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Abstract

Cybersecurity for power communication infrastructure is a serious subject that has

been discussed for a decade since the first North American Electric Reliability Corpo-

ration (NERC) critical infrastructure protection (CIP) initiative in 2006. Its credibil-

ity on plausibility has been evidenced by attack events in the recent past. Although

this is a “very high impact, rare probability” event, the establishment of quantitative

measures would help asset owners in making a series of investment decisions.

First, this dissertation tackles attackers’ strategies based on the current communi-

cation architecture between remote IP-based (unmanned) power substations and en-

ergy control centers. Hypothetically, the identification of intrusion paths will lead

to the worst-case scenarios that the attackers could do harm to the grid, e.g., how

this switching attack may perturb to future cascading outages within a control area

when an IP-based substation is compromised. Systematic approaches are proposed

in this dissertation on how to systematically determine pivotal substations and how

investment can be prioritized to maintain and appropriate a reasonable investment

in protecting their existing cyberinfrastructure.

More specifically, the second essay of this dissertation focuses on digital protecting

relaying, which could have similar detrimental effects on the overall grid’s stability.

xxi



The R̂−k contingency analyses are proposed to verify with steady-state and dynamic

simulations to ensure consistencies of simulation outcome in the proposed modeling

in a power system. This is under the assumption that attackers are able to enumerate

all electronic devices and computers within a compromised substation network. The

essay also assists stakeholders (the defenders) in planning out exhaustively to identify

the critical digital relays to be deployed in substations. The systematic methods are

the combinatorial evaluation to incorporate the simulated statistics in the proposed

metrics that are used based on the physics and simulation studies using existing power

system tools.

Finally, a risk transfer mechanism of cyber insurance against disruptive switching at-

tacks is studied comprehensively based on the aforementioned two attackers’ tactics.

The evaluation hypothetically assesses the occurrence of anomalies and how these

footprints of attackers can lead to a potential cascading blackout as well as to restore

the power back to normal stage. The research proposes a framework of cyber insur-

ance premium calculation based on the ruin probability theory, by modeling potential

electronic intrusion and its direct impacts. This preliminary actuarial model can fur-

ther improve the security of the protective parameters of the critical infrastructure

via incentivizing investment in security technologies.

xxii



Chapter 1

Introduction

Stratagems of attackers have gradually advanced with highly sophisticated domain

knowledge. The evolution of intelligent attack agents in cyberspace is evident by the

public disclosure of recent events [2, 3, 4]. There was estimated statistically more

than 160 break-ins reported by U.S. Department of Energy (DOE) between years of

2010 and 2014 [5]. Among them, 10 of them are discovered in the operational environ-

ment. National Nuclear Security Administration, a quasi-autonomous agency within

DOE, reported 19 successful cyber-based infiltrations over those 4 years [5]. The rise

of cyber threats in the near horizon has become the critical issues in system planning

[6]. It was reported that the “WannaCry” attack is probably the worst ransomware

thus far, which affected over 200,000 people across over 150 countries and cost 1.5

1



billion dollars lost in the year of 2016 [7]. On December 24, 2015, the first-ever cyber-

attack on the Ukraine power grid caused 225,000 people to lose power for more than

6 hours [8, 9, 10]. Although the cyberattack shows the credibility of security threats,

the forensic team continues to investigate by piecing evidence together for a study

of event reconstruction with potential mitigation strategies [11]. Potential cyber vul-

nerabilities of the power grid could be adversely manipulated by attackers, which

may significantly threaten the system stability operated by power utilities. The bidi-

rectional remote access between substations and control center as well as protection

limitation across the boundary firewalls leave loopholes for attackers to sneak in when

the configuration rules are weakly enforced [12]. Addressing integrated cyber-physical

system (CPS) security in the control environment has become a pressing issue due

to the exposure of power automation between the computerized control management

system and the switchgear in power substations. This work proposes a risk-based

assessment model by formulating the hypothesized substation outages, with overload

implications, and extending to investigate the contingency with compromised digital

relays. The cyber risk management framework is also discussed with the introduction

of the cyber insurance premium.

2



1.1 Extended Enumerations of Hypothesized Sub-

station Outages

The emergence of IP-based solutions in power automation has revolutionized indus-

trial control systems. The cybersecurity of a power infrastructure relies on the tech-

nologically enhanced communication infrastructure to synthesize geographically dis-

persed substation information [13]. Most substations are upgraded with IP-based

solutions, integrating with microprocessor-based protective relays as well as connect-

ing to high traffic network between control centers and substations [13, 14]. The

lack of auditing on remote substations and security protection can be the loophole

as a backdoor for attackers. The North American Electric Reliability Corporation

(NERC) Critical Infrastructure Protection (CIP) compliance has now included more

concrete clauses with possible technologies in the documents for improving protec-

tion implementation [15]. In addition, the presidential policy directive (PPD) 21

and executive order (EO) 13636 has enumerated the roles and responsibilities of the

Department of Homeland Security [16].

In the parallel effort to compliance policies, National Institute of Standards and Tech-

nology (NIST)’s preliminary cybersecurity framework has envisioned five major com-

ponents of the best practice to (1) identify, (2) protect, (3) detect, (4) respond, and

3



(5) recover [17]. Identification is the first step of all where organizations should de-

termine deficiencies of security protection. However, ongoing efforts committed to

the procedural compliance in security planning may not directly thwart the attack

possibilities with potential security technologies in the substation control system.

Remote access to unmanned substation networks provides a convenient way to main-

tain the system by directly connecting from the authorized computers to the site.

This is a security concern as the majority of security protection in substations are of-

ten deployed with commercial-grade firewalls. These are the routers with limitations

that can be subject to intrusion if the whitelisting of firewalls is not properly main-

tained and audited. Generally, attackers plot for a cyberattack when they successfully

intrude to a network. There are the attacks that may mislead operators that do not

immediately affect the operation such as false injection [18, 19]. However, disruptive

switching attacks can implicate operation that can be catastrophic. In 2013, NERC

conducted hypothetically a drill exercise that would plunge millions of Americans into

darkness. A year later, the Federal Energy Regulatory Commission (FERC) disclosed

a combination of 9 key substations would be sufficient for such kind of widespread

outage [20, 21]. This is one of the many combination cases that can have cascading

consequences to the grid. Intrusion-based switching attacks affect substation relia-

bility and can lead to cascading failure due to protective relaying within the network

that can weaken system operating conditions [22, 23, 24].
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With the aforementioned issues and significant development in recent years, the power

grid has undergone a substantial upgrade with renewable sources and advanced com-

munication infrastructure [25, 26]. This new normal has been anticipated with ex-

treme threats such as natural disaster or cyberterrorism. The traditionally established

N-1 contingency analysis shall be revisited to study the root cause effect. Research in

the area of contingency extremism has been further investigated [25, 27, 28]. However,

these approaches do not include the incurring failure effect in the CPS security-related

contingencies that captures the potential cascades under abnormal operating circum-

stances. A causal inference framework, based on anomaly correlation, is prototyped

to detect malicious activities by synthesizing cyber- and power-related sensor infor-

mation [29]. The reversed pyramid model (RPM) has shown the promise of effective

elimination of combinatorial worst cases [25, 30]. However, the proposed method is

limited by the enumerative methods that may not explore the solution space with

the segmentation approach, which may contain certain combinations with potential

uncertainties that can lead to system-wide instability.

An enumerative framework is needed to evaluate the criticality of any combination.

Table 1.1 specifies the differences between the solution spaces of weather-related and

cyber-induced contingency analysis. It can be observed from the table that the

weather-related contingency analysis usually is studied with a low level of the or-

der, i.e., N-1 is the most common enumeration of presumed electrical faults. The

contingency of N-2 is less likely to occur with multiple locations concurrently and so
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as the higher order of N-k contingencies where it is often to model a double-circuit line

under the same tower [31, 32]. The number of contingency selection is often based on

a specific combination of the component outage which is based on the organizational

practice in planning.

Table 1.1
Comparison of combination spaces between N-1, N-2, N-k, and sum of S-k

contingency analysis

Contingency 50-substation system Solution Space

Weather-related
Single-element failure (N-1) 50
Double-element failure (N-2) 1225
Multiple-element failure (N-k) ≅ 108

Cyber-induced Exhaustive enumeration(∑ S-k) ≅ 1015

The objective of this part of the research is to identify the pivotal substations by

establishing enhanced metrics to quantify the cyber risks of a power system, which

exhaustively enumerates all the possibilities. The approach we employ here is the

combinations of IP-based substations that are connected with the lines, transform-

ers, and generators. We assume that firewalls have limitations and so cyberintrusion

can occur at any IP-based substations to be executed by attackers to disconnect

lines, loads, and generators using the compromised substation control networks. This

enumeration is a combinatorial problem where defenders would need to identify ex-

haustively the IP-based substations and hypothesized substation outages that can be

detrimental to the power grid operation [1]. The major contribution of this work is

to re-establish the cyber-based contingency approach to extensively enumerate (sum

of S-k contingencies) by incorporating the overloaded lines based on a hypothesized

outages of the substations. For the improvements of cyber-situation awareness, the
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combinatorial model is two-fold: First, all worst-case scenarios are enumerated with

an increase of k from 1 to S′. Then, each converged case is re-evaluated with the

incurring lines that are electrically disconnected due to overloads.

1.2 Switching Attack through Compromised Re-

lays

Technology in relays has evolved and has been transformed into full automation.

Most substations have been gradually upgraded with the integration of the digital

protective relays and IP-based solutions. These relays are the intelligent electronic

devices (IEDs) that are part of the IEC61850 framework for substation automation

[14, 33, 34]. Today, an average of medium-sized substations is deployed at about

50 protective IEDs. In most cases, the passwords are set up and maintained for

those IEDs in substations. The sophistication of password management may also

introduce inconvenience for maintenance where these tens of thousands of protective

IEDs can be poorly managed. Each intentional trip manipulated by attackers can

initiate detrimental effects. This cyber-physical tie must be studied carefully in order

to understand associated risks and the attack implication [35, 36].

The cybersecurity of the power grid has been an emerging issue that is closely related

to the reliability of the system. The North American Electric Reliability Corporation
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(NERC) Critical Infrastructure Protection (CIP) compliance has introduced concrete

standards for improvement of the cybersecurity level of power infrastructure [20, 37].

The French National Cybersecurity Agency (ANSSI) [38, 39] details the classifica-

tion of the security measures in Industrial Control System (ICS) and specifies the

vulnerabilities contained in the supervisory control and data acquisition (SCADA)

network and the potential risks behind the operator behaviors. Additionally, Na-

tional Institute of Standards and Technology (NIST) has published a preliminary

cybersecurity framework with five major components [17] and introduced that the

risk-based cybersecurity framework would be a benefit for cooperation between the

customers, utilities, and vendors because an intensive discussion on the cybersecurity

issue is required [40]. Recently, the Federal Energy Regulatory Commission (FERC)

has issued an incident-report standard to strengthen the cybersecurity of the power

grids [41].

In order to improve the risk-based assessment model, it is necessary to take the

compromised IEDs into consideration in terms of the detrimental effects on the power

system stability [42]. Additionally, as a defender, we might not be able to predict

the attackers’ motives but we could identify the critical protective IEDs which might

lead to more devastating results than just disconnect electronically a substation, for

example, if the protective relay is directly connecting to the switch of the load or

generation unit, a suddenly disruptive change on the load and generation would cause

steady-state instabilities and in worst case, transient-stability discussion is needed.
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Additionally, when considering the influences of the diversity of the protective IEDs,

several protective IEDs may cover the same protective zone and have similar events if

compromised, which will also increase the difficulty of quantifying the effects for each

IEDs. In terms of the combination complexity, compared with substation contingency

S-k, an extensive evaluation of the protective IEDs would generate extremely large

combination pool at 10 with the power of 30-100, which depends on the size of the

studied case and number of protective IEDs that installed in each bus.

Despite technology introduced anomalies, the physics of the power grid with relaying

remains, i.e., cascading will occur even if the initial cause of events has changed [43].

To quantify the potential cyber-based impact, the risk-based assessment towards the

hypothesized substation outages have been studied in previous papers [26, 28, 29, 44]

and a quantitative framework for determination of the criticality of each electrical

component has been proposed in [1, 25, 45, 46]. Survey paper [1] categorizes the pro-

posed framework into three main aspects: (1) critical/non-critical combination veri-

fication, (2) cascade confirmation and (3) combination re-evaluations with dynamic

analysis. An extended enumerative framework is required to identify the worst-case

scenario, which is an S-select-k enumeration. The extended evaluations of hypothe-

sized substation outages are more complicated [1].

Defenders might not be able to predict the behavior of attackers and their strategies;

however, defenders can plan exhaustively to identify the critical protective IEDs which
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might initiate catastrophic consequence of a grid [47, 48]. The proposed method is

to define the cyber-physical relay switching attack as the R-select-k problem, which

verifies the simulation results on both the time-domain dynamic simulation and power

flow analysis for the IED modeling. The cascading effect is studied to determine

practical adaptability. The time-domain dynamic simulation model is implemented

to check the consistency of the results between the power flow and tripping implication

initiated by the plausible switching attacks through digital relays.

1.3 Cyber Insurance Framework

Insurance is a promising risk transfer tool against disruptive cyberattacks on power

grids. Cyber insurance is proposed to cover the economic loss and liabilities due to

the malicious cyberattack, which would incentivize utility owners to optimize their

investment spending based on protective parameters and indirect benefits [49, 50, 51].

The Department of Homeland Security (DHS) National Protection and Programs Di-

rectorate (NPPD) has included stakeholders to work on the critical topics of risk

management in security [52], which would help to improve the security posture in

terms of (1) promoting the adoption of preventative measures; and (2) encouraging

the integration of the best practice of self-protection based on their existing network

architectures. Insurance, as a feasible method of risk transfer, is an in-developing

stratagem, but still has attracted large attention from researchers in various fields
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[53, 54]. The North American Electric Reliability Corporation (NERC) Critical In-

frastructure Protection (CIP) compliance has now published more clauses in order

to implement necessary technologies for improving the cybersecurity of the control

networks [15, 19, 20, 32]. Additionally, the recorded frequent attempts of intrusions

into critical infrastructure networks reveal the cyber threats that the U.S power grid

confronts now and the urgent need for improving cybersecurity [16, 17].

It is suggested that an internal failure of the information system can be modeled in a

general insurance market with residual risk classification associated with security [55,

56]. The potential risk of vulnerable parameters is also identified using the provided

framework in [56]. From the perspective of network security, stochastic processes

have been employed to model the pricing based on security risks of information and

communication technology (ICT) using the network topology [54]. However, security

at the user level should be also incorporated as an integral part of the overall security

modeling [57, 58]. The interdependency between the attackers’ behavior and system

architectures play an important role in this cyber insurance formulation in which it

may generally lead to the competitiveness among insurers that would probably not be

helpful for improving overall enterprise security. However, by integrating the physical

impacts and mitigation strategies for a power grid with the cyber aspects, pricing for

insurance premium can be accurately estimated [59].

The cyber insurance market for power grids remains in an emerging stage and it
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is yet to mature. This new business opportunity is distinctive as compared to the

traditional insurance mainly due to the lack of historical loss data [60, 61]. Another

challenge is information asymmetry. As the insurance business in cybersecurity is not

yet mandatory for power utilities, insurers would first need to establish a quantitative

framework with the details of cyber-physical event replays to intertwine the potential

cascading consequence of all possible outcomes in the premium calculation.

NERC CIP does not provide standardized metrics for quantifying residual risks as-

sociated with electronic intrusion to control networks. Most asset owners have their

own way to secure their control networks [62]. However, if insurance companies can

harness the digital evidence from the cyber systems and hypothetically enumerate

some nightmare scenarios to replay the cascading outcomes, it would help to mature

this emerging market. The risk theory can provide the quintessential basis for most

insurance models and problems [63]. Estimating risks can be calculated using the

ruin probability from the direct calculation method, which is known to be the basic

risk model [63, 64, 65, 66].

This part of research proposes a framework for grid insurance against disruptive

switching attacks, which is assumed to be determined by two major aspects: (1)

the probability of successful intrusion into the substation(s) which will presumably

result in disruptive switching attack from the compromised substation(s) and (2) the

discrete distribution of claim size of each potential attack scenario [64, 65, 66]. The
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vulnerability and the steady-state probability of potential electronic intrusion to each

power substation have been studied in the papers [67, 68], which are derived from the

firewall and password models using Markov chain. The steady-state probability [67]

is assumed to be effective to generate the discrete distribution of the hypothesized

scenario.

The organization of the thesis is organized as follows. Chapter 2 summarizes the lit-

erature surveys on the cyber-related contingencies of the power system. Chapter 3 in-

troduces the risk-based assessment model with both hypothesized substation outages

and switching attack through digital relays. Chapter 4 introduces a risk-management

framework of cyber insurance premium calculation by modeling potential electronic

intrusion and its direct impacts. Chapter 5 concludes the dissertation.
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Chapter 2

Risk Evaluations and Management

of Cyberattacks on Power Grid

2.1 Introduction

The power grid has now emerged into one of the largest, most complex systems of hu-

man invention in all of history, involving tremendous communication bandwidth for

the interactions between cyberinfrastructure and physical systems. SCADA systems

are an essential part of power communication infrastructures and play a central role

in ensuring effective operations of bulk power systems. SCADA systems have helped
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to achieve new levels of system reliability and meet improved power quality require-

ments, especially when distributed energy systems have been incorporated in the grid

[69, 70]. The use of IP-based communication frameworks though, has brought about

concerns over cybersecurity issues. As a result, the operational reliability of a power

grid requires new methodological developments to align reliability goals with emerg-

ing risks of new communications technologies [71, 72, 73, 74]. Currently there are no

comprehensive techniques and tools available to model and evaluate the hypothetical

impacts of cyberattacks. The abrupt disruption or disconnections of nodes corre-

sponding to load and generation can result in detrimental effects to the power grid.

A US Government report published in 2007 reported several incidents of cybersecurity

penetration in control system of different critical infrastructure [75].

2.2 Power Control Center Framework

Power infrastructure communication is integral to a nation’s critical infrastructure

[76]. As early as the 1980s, the revolution of information communication technol-

ogy (ICT) for power grid operation started changing how critical infrastructures are

managed [77]. As shown in the Fig. 2.1, ICT consists of generation local area net-

work (LAN), transmission LAN and wide area network (WAN), distribution LAN and

WAN, distributed generation LAN and WAN and Customer LAN networks. Differ-

ent LANs are connected through public communication networks that are generally
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Figure 2.1: Generalized wide-area SCADA network connectivity between
generation, transmission, and distribution systems of a power interconnec-
tion

managed by telecommunication companies. There are often three hierarchical con-

trol centers: (1) a national control center, (2) regional control centers, and (3) local

control centers. Each local control center collects real-time data from physical sys-

tems of substations and transmits that data to regional control center after processing

the data. Distribution Control Centers manage local control centers for the largest

substations in the distribution system. The Ukraine cyberattack compromised the

distribution control center as highlighted with a red box in Fig. 2.1. This would

impact significantly the overall grid operation in a global sense of potential cascad-

ing in case of generation-load mismatch. Regional Control Centers are associated

with managing high-voltage transmission lines and have supervisory control of all

local control centers in that particular region. Regional control centers act as middle-

man between local control centers, distribution control centers and national control
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centers. Regional control centers mainly control transmission substations. National

control centers play a vital role in power system operation and controls. Such centers

control the extra high voltage (EHV) transmission system, coordinate the activities

of regional control centers, and are responsible for overall power system reliability and

stability. National control centers collect real-time data from regional control centers

and perform the function of EMS, state estimator and central network management

of the overall power system [78]. Studies by the North American Electric Reliability

Corporation (NERC) have shown that a simulated cyberattack drill demonstrates an

absolute possibility to bring down the US power grids [79].

2.3 Past, Current, and Future Applications of

Contingencies

The power grid is designed to withstand a single component outage (N-1 contingency),

ensuring that operating limits are not violated by such outages [20, 80]. Power sys-

tem reliability evaluation includes the integration of individual substation operating

states and contingencies which are measured in terms of power frequency and du-

ration of substation equipment outage events. Failure criteria for substations and

violation thresholds of system reliability are defined based on substation size, loca-

tion and functionality within the system [81, 82]. Literature review shows that there
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have been a number of blackouts caused by cascading failures of transmission lines

and generating units in recent years throughout the world [83]. If a substation is de-

energized, the change in power flow is compensated by other substations, which must

have enough spare capacity to carry the excess power. If they do not, transmission

lines and transformers of those substations will be overloaded and overcurrent pro-

tection will trip those components to avoid thermal damage. This event will initiate

a cascading failure as the excess power is switched onto neighboring circuits, which

may also be running at or near their maximum capacity [84]. A probabilistic model

can be used to estimate the cascading outages in high-voltage transmission network

[85] and online dynamic security assessment in an EMS environment [86].

2.3.1 Single Contingency

Power system security is referred to the contingency analysis where an N-select-1 list

of components is hypothesized as taken out of service to determine whether any such

state results in a violation of voltage or power flow limits in a power grid [87]. In

the 1970’s, the traditional approach of steady-state contingency analysis is to test all

contingencies, such as transmission line outage and loss of generation, that are prede-

fined by system planner/operators experience and intuition [88]. Inadequacies of this

traditional approach were later addressed and new techniques proposed to perform

exhaustive testing, including both primary and secondary contingencies. Contingency
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screening for fast realtime contingency analysis was proposed using modification of

fast decoupled power flow algorithm [89]. An efficient contingency analysis method

has been implemented to detect of flow violation for transmission lines[90].

2.3.2 Multiple Contingencies

To evaluate the contingency severity of removing any combination of substations

from the system, an AC load flow method might be used [91]. Multiple contingency

is seen to have largely prepared reliable systems to survive disasters [92, 93]. In North

America, FERC has clarified that the list of the contingencies to be used in performing

system operation and planning studies should include all the contingencies, N-1, N-

1-1, N-2, as well as multiple contingencies [94]. As required by NERC reliability

standards, the power system after a contingency should return to a secure, reliable

state within 30 minutes [95].

Multiple contingencies have been researched since the late 1970s [88]. Since then,

the main effort of such research is to reduce the computation burden caused by the

tremendous number of contingency cases in bulk power system: the total number of

N-k contingency cases is N !/[k!(N − k)]. Various screening and ranking techniques

based on the theoretical approach and parallel computing techniques based on the

simulation-based approach have been proposed and developed in the past five decades.
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Conventional approaches related to the screening and ranking of contingencies are il-

lustrated in [96, 97, 98, 99, 100]. After contingency studies for transmission planning

were regulated by NERC in 2005 [95], research relevant to the NERC compliance study

have accelerated and the techniques for searching for critical/credible contingencies

which consists of N-2 contingencies and N-1-1 contingencies have been developed in

industry as well as academia [95, 101]. Most of the approaches described by academia

are based on network topology analysis [101, 102] and nonlinear optimization heuris-

tics in terms of power planning perspectives. Because multiple contingencies could

lead to cascading failures, multiple contingencies have also been studied in terms of

wide area monitoring and protection with sensors such as PMUs in the wake of wide-

spread blackouts affecting North America and Europe in 2003, 2004, and 2006. Since

then, multiple contingencies and consecutive large blackouts have been a frequently

discussed topic in industry. Information about past blackouts have been shared by in-

dustries and academia all over the world every two years during CIGRE Paris session

since 2006 [103, 104, 105, 106, 107].

2.3.3 Cyber-Related Contingencies

As IP-based communications infrastructure is the trend for future deployments, ex-

pecting only N-1 contingencies is no longer be meaningful for both security analysts

and power engineers [80]. As shown in the Fig. 2.2, a coordinated attack associated
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Figure 2.2: Conceptualization of impact evaluation

with compromised substations enables attackers to trip multiple generators, trans-

mission lines, loads, or transformers nearly-simultaneously in a power grid, impairing

system operating conditions. A more structured, integrated framework with high

redundancy and defense mechanisms is required to face the challenges of intelligent

coordinated cyberattacks, which can severely impact system operations [108]. Vio-

lation of predefined thresholds of substation voltages, system frequency, and branch

flows may lead to cascading failure and a system blackout [109].

As system loading levels vary over time, the criticality of each substation (node) can

be different at different times [110]. An approach to hypothesize multiple substation

outages is proposed to presume that a set of combinations of IP-based substations

are compromised by intruders and are electronically manipulated to abruptly isolate

substations from the grid with disruptive switching actions [111, 112]. Combinatorial

substation outages are the cyber-contingency analysis that enumerates the worst-

case scenarios. Since the solution space of the sum of S-select-k problem can be
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extremely large, a systematic elimination approach using power flow modules is used

to validate each combination in order to capture the worst combinations [25, 30,

111, 112]. This process eliminates insignificant combinations, enumerating from the

first-level substation list of the RPM. While this approach may not be exhaustively

enumerated; it can be further enhanced with prioritization of substation selection

criteria. This contingency analysis is based on the relationship between substation

critical cyber systems that have direct interaction with the physical power grid, i.e.,

the cyber assets that would have control capability to disconnect local components

from the grid. Based on the conclusion of previous work [111, 112], manipulation of

microprocessorbased relays on bus differential protection would have a detrimental

effect, able to disconnect large numbers of components from the system. At minimum,

hypothesized cyber attacks would occur at multiple substations, as attackers would

be able to intrude to the S number of IP-based substations. Under this assumption,

at least one or more substation outages would occur, depending on the number of

substations that have been compromised [30, 111, 112].

Preliminary investigation on system reliability and its resulting impacts have shown

the effectiveness of the proposed algorithm with quantitative analysis on penetrated

protective IED relays [113]. A small number of approaches exist to find critical sub-

station combinations or collapse sequence of cascading failures, but none are in online

environments, and all are applicable only to restricted numbers of combinations of
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substations [91]. Since the event of simultaneous cyberattacks on 3 or more substa-

tions is rare, the worst case will be considered. Priority list 2 only evaluates the

impact by de-energizing more than two substations that result in the impact factor

of 1.0 and serves as a message to control centers [114]. Cyber-based contingency

analysis is a fundamentally new way to assess the system stability by considering all

plausible attack vectors. These attack vectors can be any combination of these: (i)

distributed denial of service (DDoS) [115, 116, 117],(ii)alter and hide (AaH) [118],

(iii) data integrity [119, 120], (iv) load altering [121], (v) disruptive switching [116].

2.3.4 Dynamics of Intelligent Cyberattack

The existing major entities of bulk power systems have been upgraded with IP-based

communication infrastructure over the past decades. The manipulation using a com-

promised local control system can impair system operation due to the potential im-

pacts on the physical system. The triggers of system dynamics, such as disconnections

or abrupt shutdown of important elements within a power grid, can implicate the pos-

sibilities of system stability.

One of the worst-case scenarios is a widespread cascading failure that will lead to

a power blackout costing tens or hundreds of billions of the dollars to an economy

as large as that of the USA. The importance of considering power system dynamics
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for cybersecurity issues has already been recognized. Power system dynamics can be

significantly affected by network communication and control system infrastructure

including generator controllers and protective relays. The establishment of a math-

ematical formulation for representing power system dynamics is a non-trivial task.

Controllers and protections include non-linear behavior and discrete changes. In ad-

dition, any formulation must account for many interactions. There can be interaction

between controllers and interaction between protection equipment. There can be in-

teractions between controllers and protection, between controller and the grid, and

between protection and the grid. This sub-chapter focuses on the review of the recent

studies that are relevant to power system dynamics.

The recent research studies can be categorized as focused on either (1) Abnormal

power system dynamic phenomena, or (2) Measurement of implementing cyber-

physical security systems. Typically, an abnormal behavior of power system dynamics

is classified into four phenomena that can result in a widespread power outage: volt-

age stability, frequency stability, transient stability and overload. The latest research

studies cover the first three abnormal phenomena.

2.3.4.1 Transient Stability

Transient stability is examined using the undesired control of the semi-conductor-

based reactive power compensators such as static var compensator (SVC) and static
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synchronous compensator (STATCOM). References [115, 122, 123] exhibit the possi-

bility of being out-of-step due to biased or delayed operation of SVC or STATCOM.

The fundamental idea is to represent the same dynamic behavior, even when the

improper control parameters are tuned. Modification attack is assumed to be respon-

sible for the undesired control. This vulnerability is relevant only when a system fault

occurs near the reactive power compensator.

2.3.4.2 Frequency Stability

Frequency stability is examined using undesired control of Automatic Generation

Control (AGC) or falsified load change data. Because falsified load changes have

the same effect as an undesired control signal of AGC, the two attack scenarios

can be treated as the same one. References [119, 124] exhibit the possibility of

frequency collapse which results in significant frequency change, such as 3 Hz or

more. The fundamental idea is to represent the same dynamic behavior when the

wrong/improper control parameters of AGC are tuned. Data integrity attacks are

assumed for the undesired control and the falsified load changes. The sudden loss of

generation/loads can also cause frequency instability [116, 117].
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2.3.4.3 Short-Term Voltage Stability

Short-term voltage stability is examined using the undesired control of stepwise

change in active or reactive power outputs. Reference [120] exhibits the possibil-

ity of short-term voltage collapse which is caused by a significant voltage drop. The

fundamental idea is to change active or reactive power output in order to generate a

growing power swing oscillation and/or to have a shortage of reactive power support

in the whole grid. In this study, transient stability problems seem to occur when a

voltage collapse occurs. In the case of large networks, the short-term voltage collapse

in entire power system could lead to an outof-step condition in the entire network.

Short-term voltage response is also examined using the non-operation of primary re-

lay or unwanted operation of the back-up relay. Reference [120] also exhibits the

possibility of large voltage excursion. The fundamental idea is to enlarge the impact

of the fault via nonoperation of the primary protection or the unwanted operation of

the back-up protection. However, the goal of the paper [1] does not represent black-

outs, but to establish a complex cyberphysical system. Similar study includes using

the undesired control of SVC caused by man-in-the-middle attack [125].
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2.3.4.4 Slow Dynamics

Long-term dynamics is considered using the arbitrary load change by jamming the

pricing signal in the electricity market. References [121, 126] studies the possibil-

ities of unwanted slow dynamics caused by the delayed and distorted data-centric

attack, which eventually causes the degradation of the controller performance and

the negative impact on any kind of the power system stability. Smart meters in elec-

trical distribution network which utilize wireless communication such as WiMAX is

assumed to be used for this scenario and the jamming attack is applied to the elec-

tricity market in order to jam the power price signaling over a large area such as the

load center. Such manipulation of the electricity market via the data-centric attack

(or the false data injection attack) can bring the attacker to the profit and cause the

significant impact on the stability of the power system.

2.4 Insurance Implications of Contingencies

Many research organizations and institutes are seeking for insurance model that would

respond to cyberattack, which is believed to be an under-insured risk [60]. Finan-

cial and insurance incentives are believed to be another effective method to improve

the security and resilience of the grid [59]. Understanding the impact of the severe
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cyberattack event is particularly significant to develop insurance solutions. Though,

currently, the insurance plays a limited role electricity area, in general, the insurance

would be designed to reduce the liability or prevent catastrophic damage from cy-

berattack. Most large utilities have participated in a large mutual risk pool called

Associate Electric & Gas Insurance Services Limited (AEGIS), which is an insur-

ance company that has included entire energy infrastructure in North America and

provides liability, property coverage, and related risk management services.

Cyber insurance is relatively new type of insurance that covers a broader range of

issues related to cyber risk, which presents several challenges [59]: (1) Cyber risk is

hard to measure, model, and price due to lack of actuarial data. (2) The consequences

and the probability are hard to measure. (3) It is hard to assess the liability and

risk when a cloud or third-party service provider is included. (4) “Cyber risk is a

dynamic, evolving threat, which is not constrained by the conventional boundaries

of geography, jurisdiction or physical laws.” Additionally, the cyber insurer is also

required to consider different types of coverage, including power generation company,

utilities, companies losing power, and homeowners. Despite these challenges, the

cyber insurance is a promising method to help to improve the cybersecurity and

resilience of the power grid.
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Chapter 3

Cyber-Risk Assessment Model

3.1 Introduction

The cyber risk assessment framework is introduced in this chapter with evaluations

of the system instabilities in terms of the physical impacts that are caused by the

cyber manipulations. The contingency planning study would include the “what if” at-

tack scenarios that would disconnect compromised substation(s)/component(s) from

the system, which would normally includes multiple N-k contingencies. The risk as-

sessment model is validated using both the steady-state and dynamic methods with

implications of the enumerative combinations.

The hypothesized substation outages are conducted in the chapter through evaluating
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the risk of cascading outages, which is also associated with overloading consequences.

As a result of electrical short circuits, protective relaying picks up the faults and

electrically disconnects overloaded transmission lines through circuit breakers. With

similar disturbance and implication, disruptive switching cyberattacks in one or more

compromised substations can initiate such events that will aggravate system’s oper-

ating conditions, leading to a widespread blackout. This chapter applies an extended

enumeration of substation outages that excludes the overloaded lines from a power

flow model, which is denoted as S-k contigency. First, the exhaustive combination

which starts from the initial combination size k = 1 is enumerated searching for non-

convergent solutions of the hypothesized contingencies associated with the outages

of single or more substations. Once the critical substations are compromised, attack

agents can coordinate among their peers to plot for maximizing disruption using local

control devices.

Defenders might not be able to predict the behavior of attackers and their strate-

gies; however, defenders can plan exhaustively to identify the critical protective IEDs

which might initiate catastrophic consequence of a grid [47, 48]. It is also critical to

enumerate and identify all digital relays to determine the systemic risks. Any combi-

nation of disruptive switching via the compromised relays can result in misoperation

or immediate effect to the system. The resulting consequence of these attack’s initial

events would possibly incur cascading failure to a grid. This work also defines the

cyber-physical relay switching attack as R-k contingency, which verifies the simulation
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results on both the time-domain dynamic simulation and power flow analysis for the

IED modeling. The cascading effect is studied to determine practical adaptability.

The time-domain dynamic simulation model is implemented to check the consistency

of the results between power flow and tripping implication initiated by the plausible

switching attacks through digital relays.

Chapter 3.2 provides the modeling details of cyber-based substation outages with

overloading implications. Chapter 3.3 introduces a linearized method to the modify

the S-k model incorporating islanding issue. Chapter 3.4 introduces a probability-

based framework to evaluate the potential impact of the outages of protective relays.

Chapter 3.5 extends the R-k model by incorporating the static and dynamic valida-

tion. Chapter 3.6 presents the simulation results.

3.2 Extended Enumeration on Hypothesized Sub-

station Outages

The purpose of this chapter is to re-establish the cyberbased contingency approach

to extensively enumerate (sum of S-k contingencies) by incorporating the overloaded

lines based on a hypothesized outages of the substations, using RPM method. For

the improvements of cyber-situation awareness, the combinatorial model is two-fold:

First, all worst case scenarios are enumerated with an increase of k from 1 to S′.
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Then, each converged case is re-evaluated with the incurring lines that are electrically

disconnected due to overloads.

3.2.1 Modeling of Hypothesized Nodal Outages

In this formulation, the initiating events are the disruptive switching cyberattack on

those compromised IP-based substations that initiate cascading effect and disconnect

sequential overloaded components, such as lines, transformers, or generators from a

power system. Like many blackout events occurred in the past, line outages are often

caused by the initial outage that can be modeled by overloaded lines. Generally, the

protective relays will disconnect electrically those overloaded components when an

electrical fault is detected between two substations based on pre-defined protection

schemes.

The hypothesized nodal outage here is referred to any plausible cyberattack events

associated with IP-based substations. This section is divided into two: (A) Extended

enumerative approach and (B) Determination of nonconvergent power flow.

34



(a) Initial topology of a substation 

under attack G(V,E)

(b) Overloaded line incurred from 

the switching attack G’(V’,E’)
(c) Cascading line outage under 

the same attack scenario G’’(V’,E’’)

Figure 3.1: Graph representation for a hypothesized substation outage G′

and its cascading outage G′′

3.2.1.1 Extended Enumerative Approach

G(V,E)
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶

(a) Original G

SwitchingÐÐÐÐÐÐ→
cyberattack

V ′(G′) = V (G) ∖ Vk ⊂ Ssub
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(b) Hypothesized substations outages

PotentialÐÐÐÐÐ→
overloading

E′(G′′) = E(G′) ∖Ek ⊂ L
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(c) Overloading outages

Ô⇒ E′(G′′) = E(G′) ∖Ek ⊂ L
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(c) Overloading outages

DetermineÐÐÐÐÐÐÐÐ→
power flow status

PFfailed (3.1)

A steady-state analysis using power flow module is employed to verify the overloading

effect that characterizes the sequential outages by excluding those from the power flow

model. To explicitly describe the topology statuses before a plausible cyberattack

event, we represent a power system as a graph G(V,E) depicted in Fig. 3.1(a). The

graph consists of vertex set V and edge set E that corresponds to each of those as

substations and transmission lines, respectively. Equation (3.1) describes generally

the topology statuses for each transition of Fig. 3.1 in a graph where Ssub is a
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set of total IP-based substations of the total number of substations STotal, such as

Ssub ⊆ STotal. This implies that not all substations are IP-based but all substations

can be upgraded with IP-based communication infrastructure in the future. The L is

a set of total transmission lines associated with all substations STotal. The prime (′)

and double prime (′′) represent an updated topology status of each transition from

the causing to the incurring perspectives, i.e., parts (a)–(c). The motivation here is

to determine if the power flow fails to converge PFfailed = 1 for the combinatorial

study of a power system under certain operating conditions.

The total number of combinations from k = 1 to the S′-th level is enumerated as

S′ = ∑S′
k=1 CS

k [25], where S is the total number of IP-based substations in a power

system, and k is a pointer of each k level as it increases closer to total number

of substations S . The S′ value introduced in this work is the depth level that is

smaller than the total number of IP-based substations. The S′ is the sum of total

combinations for each level before level S. Fig. 3.2 shows the enumeration from k = 1

to S′ with the demonstration of decreasing ratio ψ(⋅). As depicted on the left side of

the figure, a substation outage (k = 1) is presumed. As the level k increases, so as the

combinatorial complexity when more substations “goes south.” Each level, it consists

of two parts, i.e., ψ is denoted by the ratio of new reduced combination, the other

part 1−ψ is the ratio of reduced combinations and CS′
k ⋅(1−ψ) is a total combination

to be reduced at the level of S′. To describe the cases between levels, the following
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Figure 3.2: Enumeration from k = 1 to S′ with decreasing ratio ψ(⋅)

are generalized.

ψ(snew,k, k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

snew,1

CS
1

= 1.0, k = 1

snew,2

CS
2

< 1.0, k = 2

snew,k

CS
k

< snew,k−1
CS

k−1
< 1.0, k ≥ 3

(3.2)

At level one, the ratio of new reduced combination ψ dominates by 1.0. In the

contrary, at the last level k = S, the 1−ψ will be 1.0. These ratios are the reflection of

effective reduction of enumerated combinations at each level. Without eliminations

from the previous level, the total combination of S-select-k will increase as k grows.

Some nonconvergent combinations from the previous level will not carry on to the

current level as these combinations can be the subsets of the new total combination
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at the new level k = k + 1. The proposed ratios measure new reduced combinations

for each level before power flow verification. For example, in the IEEE-39 case, 1,868

out of 888,030 combinations are required to be evaluated at the k = 7 and 886,162

combinations can be reduced. At the level of 8, which is the last level of the evaluation,

only 424 out of 2,220,075 cases need to be tested and over 99.98% combinations are

removed, where ψ = 0.019%. For a larger system, the solution space will increase

exponentially but the ratio ψ indicates the reduction of total combinations as the k

increases. A smaller ratio ψ would indicate decreasing “worst case” combinations for

the next levels of k using power flow module as the verification.

3.2.1.2 Determination of Nonconvergent Power Flow

Under the steady-state approach, it is an indication of instability under one single sys-

tem when a power flow model fails to converge [25, 127, 128, 129]. Depending on the

scenarios, sometimes it may require further investigation using dynamic simulation

to confirm a potentially unstable case.

It could also imply other situations, such as transfer capability of the transmission grid

is weakened by the protective relays with multiple electrical disconnections. Under

certain circumstance, multiple islands may also form as a result of the initiating

events. The errors are due to multiple subsystem split in which each of them requires

a slack bus to be initialized. We denote the failure of power flow convergence by
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SSfailed.

SSfailed(k) = PFfailed(G′(k))⋃PFfailed(G′′(k)) (3.3)

where, PFfailed(⋅) ∈ [0,1] indicates either a converged or diverged outcome, respec-

tively. SSfailed(k) is the nonconvergent combination list at the level of k in the

extended enumeration. PFfailed(G′(k)) and PFfailed(G′′(k)) are the nonconvergent

solutions based on steady-state power flow evaluation based on the topology statuses

of hypothesized substation outages G′ and cascading failure G′′, accordingly.

ssfailed = SSfailed(1) ∪ SSfailed(2) ∪⋯SSfailed(S′) (3.4)

where ssfailed is the final nonconvergent list that is derived from the k = 1 to k = S′

where S′ is at the level where it stops for future determination of combinations.

The sum of new reduced combinations at each level k before power flow verification

is estimated as follows:

snew,k = (CS
k − χ) (3.5)

where χ is the total reduction number that was extracted from the last level of

SSfailed(k−1) set. The count of all level combinations before power flow is determined

as follows:

Snew =
S′

∑
k=1

snew,k (3.6)
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Snew is the summation of total combinations from levels k = 1 to k = S′. This total

number before power flow is to determine nonconvergent combinations from the set

of Snew. This is used as a denominator for a ratio to estimate proportional reduction

from nonconvergent power flow cases.

The total sum S can be enormous when a larger power system is simulated. De-

termining the depth level of S′ would avoid repeated enumeration of subsets. This

terminates the combinatorial evaluation at that depth level to assure completeness

of identifying the worst cases for computational effectiveness. The following is the

criterion to determine S′:

Depth{(PF(snew,k) = ø)⋃ (union(ssfailed) = Ssub)} (3.7)

The conditions for these two to be met are based on combinatorial results from power

flow evaluation as well as assuring the unique set of total IP-based substations are

identified. Having this logical conditions would assure there are no other critical

combinations that might be neglected at the higher order of k. By doing so, this

would help to eliminate unnecessary enumerations as it approaches closer to S level,

which can be computationally intensive. Chapter 3.2.2 will detail with the proposed

enumeration algorithm to exclude the components in the power flow and overload

model.
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3.2.2 Incorporation of Switching Attack and Overloading

Consequences

Chapter 3.2.1 illustrates the mathematical model of extensive enumeration and the

computational complexity of hypothesized nodal outages shown in Fig. 3.1 (a) vali-

dated by power flow simulation. This section continues with the same scenario with

incurring overloads on transmission line(s)/power transformer(s), which is later to be

confirmed by power flow model on the potential system instability. Figs. 3.1 (b) and

(c) shows the sequential events how overloaded components are excluded from a power

flow model in 3 steps. The following subsections are the sequential examinations of

power flow convergence.

3.2.2.1 Consideration of Protection Schemes

The stability evaluation of cascading outages is a dynamic-security analysis with

variables in transient status such as time period, frequency and voltages instability,

generation-load rebalance, and cost/benefit analysis[130, 131]. Our focus in this re-

search does not include transient analysis and is not discussed here. The steady-state

approach includes the overload model in our study to consider the effects of protection

scheme on transmission line. The currents are determined by the voltages and the
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power flow solution of each line [132]. Since the overcurrent is preset based on the

rating of ampacity for a transmission line. The overcurrent scheme is also set as a

primary protection with high sensitivity. We have selected this scheme in our relaying

model, which will operate when the overcurrent magnitude exceeds the permissible

level to electrically disconnect a line.

Other protection schemes may be considered but might not be feasible in our study.

For example, the differential and pilot protection relays are measuring the variation

of currents between the two ending points of a transmission line, which may not

be triggered presumed fault within a particular line, i.e., our study simply does not

inject short-circuit fault currents in the model. Phase distance protection relays are

normally set as backup protection for transmission line with an extended time delay,

which is not applicable in the steady-state analysis. Additionally, the ground distance

protection is applied only when the phase and sequence data are available and the

zero sequence current will be detected in asymmetrical fault analysis, which is not

applicable in the steady-state evaluations. We assume that all overloaded lines would

be disconnected by the primary protection relays and the time delay is not included.

In our simulation, both G′ and G′′ are considered as initial value for steady-state eval-

uation. The determination of potential line outages is modeled based on the thermal

and ampacity limit of each branch [131, 133, 134]. For example, the hypothesized
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nodal outages of substations A, B, and C, resulting in five transmission lines over-

loaded. If these branches met the tripping criteria of instantaneous overcurrent relay,

we exclude those incurring branches out of the power flow model. The power flow at

transmission line i is denoted by L = {l1, l2,⋯, li,⋯, lN} where N is the total number

of branches. The element vf,li in the set VF = {vf,l1 , vf,l2 ,⋯, vf,li ,⋯, vf,lN} denotes the

voltage of the from-node corresponding to the transmission line i. It is noticed that

both the set L and set VF acquire the same size of N . The current Ii that goes

through transmission line i can be calculated through the set L and set VF , which is

saved in the set I. Once it is detected that the ∣Il∣ exceeds the corresponding pickup

value ∣Ip,l∣ set by the instantaneous overcurrent relay, the transmission line l will be

disconnected. The tripping condition can be written as:

Condition A ∶(∣Il∣ > ∣Ip,l∣) (3.8)

The flow of power at each transmission line l from power flow calculation is denoted

by LPF = {lPF,1, lPF,2,⋯lPF,N} where N is the total number of branches and PF is the

thermal and capacity magnitude of lines from power flow calculation. The removal

of an overloaded branch is based on the following two conditions:

Condition B ∶(Lpf > Olimit,S(L)) (3.9)
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Condition C ∶(Lpf > Cl)⋀ (Olimit,L(L) < O(l, τ)) (3.10)

where O(l, τ) is ∫ [Lpf(τ)−Cl]dτ and Cl is the ampacity rating for each transmission

line. The relationship between short-term and long-term ratings are denoted by

Olimit,S and Olimit,L, respectively, Olimit,S = κ ⋅ Olimit,L and κ > 1.0. The τ defined

here is a small time window in between any causing or incurring event of pre and

post conditions. The relationship between this small time interval can have an abrupt

change in current magnitude either increase or decrease. Since the τ value is relatively

insignificant, we assume that the pre and post conditions can be modeled in a step

function for the two-period transition. The “tripped signals” be sent by the protective

relays will exclude those components as follows:

(Cond. A⋁Cond. B⋁Cond. C)→ ltrip, l ∈ L (3.11)

The additional short-term (condition B) and long-term (condition C) ratings of the

two operating limits are verified when there is a power flow solution. Under certain

conditions, we might encounter the situation of hypothesized substations outage that

does not contribute to the reduction of total generation and load, i.e., the hypothe-

sized substations outage associated with no load or generators may incur overloading

conditions to other transmission lines that may not exceed the long-term limit but

short-term one. This OR logic of (3.11) indicates either one or more of the two

conditions.
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3.2.2.2 Detection of Islanding

In a larger system, the initiating event of switching cyberattacks upon those substa-

tions may incur overloading, resulting in multiple islands, which requires necessary

modifications on risk index[25]. For a smaller system, it may not necessarily split the

system into two or more islands; however, the power flow verification may disagree

with a diverged outcome. Combining equations 3.3 and 3.4, the result ssfailed contain

the nonconvergent combinations with a potential overload.

The binary outcome for each power flow result does not indicate the root cause

of problem. Under the observation of this study, the initiating events of plausible

cyberattacks can result in splitting a power grid into multiple islands. Detecting the

number of islands is crucial for the proposed stability study in terms of modification of

risk index[25], which is a measure that quantifies the impact level of each hypothesized

combination of outages for the IP-based substations. The islands might not enable

power flow verification due to the lack of slack bus for each island and shall be handled

individually in order to power flow solutions.

Below are the steps to determine a case with more than two islands:

1. Initialize from the power flow calculation under the topology status of G′′.

2. Identify all excluded lines from power flow models.
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Figure 3.3: Flowchart of extended enumeration incorporating the potential
overloads

3. Modify existing adjacent matrix A(G′′).

4. Determine the depth matrix Â(G′′) of A(G′′) where Â(G′′) = A(G′′)Q and
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Q = 1,2,⋯, ξ.

5. Find unique vector, row by row, from Â(G′′).

6. The total number of islands is determined from the total number of unique

vector.

As this may require future investigation, regardless of the number of islands formed,

we relate the risk of such case to be discounted for the risk metric R̃ = .5R [25].

The one-half constant indicates the uncertainty between the worst case and benign

situation associated with each substation outage.

Fig. 3.3 summarizes the proposed algorithm incorporated with an overload implica-

tion, which includes 2 main parts. Part (a) contains the combinatorial enumeration

of power flow evaluation with overloading implication. Part (b) contains the modifi-

cation of risk index after an island is detected.

3.3 Improved Risk Metric with Islanding Consid-

eration

The microprocessor-based protective relays will trip when a disturbance occurs and

will disconnect the line from a network. The disconnection of any single component by
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Figure 3.4: Possible intrusion paths within a substation network where the
microprocessor-based relays are instrumented to the physical facilities

the protection scheme is referred to a single component outageN -1 for the contingency

analysis. The setup of IP-based solutions is configured in each power substation. Fig.

3.4 depicts scenarios of an intrusion path on an IP-based substation and the critical

cyber assets within the substation control network. The hypothetical scenarios here

are the electronic intrusion by the attackers would help them to discover the IED

within the network that may further lead to execute manipulative switching operation.

We hypothesize the worst case outcome based on the intent of attackers’ motive, i.e.,

to disrupt operations by disconnecting large number of switches within the substation

from a power grid. We also assume that the hypothesized substation outage shall not

restrict to a single substation as the attackers may be able to compromise multiple
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Algorithm 1 The extended enumeration method

1: Load data
2: for k = 1 ∶ S do
3: Initialize S-select-k combinations
4: r ← run power flow of case[G(V /K)]
5: if r = 0 then
6: save it in the set S
7: else
8: remove the overloaded line(s) L
9: r′ ← run power flow of case[G(V /K,E/L)]

10: if r′ = 0 then
11: save the case in S
12: else
13: continue
14: end if
15: end if
16: set T ← unique (S(1)⋃S(2)⋯S(k))
17: if T = V then
18: return worst-case list S
19: end if
20: end for

substations and execute their attack plan. We denote the total number of substations

in a power grid as S, where N > S. We represent G as the topological status of the

grid, where substation set V and branch set E.

A pseudocode of the hypothesized substation outages is given in Algorithm 1. This

extended algorithm of [25] emumerates with k = 1 to S. The steady-state analysis

is applied for the verification of critical scenarios of substation outages. The binary

results [0,1] denote the convergent and nonconvergent solutions, respectively. Note

that K is a set of substations with size ∣K ∣ = k, which is derived from the list of

complete combinations of S-select-k contingencies. The overloaded lines are the ele-

ments in the set denoted by L that are presumably tripped by relays. We describe
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the topological status as G(V /K,E/L) with the elimination of K substations and L

branches. The binary results of power flow evaluation are defined by r and r′. A

worst-case list S is added with new cases during each iteration of selected outages

based on the results of power flow where row k is the array of the list S(k). All unique

substations T are recorded denoted by T ⊂ S. This extended enumeration algorithm

verifies cases with multiple islands with an incorporation of overloading effects. This

also improves the accuracy by eliminating the potential uncertainty of unevaluated

combinations. The algorithm creates a worst-case combination list, which helps to

determine the criticality of each substation under the proposed model.

This chapter provides a scenario where a power system is separated into two or more

subsystems while the substations under attack have been disruptively disconnected

from the grid through the local control console. As mentioned in the previous section,

we employ a steady-state power flow solution to verify critical scenarios (islanding

combinations). The outcome from the evaluation of a split system will not necessarily

agree with a converged solution because the slack bus may not able to balance the

generation-load difference within a power system.

A simplified DC power flow evaluation model is proposed in [131] to address cascading

scenario with elimination of the numerical inaccuracy with respect to a diverged

solution using AC power flow. In our study, we assume that the influence of the

power loss in a subsystem is reflected by the loss of active load, which is determined
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by accumulating the power loss of each isolated subsystems. A weighting factor wi

is introduced to quantify the impacts of the isolated subsystems based on the entire

power system by formulating the ratio of total power loss over the sum of the load

consumption which is defined as:

wi =
ΣPloss,j

ΣPD
=

ΣPD −ΣPd,j ⋅ φj
ΣPD

= 1 −
ΣPd,j ⋅ φj

ΣPD
∈ [0,1]

(3.12)

where i denotes an order of the cases that need to be evaluated in the list and j is the

sequential order of subsystems in each case. Ploss,j represents the active power loss in

the subsystem j. Pd,j indicates the outcome of load demand after the linearized power

flow evaluation in the subsystem j. The binary function φ(⋅) provides results that can

be either 0 or 1, representing the convergence status of the subsystem j. The total

amount of system load demand ΣPD is the denominator of the ratio, which is derived

from the initial steady-state model before the hypothesized substation outages. A

column vector given below corresponds to the maximum length of s:

w = [w1,w2, . . . ,wi, . . . ,ws]T

The flowchart in Fig. 3.5 describes a mechanism to handle subsystem of a hypothetical

attack scenario. Notice that in the data initialization, the bus and branch set of
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Figure 3.5: Flowchart of islanding identification

the base case need to be modified by removing faulted components according to

the hypothesized substation outages. With implementation of power-flow evaluation

method, the criteria for determining the operation status of subsystem is defined
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by 2 perspectives: the generation-load difference and the ramping-up/down ability of

generation units within 1 minute. As depicted in the Fig. 3.5, the proposed weighting

vector assesses the impacts of the islanding issue on the entire power system, by

separately evaluating the load-generation balance and the portion of active power

loss in each isolated subsystem. The weights are directly related to the linearized

evaluation outcomes: φ and stable load demand of each subsystem Pd,j, which are

decided by the topology of the system and the initial results that we aforementioned

in previous chapter after applying the hypothesized contingency cases. Once the

topology and initial case are changed, the weighting vector would be renewed with

the corresponding updates of worst-case list.

It is assumed that the system is stable when the AGC is able to compensate

the difference between generation dispatch and load by changing their active

power outputs, otherwise, it requires further investigation with dynamic security

analysis, i.e., voltage and frequency stability evaluation. A detailed and elaborative

cascading model for a single case may greatly extend the computational time by

increasing the complexity of the algorithm because our study is a prospective

research with supportive evidence from the evaluations of massive enumerative

combinations. The risk index proposed in [25] presumes that each combination has

the same weights, which is 1.0. In our study, the risk index is modified by multiplying

the weighting factors based on the Eq. 3.12 and obtained weighting vector, as follows:
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Rm =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 ⋅wi,m, if k = 1

Nm⋅wm

Nb−s⋅wb−s
= Σwi,m

∑s
i=b+1wi

, if k > 1

(3.13)

where Rm is the risk index of substation m. Nm is the number of combination in

the list S that contains the specific substation m; wm is the weighting factor of

combination that includes substation m. Nb−s and wb−s denote the number of the

combinations with the size larger than 1 and the corresponding weighting factors,

where b and s are the number of the combinations with size of 1 and the length of the

list, respectively. wi,m is the weighting factor of combination containing substation

m with the order i in the w; k is the size of each combination.

3.4 Cyber-Induced Risk Modeling for Micropro-

cessor Based Relays in Substations

3.4.1 Risk Modeling of Relay Outages

The combinations of the substation criticality have been investigated in the recent

years on “bottleneck list” in [25] and [30], which essentially assess the risk level for

each substation outage by identifying the cases that are critically-weakened conditions
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Figure 3.6: Schematic diagram of protective IEDs and the control perime-
ters within a substation

based on presumed attack scenarios. With the consistent representation of terminol-

ogy in the definition of “critical” cases, the section extends the modeling of relay

outages that can be risky to manipulated that may initiate system-wide instability.

Fig. 3.6 depicts the details of the connectivity relationship between the protective

IEDs and their corresponding electrically controlling components in the substation i.

Suppose that the substation i has been compromised, the attackers would be able to

manipulate single or multiple protective relays. Different relay would generate differ-

ent outage when it has been compromised. As depicted in Fig. 3.6, if the directional

distance relay has been compromised, attackers can manipulate a disruptive switching

command to electrically disconnect substation i+1, thus other relays may misoperate

causing the transmission line (i, i + 1) to be de-energized. Similarly, the implications
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may occur on other relays within a substation or other regional substations so as

the resulting impacts to the power grid operation. In the steady-state analysis, the

hypothetical outages of compromised protective relay is treated as the modifications

on the relay is equivalent as the electrical modifications on the load demand, power

injection, and topology of the power system. For example, the outages of bus differ-

ential relay would disconnect all the electrical components from the system, including

transmission lines, transformer, lumped loads and generators.

To quantify this problem, the variable Ci,k is introduced to denote the set of the

electrical components, including all the lines, transformers, generator units, and loads,

which are electronically controlled by the protective IED k, at the substation i. To

enumerate all the possible successful cyber intrusions in the substation i, it generates

∑k∈K 2∣Ci,k ∣ different consequences, K is the total number of the IEDs in the substation

i. In our formulation, we’ll assume the attacker would maximize the impacts by

disconnecting as many electrical components as possible. Under this assumption,

C′i,k is the most “severe” set that is understudied in the proposed formulation, where

C′i,k ⊂ Ci,k. Derived from the previous studies on the hypothetical substation outages

[25], it is observed that the assessment of the digital protective relays is a much more

complex problem, which includes a larger number of combinations:

S = ( ∑
k∈K1

2∣C1,k ∣) ⋅ ( ∑
k∈K2

2∣C2,k ∣)⋯( ∑
k∈KS

2∣CS,k ∣)

=∏
i∈S

(∑
k∈Ki

2∣Ci,k ∣)
(3.14)
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Table 3.1
Results of standard deviation of IEEE test systems

Test systems σ ≤ 1% 1% < σ ≤ 5% 5% < σ ≤ 10% Total #.
IEEE 30-bus 1 49 34 106
IEEE 39-bus 4 61 47 131
IEEE 57-bus 7 74 71 245
IEEE 118-bus 24 238 121 439
IEEE 300-bus 43 411 354 959

where S is the total number of the substations in the system and Ki is the total

number of the IEDs in the substation i. The constant 2 indicates the open or closed

status for each scenario of associated IEDs and substations, which implies 2∣Ci,k ∣ sce-

narios if IED k is compromised. In our formulation, the most “severe” set C′i,k is

considered for each IED k, which would create Ki different scenarios in total within

single substation i. Thus, the Eq. 3.14 can be modified as:

S = 2K1 ⋅ 2K2⋯2KS =∏
i∈S

2Ki = 2∑Ki (3.15)

where 2Ki represents the total number of outages of IEDs in substaion i. It is observed

that S is determined by the configurations of IEDs in each substation or the total

number IEDs in the system.

The right side of the Eq. 3.15 is the sum of the S-select-k formulation, which is ex-

pressed as the designated outages of two or more components/substations and would

produce different outcomes with or without considering outages of IEDs. For instance,

the S-select-3 problem on the substation outages would enumerate C30
3 = 4,060 cases
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Figure 3.7: Algorithmic enumeration of relay outages

in IEEE 30-bus system. However, from the Table 3.4, it is observed that there are

106 IEDs are evaluated, which would generate 192,920 scenarios consequently. It’s

predictable that the number of combinations would be greatly increased when study-

ing larger cases. In this paper, we emphasize on detailing such hypothesized outages
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to the device level (the digital relays) to determine the relay outages. Different re-

lay types may result in a consequentially different effect on the system when it’s

compromised.

3.4.2 Cyber-Induced Impact Assessment

3.4.2.1 Probabilities and combinations

A standard evaluation model for quantifying the risk of the disturbances or the out-

ages is represented by the product of the event probability and its severity [135]:

Ri,k = Pri,k ⋅ Sri,k (3.16)

where Ri,k is the risk index of the protective IED k at substation i, Pri,k denotes the

probability of event when the cyber intruder successfully hacks in the substation i and

manipulate the protective IED k, consequently, Sri,k is the severity of the outages,

which, in this paper, is represented using the most “severe” set C′i,k . To simulate

probability of the intruding attempts, this paper assigns the probabilities based on
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the size of the set C′i,k. The Eq. 3.16 is elaborated as follows:

Ri,k =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∣C′i,k ∣
∑k∈K ∣C′i,k ∣ ⋅

∑i∈S ∑k∈K ∣Pi,k ∣
∑k∈K ∣Pi,k ∣ , If diverged

∣C′i,k ∣
∑k∈K ∣C′i,k ∣ ⋅

∣Pi,k ∣
∑k∈K ∣Pi,k ∣ , Otherwise

(3.17)

where Pri,k = ∣C′i,k∣/∑k∈K ∣C′i,k∣ is the probability of the successful intruding attempts

towards the protective relay k in the substation i. In the study, it is assumed that

an attacker does not acquire the knowledge of the power system and does not have a

complete information of the entire power grid. They would enumerate all trials based

on the connectivity degrees of the relays that connect more electrical components.

These can be represented by C′i,k. The probability is then calculated by measuring

the proportion of the size of the “severe” set ∣C′i,k∣ to the sum of the “severe” sets for

all the protective relays.

In the Eq. 3.17, the variable Pi,k denotes the total injected power to the substation

node i, which are electronically controlled by the relay k. When the intruder success-

fully compromises the control panel and has the access to the IED k, all the power

that is connected to this IED is considered as potential risks. To quantify the outage

severity, the power flow evaluation is applied to verify the solutions of the study in

which the outcome can be either converged or diverged. For this reason, two different

indices are proposed.

In the first scenario, if a solution agrees with a converged result, the severity of the
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outage Sri,k is determined by calculating the quotient by dividing the injected power

that connected to the protective IED k using the total injected power to the substation

i, which is represented as ∣Pi,k∣/∑k∈K ∣Pi,k∣. The quotient locates the threshold [0,1].

If the solution is diverged, which suggests that the system can be unstable. Under

this scenario, the severity of such event is considered to be much more severe where

a potential system-wide blackout would occur. Sri,k = ∑i∈S∑k∈K ∣Pi,k∣/∑k∈K ∣Pi,k∣ is

quantified as the severity of the outage. Note that the numerator is the total power

injection for the system. The proposed metric assures a comparable larger index than

the previous conditions.

3.4.2.2 Sensitivity analysis using standard deviation

To evaluate the performance of the proposed metric, the assigned probability Pri,k

captures successful intrusion of a given cyber network using pseudo-random numbers.

The results of the equal distribution of the probability are given in this problem,

in order to initiate a comparison study. The pseudo-random number is calculated

through:

Pi,k =
P′
i,k

∑k∈K rand(1,K)
(3.18)

where rand(1,K) represents the function that generates an array of random numbers

within the interval (0,1), which has length of K. P′
i,k is the k-th elements in the

array. The sum of these random number P′
i,k will not necessarily give a 1.0, which
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is not acceptable in probability distribution function. The scaling process is given

by dividing each random number with the sum of all the random numbers, thus, the

modified variable Pi,k is the k-th scaled random number which can be used as the

probability assigned to the outage of the relay k in the substation i.

Accordingly, the standard deviation σ is given as the index to assess the performance

of the proposed metric.

3σ2
i,k = (RC

i,k −RA
i,k)2 + (RR

i,k −RA
i,k)2 + (RE

i,k −RA
i,k)2 (3.19)

where RC
i,k denotes the risk of protective IED k in the substation i using the prob-

ability which are derived from the connectivity set C′i,k. Similarly, RR
i,k and RE

i,k

are the risk indices using probabilities of pseudo random value and equal distribution

method, correspondingly. RA
i,k is the average risk index. σi,k is the standard deviation

of protective IED k which is in substation i.

Fig. 3.7 describes the algorithm of the enumerative assessment for the protective

relays. The proposed algorithm includes two loops, which include the iteration of

power substations and the protective IEDs in each substation.
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Hypothesized Substation Outages: S-select-k contingencies 
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Figure 3.8: The architecture of protective IEDs and possible path enumer-
ation within a substation network by hacking tools

3.5 Cascading Verification Initiated by the Switch-

ing Attacks through Compromised Relays

3.5.1 Vulnerabilities of Digital IED Architecture

The information communication technology has been widely deployed on the power

system. Digital relays are crucial to power system protection, control, monitoring,

and metering function. According to the IEC 61850 standards[136, 137, 138], IEDs

are deployed with a robust platform on a local area network (LAN) within a substa-

tion based on Ethernet communication. The convenient remote connections allows

protection engineers to visualize the connections and relationships between the con-

trol functions and the physical components through the human machine interface

(HMI). With the support of IEC 61850 standards, the protection engineer is able to
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customize the function settings of the relay to meet the specific requirement on the

digital relay input and output variables.
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Figure 3.9: The simulation results of switching attack on the distance
protection relays on the bus 2 in the IEEE 14-bus system

However, an IP-based protective relay may contain vulnerabilities that can be covertly

manipulated by attackers. The 2015 Ukraine attack, for example, exploited remote

access to IP-based substation equipment to disconnect busses and then erase the hard

drives of that equipment. While the attack was not reported to affect protective relays,

it does demonstrate the vulnerabilities of substation equipment to cyber attacks [11].

More recently, the US Department of Homeland Security issued an alert indicating

that Russian threat actors were targeting American electric facilities with remote

access attacks [139], and an alert indicating that safety equipment at industrial sites

had been targeted by a sophisticated remote control attack as well [140]. Available

hacking tools, e.g., Shodan, Nmap and Wireshark, can help attackers enumerate all

the IP-based devices in an interconnected communication network. These software

tools identify nearby devices if they are alive [141, 142, 143]. The vulnerabilities
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of remote connectivity to protective relays are summarized in the [144], which are

categorized as software security vulnerabilities, network security vulnerabilities, such

as denial-of-service (DoS) attacks, system vulnerabilities, and other miscellaneous

malware. For example, Fig. 3.8 introduces a possible intrusion scenario that the

starts from IED 4 to IED 5 that primarily protects transmission lines and feeders.

The S-select-k potential substation outage contingencies are covered in the Fig. 3.8

and have been investigated in previous work [25, 45]. The protective relay outages

would be extended as a more complicated combinatorial problem as more relays

with diverse functions are deployed on the substations. As shown in the Fig. 3.8,

the hypothetical outages initialized by a breaker-switching attack via compromised

protective relay b in the substation i is defined as an R-select-k contingency.

3.5.2 Disruptive Switching Attack via Local Digital Relays

Once the attacker successfully compromises the protective equipment, the attacker

would be able to maliciously manipulate the circuit breakers, remotely changing the

relay settings, which may cause (1) misoperation in the healthy condition or (2)

malfunction in a fault condition. The impact of cyberattack on the protective relay

is nontrivial and could lead to cascading failure of the system.

Suppose that the IEEE 14-bus system is in a steady-state condition, and the distance
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relays on the bus 2 has been compromised, which lead the transmission lines 1-2 and

2-5 to electronically disconnect from the system at 1.0s and 1.2s. Figure 3.9 details

the dynamic responses of load, bus voltage, frequency, and the rotor angle difference.

It is observed that the initial contingency leads to the decrease of the system fre-

quency, which accordingly result in the loads shed at 1.26s. Over 90% of the loads

in the systems decrease rapidly in the following 0.5s. The generators are eventually

disconnected at the time of 1.55s because of the out-of-step phenomenon, which may

cause the entire system blackout. The results are provided by a time-domain simula-

tion tool named CPAT [145]. Although some protection models such as fault clearing

protection models are missing, the major protections which are initiated by voltage

change and frequency change are implemented so that the system collapse caused by

large frequency and voltage deviations are properly represented in the dynamic model.

The malfunction caused by cyberattack would be more severe, compared to the tra-

ditional causes. For example, if the relay settings of the underfrequency protection

on the loads are maliciously tampered by the attacker, such as intentionally lower-

ing the operating frequency band, such protection would not open the circuit breaker

correctly and fail to shed the loads. This would cause more significant frequency drop

and the second and the third level of underfrequncy protections are likely to operate,

which would eventually increase the size of the brownout, and, in the worst case, i.e.

if all generators are disconnected, might lead to a blackout.
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3.5.3 Screening the Diverged Cases of Power Flow

The extended enumerations of cyber-based substation outages are established [25,

45], which define the hypothesized substation outages as an S-select-k contingency.

As presented previously, the number of the complete combinations of substations is

∑∣S∣k=1 C
∣S∣
k , where S is the substation set.

As shown in the Fig. 3.8, this proposed study extends the previous work to presume

switching attack via compromised relays associated with the breakers, i.e. R-select-k

contingency. Let R̃ denotes the set of protective relay in the system, where:

R̃ = R1 ∪R2⋯∪Ri ∪⋯ ∪R∣S∣ (3.20)

Ri is the set of the relays of the substation i, such as:

Ri = [ri1, ri2,⋯, rib,⋯, riBi] (3.21)

where rib denotes the b-th protective relay on the substation i. Bi denotes the car-

dinality of the relay set Ri of the substation i. Thus, the total number of the relay

combination enumerations SR is:

SR =
∣R̃∣
∑
k=1

C
∣R̃∣
k = 2∣R̃∣ − 1 = 2∑

∣S∣
1 Bi − 1 ≫ SS = 2∣S∣ − 1 (3.22)
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SS and SR denote the total number of enumerations of S-select-k and R-select-k

contingencies, respectively. It is obvious that the total number of combination enu-

merations is greatly increased when the protective relays outages are considered. For

example, assume that in a small 10-bus system, 3 protective relays are deployed on

each bus. SR is 220 times larger than SS. The evaluation size would be further in-

creased if the coordination behaviours between the protective relays are considered,

since the sequential order of the relay operations would significantly increase the com-

plexity of the problem. Note that the relay coordination and the backup protection

schemes are not the scope of this study.

3.5.4 Static and Dynamic Validation

3.5.4.1 Modeling of Protective Relaying Outages

The complexity of the enumerations on the protective relaying outages have been

introduced in previous sections. Generally, the protective coverage of the multiple

relays would be overlapped and it is common to deploy two or more protective relays

on the same equipment. The relay deployment and applications of rib can be found in

the table 3.2, which details the basic relay fundamentals, applications and electrical

components, extracted from the [146]. As shown in the Table 3.2, each substation

may deploy numerous relays for single or multiple equipment, which would create an
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Table 3.2
The Fundamentals of relay deployments and applications on the substation

i

Protection Protective systems and typical Electrical
Objectives relays rib (if available) Components

Generator
Over/under-frequency relay

Generation
unit

Inverse time overcurrent relay
Over/under-voltage relay

Power Trans-
former

Transformer percentage differential relay
TransformerInverse time overcurrent relay

Overload protection relay

Transmission
Lines

Distance Protection: Transmission
linesThree-zone phase fault relay

Feeders
and Loads

Distance Protection: Lumped
loadsThree-zone phase fault relay

Bus-bar Differential protection

Generators
Loads
Feeders
Lines
Transformers

extremely large set of relays. It is observed that on the one hand, multiple relays

are protecting the same equipment which may cause the same impact to the system;

on the other hand, the impact level can also be different varying from the relay

to relay. For example, compared with bus differential relay which connects multiple

electrical components such as generators, feeders, and transmission lines, the distance

protection relay obtains a lower level of impact to the system. This paper introduces

a ranking method on each substation to sort and collect the first N relays that

acquire higher impacts. It is assumed that these N relays would cover most of the

outage scenarios within the substation. By uniting N relays for each substation, to

differentiate from R̃, the relay set R̂ is introduced.
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Figure 3.10: The modified topology of the original graph G0 and the
fundamentals of protections deployment in the IEEE 14-bus system

This work applies graph terminologies to perform the algorithm of evaluations on

R̂-k contingencies. Let G(V,E) represents the graph topology of the power system,

where V and E denote the set of bus nodes and the set of edge. However, the original

topology may not be able to represent the deployments of the generators and loads,

therefore the set of generator and load nodes v0 and the corresponding incident set

of edges e0 are incorporated. Thus, the graph G0(V0,E0), where V0 = V ∪ v0 and

E0 = E ∪ e0, is introduced to evaluate the protective relaying outages, as depicted in

the Fig. 3.10. Figure 3.10 also illustrates the correlation of the various protection

schemes and the corresponding electrical components of the buses 4, 7, 8, 9, 10, and

14. The dashed circles with different colors are representing the different electrical

components and its corresponding protection zones and relays. The initial event of
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compromised relay outages K(VK ,EK) can be presented in the following equation:

G0(V0,E0)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(a) initial system G0

V ′(G′)=V0(G0)/VKÐÐÐÐÐÐÐÐÐÐ→
E′(G′)=E0(G0)/EK

G′(V ′,E′)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(b) R̂-k contingency

PotentialÐÐÐÐÐ→
overloading

E′′(G′′)=E′(G′)/ELÐÐÐÐÐÐÐÐÐÐ→
overloading outages

G′′(V ′,E′′)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(c) overloading case

power flowÐÐÐÐÐ→
validation

PFfailed (3.23)

Equation 4.4 represents the modeling process for protective relay outages, where

status (a) denotes the graph topology of the system before the initial event K, (b)

denotes the topology after event K with R̂-k relay contingency applied, (c) denotes

the topology with overloading implications. It is noticed that any initial event can

be represented by the event K with VK and EK , once the topology G0 is produced.

EL denotes the set of the overloading transmission lines, based on the same settings

of thresholds in [45]. PF(⋅) ∈ [0,1] indicates either a converged or diverged outcome,

respectively. PFfailed saves the diverged scenarios.

3.5.4.2 Static and Dynamic Verification

Deriving the concepts from the reverse pyramid model (RPM) in [25, 45], this chapter

applies an extended enumeration algorithm for identifying the critical relay, which is

given in the Fig. 3.11. It is worth noting that the an overload model is also incor-

porated in the steady-state method to diversify the RPM model. The criteria for

tripping the overloading lines are using the model in the [45]. In the static analysis,
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START

Load initial case

Obtain the initial system topology G0 and determine the relay set R̂

Create the initial event K using the Eq. 4, where K     R̂    R

Derive the case with topology of  G’(V’,E’), saved as case
1

 case
1 
converged?

Overloaded 

implications?

Remove overloaded lines and derive G’’(V’,E’’) in case
2

 case
2 
converged?

End of list ?

Save K in the Pf failed

Yes

No

No
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Yes

No

Yes

No

End

Record the converged scenarios

Evaluate the converged/diverged cases via time-domain simulations

Save the blackout cases in DYfailed

Compare the results between the static and dynamic methods

 

Figure 3.11: Extended enumerations on the identification of critical pro-
tective relays within static and dynamic methods

the italic fonts of case1 and case2 denote the system data after the initial event K and

the data with overloading implications, respectively. The dynamic time-domain sim-

ulation is included in the model to evaluate the consistency performance between the

converged combinations from the static simulation and the dynamic simulation. The
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loss of load for each scenario is collected to determine the size of the blackout of the

each event K and the blackout cases are saved in the DYfailed. Based on the results

of “worst cases” in the PFfailed and DYfailed, the ratio of the verification between

the methods can be calculated. Other related electrical quantities, i.e. deviations of

frequency and voltage, are also recorded in the final results to further investigate the

behaviors of the test system. The risk-based index is also incorporated to evaluate

the impact level of each combination of digital relays, which quantifies the impact

level of each relay rib [25, 45].

3.6 Simulation Study

The simulation study involves multiple IEEE test cases with 14, 30, 39, 57, 118, and

300-bus systems [147]. A wide range of test systems is used to ensure the consistency

of generalization from the study how the cascading outages would affect the outcome

of total combinations, based on the expended enumeration algorithm, as well as if

the size of a power system relatively may be vulnerability to a small number of

hypothesized substations outages.
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3.6.1 Test Case Setups and Computational Environment

This section begins with the illustration of IEEE case setup as well as the configu-

ration of the computational platform are set up for the massive enumeration. It is

then followed by the simulation results in performance comparisons in terms of size,

combinatorial complexity in the earlier level of ks and speed up the improvement

with high-performance computing platform. In the section, we assumed modified

the risk index metric by R̃ = .5R [25], which indicates the uncertainty between the

worst case and benign situation associated with each substation outage. Most IEEE

test cases are arranged with a practical substation arrangement with the associated

buses for each voltage level, which is implemented with an extra vector to relate bus

information in the base case with substation association.

The test case is validated with an implemented algorithm that contrasts the proposed

methods in comparison with single and parallel computing modes. The simulations

with implications of linearized evaluation are built in the local laptop with specifica-

tions of Intel Core i7-5500u in 2.4GHz, with 2 cores, 4 threads, and 8 GB memory

installed. In the parallel computing mode, 8 independent worker nodes are aligned.

The setup of high-performance computing cluster is built with Rocks Cluster Distri-

bution 6.1.1 in CentOS 6.3, containing 1 front end, 2 login nodes, 3×48 TB RAID60

network-attached storage (NAS) nodes with 33TB usable space, 92 CPU computing
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nodes in which each node has 16 CPU cores (Intel Sandy Bridge E5-2670 2.60 GHz)

and 64 GB RAM. The simulations in parallel mode are set up with 12 worker nodes.

The power flow parameters are set with Newton-Raphson as a default solver for up

to 10 iterations. Most IEEE test cases are arranged with a practical substation ar-

rangement with the associated buses for each voltage level, which is implemented with

an extra vector to relate bus information in the base case with substation associa-

tion, e.g., in the IEEE 118-bus system, bus node 25 and 26 are physically connected

through a transformation, with an extra generation unit implemented on the node

26. The node 25 and 26 are aligned together as an individual substation, which is

denoted as substation 24.

3.6.2 Substation Outages with Overloading Implications

3.6.2.1 Risk Index Comparison

Fig. 3.12 provides several pairs of comparison results of risk index under the condition

with and without overloading outages based on IEEE 14-bus, 30-bus, and 39-bus

systems. Under the observation of single substation outage on IEEE 39-bus system,

the single outage on individual substation 11, 14, 19, 22, and 23 results in power

flow diverged, resulting in the highest risk index value of 1.0. This scenario considers

with cascading effect denoted by case 1 in the figures. Under the condition without
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Figure 3.12: Risk index of IEEE systems with 14, 30, 39 nodes from left
to right with case 1 to include overloading effect and case 2 without.

cascading failure as case 2, the worst cases for individual substation outages are 11,

14, 19, 23. In IEEE 30-bus system, individual substation outage 6, 17, 20, and 22

are observed with the highest impact under case 1. Only two worst cases are present

in case 2. On the smallest size system among the three systems, realizing that either

individual substation 2 or 5 results in nonconvergent power flow solution in IEEE

14-bus system acquire under case 1; however, no worst case is present at the level

of k = 1 under case 2. It can be concluded that the highest impact of both cases is

related as follows:

PFfailed(case 2) ⊆ PFfailed(case 1) (3.24)

where case 1 represents that the simulation is with overloading effect and case 2

without.
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3.6.2.2 Identification of S′ with Overloading Implications

Table 3.3 lists the statistical details of the enumeration for each level under different

IEEE test cases. “# Total Comb.” column lists the total number of combinations

without elimination at k level. The “# Reduction χ” column shows the number of

combinations that has been reduced. “# New” records the number of cases that

need to be evaluated in the level k. Column PFfailed = 1 indicates the total number

of nonconvergent combinations that occurs at each level. The disjoint of each level

nonconvergent scenarios can be generalized as follows:

SSfailed(k)⊍SSfailed(k + 1)⋯⊍SSfailed(S′). (3.25)

Table 3.3 details the simulation results of the extended enumeration algorithm with

the implementation of the overcurrent protection scheme. These are the sets for each

level that are exclusive of all to be used for identifying pivotal substations for the

investment of cyber infrastructure protection in planning. The simulation results for

the 3 IEEE test cases show that the inclusion of cascading effect can increase the

number of nonconvergent combinations at the earlier stage of k, which tremendously

reduces the combinations at higher k level. Not only this can be massive combinations,

a smaller number of combinations would also help to identify critical substations that

have nonconvergent solutions.
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Table 3.3
Summary of the results of IEEE test systems with implementation of

overcurrent protection scheme

Cases k # Total Comb. # Reduction # New PFfailed

# sk χ snew,k = 1

14-bus
1 10 - 10 3
2 45 24 21 1

30-bus

1 24 - 24 8
2 276 156 120 5
3 2,024 1,593 493 15
4 10,626 9,354 1,272 17
5 42,504 40,315 2,189 39
6 134,596 132,172 2,424 59

39-bus
1 27 - 27 11
2 351 231 120 30

57-bus

1 43 - 43 18
2 903 603 300 7
3 12,341 10,197 2,144 10
4 123,410 112,594 10,816 21
5 962,598 922,402 40,196 39

118-bus

1 109 - 109 42
2 5,886 3,675 2,211 44
3 209,934 164,673 45,261 347
4 5,563,251 4,893,480 669,771 3,717

300-bus

1 176 - 176 112
2 15,400 13,384 2,016 82
3 893,200 856,221 36,979 274
4 38,630,900 38,137,765 493,135 2,099
5 1,328,902,960 1,328,307,418 595,542 111,552

3.6.2.3 Decreasing Ratio ψ

Decreasing ratio is presented in Eq. 3.2, which evaluates the decreasing rate under the

extended enumerative evaluation of each testing cases. In Table 3.3, it is noticed that

the depth S′ for the IEEE 14-, 30-, 39-, 57-, 118-, and 300-bus system are 2, 6, 2, 5, 4,
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and 5, respectively. The decreasing ration ψ for the testing systems is calculated as

follows: ψ14−bus(1−2) are 100% and 55.56%; ψ30−bus(1−6) are 100%, 43.48%, 21.29%,

11.97%, 5.15%, and 1.80%; ψ39−bus(1 − 2) are 100% and 34.29%; ψ57−bus(1 − 5) are

100%, 33.22%, 17.37%, 8.76%, and 4.18%; ψ118−bus(1 − 4) are 100%, 37.56%, 21.56%,

and 12.04%; ψ300−bus(1 − 5) are 100%, 13.09%, 4.14%, 1.28%, and 0.04%.

The high decreasing rate in larger cases implies that the larger cases include more

critical substations, which supply more active power with larger generation and might

serve as a ‘cut node’ that separates the system into several isolated subgrids and agrees

with ‘1’ in PFfailed evaluation if they are removed from power system.

3.6.2.4 Nonconvergence and Islanding

This is a two-stage verification with a hypothesized outage of one or more substations

as well as its resulting cascade based on the switching attacks. This study is to

determine if islanding may occur upon hypothesized outages. Under the observation

on the base case of IEEE 57-bus system in Table 3.3, less than 5% combinations

require power flow verification. The resultant 95 cases out of 53 499 cases cannot

converge with a load flow solution. In contrary on IEEE 118-bus system, 12.413%

cases are required power flow verification and 4 150 out of 717 352 cases cannot

converge. In IEEE 300-bus cases, over 99.8% cases are filtered out based on the

proposed algorithm. There are 1 127 848 cases remaining, which include 114 119
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nonconvergent cases. The ratio between PFfailed = 1 and “# New snew,k” reflects

the effectiveness of identifying worst-case scenarios, which is 12.90%, 2.19%, 27.89%,

0.18%, 0.58%, and 10.11% for all IEEE test systems. The detailed combination

solutions and the corresponding ratio ψ are illustrated in Fig. 3.16. The left y-axis

value is given as the computation time(s). Figs. 3.13, 3.14, and 3.15 depict the risk

index of hypothesized substations at level k = 1 for the cases of IEEE 57-bus, 118-bus,

and 300-bus systems, respectively. Compared with the most cases mentioned above,

these larger cases are all evaluated with consideration of cascading consequence.

Figs. 3.14 and 3.15 also reflect potential islanding risks. As shown in Fig. 3.14,

54.76% substations out of the combinations at the first level (k=1) has the “worse

case” scenarios. The absence of 45.24% substations can implicate islanding instability,

i.e., tripping outages that result in excluding transmission lines 8-9, 12-117, 68-116,

71-73, 85-86, and 110-111 out of the system could disconnect bus 9, 10, 117, 116, 73,

86, 87 and 111 from the main grid. At the first level of IEEE 300-bus case, as shown

in Fig. 3.15, 60.71% substations are concluded with the highest impacts, bars colored

in blue with 39.29% cases can be at risk of potential islanding implication.

3.6.2.5 Computing Performance Analysis

Fig. 3.16 illustrates the results of computing performance of the proposed algorithm

with implementation of parallel computing modes. Most cases with less than 30
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Figure 3.13: Risk index of IEEE 57-bus system

Figure 3.14: Risk index of IEEE 118-bus system

nodes do not make an obvious difference in computation time. It is observed that the

computation time is related to the number of the “new” cases during each level k.

Additionally, the subtle difference in parallel and series is observed in IEEE 14-bus

system. There are two major aspects that may influence this that are based on: (1) the

more local workers are assigned, and (2) size of the test cases. The initialization may
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Figure 3.15: Risk index of IEEE 300-bus system
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Figure 3.16: Extrapolation of computation time for larger power systems
using parallel computing platform

dominate the time elapsed for smaller test cases in parallel mode. The typical time

required for initialization can range from 40 to 50 seconds. The variation of estimated

time can be random as it all depends upon the state of computing clusters and its

availability. In the smaller test cases, there may require hundreds, if not thousands, of
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iterations. This implies that the high-performance platform may not be fully utilized.

However, in the case of a larger system such as IEEE test systems with 118 or 300

nodes, the computation time in parallelizing the independent combinatorial cases

demonstrates a speedup, which requires much lesser than in serial mode. The larger

cases demonstrate the effectiveness of utilizing the parallel computing platform.

It is presumed that the computation time elapsed is directly proportional to the

number of committed processors in high-performance platform. The allocation of

processors is 3 for IEEE 14- and 30- bus systems and 4 processors assigned for the

remaining four IEEE test cases, i.e., the systems with 39, 57, 118, and 300 nodes.

By default, the high-performance environment is set to be in multi-processor mode.

In consideration of computing resource utilization, the exact number of processors

to be assigned is defined by the users. Memory is one critical peripheral of com-

puter system that can affect computing efficiency. In the setting on spatial uti-

lization, the maximum memory used for the IEEE14-bus system is utilized with

3.907GB in series mode and it is 47.155GB for parallelizing. The maximum mem-

ory utilization for IEEE 30-bus system is 4.036GB, and 47.402GB, respectively. The

IEEE 39-bus system has a slight difference in both modes, i.e., 3.9391 GB in se-

rial mode and 47.376 GB in parallel mode. Finally, for IEEE 118-bus system,

there is not a significant bumpup of computing resources with 4.128GB in serial

and 49.012GB in parallel. An empirical equation is tentatively approximated to
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be Max. MemoryParallel ≈ Max. MemorySeries × # workers. The proposed estimation

equation would be applied to qualitatively extrapolate the possible memory used for

larger systems.

A detailed time-consuming performance of the algorithm is provided in Fig. 3.16,

which shows an exponentially increasing characteristic with respect to system size

using proposed enumerative method. The proposed algorithm extends the testing

cases and determines the depth S′ by enumerating all the possible solutions and

combinations, which may differ the operating time for the various testing systems.

The proposed algorithm focuses on the planning study which formulates a quantitative

metric to evaluate the risk level for the substations, which may not be necessary to

be implemented in real-time assess modules. Additionally, for a larger system, the

required computation time could take up weeks that is time-consuming and may not

be applicable in online environment.

In Fig. 3.16, it shows a fitting curve of enumerative performance in parallel com-

puting mode with the increase of the combination solution pool for each IEEE

testing systems. The proposed algorithm demonstrates the required computation

time based on memory utilization and each CPU in the computing nodes at the

time. The fitting function of elapsed time f(x), where x denotes the number

of evaluated combinations. The parallel computing time can be estimated using

f(x) = (5.47 × 10−5)x3 + (−1.54 × 10−2)x2 + (66.314)x − 150.64 with 95% confidence
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bounds and 88.561 of norm of residual. It can be observed that the performance is

correlated with system size and the combination pool for each case; however, we noted

that the decreasing ratio ψ changes from 56.36% in IEEE 14-bus system to 0.08% in

300-bus system. This ratio ψ can help researcher/operator to quantitatively estimate

the testing combination space for a larger system and the extrapolation function will

provide a computation estimation in time. The elapsed time of the 300-bus system

in serial time is 37.15 hours in which the deviation is 0.55%. The proposed fitting

function with parameters can be applied to estimate the required time. This can

help planning engineers to expect the time variation based on the size and computing

modes, although different topologies with the same size may make a difference. This

shows a time reduction of enumeration that is close to 90%. With the estimation

function, for 1000 substation system can be extrapolated approximately 30 days.

In summary, this enumerative study introduces a systematic method to quantify

cyber-induced contingencies with hypothesized substation outages and incurred over-

loads. The proposed algorithm is validated through a steady-state evaluation using 6

IEEE test systems (with 14, 30, 39, 57, 118, and 300 nodes). The evaluation is pro-

ceeded to ensure the coverage of all critical “worst-case” substations combinations are

identified at each level k and the subsets of nonconvergent substations combinations

are excluded for k + 1 level to avoid explosion of combinations. The validation of its

application has been greatly extended by incorporating steady-state load flow evalua-

tion and the consideration of islanding formations after presumption of hypothesized
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substation attacks. This research also studies with a simplified model of potential

cascading by introducing cascaded overloads after the initial cyberattack events. A

further possibility of incorporation of cyber-based evaluation of hypothesized outages

with dynamic-security analysis shall be investigated for the future work. A com-

parable analysis towards the simulation performance in between serial and parallel

computing modes has been established based on a platform of the superior computing

cluster.

3.6.3 Risk Index Modification with Islanding Implications

This chapter investigates the islanding implications based on the results of previous

section using IEEE 30-, 39-, 57-, 118-, and 300-bus system. In details, the IEEE 30-

bus system is installed 6 generators with 335 MW of total active generation capacity

and 189.2 MW of active load. IEEE 39-bus system case contains 7367 MW of total

active generation capacity and 6254.2 MW of active load with 10 generators. IEEE

57-bus system is installed with 7 generators with 1975.9 MW of total active capacity

and 1250.8 MW of load demand. We presume that the generation adjustment is pro-

ceeding within one minute after the initial contingency is applied with the ramping

rate as 8% MW/min. The study has simulated 4,130, 1,238, and 6,690 combinations

for IEEE 30-, 39-, and 57-bus systems, respectively, based on the proposed enumer-

ative algorithm. The critical lists for IEEE systems are given in table 3.4, table 3.5,
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and Fig. 3.17.

Figure 3.17: Modified risk index of IEEE-57 bus system with islanding
implications

Fig. 3.18 displays the number of islands after the evaluation of proposed method

based on IEEE 30- and 39-bus cases. The length of the worst-combination list in

the testing of IEEE 30-bus system is 23, including 4 combinations with the size of 1,

19 combinations with size of 2. There are 21.74% combinations proved to lead the

power grid to split into 2 or more isolated subsystems. In the test of IEEE 39-bus

system, the number of combinations in the list is 86, including 5 combinations with

the size of 1, 34 combinations with the size of 2, and 47 combinations with the size

of 3. Over 54.65% combinations are identified with indications of isolated sub-grids.

In the simulation of IEEE 57-bus system, which is drawn in Fig. 3.19, the system

contains the 191 combinations in the list. The number of combinations with the size
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of 1, 2, and 3 is 5, 95, and 101, respectively. Combinations with 13 worst cases are

verified with the islanding scenarios. The modified risk index is drawn in Fig. 3.17,

the bar graph colored in red highlights the value of high risk index. Substations 1, 8,

22, 28, and 31 in the IEEE 57-bus system are verified to acquire a high risk index.

Figure 3.18: The number of islands in IEEE 30- and 39-bus systems in
accordance with the order of worst-combination list

Figure 3.19: The weighting vector and the number of islands in IEEE
57-bus system
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Tables 3.4 and 3.5 are the results of comparison between the risk index for cases with

and without islanding using IEEE 30- and 39- bus system, respectively. The fourth

column in each table records the difference between the value of risk index with or

without islanding implications. The colored rows annotate the substations whose

risk indexes are modified. The rows in blue, yellow, and green denote the difference

that falls within 40%, 40-50%, and over 50%, respectively. It can be observed that

the corresponding substations (4, 13, 14, 19, 22) have been corrected, and 4 out

5 substations changed within 40% and the risk index of substation 22 declines by

84.71%. When applying the initial outage of substation 22, the system is islanded

into 2 subsystems. Subsystem 1 contains the active load of 162.3 MW and 13 MW for

subsystem 2; however, no generation unit is assigned for subsystem 2, which directly

leads the subsystem 2 into blackouts. After adjusting the generation-load imbalance

of 13.9 MW, the subsystem 1 reaches a stable status of load shedding with the amount

of 13.9 MW and a total loss of 15.4 MW.

Table 3.5 details two critical lists of IEEE 39-bus system with the comparison between

the cases with and without islanding implications. In the table, it is concluded that

the risk indexes of 59.26% substations have been modified with proposed method for

assessing the risk of isolated subsystems. 12 substations have been modified with

around 40% of dropping and risk indexes for these 4 substations (4, 12, 21, and

23) have been decreased with over 55% rate. When testing an initial contingency

of hypothesized outage of the substation 23, the system is split into 2 subsystems.
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Table 3.4
Comparison of risk index with and without islanding on IEEE 30-bus

system

Substation Risk index in case Risk index in case Differece
Order # with islanding without islanding in percent.
1 0.1053 0.1053 0.00%
2 0.2632 0.2632 0.00%
3 0.0526 0.0526 0.00%
4 0.3901 0.4737 17.65%
5 0.0526 0.0526 0.00%
6 1.0000 1.0000 0.00%
7 0.0526 0.0526 0.00%
8 0 0 N/A
9 0.0526 0.0526 0.00%
10 0.2105 0.2105 0.00%
11 0 0 0.00%
12 0.0526 0.0526 0.00%
13 0.0653 0.1053 39.70%
14 0.0653 0.1053 39.70%
15 0.2105 0.2105 0.00%
16 0.0526 0.0526 0.00%
17 1.0000 1.0000 0.00%
18 0.1579 0.1579 0.00%
19 0.1269 0.2105 39.71%
20 1.0000 1.0000 0.00%
21 0 0 N/A
22 0.1529 1.0000 84.71%
23 0 0 N/A
24 0 0 N/A

Subsystems 1 and 2 involve 5625.7 MW and 489.5 MW of active load respectively,

and both subsystems 1 and 2 have been reached a new separate stable point.

For another example, when applying the initial hypothesized outage of substation 14,

which is align with bus node 16, the system is divided into 3 parts by removing the

fault branches 15-16, 16-17, 16-19, 16-21, and 16-24. Subsystem 1 is containing 28
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Figure 3.20: The weighting factor of IEEE 30- and 39-bus system in ac-
cordance with the order of worst-combination list

bus nodes which involves 6 generators with injection of 3947.9 MW of active power;

Subsystem 2 is constituted by the nodal set [21, 22, 23, 24, 35, 36] and 2 generators

are assembled on the node 35 and 36 with 1210 MW generation capacity; Subsystem

3 is composed of the bus set [19, 20, 33, 34] and installed 2 generators equipped with

1140 MW of power supply. Under the verification of the proposed assessing method,

only subsystem 2 is validated to be able to reach a new stable point by ramping down

379.9 MW of generation power.

It is noted that the index value of substation criticality has dropped from the highest

level (non-convergent solution for the power flow evaluation, Rm = 1) to the accept-

able level (Rm = 0). When applying a hypothesized outage on substation 23 on IEEE

39-bus system, the substation is presumably disconnected, resulting in branches 25-

26, 26-27, 26-28, and 26-29 are electrically disconnected. The system is split into 2
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Table 3.5
Comparison of risk index with and without islanding on IEEE 39-bus

system

Substation Risk index in case Risk index in case Differece
Order # with islanding without islanding in percent.
1 0.0708 0.1111 36.27%
2 0.1400 0.2222 36.99%
3 0.1385 0.2346 40.96%
4 0.0858 0.1975 56.56%
5 0.0741 0.0741 0.00%
6 0.1605 0.1605 0.00%
7 0.0617 0.0617 0.00%
8 0.0852 0.1235 31.01%
9 0.0772 0.1358 43.15%
10 0.1111 0.1111 0.00%
11 1.0000 1.0000 0.00%
12 0.1100 0.2469 55.45%
13 0.1071 0.1852 42.17%
14 0.8079 1.0000 19.21%
15 0.0749 0.1235 39.35%
16 0.0467 0.0741 36.98%
17 0.0741 0.0741 0.00%
18 0.01479 0.0247 40.49%
19 1.0000 1.0000 0%
20 0.0617 0.0617 0.00%
21 0.0024 0.0123 80.49%
22 1.0000 1.0000 0
23 0 1.0000 100.00%
24 0.0491 0.0111 55.81%
25 0.0247 0.0247 0.00%
26 0.0741 0.0741 0.00%
27 0.0969 0.1358 28.65%

subsystems: subsystem 1 consists of 9 generating units up to a total of 5467.9 MW,

where subsystem 2 has a total generation of 830 MW. With these generating units

in those two islands, they are able to reach a stable condition by ramping up the

output of 157.9 MW in subsystem 1 but requires to shed the load with the amount
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Figure 3.21: The time-consuming performance of algorithm for IEEE-118
bus system
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Figure 3.22: The time-consuming performance of algorithm for IEEE-300
bus system

of 340 MW in subsystem 2. Thus, the weighting factor for hypothesized outages on

substation 23 should be assigned a zero value.
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Figure 3.23: Modified risk index of IEEE-118 bus system with islanding
implications

Figure 3.24: Weighting factor of IEEE-118 bus system
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Fig. 3.20 depicts two weighting vectors for IEEE 30- and 39- bus cases. In the IEEE

30-bus system, it is the subtle amount we notice that only a few substations (5 out of

24) require adjustment of risk values based on the islanding conditions. The sum of

the weighting factor in the system is 20.56 with the small fraction of 10.6% decrease

compared with the case without islanding implications; in the IEEE 39-bus system,

over half of risk indexes of substations (16 out of 27) are modified with proposed

evaluation method. The Σwi is 46.24 with over 46.22% amount of weighting factors

are decreased compared with the case without implication of islanding issue. For ex-

ample, in the Table 3.5, the risk index of substation 12 is 0.2469 in the case without

islanding implications and there are totally 20 combinations with equal weighting fac-

tor 1 because any one of combinations will cause the whole system into a system-size

blackout. When applying the proposed metric, 10 out of these 20 combinations could

cause the power grid split into several subsystems, which may cause the weighting

factor less than 1 once the subsystem is verified to be able to reach a new stable point

when the rebalance is completed through generation adjustment or load shedding.

Fig. 3.24 represents the simulation results of the weighting factors in the IEEE-118

bus case. The total active generation capacity installed in IEEE-118 bus system is

9966.2 MW and the load in the system is 4242 MW. 54 generation units are as-

signed in the test case with 17 active generation injection nodes and 34 reactive

compensation nodes. According to the Table 3.3, the total number of the worst-case

scenarios in the extended enumeration method in each level is 973 with 44 cases, 93
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cases, and 836 cases in the level k = 1, 2, and 3 respectively. In the level k = 1, 44

single-substation outages are detected in the extended enumeration evaluation with

overloading implications, whose risk index is 1.0, however, the weighting factors for

over 45.4% single-substation cases are less than 0.1. For example, when removing

substation 76, which associates with bus node 85, the system is split into 2 subsys-

tems. Small subsystem contains bus node (86,87) and larger subsystem contains other

bus nodes except bus node 85. 4 MW active power loss is detected in the separation.

Additionally, when the substation 91, which associates with bus node 100, is removed

from the system because of the hypothesized outages, the line 92-100, 94-100, 98-100,

99-100, 100-101, 100-103, 100-104, and 100-106 are electrically disconnected from the

system. An island containing substation (103, 104, 105, 106, 107, 108, 109, 110,

111, 112) has been formed with 76 MW of active power generation installed. The

weighting factor of substation 91 outages reduces from the 1.0, which represents the

necessary blackouts of the system if substation 91 compromised, to the 0.0744 within

safety lower level because the islands-stability evaluations validate that the one of the

subsystems will be able to reach to a new stable status through regulating the active

generation outputs. The modified risk index is given in Fig. 3.23. The computing

time for enumerating all the 973 cases is 48.95 seconds in the serial model with 1

computing core, 1 worker, and 1209 MB memory usage.

The details of time performance of the algorithm for IEEE 118-bus system is given

in Fig. 3.21, which is provided by MATLAB (R2015b, version: 8.6.0.267246), in a
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descending order with total computational time. “riskmodify118” is the main function

that is called once and enumerates all the worst-case substation list derived from the

previous results. “mpoption” is a control function that determines the status of the

systems, which is provided by MATPOWER, incorporating with “submodify118” and

“Subtest118” , which remove the hypothesized substations and update the topological

status of testing cases by modifying the bus, generation, and branch sets.

Figure 3.25: The number of islands in worst-case list of IEEE-300 bus
system

IEEE 300-bus system includes 176 electrical substations with 23935.4 MW of power

generation and 7983 MVAr of reactive power. 69 generators are installed in the

system. Fig. 3.25 lists the number of islands in the worst-case substation list of IEEE

300-bus system for the level k = 1, which contains 106 cases. According to the Table

3.3, there are 348,367 worst-case combinations need to be tested through the proposed

method. For example, when applying the substation outages on the substation of 11,
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Figure 3.26: Weighting factor of IEEE 300-bus system

Figure 3.27: Modified risk index of IEEE 300-bus system with islanding
implications

which associates the bus nodes(20, 21), branches 13-20, 20-27, 20-23, 21-12, 21-19,

and 21-24 are electrically disconnected from the power system, which directly forms

a small islands containing bus nodes(22, 23, 24, 25, 26, 27, 320,7023, 319, 7024) with

generation capacity of 595 MW installed.
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Fig. 3.26 details the weighting factor of IEEE 300-bus system with the ramping rate

of 250 MW/minute. As described in the Table 3.3, 348,367 cases are enumerated in

this simulation. All the value recorded in the figure are limited in the [0,1] based on

the definition of 3.12. 197,397 worst-case combinations are modified and 43.34% cases

appear high-risk value (1.0) after the evaluation. The modified risk index are given in

the Fig. 3.27, 23.30% substations display the high-index risks of potential system-size

blackouts if they were complete compromised. For example, substation 1 associates 6

bus nodes (1, 7001, 2, 7002, 3, 7003) and 5 power transformers and 3 generation units

with the capacity of 2300 MW, which is tested to be able to cause the instability to the

system through power flow evaluation with implications of islanding and overloading.

We can conclude that the substation 1 serves as a pivotal substation that may need

a larger investment and implementation of the high-priority protection scheme. Fig.

3.22 details the programming performance with descending order of time-costing.

The parallel computing toolbox is implemented in the main script which uses all 2

computing cores and 4 threads within 8 worker nodes. The total computing time is

7,316 seconds which saves 78.66% time compared with serial computing mode, which

costs 14 hours.

100



3.6.4 Probability-based Results of Hypothesized Relay Out-

ages

This study is validated using IEEE test systems. IEEE 30-bus system contains 6

generation units and 20 loads, which generate 191.6 MW power to the system and

consume 189.2 MW power respectively. IEEE 39-bus system contains 9 generation

nodes and 21 loads are connected to the system. 12 power transformers are connected

to the system. It is observed that 6297.9 MW power is injected into the system and

6254.2 MW power is dispatched to the loads. IEEE 57-bus system is installed with

17 transformers and 7 generation units, which supply 1278.7 MW to the grid. The

fixed 42 loads consume 1250.8 MW power in total. IEEE 118-bus system contains 54

generation units, 99 fixed loads, and 9 power transformers. The total power injection

to the grid is 4374.9 MW and the total load consumption is 4242 MW power. 69

generators are installed in the IEEE 300-bus system with 23935.4 MW power supply

and 201 loads totally consume 23525.8 MW of power. For each IEEE test case, it is

initialized with five default protective relays in each substation, which are directional

overcurrent relay, bus differential relay, directional distance relay, under frequency

relay, and transformer relay. For different bus type and configuration, the set of

protective relays will diversify. It is noticed that the in the Eq. 3.17, the diverged

solution would give a comparably higher value than the converged solution, in this
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section, in order to explicitly identify the “worst” cases, all the risk indices of diverged

solutions are modified to 1.0.

Figure 3.28: Risk index of protective relays in IEEE 30-bus system

Figure 3.29: Risk index of protective relays in IEEE 39-bus system

Figs. 3.28–3.32 display the results of propsed risk index for different relays in IEEE
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30-, 39-, 57-, 118-, and 300-bus systems, respectively. From these figures, the nega-

tive markers represent “not available” for such relay. For example, it is assumed in

this study that the under frequency relays are equipped with the substations with

generators. For those substations which are not classified as generation bus or load

bus, the transformer relays are not equipped. In this respect, the negative risk value

is given to differentiate the relay configurations between each substations. In the

Fig. 3.28, the bus 11 is not modeled with any relay as the solutions of steady-state

analysis reveal that the power flows from/to the bus 11 is 0 MW, which, based on the

definition in the Eq. 3.17, would assign 0 as the risk index for each relay. However,

the potential risks of relay outages in this substation may still exist. The cascad-

ing studies and transient analysis can be included to improve the existing model for

future enhancement.

From the figures, it is observed that risk index for most relays are within [0.35, 0.50].

The critical IEDs are marked out with risk index of 1.0. For example, in IEEE 30-bus

system, the overcurrent relay in the substation 9, bus differential and distance relays

in the substation 12, 25, and 27, are identified as “worst” relays which would cause

the system-wide instability in the steady-state analysis. In IEEE 39-bus system, it

is observed that 18 out of 195 relays are identified as the critical relays, 11 out of

which are bus differential relay. In IEEE 57-bus system, it can be observed that 9

out of 285 relays are evaluated as critical relays with 1.0 risk index, 5 of them are

bus differential relays and 4 of them are distance relays. In IEEE 118-bus system,
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16 out 590 relays are found to be critical and half of them are bus differential relays.

Similarly, in the IEEE 300-bus system, 125 relays are identified as critical. 28% of

the relays are directional distance relays, 59% of them are bus differential relays.

Figure 3.30: Risk index of protective relays in IEEE 57-bus system

Figure 3.31: Risk index of protective relays in IEEE 118-bus system
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Figure 3.32: Risk index of protective relays in IEEE 300-bus system

Generally, the distance relays in large-sized system are ranked as critical outage

whereas the impacts of a relatively smaller system may not have similar impacts.

For example, substation 186 is connected with a load demand of -21 MW, which

would provide 21 MW to the grid. Once the distance relay has been compromised,

the outgoing lines of the substation would be disconnected, in which case, all the

branches (93-186, 185-186) adjacent to that bus would be consequently disconnected.

Thus, the substation 186 is islanded and the unbalance between the generation and

load demand cannot be absorbed in the steady-state power flow analysis. From the

observation of this simulation study, the larger cases with a larger lumped load per

location (substation) can also result in a higher risk level of distance relays.

By integrating the results found risk index evaluations, it is concluded that the bus

differential relay acquires the highest risk index compared with other relays because
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1) bus differential relay is the most commonly deployed relay in the substation and 2)

it would electrically disconnect all the switches from the system if it has been compro-

mised, which would change the system configuration and remove the substation from

the initial setup in the test system. To improve the risk metric of the bus differential

relays, the potential cascading failure is needed to be further studied. Additionally,

the impacts of directional distance relay are higher than the directional overcurrent

relay due to the physical relations and relays where the disconnects affect abrupt

change of the operating states. Compared with distance relay, overcurrent relay is

assumed installed on the incoming lines from generators and local loads. When it

has been compromised, the power injections and load demand would largely be dis-

connected from the system. However, the compromised distance relay would change

the topology of the initial grid and consequently, cause substation islanded from the

system, which is unstable in the study of steady-state evaluation.

Figure 3.33: Standard deviation σ for IEEE 30-bus test system
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Figure 3.34: Standard deviation σ for IEEE 39-bus test system

3.6.4.1 Sensitivity analysis of proposed metric

In order to compare the performance using different probability distribution, the Eq.

3.19 introduces the standard deviation to evaluate the sensitivity of the proposed

metric. Table 3.4 in section II summarizes the detailed results of standard deviations

for each IEEE test cases. The σ is denoted by the standard deviation and the middle

three columns record the number of relays whose σ are in the thresholds of (0, 0.01],

(0.01, 0.05], and (0.05, 0.1], respectively. The ’Total #’ denotes the number of pro-

tective IEDs that are evaluated through the proposed method for each test system.

Each substation might have different protective IED configuration. When starting

the standard deviation evaluation, the relays that are recorded in negative risk index

in the previous sections should be eliminated. For example, in the IEEE 30-bus sys-

tem, under frequency relay is not available in the substation 3 but is equipped in the

substation 2.
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Figs. 3.33–3.37 show the standard deviations for different relays using different proba-

bility distributions in the IEEE test systems. Generally, it is recorded that 79%, 85%,

62%, 87%, and 84% of relays acquire the standard deviation within 0.1 for IEEE 30-,

39-, 57-, 118-, 300-bus system, respectively.

Figure 3.35: Standard deviation σ for IEEE 57-bus test system

Figure 3.36: Standard deviation σ for IEEE 118-bus test system

As summarized in Table 3.4, it is observed that the σ of 80% of relays are located in

the interval (0, 0.1], which equals to the variance in the interval (0, 0.01]. Additionally,

it is realized that the σ for most scenarios are located in the section 3% ≤ σ ≤ 8%,

which is the middle part of the in the interval (0, 0.1]. To specify the distribution, Fig.

108



Figure 3.37: Standard deviation σ for IEEE 300-bus test system

Figure 3.38: Statistical summary of the protective relays distribution ac-
cording to standard deviation interval

3.38 details the numerical results the relay distributions according to the standard

deviation interval, notice that each big interval would represent 0.025 incremental

of the standard deviation as the x-axis variable. The portion of the relays in the

corresponding standard deviation interval is given as the y-axis variable. For example,

combining these five test systems, approximate 25 % of relays would locate in the first
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interval σ ≤ 2.5% and 30% of relays are found in the interval 2.5% ≤ σ ≤ 5%. According

to the distribution sample points in the fig. 3.38, it is statistically observed that such

distribution can be fitted using a Normal distribution or Poisson distribution with

the mean approximately equals to 8 units, which suggests that σ equals to 0.04.

The fitting function would be determined to calculate the confidence interval for the

standard deviation. Additionally, it is revealed that the σ of critical relays are much

less than other relays. Because the Eq. 3.17 suggests that the higher the severity

of the event, the lesser the risk index would be that is affected by the probability

distribution. In this respect, the critical protective relays recorded in the risk index

figures can be considered as reliable in the sense of steady-state analysis.

3.6.5 Static and Dynamic Verification of Through Compro-

mised Protective Relays

3.6.5.1 Computational Environment and Test Case Setup

This simulation study evaluates IEEE 14-, 30-, 57-, and 118-bus systems using steady-

state analysis. MATLAB R2018a (9.4.0.813654) is used as the simulation tool for

steady-state analysis with supported by the high-performance computing cluster, Su-

perior, which contains 92 compute nodes and each node is deployed with 16 CPU
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cores in Intel Xeon E5-2670 at 2.60GHz and set with 64 GB RAM. The test cases

are validated with an implemented parallel computing mode, which occupies 8 com-

puting cores with 12 workers assigned and takes up 50GB of RAM. The time-domain

dynamic study is implemented in the simulation tool CPAT [145] with the platform

of Cygwin for providing Unix-based environment. For each hypothesized scenario,

the total simulation time is set as 10 seconds and the time settings of the outages

caused by hypothetical switching attacks are assigned at the moment of t=1.0s. The

thresholds of protective relays are set referring to the operating guides [148].

This simulation study would investigate the R̂-k contingency with N set to 3, which

includes top three digital relays with highest impacts on the system based on the fun-

damentals and applications in the Table 3.2. For each substation, the bus differential

relay is assumed to be able to cause the most severe outage and ranked as level 1;

generator protection relay is ranked to level 2; rank 3 includes the feeder protection

relay; the distance protection relay is ranked to level 4. The double-circuit model is

employed on each transmission line. Compromising single distance protection relay

is assumed to increase the impedance of the transmission line, instead of removing

the branch from the system.
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Figure 3.39: Dynamic simulation results of loads, bus voltages, and the
system frequency

3.6.5.2 Steady-State and Dynamic Simulation Verification Study

The verification study on the outages caused by switching attacks between the steady-

state and dynamic simulation results have been investigated via the IEEE 14-bus

system. The Table 3.6 records the evaluation results in both static and dynamic

simulations.

Table 3.6
Steady-state and dynamic evaluation verification using IEEE 14-bus system

Steady-State Analysis Total #. Dynamic Analysis Total #.

Converged cases 3,412
Stable cases 3,141
DYfailed 271

PFfailed 1,113
Stable cases 175
DYfailed 938
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The steady-state analysis and the dynamic analysis do not always show the same con-

clusion in terms of the loss of electricity. The steady-state analysis is more likely to

show optimistic results compared to the dynamic analysis especially when the signifi-

cant imbalance between generations and loads occurs in the case of R̂-k contingencies.

On the other hand, this analysis is more likely to show pessimistic results especially

when the significant voltage drop such as the low bus voltage below 0.6 p.u. occurs in

the case of R̂-k contingencies. Such discrepancies come from the following limitations

of the static approach: 1) Dynamic constraints and constraints for dynamic change

are skipped, 2) Self-regulated controls and protections are skipped. Because the volt-

age change and frequency change can happen at the same time, the steady-state

analysis can show both optimistic and pessimistic aspects compared to the dynamic

analysis depending on which aforementioned two factors are more correlated.

For example, Fig. 3.39a depicts the behaviors of the active loads, bus voltages,

and the system frequency of a R̂-3 contingency, where the feeder protection relays

on the buses 2, 3, and 13 have been compromised. It is observed that over 49%

of the active power has been disconnected at t = 1.0s when the system frequency

starts to increase. The generators 1 and 2 are disconnected from the system by the

overfrequency relays at t=2.33s, which would result in the whole system collapse. It

is noted that the steady-state analysis treated as the converged case because the loss

of generation is promptly compensated by another generator, which is impractical

for the real network. Additionally, Fig. 3.39b shows the same quantities where the

113



bus differential relay, generation protection relay, and distance protection relays on

the substations 5, 3, and 9 are compromised. The extremely low bus voltages have

been observed following the contingency and self-regulation of loads, i.e. partial

disconnection of loads contributes to recover the voltage. It is noted that the steady-

state analysis treat it as the diverged case because such dynamic behavior of the load

(reduction) cannot be represented.

As described in Table 3.6, 4,525 cases are evaluated in both steady-state and dynamic

analysis. PFfailed and DYfailed record the nonconverged and blackout cases in static

and dynamic methods correspondingly. It is noticed that the original result counts

4,236 cases as the converged scenarios; however, the static evaluation incorporates

the basic power flow evaluation which hypothesizes that the generator nodes can be

adjusted to absorb imbalance between the generator outputs and the system loads.

If the limit of the generator capacity is fixed in the simulation, more cases would be

counted as diverged case. Thus, the number would be modified to 3,412 and 3,141 out

of 3412 cases are validated as the stable cases. It is counted that 938 out of 1,113 cases

are verified as the blackout cases through the dynamic analysis. Generally, the ratio

of the match between the static and dynamic results is (3141 + 938)/(3412 + 1113) =

90.14%. Specifically, it is counted that the sum of the stable cases is 3141+175 = 3316.

The steady-state analysis identifies 3,141 out of 3,316 cases, which gives the coverage

ratio of 94.72%. Based on these results, it is reasonable to conclude that the steady-

state analysis would be considered as acceptable in the following sections.
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Compared with steady-state analysis, the dynamic analysis would include more dy-

namic details and would cost more time. The average computing speed for dynamic

simulation is around 10 cases per minute and the total computing time for com-

pleting 4,525 cases costs several hours with over tens of gigabytes of numerical data

produced. It is reasonable to conclude that the steady-state evaluation would be a

feasible method to conduct a prescreening study in terms of the verification ratio and

the efficient storage.

3.6.5.3 Static Study on the Prescreening of the Protective Relaying Out-

ages

This section conducts the prescreening process by investigating the impacts based

on enumeration of hypothetical switching attacks via presumably compromised relay

outages based on the static evaluations. The comparison study between the results

with and without overloading implications are summarized in the Table 3.7.

As summarized in the Table 3.7, IEEE 30-, 57-, and 118-bus cases evaluate 72, 129,

and 327 protective relays, which, respectively, generate 62,268, 357,899, and 5,827,903

cases in total. It is observed that with the overload implications, the number of eval-

uated cases are reduced as the level k increases. For example, in the IEEE 30-bus

system, the number of evaluated cases without overloading settings is 55,755 and
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Table 3.7
The steady-state evaluations of identification of critical protective relays

IEEE 30-bus system
No overloading Reduced cases Evaluated cases Critical #.
k = 1 - 72 2
k = 2 141 2,415 23
k = 3 6,372 53,268 40
With overloading Reduced cases Evaluated cases Critical #.
k = 1 - 72 5
k = 2 345 2,211 37
k = 3 13,990 45,650 95

IEEE 57-bus system
No overloading Reduced cases Evaluated cases Critical #.
k = 1 - 129 3
k = 2 381 7,875 98
k = 3 35,522 313,982 612
With overloading Reduced cases Evaluated cases Critical #.
k = 1 - 129 20
k = 2 2,370 5,886 51
k = 3 144,769 204,735 475

118-bus system
No overloading Reduced cases Evaluated cases Critical #.
k = 1 - 327 10
k = 2 3,215 50,086 88
k = 3 35,522 5,738,753 268
With overloading Reduced cases Evaluated cases Critical #.
k = 1 - 327 38
k = 2 11,685 41,616 61
k = 3 1,810,096 3,964,179 839

it drops to 47,993 with the overload implication, which reduces 12.46% of combina-

tions in total. For 57- and 118-bus systems, the reduced rate is 31.08% and 30.59%,

respectively.

Specifically, in the IEEE 57-bus system, it is observed that if the bus differential

relay on the substation 22 has been compromised, the simulation would agree with a

116



1 2 3 4 5 6 7 8 9 10

Substation order

0

0.2

0.4

0.6

0.8

1
Relay 1

Relay 2

Relay 3

Relay 4

(a)

0 5 10 15 20

Substation order

0

0.2

0.4

0.6

0.8

1
Relay 1

Relay 2

Relay 3

Relay 4

(b)

0 5 10 15 20 25 30 35 40

Substation order

0

0.1

0.2

0.3

0.4

0.5

0.6
Relay 1

Relay 2

Relay 3

Relay 4

(c)

0 10 20 30 40 50 60 70 80 90 100

Substation order

0

0.05

0.1

0.15

0.2

0.25

0.3
Relay 1

Relay 2

Relay 3

Relay 4

(d)

Figure 3.40: Risk index of the protective relays in the IEEE test systems
with 14, 30, 57, and 118 bus nodes: (a) IEEE 14-bus system; (b) IEEE
30-bus system; (c) IEEE 57-bus system; and, (d) IEEE 118-bus system.

diverged solution. Similarly, R̂-2 contingency evaluation also reveals that when the

bus differential relays on the substation 1 and the generator protection relay on the

substation 3 are compromised simultaneously, the system would not be stable in the

static analysis.

In a larger system, i.e., IEEE 118-bus system, the R̂-1 contingency suggests that

when the bus differential relay on the substation 8 has been compromised, which

disconnects 28 MW of load and transmission line 8-5 and line 8-9, the system would

not be stable. The R̂-2 contingency analysis reveals another worst case that the when
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the bus differential relay on the bus 37 and the generator protection relay on the bus

10 are compromised, 450 MW of power and the transmission lines 35-37, 37-38, 37-39,

and 37-40 are disconnected from the system. Similarly, the R̂-3 contingency records

another worst case that when the generator protection relays on the bus 10, 12, and 69

are compromised, the system would lose 1051.4 MW of power source and the system

would not be stable.

To quantify the impact level of the protective relays at each substation using the

results of critical protective relays, Figs. 3.40(a), 3.40(b), 3.40(c), and 3.40(d) depict

the risk index for IEEE 14-, 30-, 57-, and 118-bus systems. It is worth noting that the

risk index is derived from the results without overloading implication. 4 different relay

ranks are included in each figure to classify the critical relays. The legends of relay 1,

2, 3, and 4 denote the relay with the first, second, third, and forth rank, which denotes

the bus differential, generator protection, feeder protection, and distance protection

relay, respectively. The bus differential, generator, and feeder protection relays are

selected as the first three relays that would lead to the most severe outages. It is

also noticed that the generator protection relays may not be necessarily deployed

because the some substations might not be connected with generation units, then the

alternative distance relay is included in the evaluation.

In the IEEE 14-bus system, as depicted in the Fig. 3.40(a), it is observed that

the bus differential relay on the substation 5 acquires the highest risk index with
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0.5952. The highest risk index of the generation protection relay and distance relay

is 0.1142 and 0.1107. Compared with the risk index level of bus differential and

generator protection relay, the feeder protection relay is lower than 0.05. Though the

distance relay would produce a relatively lower index, it is unwise to underestimate

its impact. For example, when the bus differential relay on the substation 5 has been

compromised, which would disconnect 18.8 MW of load and the multiple transmission

lines, including line 1-5, 2-5, 4-5, 5-6, 6-11, 6-12, and 6-13, the simulation would agree

with a converged solution. But when combining the contingency that compromising

the single distance relay on the buses 14, which would increase the impedance of the

lines 13-14 and 9-14, the power flow calculation fails to converge.

In the IEEE 30-bus system, as depicted in the Fig. 3.40(b), 2 critical bus differential

relays are identified in the R̂-1 contingency analysis, which are on the substations

20 and 22. The second critical bus differential relay, which is on the substation 6,

acquires the value of 0.3358. The generator protection relay acquires the highest index

of 0.0308 on the substations 17, 18, and 22. The distance protection relay acquires

the highest index of 0.1846 on the substation 6. It is also noticed that no critical

feeder protection relay is detected in the system. In the IEEE 57-bus system, as

shown in the Fig. 3.40(c), it is observed that bus differential relays on the substation

22, 28, and 31 are identified as critical relays, which acquire the risk index of 1.0.

Other differential relays acquire comparably lower risk which are less than 0.2. The

generation protection relay on the substation 8 acquires the highest index of 0.1585
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in the second rank. Both distance and feeder protection relays demonstrate relatively

low risk indices in the results. Similarly, in the IEEE 118-bus system, as displayed in

the Fig. 3.40(d), the differential relays on the substations 5, 8, 11, 59, 61, 63, 76, 77,

and 101 are identified as critical in the R̂-1 contingency analysis. It is noticed that the

vertical coordinate has been re-scaled to 0.3 to increase the readability of the figure.

The generator protection relay on the substation 61 acquires the highest risk index

of 0.2131. Compared with the differential and generator protection relays, it is found

that most of the feeder and distance protection relays obtain lower impact level. In the

prescreening process, it is also observed that the risk index not only include the impact

level of the critical digital relays but also incorporates the potential vulnerability of the

substation. For example, both the differential and generator protection relays on the

substation 61 obtain relatively higher indices than other substations, it is reasonable

to conduct a detailed investigation on the security of the protection parameter of the

substation.
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Chapter 4

Cyber Risk Management:

Insurance Premium for Power

Grids

4.1 Introduction

This chapter proposes a framework for grid insurance against disruptive switching

attacks, which is assumed to be determined by two major aspects: (1) the probability

of successful intrusion into the substation(s) which will presumably result in disruptive

switching attack from the compromised substation(s) and (2) the discrete distribution
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of claim size of each potential attack scenario [64, 65, 66]. The vulnerability and the

steady-state probability of potential electronic intrusion to each power substation

have been studied in the papers [67, 68], which are derived from the firewall and

password models using Markov chain. The steady-state probability [67] is assumed

to be effective to generate the discrete distribution of the hypothesized scenario.

The proposed claim size of power utilities is assumed to be equal to the estimated

economic loss that is directly related to substation outages. To address the impact

of the hypothesized cyberattacks, following assumptions are included in the proposed

framework:

† The risk index studies [1, 25, 30, 45], using the extended combination method

and reverse pyramid model (RPM), generate the risk-based “bottleneck list.”

The “critical” combinations would lead to the potential instability of the power

system in steady-state analysis [45].

† the surveys on the operational loss [149, 150, 151] and the electricity prices [152,

153] are included in the paper to conduct a comparative study of the economic

loss of the hypothesized power outages. It is assumed that the operational

loss discussed in the paper only covers the direct loss that has been studied in

[149, 150, 151].

† The studies on the mean time to restore power (MTTRP) [154, 155, 156] of

the hypothesized power system outages are also performed, which estimate the
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expected restoring time of a system after a presumed cyberattack.

In general, the insurance claim has the specific verbatim emphasizing on cyber-

physical switching attacks that are directly initiated by the control systems from

substations or control centers. Any other security threats that do not immediately

cause operational impacts [157, 158] are not included in this premium model.

4.2 Probability distribution based on Cyber-

Reliability Assessment Model

4.2.1 Probability Mass Distribution of the Hypothesized

Scenario

The vulnerability of the control networks has been evaluated by modeling intrusions

and consequences of a cyberattack on control networks [67, 68]. The embedded con-

nectivity of the firewall and password models can be formulated using a cyber-net

diagram. Such connectivity generates a transition probability matrix M that satisfies:

π̃ ⋅M = π̃

∑ π̃ = 1

(4.1)
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where π̃ denotes the steady-state probability of state in the embedded transition

matrix of the Markov chain M. The steady-state probability π can be calculated

by weighting each element in π̃ with its costed sojourn time of the corresponding

markings [67]:

π(⋅) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

τ̄s(Ms)
τ̄c(Mj) Ms ∈ T

0 Mj ∈ V
(4.2)

where T and V are the marking sets for immediate and timed transitions [67], respec-

tively. The mean time that a process transits from state Ms to Mj are given as τ̄s.

The time spent in the state Mj is denoted as τ̄c. s and j denote the different positions

in the Markov chain M. The steady-state probability derived from Eqs. 4.1 and 4.2

is employed in this framework. Such probability not only embeds vulnerability of the

protective models, i.e., the firewall and password models, but also incorporates the

topology of protective networks contained in the substation.

Assume that the system contains S substations. Let T be the collection of all non-

empty subsets of S = {1,2,⋯, S}. This definition lets the set T consist of all k-

combinations of S with k = 1,⋯, S. Let the t-th element of T be t ⊆ S. The probability

of the t-th substation combination p̃x is defined as:

p̃x(t) = (∏
i∈t
π(i))( ∏

j∈S,j∉t
(1 − π(j))) (4.3)

where i and j in the Eq. 4.3 denote the indices of substations and the subscript x
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denotes the claim size of the t-th substation combination.

It is worth noting that we exclude the empty set in T, which corresponds to the case

without insurance claims. For this reason, the cardinality ∣T∣ of set T is equal to

2S −1, and the sum of the probability p̃x calculated in Eq. 4.3 may not necessarily be

equal to 1. As a consequence, the probability mass function of the discrete substation

combination can be normalized that will be summed up to 1.0:

px(t) =
p̃x(t)

∑∣T∣t p̃x(t)
(4.4)

Eq. 4.4 formulates the basic discrete probability distribution of hypothesized substa-

tion outages. px(t) is the function of t in which it cannot be directly applied to the

premium calculations because the different substation outages could claim the same

size of economic loss. The following section would further illustrate the formulation

of the claim size and the necessary modifications to Eq. 4.4.

4.2.2 The Claim Size of the Hypothesized Substation Out-

ages

Determining the claim size due to the hypothesized substation outage is important for

insurance companies to implement their insurance policy because of the direct effect
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on their own business strategy. In the following formulation, the data is obtained

from the previous cyber-based contingency analysis in the steady-state studies [1,

25, 30, 45] and the claim size x is assumed to be equal to the direct loss due to the

hypothesized power outages, which is determined by three variables: (1) the power

loss PL (MW) due to the substation outages in steady-state evaluation [1, 25, 30, 45],

(2) the expected mean time to restore power H (hour) from the abnormal status to

normal steady-state conditions [154, 155, 156], and (3) the direct costs γ ($/MWh)

during the power outages [149, 150, 151]. Thus, the claim size x ($) for the t-th

substation combination is defined as:

xt = PLt ⋅Ht ⋅ γ (4.5)

Fig. 3.3 depicts the flowchart of an enumerative algorithm for calculating the claim

size based on Eq. 4.5. The “critical” lists C is generated using the extended enu-

meration model in [45]. The “critical” combination of substation(s) recorded in C

may cause the system steady-state instability, which is considered as the blackout

situation in this formulation. The critical list C is applied here to identify the size

of blackouts of the substations combination set t ∈ T. The MTTRP simulation is

conducted based on the concept of generic restoration milestones (GRMs) [154]. The

italic form of MTTRP represents the vector that records the restoration time of each
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START

Initialize the critical 

list of the system C

Complete the MTTRP simulation

Input the direct costs γ due 

to the power outages

Get the substation set t in T 

Does the set t contain the 

critical combination in C?

System is in brownout 

let H = max{ MTTRP(i), i in t }

System is in an hypothesized 

blackout and set H = L

Obtain the power loss PL due to the 

substation outage

Calculate the claim size: 

xt  =  PL × H × γ 

End of T?

Modify the probability mass function px by summing all the 

probability px(t) which has the same claim size x

Obtain the restoring time for the system L; 

MTTRP is saved as the input of the 

restoring time for all substations

END

YesNo

Yes

No

Figure 4.1: Algorithm for enumerative calculations of the claim size x

substation and L is the total restoration time initiated from the blackstart (BS). It

is observed that, after all the claim sizes in T have been identified, the different com-

bination sets t1 and t2 may have the different px(t1) and px(t2) but share the same
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claim size xi. In order to create the probability mass function of the claim size x,

which the cyber insurance company focuses on, the probability distribution function

determined in the formula 4.4 needs to be modified by aggregating all px(ti) that

have the same claim size:

p(x) =
∣T∣
∑
t

px(t) (4.6)

Eq. 4.6 formulates the PMF of the diverse claim sizes x and the variable t has been

canceled out. Compared with Eq. 4.4, Eq. 4.6 is more clear and convenient to be

applied in the ruin probability calculations to determine the insurance premium.

4.3 Determination of Cyber Insurance Premium

using Ruin Probability Theory

4.3.1 Ruin Probability Calculation

Ruin probabilities has been widely implemented since the beginning of last century

and has demonstrated its effectiveness in evaluating the long-run viability of insur-

ance portfolios [64, 65, 66]. The primary purpose of using Ruin is to estimate the

probability that the total claims exceed the sum of the initial risk reserve of a util-

ity and the total premium received in a given time interval. To avoid the ruin of a
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company to the greatest extent, the total premium should be able to bound the ruin

probability in a significantly small level [65].

The ruin probability ψ(u) for the initial risk reserve u is fundamentally defined in

[64] as :

ψ(u) = Pr{M > u} = 1 − FM(u) (4.7)

where M is defined as the maximal aggregate loss and M = L1+L2+L3+⋯+LN . Pr{A}

denotes the probability that the event A happens, and FX(x) = Pr{X ≤ x} represents

the cumulative density function (CDF) of X. It is assumed that the number of claims

N follows a geometric distribution satisfying

Pr{N = n} = (1 − q)qn, n = 0,1,2,⋯ (4.8)

where 0 < q < 1. Each random variable Ln represents claimed loss. Assume that for

any fixed N , the amounts of the successive claims, denoted as L1,⋯, LN , are positive,

independent and identically distributed (i.i.d.) with a common CDF FL(x) with

mean µ. Ln is assumed to be i.i.d. with the probability density function of given as:

fL(x) =
1 − FL(x)

µ
, x > 0. (4.9)
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As a result, the CDF of the random sum M is derived as

FM(u) =
∞
∑
n=0

Pr {
n+1

∑
k=1

Lk ≤ u}Pr{N = n} (4.10)

Eq. 4.10 is known as the distribution function of the compound geometric distribu-

tion. If we assume that M is defined on non-negative integers, the recursive formula

for the CDF of M is shown as [64]:

FM(u) = θ

1 + θ − fL(0)
+ 1

1 + θ − fL(0)

x

∑
y=1

fL(y)FM(u − y) (4.11)

In order to use the recursive formula in Eq. 4.11, fL(x) need to be discretized.

The discrete distribution {fx ∶ x = 0,1,2, ...} is utilized to replace the continuous

distribution fL(x) at points 0, h,2h⋯ by matching a certain number of moments. As

a consequence, within each incremental interval, a certain number of local and global

moments of fx and fL(x) are equal. The number of moments which are required for

replacement is usually the same as the number of intervals. Combining Eqs. 4.7 and

4.11, the probability of ruin can be derived:

ψ(u) = 1 −Fu

1 + θ − f0

− 1

1 + θ − f0

⋅
x

∑
y=1

fy ⋅ ψ(u − y) (4.12)

where Fu = f0 + f1 + ⋯ + fu and θ ∈ (0,1) is a user-defined variable, which needs to

be adjusted by an insurance company. Eq. 4.12 is employed in the whole framework
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presented in the paper for the probability of ruin.

It is observed that the claim size x is discrete and may not be necessarily starting

from 0. Assume the system contains the claim size x that satisfies x ∈ [a, b], where a

and b are the lower and upper bounds of the claim size, respectively. Consider it is a

two-moment problem, the following linear system is verified:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1

a a + h b

a (a + h)2
b2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

fa

fa+h

fb

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∫
b

a fL(x)dx

∫
b

a xfL(x)dx

∫
b

a x
2fL(x)dx

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.13)

The right-hand-side values of Eq. 4.13 are called the r-th moment with the form of

∫
b

a x
rfL(x)dx and h denotes the general increment of each moment. These values can

be derived from Eq. 4.9. Combining Eqs. 4.9, 4.12 and 4.13, the ruin probability can

be solved with the predetermined parameter θ.

4.3.2 Premium Calculation Using Ruin Probability Theory

Based on the details of ruin probability calculation clarified in previous section, the

tentative premium amount, I, is defined:
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I = (1 + θf)λµ (4.14)

where θf is the feasible θ that can be identified in the ruin probability calculation. λ

denotes the expected number of claims of the process and can be obtained by using

Eq. 4.3. Compared with the traditional insurance policy, the frequency of claims for

the cyber insurance on the power system outage may be much less because of its low

occurrence in the historical data. µ is the mean of the successive claims that can be

derived through Eqs. 4.4 and 4.9. Additionally, θf may not be unique if the insurance

company provides an acceptable range of ruin probabilities, which would affect the

range of θ and the feasible premium amount. In chapter 4.4, we provide a list of the

feasible ruin probabilities with different choices of θ’s and different settings of initial

reserve u.
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Figure 4.2: The summary of steady-state probability and the expected
mean time to restore power for IEEE test cases

4.4 Numerical Illustration

4.4.1 Test Case setup: Steady-state Probability, MTTRP,

and Claim Size

4.4.1.1 Steady-state probability

The case setup of the steady-state probability is derived from the intrusion probabili-

ties of “Model 1” and “Model 3” from “outside” attack in [67], denoted as π1 and π3,

respectively. Notice that π1 ∈ Π1 and π3 ∈ Π3, where Π1 and Π3 are two probability
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pools for different models. In order to improve the feasibility of the model, the au-

thors assume that the substations with generation units installed are deployed with

more secure protective parameters, which would lead to a lower intrusion probability.

Fig. 4.2 gives the detailed settings of the steady-state probability for each system,

highlighted in light blue and based on the left-side axis. It is observed that in the

IEEE 14-bus system (10 substations), substations 1 and 2 are equipped with gener-

ators which are in lower probabilities of being compromised, i.e., π(1) = 0.00034856

and π(2) = 0.00038848. In the IEEE 30-bus system (24 substations), substations 1,

2, 4, 17, 18 and 22 are connected with generation unit, which would be assigned with

lower probabilities. Similarly, substations 1, 2, 3, 6, 8, 9 and 12 in the IEEE 57-bus

system are with lower probabilities of successful intrusion.

4.4.1.2 Critical list of hypothesized substation outages

The critical list C is derived using the extended RPM model [45], which enumerates all

the hypothesized substation combinations, and the “worst” combinations are identi-

fied. In the 14-bus system, 3 “critical” substations are identified, which are substation

2, 4 and 5. 8 substations are found to be critical in the 30-bus system, which are

substation 2, 4, 5, 6, 10, 17, 20 and 22. Similarly, in the 57- and the 118-bus system,

18 and 42 “critical” substations are found, which may lead the system to potential

instability in terms of steady-state analysis. Based on the critical list, the complete
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combination list T would be determined to identify the hypothesized power outages.

It is noticed that even though the critical lists could generate numerous combinations

as much as possible; however, in the proposed premium calculation study, the depth

k is determined as k = 3. It is observed that the steady-state probabilities of the

combinations at the 4th or higher order would be less than 10−12 and is considered as

the small probability event which would not be included in this study.

4.4.1.3 Simulation results of expected mean time to restore power
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Figure 4.3: The direct operational loss due to power outages with different
systems and diverse γ settings

The simulations of expected mean time to restore power (MTTRP) for different sys-

tems are derived based on the GRM models [154]. In the IEEE 14-bus system, the
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bus 2 is selected as BS node. For other generation substation, i.e., substation 1,

the setting of the time to crank the generator is 80 minutes. The lumped load at

substation 1 is selected as the critical load. For both 30- and 57-bus systems, node

1 is selected as the BS nodes and node 7 is selected as the BS node in the 118-bus

system. The time to crank generator is selected within [80,120] minutes. The “pick

up” time of transformers and transmission lines are applied with the default settings

of 5 minutes. MTTRP simulations demonstrate that it takes 3, 6, 3 and 8 steps to

restore 14-, 30-, 57-, and 118-bus systems respectively, which cost 118, 404, 373, and

414 minutes in total. In the Fig. 4.2, the expected restoration time H of each system

is marked in red.

In this simulation, the direct operational costs γ ($/MWh) caused by the hypothesized

substation outage are extracted from four different studies: 1) the studies on value

of loss load (VOLL) [150, 151]; 2) the surveys on the estimated direct costs in the

previous power outage [149]; 3) the statistical studies of the average retail electricity

price [152]; and 4) the basic local marginal price (LMP) from the optimal power flow

(OPF) solution [147]. Based on the results of the contingency analysis C and the

MTTRP simulations, the operational loss of the each substation outage, denoted as

Γ1−4, for these four cases with different settings of costs γ1−4, are given in Fig. 4.3.

To improve the readability of the figure, the authors re-scale the unit for each case

and specify the amount of the dollars per unit in legends.
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4.4.2 Numerical Results of Ruin Probability and Premium
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Figure 4.4: The PMF of test cases with diverse settings of γ

Figure. 4.2 presents the distribution function of steady-state probability of substa-

tion intrusions and the expected MTTRP for each substation under hypothesized

cyberattack. Combining Eqs. 4.9, 4.12 and 4.14 with the diverse settings of direct

operational loss, i.e., Γ1−4, as displayed in Fig. 4.3, this section would provide the

numerical results of ruin probability and the corresponding premiums.

According to Eqs. 4.4, 4.5 and 4.6, the distributions of PMF for all test cases are

given in Fig. 4.4. It is worth noting that cases 1, 2, 3 and 4 denote the test cases

with diverse settings of direct operational loss with the corresponding Γ1−4.

In the IEEE 14-bus system, the sample size of the discrete variable L is 29. For
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different settings of γ, X1,2,3,4 are within the thresholds of [$38,743, $14,834,302],

[$4,164, $1,594,566], [$813, $311,665] and [$246, $94,224], respectively. It is noticed

that the diverse settings of γ would not change the bound of the PMF, p(x), which

is [0.000026246, 0.2875]. In Fig. 4.4, the first 100 samples are displayed for the

PMF’s of the 30-, 57- and 118-bus systems. The sample size of discrete variable

X in the 30-bus system is 572, where X1,2,3,4 would locate in the intervals [$1,227,

$15,682,970], [$131, $1,685,791], [$930, $329,495] and [$27, $9,677], respectively. The

upper and lower bounds of the PMF are 0.1028 and 4.4912×10−9, respectively. In

the 57-bus system, the sample size of variable X is 1,861. The feasible intervals

of discrete variables X1,2,3,4 are [$21,490, $64,279,598], [$2,310, $6,909,534], [$452,

$1,350,500] and [$146, $435,919], respectively. The bounds of the PMF for this sys-

tem is [1.5139×10−9, 0.09925]. Similarly, as for the 118-bus system, there are 3,463

different samples and the corresponding discrete variables X1,2,3,4 are in the inter-

vals [$98,171, $431,905,449], [$10,553, $46,426,319], [$2,063, $9,074,235] and [$630,

$2,770,175], respectively. The upper and lower bounds of the PMF for this system

are 0.05104 and 8.6668×10−8, respectively. It is observed that thresholds of the PMF

gradually decrease with the increasing sample sizes, constrained to ∑p(x) = 1.

By combining Eqs. 4.9, 4.12 and 4.13 with the PMF depicted in Fig. 4.4, the results

of ruin probability and the corresponding feasible premium amounts are summarized

in Table 4.1. In the table, θ is selected from 0 to 1 with the increment of 0.2. The

initial reserve u are selected among 0, 10 and 100, which, refer to Eq. 4.12, would

138



determine the recursive level for calculating the ruin probability ψ. It is observed

that, when u is 0, Eq. 4.12 could be written as ψ(0) = (1−f0)/(1+θ−f0), which only

involves the first iteration. In the row of “System constants,” parameter λ denotes the

frequency of the claim that have been formulated through Eq. 4.3, which is 0.0067,

0.0157, 0.0289, and 0.0724 in the 14-, 30-, 57-, and 118-bus systems, respectively.

It is observed that in Eq. 4.12, variable h denotes the general increment for each

global moment, here the authors consider the formulation of the proposed problem

as a two-moment process which would optimally cover the whole interval of the claim

size. It indicates that each interval would cover half of the claim size. To distinguish

the general increment h, h′ is introduced as the proportion of the coverage.

From Table 4.1, among all the test systems, ψ(0) is always larger than 0.4. It might

be “too risky” and may not be an acceptable probability. Additionally, it is found that

the ruin probability ψ(u) in each case would be decreasing with θ increased, which

coincides with Eq. 4.12. Consider ψ(0)′ with a larger θ′ and ψ(0)′′ with a smaller θ′′,

it can be calculated that for the first ruin probability, it holds: ψ(0)′ < ψ(0)′′. Since

the ψ(u) is calculated recursively based on the first item ψ(0), then the probability

of ψ(u)′ with a larger θ would be eventually smaller than ψ(u)′′. Therefore, ψ(u)

is a decreasing function as θ increases. For this reason, the authors are able to

give a reasonable guess of certain ruin probability even without a predetermined

value of θ. Take the calculation results of IEEE 30-bus system as an example, even

though the ruin probability ψ(10) under the condition of θ = 0.9 is not provided, it
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is reasonable to conclude that the probability ψ(10) would locate the interval [1.029

×10−4, 1.094×10−4], which are the lower and upper bounds of the probability detailed

in the table when θ = 0.8 and 1.0.

According to Eq. 4.14, Table 4.1 also provides the feasible premium amounts for each

IEEE test system with different settings of γ, where θf is assumed to be 0.8. In a

more general case, for example, if the insurance company would be able to accept

the ruin probability that less than 5.0 ×10−4 for the 57-bus system, and if the initial

reserve is 10 for the costs settings of γ1, the feasible set of θ can be determined from

the table as [0.6, 1.0]. Based on Eq. 4.14, the feasible premium interval [Il, Iu] could

be determined as [$919,945, $1,149,931], where Il and Iu denote the lower and upper

bound of the premium I accordingly. Similarly, in the 118-bus system with the initial

reserve of 100, if the acceptable range of the ruin probability is less than 2.0×10−4 and

the operational costs are set as γ2, the tentative range of the θ can be approximately

identified to be [0.5, 1.0]. The feasible premium amount I is determined with the

lower bound of $ 1,622,810 and the upper bound of $2,163,746.
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Chapter 5

Conclusion

Improving the cyber-situation awareness of the control centers throughout an in-

terconnection can be challenging. Emerging, renewable energy sources increase the

uncertainty of entire power networks, as well as local networks. This uncertainty

raises the possibility of unexpected incidents in future networks. The cybersecurity

of a power grid is also a topic of research that enables asset owners to anticipate

cascading failure as well as identify interdependencies due to cyber-related initiating

events. We are in an era where intelligent cyberattackers are emerging with the cross-

domain knowledge to execute an attack plan against power grids. In such attacks,

attackers may not have enough or complete information about the grid to assure the

success of their attack plan. Defenders can reduce risks to power infrastructure with

improved security analytics in order to anticipate attacks with serious consequences,
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and thus strategically deploy additional security protections to critical substations

and components.

The dissertation starts to review the cyber-related contingency analysis and sum-

marizes the steady-state and dynamic stability concerns of the contingency. The

following chapters then introduce a cyber-risk assessment model, which includes the

implementation of derived metrics on combinations of hypothesized outages with ver-

ification of steady-state and dynamic system simulations. The reduction of permuta-

tions and combinations of the hypothesized scenarios can be explored to determine

its practicality and systemic bottleneck assessment in order to identify the pivotal

components/substations of a power grid. The preliminary cyber insurance premium

model has also been demonstrated in the dissertation, which reveals that understand-

ing the impact of a cyberattack event is significant for developing a feasible cyber risk

coverage solution.

5.1 Cyber-Risk Assessment Framework

This work extends the previous RPM model by incorporating enumerative combina-

tions to quantify cyber-based contingencies with hypothesized substation outages and

incurred overloads. The evaluation is proceeded to ensure the coverage of all critical

“worst-case” substations combinations are identified at each level k and the subsets of

144



nonconvergent substations combinations are excluded for k-1 level to avoid the explo-

sion of combinations, which is also defined as S-k contingency. The validation of its

application has been greatly extended by incorporating steady-state load flow evalu-

ation. The consideration of islanding formations after presumption of hypothesized

substation attacks are also modeled in this study. A comparable analysis towards

the simulation performance in between serial and parallel computing modes has been

established based on a platform of the superior computing cluster. This research

also provides two aspects to decompose combinatorial evaluation with a curve fitting

function to estimate time with respect to the available computing resources as well

as utilization of computing memory to speed up, which may prove the feasibility of

future implementation and estimate the ballpark number of how much time it would

take for a larger system.

In order to improve the feasibility of the cyber-risk assessment model, evaluating the

impact of the critical protective relay(s) is required to be included, which is defined

as R-k contingency. This research verifies the computational outcomes of disruptive

switching attacks and combinations using the power flow and time-domain dynamic

simulations. The consistency of the results between the dynamic and static studies has

been exhibited in the study. It is observed that the time-domain simulation provides

more details of the behaviors on the relays based on the initial event (hypothetical

switching attack scenarios through digital relays). Compared with the dynamic sim-

ulation, the computation of power flow studies (steady-state analysis) takes less time
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and computing resources. Hence, this reliably serves as a means to pre-screen larger

combinations. The results also demonstrate promising outcomes and can be further

explored for online applications to identify the critical protective relays.

The “routable” keyword in the latest NERC CIP compliance implies the limitation

of firewalls. This proposed model would be a tremendous interest from a perspective

of asset owners where they can identify pivotal substations/relays as suggested in

this cyber-induced contingency analysis that might initiate cascading failure. They

could then thwart electronic intrusion by deploying unidirectional gateway while not

compromising data exchange between the substations and control center. This would

eliminate the possibilities of cyberintrusion from outsides. This method can also help

to prioritize their investment according to the substation criticality, based on the

annual budget they could expense each year.

5.2 Cyber Insurance Premium Framework

The insurance would serve as an effective incentive to improve the cybersecurity pa-

rameters of the utilities’ infrastructures or devices. The cyber insurance market for

power grids remains in an emerging stage and it is yet to mature. Based on the previ-

ous risk-assessment model, the preliminary establishment of cyber insurance premium

using IEEE test cases has demonstrated the promise of actuary and its correlation
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to the potential problematic combinations of disruptive switching cyberattacks. The

studies provide the simulation results of steady-state probability and its distribution

function, the expected mean time to recover power (MTTRP) for each substation,

and the diverse settings of estimated operation loss. All factors provided here are the

necessary setups to calculate the ruin probability. The ruin probability is applied in

the study to evaluate the management performance of the insurance company in the

long-term operation. With the detailed and numerous cases provided in the studies,

the insurance companies can formulate the feasible premium amounts based on their

owner-defined conditions and their base cases.

5.3 Future Work

The future research on the cyber-assessement model will incorporate the current

model into the online application of the power system operation, which would in-

clude two main functions: (1) online assess and update the cyber reliability of the

system before an attack occurs and (2) restrict the level of physical impact after an

attack occurs. Defenders may not be able to predict the attackers’ behaviors or their

strategies, which would induce coordinating attacks on multiple “weak points” and

lead to cascading failures. Additionally, the independence study on the intrusion

stability in the insurance model would also be investigated in the future work.
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5.3.1 Online Cyber-Risk Assessment with Applications of

Wide-area Protection Schemes

“More and more functions are moved from local and regional control centers toward

the central or national control center [159].” This statement has clarified the major

difference between the wide-area protection schemes and the traditional protection

schemes. The proposed cyber-risk assessment model is implemented on the network

of the wide-area protection scheme. Based on the real-time data, such as inputs of

loads, bus voltages, and power sources, collected from the wide-area measurement

system (WAMS) [159], the cyber-risk assessment model might perform exhaustively

evaluations using both static and dynamic analyses. A reliability-related log file

would be generated with potential critical infrastructures and high risky electrical

devices included. With the given set of time intervals for sampling, operational logs

are collected and analyzed, which can be used to evaluate the performance of the

accuracy and consistency of the wide-area protection scheme based on statistical

studies.
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5.3.2 Cyber Impact Restriction Framework

The proposed online framework would introduce an improved algorithm of k-medoids

clustering/partitioning method using (1) system indicators of electrical quantities

collected from the WAMS and (2) the list of critical infrastructures from the risk

assessment model. Once an attack occurs, compromised infrastructures or electrical

equipment are selected as k center nodes. For each point, the proposed algorithm

would resolve a set of optimization functions and generate a feasible parameter of

outages that would minimize the impact of the attack. The wide-area protection

scheme would then perform the “operation” algorithm and disconnect loads, genera-

tors, transmission lines, and transformers as needed to restrict the fault area.

5.3.3 Local Power Restoration with Incorporating Stability

Constraints

It is possible that the results from the previous section may not necessarily be the

optimal solution as the “operation” report may include the potential risky electrical

components that have not been compromised and may not cause cascading failures.

The local power restoration algorithm is implemented in the framework to examine

the performance k-medoids clustering algorithm and pick up local loads/generators
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and reclose circuit breakers to connect transmission lines back to the system with sat-

isfying the constraints of power system transient/steady-state stability. Additionally,

due to stability constraints, the reclosure procedure would further reduce the cyber

impact level by recharging and synchronizing isolated islands.

5.3.4 Improvement on the Cyber Insurance Model with In-

dependence Implications

The future study on the cyber insurance framework will investigate the independence

research. The original PMF introduced in the Chapter 4 needs to be modified by

incorporating: (1) the specific and realistic cyberattack paths through a single or

multiple substations based on the network topology of the system; (2) the historical

and statistical data observed from previous physical blackout/brownout scenarios,

such as N-1, N-2, or N-k contingencies events, to formulate a verified potential de-

pendent connections within certain contingencies events; and (3) the close-connected

relationship among multiple control areas in a large power grid network in terms of

cascading failures.
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