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Applicatio n   of geometri c  probabilit y   techniques
to the evaluatio nof interactio n   energie s arising
fro m a genera l radia l potential

David Schleef,a) Michelle Parry,b) Shu-Ju Tu,
Brian Woodahl, and Ephraim Fischbach
Department of Physics, PurdueUniversity, West Lafayette, Indiana47907

~Received 10 August 1998; accepted for publication 15 October 1998!

A formalism is developed for using geometric probability techniques to evaluate
interaction energies arising from a general radial potential V(r 12), where r 12

5ur22r1u. The integrals that arise in calculating these energies can be separated
into a radial piece that depends on r 12 and a nonradial piece that describes the
geometry of the system, including the density distribution. We show that all geo-
metric information can be encoded into a ‘‘radial density function’’ G(r 12;r1 ,r2),
which depends on r 12 and the densitiesr1 and r2 of two interacting regions.
G(r 12;r1 ,r2) is calculated explicitly for several geometries and is then used to
evaluate interaction energies for several cases of interest. Our results find applica-
tion in elementary particle, nuclear, and atomic physics. © 1999 American Insti-
tute of Physics. @S0022-2488~99!00102-4#

I. INTRODUCTION

In many areas of physics, integrals of the form

U5E d3r 1 d3r 2 r~r1!r~r2!V~ ur12r2u! ~1.1!

are encountered, which typically describe the self-energy of a system with density profile r~r ! in
the presence of a two-body central potential V(ur12r2u). A familiar example of such an integral
arises in the calculation of the electrostatic self-energy of a spherical charge distribution ~e.g., a
nucleus! due to the Coulomb potential VC(ur12r2u),

VC~ ur12r2u!5
e0

2

ur12r2u
, ~1.2!

where e0 is the electric charge (e0
2> 1

137). For a simple potential such as VC(ur12r2u), the integral
in Eq. ~1.1! can be evaluated directly, by expanding 1/ur12r2u in terms of Legendre polynomials.
However, for some types of potentials, evaluating U in this way can be extremely tedious. An
example of current interest1,2 is the self-energy of a nucleus or a neutron star arising from
neutrino–antineutrino (n2 n̄) exchange. In this case the analog ofVC in Eq. ~1.2! for the neutron–
neutron (n2n) potential in a neutron star arising from n2 n̄ exchange is3–5

Vnn~ ur12r2u!5
GF

2an
2

4p3ur12r2u5
, ~1.3!

where GF is the weak Fermi constant, and an52 1
2 the coupling constant describing the strength

of then2n interaction. One of the difficulties that arises in evaluatingU, starting from Eq.~1.3!,
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is that the integral is well defined only if the neutron–neutron hard core interaction is used to cut
off the lower limi t of integration when ur12r2u,r c>0.5310213 cm. However, since this con-
straint applies to r 215ur12r2u5r 12, and not to r 15ur1u or r 25ur2u separately, the integration
region in Eq. ~1.1! implied by this constraint is somewhat complicated. As we discuss in detail
below, the evaluation of integrals involving potentials such as Vnn(r 12), and other potentials as
well, can be greatly facilitated using geometric probability techniques. By use of these techniques
the six-dimensional integral in Eq. ~1.1! can be replaced by a one-dimensional integral in the
variable r 12, which can be easily integrated in all cases of interest. The geometric probability
techniques are especially useful whenr(r1) is radially varying (r(r1)5r(ur1u)).

It is helpful to introduce the formalism of geometric probability by first considering the
electrostatic ~Coulomb! energy of a uniform spherical charge distribution of radius R. Direct
evaluation of the six-dimensional integral in Eq. ~1.1! yields

UC5
6

5

e0
2

R
. ~1.4!

For a spherically symmetric distribution containing Z charges there are Z(Z21)/2 possible pairs,
and hence the total Coulomb energy WC of such a distribution is

WC5
Z~Z21!

2
UC5

3

5
Z~Z21!

e0
2

R
, ~1.5!

which is the standard result.6,7

In contrast to the preceding derivation, which begins with a six-dimensional integral, the
formalism of integral geometry expresses UC immediately as aone-dimensional integral. For any
function g(r 12), its average value ^g& taken over a uniform spherical volume of radius R is

^g&5E
0

2R

dr12 P3~r 12!g~r 12!, ~1.6!

where

E
0

2R

dr12 P3~r 12!51. ~1.7!

The function P3(r 12) denotes the normalized probability density for finding two points randomly
chosen in a uniform three-dimensional sphere to be adistance r 12 apart. The functional form of
P3(r 12) has been obtained previously by a number of authors,8–13

P3~r 12!5
3r 12

2

R3 F12
3

2 S r 12

2RD1
1

2 S r 12

2RD 3G . ~1.8!

Using Eq. ~1.8!, UC is given by

UC5^e0
2/r 12&5E

0

2R

dr12S 3r 12
2

R3 D F12
3

2 S r 12

2RD1
1

2 S r 12

2RD 3G S e0
2

r 12
D 5

6

5

e0
2

R
, ~1.9!

in agreement with Eq. ~1.4!. The utility of the geometric probability formalism becomes more
evident when one attempts to evaluate Unn5^Vnn(r 12)& using Eq. ~1.3!,

Unn5
GF

2an
2

4p3 E
r c

2R

dr12@h~r c ,R!P3~r 12!#
1

r 12
5

. ~1.10!
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In Eq. ~1.10! h(r c ,R) is a constant that ensures that P3(r 12) is appropriately normalized in the
interval 2R>r 12>r c , and is given by

h~r c ,R!5~128sc
318sc

422sc
6!21, ~1.11!

where sc5r c/2R. It follows from Eq. ~1.11! that h(0,R)51, as expected. Combining Eqs.~1.10!
and ~1.11! then gives immediately,

Unn5
3

8p3

GF
2an

2

\c

1

R3r c
2 S 12

r c

2RD 3

h~r c ,R!. ~1.12!

For a sphere containing N particles, the total energy Wnn is then given by

Wnn5
N~N21!

2
Unn5

3

16p3 N~N21!
GF

2an
2

\c

1

R3r c
2 S 12

r c

2RD 3

h~r c ,R!. ~1.13!

To evaluate ^g& in Eq. ~1.6! for a particular geometry, one must first determine the functional
form of P3(r 12) appropriate to that geometry. In practice, it would be of great value to know
P(r )[P3(r 12) for different ~nonconstant! density distributions, as well as for other geometries. In
this paper we address the former problem, by developing a general framework for calculating
P(r ) for geometries with variable density. We illustrate this approach in Sec. II by first rederiving
~in a much simpler way! the result for a sphere of constant density given in Eq. ~1.8!. We then
obtain P(r ) for a sphere with a Gaussian density distribution. In Sec. II I we apply our formalism
to geometries that can be used to calculate the interaction energy between microscopic objects due
to a generalized two-body interaction potential. One example is the van der Waals interaction.

II. GENERAL FORMALISM

A. The radia l densit y function

Returning to Eq. ~1.1!, we introduce the change of variables,

r125r22r1 ,
~2.1!

d3r 125d3r 2 ,

so that

U5E dr12F r 12
2 E dV12E d3r 1 r1~r1!r2~r121r1!GV~r 12!,

[E dr12 G~r 12;r1 ,r2!V~r 12!, ~2.2!

where r 125ur22r1u. The ‘‘radial density function’’ G(r 12;r1 ,r2) is the generalization of the
probability functionP3(r 12) in Eq. ~1.8!. G(r 12;r1 ,r2) incorporates all the geometric information
about the densitiesr1(r1) andr2(r2) and the geometry, but is independent of V(r 12).

B. Geometr y wit h spherica l symmetry

The first case we consider is when both r1(r1) andr2(r2) exhibit spherical symmetry about
a common origin, so thatr15r1(ur1u) andr25r2(ur2u) about this origin. From Eq. ~2.2! we can
then write

G~r 12;r1 ,r2!5r 12
2 E d3r 1E dV12 r1~r 1!r2~ ur121r1u!. ~2.3!
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Sincer(r 1) andr2(ur121r1u)5r(r 2) are independent of dV1 and df12, we can integrate over
these variables immediately to give

G~r 12;r1 ,r2!5r 12
2 E

0

`

dr1 4pr 1
2r1~r 1!E

0

p

du12 2p sin u12r2~ ur121r1u!. ~2.4!

Note that the upper limi t of integration for r 1 can always be taken to be infinite, even for a finite
spherical mass distribution, sincer1(r 1) can be defined to be zero for r 1.R. Using the law of
cosines, we have

2cosu125
r 12

2 1r 1
22r 2

2

2r 1r 12
. ~2.5!

Since r 12 and r 1 are the independent variables of integration in Eq. ~2.3!, it follows that cosu12

depends only on r 2 for fixed values of r 12 and r 1 . Thus,

sin u12 du125
2r 2

r 1r 12
dr2 . ~2.6!

Combining Eqs. ~2.6! and ~2.4! then gives

G~r 12;r1 ,r2!58p2r 12E
0

`

dr1 r 1r1~r 1!E
ur 122r 1u

r 121r 1
dr2 r 2r2~r 2!. ~2.7!

As an application of Eq. ~2.7! we recalculate the Coulomb energy of a sphere of radius R and
constant density 1/V, where the density is normalized so that its integral over the spherical volume
is unity. Since the integral in Eq. ~2.7! is symmetric in the interchange of r 1 and r 2 , we can write

Gsphere~r 12;r1 ,r2!516p2r 12E
r 12/2

`

dr1 r 1r~r 1!E
ur 122r 1u

r 1
dr2 r 2r~r 2!. ~2.8!

The lower limi t on the r 1 integration follows by noting that when r 25r 1 the triangle formed by
the vectors r1 , r2 , and r12 is isosceles, and hence by the triangle inequality 2r 1.r 12. From Eq.
~2.8! we have

Gsphere~r 12;r1 ,r2!5
16p2r 12

V2 E
r 12/2

R

dr1 r 1E
ur 122r 1u

r 1
dr2 r 25

3r 12
2

R3 F12
3

2 S r 12

2RD1
1

2 S r 12

2RD 3G ,
~2.9!

in agreement with the expression for P3(r 12) in Eq. ~1.8!. The expression for the Coulomb energy
of a sphere of charge then follows immediately from Eq. ~1.9!. Having demonstrated that the
present formalism correctly reproduces the classical results for a sphere of constant density, we
turn in the next section to a problem that has not been considered previously in the literature, the
distribution of points in a sphere with a Gaussian density variation.

III. RADIAL DENSITY FUNCTION FOR A GAUSSIAN DISTRIBUTION

We derive in this section the radial density function for a spherically symmetric distribution of
matter centered at the origin, whose density varies as

r~r !5Ae2r 2/R0
2
, ~3.1!

where A and R0 are constants, and r is measured from the origin. If we normalizer(r ) so that its
integral over all space is unity, then
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A5R0
23p23/2. ~3.2!

Combining Eqs. ~3.1! and ~2.8!, we find

G~r 12;r1 ,r2![G~r 12;r!58p2A2r 12E
0

`

dr1r 1e2r 1
2/R0

2E
ur 122r 1u

r 121r 1
dr2r 2e2r 2

2/R0
2
. ~3.3!

Carrying out the integration with respect to r 2 , we find

G~r 12;r!54p2A2R0
2r 12e

2r 12
2 /R0

2E
0

`

dr1r 1e22r 1
2/R0

2
@e22r 12r 1 /R0

2
2e2r 12r 1 /R0

2
#. ~3.4!

The integration with respect to r 1 can then be performed by completing the square, which gives

G~r 12;r!54p2A2R0
2r 12e

2r 12
2 /2R0

2E
0

`

dr1 r 1$exp@22~r 12r 12/2!2/R0
2#2exp@22~r 11r 12/2!2/R0

2#%

54p2A2R0
2r 12e

2r 12/2R0
2F1

2
Ap

2
r 12R0G . ~3.5!

Combining Eqs. ~3.2! and ~3.5! yields the final result,

G~r 12;r!5A2

p

r 12
2

R0
3 e2r 12

2 /2R0
2
. ~3.6!

G(r 12;r) is shown in Fig. 1 and is normalized to unity over the interval@0,̀ #. When the lower
limi t of integration is replaced by r c , G(r 12;r) must be divided by the constantC(r c ,R0) to be
properly normalized, where

C~r c ,R0!5E
r c

`

dr12 G~r 12;r!>12A2

p

r c
3

3R0
3

. ~3.7!

FIG. 1. The plot of P(r )[G(r ;r) in Eq. ~3.6! as a function ofr 5r 12 ~solid line!. For comparison the function P3(r ) in
Eq. ~1.8! is also shown ~dashed line!.
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We note that for r 12
2 /R0

2!1, G(r 12;r) can be approximated by

G~r 12;r!>A2

p

r 12
2

R0
3

, ~3.8!

which agrees ~up to an overall constant! with the results for a uniform sphere given in Eqs. ~1.8!
and ~2.9!. This agreement conforms to our intuition that when r 12 is small compared to R0 , a
spherically symmetric Gaussian distribution wil l look like that of a sphere with an approximately
constant local density.

The result in Eq. ~3.6! can be applied immediately to calculate both the Coulomb energy and
the neutrino-exchange energy of a matter distribution with the Gaussian density profile given in
Eq. ~3.1!. The Coulomb energy WC is then given by

WC5
Z~Z21!

2 K e2

r 12
L 5

Z~Z21!

2 E
0

`

dr12S e2

r 12
D3

r 12
2

R0
3 A2

p
e2r 12

2 /2R0
2
5

1

A2p

Z~Z21!e2

R0
.

~3.9!

As noted in the Introduction, geometric probability techniques are particularly useful when evalu-
ating expressions where the nucleon–nucleon hard core radius r c appears, as in the integral for
Unn in Eq. ~1.10!. From Eq. ~3.6! we have, for a Gaussian density distribution of N neutrons,

Wnn5
N~N21!

2 K GF
2an

2

4p3r 12
5 L 5

N~N21!

2C~r c ,R0!
E

r c

`

dr12S GF
2an

2

4p3r 12
5 D r 12

2

R0
3
A2

p
e2r 12

2 /2R0
2
. ~3.10!

Evaluation of the integral in Eq. ~3.10! yields

Wnn5
GF

2an
2

8p3

N~N21!

C~r c ,R0! H 1

A2p

e2r c
2/R0

2

r c
2R0

3
1

1

2
Ap

2

1

R0
5 F2 i 1

1

p
EiS 2r c

2

2R0
5 D G J ,

~3.11!

Ei ~z!5PE
2z

` ~21!

tet dt,

whereP denotes theprincipal value integration. Wenote that thequantity in squarebrackets in Eq.
~3.11! is real, as hence Wnn is real as well. As can be seen from Eq. ~3.11!, by using G(r 12;r) in
Eq. ~3.6! we obtain an exact closed-form expression for Wnn for the case of a Gaussian density
distribution. By way of contrast, the conventional approach would lead to an infinite series ex-
pression for Wnn . We complete this discussion by noting that for r c /R0!1 we can write

E
r c

`

dr
G~r ;r!

r 5 >
2

Ap

1

r c
2R0

3
, ~3.12!

and, hence,

Wnn>
GF

2an
2N~N21!

8&p7/2

1

r c
2R0

3
. ~3.13!

As expected from Eq. ~1.13!, Wnn;1/r c
2 when r c /R0!1 for the Gaussian distribution, just as in

the case of the uniform sphere.
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IV. INTERACTION BETWEEN SOURCES

A. Genera l formalism

In the previous section we have focused on calculating the radial density function
G(r 12;r1 ,r2) needed to evaluate the self-energy of a spherically symmetric matter distribution. In
this section we calculate the analogous expressions for G(r 12;r1 ,r2), which characterize the
interaction of two different matter distributions in volumesv1 andv2 , respectively. In particular,
we generalize the calculations of Israelachvili14 to allow any two-body radial potential. These
results are of interest in the field of tribology, specifically in calculating interaction forces and
energies due to van der Waals-type forces. This technique has been used to study the force of
interaction between an Atomic Force Microscopy ~AFM! probe tip and a flat sample.15

Returning to Eq. ~2.3!, we can rewrite the expression for G(r 12;r1 ,r2) in the form

G~r 12;r1 ,r2!5r 12
2 E dV12E d3r 1 r1~r1!r2~r121r1!

5E d3r 1 r1~r1!H r 12
2 E dV12 r2~r2!J . ~4.1!

In Eq. ~4.1! we have interchanged the order of the integrations, and have used Eq. ~2.1! to replace
r121r1 by r2 . In this section we deal with the situation in which r i(r i) are given by

r i~r i !5H r i , when r iPv i ,

0, otherwise.
~4.2!

For illustrative purposes we taker1 andr2 to be constants, so that

G~r 12;r1 ,r2!5r1r2E
v1

d3r 1H r 12
2 E

4p
dV12J [r1r2E

v1

d3r 1 S~r 12,r1!. ~4.3!

S(r 12,r1) can be viewed as the surface area formed by the intersection of a sphere centered at
r150 ~in the volumev1) and having radius r 12, with the second volumev2 . Several examples
wil l serve to clarify the application of Eq. ~4.3!.

B. Poin t to sphere

Herev1 is a point having an infinitesimal volume dt, so that Eq.~4.3! becomes

G~r 12;r1 ,r2!5~r1 dt!r2S~r 12,r1!. ~4.4!

If v2 is a sphere of radius R, then, from Fig. 2,

R25r 12
2 1r 222rr 12 cosu0 , ~4.5!

where r is the distance from the point to the center of the spherical distributionv2 . It follows that

S~r 12,r1!52pr 12
2 E

0

u0
sin u12du125p

r 12

r
@R22~r 2r 12!

2#. ~4.6!

Combining Eqs. ~4.4! and ~4.6! then gives

G~r 12;r1 ,r2!5~r1dt!r2H p
r 12

r
@R22~r 2r 12!

2#J . ~4.7!
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Equation ~4.7! can be checked by noting that when r 5R, G(r 12;r1 ,r2) describes the distribution
of distances between two points in a sphere, given that one of these points lies on the surface of
the sphere. The latter distribution has been derived by Parry,16 and it is straightforward to show
that Eq. ~4.7! agrees with this result when r 5R. When combined with Eq. ~2.3!, Eq. ~4.7! allows
the interaction energy U to be calculated for an arbitrary two-body potential V(r 12) ~e.g., Cou-
lomb, Yukawa, van der Waals, etc.!.

C. Poin t to half-space

This geometry is very similar to the point-to-sphere case, except that v2 is now an infinite
half-space separated by a distance r from an external point. For this geometry, cosu0 is given by

cosu05
r

r 12
, ~4.8!

and hence

S~r 12,r1!52pr 12
2 ~12cosu0!52pr 12~r 122r !. ~4.9!

Combining Eqs. ~4.4! and ~4.9!, the radial density function is given by

G~r 12;r1 ,r2!5~r1 dt!r2$2pr 12~r 122r !%. ~4.10!

As in the previous case, the expression in Eq. ~4.10! can be checked by noting that when r 50,
G(r 12;r1 ,r2) becomes proportional to r 12

2 , which is the expected result for an infinite
half-space.16

D. Arbitrar y volum e to half-space

We can apply the previous result to compute the radial density function for an arbitrary
volume v1 , in the presence of an infinite half-space. From Eq. ~4.9! we see that S(r 12,r1)
depends only on the distance x of a volume element from the boundary, and hence we need only
specify the expression for the cross section A(x) of v1 as afunction of x. Then, from Eq. ~4.10!
we have

G~r 12;r1 ,r2!52pr1r2E
0

r 12
dx~r 122x!A~x!. ~4.11!

FIG. 2. The representation of the point-to-sphere geometry. R is the radius of the sphere, whose center is a distance r from
the external point. G(r 12 ;r1 ,r2) is calculated as afunction of the distance r 12 between the external point and a point in
the sphere.
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If v1 is asphere of radius R whose center is adistance r from the boundary of the half-space, then,
from Fig. 3,

A~x!5H 0, x<r2R,

p@R22~r2x!2#, r2R<x<r1R,

0, x>r1R.

~4.12!

Correspondingly, the density function is divided into three regions: G(r 12;r1 ,r2)50 if
r 12<(r 2R), and

G~r 12;r1 ,r2!5H p2

6
r1r2r 12~r 2R2r 12!

3~r 122r 23R!, r 2R<r 12<r 1R,

8p2

3
r1r2r 12R

3~r 122r !, r 1R<r 12.

~4.13!

The results in Eq. ~4.13! are useful in Atomic Force Microscopy since they can be used to analyze
the interaction of a general AFM probe tip interacting with a flat sample.

V. CONCLUSIONS

The discussion in the Introduction illustrates the power of geometric probability techniques by
demonstrating how a six-dimensional integral can be immediately reduced to a straightforward
one-dimensional problem. In practice, this facilitates the evaluation of interaction energies such as
Unn in Eq. ~1.10!, which would be extremely difficult to treat otherwise, due to the presence of r c .
We have extended the classical results of Refs. 8–13 to calculate for the first time the radial
density functions for a Gaussian density profile, and for two regions of different shapes interacting
with each other. These results can be applied to a wide variety of physical systems, as we will
discuss elsewhere.
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FIG. 3. Representation of the sphere-to-half-space geometry. See the text and the caption to Fig. 2 for details.
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