpair of T
\#j

j Tj .
The theory of Babu\v ska and Osborn ([2]; see also [4, sections 6 and 9]) shows that

if a sequence \{ Aj\} of compact operators (Aj : X \rightarrow X for all j \in \BbbZ +) converges in
norm to the compact operator A : X \rightarrow X, then eigensystems of Aj converge to that
of A as j \rightarrow \infty , provided we exclude the zero eigenvalues of A from consideration.
Specifically, we have the following theorem [4, Theorem 9.1] (in which \rho (A) denotes
the resolvent set of A).
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Theorem 6. Let A : X \rightarrow X be a compact linear operator, and let \{ Aj\} be a
sequence of compact operators from X to X such that

\| Aj  - A\| \scrL (X,X) \rightarrow 0 as j \rightarrow \infty .

Then for any compact set K \subset \rho (A), there exists j0 \in \BbbZ + such that for every j \geq j0,
we have K \subset \rho (Aj). If \lambda is a nonzero eigenvalue of A with algebraic multiplicity
m, then there are m eigenvalues \lambda 1,j , \lambda 2,j , . . . , \lambda m,j of Aj, repeated according to their
algebraic multiplicities, such that each \lambda i,n converges to \lambda as j \rightarrow \infty . Moreover, if
we define Ej(\lambda ) to be the sum of the eigenspaces of \lambda 1,j , \lambda 2,j , . . . , \lambda m,j, then the gap
between Ej(\lambda ) and the eigenspace E(\lambda ) of \lambda tends to zero as j \rightarrow \infty .

By the above discussion, if we show that Aj = T
\#j

j TjPXj
converges to A =

T\#T in norm, then it will follow that the eigensystem of T
\#j

j TjPXj
converges to the

eigensystem of T\#T .

3.2. Preliminary results. We will use the following fundamental result.

Theorem 7 ([1]). Let U , V , and W be Hilbert spaces. Let M : V \rightarrow W be
a bounded linear operator, let T : U \rightarrow V be a compact linear operator, and let
Mj : V \rightarrow W be a bounded linear operator for each j \in \BbbZ +. Suppose Mj \rightarrow M
pointwise on V . Then

\| (Mj  - M)T\| \scrL (U,W ) \rightarrow 0 as j \rightarrow \infty .

Example 1 shows that the GSVE of (Tj , Lj) need not converge to the GSVE of
(T, L). We now describe the fundamental assumption on the sequences \{ Tj\} and \{ Lj\} 
that will allow us to prove convergence. For each j \in \BbbZ +, we define

tj,1 = max
x\in Xj

x \not =0

\| (T  - Tj)x\| Y
\| x\| X

, tj,2 = max
x\in Xj

x \not =0

\| (T  - Tj)x\| Y
\| x\| \ast 

, tj = max \{ tj,1, tj,2\} ,

\ell j = max
x\in Xj

x \not =0

\| (L - Lj)x\| Z
\| x\| \ast 

, cj =
\sqrt{} 
t2j + \ell 2j .

(6)

Henceforth, we will assume that cj \rightarrow 0 as j \rightarrow \infty . We will see that this is enough to
imply that the GSVE of (Tj , Lj) converges to the GSVE of (T, L).

By (6), we have

\| (Tj  - T )x\| Y \leq tj\| x\| X and \| (Tj  - T )x\| Y \leq tj\| x\| \ast for all x \in Xj ,

and
\| (Lj  - L)x\| Z \leq \ell j\| x\| \ast for all x \in Xj .

Therefore, for all x \in Xj ,

\| Tjx\| 2Y = \langle Tjx, Tjx\rangle Y = \langle (Tj  - T )x, Tjx\rangle Y + \langle Tx, Tjx\rangle Y
\leq \| (Tj  - T )x\| Y \| Tjx\| Y + \| Tx\| Y \| Tjx\| Y
\leq tj\| x\| \ast \| Tjx\| Y + \| Tx\| Y \| Tjx\| Y .

Therefore, we have

(7) \| Tjx\| Y \leq tj\| x\| \ast + \| Tx\| Y \leq (1 + tj)\| x\| \ast for all x \in Xj
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2786 MARK S. GOCKENBACH AND MATTHEW J. ROBERTS

(since obviously \| Tx\| Y \leq \| x\| \ast for all x \in D(L)). Similarly,

(8) \| Ljx\| Z \leq (1 + \ell j)\| x\| \ast for all x \in Xj .

We now derive several preliminary results that are needed for our main conver-
gence theorem (Theorem 18). These results concern the relationship between the \ast j-
and \ast -inner products and norms (Lemma 8 and Corollary 9), the basic properties of
the operators M = T \ast T +L\ast L and Mj = T \ast 

j Tj +L
\ast 
jLj (Theorems 10 and 11), the re-

lationship between M and Mj (Theorems 12 and 13), a property of PXj (Lemma 15),
and various results about the convergence of Tj to T (Theorems 14, 16, and 17).

Lemma 8.

| \langle x, y\rangle \ast  - \langle x, y\rangle \ast j
| \leq (c2j + 2(tj + \ell j))\| x\| \ast \| y\| \ast for all x, y \in Xj .

Proof. Let j \in \BbbZ + and let x, y \in Xj . Then

| \langle x, y\rangle \ast  - \langle x, y\rangle \ast j
| 

= | \langle Tx, Ty\rangle Y + \langle Lx,Ly\rangle Z  - \langle Tjx, Tjy\rangle Y  - \langle Ljx, Ljy\rangle Z | 
\leq | \langle Tx, Ty\rangle Y + \langle Lx,Ly\rangle Z  - \langle Tx, Tjy\rangle Y  - \langle Lx,Ljy\rangle Z + \langle Tx, Tjy\rangle Y + \langle Lx,Ljy\rangle Z

 - \langle Tjx, Tjy\rangle Y  - \langle Ljx, Ljy\rangle Z | 
= | \langle Tx, (T  - Tj)y\rangle Y + \langle Lx, (L - Lj)y\rangle Z + \langle (T  - Tj)x, Tjy\rangle Y + \langle (L - Lj)x, Ljy\rangle Z | 
\leq tj\| Tx\| Y \| y\| \ast + \ell j\| Lx\| Z\| y\| \ast + tj\| x\| \ast \| Tjy\| Y + \ell j\| x\| \ast \| Ljy\| Z
\leq (tj + \ell j)\| x\| \ast \| y\| \ast + tj(1 + tj)\| x\| \ast \| y\| \ast + \ell j(1 + \ell j)\| x\| \ast \| y\| \ast 
= (t2j + \ell 2j + 2(tj + \ell j))\| x\| \ast \| y\| \ast 
= (c2j + 2(tj + \ell j))\| x\| \ast \| y\| \ast .

Since cj , tj , \ell j \rightarrow 0 as j \rightarrow \infty , we see that 1 - c2j - 2(tj+\ell j) > 0 for all j sufficiently

large, say j \geq j.

Corollary 9. For all j \geq j,

(1 - c2j  - 2(tj + \ell j))\| x\| 2\ast \leq \| x\| 2\ast j
\leq (1 + c2j + 2(tj + \ell j))\| x\| 2\ast for all x \in Xj ,(9)

1

1 + c2j + 2(tj + \ell j)
\| x\| 2\ast j

\leq \| x\| 2\ast \leq 1

1 - c2j  - 2(tj + \ell j)
\| x\| 2\ast j

for all x \in Xj .(10)

Next, we define Mj : Xj \rightarrow Xj and M : D(L\ast L) \rightarrow X by

M = T \ast T + L\ast L,

Mj = T \ast 
j Tj + L\ast 

jLj .

These operators will be central to our analysis; the following three results describe
some properties of M and Mj that will be needed.

Theorem 10. The operator M is a bijection with bounded inverse, and

\| M - 1\| \scrL (X,D(L)) \leq 
1
\surd 
\gamma 
,

that is,

\| M - 1x\| \ast \leq \| x\| X\surd 
\gamma 

for all x \in X,

where \gamma is the constant from condition (4).
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Proof. See [7, Theorem 5.25].

Theorem 11. For all j \geq j, the operator Mj is invertible, with

\| M - 1
j \| \scrL (X,D(L)) \leq 

1

(1 - c2j  - 2(tj + \ell j))
\surd 
\gamma 
.

That is,

\| M - 1
j x\| \ast \leq 1

(1 - c2j  - 2(tj + \ell j))
\surd 
\gamma 
\| x\| X for all x \in Xj .

Proof. Let x \in Xj . By Corollary 9, we have

\| M - 1
j x\| 2\ast \leq 1

1 - c2j  - 2(tj + \ell j)
\| M - 1

j x\| 2\ast j
=

1

1 - c2j  - 2(tj + \ell j)

\bigl\langle 
M - 1
j x,M - 1

j x
\bigr\rangle 
\ast j

=
1

1 - c2j  - 2(tj + \ell j)

\bigl\langle 
M - 1
j x, x

\bigr\rangle 
X

\leq 1

1 - c2j  - 2(tj + \ell j)
\| M - 1

j x\| X\| x\| X

\leq 1

(1 - c2j  - 2(tj + \ell j))
\surd 
\gamma 
\| M - 1

j x\| \ast \| x\| X .

The desired result follows from dividing both sides of the inequality by \| M - 1
j x\| \ast .

Next, we define \Pi Xj
: D(L) \rightarrow Xj to be the orthogonal projection onto the

subspace Xj with respect to the \ast -inner product. The following result allows us to
compare M - 1 and M - 1

j .

Theorem 12. For all x \in X and all j \geq j,

\| \Pi Xj
M - 1x - M - 1

j PXj
x\| \ast \leq 

c2j + 2(tj + \ell j)

(1 - c2j  - 2(tj + \ell j))
\surd 
\gamma 
\| x\| X .

Proof. Let x \in X. Then

\| \Pi Xj
M - 1x - M - 1

j PXj
x\| 2\ast 

=
\bigl\langle 
\Pi Xj

M - 1x - M - 1
j PXj

x, (\Pi Xj
M - 1  - M - 1

j PXj
)x
\bigr\rangle 
\ast 

\leq 
\bigl\langle 
M - 1x, (\Pi XjM

 - 1  - M - 1
j PXj )x

\bigr\rangle 
\ast  - 

\bigl\langle 
M - 1
j PXjx, (\Pi XjM

 - 1  - M - 1
j PXj )x

\bigr\rangle 
\ast j

+ (c2j + 2(tj + \ell j))\| M - 1
j PXj

x\| \ast \| (\Pi Xj
M - 1  - M - 1

j PXj
)x\| \ast ,

where we have applied Lemma 8 at the last step. Moreover,\bigl\langle 
M - 1x, (\Pi Xj

M - 1  - M - 1
j PXj

)x
\bigr\rangle 
\ast =

\bigl\langle 
x, (\Pi Xj

M - 1  - M - 1
j PXj

)x
\bigr\rangle 
X

and \bigl\langle 
M - 1
j PXj

x, (\Pi Xj
M - 1  - M - 1

j PXj
)x
\bigr\rangle 
\ast j

=
\bigl\langle 
x, (\Pi XjM

 - 1  - M - 1
j PXj )x

\bigr\rangle 
X
.

It follows that

\| \Pi Xj
M - 1x - M - 1

j PXjx\| 2\ast \leq (c2j +2(tj+ \ell j))\| M - 1
j PXjx\| \ast \| (\Pi XjM

 - 1 - M - 1
j PXj )x\| \ast 
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and hence that

\| \Pi Xj
M - 1x - M - 1

j PXj
x\| \ast \leq (c2j + 2(tj + \ell j))\| M - 1

j PXj
x\| \ast .

Applying Theorem 11 (and the fact that \| PXj
x\| X \leq \| x\| X), we obtain

\| \Pi Xj
M - 1x - M - 1

j PXj
x\| \ast \leq 

c2j + 2(tj + \ell j)

(1 - c2j  - 2(tj + \ell j))
\surd 
\gamma 
\| x\| X ,

as desired.

We can now prove that MjPXj converges pointwise to M - 1 on X.

Theorem 13. For every x \in X,

\| M - 1x - M - 1
j PXj

x\| \ast \rightarrow 0 as j \rightarrow \infty 

Proof. Let x \in X. Then

\| M - 1x - M - 1
j PXj

x\| \ast \leq \| M - 1x - \Pi Xj
M - 1x\| \ast + \| \Pi Xj

M - 1x - M - 1
j PXj

x\| \ast 

\leq \| (I  - \Pi Xj
)M - 1x\| \ast +

c2j + 2(tj + \ell j)

(1 - c2j  - 2(tj + \ell j))
\surd 
\gamma 
\| x\| X .

By assumption, \cup \infty 
j=1Xj is a dense subset of D(L) with respect to the \ast -norm, and

tj , \ell j , cj \rightarrow 0 as j \rightarrow \infty . The desired result follows.

For every y \in Yj and for every x \in Xj , we have

\langle Tjx, y\rangle Y =
\Bigl\langle 
x, T

\#j

j y
\Bigr\rangle 
\ast j

=
\Bigl\langle 
Tjx, TjT

\#j

j y
\Bigr\rangle 
Y
+

\Bigl\langle 
Ljx, LjT

\#j

j y
\Bigr\rangle 
Z

=
\Bigl\langle 
x, (T \ast 

j Tj + L\ast 
jLj)T

\#j

j y
\Bigr\rangle 
X
.

Also,

\langle Tjx, y\rangle Y =
\bigl\langle 
x, T \ast 

j y
\bigr\rangle 
X
.

Because this is true for every x \in Xj and for every y \in Yj , we see that

T \ast 
j = (T \ast 

j Tj + L\ast 
jLj)T

\#j

j .

Similarly,
T \ast = (T \ast T + L\ast L)T\#.

We define \scrS j : Xj \rightarrow Y by \scrS j = Tj  - T | Xj
. By definition, we have tj = \| \scrS j\| \scrL (Xj ,Y )

and hence, by assumption, \| \scrS j\| \scrL (Xj ,Y ) \rightarrow 0 as j \rightarrow \infty . We now compute the adjoint
\scrS \ast 
j of \scrS j . To do this, let x \in Xj and let y \in Y . Then

\langle \scrS jx, y\rangle Y = \langle (Tj  - T )x, y\rangle Y = \langle Tjx, y\rangle Y  - \langle Tx, y\rangle Y
=

\bigl\langle 
Tjx, PYj

y
\bigr\rangle 
Y
 - \langle x, T \ast y\rangle X

=
\bigl\langle 
x, T \ast 

j PYjy
\bigr\rangle 
X
 - 

\bigl\langle 
x, PXjT

\ast x
\bigr\rangle 
X

=
\bigl\langle 
x, (T \ast 

j PYj
 - PXj

T \ast )y
\bigr\rangle 
X
.

Therefore, \scrS \ast 
j = T \ast 

j PYj
 - PXj

T \ast , and since \| \scrS \ast 
j \| \scrL (Y,Xj) = \| \scrS j\| \scrL (Xj ,Y ), we see that

(11) \| PXj
T \ast  - T \ast 

j PYj
\| \scrL (Y,Xj) \rightarrow 0 as j \rightarrow \infty .

The following theorem will be used to show that T
\#j

j TjPXj
\rightarrow T\#T .
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APPROXIMATING THE GSVE 2789

Theorem 14. T
\#j

j PYjT \rightarrow T\#T in the \scrL (D(L), D(L))-norm.

Proof. By definition,

T\# = (T \ast T + L\ast L) - 1T \ast =M - 1T \ast .

We also have

T
\#j

j = (T \ast 
j Tj + L\ast 

jLj)
 - 1T \ast 

j =M - 1
j T \ast 

j .

From this, it follows that

T
\#j

j PYj
T  - T\#T = (M - 1

j T \ast 
j PYj

 - M - 1T \ast )T.

By Theorem 7, it suffices to prove that M - 1
j T \ast 

j PYj  - M - 1T \ast \rightarrow 0 pointwise on Y .
Let y \in Y . Then

\| M - 1T \ast y  - M - 1
j T \ast 

j PYjy\| \ast 
\leq \| (M - 1  - M - 1

j PXj
)T \ast y\| \ast + \| M - 1

j PXj
T \ast y  - M - 1

j T \ast 
j PYj

y\| \ast 
= \| (M - 1  - M - 1

j PXj
)T \ast y\| \ast + \| M - 1

j (PXj
T \ast y  - T \ast 

j PYj
y)\| \ast 

\leq \| (M - 1  - M - 1
j PXj

)T \ast y\| \ast +
1

(1 - c2j  - 2(tj + \ell j))
\surd 
\gamma 
\| (PXj

T \ast  - T \ast 
j PYj

)y\| X .

It now follows from Theorem 13 and (11) that \| M - 1T \ast y  - M - 1
j T \ast 

j PYj
y\| \ast \rightarrow 0 as

j \rightarrow \infty .

We need two more results.

Lemma 15. If \{ vj\} \subseteq X and vj \rightarrow v weakly as j \rightarrow \infty , then PXjvj \rightarrow v weakly.

Proof. For any x \in X, we have\bigl\langle 
PXj

vj , x
\bigr\rangle 
X

= \langle vj , x\rangle X +
\bigl\langle 
vj , PXj

x - x
\bigr\rangle 
X

\rightarrow \langle v, x\rangle X

(notice that \{ vj\} is a bounded sequence, and PXj
x  - x \rightarrow 0 in norm). This shows

that PXj
vj \rightarrow v weakly as j \rightarrow \infty .

Theorem 16. TjPXj \rightarrow T in the \scrL (X,Y )-norm.

Proof. We argue by contradiction and assume that there exist \epsilon > 0 and a sub-
sequence \{ jk\} of \BbbZ + such that for all k \in \BbbZ +, there exists vjk \in X satisfying

(12) \| vjk\| X = 1 and \| TjkPXjk
vjk  - Tvjk\| Y \geq \epsilon .

Since T is compact, without loss of generality, we can assume that there exist v \in X
and y \in Y such that vjk \rightarrow v weakly and Tvjk \rightarrow y in norm. We then have

TjkPXjk
vjk = TPXjk

vjk + (Tjk  - T )PXjk
vjk \rightarrow Tv + 0 = y

(\| (Tjk  - T )PXjk
vjk\| Y \leq tj \rightarrow 0, and TPXjk

vjk \rightarrow Tv because PXjk
vjk \rightarrow v weakly

and T is compact). But then we have

TjkPXjk
vjk  - Tvjk \rightarrow y  - y = 0,

contradicting (12). The contradiction completes the proof.
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2790 MARK S. GOCKENBACH AND MATTHEW J. ROBERTS

We have been working toward the following result.

Theorem 17. T
\#j

j TjPXj
\rightarrow T\#T in the \scrL (D(L), D(L))-norm.

Proof. We have

\| T\#j

j TjPXj
 - T\#T\| \scrL (D(L),D(L))

\leq \| T\#j

j TjPXj  - T
\#j

j PYjT\| \scrL (D(L),D(L)) + \| T\#j

j PYjT  - T\#T\| \scrL (D(L),D(L))

= \| M - 1
j T \ast 

j PYj
(TjPXj

 - T )\| \scrL (D(L),D(L)) + \| T\#j

j PYj
T  - T\#T\| \scrL (D(L),D(L)).

The second term to the right of the equals sign goes to 0 by Theorem 14. Therefore,
it suffices to show that the first term goes to 0. Applying Theorem 11, we have

\| M - 1
j T \ast 

j PYj
(TjPXj

 - T )\| \scrL (D(L),D(L))

\leq 1

(1 - c2j  - 2(tj + \ell j))
\surd 
\gamma 
\| T \ast 

j PYj
(TjPXj

 - T )\| \scrL (D(L),Xj)

\leq 
\| T \ast 

j \| \scrL (Yj ,Xj)

(1 - c2j  - 2(tj + \ell j))
\surd 
\gamma 
\| TjPXj

 - T\| \scrL (D(L),Y )

=
\| Tj\| \scrL (Xj ,Yj)

(1 - c2j  - 2(tj + \ell j))
\surd 
\gamma 
\| TjPXj

 - T\| \scrL (D(L),Y )

\leq 
tj + \| T\| \scrL (X,Y )

(1 - c2j  - 2(tj + \ell j))
\surd 
\gamma 
\| TjPXj

 - T\| \scrL (D(L),Y )

\leq 
tj + \| T\| \scrL (X,Y )

(1 - c2j  - 2(tj + \ell j))\gamma 
\| TjPXj  - T\| \scrL (X,Y ).

Since tj goes to 0 and T is a bounded operator, it follows from Theorem 16 that
\| M - 1

j T \ast 
j PYj

(TjPXj
 - T )\| \scrL (D(L),D(L)) \rightarrow 0 as j \rightarrow \infty . This completes the proof.

3.3. Convergence theorem. Theorem 17, together with Theorem 6, shows

that the eigensystem of T
\#j

j Tj , which is the same as the eigensystem of T
\#j

j TjPXj
,

converges to the eigensystem of T\#T . We can now prove our main theorem.

Theorem 18. Assuming that cj \rightarrow 0 as j \rightarrow \infty (where cj is defined by (6)), the
GSVE of (Tj , Lj) converges to the GSVE of (T, L) in the sense of Definition 5.

Proof. Since a
(j)
k , \phi 

(j)
k , k = 1, 2, . . . , nj , are the eigenpairs of T

\#j

j TjPXj , ak, \phi k are

the eigenpairs of T\#T , and T
\#j

j TjPXj
\rightarrow T\#T in norm, it follows from Theorem 6

that \{ a(j)k \} converges to \{ ak\} and \{ \phi (j)k \} converges to \{ \phi k\} in the manner described

by Definition 5. Moreover, since (a
(j)
k )2 + (b

(j)
k )2 = 1 for all k = 1, 2, . . . , nj and

a2k + b2k = 1 for all k \in \BbbZ +, it follows that \{ b(j)k \} also converges to \{ bk\} , consistent
with Definition 5.

It now remains only to show that \{ \psi (j)
k \} converges to \{ \psi k\} and \{ \theta (j)k \} converges

to \{ \theta k\} as j \rightarrow \infty . Let k be an arbitrary positive integer, and let \epsilon > 0 be given. We
must show that there exists j0 \in \BbbZ + such that

j \geq j0 \Rightarrow max
\Bigl\{ 
\delta 
\Bigl( 
(Sk(\phi ), S

(j)
k (\phi )

\Bigr) 
, \delta 

\Bigl( 
S
(j)
k (\phi ), Sk(\phi )

\Bigr) \Bigr\} 
< \epsilon .

First, we show that j0 \in \BbbZ + can be chosen such that \delta (Sk(\phi ), S
(j)
k (\phi )) < \epsilon for all
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APPROXIMATING THE GSVE 2791

j \geq j0, that is, that

(13) j \geq j0 \Rightarrow sup
y\in Sk(\psi )
\| y\| Y =1

inf
v\in S(j)

k (\phi )

\| y  - v\| Y < \epsilon .

We know that there exists j0 \in \BbbZ + such that

j \geq j0 \Rightarrow sup
x\in Sk(\phi )
\| x\| \ast =1

inf
u\in S(j)

k (\phi )

\| y  - v\| Y <
ak\epsilon 

4
and tj < min

\Bigl\{ ak\epsilon 
2
, 1
\Bigr\} 
.

We will show that this value of j0 satisfies (13). It suffices to show that, for any

j \geq j0 and any y \in Sk(\psi ) satisfying \| y\| Y = 1, there exists v \in S
(j)
k (\psi ) such that

\| y  - v\| Y < \epsilon . Suppose

Sk(\psi ) = sp\{ \psi k1 , \psi k2 , . . . , \psi kq\} .

There exist real numbers \alpha 1, \alpha 2, . . . , \alpha q such that

y =

q\sum 
i=1

\alpha i\psi ki and

q\sum 
i=1

\alpha 2
i = 1.

But then, since T\phi ki = \alpha k\psi ki for i = 1, 2, . . . , q, we have

y = a - 1
k

q\sum 
i=1

\alpha iak\psi ki = a - 1
k

q\sum 
i=1

\alpha iT\phi ki = a - 1
k Tx,

where

x =

q\sum 
i=1

\alpha i\phi k1 .

Moreover, since \{ \phi k1 , \phi k2 , . . . , \phi k1\} (like \{ \psi k1 , \psi k2 , . . . , \psi k1\} ) is orthonormal, we see

that \| x\| \ast = \| y\| Y = 1. Hence, there exists u \in S
(j)
k (\phi ) such that

\| x - u\| \ast <
ak\epsilon 

4
.

By construction, Tx = aky, and the vector v defined by v = a - 1
k Tjv lies in S

(j)
k (\psi ).

Moreover,

\| y  - v\| Y = a - 1
k \| Tx - Tju\| Y \leq \| Tx - Tjx\| Y + \| Tjx - Tjv\| Y

ak

<
tj + \| Tj\| \scrL (D(L),Y )\| x - u\| \ast 

ak

<
tj + (1 + tj)

ak\epsilon 
4

ak

<
tj + 2 \cdot ak\epsilon 4

ak
= \epsilon .

Here we have used (7) to bound \| Tj\| \scrL (D(L),Y ).

This concludes the proof that j0 satisfies (13), and hence that \delta (Sk(\phi ), S
(j)
k (\phi )) <

\epsilon for all j \geq j0. The proof that j0 \in \BbbZ + can be chosen so that also \delta (S
(j)
k (\phi ), Sk(\phi )) < \epsilon 

for all j \geq j0 is similar. Thus we have shown that \{ \psi (j)
k \} converges to \{ \psi k\} in the

sense of Definition 5.
The proof that \{ \theta (j)k \} converges to \{ \theta k\} in the sense of Definition 5 is exactly the

same, and the proof of the theorem is complete.
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2792 MARK S. GOCKENBACH AND MATTHEW J. ROBERTS

4. Further numerical examples. Since we observed nonconvergence in Ex-
ample 1, the discretization (Tj , Lj) must fail to satisfy the hypotheses of Theorem 18.

Example 1 (continued). In this example, Tj = T | Xj
and hence tj = 0 for all

j. However (recalling that xi is the ith standard nodal basis function), a direct
calculation shows that

\ell j = sup
x\in Xj

x\not =0

\| Ljx - Lx\| L2(0,1)

\| x\| H1(0,1)
\geq 

\| Ljxj  - Lxj\| L2(0,1)

\| xj\| H1(0,1)
\geq 1

2
\surd 
2
\sqrt{} 

1 + h2/6

(where h = 1/j), and hence \ell j is bounded away from 0. Therefore, Theorem 18 does
not apply to this example.

We now present a discretization of the operators of Example 1 that satisfies the
hypotheses of Theorem 18 and hence leads to convergence.

Example 2. Let T , L, Xj , and Yj be as defined in Example 1, but now define Zj
to be the space of piecewise constant functions on the uniform mesh with j elements.
As before, Tj is defined to be T | Xj , and we define Lj = PZjL. Since L maps Xj into
Zj , it follows that Lj = L| Xj

. Therefore, for this discretization, we have tj = \ell j = 0
for all j, and hence Theorem 18 guarantees that the GSVE of (Tj , Lj) converges to
the GSVE of (T, L) (in the sense of Definition 5) as j \rightarrow \infty .

Figures 4--6 show the approximate and exact singular functions for k = 1, 2, 3
(analogous to Figures 1--3). As in Example 1, we use j = 100 to obtain these numerical
results. In contrast to Example 1, now all three of the examined singular modes are
well approximated.

Extensive numerical testing suggests that\bigm| \bigm| \bigm| a(j)k  - ak

\bigm| \bigm| \bigm| = O
\bigl( 
h2

\bigr) 
as j \rightarrow \infty ,\bigm| \bigm| \bigm| b(j)k  - bk

\bigm| \bigm| \bigm| = O
\bigl( 
h2

\bigr) 
as j \rightarrow \infty .

Each of the singular spaces is one-dimensional, and therefore we can compare the
singular functions directly rather than referring to the gap between subspaces (we
just have to normalize the vectors and multiply by  - 1 where necessary so that the
angle between each singular vector and its estimate is close to zero rather than close
to \pi ). We observe \bigm\| \bigm\| \bigm\| \phi (j)k  - \phi k

\bigm\| \bigm\| \bigm\| 
L2(0,1)

= O
\bigl( 
h2

\bigr) 
as j \rightarrow \infty ,\bigm\| \bigm\| \bigm\| \psi (j)

k  - \psi k

\bigm\| \bigm\| \bigm\| 
L2(0,1)

= O
\bigl( 
h2

\bigr) 
as j \rightarrow \infty ,\bigm\| \bigm\| \bigm\| \theta (j)k  - \theta k

\bigm\| \bigm\| \bigm\| 
L2(0,1)

= O (h) as j \rightarrow \infty .

In each case, the rate of convergence is optimal for the given discretization.

We close this paper with another example.

Example 3. Define \^X = \{ x \in L2(0, 1) :
\int 1

0
x = 0\} and define T : \^X \rightarrow \^X by the
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Fig. 4. The computed values of \phi 
(j)
1 (top), \psi 

(j)
1 (middle), and \theta 

(j)
1 (bottom) for Example 2,

together with the corresponding exact functions \phi 1, \psi 1, and \theta 1. In each graph, the approximate
function is the dotted curve and the exact function is the dashed curve. The approximate and exact
curves are indistinguishable at this scale.
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Fig. 5. The computed values of \phi 
(j)
2 , \psi 

(j)
2 , and \theta 

(j)
2 for Example 2, together with the corre-

sponding exact functions \phi 2, \psi 2, and \theta 2. In each graph, the approximate function is the dotted curve
and the exact function is the dashed curve. The approximate and exact curves are indistinguishable
at this scale.
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Fig. 6. The computed values of \phi 
(j)
3 , \psi 

(j)
3 , and \theta 

(j)
3 for Example 2, together with the corre-

sponding exact functions \phi 1, \psi 1, and \theta 1. In each graph, the approximate function is the dotted curve
and the exact function is the dashed curve. The approximate and exact curves are indistinguishable
at this scale.

condition that u = Tf is the solution of the weak form of the boundary value problem

 - u\prime \prime = f in (0, 1),

u\prime (0) = u\prime (1) = 0,\int 1

0

u = 0.
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(Note that this BVP has a unique solution in \^X for each f \in \^X.) Thus u = Tf is the
solution of the variational problem

u \in \^X1, \langle u\prime , v\prime \rangle L2(0,1) = \langle f, v\rangle L2(0,1) for all v \in \^X1,

where \^X1 = \^X \cap H1(0, 1). We also define L : \^X1 \rightarrow L2(0, 1) by Lx = x\prime (thus
D(L) = \^X1). It is straightforward to derive the GSVE of (T, L) using Fourier analysis,
specifically the Fourier cosine series. The result is

T =

\infty \sum 
n=1

an\psi n \otimes \ast \phi n, L =

\infty \sum 
n=1

bn\theta n \otimes \ast \phi n,

where

\phi n(t) =
n2\pi 2

\surd 
2\surd 

n6\pi 6 + 1
cos (n\pi t), \psi n(t) =

\surd 
2 cos (n\pi t), \theta n(t) =  - 

\surd 
2 sin (n\pi t),

an =
1\surd 

n6\pi 6 + 1
, bn =

n3\pi 3

\surd 
n6\pi 6 + 1

.

In terms of the notation of this paper, we have X = Y = \^X and Z = L2(0, 1). We
impose the L2-norm on all three spaces X, Y , and Z.

To discretize this example, we define Xj = Yj to be the space of continuous
piecewise linear functions with mean 0 on a uniform mesh of j elements and Zj to
be the space of piecewise constant functions defined on the same mesh. We define
Tj : Xj \rightarrow Xj by the condition that, for f \in Xj , u = Tjf is the solution of

u \in Xj , \langle u\prime , v\prime \rangle L2(0,1) = \langle f, v\rangle L2(0,1) for all v \in Xj .

We also define Lj : Xj \rightarrow Zj by Ljx = x\prime for all x \in Xj .
By standard finite element analysis, we have tj = O(h2) and, since Lj = L| Xj ,

\ell j = 0 for all j. It follows from Theorem 18 that the GSVE of (Tj , Lj) is guaranteed
to converge, in the sense of Definition 5, to the GSVE of (T, L).

Tables 1 and 2 show the errors in the computed estimates of \phi 0, \phi 1, \phi 2, \phi 3, \phi 4 and
\theta 1, \theta 2, \theta 3, \theta 4, respectively. These errors are consistent with\bigm\| \bigm\| \bigm\| \phi (j)k  - \phi k

\bigm\| \bigm\| \bigm\| 
L2(0,1)

= O
\bigl( 
h2

\bigr) 
as j \rightarrow \infty ,\bigm\| \bigm\| \bigm\| \theta (j)k  - \theta k

\bigm\| \bigm\| \bigm\| 
L2(0,1)

= O (h) as j \rightarrow \infty .

Table 1
Example 3: Errors in \phi 

(j)
k .

k n = 40 n = 80 n = 160 n = 320 n = 640

0 1.914 \cdot 10 - 15 1.840 \cdot 10 - 15 2.891 \cdot 10 - 15 7.660 \cdot 10 - 15 1.233 \cdot 10 - 14

1 1.3104 \cdot 10 - 4 3.2756 \cdot 10 - 5 8.1887 \cdot 10 - 6 2.0472 \cdot 10 - 6 5.1179 \cdot 10 - 7

2 2.7773 \cdot 10 - 4 6.9408 \cdot 10 - 5 1.7350 \cdot 10 - 5 4.3375 \cdot 10 - 6 1.0844 \cdot 10 - 6

3 4.2161 \cdot 10 - 4 1.0532 \cdot 10 - 4 2.6325 \cdot 10 - 5 6.5809 \cdot 10 - 6 1.6452 \cdot 10 - 6

4 5.6487 \cdot 10 - 4 1.4103 \cdot 10 - 4 3.5244 \cdot 10 - 5 8.8103 \cdot 10 - 6 2.2025 \cdot 10 - 6
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Table 2
Example 3: Errors in \theta 

(j)
k .

k j = 40 j = 80 j = 160 j = 320 j = 640

1 2.2671 \cdot 10 - 2 1.1336 \cdot 10 - 2 5.6681 \cdot 10 - 3 2.8341 \cdot 10 - 3 1.4170 \cdot 10 - 3

2 4.5333 \cdot 10 - 2 2.2671 \cdot 10 - 2 1.1336 \cdot 10 - 2 5.6681 \cdot 10 - 3 2.8341 \cdot 10 - 3

3 6.7978 \cdot 10 - 2 3.4004 \cdot 10 - 2 1.7004 \cdot 10 - 2 8.5021 \cdot 10 - 3 4.2511 \cdot 10 - 3

4 9.0597 \cdot 10 - 2 4.5333 \cdot 10 - 2 2.2671 \cdot 10 - 2 1.1336 \cdot 10 - 2 5.6681 \cdot 10 - 3

To save space, we do not display the errors in \psi 
(j)
k , a

(j)
k , and b

(j)
k , but these errors

are consistent with \bigm\| \bigm\| \bigm\| \psi (j)
k  - \psi k

\bigm\| \bigm\| \bigm\| 
L2(0,1)

= O
\bigl( 
h2

\bigr) 
as j \rightarrow \infty ,\bigm| \bigm| \bigm| a(j)k  - ak

\bigm| \bigm| \bigm| = O
\bigl( 
h2

\bigr) 
as j \rightarrow \infty ,\bigm| \bigm| \bigm| b(j)k  - bk

\bigm| \bigm| \bigm| = O
\bigl( 
h2

\bigr) 
as j \rightarrow \infty .

Our analysis does not predict any particular rate of convergence. In Examples 2

and 3, we observed the expected (optimal) rates of convergence: O(h2) for \{ \phi (j)k \} 
and \{ \psi (j)

k \} , and O(h) for \{ \theta (j)k \} . Referring to the analogous analysis for variationally
posed eigenvalue problems, Boffi [4, p. 50] has observed that the

definition of convergence (7.7) does not give any indication of the approx-
imation rate. It is indeed quite common to separate the convergence anal-
ysis for eigenvalue problems into two steps: firstly, the convergence and
the absence of spurious modes is investigated in the spirit of (7.7), then
suitable approximation rates are proved.

We intend to present an analysis of the rate of convergence in a future paper.
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