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Applicatio n of geometri ¢ probabilit y techniques
to the evaluatio nof interactio n energie s arising
from a generalradial potential

David Schleef,® Michelle Parry,” Shu-Ju Tu,

Brian Woodahl, and Ephraim Fischbach
Departmemn of Physics Purdue University, Weg Lafayette Indiana47907

(Receivel 10 Augug 1998 acceptd for publication 15 Octobe 1998

A formaliam is developé for using geometrt probability techniqus to evaluate
interaction energis arising from a genera radid potentid V(r.,), where rq,
=|r,—r4|. The integrak tha arise in calculatirg the® energis can be separated
into a radid piece tha depend on r, ard a nonradia piece tha describs the
geomety of the system including the densiy distribution We show tha all geo-
metric information can be encode into a‘“‘radial densiy function” G(r,;p1,p2),
which depend on r,, and the densitiesp; and p, of two interactirg regions.
G(ris;p1,p2) is calculatel explicitly for severd geometrie and is then usel to
evaluae interaction energia for severé case of interest Our resuls find applica-
tion in elementay particle nuclear and atomic physics © 199 American Insti-
tute of Physics [S0022-24889)00102-4

I. INTRODUCTION
In mary area of physics integrak of the form

U:f a3y d3r, p(ry)p(ro)V(ri—ral) (1.0

are encounteredwhich typically descrite the self-energ of a systen with densiy profile p(r) in
the presene of a two-body centrd potentia V(|r;—r5|). A familiar exampe of sud an integral
arises in the calculation of the electrostati self-energ of a spherich charg distribution (e.g, a
nucleus due to the Coulonb potentid V(|r—r5|),

2

€
Vc(|r1—rz|)=m,

(1.2
whete e, is the electrcc charg (e2= 13-). For asimple potentid such as V(|r;—r5|), theintegral
in Eq. (1.1) can be evaluate directly, by expandim 1/|r,—r5| in terms of Legende polynomials.
However for sone types of potentials evaluatirg U in this way can be extremey tedious An
exampe of curren interest? is the self-energ of a nuclets or a neutrm sta arising from
neutrimm—antineutrim (v—v) exchange. In this case the analogvgfin Eq. (1.2) for the neutra—
neutra (n—n) potentid in aneutra sta arising from »—7 exchange °

2,2
Gra;,

_— (1.3
47ry—1,|°

VVV(|r1_r2|):

where G is the weak Ferni constantard a,= — 3 the coupling constan describirgy the strength
of the v—n interaction. One of the difficulties that arises in evaluatihgstarting from Eq(1.3),

dpresenaddressDepartmenof Physics University of California—Berkeley Berkeley California 94720.
bpresehaddressDepartmehof Naturd SciencesLongwoad College Farmville, Virginia 23909.

0022-2488/99/40(2)/1103/10/$15.00 1103 © 1999 American Institute of Physics

Copyright ©2001. All Rights Reserved.



1104 J. Math. Phys., Vol. 40, No. 2, February 1999 Schleef et al.

is that the integrd is well definad only if the neutran—neutra had core interactian is usel to cut
off the lower limit of integration when |r;—r,|<r.=0.5x10" 13 cm. However since this con-
strairt applies to ro;=|r;—r,/=ry,, ard nat to r;=|r,4| or r,=|r,| separatelythe integration
region in Eq. (1.1) implied by this constrain is somewha complicated As we discus in detalil
below, the evaluatian of integrak involving potentias sud as V,,(r 1), and othea potentias as
well, can be greatl facilitated using geometr¢ probability techniquesBy use of thes techniques
the six-dimensionhintegrd in Eq. (1.1) can be replacel by a one-dimensionaintegrd in the
variabk r1,, which can be easiy integrate in all case of interest The geometre probability
technique are especialy usefu whenp(r,) is radially varying (p(r1) =p(|r1])).

It is helpfu to introdue the formaliam of geometre probability by first considerig the
electrostatt (Coulomb energy of a uniform spherich charge distribution of radiss R. Direct
evaluatian of the six-dimensionkintegrd in Eq. (1.1) yields

U 6 & 1.4

cTE R (1.9
For a sphericaly symmetrc distribution containirg Z charge there are Z(Z— 1)/2 possibe pairs,
ard hene the totd Coulonb enery W, of sud adistribution is

_Z(z-1) 3 e
c=——% U5 Z(Z-1D 7. (1.9

which is the standad result®’
In contras to the precediy derivation which begirs with a six-dimensionh integral the
formalian of integrd geomety expresse U immediatey as aone-dimensioraintegral For any

function g(rq,), its avera@ value (g) taken over a uniform spherica volume of radis R is

2R
(@)= [ dra Parig(r), 16
where
2R
. drip Pa(rip=1. 1.7

The function P5(r,,) denota the normalizel probability densiy for finding two points randomly
chosa in a uniform three-dimensiorasphee to be adistane r 1, apart The functiond form of
Ps(r1,) has been obtainal previousy by a numbe of authorsS™3

: 1(rp)\°

V)
P3(r12)= s 1

3

2

[P
2R

Using Eq. (1.8), U is given by

2R 3r2 3(r 1/(rp)\8
P = Sz, 212y, Z (112
Uc=(e§/r1p) fo drlz( =3 )[1 > (2R)+2 ZR)

in agreemenwith Eq. (1.4). The utility of the geometrc probability formalisn becoms more
evidert when one attemps to evaluae U,,=(V,,(r2)) using Eq. (1.3),

(1.9

eé)_Ge%
"5 R’

2

GZa? (2R 1
V=" f drid 7(re,R)P3(rip] - (1.10
4 e r12
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In Eq. (1.10 7(r.,R) is a constamhtha ensurs tha P3(r ) is appropriate} normalizel in the
intervd 2R=r,=r., and is given by

7(re,R)=(1—8s3+8st—2s2) %, (1.10

where s.=r/2R. It follows from Eg. (1.11) that »(0,R) =1, as expected. Combining E¢4.10
ard (1.11) then gives immediately,

3 G2 1 re )\
UVV:8773 ﬁC R3r2 1- 2R n(rC!R)' (112
Cc

For a sphee containirg N particles the totd enery W, is then given by

w, —NNZD 3 NNlG'Z:aﬁl PR R 11
w5 w= 16,3 N(N— )WRgﬁrc R Mre:R). (1.13

To evaluaé (g) in Eq. (1.6) for a particula geometry one mus first determire the functional
form of Ps(rq,) appropria¢ to that geometry In practice it would be of gred value to know
P(r)="P5(r o) for differert (nonconstantdensiy distributions as well as for othe geometriesin
this pape we addres the former problem by developig a generd framewok for calculating
P(r) for geometris with variabk density We illustrate this approad in Sec |1 by first rederiving
(in a mua simple way) the resut for a sphee of constan densiy given in Eq. (1.8). We then
obtan P(r) for a sphee with a Gaussia densiy distribution In Sec Il1 we appl our formalism
to geometris tha can be usal to calculae the interaction energ betwe& microscopt objecs due
to a generalizé two-body interaction potential One exampe is the van der Waak interaction.

Il. GENERAL FORMALISM
A. The radial density function

Returnirg to Eq. (1.1), we introdue the chang of variables,

l1o=r—Iq,
(2.1
dr=d%,,
so that
U:f drlZ{rin’ dleJ' dry pa(ry)pa(riztry) [V(ri),
EJ drip G(riz;p1,p2)V(ri), (2.2

whee r,=|r,—ry|. The “radial densiy function” G(r,;p1,p,) is the generalizatia of the
probability function P3(r,) in Eq. (1.8). G(r15;p1,p2) incorporats all the geometrt information
abou the densitiesp,(r1) andp,(r,) and the geometry but is independenof V(r»,).

B. Geometry with spherica | symmetry

The first cae we conside is when both p4(r4) andp,(r,) exhibit spherich symmety about
acomman origin, so thatp;=p4(|r1]) andp,=p,(|r,|) abou this origin. From Eq. (2.2) we can
then write

G(r12;P11P2):rizf dgrlf dQ; p1(ro)pa(|riptra)). (2.3

Copyright ©2001. All Rights Reserved.
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Sincep(ry) andp,(|rio+r4|)=p(r,) are independenof dQ, and d¢,,, we can integrae over
thes variables immediatey to give

G(rlz;Pl,Pz):rin'o dry 4mrip,(ry) fo dy1, 27 Sin G1p5(|r 21 14]). (2.9

Note tha the uppe limit of integration for r; can always be taken to be infinite, even for a finite
sphericd mas distribution sincep4(r;) can be definal to be zero for r,>R. Using the law of
cosineswe have

2 2 2
rotri—r;

(2.9

—COos alzzm
Sinee r, and r, are the independenvariables of integration in Eq. (2.3), it follows tha cos6;,
depend only on r, for fixed values of ry, ard r,. Thus,

r
sin 012 dalz:rrlzz drz. (26)

Combinirg Egs (2.6) ard (2.4) then gives

rqotr

ldrz rapa(ra). 2.7

rip—ra

G(r12§P11P2):8772r12f0 dry r1P1(r1)f

As an applicatian of Eq. (2.7) we recalculag¢ the Coulonb energy of a sphee of radius R and
constandensiy 1/, where the densiy is normalizel so tha its integrd over the spherichvolume
is unity. Sinae the integrd in Eq. (2.7) is symmetre in the interchang of r, ard r,, we can write

) r

1
Zdrl rip(ry) dry rop(ry). (2.9

Irio=ral

Gspherérlz;pl P2)= 16mr ler

1

The lower limit on the r, integration follows by noting tha when r,=r, the triangle formed by
the vectos rq, r,, and rq, is isoscelesard hene by the triangle inequaliyy 2r,>r,,. From Eq.
(2.8 we have

167T2r12 R r 3I’§2 3 r12 1 r12 3
Gspherérlz;Plypz)ZTfr dry rlf dr, r=rs |175\5r/ 2 2R] |

122 rio=ra

in agreemenwith the expressia for P5(r,) in Eq. (1.8). The expressia for the Coulonb energy
of a sphee of charg then follows immediatey from Eq. (1.9). Having demonstraté tha the
preseh formaliam correcty reproducs the classich resuls for a sphee of constanh density we
tumn in the next sectio to a problen tha has not been considerd previousy in the literature the
distribution of pointsin a sphee with a Gaussia densiy variation.

Ill. RADIAL DENSITY FUNCTION FOR A GAUSSIAN DISTRIBUTION

We derive in this sectia the radid densiy function for a sphericaly symmetre distribution of
matte centerd at the origin, whos densiy varies as

p(r)=Ae "R, 3.0

wher A ard R, are constantsard r is measurd from the origin. If we normalizep(r) so that its
integrd over all spae is unity, then

Copyright ©2001. All Rights Reserved.
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08} ,',

P(r)

FIG. 1. The plot of P(r)=G(r;p) in Eq. (3.6) as a function of =r 4, (solid line). For comparisa the function P5(r) in
Eq. (1.8 is alo shown (dashe line).

A=Ry 37 %2 (3.2

Combinirg Egs (3.1) ard (2.8), we find

252 ” CeR2 [ —r2IR?
G(r12;p1,p2)=G(r12;p) =8m°AT 5 | dryrie "1 | |dr2r2e 2o, 3.3
0 rpo—rq
Carrying out the integration with respetto r,, we find
202020 a-t2JR2 | —2rIR%r a—2r 1 IRE_ 2101 IR?
G(r1p;p)=4m2A2Rir 1,67 "17R0 | dryrie” 2/Ro[e™ 2121 /Ro— @211 /Ro], (3.9
0

The integratian with respetto r, can then be performeal by completirg the square which gives

Gl 1250) = AmA°RGr 578 "y rofexil ~ 2002 112 IRE] -~ exif— 201+, RG]
0

1 /o
5\@ rlZRO] (3.5

Combinirg Egs (3.2 and (3.5) yields the final result,

2
=472 A%RIr e 1270

2 riz 2 2
G(riz;p)= P e "%, (3.6
0

G(rq2;p) is shown in Fig. 1 and is normalized to unity over the intef\tgle]. When the lower
limit of integration is replace by r., G(rq,;p) must be divided by the consta@{r.,R,) to be
propery normalized where

e 21
C(rc,Ro):fr drip G(ri;p)=1-— \/;3;3- (3.7)
c 0

Copyright ©2001. All Rights Reserved.
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We note tha for r2,/R3<1,G(r,;p) can be approximated by

213,
G(ri;p)= TR (3.9
0

which agres (up to an overal constank with the resuls for a uniform sphee given in Egs (1.8
ard (2.9). This agreemenconforns to our intuition tha when r, is smal compare to Ry, a
sphericaly symmetrc Gaussia distribution will look like tha of a sphee with an approximately
constan locd density.

The resut in Eq. (3.6) can be applied immediatey to calculat both the Coulonb energy and
the neutrino-exchangenergy of a matte distribution with the Gaussia densiy profile given in
Eqg. (3.1). The Coulonb eneryy W is then given by

Z(z-1) | e?\ z(z-1) (= 2\ 2, 2 1 Z(2-1)¢e?
WC:¥<8_>:¥j dr12<e_ X2 \ﬁe—rlezRé:_i_
2 P 2 0 ro Ry VY V27 Ro
(3.9

As notdl in the Introduction geometrt probability technique are particularly usefu when evalu-
ating expressios wher the nucleo—nuclem hard core radius r. appearsas in the integrd for
U,, in Eq (1.10. From Eq. (3.6) we have for a Gaussia densiy distribution of N neutrons,

Gza2 |\ r3, |2
F%n R_132 ;e—riZIZRS_ (3.1()
0

3.5
A7°ri,

N(N-1) /| GZa? N(N—1) de
= = r
" 2 45,/ 2C(rc,Ro) Jrp ¥

Evaluation of the integrd in Eq. (3.10 yields
W R NN-D) [ 1 e*fi’R3+ 1 \/E [ o1
v 2y 5| _ |
87 C(re,Ro) | V2 1R 2 V2R] m

Ei(z)=PJw D

t
-z te

(3.11

dt,

wher P denota the principd value integration We note tha the quantiy in squae brackesin Eq.
(3.1) isreal ashene W, isred as well. As can be sea from Eq. (3.11), by using G(r1»;p) in
Eqg. (3.6) we obtan an exad closed-fom expressia for W,,, for the cas of a Gaussia density
distribution By way of contrast the conventiond approat would lead to an infinite series ex-
pressim for W,,,. We complet this discussia by noting that for r./Ry<<1 we can write

Fdr G(rrs;p) -2 (3.12

Jr r2RE

and hence,

GZa’N(N—-1) 1
War 8var’™ 2R3 59
C

As expecte from Eq. (1.13, W,,~ 1/r2 when r ./R,<1 for the Gaussia distribution just as in
the ca of the uniform sphere.

Copyright ©2001. All Rights Reserved.



J. Math. Phys., Vol. 40, No. 2, February 1999 Schleef et al. 1109

IV. INTERACTION BETWEEN SOURCES

A. General formalism

In the previos section we hawe focusal on calculatig the radid densiy function
G(r12;p1,p2) Needd to evaluae the self-energ of a sphericaly symmetrc matte distribution In
this section we calculae the analogog expression for G(r,;p1,p2), Which characterie the
interactian of two different matte distributiors in volumesw; andw,, respectivelyln particular,
we generalie the calculatiors of Israelachvilt* to allow ary two-body radid potential These
resuls are of interes in the field of tribology, specificalyy in calculatirg interaction forces and
energis due to van der Waals-ty forces This techniqe has been usal to study the force of
interaction betwee an Atomic Force Microscopy (AFM) probe tip ard aflat sample'®

Returnirg to Eqg. (2.3), we can rewrite the expressia for G(r1,;p1,p2) in the form

G(rlz;Pl,Pz):rizf dlef dr 1 py(ry)pa(rip+ry)

:f d3|’l pl(rl)[rizf dle pg(l’z)J. (41)

In Eq. (4.1) we hawe interchangd the orde of the integrationsand hawe usel Eq. (2.1) to replace
ri,+rq by r,. In this section we ded with the situatian in which p;(r;) are given by

Pi when I ewj, 4.2
pir)= 0, otherwise. 4.2

For illustrative purposs we take p; and p, to be constantsso that
G(rlz;Plypz):Plpzj dgrl[rizL dle] Eplpzf dry S(rip,rq). 4.3

a)l m a)l

S(rq,,r1) can be viewed as the surfa@ area formed by the intersectim of a sphee centere at
r,=0 (in the volume w;) ard havirg radius r1,, with the seconl volume w,. Severd examples
will sene to clarify the application of Eq. (4.3).

B. Point to sphere
Here w, is a point having an infinitesimd volume dr, so that Eq(4.3) becomes
G(ri2;p1,p2)=(p1 d7)paS(riz,ry). (4.9
If w, isasphee of radis R, then from Fig. 2,
R?=r2,4+12—2rr 1, cos 6y, (4.5
whete r is the distan@ from the point to the cente of the spherichdistributionw, . It follows that

r

N 12 -2 2
S(rlz,r1)=277r12f sSin 012d012=7T r [R _(r_rlz) ] (46)
0

Combinirg Egs (4.4) ard (4.6) then gives

G(rlzipl,Pz):(PldT)Pz{ﬂ'rle[Rz_(r_rlz)z] . (4.7

Copyright ©2001. All Rights Reserved.
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2

.

=

N

FIG. 2. The representatio of the point-to-sphee geometry R is the radius of the spherewhos cente is adistan@r from
the extern point G(r,;p1,p») is calculatel as afunction of the distane r,, betwea the extern& point and a point in
the sphere.

/

Equatian (4.7) can be checka by noting tha whenr =R, G(r,;p1,p») describs the distribution
of distance betwea two points in a sphere given tha one of thes points lies on the surfae of
the sphere The latter distribution has been derived by Parry® and it is straightforwad to show
that Eq. (4.7) agres with this resut when r=R. When combinal with Eq, (2.3, Eq. (4.7) allows
the interaction energy U to be calculatel for an arbitray two-body potentid V(rq,) (e.g, Cou-
lomb, Yukawa van der Waals etc).

C. Point to half-space

This geomety is very similar to the point-to-sphes case except that w, is now an infinite
half-spae separatd by a distan@ r from an externa point For this geometry cos 6, is given by

r
cos 00=r—, (4.8
12

ard hence
S(F12,11)=27r3(1—C0S ) = 27T 1o(F 15— T). (4.9
Combinirg Egs (4.4) ard (4.9), the radid densiy function is given by

G(r12:p1,p2) =(p1 A7) p{ 27 15(r 12— 1)} (4.10

As in the previols case the expressia in Eq. (4.10 can be checkel by noting that when r=0,
G(rq2;p1,p2) becoms proportiona to rfz, which is the expectd resut for an infinite
half-space®

D. Arbitrar y volum e to half-space

We can apply the previows resut to compue the radid densiy function for an arbitrary
volume w4, in the presene of an infinite half-space From Eq. (4.9 we see tha S(rq,,r)
depend only on the distane@ x of a volume elemet from the boundary and hene we neel only
specify the expressia for the cross section A(x) of w; as afunction of x. Then from Egq. (4.10
we have

f12
G(rlzipl,Pz)ZZﬂ'Plefo dx(r 2= X)A(X). (4.1

Copyright ©2001. All Rights Reserved.
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el

FIG. 3. Representatioof the sphere-to-half-sp@geometry See the text and the captian to Fig. 2 for details.

If w, is asphee of radius Rwho<s cente is adistane r from the bounday of the half-spacethen,
from Fig. 3,

0, xsr—R
A(x)=3 T[RR—=(r—x?], r—Rsxs<r+R (4.12)
0, x=r+R

Correspondingly the densiy function is divided into three regions G(ris;pq,p2)=0 if
r»<(r—R), and

2

?P1P2r12(r_R_rlz)s(rlz_r_?’R), r—Rsrp<r+R,

G(ri2:p1,p2) = (4.13

87?2 3
3 p1p2l 1R (rp—r), Tr+Rsrg,.

Theresulsin Eq. (4.13 are usefu in Atomic Forcee Microscopy since they can be usal to analyze
the interaction of a generb AFM probe tip interactirg with a flat sample.

V. CONCLUSIONS

The discussia in the Introductian illustrates the powe of geometre probability techniqus by
demonstratig how a six-dimensionhkintegrd can be immediatey reduce to a straightforward
one-dimensiorigproblem In practice this facilitates the evaluatia of interaction energis sut as
U,, in Eqg. (1.10, which would be extremey difficult to trea otherwise due to the preseneof r.
We hawe extendd the classich resuls of Refs 8—13 to calculat for the first time the radial
densiy functiors for a Gaussia densiy profile, and for two regiors of differert shaps interacting
with ead other Thes resuls can be applied to a wide variety of physicad systemsas we will
discus elsewhere.
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