
Michigan Technological University Michigan Technological University

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech

Department of Mathematical Sciences
Publications Department of Mathematical Sciences

1-15-2019

Schwarz waveform relaxation with adaptive pipelining Schwarz waveform relaxation with adaptive pipelining

Felix Kwok
Hong Kong Baptist University

Benjamin W. Ong
Michigan Technological University

Follow this and additional works at: https://digitalcommons.mtu.edu/math-fp

 Part of the Mathematics Commons

Recommended Citation Recommended Citation
Kwok, F., & Ong, B. W. (2019). Schwarz waveform relaxation with adaptive pipelining. SIAM Journal on
Scientific Computing, 41(1), A339-A364. http://dx.doi.org/10.1137/17M115311X
Retrieved from: https://digitalcommons.mtu.edu/math-fp/9

Follow this and additional works at: https://digitalcommons.mtu.edu/math-fp

 Part of the Mathematics Commons

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Michigan Technological University

https://core.ac.uk/display/217037561?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/math-fp
https://digitalcommons.mtu.edu/math-fp
https://digitalcommons.mtu.edu/math
https://digitalcommons.mtu.edu/math-fp?utm_source=digitalcommons.mtu.edu%2Fmath-fp%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.mtu.edu%2Fmath-fp%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1137/17M115311X
https://digitalcommons.mtu.edu/math-fp?utm_source=digitalcommons.mtu.edu%2Fmath-fp%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.mtu.edu%2Fmath-fp%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. SCI. COMPUT. c\bigcirc 2019 Society for Industrial and Applied Mathematics
Vol. 41, No. 1, pp. A339--A364

SCHWARZ WAVEFORM RELAXATION WITH ADAPTIVE
PIPELINING\ast

FELIX KWOK\dagger AND BENJAMIN W. ONG\ddagger

Abstract. Schwarz waveform relaxation (SWR) methods have been developed to solve a wide
range of diffusion-dominated and reaction-dominated equations. The appeal of these methods stems
primarily from their ability to use nonconforming space-time discretizations; SWR methods are
consequently well-adapted for coupling models with highly varying spatial and time scales. The
efficacy of SWR methods is questionable, however, since in each iteration, one propagates an error
across the entire time interval. In this manuscript, we introduce an adaptive pipeline approach
wherein one subdivides the computational domain into space-time blocks, and adaptively selects the
waveform iterates which should be updated given a fixed number of computational workers. Our
method is complementary to existing space and time parallel methods, and can be used to obtain
additional speedup when the saturation point is reached for other types of parallelism. We analyze
these waveform relaxation with adaptive pipelining (WRAP) methods to show convergence and the
theoretical speedup that can be expected. Numerical experiments on solutions to the linear heat
equation, the advection-diffusion equation, and a reaction-diffusion equation illustrate features and
efficacy of WRAP methods for various transmission conditions.

Key words. waveform relaxation, domain decomposition, adaptivity, parallel computing

AMS subject classifications. 65Y05, 65M20

DOI. 10.1137/17M115311X

1. Introduction. The parallel numerical solution of time-dependent PDEs has
long been the focus of the high performance computing community. The classical
approach for leveraging high performance computing clusters is to apply a semi-
discretization in time to the time-dependent PDE, and then apply grid partitioning
or domain decomposition (DD) in space, for which sophisticated and highly efficient
methods exist [34]. For highly refined models however, accuracy or stability con-
straints often limit the size of the time step. The time stepping process, because of
its sequential nature, consequently becomes the bottleneck. Hence, parallelization in
the time direction has become an increasingly pressing issue, as attested to by the
annual conference series in time-parallelization methods (seventh edition as of 2018;
see http://parallel-in-time.org/).

One approach for parallelization in time arises from a different way of using DD,
the so-called waveform relaxation (WR) approach. Originally, WR methods were de-
veloped by [25] for systems of ordinary differential equations (ODEs) that arise in
circuit simulation (see also [36]), and subsequently analyzed and extended by many
authors; see, for instance, [28, 29, 33, 3, 24, 23, 21, 2]. This approach has also
been adapted by the DD community in order to solve time-dependent PDEs, giv-
ing rise to Schwarz waveform relaxation (SWR) methods; see [15, 18, 4, 16, 20] and

\ast Submitted to the journal's Methods and Algorithms for Scientific Computing section October 20,
2017; accepted for publication (in revised form) November 6, 2018; published electronically January
15, 2019.

http://www.siam.org/journals/sisc/41-1/M115311.html
Funding: The first author was partially supported by grants from the Hong Kong Research

Grants Council and the National Natural Science Foundation of China.
\dagger Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong

(felix kwok@hkbu.edu.hk).
\ddagger Department of Mathematical Sciences, Michigan Technological University, Houghton, MI, 49931

(ongbw@mtu.edu).

A339

D
ow

nl
oa

de
d

02
/1

4/
19

 to
 1

41
.2

19
.4

4.
85

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

http://parallel-in-time.org/
http://www.siam.org/journals/sisc/41-1/M115311.html
mailto:felix\protect _kwok@hkbu.edu.hk
mailto:ongbw@mtu.edu

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A340 FELIX KWOK AND BENJAMIN W. ONG

references therein. The SWR idea is to first decompose in space to obtain a col-
lection of (coupled) space-time subproblems, then iterate while exchanging interface
information over the whole time window. In fact, one can formally create WR vari-
ants out of any stationary iterative method based on DD. For example, the elliptic
Neumann--Neumann (NN) and Dirichlet--Neumann (DN) methods can be adapted
to yield the NNWR and DNWR methods [22, 27].1 SWR formulations provide
flexibility for discretizing space and time within each space-time subdomain, espe-
cially for problems where the dynamics vary greatly; see [20] for an application on
ocean-atmospheric coupling. On the other hand, when the dynamics are uniform
and DD is used purely for parallelization purposes, the convergence of SWR meth-
ods is typically slower than their elliptic counterparts and deteriorates as the time
window length T increases [18, 22]. To address the deterioration in convergence, the
convergence rate can be monitored and the time window size reduced adaptively if
convergence becomes unacceptably slow; see [6]. Despite the deterioration of con-
vergence rate, WR exposes additional opportunities for parallelization, particularly
in the time direction. In [30], we presented the technique known as pipelining, in
which different waveform iterations of the SWR method can be made to run simul-
taneously on different time steps, without affecting the mathematical properties of
the algorithm. Pipeline parallelism is also possible for NNWR and DNWR relaxation
methods [31]. In [14], the authors show that this can lead to a significant reduction
in wall-clock time relative to a purely spatial DD implementation for the same total
number of processors. Pipeline parallelism was also a popular technique for gain-
ing parallel solution efficiency for ODEs in the WR community; see, for instance,
[17, 35].

Another drawback of the basic SWR method is the issue of oversolving in the
initial time steps. Consider, for example, an initial value problem (P), posed for
t \in [0, T] and discretized using a uniform time step \Delta t = T/N . This contains as a
subproblem the same PDE, but posed on the shorter time interval t \in [0, T \prime] with
T \prime = M\Delta t, where M < N . Denoting this subproblem by (P\prime), we observe that any
SWR method for the problem (P) must require at least as many iterations to converge
as the same SWR method for (P\prime), at least if the stopping criterion is in terms of an Lp

norm. This is because the iterates for (P\prime) are simply the restrictions of the iterates
for (P) over a smaller time window, so convergence for (P) automatically implies
convergence for (P\prime), but usually not the other way around. For SWR methods
applied to parabolic problems in particular, it was shown in [18] that the method
converges superlinearly, with a rate that depends even more strongly on T than the
generic bound in [29] for ODEs. This means for parabolic problems, the error for
SWR in the initial time steps is often several orders of magnitude smaller than the
error at the final time. Thus, the method is essentially using valuable computational
cycles to oversolve the initial time steps relative to the overall tolerance.

In this paper, we address the oversolving problem by presenting a modified ver-
sion of the pipelining algorithm in [30]; we call this method waveform relaxation with
adaptive pipelining (WRAP), because the time window on which the PDE is actively
being integrated changes over the duration of the computation. Initially, the method
uses a small time window, whose size is determined by the number of available proces-
sors. Once a solution in this time window is solved to sufficient accuracy, we accept
the solution and stop iterating; instead, we expand the time horizon and reallocate the

1In this paper, we will refer to all DD-based WR methods as SWR methods, even when the
underlying DD method is not of the Schwarz type, such as the NNWR and DNWR methods.

D
ow

nl
oa

de
d

02
/1

4/
19

 to
 1

41
.2

19
.4

4.
85

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SCHWARZ WR WITH ADAPTIVE PIPELINING A341

processor to solve for a solution at a later time window. We keep doing this until the
final time horizon coincides with the original interval [0, T]. We describe this method
in more detail in section 2. Note that this method is mathematically different from
the original WR method because not every time step is iterated the same number of
times starting from the same initial and interface conditions. To analyze the conver-
gence of this method, we introduce an error propagation model in section 3, show that
error measures satisfying the error propagation model can be derived for the classical
SWR and optimized SWR method, and then study the convergence properties of the
error propagation model. We also prove an estimate on the theoretical speedup ratio
as a function of the number of available processors P . We will see that the average
number of iterations required per time step depends on P , but is independent of the
time window size, unlike the original WR method. Finally, in section 4 we present
numerical results for a variety of diffusive problems and DD methods. The results
confirm our theoretical analysis and show that it is possible for a WRAP method to
obtain a speedup of at least 5--6 over a purely spatial DD method with sequential
time stepping.

2. Algorithms. We start by considering an equivalent formulation of WR algo-
rithms when the time horizon [0, T] is subdivided into shorter intervals. Suppose that
the space-time domain, \Omega \times [0, T], is partitioned into space-time subdomains,

\{ \Omega 1,\Omega 2, . . . ,\Omega J\} \otimes \{ I1, I2, . . . , IM\} ,

where the spatial partitioning \{ \Omega 1,\Omega 2, . . . ,\Omega J\} can be overlapping or nonoverlapping,
with the interfaces denoted by \Gamma j = \partial \Omega j \setminus \partial \Omega , and the temporal partitioning is

Im = [Tm - 1, Tm],m = 1, . . . ,M . Let u
[k]
j,m(x, t) denote the kth waveform iterate in

\Omega j\times Im. Additionally, for ease of notation later, we denote the (spatially) distributed

solution as u
[k]
m (x, t), where

u[k]
m (x, t) = \{ u[k]

j,m(x, t)\} Jj=1.(1)

Let integrate denote a subroutine that computes a numerical approximation to the

spatially distributed solution u
[k]
m (x, t). Specifically, the routine

[g[k]m , h[k]
m]\leftarrow integrate(Im, f, g

[k]
m - 1, h

[k - 1]
m),

takes as its input
\bullet the interval of integration, Im = [Tm - 1, Tm];
\bullet boundary conditions for the PDE, f , on \partial \Omega ;

\bullet the (distributed) solution at the start of the time interval, g
[k]
m - 1=u

[k]
m (x, Tm - 1);

\bullet the (time-dependent) coupling conditions, h
[k - 1]
m ;

and returns as its output

\bullet the (distributed) solution at the end of the time interval, g
[k]
m = u

[k]
m (x, Tm);

\bullet the updated (time-dependent) coupling conditions, h
[k]
m .

For example, in a classical SWR implementation, the coupling conditions, h
[k]
m =

\{ h[k]
j,m\} Jj=1 would be the set of Dirichlet interface conditions required to solve the

PDE on \{ \Omega j\} \times Im, i.e., h
[k]
j,m = u

[k]
j,m| \Gamma j\times Im . The classical SWR computation proceeds

according to Algorithm 1. In Algorithm 1, we have split the integration over [0, T]
into a sequence of shorter integration steps over Im, m = 1, . . . ,M , and computed K

D
ow

nl
oa

de
d

02
/1

4/
19

 to
 1

41
.2

19
.4

4.
85

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A342 FELIX KWOK AND BENJAMIN W. ONG

Algorithm 1 Classical SWR.

1: for k = 1 to K do \triangleleft for each waveform iterate
2: for m = 1 to M do \triangleleft for each time block
3: if m = 1 then
4: set g

[k]
0 = u0(x) \triangleleft utilize initial condition

5: end if
6: if k = 1 then
7: specify h

[0]
m \triangleleft guess initial coupling condition

8: end if
9: [g

[k]
m , h

[k]
m]\leftarrow integrate(Im, f, g

[k]
m - 1, h

[k - 1]
m) \triangleleft integrate solution over Im

10: end for
11: end for

g
[1]
1 , h

[1]
1 g

[1]
2 , h

[1]
2 g

[1]
3 , h

[1]
3 g

[1]
4 , h

[1]
4 g

[1]
5 , h

[1]
5

g
[2]
1 , h

[2]
1 g

[2]
2 , h

[2]
2 g

[2]
3 , h

[2]
3 g

[2]
4 , h

[2]
4

g
[3]
1 , h

[3]
1 g

[3]
2 , h

[3]
2 g

[3]
3 , h

[3]
3

g
[4]
1 , h

[4]
1 g

[4]
2 , h

[4]
2

\cdot \cdot \cdot

\cdot \cdot \cdot

\cdot \cdot \cdot

\cdot \cdot \cdot

\cdot \cdot \cdot

Fig. 1. Dependency graph for SWR. The variables within the purple boxes denote the outputs
of the integrate routine. The width of the arrows reflects the amount of information that needs to
be passed to the newly spawned tasks. If the execution of each task (purple box) takes roughly the
same wall time, each column of tasks can be simultaneously computed if sufficient processors are
available.

waveform iterates. Pipeline parallelism is now possible [30], because multiple tasks
(i.e., multiple integrate routine calls) can be launched if the required input data is
available. For example, the completion of

[g
[1]
1 , h

[1]
1] \leftarrow integrate(I1, f, g

[1]
0 , h

[0]
1)

provides the required input for two integrate function calls,

[g
[1]
2 , h

[1]
2] \leftarrow integrate(I2, f, g

[1]
1 , h

[0]
2),

[g
[2]
1 , h

[2]
1] \leftarrow integrate(I1, f, g

[2]
0 , h

[1]
1).

More generally, a dependency graph can be generated to identify tasks that can be run
in parallel. In Figure 1, the output of each integrate routine is shown in the purple
boxes. Tasks belonging to the same column can all be run concurrently, provided
enough processors are available. This pipeline works best if the execution of each task
(i.e., purple box) takes roughly the same wall time.

D
ow

nl
oa

de
d

02
/1

4/
19

 to
 1

41
.2

19
.4

4.
85

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SCHWARZ WR WITH ADAPTIVE PIPELINING A343

Algorithm 2 Pipeline SWR.

1: tasklist = \{ \} \triangleleft initialize tasklist as empty
2: tasklist.append(\{ 1,1\}) \triangleleft add first task
3: while not empty(tasklist) do
4: parfor p = 1 to size(tasklist) do
5: task = tasklist.get(p) \triangleleft task: pth entry of tasklist
6: k = task.k; m = task.m; \triangleleft set (k,m) from task
7: if m = 1 then
8: set g

[k]
0 = u0(x) \triangleleft utilize initial condition

9: end if
10: if k = 1 then
11: specify h

[0]
m \triangleleft guess initial coupling condition

12: end if
13: [g

[k]
m , h

[k]
m] \leftarrow integrate(Im, f, g

[k]
m - 1, h

[k - 1]
m) \triangleleft Integrate solution over Im

14: tasklist.remove(p) \triangleleft Remove pth entry from tasklist
15: if k = 1 and m < M then
16: tasklist.append(\{ k,m+ 1\}) \triangleleft advance if not final time block
17: end if
18: if k < K then
19: tasklist.append(\{ k + 1,m\}) \triangleleft compute next waveform iterate
20: end if
21: end parfor
22: end while

The pipeline parallel SWR computation can be implemented using a tasklist,

which is a list2 of tuples (k,m), corresponding to the solution values (g
[k]
m , h

[k]
m) that

can presently be computed because the dependencies are satisfied. The pipeline SWR
algorithm is given in Algorithm 2. A couple of observations are in order: integrate
will be called K \cdot M times, similarly to the classical SWR implementation. Second,
the order in which tasks in tasklist are executed does not matter.

One way to save computation is to prune the dependency graph and remove
tasks that are either unnecessary or ineffective in reducing the error in the solution.
To accomplish this pruning, we propose an adaptive framework that utilizes two key

ideas. First, suppose for example, that the error associated with computing u
[2]
1

satisfies some user prescribed tolerance. Then, one can stop iterating on time interval
I1 and use the converged solution at the end of this interval to spawn any future task
involving interval I2, thereby reducing the total number of tasks within each column.
An example of this modified dependency graph is shown in Figure 2. More generally,

one can utilize the integrate routine to return (g
[k]
m , h

[k]
m) given (g

[j]
m - 1, h

[k - 1]
m), where

j \leq k, i.e.,

[g[k]m , h[k]
m]\leftarrow integrate(Im, f, g

[j]
m - 1, h

[k - 1]
m), where j \leq k.

Second, if g
[k]
m - 1 is so inaccurate that further iteration in Im, Im+1, . . . would not

lead to a significant reduction in error, then it is advantageous to wait until a more

accurate solution g
[j]
m - 1, j > k, becomes available, and use that as the starting value

for further integration. In Figure 3, two iterations are performed in I2 before we begin

2This list can be implemented as a hash map for efficiency.

D
ow

nl
oa

de
d

02
/1

4/
19

 to
 1

41
.2

19
.4

4.
85

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A344 FELIX KWOK AND BENJAMIN W. ONG

g
[1]
1 , h

[1]
1 g

[1]
2 , h

[1]
2 g

[1]
3 , h

[1]
3 g

[1]
4 , h

[1]
4 g

[1]
5 , h

[1]
5

g
[2]
1 , h

[2]
1 g

[2]
2 , h

[2]
2 g

[2]
3 , h

[2]
3 g

[2]
4 , h

[2]
4

g
[3]
2 , h

[3]
2 g

[3]
3 , h

[3]
3

g
[4]
2 , h

[4]
2

\cdot \cdot \cdot

\cdot \cdot \cdot

\cdot \cdot \cdot

\cdot \cdot \cdot

\cdot \cdot \cdot
Fig. 2. Dependency graph for SWR if the error associated with u

[2]
1 satisfies some user pre-

scribed tolerance. The new dependencies are shown in red.

g
[1]
1 , h

[1]
1 g

[1]
2 , h

[1]
2

g
[2]
1 , h

[2]
1 g

[2]
2 , h

[2]
2

g
[3]
1 , h

[3]
1

g
[1]
3 , h

[1]
3

g
[3]
2 , h

[3]
2

g
[1]
4 , h

[1]
4

g
[2]
3 , h

[2]
3

\cdot \cdot \cdot

\cdot \cdot \cdot

Fig. 3. Dependency graph for SWR if two iterations are performed in I2 before we begin

iterating in I3, i.e., g
[2]
2 is used instead of g

[1]
2 to compute g

[1]
3 . Each column has only two tasks,

i.e., only two time-parallel tasks can be simultaneously computed (ntasks = 2).

iterating in I3, i.e., g
[2]
2 is used instead of g

[1]
2 to compute g

[1]
3 . In other words, we have

shifted everything to the right of (g
[1]
2 , h

[1]
2) downward and to the right and changed

the dependencies, as shown in red in Figure 3. More generally, one can utilize the

integrate routine to return (g
[k]
m , h

[k]
m) given (g

[j]
m - 1, h

[k - 1]
m), where j \geq k, i.e.,

[g[k]m , h[k]
m]\leftarrow integrate(Im, f, g

[j]
m - 1, h

[k - 1]
m), where j \geq k.

This transformation changes the mathematical properties of the WR algorithm, and
new convergence estimates must be proved, which we will do in section 3.

We are now ready to present the WRAP method in Algorithm 3. We begin by
noting the key differences between Algorithms 2 and 3.

1. In the while-loop block in Algorithm 2, lines 4--21, the pipeline SWR algo-
rithm completes every task in tasklist. This corresponds to concurrently
executing every purple task in a column of Figure 1. Suppose instead that
ntasks is the maximum number of ``parallel-in-time"" tasks that we wish to ex-

D
ow

nl
oa

de
d

02
/1

4/
19

 to
 1

41
.2

19
.4

4.
85

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SCHWARZ WR WITH ADAPTIVE PIPELINING A345

ecute simultaneously by our machine.3 In Algorithm 3 line 5, at most ntasks
are performed within each while-loop block. What do we do if there are
more than ntasks elements in tasklist? To choose which tasks in tasklist

to execute, we use the heuristic that more accurate initial conditions always
lead to faster error reduction: we select from the list ntasks elements with
the smallest m, i.e., corresponding to the earliest time intervals. Thus, tasks
with larger m will be delayed until the solution at earlier time intervals has
converged. This is implemented in line 4 of Algorithm 3, where the tasks in
tasklist are sorted according to m.

2. We only compute additional waveform iterates in Im if the coupling conditions
have not converged, line 19 in Algorithm 3.

3. The most accurate coupling conditions, hm and initial conditions for each
interval, gm, are used and stored in line 14 of Algorithm 3. This is in contrast
to line 13 of Algorithm 2, where specific waveform iterates are used and stored.

Algorithm 3 SWR with adaptive pipelining.

1: tasklist = \{ \} \triangleleft initialize tasklist as empty
2: tasklist.append(\{ 1,1\}) \triangleleft add first task
3: while not empty(tasklist) do
4: tasklist.sort.m; \triangleleft sort tasklist using the variable m
5: parfor p = 1 to min(size(tasklist), ntasks) do
6: task = tasklist.get(p); \triangleleft task: pth entry of tasklist
7: k = task.k; m = task.m; \triangleleft set (k,m) from task
8: if m = 1 then
9: set g0 \leftarrow u0(x) \triangleleft utilize initial condition

10: end if
11: if k = 1 then
12: specify hm \triangleleft guess initial coupling condition
13: end if
14: [gm, hm] \leftarrow integrate(Im, f, gm - 1, hm) \triangleleft Integrate solution over Im
15: tasklist.remove(p) \triangleleft Remove pth entry from tasklist
16: if k = 1 and m < M then
17: tasklist.append(\{ k,m+ 1\}) \triangleleft advance if not final time block
18: end if
19: if coupling condition not converged then
20: tasklist.append(\{ k + 1,m\}) \triangleleft compute next waveform iterate
21: end if
22: end parfor
23: end while

There are two limiting cases of interest in Algorithm 3. If ntasks = 1 and the
time window Im = [Tm - 1, Tm] consists of a single time step, \Delta t, then the WRAP

framework simplifies to a classical DD method, where g
[k]
m is iterated to convergence

before computing g
[1]
m+1. The second limiting case is when all the tasks in tasklist

are simultaneously computed before a new task list is generated based on the recently

3It is envisioned that each parallel-in-time task executes on a spatially distributed solution, (1).
If a hybrid MPI-OpenMP framework is used to implement the adaptive WR methods, ntasks can
be initialized to the number of processing cores available on each socket. Hence, the task-based time
parallelism is accomplished using OpenMP and the distributed spatial parallelism using MPI.

D
ow

nl
oa

de
d

02
/1

4/
19

 to
 1

41
.2

19
.4

4.
85

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A346 FELIX KWOK AND BENJAMIN W. ONG

completed tasks. We shall denote this as ntasks = \infty , with the understanding that
the maximum number of simultaneous tasks that can be computed is limited by the
number of time steps used in the discretization. In this case, WRAP produces iterates
that are the same to those of classical SWR, Algorithms 1 and 2, up to the preset
tolerance TOL, since the dependency graph is identical.

3. Convergence analysis. To understand the convergence properties of the
WRAP method, we first introduce an error propagation model that is valid for both
nonadaptive and adaptive SWR methods. Consider again the dependency graph for
nonadaptive SWR, shown in Figure 1. Let G(m, k) and H(m, k) be error measures

related to the iterates g
[k]
m and h

[k]
m , which must be suitably defined according to

the problem and method chosen. In general, one should choose G(m, k) to be the

maximum error in g
[k]
m . Similarly, H(m, k) should be the maximum error in the

interface conditions over the time window [Tm - 1, Tm]. In other words, for well-posed
problems, G(m, k) and H(m, k) should be chosen so that

G(m, k) = H(m, k) = 0 =\Rightarrow u
[k]
j,m = u| \Omega j\times Im .

Our error propogation model will be based on a system of coupled recurrence
equations

(2)

\Biggl\{
G(m, k) \leq \alpha G(m - 1, k) + H(m, k),

H(m, k + 1) \leq G(m - 1, k) + \beta H(m, k),

where \alpha and \beta are constants, with \beta < 1. The constant \alpha measures amplification or
decay of the error in the initial condition for each time window, assuming no error in
the coupling conditions. This constant can be greater than 1 for unstable problems.
The constant \beta measures the contraction of the error in the interface conditions when
the initial conditions are exact ; this is a property of the Schwarz WR method, and
must be less than 1 in some appropriate norm if the original method converges.
However, the exact error norm that must be chosen in order to achieve \beta < 1 depends
on both the problem and the method chosen.

The remainder of the section is structured as follows. In subsection 3.1, we
illustrate how error measures satisfying (2) can be identified for two representative
SWR methods: the classical SWR method with subdomain problems posed in the
continuous setting, and an optimized SWR method with Robin interface conditions,
using a P r finite element discretization in space and the theta method in time. For ease
of presentation, we present the analysis for the linear heat equation; the techniques
are similar for other parabolic problems, but the analysis is more involved. These
two methods are chosen to show that the model (2) can accommodate a variety of
problems: the system to be solved can be continuous or fully discrete, and the main
argument can be based on either the maximum principle or energy estimates. In
subsections 3.2 and 3.3, model (2) is used to show that both the nonadaptive and
adaptive pipeline methods will converge. In particular, we show that for each space-
time subdomain, G(m, k)\rightarrow 0 and H(m, k)\rightarrow 0 as k \rightarrow \infty for both methods as long
as \beta < 1. Finally, in subsection 3.4, the theoretical speedup that can be achieved by
the WRAP method is derived.

3.1. Error propagation for selected SWR methods. In the next two the-
orems, we show that for the linear heat equation, the error propagation model (2) is
valid for both classical SWR and optimized SWR with Robin transmission conditions,

D
ow

nl
oa

de
d

02
/1

4/
19

 to
 1

41
.2

19
.4

4.
85

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SCHWARZ WR WITH ADAPTIVE PIPELINING A347

provided we choose the error measures correctly. Since the heat equation is linear,
it suffices to consider the homogeneous problem with an arbitrary initial guess along
the artificial interfaces.

Theorem 3.1. Consider the classical SWR applied to the homogeneous heat equa-
tion,

\partial tu
[k]
j - \Delta u

[k]
j = 0, u

[k]
j

\bigm| \bigm| \bigm|
t=T0

= 0,

with initial guesses on the artificial interfaces \partial \Omega j \setminus \partial \Omega , j = 1, . . . , J . Denote the
time subintervals by I1, . . . , IM , where Im = [Tm - 1, Tm], m = 1, 2, . . . ,M . If

G(m, k) = max
j
\| u[k]

j (\cdot , Tm)\| L\infty (\Omega j),

H(m, k) = max
j

\biggl(
sup
t\in Im

\| u[k]
j (\cdot , t)\| L\infty (\partial \Omega j)

\biggr)
,

then \{ G(m, k)\} k,m\geq 1 and \{ H(m, k)\} k,m\geq 1 satisfy the recurrence (2) for some 0 <
\alpha < 1 and 0 < \beta < 1.

Proof. We consider the solution at the kth iteration inside the space-time sub-

domain (x, t) \in \Omega j \times Im. The solution satisfies \partial tu
[k]
j - \Delta u

[k]
j = 0 with initial and

boundary conditions

\| u[k]
j (\cdot , Tm - 1)\| L\infty (\Omega j) \leq G(m - 1, k), \| u[k]

j (\cdot , t)\| L\infty (\partial \Omega j) \leq H(m, k) \forall t \in Im.

Since the PDE is linear, it suffices to estimate G(m, k) by first setting H(m, k) = 0,
then estimating G(m, k) by setting G(m - 1, k) = 0, and finally adding the two
estimates together. The same procedure can be applied to estimate H(m, k + 1).
Thus, we first consider the subdomain problem with zero interface conditions

\partial tu
[k]
j - \Delta u

[k]
j = 0, u

[k]
j

\bigm| \bigm| \bigm|
t=Tm - 1

= 1, u
[k]
j

\bigm| \bigm| \bigm|
\partial \Omega j

= 0.

By the maximum principle, we have

0 \leq u
[k]
j (x, t) \leq \alpha j(t) < 1 \forall (x, t) \in \Omega j \times Im.

In anticipation of showing convergence of the solution u
[k]
j (x, Tm) at the end of the

time interval Im, we define

\alpha j := \alpha j(Tm), \alpha := max
j

\alpha j < 1.

Note that although \alpha depends on the length of the time interval Im and on the
diameter of the subdomains, such an \alpha always exists.

Next, if we consider the subdomain problem with zero initial conditions,

\partial tu
[k]
j - \Delta u

[k]
j = 0, u

[k]
j

\bigm| \bigm| \bigm|
t=Tm - 1

= 0, u
[k]
j

\bigm| \bigm| \bigm|
\partial \Omega j

= 1,

we get trivially that

0 \leq u
[k]
j (x, t) \leq 1 \forall (x, t) \in \Omega j \times Im.

D
ow

nl
oa

de
d

02
/1

4/
19

 to
 1

41
.2

19
.4

4.
85

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A348 FELIX KWOK AND BENJAMIN W. ONG

However, on a set \Gamma \subset \Omega j that is at a distance of at least \delta away from \partial \Omega j , we in fact
have [16, Lemma 3.1]

u
[k]
j (\cdot , t)\| L\infty (\Gamma) \leq \beta < 1,

where \beta depends on the distance \delta . Thus, for the general problem \partial tu
[k]
j - \Delta u

[k]
j = 0

with

| u[k]
j (x, Tm - 1)| \leq G(m - 1, k) \forall x \in \Omega j ,

| u[k]
j (x, t)| \leq H(m, k) \forall (x, t) \in \partial \Omega j \times Im,

we have | u[k]
j (\cdot , t)| \leq \alpha j(t)G(m - 1, k) +H(m, k), which leads to

(3) | u[k]
j (\cdot , Tm)| \leq \alpha G(m - 1, k) +H(m, k).

However, the Dirichlet values transmitted to the neighbors of \Omega j lie in a set \Gamma at least
\delta away from \partial \Omega j , so we have the estimate

\| u[k]
j (\cdot , t)\| L\infty (\Gamma) \leq G(m - 1, k) + \beta H(m, k) \forall t \in Im.

For optimized SWR, we have the following result if we use P r finite elements for
the spatial discretization and the theta method with 1

2 \leq \theta \leq 1 for discretization in
time. For simplicity, we assume that each time block consists of a single time step,
and that the spatial decomposition is nonoverlapping with no cross points. We denote
by \Gamma ij = \partial \Omega i \cap \partial \Omega j the interface between \Omega i and \Omega j .

Theorem 3.2. Consider the optimized SWR applied to the homogeneous heat
equation discretized with the theta method in time and P r finite elements in space
with r \geq 1 over a shape regular, quasi-uniform triangulation \scrT h. More precisely, let

u
[k]
jm \approx u

[k]
j (\cdot , Tm) satisfy

\int
\Omega j

v

\Biggl(
u
[k]
jm - u

[k]
j,m - 1

\Delta tm

\Biggr)
+

\int
\Omega j

\nabla \=w
[k]
jm \cdot \nabla v +

\int
\partial \Omega j\setminus \partial \Omega

p \=w
[k]
jmv =

\int
\partial \Omega j\setminus \partial \Omega

R
[k]
jmv \forall v \in V h

j ,

(4)

R
[k+1]
jm | \Gamma ij

= (2p \=w
[k]
im - R

[k]
im)| \Gamma ij

,(5)

where \Delta tm = Tm - Tm - 1, \=w
[k]
jm = (1 - \theta)u

[k]
j,m - 1+\theta u

[k]
jm with 1

2 \leq \theta \leq 1, and the initial

Robin traces R
[1]
jm are posed on the artificial interfaces \partial \Omega j \setminus \partial \Omega , j = 1, . . . , J ; cf. [9].

If

G(m, k) =

\left(1

2

\sum
j

\| u[k]
jm\|

2
L2(\Omega j)

\right) 1/2

, H(m, k) =

\left(\Delta tm
\sum
j

\| R[k]
jm\|

2
L2(\partial \Omega j\setminus \partial \Omega)

\right) 1/2

,

then \{ G(m, k)\} k,m\geq 1 and \{ H(m, k)\} k,m\geq 1 satisfy the recurrence (2) for \alpha = 1 and
some 0 < \beta < 1, where \beta depends on the length of the time step size \Delta tm.

Proof. Let v = \=w
[k]
jm in (4) and calculate

(6)
1

2\Delta tm

\int
\Omega j

\Bigl[
(u

[k]
jm)2 - (u

[k]
j,m - 1)

2 + (2\theta - 1)(u
[k]
jm - u

[k]
j,m - 1)

2
\Bigr]
+

\int
\Omega j

| \nabla \=w
[k]
jm|

2

=

\int
\partial \Omega j\setminus \partial \Omega

(R
[k]
jm - p \=w

[k]
jm) \=w

[k]
jm =

\int
\partial \Omega j\setminus \partial \Omega

\Bigl[
(R

[k]
jm)2 - (2p \=w

[k]
jm - R

[k]
jm)2

\Bigr]
.

D
ow

nl
oa

de
d

02
/1

4/
19

 to
 1

41
.2

19
.4

4.
85

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SCHWARZ WR WITH ADAPTIVE PIPELINING A349

Using the update formula (5) and the fact that 2\theta - 1 \geq 0, we obtain, after summing
over all subdomains \Omega j , that

1

2

\sum
j

\| u[k]
jm\|

2
L2(\Omega j)

+\Delta tm
\sum
j

\| R[k+1]
jm \| 2L2(\partial \Omega j\setminus \partial \Omega)

\leq 1

2

\sum
j

\| u[k]
j,m - 1\|

2
L2(\Omega j)

+\Delta tm
\sum
j

\| R[k]
j \|

2
L2(\partial \Omega j\setminus \partial \Omega).

In other words, we have

G(m, k)2 +H(m, k + 1)2 \leq G(m - 1, k)2 +H(m, k)2,

which immediately implies the recurrence relation (2) with \alpha = \beta = 1. To see that
\beta can in fact be chosen to be less than 1, it suffices by linearity to consider the case

where u
[k]
j,m - 1 = 0 for all j and show that H(m, k + 1) \leq \beta H(m, k) for some \beta < 1.

We proceed by substituting u
[k]
j,m - 1 = 0 into (4), so that \=w

[k]
jm = \theta u

[k]
jm:

(7)

\int
\Omega j

u
[k]
jmv

\Delta tm
+ \theta

\Biggl(\int
\Omega j

\nabla u[k]
jm \cdot \nabla v +

\int
\partial \Omega j\setminus \partial \Omega

pu
[k]
jmv

\Biggr)
=

\int
\partial \Omega j\setminus \partial \Omega

R
[k]
jmv.

By Lemma 4.10 in [34] and Theorem 4.5.11 in [5], there exists a discrete harmonic

extension v \in V h
j of R

[k]
jm, such that v| \partial \Omega j\setminus \partial \Omega = R

[k]
jm and

\| v\| H1(\Omega j) \leq C\| R[k]
jm\| H1/2(\partial \Omega j\setminus \partial \Omega) \leq Ch - 1/2\| R[k]

jm\| L2(\partial \Omega j\setminus \partial \Omega).

Substituting this v into (7) and using the Cauchy--Schwarz inequality on the left, we
obtain \int

\partial \Omega j\setminus \partial \Omega
(R

[k]
jm)2 \leq 1

\Delta tm
\| u[k]

jm\| L2(\Omega j) \| v\| L2(\Omega j) + \theta | u[k]
jm| H1(\Omega j) | v| H1(\Omega j)

+ \theta p\| u[k]
jm\| L2(\partial \Omega j\setminus \partial \Omega) \| R

[k]
jm\| L2(\partial \Omega j\setminus \partial \Omega)

\leq
\biggl(

\theta

\Delta tm
\| u[k]

jm\|
2
L2(\Omega j)

+ \theta 2| u[k]
jm|

2
H1(\Omega j)

\biggr) 1/2

\times
\biggl(

1

\theta \Delta tm
\| v\| 2L2(\Omega j)

+ | v| 2H1(\Omega j)

\biggr) 1/2

+ \theta p\| u[k]
jm\| L2(\partial \Omega j\setminus \partial \Omega) \| R

[k]
jm\| L2(\partial \Omega j\setminus \partial \Omega)

\leq
\biggl(

\theta

\Delta tm
\| u[k]

jm\|
2
L2(\Omega j)

+ \theta 2| u[k]
jm|

2
H1(\Omega j)

\biggr) 1/2

\times
\biggl(

C1\surd
\theta h\Delta tm

+ C2p

\biggr)
\| R[k]

jm\| L2(\partial \Omega j\setminus \partial \Omega).

Dividing both sides by \| R[k]
jm\| L2(\partial \Omega j\setminus \Omega), we see that\int

\partial \Omega j\setminus \partial \Omega
(R

[k]
jm)2 \leq \=C

\biggl(
\theta

\Delta tm
\| u[k]

jm\|
2
L2(\Omega j)

+ \theta 2| u[k]
jm|

2
H1(\Omega j)

\biggr)
,

D
ow

nl
oa

de
d

02
/1

4/
19

 to
 1

41
.2

19
.4

4.
85

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A350 FELIX KWOK AND BENJAMIN W. ONG

where \=C > 1 depends on \Delta tm, h, and p. Substituting into (6), and keeping in mind

the assumption that u
[k]
j,m - 1 = 0, we deduce that\int

\partial \Omega j\setminus \partial \Omega

\Bigl[
(R

[k]
jm)2 - (2p \=w

[k]
jm - R

[k]
jm)2

\Bigr]
=

\theta

\Delta tm

\int
\Omega j

(u
[k]
jm)2 + \theta 2

\int
\Omega j

| \nabla u[k]
jm|

2

\geq \=C - 1

\int
\partial \Omega j\setminus \partial \Omega

(R
[k]
jm)2.

We conclude that\int
\partial \Omega j\setminus \partial \Omega

(2p \=w
[k]
jm - R

[k]
jm)2 \leq (1 - \=C - 1)

\int
\partial \Omega j\setminus \partial \Omega

(R
[k]
jm)2,

so summing over all j shows that H(m, k + 1) \leq \beta H(m, k) with \beta = 1 - \=C - 1 < 1, as
required.

3.2. The nonadaptive case. We now illustrate how the error propagation
model (2) can be used to derive error estimates for the corresponding SWR method.
We choose classical SWR as an example; the case of optimized SWR can be derived
similarly. Note that this is only a linear estimate and is less sharp than the estimate
in [16], but the linear estimate is much more amenable to our later analysis for the
adaptive case, when the dependency graph no longer resembles Figure 1.

Lemma 3.3. Consider classical SWR with

u
[k]
j (x, T0) = 0 and \| u[1]

j (\cdot , t)\| L\infty (\partial \Omega j) \leq 1

for all j. Let \xi \geq 1 and \eta > \beta > 0 be constants that satisfy (\xi - \alpha)(\eta - \beta) = 1. Then

| u[k]
j (x, t)| \leq G(m - 1, k) +H(m, k) on \Omega j \times [Tm - 1, Tm],

where the functions G(m, k) and H(m, k) are defined in Theorem 3.1, and satisfy

H(m, k) \leq \xi m - 1\eta k - 1,(8)

G(m, k) \leq (\eta - \beta)\xi m\eta k - 1.(9)

Proof. Since \xi \geq 1 and H(m, 1) \leq 1 by definition, we see that (8) holds for k = 1.
Moreover, since (\eta - \beta)\xi = 1 + \alpha (\eta - \beta) > 1, (3) implies

G(1, k) \leq H(1, k) \leq \eta k - 1 \leq (\eta - \beta)\xi \eta k - 1,

which proves (9) for m = 1. We now prove (8) and (9) by induction on m and k using
the recurrence (2). Indeed, we have

H(m, k + 1) \leq G(m - 1, k) + \beta H(m, k) \leq (\eta - \beta)\xi m - 1\eta k - 1 + \beta \xi m - 1\eta k - 1 = \xi m - 1\eta k.

Moreover,

G(m, k) \leq \alpha G(m - 1, k) +H(m, k) \leq (\alpha (\eta - \beta) + 1)\xi m - 1\eta k - 1 = (\eta - \beta)\xi m\eta k - 1,

as 1 = (\xi - \alpha)(\eta - \beta). We have thus proved (8) and (9) inductively, as required.

Note that there is some flexibility in choosing \xi and \eta , as long as the constraint
(\xi - \alpha)(\eta - \beta) = 1 is satisfied. One example is

\xi =
1 + \alpha

1 - \beta
> 1, \eta =

1 + \alpha \beta 2

1 + \alpha \beta
< 1.

We see from Lemma 3.3 that H(m, k) converges to zero as k \rightarrow \infty for fixed m, but
the constant increases with m. One can choose an \eta arbitrarily close to, but larger
than, \beta , but one must then live with the growth in m that comes from a large \xi .

D
ow

nl
oa

de
d

02
/1

4/
19

 to
 1

41
.2

19
.4

4.
85

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SCHWARZ WR WITH ADAPTIVE PIPELINING A351

G(1,1)
H(1,1)

G(2,1)
H(2,1)

G(1,2)
H(1,2)

G(2,2)
H(2,2)

G(1,3)
H(1,3)

G(3,2)
H(3,2)

G(2,3)
H(2,3)

G(4,2)
H(4,2)

G(3,3)
H(3,3)

\cdot \cdot \cdot

\cdot \cdot \cdot

Fig. 4. This figure gives the dependency graph for the same iterative process previously shown
in Figure 3, but with new labels for k, and where \{ G(m, k), H(m, k)\} in each task denotes the error

measures related to the iterates g
[k]
m and h

[k]
m , respectively. The new labels, k, are related to the old

labels, \~k, by the relation k = \~k+Dm, where Dm is the delay in starting the method for the mth time
interval because processors are not available to complete this task. In this example, the solution
in I2 is iterated twice before the computation in I3 is initiated. Hence, we have D1 = D2 = 0,
D3 = D4 = 1. The new labels are shown in red.

3.3. Adaptive case. To analyze the adaptive case, we start by referring to the
dependency graph in Figure 3. To facilitate the analysis, it is more convenient to label
each task in a row with the same iteration number k; thus, from now on we redefine
the iteration number k as in Figure 4.

Let \~k be the old label. The old and new labels are related by k = \~k+Dm, where
Dm is the delay in starting the method for themth time interval because processors are
not available to compute the mth interval. This delay does not include the ``burn-in""
time, i.e., the amount of time waiting for appropriate initial or boundary conditions to
begin the computation on the mth time interval. For the adaptive SWR, for instance,
we have

G(m, k) = G(m, \~k +Dm) = max
j
\| g[k]j,m\| L\infty (\Omega j).

For convenience, we will let P = ntasks, the number of time-parallel tasks that can
be executed simultaneously. The delay Dm has the following properties:

\bullet Dm \leq Dm+1 for all m;
\bullet if P \geq 1 time-parallel tasks can be run simultaneously, then D1 = \cdot \cdot \cdot =
DP = 0. This is because the first P time intervals always have priority over
later times in the task list.

With the new numbering, our computational model (2) becomes

(10)

\left\{
G(m, k) \leq \alpha G(m - 1, k) + H(m, k), k > Dm,

H(m, k + 1) \leq G(m - 1, k) + \beta H(m, k), k > Dm,

H(m, k) \leq 1, k \leq Dm.

The last condition simply indicates that there can be no reduction of error in the
interface conditions until the method starts iterating on the interval Im. To solve
(10), we need the following lemma, whose proof is identical to that of Lemma 3.3.

D
ow

nl
oa

de
d

02
/1

4/
19

 to
 1

41
.2

19
.4

4.
85

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A352 FELIX KWOK AND BENJAMIN W. ONG

Lemma 3.4. Let \xi \geq 1 and \eta > \beta > 0 be constants that satisfy (\xi - \alpha)(\eta - \beta) = 1.
Let Ar = Ar(\xi , \eta), r \geq 1, be any nonnegative function of \xi and \eta such that

(11) \xi m - 1\eta Dm

m\sum
r=1

Ar(\xi , \eta) \geq 1.

If G(m, k) and H(m, k) satisfy (10) for all m, k \geq 1, then

H(m, k) \leq \xi m - 1\eta k - 1
m\sum
r=1

Ar, G(m, k) \leq (\eta - \beta)\xi m\eta k - 1
m\sum
r=1

Ar.

We are now going to choose the Ar so that condition (11) is satisfied.

Lemma 3.5. Let \xi \geq 1 and \eta > \beta > 0 be constants that satisfy (\xi - \alpha)(\eta - \beta) = 1.
For each m \geq 1, define

Am = \xi 1 - m\eta - Dm max
\Bigl(
0, 1 -

\sum m - 1
r=1 Ar\xi

m - 1\eta Dm

\Bigr)
.

Then

(12) \xi m - 1\eta k - 1
m\sum
r=1

Ar = max
1\leq j\leq m

\xi m - j\eta k - 1 - Dj .

Therefore, if G(m, k) and H(m, k) satisfy (10) for all m, k \geq 1, then

H(m, k) \leq max
1\leq j\leq m

\xi m - j\eta k - 1 - Dj , G(m, k) \leq (\eta - \beta) max
1\leq j\leq m

\xi m - j+1\eta k - 1 - Dj .

Proof. We will use induction on m. The base case m = 1 reads

\eta k - 1A1 = \eta k - 1\eta - Dm = max
1\leq j\leq m

\eta k - 1 - Dj .

Assume inductively that (12) holds for m. Then for m+ 1, we have

\xi m\eta k - 1
m+1\sum
r=1

Ar = \xi max
1\leq j\leq m

\xi m - j\eta k - 1 - Dj + \xi m\eta k - 1Am+1

= max
1\leq j\leq m

\xi m+1 - j\eta k - 1 - Dj +max
\bigl(
0, \eta k - 1 - Dm+1 -

\sum m
r=1 Ar\xi

m\eta k - 1
\bigr)

= max
1\leq j\leq m

\xi m+1 - j\eta k - 1 - Dj +max

\biggl(
0, \eta k - Dm+1 - \xi max

1\leq j\leq m
\xi m - j\eta k - 1 - Dj

\biggr)
.

Thus,

\xi m\eta k - 1
m+1\sum
r=1

Ar =

\left\{ \eta k - 1 - Dm+1 if \eta k - 1 - Dm+1\geq max
1\leq j\leq m

\xi m+1 - j\eta k - 1 - Dj ,

max
1\leq j\leq m

\xi m+1 - j\eta k - 1 - Dj otherwise.

It follows that

\xi m\eta k - 1
m+1\sum
r=1

Ar = max
1\leq j\leq m+1

\xi m+1 - j\eta k - 1 - Dj ,

which completes the induction. The corresponding bounds on H(m, k) and G(m, k)
now follow from Lemma 3.4.

D
ow

nl
oa

de
d

02
/1

4/
19

 to
 1

41
.2

19
.4

4.
85

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SCHWARZ WR WITH ADAPTIVE PIPELINING A353

3.4. Theoretical speedup. We are now ready to estimate the theoretical
speedup of WRAP when P <\infty time-parallel tasks can be executed simultaneously.
By construction, one cannot start iterating on the time interval Im until the iteration
on Im - P has converged. Define Em to be the ending time for the mth time interval,
i.e., the smallest k such that H(m, k + 1) \leq \epsilon , where \epsilon is some predefined tolerance.
Then, by definition, we have Em = k, where

H(m, k + 1) \leq \epsilon \leq H(m, k) \leq max
1\leq j\leq m

\xi m - j\eta k - 1 - Dj .

Suppose the maximum on the right-hand side of the above equation is achieved for
j = j\ast . Then taking logarithms yields

(m - j\ast) log \xi - (Em - Dj\ast - 1)| log \eta | \geq - | log \epsilon |

or

(13) Em \leq 1 +Dj\ast +
| log \epsilon |
| log \eta |

+ (m - j\ast)
log \xi

| log \eta |
.

Moreover, since j\ast maximizes \xi m - j\eta k - 1 - Dj , we see that

(m - j\ast) log \xi - (k - 1 - Dj\ast)| log \eta | \geq (m - j) log \xi - (k - 1 - Dj)| log \eta |

for all 1 \leq j \leq m. In other words, we have

Dj\ast - j\ast
log \xi

| log \eta |
\geq Dj - j

log \xi

| log \eta |
, j = 1, . . . ,m.

This function will be important later, so let us define

Fm := Dm - m(log \xi /| log \eta |).(14)

We can then rewrite (13) as

(15) Em - Dm \leq 1 +
| log \epsilon |
| log \eta |

+ max
1\leq j\leq m

Fj - Fm.

Note that the left-hand side is the number of iterations required for convergence in
the mth time window.

The term (1+ log \epsilon
log \eta), on the right-hand side of (15), is comparable to the iteration

count for a classical Schwarz (non-WR) method on the corresponding elliptic problem,
which is bounded by (1+ log \epsilon

log \beta). The remaining terms measure the additional iterations
required because of the adaptive WR. If max1\leq j\leq m Fj - Fm were bounded by a

constant, then we will have proven that the iteration count is independent of the
time horizon. This is a difficult task, in general, because the error estimate in our
computational model is only an upper bound; however, we will be able to bound Em

as a constant times m.
Bounding Em when m \leq P is trivial. Recall that Dm = 0 for m = 1, . . . , P ,

because the first P time intervals have priority over later time intervals. (14) simplifies
to

Fm = - m log \xi

| log \eta |
, m = 1, . . . , P.(16)

D
ow

nl
oa

de
d

02
/1

4/
19

 to
 1

41
.2

19
.4

4.
85

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A354 FELIX KWOK AND BENJAMIN W. ONG

Hence, (15) for m = 1, 2, . . . , P gives

Em \leq 1 +
| log \epsilon |
| log \eta |

+ max
1\leq j\leq m

Fj - Fm = 1 +
| log \epsilon |
| log \eta |

,

which is close to the iteration count for a nonadaptive SWR method on these time
blocks when \eta \approx \beta . If m > P , Dm is no longer zero, and we need to resort to the
following recurrence relation to derive an equation for the delay,

Dm+P = Em - P, m = 1, 2,(17)

From (14), we have

Fm+P = Dm+P - (m+ P)
log \xi

| log \eta |

= (Em - P) - (m+ P)
log \xi

| log \eta |

\leq 1 +
| log \epsilon |
| log \eta |

+ max
1\leq j\leq m

Fj - Dm - P
log \xi

| log \eta |
 - P

or, equivalently,

Fm \leq 1 +
| log \epsilon |
| log \eta |

+ max
1\leq j\leq (m - P)

Fj - Dm - P - P
log \xi

| log \eta |
 - P.(18)

Since Dm = 0 for m = 1, . . . , P , it will be convenient to simplify max1\leq j\leq m Fm

iteratively for \ell P < m \leq (\ell + 1)P . Consider the case \ell = 1, i.e., P < m \leq 2P . Using
(16), (18) simplifies to

Fm \leq 1 +
| log \epsilon |
| log \eta |

 - (P + 1)
log \xi

| log \eta |
 - P.

If

\Delta := 1 +
| log \epsilon |
| log \eta |

 - P

\biggl(
1 +

log \xi

| log \eta |

\biggr)
is positive, then

max
1\leq m\leq 2P

Fm \leq -
log \xi

| log \eta |
+\Delta ,

otherwise it is just bounded by - log \xi /| log \eta | . Repeating this argument for \ell =
2, 3, . . . , we see that for \ell P < m \leq (\ell + 1)P ,

Fm \leq

\left\{
 - log \xi

| log \eta |
+ \ell \Delta , \Delta > 0,

 - log \xi

| log \eta |
+\Delta , \Delta \leq 0.

By substituting the above into (18), we obtain the following theorem.

Theorem 3.6. Consider a WRAP method that satisfies the model (10), and as-
sume that \xi and \eta satisfy (\xi - \alpha)(\eta - \beta) = 1. Let Em be the time to convergence for
the mth time window, i.e., the smallest k such that H(m, k + 1) \leq \epsilon , where \epsilon is a
predefined tolerance. Let \ell be an integer such that \ell P < m \leq (\ell + 1)P . Then

Em \leq 1 +
| log \epsilon |
| log \eta |

+ (m - 1)
log \xi

| log \eta |
+ \ell \cdot max

\biggl\{
0, 1 +

| log \epsilon |
| log \eta |

 - P

\biggl(
1 +

log \xi

| log \eta |

\biggr) \biggr\}
.

D
ow

nl
oa

de
d

02
/1

4/
19

 to
 1

41
.2

19
.4

4.
85

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SCHWARZ WR WITH ADAPTIVE PIPELINING A355

To estimate the wall time needed to complete the integration, we introduce the concept
of effective parallel linear solves (EPLS), which is defined as the number of columns in
the dependency graph, assuming that all tasks in a column are simultaneously com-
puted. For the standard time stepping algorithm, the number of EPLS is estimated
by

M

\biggl(
1 +
| log \epsilon |
| log \beta |

\biggr)
=: kstd,

where \beta < \eta is the actual contraction rate when we have exact initial conditions,

and (1 + | log \epsilon |
| log \beta |) is the number of iterations required for convergence on a single time

interval. For the WRAP algorithm, the EPLS is given by EM + (M - 1), where the
extra M - 1 solves arise because the task involving time interval IM can only appear
in the task list after M - 1 updates, even if there is no delay in execution. Letting
M - 1 = \ell P + r, where 0 \leq r < P , we have

EPLS \leq

\left\{ (\ell + 1)
\Bigl(
1 + | log \epsilon |

| log \eta |

\Bigr)
+ r

\Bigl(
1 + log \xi

| log \eta |

\Bigr)
, P <

\Bigl(
1 + | log \epsilon |

| log \eta |

\Bigr)
/
\Bigl(
1 + log \xi

| log \eta |

\Bigr)
,

1 + | log \epsilon |
| log \eta | + (M - 1)

\Bigl(
1 + log \xi

| log \eta |

\Bigr)
, otherwise.

We see that the ratio

P \ast =

\biggl(
1 +
| log \epsilon |
| log \eta |

\biggr) \bigg/ \biggl(
1 +

log \xi

| log \eta |

\biggr)
determines the optimal number of processors per subdomain. In fact, if P < P \ast , then
we have

EPLS \leq
\biggl(
1 +
| log \epsilon |
| log \eta |

\biggr)
(\ell + 1 + r/P \ast) \leq M + P - 1

P

\biggl(
1 +
| log \epsilon |
| log \eta |

\biggr)
.

If we have \eta \approx \beta , then the theoretical speedup becomes

Speedup =
kstd
EPLS

\gtrapprox P

\biggl(
1 +

P - 1

M

\biggr) - 1

,

meaning the speedup approaches P as the number of time intervals becomes large.
Thus, we get perfect speedup in the limit. On the other hand, if P \geq P \ast , then

EPLS \gtrapprox (M + P \ast - 1)

\biggl(
1 +

log \xi

| log \eta |

\biggr)
,

so the speedup is bounded above by

Speedup \leq MP \ast

M + P \ast - 1
\rightarrow P \ast as M \rightarrow \infty .

Remark. If we assume (15) is a reasonable approximation of the actual iteration
count, i.e., if

km \approx 1 +
| log \epsilon |
| log \eta |

+ max
1\leq j\leq m

Fj - Fm,

then a straightforward substitution yields

km \approx

\Biggl\{ | log \epsilon |
| log \eta | + (m - 1) log \xi

| log \eta | , 1 \leq m \leq P,

max
\Bigl(
P (1 + log \xi

| log \eta |),
| log \epsilon |
| log \eta |

\Bigr)
, m > P.

D
ow

nl
oa

de
d

02
/1

4/
19

 to
 1

41
.2

19
.4

4.
85

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A356 FELIX KWOK AND BENJAMIN W. ONG

Thus, for the initial time intervals, we need to take additional iterations to offset the
growth of the error asm increases. The same thing happens with the nonadaptive WR
method. Beyond the first P intervals, however, the number of iterations is essentially
constant, but the constant depends on the number of processors P . For small P , we
take the same number of iterations as the sequential method, but for large P , the
constant is proportional to P . This is in agreement with our numerical experiments;
see section 4.

Remark. The maximum possible speedup when P = M has been previously
studied for the nonadaptive WR method [30]. Specifically, EPLS = M +K, where K
is the number of waveform iterations computed for the nonadaptive WR method. To
compute the maximum possible speedup when P = M for the adaptive WR method,
we first let km be the number of iterations required by a Schwarz iteration in time block
Im (i.e., the adaptive WR method with P = 1). Denote ktot =

\sum M
m=1 km. Let \~km be

the number of iterations required in time block Im for the adaptive WR method with
P = M , and denote \~kmax = max1\leq m\leq M

\~km. Then the maximum possible speedup
for the adaptive WR method with P = M is

ktot

M + \~kmax

.(19)

This speedup can be estimated by realizing that ktot = Mkavg, and the ratio M
M+\~kmax

is bounded above by one. Hence, the maximum possible speedup is bounded by kavg.

4. Numerical experiments. In this section, we perform several experiments
that illustrate the behavior of the WRAP framework applied to different DD methods
and problems. In subsection 4.1, we solve the heat equation using three DD methods,
namely, the classical and optimized SWR methods, as well as the NNWR method.
In subsection 4.2, we briefly survey other parallel-in-time approaches to highlight
the difficulty of time parallelism and to frame our contributions in the broader pic-
ture. In subsection 4.3, we consider an advection-diffusion equation that is advection
dominated; this is an interesting case because the performance of other time-parallel
methods such as parareal [26], deteriorates as the equation becomes more and more
dominated by advection. Finally in subsection 4.4, we present a nonlinear PDE system
that models an idealized autocatalytic reaction.

4.1. Linear heat equation. We begin by using the adaptive classical SWR
approach to solve the linear heat equation in one dimension,

ut = uxx, x \in [0, 1], t \in [0, 1],

u(0, x) = sin(\pi x).

We discretize the system using backward Euler in time and central differences in
space, with \Delta x = 1/1024 and \Delta t = 0.01. The spatial domain is subdivided into
four overlapping subdomains; the width of the overlap region is chosen to be 1

16 th of
the subdomain width, requiring the classical SWR method to take many iterations
to converge to the monodomain solution. One hundred time blocks, each consisting
of one time step, are used. For a tolerance of 10 - 6, the number of waveform iterates
required at each time step for various ntasks values are shown in Figure 5.

From Figure 5, several observations should be made. First, consider the total
number of iterations (tasks) required for each implementation with ntasks, i.e., the
area under each curve in Figure 5. The implementation requiring the fewest to-

D
ow

nl
oa

de
d

02
/1

4/
19

 to
 1

41
.2

19
.4

4.
85

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SCHWARZ WR WITH ADAPTIVE PIPELINING A357

0 20 40 60 80 100

0

200

400

time step

\#
w
av
ef
or
m

it
er
a
te
s

Classical Schwarz
ntasks = 2
ntasks = 4
ntasks = 8
ntasks = 16
ntasks = 32
ntasks = 100
nonadaptive

Classical SWR

Fig. 5. Classical Schwarz coupling conditions: Number of waveform iterates at each time step
required to reach the same final tolerance for varying numbers of simultaneous tasks.

tal number of iterations is ntasks = 1, corresponding to the classical Schwarz DD
method. This is unsurprising since we are iterating each time step until convergence,
so later time steps do not need to spend extra iterations to eliminate the error prop-
agated from earlier time steps. Second, the total number of waveform iterates for
the adaptive WR approach is significantly lower than for the nonadaptive classical
SWR approach. Last, as ntasks is increased, the total number of waveform iterates
required increases.

Figure 5 does not address the speedup that is possible using adaptive pipelining,
however. In Figure 6, we depict the computation of the waveform iterates for each
time step (x-axis) relative to when they are computed in the simulation (y-axis) for
the case ntasks = 8. (Figure 6 can be viewed as the silhouette of the dependency
graph, rotated by 90 degrees.) Observe that the height of the bar corresponds to the
number of iterations required at each time step. The WRAP algorithm does more
iterations initially, consistent with the analysis. Also observe that each horizontal
slice of the plot in Figure 6 will have at most eight markers because the maximum
number of tasks that are simultaneously computed in this example is ntasks = 8.
Finally, we see that the WRAP algorithm has a preference for iterating earlier time
steps to convergence; later time steps are not started until the earlier time steps are
iterated to convergence.

Table 1 shows the speedup that can be expected using the adaptive pipeline WR
approach with classical Schwarz transmission conditions. Columns 2--3 display the
EPLS and speedup for M = 100 time intervals; columns 4--5 show the same for a
repeated experiment with M = 1000. The theoretical speedup is computed by taking
the ratio of the the number of EPLS using the adaptive pipeline WR framework
against that of the classical Schwarz DD method (ntasks = 1). For M = 100, the
speedup increases monotonically with ntasks, but saturates at approximately 6, even
when ntasks = 100. The observed saturated speedup is in agreement with (19).
Specifically, we have \~kmax = 529 for the adaptive WR method with ntasks = 100.
Since M = 100 and ktot = 3841 (note: ktot = EPLS for ntasks = 1), (19) gives a
theoretical maximum speedup of 6.1.

D
ow

nl
oa

de
d

02
/1

4/
19

 to
 1

41
.2

19
.4

4.
85

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A358 FELIX KWOK AND BENJAMIN W. ONG

0 20 40 60 80 100
0

200

400

600

800

time step

E
P
L
S

Fig. 6. Classical Schwarz coupling conditions: bars denote computation of the waveform iterates
for each time step (x-axis) relative to when they are computed in the simulation (y-axis) for the case
ntasks = 8. Here, the wall time unit is the amount of time it would take to compute one parallel
solve. This WRAP method using ntasks = 8 requires 841 EPLS.

Table 1
Heat equation in one dimension using classical Schwarz coupling conditions. Reported: theoret-

ical speedup using the adaptive pipeline WR approaches for various ntasks (number of time-parallel
tasks), with M = 100 time blocks (columns 2--3) and M = 1000 (columns 4--5). The EPLS is defined
in subsection 3.4.

ntasks
M = 100 M = 1000

EPLS Speedup EPLS Speedup
1 3841 -- 9902 --
2 2017 1.90 5182 1.91
4 1195 3.21 3101 3.19
8 841 4.57 2183 4.54
16 687 5.59 1748 5.66
32 629 6.11 1537 6.44
100 628 6.12 1388 7.13

Speedup can be potentially improved when more time blocks are used, since the
processors can then march in a pipe for a larger number of tasks, as shown in columns
4--5 of Table 1. For M = 1000, the speedup saturates at around 7, which is better
than before, but only marginally. The reason is that the problem has become easier
as \Delta t becomes smaller: for ntasks = 1, i.e., the standard time stepping method only
requires an average of 9.9 EPLS per time step, instead of 38.4 EPLS per time step
when \Delta t = 0.01. Also note that WRAP now only takes 1388 effective solves (with
ntasks = 100) to complete a 1000-step integration, i.e., about 1.4 EPLS per step.
With such a low EPLS per step, it is unlikely that further speedup can be obtained
by adding processors in the time direction. Nevertheless, this speedup comes on top
of any spatial parallelism, so an extra multiplicative factor of 5 to 7 in the speedup is
nontrivial.

Next, we report the results when different coupling conditions are used. In
columns 2--3 of Table 2, we report the EPLS and speedup when optimized transition
conditions are imposed between subdomains, with optimized parameter p = 1\surd

\Delta t
.

D
ow

nl
oa

de
d

02
/1

4/
19

 to
 1

41
.2

19
.4

4.
85

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SCHWARZ WR WITH ADAPTIVE PIPELINING A359

Table 2
Heat equation in one dimension using the WRAP method for Optimized SWR and Neumann--

Neumann WR (NNWR). Here, four non-overlapping spatial domains were used along with M = 100
time blocks, and a tolerance of 10 - 12.

ntasks
Optimized SWR NNWR
EPLS Speedup EPLS Speedup

1 865 -- 1358 --
2 436 1.98 681 1.99
4 228 3.79 350 3.88
8 176 4.91 206 6.59
16 165 5.24 170 7.99
100 165 5.24 164 8.28

Table 3
Heat equation in two dimensions using classical Schwarz coupling conditions.

ntasks EPLS Speedup
1 19042 --
2 9572 1.99
4 4948 3.85
8 2800 6.80
16 1838 10.36
32 1400 13.60
64 1205 15.80

The time horizon is divided into M = 100 time blocks, with each time block con-
sisting of a single time step. Four nonoverlapping spatial domains were used, with
\Delta x = 1/1024. Even with a smaller tolerance of 10 - 12, modest parallel speedup num-
bers are observed. This can be explained by the low number of EPLS per time step,
which went from 8.65 for ntasks = 1 to 1.65 for ntasks \geq 16, since more effective
coupling conditions were used. In columns 4--5, we report the EPLS and speedup
for a non-Schwarz variant: an adaptive pipeline parallel implementation for NNWR
methods [31]. The NNWR method performs a two-step iteration consisting of first
solving a ``Dirichlet"" subproblem on each space--time domain, followed by solving an
auxiliary ``Neumann"" subproblem.

Last, we solve the linear heat equation in two dimensions to illustrate the speedup
that can be expected when the EPLS per step increases,

ut = uxx + uyy, \Omega = [0, 1]\times [0, 1], t \in [0, 1],

u(0, x, y) = e - 10
\surd

(x - 0.5)2+(y - 0.5)2 , (x, y) \in \Omega .

Using \Delta x = 1
40 ,\Delta y = 1

60 , we split the spatial domain into 4\times 3 subdomains with an
overlap of 2\Delta x or 2\Delta y. For the time integration, we take M = 400 time blocks with
\Delta t = 1

400 . The EPLS and speedup are reported in Table 3. The average EPLS per
time step is 47 for ntasks = 1; the average EPLS per time step for ntasks = 16 is
five.

4.2. Other parallel-in-time approaches. Before we continue with more nu-
merical experiments, we digress briefly to compare our numbers against published
speedup results obtained for other time-parallel methods such as revisionist integral
deferred correction (RIDC) methods [8], parareal [26], multigrid-in-time (MGRIT)
[11], and parallel exponential integrators [12]. This comparison is not intended to
promote any specific method or approach, as many of the underlying problems, how
speedup is evaluated, and the underlying computing hardware may differ. Rather, the

D
ow

nl
oa

de
d

02
/1

4/
19

 to
 1

41
.2

19
.4

4.
85

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A360 FELIX KWOK AND BENJAMIN W. ONG

purpose of this discussion is to highlight the difficulty of time parallelism and situate
our contribution in the broader picture.4

\bullet We begin our discussion with RIDC, which uses a predictor and correctors
in parallel to generate high-order time integrators. Although only capable
of small-scale parallelism, RIDC is able to achieve 8\times speedup using eight
time-parallel tasks to solve the linear heat equation and the Brusselator [7].

\bullet The most widely studied parallel-in-time algorithm is the parareal algorithm.
Selecting the coarse and fine propagators is an art but, often, the coarse
grid correction is the bottleneck of the parareal algorithm. A recent attempt
to accelerate coarse grid correction has shown that a speedup of 5--6\times can
be expected with a parallel coarse grid correction [37] when there are 100
time-parallel tasks.

\bullet We next turn our attention to XBraid [1], a software package that implements
MGRIT. In [19], XBraid was used to solve a model problem that mimics
unsteady flow at low Reynolds number. Using 256 cores, XBraid was able to
achieve a speed up of 5--6\times over a serial computation.

\bullet The original parallel exponential integrator was generalized for nonlinear
problems by using a rational approximation. Dubbed REXI (rational expo-
nential integrators), the idea is to approximate the computationally expensive
approach of exponential integrators while adding additional degrees of paral-
lelization. A recent manuscript [32] explores scalability for REXI applied to
linear oscillatory problems. For their time parallelization results, the authors
get a performance improvement of 118\times using 3584 cores as compared against
a sequential Runge--Kutta 4 integrator, approximately 3\% efficiency.

4.3. Advection-diffusion. Next, we solve the advection-diffusion equation

ut = \nu uxx + ux, x \in [0, 2], t \in [0, 4],

with periodic boundary conditions

u(0, t) = u(2, t), ux(0, t) = ux(2, t), t \in (0, T),

and with initial conditions u(x, 0) = e - 20(x - 1)2 for x \in (0, 2). We discretize the system
using backward Euler in time and first-order upwind in space, with \Delta x = 1/512 and
\Delta t = 0.01. As \nu \rightarrow 0, the problem becomes more and more advection dominated.
It has been shown in [13] that the convergence of the parareal method deteriorates
for small \nu , and speedup suffers as a result. We show our results for \nu = 0.05
and \nu = 0.005 in Table 4. Four overlapping subdomains and Dirichlet transmission
conditions are used in both cases. We see that our speedup remains reasonable even
for these highly-advection-dominated cases. In fact, the less favorable speedup for
\nu = 0.005 is due to the problem being easier : serial time stepping only requires 2400
EPLS, or 6 EPLS per time step, instead of 4589 EPLS (or 11.5 EPLS per time step)
in the more diffusive case. For \nu = 0.005, Figure 7 shows only a few waveform iterates
are required to reach the same final tolerance if the fewer ntasks are used.

4.4. Brusselator. In the last experiment, we consider an idealized autocatalytic
reaction, the Brusselator system, which can be modeled by the following reaction-

4A notable omission from this brief survey is the parallel full approximation scheme in space and
time PFASST [10] because the spatial and time parallelism is tightly coupled there.

D
ow

nl
oa

de
d

02
/1

4/
19

 to
 1

41
.2

19
.4

4.
85

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SCHWARZ WR WITH ADAPTIVE PIPELINING A361

Table 4
Theoretical speedup using the WRAP framework applied to the advection-diffusion problem with

various \nu 's and M = 400 time blocks.

ntasks
\nu = 0.05 \nu = 0.005

EPLS Speedup EPLS Speedup
1 4859 -- 2400 --
2 2437 1.99 1201 2.00
4 1250 3.89 604 3.97
8 754 6.44 422 5.69
16 562 8.65 418 5.74
32 489 9.94 418 5.74
100 487 10.00 418 5.74

0 100 200 300 400
0

5

10

15

20

time step

\#
w
av
ef
or
m

it
er
at
es

Classical Schwarz
ntasks = 2
ntasks = 4
ntasks = 8
ntasks = 16
ntasks = 32
ntasks = 400
nonadaptive

Classical SWR

Fig. 7. WRAP for advection-diffusion equation with \nu = 0.005: plot shows the number of
waveform iterates at each time step required to reach the same final tolerance for varying numbers
of simultaneous tasks.

diffusion system,

ut = A+ u2 v - (B + 1)u+ \alpha uxx,

vt = B u - u2 v + \alpha vxx.

Here, A = 1 and B = 3 are rate constants, and \alpha = 1
50 is the diffusion constant. The

initial and boundary conditions are

u(0, t) = u(1, t) = 1, v(0, t) = v(1, t) = 3,

u(x, 0) = 1 + sin 2\pi x, v(x, 0) = 0.

This reaction system is nonlinear, and stiff due to the diffusion. We discretize the
system using an implicit-explicit scheme: the reaction term is handled explicitly using
the explicit Euler integrator, and the diffusion term is handled implicitly using the
implicit Euler integrator. A centered finite difference approximation is used to ap-
proximate the diffusion term. The spatial domain is subdivided into four overlapping
subdomains; the width of the overlap region is again chosen to be 1

16 th of the sub-
domain width. One hundred time blocks, each consisting of one time step, are used.

D
ow

nl
oa

de
d

02
/1

4/
19

 to
 1

41
.2

19
.4

4.
85

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A362 FELIX KWOK AND BENJAMIN W. ONG

0 20 40 60 80 100

0

10

20

30

40

50

time step

\#
w
av
ef
or
m

it
er
a
te
s

Classical Schwarz
ntasks = 2
ntasks = 4
ntasks = 8
ntasks = 16
ntasks = 100
nonadaptive

Classical SWR

Fig. 8. Solving the Brusselator equation using the WRAP framework with Dirichlet transmis-
sion conditions. Here, we plot the number of waveform iterates at each time step required to reach
the same final tolerance for varying numbers of simultaneous tasks.

Table 5
Theoretical speedup for solving the Brusselator system using the WRAP framework with Dirich-

let transmission condition and M = 100 time blocks.

ntasks EPLS Speedup
1 975 --
2 495 1.97
4 270 3.61
8 184 5.30
16 154 6.33
100 149 6.54

Similar observations to the first numerical experiment can be made. For a tolerance of
10 - 6, the number of waveform iterates required at each time step for various ntasks
values is shown in Figure 8. The theoretical speedup is summarized in Table 5.

5. Conclusions. Adaptive pipelining is introduced to efficiently utilize a fixed
number of computational workers for WR methods. In this method, we address two
main issues of WR methods, namely, convergence degradation for long-time integra-
tion, and oversolving in the initial time steps. We do so by keeping the effective
window of integration small, and reassigning workers from converged time steps in
order to grow the time horizon. The new WRAP methods are analyzed to show the
theoretical speedup that can be expected. The WRAP framework has several de-
sirable properties. First, one limiting case recovers Schwarz DD methods, allowing a
direct comparison with classical DD methods. Another limiting case recovers classical
WR methods. The numerical experiments show that parallel speedup with moderate
efficiency over classical DD methods can be expected with the WRAP framework.
Second, although the parallel speedup saturates as the number of tasks (i.e., number
of waveform iterates computed in parallel) increases, the speedup appears as a multi-
plicative factor when used in combination with other temporal or spatial parallelism.
In fact, this method can be used within parareal itself in order to accelerate the fine

D
ow

nl
oa

de
d

02
/1

4/
19

 to
 1

41
.2

19
.4

4.
85

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SCHWARZ WR WITH ADAPTIVE PIPELINING A363

integration steps. Thus, our method is complementary to existing space and time
parallel methods.

Acknowledgment. We thank the anonymous referees for their valuable com-
ments and suggestions, which helped us improve the quality of the paper.

REFERENCES

[1] XBraid: Parallel Time Integration with Multigrid, http://llnl.gov/casc/xbraid.
[2] M. Al-Khaleel, M. J. Gander, and A. E. Ruehli, A mathematical analysis of optimized

waveform relaxation for a small RC circuit, Appl. Numer. Math., 75 (2014), pp. 61--76,
https://doi.org/10.1016/j.apnum.2012.12.005.

[3] A. Bellen and M. Zennaro, The use of Runge-Kutta formulae in waveform relaxation meth-
ods, Appl. Numer. Math., 11 (1993), pp. 95--114, https://doi.org/10.1016/0168-9274(93)
90042-P.

[4] D. Bennequin, M. J. Gander, and L. Halpern, A homographic best approximation prob-
lem with application to optimized Schwarz waveform relaxation, Math. Comp., 78 (2009),
pp. 185--223.

[5] S. Brenner and R. Scott, The Mathematical Theory of Finite Element Methods, Texts Appl.
Math. 15, Springer, New York, 2008.

[6] K. Burrage, C. Dyke, and B. Pohl, On the performance of parallel waveform relaxations
for differential systems, Appl. Numer. Math., 20 (1996), pp. 39--55.

[7] A. J. Christlieb, R. D. Haynes, and B. W. Ong, A parallel space-time algorithm, SIAM J.
Sci. Comput., 34 (2012), pp. C233--C248, https://doi.org/10.1137/110843484.

[8] A. J. Christlieb, C. B. Macdonald, and B. W. Ong, Parallel high-order integrators, SIAM
J. Sci. Comput., 32 (2010), pp. 818--835, https://doi.org/10.1137/09075740X.

[9] V. Dolean, P. Jolivet, and F. Nataf, An Introduction to Domain Decomposition Methods:
Algorithms, Theory, and Parallel Implementation, Other Titles Appl. Math. 144, SIAM,
Philadelphia, 2015.

[10] M. Emmett and M. L. Minion, Toward an efficient parallel in time method for par-
tial differential equations, Commun. Appl. Math. Comput. Sci., 7 (2012), pp. 105--132,
https://doi.org/10.2140/camcos.2012.7.105.

[11] R. D. Falgout, S. Friedhoff, Tz. V. Kolev, S. P. MacLachlan, and J. B. Schroder,
Parallel time integration with multigrid, SIAM J. Sci. Comput., 36 (2014), pp. C635--C661.

[12] M. J. Gander and S. G\"uttel, PARAEXP: A parallel integrator for linear initial-value
problems, SIAM J. Sci. Comput., 35 (2013), pp. C123--C142, https://doi.org/10.1137/
110856137.

[13] M. J. Gander, Five Decades of Time Parallel Time Integration, and a Note on the Degradation
of the Performance of the Parareal Algorithm as a Function of the Reynolds Number,
Oberwolfach Report, 2017.

[14] M. J. Gander, F. Kwok, and B. C. Mandal, Dirichlet--Neumann and Neumann-Neumann
waveform relaxation algorithms for parabolic problems, Electron. Trans. Numer. Anal., 45
(2016), pp. 424--456.

[15] M. J. Gander and A. M. Stuart, Space-time continuous analysis of waveform relaxation for
the heat equation, SIAM J. Sci. Comput., 19 (1998), pp. 2014--2031.

[16] M. J. Gander and H. Zhao, Overlapping Schwarz waveform relaxation for the heat equation
in n dimensions, BIT, 42 (2002), pp. 779--795.

[17] C. Gear, Waveform methods for space and time parallelism, J. Comput. Appl. Math., 38
(1991), pp. 137--147.

[18] E. Giladi and H. B. Keller, Space-time domain decomposition for parabolic problems, Numer.
Math., 93 (2002), pp. 279--313.

[19] S. G\"unther, N. R. Gauger, and J. B. Schroder, A non-intrusive parallel-in-time adjoint
solver with the XBraid library, Comput. Vis. Sci., 19 (2018), pp. 85--95.

[20] L. Halpern, C. Japhet, and J. Szeftel, Optimized Schwarz waveform relaxation and dis-
continuous Galerkin time stepping for heterogeneous problems, SIAM J. Numer. Anal., 50
(2012), pp. 2588--2611.

[21] R. Jeltsch and B. Pohl, Waveform relaxation with overlapping splittings, SIAM J. Sci. Com-
put., 16 (1995), pp. 40--49, https://doi.org/10.1137/0916004.

[22] F. Kwok, Neumann-Neumann waveform relaxation for the time-dependent heat equation,
in Domain Decomposition in Science and Engineering XXI, J. Erhel, M. J. Gander,

D
ow

nl
oa

de
d

02
/1

4/
19

 to
 1

41
.2

19
.4

4.
85

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

http://llnl.gov/casc/xbraid
https://doi.org/10.1016/j.apnum.2012.12.005
https://doi.org/10.1016/0168-9274(93)90042-P
https://doi.org/10.1016/0168-9274(93)90042-P
https://doi.org/10.1137/110843484
https://doi.org/10.1137/09075740X
https://doi.org/10.2140/camcos.2012.7.105
https://doi.org/10.1137/110856137
https://doi.org/10.1137/110856137
https://doi.org/10.1137/0916004

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A364 FELIX KWOK AND BENJAMIN W. ONG

L. Halpern, G. Pichot, T. Sassi, and O. B. Widlund, eds., Lect. Notes Comput. Sci. Eng.
98, Springer, Cham, Switzerland, 2014, pp. 189--198.

[23] B. Leimkuhler, Estimating waveform relaxation convergence, SIAM J. Sci. Comput., 14
(1993), pp. 872--889, https://doi.org/10.1137/0914054.

[24] B. Leimkuhler and A. Ruehli, Rapid convergence of waveform relaxation, Appl. Numer.
Math., 11 (1993), pp. 211--224, https://doi.org/10.1016/0168-9274(93)90049-W.

[25] E. Lelarasmee, A. Ruehli, and A. Sangiovanni-Vincentelli, The waveform relaxation
method for time-domain analysis of large scale integrated circuits, IEEE Trans. Comput.
Aided Des. Integr. Circuits Syst., 1 (1982), pp. 131--145.

[26] J.-L. Lions, Y. Maday, and G. Turinici, R\'esolution d'EDP par un sch\'ema en temps
(parar\'eel), C. R. Acad. Sci. Ser. I Math., 332 (2001), pp. 661--668, https://doi.org/10.
1016/S0764-4442(00)01793-6.

[27] B. C. Mandal, A time-dependent Dirichlet-Neumann method for the heat equation, in Do-
main Decomposition in Science and Engineering XXI, J. Erhel, M. J. Gander, L. Halpern,
G. Pichot, T. Sassi, and O. B. Widlund, eds., Lect. Notes Comput. Sci. Eng. 98, Springer,
Cham, Switzerland, 2014, pp. 467--475.

[28] U. Miekkala and O. Nevanlinna, Convergence of dynamic iteration methods for initial value
problems, SIAM J. Sci. Statist. Comput., 8 (1987), pp. 459--482.

[29] O. Nevanlinna, Remarks on Picard-Lindel\"of iteration, BIT, 29 (1989), pp. 535--562.
[30] B. W. Ong, S. High, and F. Kwok, Pipeline Schwarz waveform relaxation, in Domain Decom-

position Methods in Science and Engineering XXII, T. Dickopf, M. J. Gander, L. Halpern,
R. Krause, and L. Pavarino, eds., Lect. Notes Comput. Sci. Eng. 104, Springer, Cham,
Switzerland, 2016, pp. 179--187, https://doi.org/10.1007/978-3-319-18827-0 36.

[31] B. W. Ong and B. C. Mandal, Pipeline implementations of Neumann--Neumann and
Dirichlet--Neumann waveform relaxation methods, Numer. Algorithms, 78 (2017), pp. 1--
20, https://doi.org/10.1007/s11075-017-0364-3.

[32] M. Schreiber, P. S. Peixoto, T. Haut, and B. Wingate, Beyond spatial scalability limita-
tions with a massively parallel method for linear oscillatory problems, Int. J. High Perform.
Comput. Appl., 32 (2018), pp. 913--933, https://doi.org/10.1177/1094342016687625.

[33] R. D. Skeel, Waveform iteration and the shifted Picard splitting, SIAM J. Sci. Statist. Com-
put., 10 (1989), pp. 756--776, https://doi.org/10.1137/0910046.

[34] A. Toselli and O. B. Widlund, Domain Decomposition Methods: Algorithms and Theory,
Springer Ser. Comput. Math. 34, Springer, Berlin, 2005.

[35] S. Vandewalle and E. Van de Velde, Space-time concurrent multigrid waveform relaxation,
Ann. Numer. Math., 1 (1994), pp. 335--346.

[36] J. White and A. Sangiovanni-Vincentelli, Partitioning algorithms and parallel implemen-
tations of waveform relaxation algorithms for circuit simulation, in IEEE Procedings of
the International Symposium on Circuits and Systems (ISCAS), IEEE, New York, 1985,
pp. 1069--1072.

[37] S.-L. Wu, Toward parallel coarse grid correction for the parareal algorithm, SIAM J. Sci.
Comput., 40 (2018), pp. A1446--A1472, https://doi.org/10.1137/17M1141102.

D
ow

nl
oa

de
d

02
/1

4/
19

 to
 1

41
.2

19
.4

4.
85

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://doi.org/10.1137/0914054
https://doi.org/10.1016/0168-9274(93)90049-W
https://doi.org/10.1016/S0764-4442(00)01793-6
https://doi.org/10.1016/S0764-4442(00)01793-6
https://doi.org/10.1007/978-3-319-18827-0_36
https://doi.org/10.1007/s11075-017-0364-3
https://doi.org/10.1177/1094342016687625
https://doi.org/10.1137/0910046
https://doi.org/10.1137/17M1141102

	Schwarz waveform relaxation with adaptive pipelining
	Recommended Citation

	Introduction
	Algorithms
	Convergence analysis
	Error propagation for selected SWR methods
	The nonadaptive case
	Adaptive case
	Theoretical speedup

	Numerical experiments
	Linear heat equation
	Other parallel-in-time approaches
	Advection-diffusion
	Brusselator

	Conclusions
	References

