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Preface 

This dissertation presents algorithm development and modeling of electron transport in 

different semiconducting single electron transistor (SET) devices with different material 

properties and geometries. The current-voltage (IV) characteristics of the SET models are 

calculated using a semi-classical approach for electron tunneling and Kinetic Monte Carlo 

(KMC) simulation for the dynamics. A summary of highlights of what has been done in 

each chapter is listed below: 

Chapter 1: Introduction. 

This chapter motivates the study by briefly discussing the current landscape of the 

development in fundamental electronics devices. The single electron transistor (SET) is 

introduced, and the background physics underlying its operation and simulation are 

reviewed. 

Chapter 2: Physics-based modeling of IV characteristics of a single-island tunneling 

device with a semiconducting island.  

• A generalizable model for calculating tunneling rates between semiconductor or 

metallic elements of a SET device is presented and the KMC simulation utilized is 

summarized. 

•  The transition probability between metallic and semiconducting islands is dynamically 

calculated depending on the initial energy of the electron and the barrier height.  

• A model density of states (DOS) of a semiconducting quantum dot, including a 

modified-parabolic band model and a band gap is introduced.  



6 

• Island size and energy scales, in which the continuous band model for the 

semiconducting island can be used, are explored. In particular, the appropriateness 

of discrete versus continuous DOS models is discussed based on island size. 

• Using relevant approximations, tunneling rates between a semiconductor quantum 

dot and metallic or semiconducting electrodes, considering the energy gap in 

semiconductor, are calculated, and IV characteristics are explored for the following 

types of systems, including several test cases:  

o Test Case I: Coulomb staircase of a SET device with metallic electrodes and a 

semiconducting island 

o Test Case II: Impact of gate capacitance on IVg characteristics on a SET device 

with metallic electrodes and a semiconducting island 

o Test Case III: Impact of junction widths on IVg Characteristics on a SET device 

with metallic electrodes and as semiconducting Island 

o Temperature dependence: metallic electrodes and a semiconducting island  

o Semiconducting electrodes and semiconducting island 

o Temperature dependence: semiconducting electrodes and a semiconducting 

island 

o Impact of band gap 

Chapter 3:  Efficient Physics-based Modeling of a Representative Semiconducting 

Quantum Dot Single Electron Device 

The content of this chapter has been published as a conference proceedings paper and 

is used with permission: P. Hazaveh, P. L. Bergstrom, and J. A. Jaszczak. “Efficient 

physics-based modeling of a representative semiconducting quantum dot single electron 

device,” IEEE 17th International Conference on Nanotechnology (IEEE NANO 2017), pp. 

739 – 744, 2017.  
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• In this model, the band gap is utilized to control the temperature sensitivity of the SET 

devices by applying appropriate bias to the gate electrode. 

• Simulation results are compared to results for an experimental device. The device 

appears to be a nanometer-scaled MOSFET with quantum dots formed in the channel. 

An explanation is proposed for the experimentally observed baseline current increase 

along with Coulomb oscillations in the IV characteristic of the experimentally realized 

nanometer-scale MOSFET.  

Chapter 4: is focused on physics based modeling of IV characteristic for a single-island 

tunneling device with semiconducting island with discrete energy levels.  

• This SET model has an island small enough that the discrete energy-level spacings are 

comparable to other energy scales of the system and cannot be ignored.  

• The tunneling rate between a semiconductor quantum dot island with discrete energy 

levels and a band gap coupled to metallic or semiconducting electrodes is calculated. 

• The transition probability between metallic/semiconducting islands is dynamically 

calculated depending on the initial energy of the electron and the barrier height.  

• The density of states (DOS) of a semiconducting quantum dot used as an island is more 

complicated than a metallic nanometer-sized island, especially in higher energy levels. 

Here, a proper modified-parabolic approximation is introduced. Island size and energy 

scales, in which the energy spacing between discrete levels cannot be ignored, is 

explored. 
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Chapter 5: Modeling of IV characteristics of a double-island tunneling device with 

semiconductor islands.  

Some figures and text in this chapter are reprinted, with permission from: P. K. 

Hazaveh, P. L. Bergstrom, and J. A. Jaszczak, “Modeling of gate effects on electron 

transport in a single-electron transistor with two semiconducting islands between two 

semiconducting electrodes,” Proceedings of the IEEE 13th Nano Materials and Devices 

Conference (IEEE NMDC 2018), pp. 459 – 462, 2018.  

• A modified-parabolic approximation is utilized in the DOS. It is discussed that in 

consideration of all the relevant energy scales in our model, if the island size is larger 

than ~3 nm, it is appropriate to neglect the discrete energy levels, whereas if the island 

size is smaller than ~3 nm, the discrete nature of energy levels should be accounted for. 

Two different simple band models are explored: 

1. SET device with semiconducting islands large enough that the discrete energy 

levels can be ignored compared to other energy scales of the system. The 

continuous band model is used for such a device.  

2. SET device, where one of the islands is small enough that the energy spacing 

between energy levels is comparable to other energy scales of the model and 

cannot be ignored.  

• The transition probability between two semiconducting materials is dynamically 

calculated depending on the initial energy of the electron and the barrier height.  

• The tunneling rated between two semiconducting islands and electrodes are calculated, 

considering the energy gap in the semiconductors.  
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• The impact of discrete energy levels in smaller semiconducting islands on the IV 

characteristics of semiconducting SET devices is explored.  

• The effect of gate capacitance and gate potential on IV characteristic of semiconducting 

SET devices is studied.  

• The band gap and discrete energy levels are utilized to control the degree of temperature 

sensitivity of the SET devices by applying appropriate biases to the gate electrode. 
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Abstract 

Electronic devices, especially MOSFETs, have been dimensionally scaled down to 

enhance operation of integrated circuits, addressing challenges such as current leakage, 

fluctuation of intrinsic semiconductor properties, and power dissipation. Reaching 

dimensions below 20 nm, there are fundamental limitations that are difficult to overcome, 

driving alternative device paradigms to be sought utilizing the quantum mechanical 

behavior of electrons. Single electron transistor (SET) devices are examples of a new 

generation of low-power transistors designed to transport information via single electron 

tunneling through one or more islands separated by tunnel junctions. Experimentally 

explored SET devices have shown that there are advantages to using semiconductors for 

the islands as compared to using metallic islands. Although semiconducting SET devices 

have been experimentally explored, the simulation of the transport characteristics of such 

devices remains an area requiring further development for gaining deeper insights into the 

device behavior. Progress has been limited due to the complexity of the underlying physics 

of electron tunneling to and from a semiconducting nanometer-scale island. Ab initio 

calculations are capable of accurate modeling of the physics, but are computationally 

prohibitive given the nanometer scales represented in the system. 

This work is dedicated to understanding the behavior of electron transport involving 

semiconducting islands and has led to development of a kinetic Monte Carlo (KMC)-based 

algorithm to simulate the current-voltage characteristics of single electron transistor (SET) 

devices comprised of one or two semiconducting nanometer-scale islands and three 

electrodes (source, drain and gate) with regard to the terminal potentials, temperature. The 
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impact of the band gap, the more complex density of states, charging energy, and island-

size-dependent discreteness of energy levels in a semiconducting island on the tunneling 

rate are also examined. 

Semiconducting islands provide parameters that can be utilized to control the SET 

characteristics. The alignment of the semiconducting island’s band gap with the Fermi 

energy of the electrodes can be tuned to control the degree of temperature’s impact on the 

currant-voltage characteristics of the device. It is confirmed in this work that our model is 

generalizable to predict electron tunneling in materials with different band structure.  
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1 Introduction 

Improvement of electronic device technology depends on portability, power 

consumption, system complexity, and cost efficiency of integrated circuits (ICs). As the 

size of the transistors decreases, the number of transistors that can be fit on ICs increases 

(see, for example [1]) . As the ICs get smaller and more energy efficient, and the 

technologies becomes more powerful and inexpensive, innovative and energy-efficient 

technologies have increasingly been entering peoples’ everyday lives [2]. 

Moore’s law was “discovered” by Gordon Moore, co-founder of Intel in 1965, by 

observing the trend every year the number of transistors in an integrated circuit doubles 

[3]. He revisited this law in 1975 and revised the statement that roughly every 18 months 

the transistor density doubles in integrated circuits. This has proven to predict the 

advancement of technology in microelectronics for many years, nearly up to the present; 

perhaps longer than many expected that it could be sustained [4]. More recently, the rate 

of increase in transistor density has slowed, starting when the minimum features of the 

transistors reached 20 nm [4]. 

Metal Oxide Semiconductor Field Effect Transistors (MOSFETs) are the main 

components used in the IC industry [5]. For decades now, electronic devices, especially 

MOSFETs, have been dimensionally scaled to enhance the speed and optimize power 

consumption of ICs [6]. Scaling down MOSFETs to nanometer-scale dimensions has faced 

some major problems and limitations over the years. Some of these limitations have been 

solved by materials engineering and new fabrication techniques. Reaching the scale of 20 

nm, there are fundamental limitations, which are extraordinarily expensive or reaching 

fundamental limits to solve [7, 8], such as current leakage, electron tunneling between 
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different layers of MOSFET, fluctuation of intrinsic semiconductor properties and power 

dissipation. In small dimensions where quantum mechanical behavior begins to dominate 

device characteristics near room temperature, the understanding of the transport of carriers 

across junctions in quantum-electronic tunneling-based structures becomes yet more 

important to the ongoing development of the electronics industry. This has caused 

engineers to think of alternative devices that explicitly utilize the quantum-mechanical 

behavior of small devices, as opposed to trying to mitigate such behavior. Engineers and 

experimental physicists have been exploring small junction devices where adding and 

removing one single electron to or from the system can be detected and controlled. Single-

electron devices and single-electron transistor (SET) are in this category of devices, and 

are candidates for a new generation of low power transistors designed to transport 

information via single electron tunneling through insulating junctions [9, 10].  

There are several practical applications of SET devices, for example they can be used 

for switching in multiple level logic gates. The Coulomb blockade region is larger in SET 

devices with multiple islands compares to single island devices (larger source drain 

threshold), which makes them a great candidate for switching components. Karre et al. [11] 

demonstrated a Coulomb blockade effect and Coulomb oscillations at room temperature in 

a multi-island transport device using nanometer-size tungsten dots with a mean diameter 

of 8 nm. Extra charge present on the quantum-dot island in a SET has a strong impact on 

IdVg characteristics of the SET, therefore these devices can be used as sensitive 

electrometer devices [10]. Other examples of what can be designed using SET devices 

include single electron memory devices [12], charge-state logic and programmable single-
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electron transistor logic [13], photon sensors [14], and chemical and gas sensors [15]. Some 

of the more recent applications of SET devices as biosensors are:  

1- pH sensor: Because SET devices are highly sensitive to small changes in the 

potential energy state of the control gate, changing the surface charge state 

through chemical binding events on the gate electrode, for example, the SET can 

act as an electrometer amplifying the chemical state of the gate electrode. If the 

gate electrode is in contact with a buffer solution, the IdVg characteristics of the 

device change depending on the pH value of the solution, making SET devices 

potentially useful as pH sensors [16, 17].  

2- Detection of Streptavidin: Streptavidin is a protein commonly utilized in the 

detection of various biomolecules due to its formation of a strong bond with 

biotin and its resulting functionalization on a metallic or semiconducting electrode 

for biosensing. This type of sensor is commonly prepared by coupling the biotin 

to the surface of a gate insulator for a transistor-like sensing mechanism. The 

reaction of streptavidin to the biotinylated surface causes a positive shift in the  

IdVg characteristics of a SET device [17] that enables the detection of a charge 

change as a result of biomolecule binding events.  

1.1 Metallic Devices  

Single electron transistors are one of the candidates as an alternative to conventional 

transistors. These devices have low power consumption, small dimensions of 50 nm and 

below, and a fundamentally different transport mechanism that can result in fast response 

times and allows a potentially higher density of components on ICs [18]. Unlike traditional 
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transistors, SET devices work based on electron tunneling through insulating layers. The 

devices are comprised of metallic or semiconducting islands between source and drain 

electrodes, and separated by thin insulating barriers. If an electron has enough energy, it 

may tunnel from one island to the next, till it reaches the other electrode [10].  

A simple single electron transistor has three electrodes, and in its simplest form, a 

single nanometer-sized metallic island, as shown in Fig. 1.1 The island is coupled to the 

electrodes via capacitances. The tunnel junctions have widths on the order of couple of 

nanometers. Ideally, there should be no electron tunneling to the gate electrode. 

 

Figure 1.1. Schematic of a SET device with two tunnel junctions, one island and three 

electrodes. The island couples to the left, right and gate electrodes with capacitances Cl, Cr 

and Cg, respectively. 

Simulating SET devices has been investigated in previous research. The SPICE macro 

modeling code, for example, utilizes a circuit model of the system built with resistances 

and capacitances [19]. The governing parameters of the modeled SET devices are defined 

prior to the circuit analysis of the devices using a physics-based simulation method (such 

as kinetic Monte Carlo) and the current-voltage characteristic of the device consisting of 

multiple transistors (typically single island SETs) then depends on the pre-determined 

parameters and terminal voltages of each transistors. In this model, the coupling between 

SET devices in series is neglected, which at nanometer dimensions may not be valid [20]. 
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The SPICE macro-modeling can handle more than one SET device, but the interaction 

between the devices and the Coulomb blockade effect is not taken into account, making 

the application of the SPICE macro-modeling tool very limited. 

Predicting the IV characteristic of metallic SET devices based on the so-called 

“orthodox theory” and electron tunneling rates can be performed with methods such as the 

Master Equation method [21, 22] or the kinetic Monte Carlo (KMC) simulation method 

[23]. The Master Equation method utilizes a matrix of transition probabilities multiplied 

into a vector of state occupancies to compute the net currents passing through the junctions. 

However, since the number of possible transitions and states is infinite, the most important 

ones must be identified, depending on energy scales of the system, to iteratively solve for 

the steady state solution of the charge and current transport. This method has been used 

widely in the past for two-junction (one island) systems; however, in case of more than two 

junctions in a system (multiple islands), the complexity of the Master Equation method 

becomes inefficient if the number of possible states makes the matrix too large [22]. The 

KMC method is more effective in balancing the model of complex transport configurations 

with efficient computational methodology [22, 24].  

The MITS program is a KMC-based algorithm developed by Savaikar et al. [23, 25], 

that extended the capability of other KMC-based algorithms, such as SIMON [26, 27] and 

MOSES [22], by reconsidering some of the model’s approximations. However, MITS is 

not applicable to semiconducting materials, as it employed many approximations that are 

only appropriate for metallic islands and electrodes. For example, the transition probability 

of a junction in MITS is calculated using approximations: 1. The initial energy of all 

electrons is taken to be at the Fermi energy, and 2. The density of states is continuous (no 
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band gap) and a constant. In a semiconducting SET these approximation are not 

appropriate. The work of this dissertation focuses on extending the capability of MITS by 

taking into account the key features of a semiconductor, namely, density of states, the band 

gap, and important energy dependence characteristics near the band edges. As may be 

expected for semiconductors, their presence in SET devices can be expected to have 

important temperature-dependent effects as compared to metals. In addition, this work 

explores the conditions and energy scales under which the discreteness of energy levels in 

very small islands cannot be ignored.  

Charge transport in an SET occurs via electron tunneling through the junctions 

connecting the source and drain electrodes. Predicting the IV characteristic of metallic SET 

devices has been done using a semi-classical approach starting with the assumptions of the 

so-called “orthodox theory” and appropriate extensions to calculate tunneling rates. 

Orthodox theory has three major assumptions [10]:  

1. The time for electron tunneling across the barrier is negligibly small compared to the 

time between electron tunneling events.  

2. For a system with junction resistances bigger than 6.5 kΩ, co-tunneling can be ignored.  

3. The quantization of energy is ignored in the island.  

There are typically other approximations that are employed in studies of models with 

metallic islands, such as a constant density of states and energy-independent transition 

probabilities, which will be discussed in detail in this section.  

If a total excess charge Q is on an island, an extra electron to be added to the island will 

be repulsed by this net charge. The charging energy (Ech), which is fundamental to the 

operation of SET devices, is a measure of this repulsion [10], and can be calculated using 
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the expression   

𝐸"# =
𝑒&

𝐶 		,			 
(1.1) 

 where C is the island’s total capacitance and e is the magnitude of the electron charge.  

The single-electron effects are observed as long as the charging energies are much 

larger than the thermal energy (Ech > 10kBT, where T is the temperature and kB is the 

Boltzmann constant). In relatively large islands, the charging energy is negligible at room 

temperature. However, for nanometer-sized devices (10 nm and less), the charging energies 

are in order of 0.1 eV, and are comparable to other energy scales in the system for example, 

the thermal energy at room temperature, so the single-electron effects can be observed [10, 

25].  

1.1.1 Coulomb Blockade, Coulomb Staircase, and Coulomb Oscillations 

Two key features of IV characteristics of SET devices are the so-called Coulomb 

blockade (and the associated Coulomb staircase) and Coulomb oscillations. For an electron 

to tunnel through a junction it must have enough energy to overcome the charging energy, 

otherwise it will be prohibited from tunneling. If the applied source-drain potential, Vsd, is 

inadequate to supply electrons enough energy to overcome the charging energy, tunneling 

and current flow are this suppressed. This phenomenon is called the Coulomb blockade 

effect. Figure 1.2 shows a simple schematic of the blockade condition. External energy 

sources such as, applied biases, (gate or source-drain) or thermal energy can allow electron 

tunneling by giving electron enough energy to overcome the charging energy [10, 25]. In 

SET devices at room temperature, the tunnel junction dimensions should be less than 2 nm, 

in order to balance having a large charging energy with sufficiently high tunneling 
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probability. Due to large charging energies in these small junctions, relatively large Vsd 

bias potentials on the order of 0.1-1 V are necessary to allow electron tunneling events. 

The voltage at which electron tunneling is probable through the device and current is non-

zero, is known as threshold voltage. In the Coulomb blockade region (where Vsd is less than 

the threshold voltage) modulation of the gate potential can also enable electron tunneling 

between source and drain. This phenomenon leads to Coulomb oscillations and will be 

discussed below. We first consider the Coulomb staircase. 

 

Figure 1.2. Blockade condition under zero bias and low temperatures where electrons up 

to the Fermi energy of the electrodes do not have enough energy to overcome the charging 

energy to tunnel to the island. 

To understand the Coulomb staircase, consider a simple model of a single island device, 

in which the island is isolated from the source and drain electrodes by an insulating layer 

(for example, an oxide), that are called tunnel junctions. The transition probability for an 

electron to tunnel across a junction depends on properties of the junction and the electron’s 

energy. Consider a condition under which the transition probability through junction 1 is 

much smaller than the transition probability through junction 2 (i.e., 𝑇+ ≪ 𝑇&). Such would 
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be the case, for example, if the width of junction 1 was greater than that of junction 2. A 

source-drain bias (Vsd) applied to this device causes a potential drop across both junctions. 

If, based on the capacitances it turns out that Vsd., becomes large enough (which by 

definition is the source-drain threshold voltage) that electrons can overcome charging 

energy in junction 2, then tunneling can take place in this junction. Under this condition, 

after electron tunneling happens in junction 2, the potential of the island changes because 

of the missing electron so electron tunneling may become favorable in junction 1. 

However, since 𝑇+ ≪ 𝑇&	 tunneling will occur in much lower rate in junction 1 as compared 

to junction 2. In this case, junction 1 is the rate limiting factor that sets the current 

magnitude. No qualitative change happens as Vsd is increased until it reaches a point at 

which electrons can overcome the second changing energy in junction 2. Now there will 

be current pathways across the device that include this island having charge states of zero 

and +e, as well as some current pathways that have the island in charge states +e and +2e. 

The abrupt addition of another current pathway in charge-state phase space (or current 

paths for short), lead to the second step of the Coulomb staircase.  Its position in terms of 

Vsd depends on the charging energy, while the current magnitude depends on the tunneling 

rates of the junctions at the applied bias. This phenomenon, which is shown in Fig. 1.3 with 

a simple energy-diagram model, leads to the Coulomb staircase in the IVsd characteristic of 

the device [25, 28, 29]. In this figure, the left electrode is connected to positive voltage.  
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Figure 1.3. Energy diagram of electron tunneling through a SET with a single island where 

the electron transmission rate is larger in junction 2 than junction 1.  

 

The Coulomb-oscillation phenomenon appears in the current versus gate voltage 

characteristic [28, 29]. In a single-island device with a gate electrode, under constant and 

small source-drain bias condition the potential of the island changes by increasing the gate 

voltage. Upon increasing the gate voltage there will come a point at which electrons will 

have enough energy to overcome the charging energy at junction 1. The increased potential 

bias across junction 2 makes subsequent tunneling highly probable at that junction, leading 

to a net current flow across the device as it is outlined in Fig 1.4 (top). By increasing the 

gate voltage further, subsequent tunneling across junction 2 decreases due to misalignment 

of the island’s occupied levels with available levels in the left electrode (Fig 1.4. middle). 

At this point electron tunneling is blocked in junction 1 as well until the gate bias is 

increased sufficiently to overcome the second charging energy of the island (Fig. 1.4 

bottom). At this gate potential the second gate oscillation is observed in the characteristic. 
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This phenomena repeats further and leads to a periodic variation in source-drain current 

[30]. This periodic behavior in the current versus gate potential is called the Coulomb 

oscillation effect. The periodicity in a SET device with a single island can be calculated 

by:  

∆𝑉0 =
𝑒&

𝐶0
,		 (1.2) 

where 𝐶0, is the gate capacitance, and e is the magnitude of the electron charge [29, 30].  

 

 

Figure 1.4. Energy diagram of electron tunneling through a SET with a single island where 

the gate voltage is increasing.   
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1.1.2 Tunneling Rate 

Following work of Savaikar et al. [25], Wasshuber et al. [26, 27] and Amman et al. 

[31], the general tunneling rate expression inspired by the Fermi golden rule is used in our 

study. The tunneling rate for an electron across a junction from the initial side with Fermi 

energy Ej, to the final side with Fermi energy Ef, can be written as [23, 25, 31]: 

𝛤23 =
2𝜋
ℏ 𝑇 𝐸 &𝐷2 𝐸 − 𝐸2 𝑓 𝐸 − 𝐸2 𝐷3 𝐸 − 𝐸3

× 1 − 𝑓 𝐸 − 𝐸3 𝑑𝐸		,							

=>

?>
 (1.3) 
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is the Fermi distribution function, E is the electron’s energy and T(E) is the tunneling 

probability. T(E) depends on the electron’s effective mass and the properties of the 

tunneling barrier, such as its shape, width and height [9, 10, 23, 25, 32], and 𝐷2 and 𝐷3 are 

the density of states functions in the respective initial and final sides of the barrier. The 

Fermi function f(E – Ei) gives the probability of the initial state to be occupied with an 

electron, while [1− f(E – Ef)] gives the probability of the final state being empty. To 

calculate the tunneling rate in devices with semiconductor islands, it is the goal of this 

study to calculate the tunneling rates using appropriate approximations and models for the 

tunneling probabilities and density-of-states functions, and to explore the subsequent 

dynamics. In models such as SIMON and MITS for metallic-island devices, several 
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approximations were used that are appropriate for metal-metal junctions, as outlined below, 

and which allows for a closed-form solution for this integral.  

Following work of Savaikar et al. [23, 25] transition probability across a junction, 

depends on properties of the junction and initial tunneling energy level. When there is a 

potential difference across the junction (𝑉23), the barrier height varies over the width of the 

barrier as shown in Fig. 1.5. If the work functions are much greater than the potential 

difference across the junction, a constant average value can be used as the height of the 

barrier. The effect of this approximation has been examined and does not affect the 

outcome of the algorithm, while it improves the computational time efficiency [23, 25, 33]. 

A simple model for an electron transition from a metallic island to an electrode is shown 

in Fig. 1.5. The red arrow denotes the average barrier height (V0) of the trapezoidal energy 

barrier, d is the junction width and ɸ is the work function of the metals [25, 26, 27].  

 

Figure 1.5. Electron tunneling from the middle island (right) to the left electrode when 

there is a potential difference of Vif across the junction. F is the work function. The green 

arrow shows the electron tunneling direction. The blue line denotes the trapezoidal barrier 

height over the left junction of width (d). The red arrow denotes the average barrier height.  

 d 
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To capture the essential physics we use the well-known results for the model of electron 

tunneling through a one-dimensional rectangular potential barrier [32]. If the average 

barrier height is	𝑉A, the probability of the particle being transmitted through the barrier is 

given by [25, 26, 27]: 

12 2
2 0 1

0

sinh ( )( ) 1
4 ( )
V k dT E
E V E

-
é ù

= +ê ú-ë û
, (1.5) 

and 

( )0
1

2m V E
k

-
= , (1.6) 

where E is the electron’s energy, V0 is the barrier height, m is the particle’s effective mass, 

and d is the barrier width. In most prior work the energy of the tunneling electrons are taken 

to be near the Fermi energy with the simplification that the transition probability is  

𝑇 &~ 𝑇 𝐸3
&	 (note that 𝑇 & is a function of V0 which in MITS changes dynamically 

depending on the potential across the junction.) 

 For SET devices with more than one island the transition probabilities initiating from 

metallic materials will be approximated as 𝑇 &~ 𝑇 𝐸3
&
. In case of SET devices with 

semiconducting islands the transition probability is approximated depending on the band 

(conductance and valence) where the tunneling is initiating from and will be explained in 

details in next chapters. 

In metals, the density states of electrons is typically approximated using the free-

electron model [34, 35]: 
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𝐷 𝐸 =
8𝜋𝑚

E
&

ℏE 𝐸	,		 (1.7) 

where 𝑚	the electron mass, E is the energy of the electron and ℏ is the reduced Planck 

constant. In the majority of previous simulation studies, such as the SIMON code by 

Wasshuber et al. [26, 27] or the MITS algorithm developed by Savaikar et al. [23, 25], the 

density of states function in (1.7) of the metal electrodes and island are approximated as a 

constant D0 = D(Ef), which is the density of states at the Fermi energy [23, 25, 27]. This is 

satisfactory for simulation of the electron transport in metals since the participating carriers 

and available states are positioned energetically near the Fermi energy. The density of 

states in semiconducting materials, however, is not well approximated as a constant, and 

instead is modeled using a modified parabolic energy-dependent expression, which will be 

detailed and explored in subsequent chapters. 

1.1.3 MITS: KMC based Simulation of Current-Voltage Characteristics of 

SET Devices 

In a single island SET device, the drain is connected to the ground-reference potential, 

while the gate, and source potentials can be varied. All of the electrodes and the island (or 

in some cases islands) are coupled via capacitances (Fig. 1.1). In a SET device with one 

island, under gate and source biases the island’s charge state can be written as equation 

below [25, 31]: 

𝑄G = −𝑛𝑒 = 𝐶I 𝑉G − 𝑉I + 𝐶K 𝑉G − 𝑉K + 𝐶0(𝑉G − 𝑉0), 
(1.8) 
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where 𝐶I, 𝐶K	and 𝐶0	are the right junction capacitance, left junction capacitance and the gate 

capacitance respectively. 𝑉I ,	𝑉K and 𝑉0 are the right electrode, left electrode and the gate 

electrode potentials. 𝑉G is the potential of the island and can be derived as:  

𝑉G =
𝐶K𝑉K + 𝐶I𝑉I + 𝐶0𝑉0 − 𝑛𝑒

𝐶I + 𝐶K + 𝐶0
	. (1.9) 

The potential drop across the middle island (m) and left junction (l) is given by [25]: 

𝑉G =
𝐶0 + 𝐶I 𝑉K − 𝐶0𝑉0 + 𝑛𝑒	

𝐶I + 𝐶K + 𝐶0
	, (1.10) 

where n is the number of extra electrons on the island. (Note: In this discussion, we are 

assuming the background charge is zero on the island). In SET devices with more than one 

island, the charges and potentials are conveniently related by the Maxwell capacitance 

matrix C according to Q = CV, where Q is a vector of island charges, and V is the vector 

of potentials [33, 36]. The diagonal elements (Cii ) are the sum of all capacitances coupled 

to island i, and the off-diagonal elements are negative of the junction capacitances. The 

capacitances and electrode potentials are all known, while the island potentials are 

unknown variables that are recalculated after each tunneling event which determines the 

charge state Q of the system. When an electron tunnels from the middle island “m” to the 

left electrode “l”, the change in the free energy is given by equation: 

∆𝑊GK = −𝑒𝑉GK + 𝐸"#			,				 (1.11) 

where 

𝑉GK = 𝑉K − 𝑉G	,				 (1.12) 

𝑉G is the island’s potential, 𝑉K is the left electrode’s potential and Ech is the charging energy. 

We consider the time for relaxation of the extra electron to be insignificant compared to 

the tunneling time and the time between tunneling, so the electron will relax before the 
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next tunneling event takes place. The geometry of the system, including junction widths 

and island radii are inputs to this algorithm as are external factors such as temperature and 

bias voltages. The capacitances can be entered as fixed values or be calculated based on 

the fixed physical geometry of the system [23, 25, 36]. Since the emphasis of this work is 

not on geometrical impacts, for simplicity fixed capacitances are assigned to the junctions 

and the charging energies are calculated based on the capacitances for every junction. If 

there is more than one island, then the islands’ potentials are specified with expressions 

similar to (1.9), and calculated using the capacitance matrix and the input  electrode voltage 

and the island charge state  [23, 25, 27, 36]. In some of the presented work, the capacitance 

matrix is build using the specific capacitances as presented in the experimental works. If 

the capacitances are unknown, a simulation tool developed by Banyai that is compatible 

with our code, can be utilized to calculate matrix capacitances based on geometry of the 

islands and junctions [23, 36]. This can extend the capability of our simulation tool in the 

future. 

The source and drain potentials are initially taken to be at zero potential. In order to 

compute the IV characteristic, the varying source or gate potential is increased stepwise 

with a typical increment of 0.01 V. At each voltage step and charge state, tunneling rates 

are computed and the kinetic Monte Carlo method, as implemented by Savaikar et al. [23, 

25], is used to select tunneling events based on these rates. The source-drain current is 

calculated as the rate that charge reaches the drain electrode. After each tunneling event, 

the system’s charge state, potentials and tunneling rates are updated. The simulation 

continues until a steady state current reached with satisfactory accuracy (error bars less 

than 2% of the mean value) [23, 25]. The simulation process flow for this simulation is 
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given in Fig. 1.6  

 

Figure 1.6. Simulation flow diagram of the algorithm used by Savaikar et al. [23] to study 

the current-voltage (IV) characteristic of a system with metallic electrodes and metallic 

island(s), using kinetic Monte Carlo. 

1.2 Metallic versus Semiconducting SET Devices  

SET devices have been fabricated using various metallic and semiconductor materials 

[11, 37-41]. Comparing the functionality of semiconductor and metallic SET devices in 

several experimental works, shows some unique properties of semiconducting SET. For 

example, in higher temperature the functionality of SET devices could decrease due to 

available thermally excited electrons for tunneling. These thermally excited electrons can 

be filtered using a semiconducting quantum dot [39]. The investigation performed by 

Acharya [41], shows that the gate controllability in metallic SET devices must improve in 

order for the device to be useful as a three-terminal electronic device. This work 

demonstrates improvement of the gate control over the IV characteristic of the device, 
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utilizing silicon semiconductor islands instead of metallic. Experimentally explored 

semiconducting SET devices, also have shown clearer peak oscillations in IVg 

characteristic of the device [38]. In such devices, the height of the peaks is observable and 

measurable as compared to metallic SET devices in which the Coulomb oscillations at 

room temperature are complicated and non-measurable. 

The energy gap in semiconductor’s band structures can be used to control the 

functionality and behavior of the device in different energy scales. The band gap will also 

complicate the physics of electron tunneling between semiconducting materials. This 

dissertation focuses primarily on the study of the IV characteristics of semiconducting SET 

devices by expanding the work of Savaikar et al. [23, 25] and revisiting the approximation 

used for a metallic device. The size of typical island(s) and junctions in these devices are 

between 2 and 10 nm. Since a silicon quantum dot with a radius larger than 2 nm has over 

890 atoms, using ab initio calculation to predict the behavior of a device with at this size 

is less time efficient and more complex. While approaching fundamental quantum 

mechanical limits in energy and carrier transport behavior, semi classical approaches to 

these quantum islands and devices are still relevant. 
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2 Generalizable Modeling of Charge Transport in Single-
Electron Transistor Devices: Application to Thermal 
Sensitivity in Semiconducting Island Systems  

Single-electron devices with semiconducting islands have been fabricated and 

experimentally demonstrated, but simulation of the transport characteristics requires 

further development of computationally-efficient methods to more capably demonstrate 

the physics of the devices. A significant reason for this limited progress is the complexity 

of the underlying physics of electron tunneling between nanometer-scale semiconducting 

islands. The calculation of tunneling rates between a semiconductor island and a metallic 

or a semiconducting electrode is more complex than for tunneling between two metals. In 

particular, the effects of the band gap and the more complex density of states are examined 

in this paper. A kinetic Monte Carlo (KMC)-based simulation is developed and applied to 

calculate the current-voltage characteristics of a semiconducting single-electron transistor 

(SET) device. Numerical integration is utilized to calculate the tunneling rates. For a 

semiconducting island, parameters such as the band gap, provide the ability to operate the 

SET device under different conditions that allow differentiation in the device’s sensitivity 

to temperature. A lower degree of temperature sensitivity can be achieved under a 

sufficiently high bias potential such that the probability of electron tunneling exists even 

at low temperatures. Under smaller biases, the primary tunneling is observed only for 

thermally excited electrons, resulting in a high degree of temperature sensitivity. 
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2.1 Introduction  

For decades now, electronic devices, especially metal oxide semiconductor field effect 

transistors (MOSFETs), have been decreased in size to enable more highly integrated 

circuits with greater speed and lower power consumption. Intel displayed 10-nm transistors 

and claimed it to be the “world’s tightest transistor” [1]. As electronic devices scale to 

dimensions where quantum mechanical behavior begins to dominate device characteristics 

near room temperature, the understanding of the transport of carriers across junctions and 

in quantum-electronic tunneling-based structures becomes yet more important to the 

ongoing development of the electronics industry. Because tunneling behavior scales to 

atomic dimensions, there is considerable motivation to better understand carrier transport 

in semi-random assemblies of quantum-scaled device elements [1, 2]. One testbed device 

that has served as a basis for exploring the nature of carrier transport in random assemblies 

of quantum dots is the single-electron transistor (SET). SETs have been explored for high-

density, ultra-low power electronics, for highly sensitive electrometer devices [3], and for 

charge transfer sensing for applications such as photon detection [4], gas and chemical [5], 

or biochemical sensing [6]. The understanding of the transport of carriers across junctions 

in quantum-electronic tunneling-based structures requires algorithms to predict and 

simulate the behavior of such devices. Ab initio calculations are capable of accurate 

modeling of the physics, but are computationally prohibitive given the nanometer scales 

represented in the systems of interest here. On the other hand, semi-classical physics 

modeling must be carefully evaluated to account for dimensions that induce quantum 

mechanical behavior at these scales. 
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Algorithms based on Master Equation methods or kinetic Monte Carlo (KMC) 

simulations are the two primary approaches that are used to predict electron tunneling 

through SET devices and simulate their current-voltage characteristics [7]. Master-

Equation approaches [8] utilize transition probabilities and state occupation probabilities 

to generate a set of coupled differential rate equations that are calculate the system 

dynamics, including steady-state current-voltage characteristics. Applying this method to 

a single-island SET device is very efficient; however, the resulting set of rate equations 

quickly becomes intractable for efficient computation as the number of islands increases 

or as the number of possible charge states on the islands that must be considered (e.g. at 

higher biases) increases [7, 8]. One of the main challenges for existing modeling 

frameworks that is common to both Master Equation and KMC approaches is that a closed 

form solution of the tunneling rate integral has been utilized. For non-trivial band structure 

this integral generally does not have a closed-form solution unless extreme and inaccurate 

approximations are employed. These methods have other limitations, such as using 

constant junction resistances. The KMC method, although computationally more 

expensive, is capable of simulating SET devices with longer chains of islands compared to 

Master-Equation approaches. We have thus chosen the KMC approach to simulate the 

characteristic of multiple-island devices, by extending the MITS code, a KMC-based 

simulation tool developed by Savaikar et al. [9, 10] which has expanded and addressed 

limitations of previously developed KMC tools such as SIMON [11, 12], but has been 

limited to simulation of metallic islands. A third simulation tool, the SPICE macro-

modeling [13], can simulate the quasi-static lumped-element model of single electron 

circuits where the interconnections between SET devices are large compared to the SET 
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junctions, ensuring that they are capacitively independent of each other. The SPICE 

framework does not, however, take into account the dynamics of the tunneling transport 

with charge state and temperature that is fundamental to the underlying physics of the 

device. This method is useful and time efficient for well-characterized conditions for 

temperature and input biases. 

 SET devices have been experimentally fabricated with metallic and semiconducting 

materials (see for example, [14-18]). These experimental investigations have shown that 

there are advantages to utilizing semiconducting islands as compared to metallic-island 

SET devices. One of the particularly interesting practical examples is thermal filtering, 

where excited electrons can be blocked from participating in tunneling events utilizing 

energy gaps in semiconducting materials’ density of states [18]. Semiconductors SET 

devices show clearer Coulomb oscillations (see Section II) and gate controllability as 

compared to metallic SET devices. For example, the gate control in semiconducting SET 

devices was experimentally examined by Acharya et al. [16] and showed improvement 

compared to metallic SET devices. Clear Coulomb-oscillation peaks have also been 

experimentally demonstrated for a semiconducting SET device by H. Ishikuro and T. 

Hiramoto [17].  

This study is focused on developing an algorithm that may better predict the transport 

characteristics of a tunneling device with a semiconducting island over temperature and 

terminal biases, and compare the functionality of semiconducting and metallic SET 

devices. The radius of islands in these devices is typically no smaller than 2.5 nm. Since a 

silicon island with a radius larger than 2.5 nm incorporates over 800 atoms, using ab initio 

methods to predict the behavior of the device would be quite complex and computationally 
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unfeasible. For radii larger than 2.5 nm, discretization of the island can be ignored [27]. 

Electron tunneling becomes relevant for junction widths below 1nm. Following the work 

of Likharev [3], the semi-classical approach to tunneling for predicting the current-voltage 

characteristics of the SET is based on so-called “orthodox theory” and is commonly 

performed by the KMC method. Orthodox theory has three assumptions: 1- time for 

electron tunneling is negligible compare to other time scales in the system; 2- only one 

electron tunneling event happens at a time and co-tunneling is ignored; and 3- the 

quantization of energy is ignored in the island [3]. Different algorithms have been 

developed based on the KMC method [7, 9, 10], including SIMON [11, 12] and MITS [9, 

10], to predict electron transport in multi-junction devices. However, these generally have 

limitations in regard to predicting the behavior of SETs with semiconductor device 

elements. The MITS simulator was developed, in particular, by Savaikar et al. to predict 

the current flow through multiple-metallic-island transport devices [9, 10], and added some 

advantages as compared to SIMON, such as calculating the transition probabilities as a 

function of energy instead of approximating them as a constant. In this work we revisit 

some approximations, such as constant density of states used by MITS and SIMON, and 

extend MITS, so it is capable of simulating semiconducting SET devices.  

A primary challenge in this study is properly calculating the tunneling rates between 

the nanometer-size semiconductor island and the electrodes, with reasonable 

approximations based on the electrical and geometrical characteristics of the system. The 

models, theory and approximations, such as for the density of states and the tunneling 

probabilities, that are required to calculate tunneling rates across the junctions are reviewed 

in Section II. In Section III, we briefly review the kinetic Monte Carlo algorithm used to 
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predict the current-voltage characteristics of SET devices. Section IV is dedicated to 

different test cases that verified the validity and relevance of the introduced model. In 

Section V the unique properties of a SET with a semiconducting island and its potential 

applications are introduced and explored 

2.2 Theory and Background 

The current-voltage (IV) characteristics of a multi-junction single-electron device 

depend on electron tunneling rates across each junction. For tunneling to proceed, electrons 

must have enough energy, from external biases or temperature, to overcome the charging 

energy, Ech ≡ e2/C [3], where C is the island’s total capacitance and e is the magnitude of 

the electron charge). For nanometer-sized islands, the charging energy may be relatively 

large, such that under small biases and at lower temperatures, electron tunneling is 

suppressed. This phenomenon is called the Coulomb blockade effect [3, 19, 20]. Under a 

large enough potential bias, known as the threshold voltage, electron tunneling becomes 

possible, and current can flow between the source and drain electrodes.  

Metallic	
Gate

Gat
e

Metallic	
Source

Metallic	
DrainSC	Island

Cs

Cg

Cd  

Figure 2.1. Circuit schematic of a SET system with a semiconducting nano island and three 

electrodes. The capacitance between the drain and the island is marked as Cd, the 

capacitance between the drain and the island is marked as Cs and the capacitance between 

the gate and the island is marked as Cg.  
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We start by considering a simple form of a SET with three electrodes and one 

semiconducting nanometer-sized island that is separated from the metallic electrodes by 

dielectric barriers, shown in Fig. 2.1. The gate, source and drain are capacitively coupled 

to the island. Ideally, the gate electrode should carry no current. Charge transport in an 

SET occurs via electron tunneling through the junctions connecting the source and drain 

electrodes.  The model has a source and drain junction of 0.5 nm and 1.0 nm, junction 

capacitances of 0.8 aF and 0.5 aF respectively, and an island radius of 3 nm. The gate 

electrode provides control of the trans-conductance of the device between the source and 

drain electrodes, resulting in a true three-terminal electronic device capable of integration 

in more complex system configurations. The dielectric insulator between the gate electrode 

and the island would be designed to minimize the probability of tunneling to the gate, in 

order to keep the gate current low. Simplifications and approximations may be required to 

calculate the rate of tunneling between a semiconductor and a metal. In this section, we 

focus on modeling the tunneling rates to and from the island, with appropriate 

simplifications, with a goal of providing results that both give insights into the device 

operation, and with the desired accuracy. Changing the potential of the island by the gate 

potential could enhance or inhibit electron tunneling. When the island’s potential changes 

sufficiently to overcome the discrete charging energy levels, electron tunneling occurs and 

causes a periodic variation in source-drain current [3, 19, 20] called Coulomb oscillations. 

The periodicity in a SET device with a single island is given by ∆𝑉P =
QR

ST
, where 𝐶P is the 

gate capacitance [3, 20]. 
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2.2.1 Tunneling Rate  

Following the work of Savaikar et al. [9, 10], and Amman et al. [21], the tunneling rate 

across a junction can be calculated using the general semi-classical equation which was 

inspired by Fermi-golden rule. Equation (2.1) shows the tunneling rate between the middle 

island (i) and the left electrode (f) of a SET device, for an electron with energy E as: 

𝛤23 =
2𝜋
ℏ 𝑇 𝐸 &𝐷2 𝐸

K&

K+
𝑓 𝐸 − 𝐸2 𝐷3 𝐸 − ∆𝑊23  

× 1–𝑓 𝐸 − 𝐸2 − ∆𝑊23 𝑑𝐸	,		 

(2.1) 

where 

∆𝑊23 = −𝑒𝑉23 + 𝐸"#		 (2.2) 

is the change in free energy of the system upon tunneling across a junction from the initial 

to the final states. Ei is the Fermi energy of the initial side of the tunneling junction, and Di 

and Df are the density of states functions for the initial and final states of the tunneling 

electron, respectively. f(E) is the Fermi-Dirac distribution function, and T(E) is the 

tunneling probability. Integral limits l1 and l2 are –∞ and +∞, respectively; however, in our 

model finite integral limits are dynamically calculated depending on the applied potentials 

and tunneling barrier characteristics to improve computational efficiency [9, 10]. 

2.2.2 Transition Probability 

The transition probability depends on properties of the junction, and following work of 

Savaikar el al. [9, 10], we consider the potential barrier to be a simple rectangular barrier. 

If there is a potential difference across the junction (𝑉23), the barrier height is changing 

over the width of the barrier. This changing barrier height depends on the work function of 

materials across the junction.  If the work functions are much larger than the potential 
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difference across the junction, then the barrier height can be approximated as a constant of 

the average height over the width. The effect of this approximation is trivial on the outcome 

of the algorithm and improves the computational efficiency [9, 12, 22].   

A simple model for electron transition from the valence band of the island to the 

metallic electrode is shown in Fig. 2.2, illustrating the relative energy levels of the 

semiconducting island (f) and metal electrode (i) with a potential difference (Vif ) across the 

junction. For tunneling that proceeds from the semiconducting island, the average effective 

barrier height (V0) is calculated according to [9, 10]: 

𝑉U = 	
𝜙W" + 𝜙W" − 𝑒𝑉23

2 = 𝜙W" −
𝑒𝑉23
2 					, (2.3) 

where 𝜙XY represents the electron affinity in the island’s conduction band or valence band. 

Using the model of electron tunneling through a one-dimensional rectangular barrier, the 

single-electron tunneling probability can be approximated as: 

 
12 2

2 0 1

0

sinh ( )( ) 1
4 ( )
V k dT E
E V E

-
é ù

= +ê ú-ë û
, (2.4) 

where 

𝑘+ =
2𝑚(𝑉U − 𝐸)

ℏ 					 (2.5) 

E is the electron’s energy, eV0 is the barrier height, and d is the barrier width [23]. For the 

sake of efficiency in calculating transition probability, we approximate the initial energy 

of an electron tunneling from the island to be the energy of the appropriate conduction- or 

valence-band edge; i.e., an electron tunneling from the conduction band is taken to have 

E = EC in (4) and (5), and likewise an electron tunneling from the valence band is taken to 
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have E = EV in (4) and (5). 

 

 

Figure 2.2. Electron tunneling from the middle island’s valence band to the left electrode 

when there is a potential difference of Vif across the junction. The green arrow shows the 

electron tunneling direction. The red arrow denotes the average barrier height over the left 

junction width (d). 𝜙[ and 𝜙G are electron’s work function of the valence band and metal 

respectively.  

2.2.3 Density of States 

The density of states (DOS) depends on the electronic properties of the material and its 

geometry, and may take on a complicated form. For metals the density states of electrons 

which are energetically located near Fermi energy, is approximated using the free-electron 

model [24, 25]. In majority of previous theoretical studies, such as those using the SIMON 

code by Wasshuber et al. [11, 12] or the MITS algorithm developed by Savaikar et al. [9, 

10], the density of states of the metal electrodes is approximated as a constant D0 = D(EF), 

which is the density of states at the Fermi energy of the metal. This is generally appropriate 

as a model for electron transport in metals since the participating carriers and available 

 d 
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levels are positioned energetically near the Fermi energy of the material. Semiconductor 

band structures, however, are not easily described by analytic formula, although 

approximations can be utilized to develop an expression sufficiently accurate to employ in 

the tunneling rate equation (1) [26]. The energy separation between discrete energy levels 

due to quantum confinement effects depends on the size of the nanometer-scale material 

[27]. If the energy spacing is much smaller than the charging energy (∆𝐸 ≪ 𝐸Y\) or thermal 

energy then the energy levels may be considered continuous [27]. The model presented is 

applied to islands 2.5 nm or larger, which allows us to model the closely spaced discrete 

energy levels of the quantum island as a continuous energy band, as is used in semi-

classical approximations in semiconductor physics. Using the parabolic approximation to 

model electron’s density of states in semiconductors might be timely effective or 

appropriate for electrons with low kinetic energy but is unable to accurately model the DOS 

of electrons with higher kinetic energy. At higher energy levels, the DOS of 

semiconducting materials is more accurately modeled by the non-parabolic approximation. 

In a semiconductor with an energy gap the modified-parabolic-approximation density-of-

states equation can be written as [28, 29]: 

𝐷 𝐸 =
2(𝑚Y

∗)
E
& 𝐸 − 𝐸XY + 𝛼XY(𝐸 − 𝐸Y)& 1 + 2𝛼XY 𝐸 − 𝐸XY

𝜋&ℏE 	, 
(2.6) 

where 

𝛼XY =
1
𝐸P

1 −
𝑚XY
∗

𝑚

&

		, (2.7) 

m is the free electron mass,	𝑚XY
∗  is are the effective mass of electron in the conduction band 

or valence band, Eg is the energy gap, Esc is the edge of the conduction band or the valence 

band and	ℏ is the reduced Planck constant. 
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A comparison between the non-parabolic density-of-states approximation, parabolic 

density of state approximation and full-band density of states calculations from [29] shows 

that the non-parabolic approximation is more accurate at higher energy levels. We can 

conclude from the comparison that when energy states at 0.5 eV above the conduction band 

edge or further (0.5 eV below the valence band edge or further), are involved in the 

tunneling, then the non-parabolic model is required as a more accurate approximation [30, 

31]. It should be noted that depending on the applied potential, temperature, and the energy 

levels which are participating in tunneling, the parabolic approximation may be sufficiently 

accurate, improving the computational efficiency of the modeling. If the energy levels that 

are participating in the tunneling are in the window of 1 eV around the Fermi energy, then 

the parabolic model is a valid approximation. If the temperature and applied potential 

causes higher energy states to participate in the tunneling events, one needs to take into 

account the non-parabolic approximation to improve accuracy. 

2.3 Numerical Calculation  

The drain electrode is connected to the ground and is used as a reference in this study 

to be at zero potential. The lowest energy level of the drain to be set at 0, the Fermi energy 

of intrinsic silicon is set to 5.5 eV at equilibrium, and the electron affinity of silicon to be 

4.05 eV. Therefore, we consider the highest energy level participating in the tunneling to 

be at 9.27 eV (~10 eV). Replacing the terms associated with our system as outlined above 

into (1), the governing equation for the tunneling probability does not have a closed form 

solution. Thus, (1) is evaluated numerically using the built-in integral function in 

MATLAB, with integration limits that are dynamically calculated based on potential 
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difference across the junction, with respect to the highest (10 eV) and the lowest (0) 

allowed energy levels and thermal energies of the system. The series of simulations to 

construct an IV characteristic are started at a potential bias of zero volts, and increased step 

by step in increments of 0.01 V in each subsequent simulation. The KMC method is used 

to select a tunneling event, after which the time interval is advanced, and the charge state 

of the system is updated. After each tunneling event, the potential across the junctions and 

integral limits re-calculated, and new tunneling rates are re-estimated. This is repeated until 

a steady-state current converges with error bars less than 2% of the mean value. 

2.4 Results: Test Cases 

In this section test cases are investigated to demonstrate the robustness of the algorithm, 

and basic effects of the assumptions made for the model. The test cases are designed to 

inspect the behavior of the device by changing the key parameters. For each test case, the 

voltage increment (either gate or source-drain voltage) is set at 0.01 V. A minimum of 

10,000 Monte Carlo steps are performed for each voltage increment. 

2.4.1 Test I: Coulomb Staircase of a SET Device with Metallic Electrodes 
and a Semiconducting Island 

The first test case is dedicated to studying threshold voltage and the Coulomb staircase 

effect in the IVsd characteristic. The first fundamental difference between devices with a 

semiconductor versus a metallic island becomes clear: A larger threshold voltage is 

required for the semiconducting island due to its band gap. At low temperature, electron 

tunneling occurs when the input biases are able to supply enough energy for electrons to 

overcome not only the charging energy but to also sufficiently shift the energy levels across 

the band gap to allow for alignment of the available energy levels in the density of states. 
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Following Equation (9) of Amman et al. [29] the threshold voltage of a SET device is given 

by: 

𝑉W_ =
𝑒&

2 𝐶+ + 𝐶&
2𝑛 + 1 +

𝐸`a
2

𝐶+ + 𝐶&
𝑒𝐶&

, (2.8) 

where the first term comes from the charging energy and the second term is the additional 

shift required by the band gap (EBG). With EBG = 1 eV, and the junction capacitances of 0.8 

aF and 0.5 aF, the first threshold voltage is 1.06 V as demonstrated in Fig. 2.3, and in good 

agreement with the (2.8). Subsequent steps in the IVsd characteristic are effectively washed 

out by the relatively high bias voltage (Fig. 2.3), as compared to metallic-island devices, 

where the threshold potential can be much smaller. Nevertheless the characteristic gives 

indications of a step-like behavior at 1.23 V and 1.43 V, also in good agreement in 

prediction of (2.8). The steps are more rounded and show notable increases in the slope 

after each step, as compared to what is observed near the threshold for metallic SETs. This 

behavior is due to the effect of the band gap in the semiconductor SET, which leads to a 

significantly larger Vth than that in metal SETs. Beyond Vth, the device now operates at a 

relatively high bias that leads to higher tunneling probabilities and increasingly more 

operating tunneling channels (sequences of tunneling events across the device with 

potentially different charge states for the island in the process). Similarly, high biases also 

tend to render the Coulomb steps to appear less discernable in metallic SETs [9].   
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Figure 2.3.  The current versus source-drain voltage (IVsd) characteristic of SET with one 

semiconducting island, at the temperature of 0.1 K and under zero gate bias. Number of 

MC cycles = 20,000 for each source-drain voltage. 

2.4.2 Test II: Impact of Gate Capacitance on IVg Characteristics on a SET 
Device with Metallic Electrodes and a Semiconducting Island 

The gate current-gate voltage (IVg) characteristic of a SET for a single-island device is 

expected to have periodic oscillations (Coulomb oscillations), as described in Section II. If 

the quantum discreteness of energy levels due to small island size in the model is ignored, 

the periodicity in potential depends only on the gate capacitance as e/Cg [3, 19, 20]. The 

current versus gate-voltage (IVg) characteristic is plotted in Fig. 2.4, for a device at 154 K 

with source and drain capacitances of 0.8 aF and 0.5 aF, respectively, as discussed in [17]. 

The current-gate voltage characteristic has been modeled using two gate capacitance 

values. The Coulomb-oscillation period is halved as the gate capacitance doubles, as 

expected. This confirms that the algorithm is modeling the gate effect properly.  
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Figure 2.4. Top: Coulomb-oscillation characteristics of a SET with one semiconducting 

island for two different gate capacitances, one twice that of the other. Simulations were 

conducted at T = 154 K. Top: source-drain potential Vsd = 0.5 V; Bottom: Vsd = 1.2 V. 

Number of MC cycles = 20,000 at each gate voltage. 

Figure 2.4 (bottom) shows the current-gate voltage (IVg) characteristic at 154 K and a 

higher Vsd for two gate capacitance values, of 0.4 aF and 0.8 aF, which are appropriately 
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scaled to capture the Coulomb oscillations in higher Vsd. The Coulomb-oscillation period 

is halved as the gate capacitance doubles. The periodicity only depends on (e/Cg), as 

expected, and changing the range of gate capacitances and the input bias does not affect 

the periodicity. The current magnitude in the SET device increases by increasing the Vsd, 

also as expected. As can be observed in Fig. 2.4 (bottom), changing the gate capacitance 

from 0.4 aF to 0.8 aF changes the magnitude of the current as well. As these capacitances 

are comparable to the junction capacitances (0.8 aF and 0.5 aF), the change of 0.4 aF 

decreases the charging energy resulting in larger current magnitude.  

The increase in the magnitude of the current (comparing Fig. 2.4 top and bottom) is 

dramatic and will be discussed in the next section.  

2.4.3 Test III: Impact of Junction widths on IVg Characteristics on a SET 
Device with Metallic Electrodes and as Semiconducting Island 

 The third test case used to demonstrate the relevance of the modeling method is related 

to the geometry of the system. As mentioned in Section II: Theory and Background, the 

transition probability depends strongly on the junction width (D). In a series of simulations 

where the junction widths are proportionally increased while maintaining a fixed ratio, the 

peak current follows the predicted inverse sinh2(k1D) proportionality in (2.4) as shown in 

Fig. 2.5. 
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Figure 2.5. The gate-voltage characteristics for three devices with different pairs of 

junction widths, d. Asymmetric junction widths for left and right junctions are scaled by a 

fixed factor of two in each of the three cases. Here, T = 154 K. Number of MC cycles = 

20,000 for each gate potential. 

2.5 Results: SET Application and Discussion 

To explore the unique aspects of a SET with a semiconducting island, we next study 

the temperature sensitivity of SET devices with a constant source-drain voltage. We also 

examine the impact of the island’s band gap on the device’s performance.  

2.5.1 Temperature Dependence: Metallic Electrodes and a Semiconducting 
Island  

In a SET with a semiconducting island, sensitivity of the IV characteristics on 

temperature is found have different regimes, depending on the relative positions of the 

electrode Fermi levels relative to the band edges of the island. If, for example, under 

suitable bias conditions there is a path (sequence of probable tunneling events) for electrons 
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to tunnel from near the Fermi energy of the right electrode to the conduction band of the 

semiconducting island, followed by tunneling from the valence band of the island to the 

left electrode, then the effect of temperature on the behavior of the SET should be relatively 

small, since thermally excited electrons or holes are not necessary for tunneling to be 

possible. This is illustrated schematically in Fig. 2.6. As an example, for a suitable bias 

condition under a 1.2 V input source-drain bias and 𝑉0 = 0, the island’s potential rises to 

approximately 0.6 V, which is greater than half of the band gap. This opens probable paths 

for electrons in the slower (wider) junction to tunnel from the right electrode to the 

available states of the conduction band of the island. Furthermore, the valence band of the 

middle island is aligned with energies close to the Fermi level of the left electrode in the 

faster (narrower) junction. For this condition, the current remains on the same order of 

magnitude as demonstrated in Fig. 2.7, showing that as the temperature is increased by 

almost a factor of 4, from 77 K to 300 K, there is only a relatively small temperature 

sensitivity, with the peak current increasing by a factor of approximately 10%. The overall 

magnitude increased but the overall amplitude of the Coulomb oscillations decreases as the 

temperature increases when the thermal energy becomes of the same order of magnitude 

as the charging energy. 



55 

DC

Vs

Ev	

Ec

Junction	1

Junction	2

Er Ef

Gate
DC

Drain	-	
Metal	

Electrode	

SC	
Island

Source	-	
Metal	

Electrode	

DC

Vs

Ev	

Ec

Gate

Junction	1

Junction	2

Er Ef

Er

Island

DC Drain	-		
Metal	

Electrode	Source	-
Metal	

Electrode	

 

Figure 2.6. Schematic energy-level diagram of a system with two metallic electrodes and 

a semiconducting island with the band gap of 1eV. Under a source-drain voltage of 1.2 V 

and a gate potential of 3.9 V, the island’s potential is 0.6 V, and the Fermi level of the right 

electrode overlaps the conduction band. The valence band of the island is aligned with 

energy levels of the left metal electrode’s Fermi level so there is a clear path for electron 

tunneling through the device. Top: system at T = 0 K. Bottom: The system at T > 0. Blue 

represents the filled states, grey represents the empty states and green represents the 

partially occupied states. 
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In a regime with a probable electron tunneling path (Fig. 2.6), as is observed in Fig. 

2.8, increasing the input voltage leads to a increase in the magnitude of the current. As long 

as the input voltage is in a range that allows for the convenient electron path to exist, then 

we have a device which characteristic can be controlled by Vsd, and is not drastically 

sensitive to temperature, which is a unique and potentially valuable feature of the 

semiconductor-island device. The characteristic at the higher source input voltage of 1.4 V 

is noisier as a result of there being a wider range of probable tunneling events. At the higher 

source bias, there are additional available states to tunnel to and additional available states 

to tunnel from. This increase in the range of potential transitions results in greater number 

of tunneling events that can participate, and therefore unless a larger number of KMC 

cycles are employed, the data appear nosier. 

 

Figure 2.7. The current-gate voltage characteristic for a constant source-drain voltage (Vsd) 

of 1.2 V for temperatures of 77 K, 154 K, and 300 K. These characteristics are weakly 

temperature dependent. Number of MC cycles = 40,000 for each gate voltage. 
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A different regime for temperature sensitivity can be observed for cases in which the 

source-drain potential is relatively small, such the Fermi energy of the right electrode is 

now aligned within the island’s band gap. In this case, as schematically shown in Fig. 2.9, 

tunneling is impeded at the right electrode except at high enough temperatures such that 

thermally excited electrons in the right electrode can tunnel to the island’s conduction band. 

The occupancy of energy levels that are involved in tunneling is strongly temperature 

sensitive and when the input biases of the system are low, the thermally excited electrons 

are those that primarily participate in tunneling and generate the current flow through the 

device. Therefore, we can observe a strong temperature effect on the current-gate voltage 

characteristic of the device. As observed in the simple model in Fig. 2.9, the electron-

tunneling path is mostly consisting of partially occupied state due to thermal excitation of 

electrons. The current magnitude increases over four orders of magnitude as the 

temperature increases from 154 K to 300 K, as is demonstrated in Fig. 2.10.  

 

Figure 2.8. The current-gate voltage characteristics of SET model for three different input 

voltages (Vsd = 1, 1.2 and 1.4 V). The temperature is kept constant at 154 K. Number of 

MC cycles = 20,000 for each gate voltage.  
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Figure 2.9. The energy-level diagram model of a system with two metal electrodes and a 

semiconducting island where the island potential is 0.2 V and Vsd = 0.5 V. The potential 

difference of across each of the junctions is not sufficient for the drain’s Fermi energy to be 

aligned with the conduction or valence bands. Left: system at T = 0, there is no electron 

tunneling path. Right: The system at T > 0, illustrating a thermally-enabled tunneling path. 

Blue represents the filled states, grey represents the empty states and green represents the 

partially occupied states.   
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Figure 2.10. The current-gate voltage characteristic for a constant source drain voltage (Vsd) 

of 0.5 V for two different temperatures Top: T = 300 K, number of MC cycles = 40,000 

per gate voltage. Bottom: T = 154 K, number of MC cycles = 20,000 per gate voltage. 

2.5.2 Semiconducting electrodes and semiconducting island 

Because of the techniques used to fabricate semiconducting island(s) there are 

sometimes positioned between semiconducting electrodes rather than metallic electrodes. 

This type of semiconducting SET geometry is investigated in this section. The IV 

characteristics of such a device are similar the case of a metal-semiconductor-metal SET, 

but in different energy regimes. In particular, the input potential bias must be higher to 

compensate for energy gap in both of the electrodes.  

If under higher source-drain bias, then the valence band on the initial tunneling side is 

aligned with the available states in the conduction band of the island on final side, then a 

convenient path for electrons exists, as shown in schematic in Fig. 2.11. The Coulomb 

oscillations are observed under 2.5 V source-drain voltage as demonstrated in Fig. 2.12. 
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Figure 2.11. Energy-level diagram of a system with two semiconducting electrodes and a 

semiconducting island. Under a source-drain voltage of 2.5 V and a gate voltage of 3.9 V, 

the island’s potential is around 1 V (predicted from the simulation). The system is at T > 0: 

Blue represents the filled states, grey represents the nearly empty states and green 

represents the partially occupied states. 

 

Figure 2.12. The current-gate voltage characteristic of a SET with semiconducting 

electrodes and island under a constant source drain voltage (Vsd) of 2.5 V. Number of MC 

cycles = 40,000 per gate potential. 
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2.5.3 Impact of the Band Gap  

To explore the advantages of using a semiconducting material versus metal (Fig. 2.13), we 

have studied the effect of the band gap of 1 eV on the gate IVg characteristic of the 

nanometer-scale SET device, with a constant source-drain voltage of 1.4 V. In a device 

with zero band gap, the probability of electron tunneling from multiple paths is higher due 

to the wider energy window. As a result, there are smaller fluctuations and more well-

defined oscillations observed in the characteristic in the case of the larger band-gap energy, 

as is shown in Fig. 2.14. As expected, the smaller band gap relates to a greater possibility 

for electrons to tunnel, so the current magnitude is significantly larger. 

Source	-	
Metallic	
Electrode	

Drain	-	
Metallic	
Electrode	

DC

Vs

Junction	1

Junction	2

Ef

Metallic	
Island

      DC

Vs

Ev	

Ec

Junction	1

Junction	2

Er Ef

Gate
DC

Drain	-	
Metal	

Electrode	

SC	
Island

Source	-	
Metal	

Electrode	

 

Figure 2.13. Left: The energy level diagram model of a system with two metal electrodes 

and a metallic island (zero band gap). Right: The energy level diagram model of a system 

with two metal electrodes and a semiconducting island with band gap of 1 eV.  
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Figure 2.14. Current-gate voltage characteristics of a SET with Vsd = 1.4 V and T = 154 K. 

Top: The current-gate voltage characteristics of SET model with zero band gap. Bottom: 

The current-gate voltage characteristics of SET model with band gap 1 eV. Number of MC 

cycles = 40,000 per gate potential. 

2.6 Conclusion 

In this study, a simulation tool is developed to predict the current-voltage 

characteristics of SET devices with nanometer-scale semiconducting islands. The tool can 
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be used for modeling single electron device transport with one or more semiconducting 

islands with metallic or semiconducting electrodes. Although this work presents results for 

devices with one island, studies of the characteristics of devices with multiple islands is 

are also underway and will be presented in future work. A key capability of the tool is the 

numerical calculation of the tunneling rate across junctions, which allows more realistic 

modeling of electron transport in materials with complicated band structures.  

The characteristics of single-island semiconductor SET devices are studied as a 

function of the externally controlled parameters, such as the electrode potential and 

temperature, as well as the internal parameters such as coupling capacitances (impacting 

the charging energy and degree of gate control), the magnitude of the band gap, and 

junction widths. 

The temperature sensitivity of the IVg characteristics is an interesting feature of 

semiconducting SETs that depends on the source-drain bias. For example, when the main 

electron tunneling path (from valence band to the conduction band) is blocked by the band 

gap, such as for eVsd < EBG, the impact of temperature on the number of electrons 

participating in tunneling is high, therefore the temperature sensitivity of the device is 

significant. The sensitivity of the IVg characteristics to temperature is relatively weak, 

however, when a significant path for electron tunneling has been opened by an appropriate 

choice of source-drain potential, such as for eVsd > EBG. It was observed that when a higher 

source-drain potential is applied to the system (> 1 V), the current increases significantly 

as compared to 0.5 V. In this regime, there is a convenient path for electrons to tunnel 

(from the electrode to the island’s conduction band) so the temperature has only a 

secondary effect on the magnitude of the current, and the temperature sensitivity is 
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diminished. The ability to control the degree of temperature sensitivity with input bias 

utilizing the band gap, is a unique characteristic of the semiconducting SET devices 

compared to metallic devices.  

The gate potential can enhance or inhibit electron tunneling between source and drain, 

employing the band gap. It is observed that the impact of a band gap in a SET’s 

semiconducting island on the visibility of the Coulomb oscillations is drastic comparing to 

a metallic SET under same bias condition and temperature where the oscillations are 

indiscernible. If the electrodes in the SET device are semiconducting as well, the Coulomb-

oscillation peaks can be also observed, but the bias conditions under which conductance 

can be observed will be higher in this case compare to metallic electrodes, due to the 

electrodes’ band gaps.  

The improved definition of the Coulomb oscillations, external bias-based control of its 

temperature sensitivity, and improved gate control over a wide input bias range of the 

semiconducting single electron device, makes this an interesting candidate for future 

functional device applications where electrometer-scale charge transport measurements 

with controllable high or low temperature sensitivity are required.  
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3 Efficient Physics-based Modeling of a 
Representative Semiconducting Quantum Dot 
Single Electron Device 

This chapter has been published as a conference paper and is used with permission, 

from: P. K. Hazaveh, P. L. Bergstrom, and J. A. Jaszczak, “Efficient Physics-based 

Modeling of a Representative Semiconducting Quantum Dot Single Electron Device,” 

IEEE 17th International Conference on Nanotechnology (IEEE NANO 2017), pp. 739 – 

744, 2017. 

 

In this work, we study electron transport modeling of a semiconducting quantum dot 

interacting with metal electrodes. The modeling utilizes a physics-based kinetic Monte 

Carlo algorithm to balance accuracy with improved calculation speed, applied to the 

transport characteristic of a reported experimental Single Electron Transistor (SET) device 

with semiconducting silicon islands. We introduce an efficient numerical integration 

method to accurately calculate the electron tunneling rates for all allowable transitions, 

then apply kinetic Monte Carlo methods to simulate the electronic transport properties of 

the device. The method accounts for non-constant density of states and transition 

probabilities, and parasitic field -effect device coupling. A series of test cases have been 

introduced to demonstrate the relevance of the model. Two test cases explore the physical 

properties of the SET to confirm the proper modeling of gate, drain, source capacitances 

and junction widths. A third test is designed to explore the temperature sensitivity of a SET 

with a semiconducting island, where the results show an interesting possibility to control 

the temperature sensitivity of the system through the applied biases. This behavior is not 
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possible in metallic SET systems. The final test shows that the methodology models a 

representative experimental three terminal silicon single electron device with a coupled 

parasitic field effect transistor at low to moderate source-drain biases. The test 

demonstrates that the complex and aperiodic behavior of the Coulomb oscillations in the 

experimental device over temperature and bias cannot be fully characterized by the 

modeled physics of the SET or the nanoscaled MOSFET. 

3.1 Introduction  

As devices approach fundamentally quantum mechanical dimensions, coupled semi 

classical modeling solutions may still be applied even for critical dimensions down to 

approximately 2 nm [1]. Unlike ab initio methods, which cannot provide a timely solution 

for systems of this scale, semiclassical methods can model quantum-tunneling-based 

devices efficiently and rapidly where care is taken in minimizing parametric assumptions 

for interesting complex materials. In single electron devices with quantum dots (QDs) 

larger than 2 nm, if the band structure of the material and electron tunneling behavior are 

incorporated, more accurate transport models are possible for systems with arbitrary 

geometries [1, 2] 

In this study, we utilize a kinetic Monte Carlo (KMC) based algorithm to simulate the 

current-voltage characteristic of a device with a semiconducting quantum dot and two 

electrodes. Master Equation approaches for calculating currents have been developed for 

single-island systems [3]. However, since such approaches have not been developed for 

multiple-island devices, we have chosen the KMC method to enable scalable system 

modeling in the future. 
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This simulator considers the physics and geometry of the system to model electron 

transport throughout a single dot device. To broaden the applicability of the model to 

devices of different types of materials, we have reevaluated many of the simplifying 

assumptions typically utilized by previous authors for metallic systems [1–4]. 

3.2 Method 

The most general form for the electron tunneling rate from one energy level to another 

is extracted from the Fermi golden rule:  

𝛤23 =
2𝜋
ℏ 𝑇 𝐸 &𝐷2 𝐸 𝑓 𝐸 − 𝐸2

K&

K+
× 

𝐷3 𝐸 − ∆𝑊23 1– 𝑓 𝐸 − 𝐸2 − ∆𝑊23 𝑑𝐸, 

(3.1) 

where 𝐸2	is the Fermi energy of the initial side, Di and Df are the density of states functions 

for the initial and final states of electron, respectively. f(E) is the Fermi-Dirac distribution 

function, T(E) is the transition probability and ∆𝑊23	 is the change in the free energy of the 

system when a tunneling occurs across the junction from the initial to the final energy level. 

Limits (𝑙+, 𝑙&) of the tunneling rate integral are dynamically adjusted depending on the 

potential difference across the junction and the highest and lowest level that can participate 

in tunneling.  

Introducing a potential difference, Vif, across a junction causes the electron energy 

states of one side of the junction to shift by eVif with respect to the other side. In addition, 

a small island capacitance leads to a large charging energy, Ech, which also effects the 

change in the free energy of the system over a tunneling event, as given by [2] 

∆𝑊23 = −𝑒𝑉23 + 𝐸"#. (3.2) 
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The probability of the particle being transmitted through the barrier, 𝑇 𝐸 , can be 

approximated by the Wentzel–Kramers–Brillouin (WKB) method [5]. There are two 

approximations made to calculate this probability. First, the barrier height varies over the 

width of the barrier. To simplify the integration, we treat the barrier as a rectangular barrier 

whose height is dynamically calculated (dependent upon qVif) as the average height over 

the width. Second, for a given barrier height, we evaluate 𝑇 𝐸  at either the conduction or 

valence band edges. This is in contrast to previous studies for electron tunneling initiating 

from a metal, where the transition probability from all the energy levels is considered 

constant, 𝑇 𝐸3  [1, 4]. We have verified this approximation has improved integration time 

with minimal impact on the tunneling rates. For example, the transition probability from 

the edge of the conduction band can be calculated as 

𝑇" &~ 𝑇 𝐸" & = 1 1 +
𝑉U& sinh& 𝑘2𝑑
4𝐸S 𝑉A − 𝐸"

, (3.3) 

where 𝐸" is the edge of the conduction band,	𝑘2 is the wave number in the first region,	𝑉A 

is the average barrier height and d is the junction width [6].  

 In (3.1), Di and Dj are functions of energy. In most previous theoretical work such as 

in the SIMON code by Wasshuber and Selberherr [4] and in MITS by Savaikar, et al. [1], 

the density of states for metals has been approximated as the density of states at the Fermi 

energy, which is an energy independent constant, 𝐷(𝐸3), given by (3.4): 

𝐷 𝐸3 =
8𝜋𝑚E &

ℏE 𝐸3	. (3.4) 

This is an appropriate approximation for metals, since the participating carriers and 

available states are positioned energetically near the Fermi energy of the material. For 
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materials with more complex band structures, the density of states should not be 

approximated as a constant value. The complexity of the density of states approximation 

for the relevant band structure impacts the model complexity significantly. However, the 

method described allows for more appropriate choice of functions to describe the density 

of states for both conduction and valence bands. However, the impact of direct versus 

indirect bandgaps in semiconductors has not been implemented in the model. Rather, a 

direct bandgap semiconductor band structure with a parabolic or modified parabolic 

approximation is chosen. When the energy of the charge carrier diverges significantly from 

the minimum energy of the band, the parabolic approximation loses its accuracy in 

representing the band structure. At higher biases, electrons with higher energy levels will 

participate in tunneling in our system. In order to use the analytical band model for higher 

energy levels, a modified parabolic term is added in the energy model [7,8]. The modified 

parabolic approximation for the density of states is given by 

𝐷 𝐸 =
2(𝑚∗)

E
& 𝐸 + 𝛼𝐸& 1 + 2𝛼𝐸 	

𝜋&ℏE 	, (3.5) 

where 

𝛼 =
1
𝐸0

1 −
𝑚∗

𝑚U

&

, (3.6) 

where 𝑚∗ is the effective mass in the related band (𝑚"
∗ for conduction band and 𝑚i

∗  for 

valence band), 𝑚U is the free electron mass, and Eg is the band gap energy. 

Replacing the density of states with a parabolic or modified parabolic model results in 

a tunneling rate integral (3.1) that cannot be easily solved in closed form. In this model 

framework, we solve this integral numerically and dynamically determine finite integration 
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limits. This method broadly enables future study of electron transport for idealized metal 

and semiconductor QD materials represented by complicated band structures, including 

more complex topologies with multiple QD and mixed materials. In this demonstration of 

the method, we assume a simple two-junction device with 3 metallic electrodes and a 

semiconductor quantum dot (island) as shown in Fig. 3.1 to provide a relevant test case.  

To take into account the band gap of the semiconductor in the tunneling rate equation, 

each tunneling rate is divided into two integrals. For example, in the first junction 

(between middle island and the left electrode) the tunneling rate from right to left (middle 

island to the left electrode) is the probability of electron tunneling from the conduction 

band of the island to the metal and the probability of electron tunneling from the valence 

band to the metal. Each electron tunneling event is chosen using KMC based on the 

calculated rates. The potential differences across the junctions and the integral limits are 

updated after each transition. This method is repeated until convergence to a steady state 

current [1]. 
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Figure 3.1. Top: Model Single Electron Device topology with three metal electrodes and a 

semiconductor island. Bottom: Cartoon of the QD-drain junction under an applied bias, eVrl, 

showing a probable tunneling path from occupied states in the metal electrode to the 

semiconductor island conduction band. The blue represents valence or filled energy states, 

and the red represents conduction or available unfilled energy states over the range of 

potential energies considered in the model.  

3.3 A Model device in a Nano-Scaled Point-Contact Metal-Oxide-
Semiconductor Field Effect Transistor  

In order to explore the applicability and limitations of the model framework with an 

experimental device, an interesting nano-scaled point contact MOSFET device by Ishikuro 

and Hiramoto was chosen as an intriguing application [9]. The device technology produced 

a single semiconducting QD at dimensions small enough for room temperature 

confinement of electrons on the quantum dot and incorporated a sufficient data set to study. 
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The device was fabricated in a p–type silicon on the oxide (SOI) substrate. The quantum 

dot and tunneling barriers are fabricated by electron beam lithography at dimensions below 

10 nm. The semiconducting QD was formed in a nanoscaled top p–type silicon layer with 

narrow channels defined between source, QD, and drain to ultimately form the narrow 

tunneling barriers necessary in a single electron device through oxidation. The device 

demonstrates both Coulomb blockade behavior in the current-voltage characteristic and 

Coulomb oscillations with a gate potential. The device demonstrates a relatively low 

temperature sensitivity in the current. However, it exhibits an increasing baseline current 

drift with temperature. Also, the Coulomb oscillations exhibit a change in periodicity with 

gate bias. In what follows, test cases are utilized to establish the general validity of the 

model, after which the application of the model to the nanoscaled point-contact MOSFET 

is explored. 

3.4 Model Results Using a Test Case 

In order to demonstrate relevance of the modeling method for this device, three test 

cases are investigated to explore the validity of the assumptions and approximations made 

in the model. These tests examine the response of the device to variations in critical device 

parameters, such as charging energy and coupling capacitances to the QD, temperature, 

and gate effects. For each test case, the voltage increment (either gate or source-drain 

voltage) is set at 0.01V, and a minimum of 10,000 Monte Carlo steps are performed for 

each voltage increment.  
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3.4.1 Test I: Impact of Gate Capacitance 

In a SET with a single island, when the source-drain potential is kept constant and 

small, the gate voltage-current characteristic of this device should demonstrate periodic 

oscillations, known as Coulomb oscillations. The period depends on the gate capacitance 

(e/Cg) and the discreetness of the energy levels on the island [10]. Since the modeled QD 

diameters are larger than 2 nm, the discreetness of energy levels is ignored in the model 

[11]. The current-gate voltage (IdVg) characteristic is plotted in Fig. 3.2, for estimated 

source and drain junctions of 0.5 nm and 1.5 nm, respectively, based on source and drain 

capacitances of 0.8 aF and 0.5 aF, respectively, and an island radius of 3 nm, as given by 

[9]. The current-gate voltage characteristic has been modeled at two gate capacitances. The 

Coulomb oscillation period reduces by half as the gate capacitance doubles, as expected. 

This confirms that the algorithm is modeling the gate effect properly.  

 
Figure 3.2. Coulomb oscillation characteristics of a SET with one semiconductor QD, for 

two different gate capacitances. The model was conducted with a source-drain potential 

(Vsd) of 0.5 V, at a temperature of 154 K, for a gate capacitance that doubles from one 

condition to the next.  
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3.4.1 Test II: Impact of Charging Energy 

The primary effect of decreasing the charging energy is to broaden the width of the 

Coulomb oscillation peak [12]. It is shown in Fig. 3.2, that this effect results in Coulomb 

oscillation peaks that are broader and shifted in gate potential. The period of the peaks 

depends on the gate capacitance, which in this case is kept constant at 0.085 aF. The period 

for both of the conditions (green and blue) are the same. Because the current is not totally 

suppressed between the expected Coulomb oscillations for the lower charging energy of 

9x10-21 J at the tested temperature of 154 K, we observe that the Coulomb blockade is 

suppressed. This shows that the charging energy plays the expected role in this system and 

the simulation is capable of properly taking into account the effect of the charging energy. 

The thermal energy for T = 154 K, is 𝑘`𝑇 = 2×10?&+	J, where T is the temperature and 

𝑘`	is the Boltzmann constant. The charging energy of the system related to the blue plot is 

larger than the thermal energy so a Coulomb blockade is observed. The charging energy of 

the system related to the green plot is smaller than the thermal energy, so the Coulomb 

blockade is suppressed.  
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Figure 3.3. Current-Gate Voltage plot for a source-drain potential of 0.5V at 154 K. The 

plots show two different charging energies. The effect of charging energy shifts and 

modulates the peak width, and suppresses the Coulomb blockade for the smaller charging 

energy tested.  

3.4.1 Test III: Impact of Geometry on the Transition Probability 

The second test to demonstrate the relevance of the modeling method is related to the 

geometry of the system. As mentioned in the “Method” section, the transition probability 

in (3.3) depends on the geometry of the barrier. The junction width, d, plays a primary role 

in the transition probability. As the junctions proportionally increase in width while 

maintaining their ratio, the peak current falls as predicted in (3.3) and (3.1) and as shown 

in Fig. 3.4 below. 
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Figure 3.4. The gate voltage characteristic for different junction widths, d. As we expect, 

the peak current reduces as the junction increases in width. To represent the modeled 

device, assymetric junction widths for left and right junctions are presented, scaled by a 

factor of two over three conditions at a temperature of 154 K. 

3.5 Nano Point-Contact MOSFET Model Application 

To explore the terminal and temperature behavior of the current-gate voltage 

characteristic of the fabricated nano-scaled point contact MOSFET device by Ishikuro and 

Hiramoto [9], we study the temperature sensitivity of the individual SET device with a 

constant source-drain voltage and the baseline current of the nano-MOSFET model.  

3.5.1 Temperature Dependence 

In a SET with a semiconducting island, if there is a path for electrons to tunnel from 

near the Fermi energy of the right electrode to the conduction band of the semiconducting 

island, and tunnel from the valence band of the island to the left electrode, then the 

temperature effect on the SET’s behavior is insignificant. This is demonstrated by a simple 

model outlined in Fig. 3.5 Since the conduction band has many unoccupied energy levels 

and the valence band has many available electrons, when a higher constant source-drain 
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voltage is applied to the system (1.2 V instead of 0.5 V), the current increases significantly. 

At this bias condition, the island’s potential rises to 0.6 V, and a significant path opens for 

electrons in the slower (wider) junction to tunnel from the right electrode to the conduction 

band of the middle island. Also, the valence band of the middle island is aligned with 

energies close to the Fermi level of the left electrode in the faster (narrower) junction. For 

this condition, the current remains in the same order of magnitude as the temperature is 

changed from 77 K to 300 K, demonstrating a low temperature sensitivity. The Coulomb 

blockade behavior is increasingly suppressed as the temperature increases since the 

charging energy is of the same order of magnitude as the thermal energy.  

However, if we keep the source drain potential constant but small, so that no convenient 

electron-tunneling path exists, as shown in the top of Fig. 3.6, we can observe a strong 

temperature effect on the current-gate voltage characteristic of the device, shown in the 

bottom of Fig. 3.6 for two temperatures. The current magnitude increases over four orders 

of magnitude from 154K to 300K. When the biases of the system are low, the thermally 

excited electrons are those that primarily participate in tunneling and generate the current 

flow through the device. As observed in the simple model in Fig. 3.6, the electron-tunneling 

path is from energy levels above the Fermi energy in the right electrode to the island’s 

conduction band and from the islands valence band to the energy levels below the Fermi 

energy of the left electrode. The occupancy of energy levels that are involved in tunneling 

is strongly temperature sensitive. 
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Figure 3.5. Top: The band diagram model of a system with two metal electrodes and a 

semiconducting island. The islands potential is 0.6V, the source-drain voltage is 1.2 V and 

the gate voltage is 3.9V. The Fermi level of the right electrode is overlapping the 

conduction band and the valence band of the island is aligned with energy levels of the left 

metal electrode’s Fermi level. Bottom: The current-gate voltage characteristic for a contant 

source-drain voltage (Vsd) of 1.2 V for temperatures of 77 K, 154 K, and 300 K. These 

characteristics are weakly temperature dependent.  
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Figure 3.6 Top: The band diagram model of a system with two metal electrodes and the 

semiconducting island. The QD island potential is 0.2 V and Vsd = 0.5 V in this figure. The 

potential difference of across each of the junctions is not sufficient for the Fermi energy to 

be aligned with the conduction or valence band. Bottom: The current-gate voltage 

characteristic for a constant source drain voltage (Vsd) of 0.5 V for 2 different temperatures 

of 154 and 300 K. The current is temperature sensitive and varies over 4 orders of 

magnitude here. 

3.5.2 Baseline Current 

Having confirmed the consistency of the method, the interesting temperature behavior 

of the experimental device along with an exploration of the baseline current drift with 
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temperature require exploration. The experimental IdVg behavior exhibits a total current 

that appears to be a combination of MOSFET and SET characteristics. Whereas an ideal 

SET is expected to show a periodic Coulomb oscillation where the current returns to a 

uniform minimum in the period of oscillation, the experimental IV result shows a steady 

increase in a background current upon which the Coulomb-oscillation is superimposed. 

The Id-Vg characteristic of a nanoscale MOSFET is calculated using (3.7) 

𝐼k =
lm
nm
𝜇pqq𝐶Ar 𝑉0W − 𝑉s 𝑉_W , (7) 

where 𝑊t and 𝐿t are width and length of the transistor, Cox is the oxide capacitance, 𝜇pqq 

is the apparent mobility, 𝑉s is the threshold voltage, 𝑉0W is the gate-source voltage, and	𝑉_W 

is the drain-source voltage [13–14]. These parameters are extracted from the experimental 

device and are shown in Table 3.1 below. The SET characteristic of the device is calculated 

by the model. Adding the nanoscale MOSFET model represented by (3.7) in parallel with 

the SET model results in a strong correlation at room temperature between the experimental 

and modeled behavior, and is shown in Fig. 3.7. The combined current is the sum of the 

nano-MOSFET and the individual SET currents. 

Table 3.1: Extracted nanoscaled MOSFET parameters from [8]. 

Wt 8 nm 

Lt 6 nm 

µapp 9.987×10-6 m2/Vs 

Cox 1.77×10-3 F/m2 

VT (at 320 K) 0.73 V 



85 

The SET parameters in Test I above were chosen so that the resulting total current was 

on the same order of magnitude of the experimental device and were utilized in this 

characterization. However, the experimental results are less temperature sensitive for the 

SET behavior than the physics of the device would indicate. The impact of these 

differences is discussed below as it relates to the relevance of the modeling method for this 

device demonstration. 

 

Figure 3.7. Modeled current-gate voltage characteristic of a single electron device in 

parallel with a nano MOSFET at T = 320 K and a constant source- drain voltage of 0.5 V.  

3.6 Discussion and Conclusions 

The test cases in this paper have been presented to demonstrate the viability of the 

modeling framework to explore the behavior of relevant device demonstrations based on 

the physics of the SET system for QD larger than 2 nm. The proper relationship of the gate 
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potential, device geometry, and charging energy impact on Coulomb blockade and 

oscillations have been demonstrated. The sensitivity of the SET output current to 

temperature was shown to be strongly dependent on terminal potentials and other 

parameters for the device. Temperature insensitive and strongly temperature sensitive 

characteristics were observed for the same device under different terminal conditions. 

The low temperature sensitivity and weak periodicity of the experimental device by 

Ishikuro and Hiramoto does not follow what was expect from the physics that support the 

simulation framework. The temperature sensitivity of the experimental device with the 

conditions defined in the reference is not as large in magnitude as observed in the modeling 

under the test conditions. Also, the current oscillation in the experimental device indicates 

a change in periodicity over gate potential, which cannot be explained by the physics 

included in the model for the parameters given for the device.  

3.6.1 Temperature Sensitivity 

The IV characteristic of the experimental device over temperature indicates that the 

temperature sensitivity is relatively weak for the SET behavior. This may indicate that a 

significant path for electron tunneling has been opened (Fig. 3.5); however, the given 

parameters and biases do not support this hypothesis. Under these conditions, the model 

exhibited a strong temperature dependence. However, under different bias conditions, the 

model did demonstrate a weaker temperature sensitivity. We surmise that the estimated 

and extracted parameters for the SET device do not fully represent the characteristics for 

its behavior.  

Some strong impacts on the model results would be a change in the charging energy of the 

QD, the junction capacitances, the formation of multiple quantum dots in the channel, or 
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the impact of the inversion layer channel formed in a MOSFET device on the geometry or 

electron confinement of the QD island in the SET. Without additional evidence to confirm 

these parameters, a more complete model for this device cannot fully represent the thermal 

behavior of the experimental device. 

The ability to control the temperature sensitivity with input biases is a unique 

characteristic of the semiconducting SETs compared to metallic island devices, being 

caused and modulated by their energy bandgap. This characteristic represents and 

interesting behavior to explore for quantum devices in the future. 

3.6.2 The Periodicity of Coulomb Oscillation Characteristic  

The current-gate voltage characteristic in the experimental device has an oscillatory 

behavior with a significant variation (up to 30%) in the periodicity with gate potential. The 

physics of the model presented does not reproduce nonperiodic current oscillations. The 

island radius is given as 3 nm, which suggests that size induced discreteness in the density 

of states can be ignored [11]. In such a device, the periodicity of the peaks depends only 

on the gate capacitance and remains constant for a specific device. Ishikuro and Hiramoto 

propose, consistent with Zhuang, et al. [10], that the oscillatory variation is based on 

discrete states in the island. On the other hand, this seems inconsistent with a 3 nm radius, 

for which we would expect a continuous density of states [11]. 

3.6.3 Reference List   

This chapter is published as a conference paper and reprinted, with permission, from P. K. 

Hazaveh, P. L. Bergstrom and J. A. Jaszczak, “Efficient physics-based modeling of a 
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representative semiconducting quantum dot single electron device,” IEEE 17th 

International Conference on Nanotechnology (IEEE NANO 2017), pp. 739 – 744, 2017. 
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4 Impact of Band Gap and Discrete Energy Levels on 
Temperature Sensitivity of a SET Device  

In this chapter, the simulation framework presented in chapter two is utilized to predict 

electron transport in SET devices with an island with discrete energy levels, based on their 

electrical properties and energy band structure. In particular, the temperature sensitivity of 

SET devices with one island is studied and the impact of energy gap and discrete energy 

levels of the island on device’s performance is investigated. For the model studied, the 

discreteness of energy levels cannot be ignored as the energy spacing between energy 

levels is comparable to other energy scales of the system, such as the charging energies. 

The characteristic of a SET with a semiconducting island with discrete energy levels in 

addition to a band gap is investigated and compared to a continuous-band model metallic 

island over temperature. This study shows that the band gap and discrete energy levels 

present in semiconducting quantum dots result in operational conditions which, with proper 

biases, demonstrates relative temperature insensitivity in the SET devices. 

A test case is introduced to test the validity of the simulation framework and 

assumptions, by simulating the IV characteristics of SET devices under different biases and 

temperatures. A theoretical model is proposed in final section which indicates operating 

conditions to control the temperature sensitivity of the current-source drain voltage (IVsd) 

characteristic of the device, utilizing the band gap and a gate electrode. Conditions where 

electrons with particular thermal energies may be blocked from tunneling by applying a 

targeted potential to the gate electrode and inhibiting the tunneling probability in the 

forbidden energy bands, are examined.   
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4.1 Method   

In nanometer-scale SET devices, introducing a bias across the source-drain electrodes, 

a potential difference falls across each junction (Vif) and shifts the electron energy levels 

on one side of the junction with respect to the other side by eVif. The smaller junctions in 

SET devices lead to larger charging energies (Ech). In the case of an electron tunneling 

event, the charging energy changes the free energy of the system. The total change in the 

free energy of the system for a tunneling event is given by [1]: 

∆𝑊23 = −𝑒𝑉23 + 𝐸"#.						 (4.1) 

In this study, we are using the general tunneling rate equation from one level to another, as 

utilized by Amman et al. [2] and Savaikar et al. [3]:  

	𝛤2v =
2𝜋
ℏ 𝑇 𝐸 &𝐷2 𝐸

K&

K+
𝑓 𝐸 − 𝐸2 𝐷3 𝐸 − ∆𝑊23  

× 1–𝑓 𝐸 − 𝐸2 − ∆𝑊23 𝑑𝐸	,		 

(4.2) 

where 𝐸2	is the Fermi energy of the initial side, Di and Dj are the density of states functions 

for the initial and final states of the electron, respectively. f(E) is the Fermi-Dirac 

distribution function, T(E) is the transition probability and ∆𝑊23	is the change in the free 

energy of the system when a tunneling event occurs across the junction from the initial to 

the final energy state. Integral limits, 𝑙+and	𝑙& are dynamically adjusted somewhere 

between the ground (0) and the electron affinity, depending on the potential difference 

across the junction. For each band structure model introduced we have replaced terms with 

proper approximations in the tunneling Eq. 4.2 to calculate the rates. When the rates are 

known a KMC based algorithm is used to predict the IVsd characteristic of the devices. 
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4.2 Temperature Dependence of a SET with a Metallic Island    

In this section, we explore the temperature sensitivity of a SET device with a metallic 

island. Two model frameworks have been examined; one of a SET with a metallic island 

where the energy levels are modeled using the semi classical continuous band model [3], 

and a second where the island’s energy levels are modeled as discrete [2].  

4.2.1 Metallic Island: Continuous Band Model    

Following work of Savaikar et al. [3] we utilize a model with a metallic island and two 

metallic electrodes, which is simple enough to examine the effect of discreteness of energy 

states of the island. Figure 4.1, shows a simple schematic of this device. Under a positive 

source-drain bias and at zero temperature, the marked tunneling paths in Fig. 4.1 are the 

probable tunneling paths for electrons with energies close to the Fermi energy. The density 

of states is modeled using a parabolic continuous band structure [4]. Carriers and available 

energy levels participating in electron transport for metals are positioned energetically near 

the Fermi energy, so the density of states of the metal is approximated as a constant, D(Ef), 

which is the density of states at the Fermi energy [3, 5, 6], and can be calculated using 

expression below:  

𝐷 𝐸3 =
8𝜋𝑚

E
&

ℏE 𝐸3		,					 (4.3) 

where 𝑚	the electron mass, 𝐸3 is the Fermi energy of the right electrode and ℏ is the 

reduced Planck’s constant.  

The probability of the particle being transmitted through a rectangular barrier can be 

approximated as below [5-7]: 
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where  

𝑘+ =
2𝑚(𝑉U − 𝐸)

ℏ 		,				 (4.5) 

𝐸	is the electron’s initial energy, V0 is the barrier height and d is the barrier width [8]. For 

the metallic electrodes, the particle’s initial energy state is considered to be the Fermi 

energy, so the transition probability is reduced to a constant, 𝑇(𝐸3)
&
. Using (4.2) and 

calculating the tunneling rates, the IVsd characteristic of the metallic SET can be predicted 

using a KMC based algorithm. Narrow tunnel junctions result in larger charging energies. 

Under certain positive biases, Coulomb blockade steps are captured in the IVsd 

characteristic of the metallic SET. Figure 4.2 demonstrates the current steps at T = 0 K. 

The capacitances are chosen at a scale so that the charging energy and input bias range are 

comparable in order to clearly capture the Coulomb blockade steps. 
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Fig. 4.1. Schematic of a two junction SET with two metallic electrodes and one metallic 

island, under a positive source-drain bias. This figure shows probable tunneling paths from 
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occupied states in the metallic electrode/island to the available levels in island/electrodes. 

The dark blue is marking the full energy bands at zero temperature.  

As the source-drain bias increases, electrons gain enough energy to overcome the 

charging energy so the Coulomb staircase appears in the IVsd characteristics of the device. 

As the temperature increases the thermally excited electrons start participating in tunneling 

and the Coulomb steps start fading away. The Coulomb steps disappear at T = 300 K.  

 
Figure 4.2. The current versus source-drain voltage characteristic of a SET with a metallic 

island for temperatures of 0, 100 K, 200 K and 300 K. C1 = 0.5 aF, C2 = 0.8 aF and number 

of MC cycles 10,000 for each source-drain voltage. 

4.2.2 Island with Discrete Energy Levels 

As the size of the island decreases the energy confinement increases. If the spacing 

between energy levels is comparable to other energy scales in the system, such as the 

source-drain bias (Vsd) and charging energies, then the confinement cannot be ignored and 

should be considered in calculating tunneling rates; therefore, the continuous band model 

is no longer suitable [9].  Following the method of Amman et al. [2], we introduce a simple 

density of states model for discrete energy levels of the island as follows: 
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𝐷 𝐸 − 𝐸3 = 𝐷(𝑛∆𝐸) 𝛿(𝐸 − 𝐸3 − 𝐸A − 𝑛∆𝐸)
>

z{U

		,				 (4.6) 

where ∆𝐸 is the energy spacing between the discrete levels, n is the index number of the 

discrete energy levels, 𝐸U is the ground state energy and 𝐸3 is the Fermi energy of the 

island. 𝐷(∆𝐸), is the density of states model for each energy level (𝑛∆𝐸). Following 

Amman et al. [2], we consider the discrete energy levels to be of zero energy width and 

spaced equally apart. Replacing relevant terms in (4.1), the tunneling rate to the island with 

confined energy levels can be calculated using expression below: 

𝑇2v =
∆𝐸
𝑒&𝑅2v

[(𝑒 ?Q [~� =���=��=z∆� + 1)(𝑒?(��=z∆�) + 1)?+
>

z{U

,				 (4.7) 

where 𝑅2v is the junction’s resistance, which is calculated dynamically depending on the 

transition probability, and (𝑉2v) is the potential difference across the junction. The other 

tunneling rates can be calculated using the same method. If the tunneling rates are known, 

the current-voltage characteristic of this device under other conditions can be predicted 

using a KMC based approach.  

The transition probability can be calculated using the following energy independent 

expression [5-7, 13]: 

12 2
2 2 0 1

0

sinh ( )( ) 1
4 ( )
V k dT T E
E V Ea

a

-
é ù

= +ê ú-ë û
, (4.8) 

where 𝐸�, is the initial energy state of the electron, 𝑘+ is the wave number,	𝑉A is the average 

barrier height and d is the junction width. Although the simulation method is capable of 

calculating the tunneling rate with the transition probability as a function of E, replacing it 

with a fixed transition probability approximation based on 𝐸� taken either to be the 
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conduction or the valence band edge energy, as appropriate, improves the time efficiency 

with negligible error.  

All the tunneling rates across the junctions can be calculated under different external 

and internal factors such as charging energies, input biases and temperature using (4.7). 

Once the tunneling rates are known, the current-voltage characteristic of this device can be 

predicted using a KMC based approach. A test case has been designed to test the validity 

of the simulation model. 

The current-voltage characteristic of a SET with an island with discreet energy levels 

and no band gap is explored as a test case. A simple schematic of this model is outlined in 

Fig. 4.3, showing the most probable tunneling paths at zero temperature and under positive 

source-drain bias. The island has discrete energy states of 0.015 eV as was chosen 

originally by Amman et al. [2]. The density of states of this simple model can be expressed 

as Eq. 4.6. When a positive bias is applied, Coulomb staircase (the larger step) and current 

steps which are a result of discrete energy levels available in the island (smaller steps), are 

both observed at T = 0 K, as demonstrated in Fig. 4.4 This result is in agreement with what 

was observed by Amman et al. [2]. If the thermal energy is greater than the energy spacing, 

the thermally excited electrons will participate in tunneling events and the discreteness 

induced steps become indiscernible. The same phenomena modeled at higher temperatures 

results in the Coulomb staircase to become rounded, as observed in the metallic island case, 

as thermally excited electrons increase participation in tunneling. The impact of the 

temperature is studied in more details in section 5. 
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Figure 4.3. Schematic of a source-island-drain junctions under an applied bias, (Vsd) 

showing a probable tunneling path from occupied states in the right metallic electrode to 

the metallic island’s unoccupied discreet energy levels, and, from the island’s discrete 

levels to the left electrode.  

 
Figure 4.4. The current -Source voltage characteristic of a SET with an island with discrete 

energy levels of 0.15 eV for temperatures of 0 and 50 K. The discreteness induced steps 

and Coulomb staircase becomes indiscernible due to the electron tunneling by thermally 

excited electrons, number of energy levels is 3000 and number of MC cycles is 10,000. 
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4.3 Results and Discussion   

The effect of island’s energy gap and the number of available discrete energy levels 

within the tunneling energy range is explored for the current-voltage characteristic of a 

SET device. We also propose a theoretical model that can be engineered in the future to 

control the temperature sensitivity of SET devices.  

4.3.1 Impact of the Band Gap on Current-Voltage Characteristic of a SET 
with a Small Semiconducting Island 

The impact of band gap on the current-voltage characteristic of a SET device with a 

discrete multi-energy-level quantum dot as an island is explored. Figure 4.5 shows a simple 

schematic for this system. The characteristic exhibits a threshold voltage and discrete 

induced steps in the current. At zero temperature and zero bias, electrons do not have 

enough energy to tunnel, if the source-drain voltage increases sufficiently, then electrons 

can flow through the device and current increases above zero, this is referred to as the 

threshold voltage. If the band gap increases, the first available energy level in the island is 

positioned energetically further from the Fermi level of the electrodes so a larger bias is 

required so electrons can overcome the gap therefore the threshold voltage increases. As 

demonstrated in Fig. 4.6 for larger band gaps, the threshold voltage increases as we expect, 

which confirms that our model is capturing the impact of the band gap properly.  
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Figure 4.5. Schematic of a SET device under a positive source-drain bias (Vsd). The island 

has a band gap and discrete energy levels. The empty discrete energy levels are outlined in 

black; the dark blue area represents the fully filled levels at T = 0 K. Left: At T = 0 K, under 

small bias conditions, the electron tunneling path from energy states near the Fermi level 

of the right electrode to the middle island is blocked (red arrow). Right: At T = 0 K, under 

suitable bias conditions, the electron tunneling is facilitated. The green arrow shows an 

allowed tunneling path. 

 

Figure 4.6. The current versus source-drain voltage characteristic of a SET device with a 

single island at T = 0 K for band gaps of 0, 0.1 eV and 0.2 eV, and discrete energy levels 

(∆𝐸) of 0.015 eV. C1 = 0.5 aF, C2=0.8 aF, Cg = 0.085 aF, number of energy levels is 3000 

and number of MC cycles is 10,000 for each source-drain voltage. 
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4.3.2 Impact of Number of Energy Levels on the Current-Voltage 
Characteristic of a SET with a Small Semiconducting Island  

In a SET device with one island, as the number of available energy levels in the 

tunneling energy range decreases, the probability of electron tunneling drops as well. 

Figure 4.7 shows a simple comparison between two models, one with 8 energy levels 

available in the tunneling range and one where energy levels are available over the entire 

tunneling energy range. The current steps observed at low temperatures in Fig. 4.7 are due 

to the discreteness of energy levels in the island. It is observed that if there are fewer energy 

levels available in the island, the magnitude of current in the Coulomb oscillation peaks 

decreases, as expected.  
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Figure 4.7. Schematic of a SET device with a semiconducting island at T = 0 K. The empty 

energy levels are outlined in black; the dark blue area is a representation of filled levels at 

T = 0 K. Left: Four energy levels are actively participating in tunneling events. Right: 

Discrete energy levels are available over the entire tunneling energy range.  
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Figure 4.8. The current-gate voltage characteristic of SET devices with discrete energy 

levels and an energy spacing of ∆𝐸 = 0.015eV, C1 = 0.8 aF, C2 = 0.5 aF, Cg = 0.085 aF, 

number of energy levels is 400 and number of MC cycles is 10,000 for each gate voltage. 

4.3.3 Impact of Temperature on the IVsd Characteristic of a SET with a 
Small Semiconducting Island  

We utilize the same simple model as previous section, an island with a band gap of 0.2 

eV and discrete energy levels of 0.015 eV to study the impact of increasing the temperature 

on the IVsd characteristic of the SET device. At lower temperatures under sufficient bias 

conditions electron tunneling can occur. By increasing the temperature under the same bias 

conditions, the thermally excited electrons are available to tunnel from higher energy 

levels, as well as the electrons near the Fermi energy; therefore, the tunneling rates 

increase. Figure 4.9 is a simple schematic of this model for clarity. As observed in Fig. 

4.10, the current steps observed at T = 0 K become indiscernible at T = 50 K, due to 

participation of thermally excited electrons from higher energy levels in the tunneling 

events.   
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Figure 4.9. Schematic of a SET device under a positive source-drain bias (Vsd). The island 

has a band gap of 0.2 eV and discrete energy levels with 0.015 eV energy spacing. The 

empty energy levels are outlined in black; the dark blue area represents filled energy levels. 

The light blue area represents the thermally excited electrons or the available energy levels 

due to thermal excitation of electrons.  Left: At T = 0 K, under suitable bias conditions, the 

electron tunneling is facilitated. Right: At higher temperatures, tunneling is more probable 

due to the thermally available electron tunneling paths. 
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Figure 4.10.  The current versus source-drain voltage characteristic of a SET device with a 

single island, for temperatures of 0 K and 50 K. The island has a band-gap of 0.2 eV, 

discrete energy levels of 0.015 eV, C1 = 0.5 aF, C2 = 0.8 aF , Cg = 0.085 aF and number of 

MC cycles is 10,000 for each source-drain voltage. 
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Figure 4.11. The current versus gate voltage characteristic for temperatures of 0 K and 50 

K for a SET device with a semiconducting island. The island has a band gap of 0.2 eV, 

C1=0.5 aF, C2=0.8 aF and Cg=0.085 aF, ∆𝐸 = 0.015	eV, number of energy levels is 3000 

and number of MC cycles is 10,000 for each gate voltage. 

The current-gate voltage (IVg) characteristics of this model is plotted in Fig. 4.11, with 

a gate capacitance of 0.085 aF, the period of peak oscillations ( Q
S�
) is expected to be 1.88 V 

[1]. This period is observed in Fig. 4.11. The current steps at lower temperatures are due 

to the discreteness of the energy levels and are observed as the energy spacing between the 

levels is comparable to other energy scales in the system. At higher temperature, the 

thermally excited electrons play a great role in increasing the tunneling probability. 

Therefore, the minimum current (lower peak) increases and the steps become indiscernible 
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compared to those observed at lower temperatures. This change in the IVsd characteristic 

of the device caused by thermally excited electrons is not ideal. For example, the excited 

electrons can cause a higher current flow through the device therefore the power dissipation 

increases [10]. Generally speaking for a SET device to be practical the current-voltage 

characteristics should have a low degree of temperature sensitivity which doesn’t 

jeopardize the functionality of the device. In the next section, we study the impact of 

discreteness of energy levels and energy gap on temperature sensitivity. We also 

investigate utilizing discrete energy levels and forbidden energy bands in semiconducting 

islands to decrease the temperature sensitivity. 

4.3.4 Utilizing Band Gap and Confined Energy Levels to Control the 
Degree of Temperature Sensitivity of a SET  

The band gap is one of the unique and useful characteristics of semiconductors. 

Thermally excited electrons which do not yet have enough energy to overcome the band 

gap to move to the conduction band and cannot participate in electron tunneling. The band 

gap also causes higher threshold voltage as was observed before. Applying a potential to 

the third electrode (gate electrode) can align the energy levels of the island to the tunneling 

energy range and compensate for the impact of the band gap on the threshold voltage so no 

higher Vsd is needed. To sum up, the band gap blocks thermally excited electrons and gate 

voltage decreases the threshold voltage caused by the band gap. This reduces the impact of 

temperature on the current characteristics of the device. Figure 4.12 shows a simple 

schematic of devices with a semiconducting island with discrete energy levels, one with a 

band gap, and one without a band gap.  
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Figure 4.12. Schematic of a SET device under a positive source-drain bias (Vsd). The empty 

energy levels are outlined in black; the dark blue area represents filled energy levels at T = 

0 K. Left: The island has no band gap but has discrete energy levels. At T = 0 K, under 

suitable bias conditions, the electron tunneling is facilitated. Righ: The island has a band 

gap and discrete energy levels.  At T > 0, the gate voltage can be utilized to open a path for 

electrons to tunnel.  

At lower temperatures, the energy levels that are shifted close to the Fermi energy of the 

electrodes are participating in tunneling events. If the energy spacing is comparable to other 

energy scales in the system, a staircase is observed in IVsd characteristics of the SET device 

at low enough temperatures. As demonstrated in Fig. 4.14, at higher temperatures the 

discreteness induced steps become indiscernible as thermally excited electrons are 

participating in tunneling from higher energy levels. Comparing Figs. 4.13 and 4.14 shows 

that with band gap and an appropriate gate potential we can prevent the current steps from 

becoming completely indiscernible by preventing some of the thermally excited electrons 

to participate in tunneling.  
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Figure 4.13. The current versus source-drain voltage characteristic of a SET with a 

semiconducting island. The island has multiple energy levels participating in tunneling, 

with energy spacing of ∆𝐸 = 0.015	eV, C1 = 0.85 aF, C2 = 2.9 aF, Cg = 0.52 aF and number 

of MC cycles is 10,000 for each source-drain voltage. 
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Figure 4.14. The current versus source-drain voltage characteristic of a SET with a 

semiconducting island for two different gate voltages and band gaps. The island has 

multiple energy levels (400), with energy spacing  ∆𝐸 = 0.015	eV, C1 = 0.85 aF, C2 = 2.9 

aF, Cg = 0.52 aF. The number of MC cycles is 10,000 for each source-drain voltage. 

4.3.5 Utilizing a Semiconducting Quantum Dot with Few Energy Levels to 
Control the Degree of Temperature Sensitivity of a SET  

A hypothetical SET device model that has low temperature sensitivity under certain bias 

conditions is proposed here. In this model, the island has 8 energy levels participating in 

tunneling events with an energy spacing of 0.015 eV (∆𝐸 = 0.015	eV). Using the band 

gap and a gate electrode, we introduce regimes in which the temperature sensitivity can be 

controlled and minimized. Figure 4.15 shows a simple schematic of this model.  
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Figure 4.15. Cartoon model of a SET device with three electrodes a semiconducting 

island with 8 energy levels participating in tunneling events. 

 

Figure 4.16.  IVsd characteristic of a SET with an 8-energy level semiconducting island 

and energy spacing of ∆𝐸 = 0.015	eV for two different bang gaps (Eg = 0 and Eg = 0.2 

eV). C1 = 0.85 aF, C2 = 2.9 aF, Cg = 0.52 aF. The number of MC cycles is10,000 for each 

source-drain voltage. 
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If there are not many available higher energy levels for thermally excited electrons to 

excite to, then increasing the temperature does not increase the probability for tunneling 

events. The gate electrode can be utilized to compensate for larger threshold voltage in 

devices with a band gap. By applying potential to the gate, energy levels can be shifted 

close to the Fermi energy of source and drain electrode; therefore, they can participate in 

electron tunneling. 

 

Figure 4.17. The current versus source-drain voltage characteristic of a SET with a 

semiconducting island for different gate voltages and band gaps. The island has 8 energy 

levels participating in tunneling, with energy spacing of ∆𝐸 = 0.015	eV, C1 = 0.85 aF, C2 

= 2.9 aF, Cg=0.52 aF. The number of MC cycles is 10,000 for each source-drain voltage. 

The current steps observed in Fig. 4.17 are preserved at T = 150 K in a device with an 

island which has energy gap of 0.2 eV and few energy levels. The gate potential overcomes 
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the gap to enable electrons from the Fermi energy of the electrodes to tunnel to and from 

the discrete island.  

4.4 Conclusion  

In this study, we have explored the properties of SET devices with one island and 

particularly focused on the impact of temperature on these devices. We demonstrated that 

a SET with a metallic island is highly temperature sensitive. Increasing the temperature, 

the current steps which are observed at lower temperatures become indiscernible. For a 

SET with an island that has narrowly-spaced discrete energy levels, the discreteness 

induced current steps are is observed at lower temperatures and become indiscernible in 

higher temperatures. The greater the number of energy levels available to participate in 

tunneling, the harder it is to block the thermally excited electrons from tunneling.  

If there are no higher energy levels available in the island, the thermally excited 

electrons will not participate in electron tunneling, this makes small semiconductor islands 

a useful candidate to reduce the degree of temperature sensitivity in SET devices. Utilizing 

a gate electrode to compensate for the band gap, this device configuration could preserve 

the steps from becoming indiscernible and lead us to a hypothetical device topology which 

may be useful in controlling the temperature sensitivity of a SET device, within a range of 

suitable biasing. 

The proposed model is a SET with a quantum dot as the island which has a band gap 

and only few energy levels available in electron tunneling energy range. This device in 

higher temperatures functions as a device with an island with no gap and no gate voltage 

in lower temperatures. The few available levels can be energetically adjusted to the energy 
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range closer to fermi energy of the electrodes by applying proper gate potential therefore 

electron tunneling can happen. In higher temperature, the there are no available energy 

levels therefore electrons have no tunneling path and the device is immune to temperature 

increase. Comparing this model to a device with a metallic island or semiconducting island 

with multi energy levels, the current steps in the IVsd characteristics could be preserved. 

The steps that are detected in higher temperature are well defined in higher temperatures 

as well (going from 10 K to 150 K). This model is of course theoretical and fabricating an 

ultra-small semiconductor, with only few energy levels available is fairly difficult.  
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5 Simulation of Charge Transport in Multi-Island 
Tunneling Devices: Application to Disordered One-
Dimensional Systems at Low Temperature 

Some figures and text are reprinted, with permission, from P. K. Hazaveh, P. L. 

Bergstrom, and J. A. Jaszczak, “Modeling of gate effects on electron transport in a single-

electron transistor with two semiconducting islands between two semiconducting 

electrodes,” Proceedings of the IEEE 13th Nano Materials and Devices Conference 

(NMDC 2018), 13–17 October 2018, Portland, OR, pp. 459–452.  

 

In this chapter, we introduce an algorithm to predict the current-voltage (IV) 

characteristic of double-island single electron transistors (SETs) under different bias 

voltages and temperatures varying form 10 K to 300 K. The main focuses of this study are: 

1-Predicting Coulomb oscillations in the IVg (gate voltage versus current) characteristics, 

2-Exploring the effect of temperature and gate-capacitances coupling the islands to the gate 

in a SET with two semiconducting islands, 3-Investigating the impact of discrete energy 

levels in the band structure of an island. This study employs recently developed simulation 

tools, based on semi-classical modeling of tunneling rates and kinetic Monte Carlo 

simulation, to calculate electron tunneling rates between semiconductor quantum dot 

islands. In a double dot SET the islands are coupled together and predicting the peak 

placements in IVg characteristics is not possible unless in extreme coupling cases. A 

simulation tool is necessary for predicting the IVg characteristic of such a device. It is 

demonstrated that different gate capacitances coupling gate electrode to islands with 

different band structures results in enhancing or blocking electron tunneling paths therefore 

increasing or decreasing slope in IVg characteristics. 
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5.1 Introduction  

The ability to fit more components on integrated circuits is one of the primary 

motivations behind studying quantum electronic devices. With active elements (tunneling 

islands) at the scale of nanometers, single electron transistors (SETs) are promising for 

future low power logic units and high density integrated systems [1]. The small island sizes 

and junction widths, and therefore the associated large charging energies, allow such 

devices to operate at room temperature [2] in principle. At these small sizes the charging 

energies cannot be ignored. SET devices with semiconducting islands have demonstrated 

behaviors in experimental studies that are motivating for engineering applications. One of 

the examples is filtering thermally excited electrons from participating in electron 

tunneling using confined energy states [3]. Another examples is the gate control and clear 

Coulomb blockade oscillation in semiconducting SET devices which was experimentally 

examined by Acharya et al. [4]. The experimentally explored semiconducting SET by H. 

Ishikuro and T. Hiramoto [5], shows some unique behavior such as clear Coulomb 

oscillation peaks and a baseline current. 

We have extended capabilities of MITS developed by Savaikar et al. [6],  to simulate 

Semiconducting SET devices. We have started with a simple model shown in Fig. 5.1. 

Consist of two islands and three electrodes. 𝐶+, 𝐶&	and		𝐶E	are	junction	capacitances	and	

the	islands	are	coupled	to	the	gate	electrode	by	𝐶P+ and	𝐶P&.	 
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Figure 5.1. Circuit schematic of a SET device with three electrodes and two islands.  

5.2 Method  

Following work of Amman et al. [7] and Savaikar et al. [6], general tunneling rates can 

be computed according to: 

𝛤23 =
2𝜋
ℏ 𝑇 𝐸 &𝐷2 𝐸 𝑓 𝐸 − 𝐸2

K&

K+
× 

𝐷3 𝐸 − ∆𝑊23 1– 𝑓 𝐸 − 𝐸2 − ∆𝑊23 𝑑𝐸, 

(5.1) 

where 

∆𝑊23 = −𝑒𝑉23 + 𝐸"#, (5.2) 

is the change in free energy of the system due to the tunneling event [2], 𝐸2	is the Fermi 

energy of the initial side of the tunneling junction, and Di and Df are the density-of-states 

functions for the initial and final states of the junction, respectively. f(E) is the Fermi-Dirac 

distribution function, T(E) is the transition probability. The charging energy, Ech, is given 

by 𝐸"# =
QR

S
, where C is the island’s total capacitance and e is the electron’s charge [2]. 

The integration limits l1 and l2 are dynamically adjusted for computational efficiency in 
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our simulations, depending on the potential difference across the junction and the highest 

and lowest energy levels that can participate in tunneling.  

Introducing a potential difference, Vif, across a junction, shifts the electron energy states 

of one side of the junction by eVif with respect to the other side. The potential difference is 

due, in general, to the combined effects of the charges on the islands and the fixed potential 

of the source, drain, and gate electrodes. Based on input biases and thermal energies of the 

system the maximum energy levels that can participate in tunneling events are 10 eV above 

the Fermi level. Any range less than that has a risk of not considering all the energy levels 

participating in tunneling events. The integral limits are designed to include the dominant 

energy ranges participating in tunneling events of each junction and are calculated 

dynamically based on the junction’s potential. This integral does not have a closed form 

solution for tunneling between semiconducting materials unless with extensive 

simplifications. We have solved this integral numerically.  

5.2.1 Transition Probability   

Following MITS by Savaikar et al. [6], we approximate the potential barrier across a 

junction as having a rectangular shape whose height is given by the average of the 

approximately trapezoidal barrier. This height dynamically changes in the course of the 

simulation as it varies with the charge state of the islands. In MITS, the barrier height is 

calculated as with the approximation that all the electron tunneling events are initiating 

from energy levels very close to the Fermi energy, which results in an energy independent 

barrier height. The primary reason for this approximation is to calculate a closed form 

solution for the tunneling integral. On the other hand, in our simulation, the rate integral is 

calculated numerically so we maintain an energy dependent transmission probability. The 
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probability of an electron being transmitted through a rectangular barrier of height	(𝑉A), 

can be approximated as the energy dependent function below [8-10]:  

12 2
2 0 1

0

sinh ( )( ) 1
4 ( )
V k dT E
E V E

-
é ù

= +ê ú-ë û
, (5.3) 

where 

𝑘+ =
2𝑚(𝑉U − 𝐸)

ℏ 					, (5.4) 

𝑉U = 	
𝜙W" + 𝜙W" − 𝑒𝑉23

2 = 𝜙W" −
𝑒𝑉23
2 					, (5.5) 

E is the energy of electron, 𝑉A is the barrier height, d is the barrier (junction) width, m is 

the electron’s mass, 𝜙W" represents the electron affinity in the island’s conduction band or 

valence band (𝜙W" = 𝜙" for the conduction band, and 𝜙W" = 𝜙[	for the valence band), and 

Vif is the potential difference across the junction. As the energy barrier across the junction 

is relatively larger than the energy levels of electrons participating in tunneling, under 

certain biases, the initial energy level of all electrons could be considered the edge of the 

conduction/valence band. This assumption will improve the time efficiency of the 

simulation.  

5.2.2 Density of States   

Carriers and energy levels available to participate in electron transport in metals are 

positioned energetically near the Fermi energy so the density of states of the metal device 

elements (electrodes or islands) is commonly approximated as a constant D0 = D(Ef ), which 

is the density of states at the Fermi energy [9, 10], One of the limitations of previous 

theoretical work such as in MITS by Savaikar et al. [2, 6, 9] and the SIMON code by 
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Wasshuber et al.  [9, 11], employ a constant density of states approximation evaluated at 

the Fermi energy. While this approximation is an appropriate for metals at lower biases 

and temperatures, it is not well suited for semiconductors, which have a band gap and 

density of states that are not constant at the energies of interest. The energy confinement 

in semiconductors larger than 2.5nm is much smaller than other energy scales used in this 

study and can be ignored in this model. For semiconductors larger than 2.5 nm [12].  In 

this study we have used a continious model for the density of states of the semiconductors 

larger than 2.5nm that includes not only the band gap, but a modified-parabolic energy 

dependence of density of states [13, 14]:  

𝐷 𝐸 =
2(𝑚"

∗)
E
& 𝐸 − 𝐸XY + 𝛼XY(𝐸 − 𝐸")& 1 + 2𝛼 𝐸 − 𝐸XY

𝜋&ℏE 		,   (5.6) 

where  

𝛼XY =
1
𝐸0

1 −
𝑚XY
∗

𝑚

&

				, (5.7) 

m is the free electron mass,	𝑚XY
∗  is are the effective mass of electron in the conduction band 

or valence band, Eg is the energy gap, Esc is the edge of the conduction band or the valence 

band and	ℏ is the reduced Planck’s constant. 

As the nominal size of a quantum dot (island) decreases (less than 2.5 nm), the energy 

spacing increases between its discrete energy levels [44]. If the energy spacing is 

comparable to other energy scales of the system, modeling the quantum dot with a 

continuous-band model is no longer an accurate assumption. Following work of Amman 

et al. [28] we consider energy levels of the first island to be of zero width and spaced 

equally in this model for simplicity. The relaxation time is still considered negligible 
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compare to the time between tunneling events. The density of states of this simple model 

can be expressed as below [28]:  

𝐷G 𝐸 − 𝐸G = 𝐷G(𝑛∆𝐸) 𝛿(𝐸 − 𝐸G − 𝐸A − 𝑛∆𝐸)
>

z{U

, (5.8) 

where ∆𝐸 is the energy spacing between the discrete levels, n is the index of discrete energy 

levels, 𝐸U is the ground state energy and 𝐸G is the fermi energy of the island. 𝐷G(𝑛∆𝐸 ) is 

dynamically calculated using Eq. 5.6.  

5.3 Results and Discussion   

We are interested in current characteristic of the SET under DC bias. All junctions have 

the same electrical properties as they all have semiconducting material surrounding them, 

so the tunneling rate of all of the junctions can be calculated using the same method. When 

the rates are known based on the potentials across the junctions, then one transition is 

selected randomly and still based on energy favorable transitions, using the KMC method. 

After each tunneling event the integral limits and potential drops across each junction are 

reevaluated. This is repeated at each step until a steady state current is converged with error 

bars less than 2% of the mean value. For each test case, the voltage increment (either gate 

or source-drain voltage) is set at 0.01 V, and a minimum of 10,000 Monte Carlo steps were 

performed for each voltage increment in order to determine IV characteristics.  

5.3.1 Impact of the Modified Parabolic Density of States   

To check the validity of our algorithm, we compare our results for current-versus-gate-

voltage (IVg) characteristics for a metallic double-dot SET with results presented by 
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Glazman and Chandrasekhar [15]. In their work, the conductance was demonstrated as a 

function of the gate voltage for two extreme regimes: one where the junction capacitances 

are much large than the gate capacitances	(𝐶+ = 	𝐶& = 𝐶E ≫ 𝐶P+, 𝐶P&), and one where the 

gate capacitances are much larger than the junction capacitances (𝐶+ = 	𝐶& = 𝐶E ≪

𝐶P+, 𝐶P&). The effect of the modified-parabolic density of states and the band gap on the 

IVgs characteristics of a SET were also explored.  

Figure 5.2. compares the IVgs characteristic of a metallic SET and a semiconducting 

SET device with same junction and gate capacitances where the junction capacitances are 

much large than the gate capacitances	(𝐶+ = 	𝐶& = 𝐶E ≫ 𝐶P+, 𝐶P&). For comparative 

purposes, the band gap in the semiconducting device is taken to be zero so the effect of 

only the modified parabolic density of states can be observed with no other changes in 

energy scales. As expected, the magnitude of the current decreases dramatically for the 

semiconductor model due to the decrease in the number of carriers and available states for 

tunneling near the Fermi energy as compared to a metallic model. The peak separation and 

peak widths, which depend on temperature and capacitances, stay the same as the metallic 

device and are in qualitative agreement with [15]. This test case also serves to validate the 

numerical integration involved in the calculation of the tunneling rates (5.1) in our 

algorithm. 
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Figure. 5.2. C1 = C2 = C3 = 11.2 aF and Cg1 = 1.92 fF, Cg2=4.36 fF, T = 0.01 K. Top: The 

IVgs characteristic of a SET with two metallic islands. Bottom: The IVgs characteristic of a 

SET with two semiconducting islands with modified-parabolic bands but zero band gap. 

©2018 IEEE. Reprinted with permission, from P. K. Hazaveh, P. L. Bergstrom, and J. A. 

Jaszczak, “Modeling of gate effects on electron transport in a single-electron transistor with 

two semiconducting islands between two semiconducting electrodes,” Proceedings of the 

IEEE 13th Nano Materials and Devices Conference (IEEE NMDC 2018), pp. 459 – 462, 

2018 [16]. 
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5.3.2 On State Gate Control  

In metallic double-island SET devices the gate voltage does not have a significant effect 

on the source-drain current in “on” state. When the applied source-drain bias reaches the 

threshold voltage, the number of available electrons and holes in an energy window near 

Fermi energy across the junction is high, therefore a clear transition path is available for 

electrons to tunnel, independent of Vg [16]. Semiconducting SET devices, on the other 

hand, do not have a sea of electrons at the Fermi energy available to tunnel, so the gate 

plays a significant role in adjusting energy levels available for electron tunneling. As the 

gate potential increases, the potentials of the islands change in favor of electron tunneling 

events by overcoming the band gap, charging energies and aligning more available levels 

with electron-filled levels. Figure 5.3 illustrates that the current is gate controlled at source-

drain potentials greater than the Coulomb blockade threshold voltage, demonstrating the 

impact of bandgap and non-constant density of states for tunneling transitions at energies 

away from the band edges. In our model at Vsd = 4 V, for example, increasing the gate 

potential by 2 V results in an 11% increase in the current. The observed gate effect in the 

modeled semiconducting SET device can be compared to a minimal gate effect for an 

equivalent metallic device [16]. 
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Figure 5.3. The source-drain IV characteristics of a SET with two semiconducting islands, 

two semiconducting electrodes and a gate electrode. C1 = 0.8 aF, C2 = C3 = 0.5 aF, Cg1 = 

Cg2 = 2.5 aF, and T = 50 K. ©2018 IEEE. Reprinted with permission, from P. K. Hazaveh, 

P. L. Bergstrom, and J. A. Jaszczak, “Modeling of gate effects on electron transport in a 

single-electron transistor with two semiconducting islands between two semiconducting 

electrodes,” Proceedings of the IEEE 13th Nano Materials and Devices Conference (IEEE 

NMDC 2018), pp. 459 – 462, 2018 [16]. 

5.3.3 Impact of Temperature on IV Characteristic of a SET with Continuous 
Band Structure 

As described by Glazman and Chandrasekhar [15], when the junctions’ capacitances 

and the gate capacitances are of comparable magnitudes, the current oscillations as a 

function of gate voltage are not readily predictable. The energy states of the system after 

each electron tunneling event depends on potential across the junctions and the charging 

energies. Predicting the gate-controlled oscillations is not possible at present, except with 
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KMC-based simulations. We have explored such a system with double semiconducting 

islands and two semiconducting electrodes in this section. The junction capacitances are 

equal: 	𝐶+ = 	𝐶& = 𝐶E = 11.2	𝑎𝐹 and gate capacitances are in the same range as junction 

capacitances: 𝐶0+ = 1.92	aF and 𝐶0& = 4.36	aF. To make energy scales smaller and the 

simulations more time effective, all the energy gaps in band structure of semiconductors 

are considered 0.2 eV. With increasing the temperature, the periodicity of the IVg 

characteristics changes as demonstrated in Fig. 5.4. 
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Figure 5.4. The IVg characteristic of a SET with two semiconducting islands with band gap 

of 0.2 eV, under 0.1 V source-drain bias and at T = 0.01 K (top), T = 5 K (middle) and T = 

10 K (bottom). C1 = C2 = C3 = 11.2 aF and Cg1 = 1.92 aF, Cg2 = 4.36 aF. Top figure is 

©2018 IEEE. Reprinted with permission, from P. K. Hazaveh, P. L. Bergstrom, and J. A. 
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Jaszczak, “Modeling of gate effects on electron transport in a single-electron transistor with 

two semiconducting islands between two semiconducting electrodes,” Proceedings of the 

IEEE 13th Nano Materials and Devices Conference (IEEE NMDC 2018), pp. 459 – 462, 

2018 [16, 17]. 

At lower temperatures, if electrons at the edge of the valence band have enough energy 

to overcome the band gap and charging energies, it is probable for tunneling to occur. If 

tunneling across at least one of the junctions is energetically blocked, the current drops to 

zero. Increasing the temperature at this regime results in wider energy range available as 

the tunneling path for electrons therefore the current flow is maximum for a larger range 

of gate voltages so the wider peaks are observed. As a result of these available thermally 

excited electrons, the tunneling path is not blocked as soon as the edge of the bands are 

aligned with the band gap therefore the current does not fall back to zero. Therefore, 

multiple peaks observed at T = 0.01 K, in Fig. 5.4. start merging as the temperature 

increases.  

By increasing the source-drain input voltage and/or temperature the tunneling paths for 

electrons opens up. To capture the temperature effect under higher source-drain input bias 

we need to look at a wider range of gate voltages which is demonstrated in Fig 5.5 For gate 

voltages, up to 6 V [17]. 
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Figure 5.5. The IVg characteristic of a SET with two semiconducting islands with band gap 

of 0.2 eV, under 0.5 V source-drain bias and at T = 0.01 K. C1 = C2 = C3 = 11.2 aF and Cg1 

= 1.92 aF, Cg2 = 4.36 aF [17]. 

At input voltage of 0.5 V, with the gate voltages applied the electrons have enough 

energy to overcome the charging energies and the band gap therefore electron tunneling is 

more probable in lower temperatures. As the temperature increases, the tunneling becomes 

increasingly probable, and the tunneling path never “shuts off” due to the thermally 

available electrons for tunneling. Therefore, it is expected that the current stay above zero 

as is observed in Fig. 5.4. On the other hand, when the energy range of electrons 

participating in tunneling is the narrowest then the current is at a minimum. The tunneling 

window in which the electron tunneling is probable is controlled by the gate, and as 

demonstrated in Fig. 5.6, results in Coulomb oscillations [17]. 
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Figure 5.6. The IVg characteristic of a SET with two semiconducting islands with band gap 

of 0.2 eV, under 0.5 V source-drain bias and at T = 50 K. C1 = C2 = C3 = 11.2 aF, Cg1 

=1.92 aF, and Cg2 = 4.36 aF [17]. 

5.3.4 Impact of Temperature on IV Characteristics of a SET with one 
Metallic Island and One with Discrete Energy Levels 

One of the advantages of our algorithm is that the numerical integration of the tunneling 

rate allows the application of the calculation to materials with different band structures. In 

this section, we describe an asymmetric model having two different junctions, metal-metal 

and metal-semiconductor. In this simple model (Fig. 5.7), the two metallic electrodes and 

the metallic island are taken to be large enough to have a continuous energy band and an 

effectively constant density of states near their Fermi energy. On the other hand, the 

semiconducting island is taken to be small enough such that it has discrete energy levels, 

following [6], which we take to be separated by 0.015 eV. Experimental research work 

shows that the discreteness of the energy levels can be captured by choosing a dominant 

tunneling junction. In previous theoretical work of Amman et al. [7] the Coulomb blockade 
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steps have been captured in a two junction SET, using the Master equation approach. In 

this study, we have developed a novel algorithm to capture the current steps representing 

the discreteness, for a three-junction device. Later this algorithm is used to model electron 

transport through the device for different temperature and input biases.  

 

Figure 5.7. The band diagram model of a system with three electrodes and two islands. One 

island is metallic the other island is a semiconducting quantum dot with discrete energy 

levels. The dark blue bands are representing the filled valence band. In higher temperatures, 

the light blue is representing the available electrons and holes due to thermal excitation of 

some electrons [17]. 

To explore the temperature impact on the current gate voltage characteristic of a SET 

with gate capacitances of 𝐶P+ = 0.085	aF, 𝐶P& = 0.17	aF and 𝐶P+ = 0.085	aF, 𝐶P& =

0.085	aF are plotted in Fig. 5.8. At T = 10 K there are no electron filled levels of the island, 

aligned with the empty levels of the metallic island. Increasing the gate voltage facilities 

alignment of the levels so there is a path for electron to tunnel. But there are many empty 

levels that could potentially be electron tunneling paths if they are filled. Increasing the 
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temperature fills those empty levels and as a result a significant increase in conductance 

can be observed at T = 300K.  

There is a surprising feature in IV characteristic of this mode, the baseline current which 

has been observed in some experimental works as well [5]. We can explain this behavior 

by taking a closer look at the islands’ potentials. The tunneling probability from island one 

(i1) to island 2 (i2) depends on the potential difference across the junction (𝑉+& = 𝑉2+ −

𝑉2&). These islands are coupled to the gate via capacitances. If the coupling gate capacitance 

of the metallic island (i2) is larger than the coupling gate capacitance of the island with 

discrete energy levels (i1) (e.g. 𝐶P+ < 𝐶P&) the change in the gate voltage enhances the 

probability of electron tunneling by changing 𝑉+& in favor of electron tunneling. In this case 

the electron tunneling is enhanced by i2 (𝑉+& ) and does not need to wait for the discrete 

energy levels of i1 to shift completely. As a result, electron tunneling does not finish one 

period and starts a new one and a baseline current is observed by increasing the gate 

potential [17].   

In general, in a SET device with two islands coupled to the gate, potential of both sides 

of the junctions are changing after each tunneling event. If the islands are coupled to the 

gate with different capacitances, increasing the gate voltage not only changes the islands’ 

potentials but also changes the voltage difference between the islands; With different gate 

capacitances electron tunneling events from the discrete level islands can be enhanced or 

blocked (depending on which gate capacitances is larger) by the other island as the gate 

voltage increases. Comparing to the system with same gate capacitances which change in 
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the gate voltage does not change the potential difference between the islands (𝑉+& = 𝑉2+ −

𝑉2&). Therefore, in a system with 𝐶P+ = 𝐶P& = 0.085	aF, no baseline current is observed.  

 

 

Figure 5.8. The IVg characteristics of a SET with two islands. One island is metallic and 

the other island is a semiconducting quantum dot with discrete energy levels of 0.015 eV 

and Vsd = 0.1 V. C1 = 0.15 aF, C2 = 0.5 aF, C3 = 0.5 aF. Green: Cg1 = Cg2 = 0.085 aF. Blue: 

Cg1 = 0.085 aF, Cg2 = 0.17 aF [17].  
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If the metallic island is coupled to a gate capacitance larger than the gate capacitance of 

the semiconductor island (𝐶P+ < 𝐶P&), we observed that increasing the gate voltage changes 

the potential difference between the floating islands (𝑉+&) in favor of electron tunneling; 

therefore, we should observe the opposite effect if the metallic island (i2) is coupled to a 

smaller capacitance (𝐶0+ > 𝐶0&). Examining a model where the gate capacitance of the 

metallic island is smaller than the gate capacitance of the island with discrete energy levels 

(𝐶P& < 	𝐶P+) we observe in Fig. 5.9., as expected, the current decreases as this energy level 

of the metallic islands does not shift as much as the discrete island, and the electron 

tunneling is blocked from specific energy levels [17]. 

 

Figure 5.9 The IVg characteristics of a SET with two islands at T = 10 K. One island is 

metallic with continuous band model, and the other island is a semiconducting quantum 

dot with discrete energy levels of 0.015 eV and Vs = 0.1 s. Red: C1 = 0.15 aF, C2 = 0.5 aF, 

C3 = 0.5 aF. Blue: Cg1 = 0.085 aF, Cg2 = 0.085 aF. Red: Cg1 = 0.085 aF, Cg2 = 0.075 aF. 

Black: Cg1 = 0.085 aF, Cg2 = 0.065 aF [17]. 

0 0.5 1 1.5 2 2.5 3 3.5 4
Gate Voltage (V)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
ur

re
nt

 (A
)

10-9

T=10K, Cg1=0.085aF, Cg2=0.085aF
T=10K, Cg1=0.085aF, Cg2=0.075aF
T=10K, Cg1=0.085aF, Cg2=0.065aF



136 

5.4 Conclusion 

The introduced algorithm is a time efficient tool to predict electron tunneling through 

double island semiconducting SET devices. Our simulation tool allows for the modeling 

of electron transport between materials with non-trivial band structures such 

semiconductors or small quantum dots with discrete energy levels. 

In a double-island SET, the tunneling probability depends on the potential difference 

across junctions which depends on multiple parameters such as:  charging energy, input 

bias, gate voltage, gate capacitances. These parameters are intertwined in a double island 

SET device which makes predicting the exact position of peaks and the period of coulomb 

oscillation impossible unless using simulation tool.  

The effect of temperature, discrete energy levels and gate capacitances on IVg 

characteristic of a double island SET with semiconducting materials is explored in this 

study. As there are more energy-dependent parameters involved in the band structure of a 

semiconductor island (such as the band gap), using them to control the temperature 

sensitivity is possible.  

Our simulation tool is capable of taking into account the discrete energy levels if their 

energy spacing is comparable to other energies in the system. One of the surprising features 

observed in a SET with two types of islands (one metallic and one semiconducting with 

discrete levels) was the base line current. Further investigation was pursued and it was 

concluded that the different capacitance coupling islands to the gate plays a role in 

facilitating or blocking electrons paths from one the islands to the other, resulting in 

different current-voltage characteristics.   
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6 Conclusion 

This work is dedicated to understanding the behavior of electron transport between 

semiconducting quantum dots, and has led to development of an algorithm to predict the 

current-voltage behavior of semiconducting single electron transistors under DC biases 

using accurate, computationally efficient and physically reasonable approximations. A 

truly three-electrode SET device (source, drain and gate) has been studied, which is suitable 

for transistor-based applications [1]. The models that have been explored in this work are 

topologically one-dimensional SET devices that consist of one or two semiconducting 

islands and three metallic/semiconducting electrodes. The major concentration of this 

research is exploring the effect of different energy scales involved in the system such as 

temperature, charging energies, bang gap and input biases on the current-voltage 

characteristics of the devices.  

Single-island SET devices have more well-defined and predictable characteristics 

compared to multi-island devices, such as a well-defined threshold voltage and Coulomb-

oscillation period [2-4]. Therefore, we began this study by exploring the underlying physics 

of electron tunneling between a device comprised of single semiconducting island and 

metallic electrodes, which is compared to the behavior of comparable device with a 

metallic island. Understanding the impact of the band gap and non-trivial band structure is 

possible in this simple model. The IVsd (drain current versus source-drain voltage 

characteristics) and IVg (drain current versus gate voltage characteristics) are demonstrated. 

This simulation tool reveals the relationships between different complex and coupled 

energy scales of a semiconducting SET device. After understanding the underlying physics 

and impact of different energy scales on the behavior of a single-island SET, we moved 
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forward to simulating the IV characteristics of double-island SET devices which have 

shown interesting behavior in past experimental studies [5].  

Exploring semiconducting SET devices shows some similar characteristic to metallic 

devices and useful features that are unique to semiconductors [6]. Similar to metallic SET 

devices, the conductance of the semiconducting device is higher for narrower junctions. 

The small (nm range) islands result in large charging energies under appropriate rate of 

input voltages, compared to other energy scales and lead to observation of the Coulomb 

oscillations [3, 6]. It is shown in this study in lower temperatures the band gap as well as 

charging energies is the deciding factor on the magnitude of the threshold voltage. In the 

off state (below the threshold voltage), there is no convenient path for electrons to tunnel. 

Increasing the temperature in this state to the point that an electron’s thermal energy (kBT) 

is comparable to the energy gap causes thermally excited electrons to participate in 

tunneling, and conductance is observed. In the on state (above the threshold voltage), 

thermally excited electrons are not the dominant contributor to the device conductance, so 

the temperature sensitivity of the device decreases. The ability to control the degree of the 

temperature sensitivity is one of the unique characteristic of a SET with semiconducting 

materials. 

Features such as the period and peak placement in the Coulomb oscillations can be 

predicted from the energy state equations in a single island SET device [7]. In a SET device 

with two (or more) islands, the energy balance for the islands is more complicated, and 

multiple factors are intertwined [8]. Therefore, predicting the resulting characteristic 

features in the SET current-voltage characteristics is not possible except when applying 

approximations in extreme cases (for example, gate capacitances that are much larger than 
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junction capacitances). In general cases, the developed simulation tool remains the only 

current method to predict these characteristics.  

6.1 The Innovative Continuation  

1. A primary development of this work is the further expansion of the MITS simulation 

tool by Savaikar et al. [3] to implement numerical integration of the tunneling rate 

equation, which allows the capability of the modeling framework to explore the IV 

characteristics of devices fabricated by materials with complex band structures and 

energy-dependent tunneling probabilities.  

2. We have specifically utilized this tool to explore electron transport in semiconducting-

semiconducting, semiconducting-metallic and metallic-metallic tunneling junctions. 

For the sake of computational time efficiency for islands with size of 2.5-5 nm, the 

semiconducting band structure is approximated by a simple continuous bottom-of-the-

band model (i.e. parabolic shape); and for islands smaller than 2.5 nm, the band 

structure is modeled with discrete energy levels which have zero width and uniform 

energy spacing [9]. The capability of the developed tool is not limited to these band 

models and could be extended to incorporate more complex band structures and more 

sophisticated tunneling probability factors.  

3. Using appropriate approximations [10,11] for the density of states model and 

incorporating the band gap in simulation improves the applicability of this algorithm, 

compared to existing simulation tools, for predicting electron transport in 

semiconducting devices. This enables the exploration of the behavior for a variety of 
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semiconducting single electron devices as a function of temperature and input bias 

conditions.  

4. In calculating the transition probability, the energy-dependent barrier heights are 

calculated dynamically, dependent on the potential across the tunneling junction and 

the initial energy of the electron participating in a tunneling event [3]. For the sake of 

computational time efficiency for calculating the transition probability related to 

conduction/valence band, the initial energy of the electrons is considered to be at the 

edge of the conduction or valence band. This approximation is based on assuming all 

the electrons participating in tunneling are energetically close to the edge of the bands 

compare to the electrons’ affinity in studied materials. At higher temperature and larger 

bias voltages where the electrons’ energy levels are significantly large compared to the 

band edge and electron affinity, our numerical calculation is capable of calculating 

energy-dependent transition probability as required. 

5. In our simulation framework, the tunneling rate is not simplified as a closed from 

solution related to a specific band structure; therefore, the IV characteristic of 

tunneling-based devices with junctions that have different properties such as a SET 

device which has both semiconductor-semiconductor and semiconductor-metallic 

junctions is possible.  

6. The impact of the band gap and discrete energy levels of semiconducting island in a 

SET device is investigated and our results show that the energy gap and discrete energy 

levels present in a semiconducting island can be utilized to control the degree of 

temperature sensitivity of single-electron transistors. For example, using specific 

terminal biases, a probable energy path for electrons is available even at lower 
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temperatures so that increasing the temperature does not significantly impact the 

magnitude of the current; therefore, the temperature sensitivity of the SET may be 

reduced. On the other hand, if the applied potentials do not allow a probable tunneling 

path to exist at lower temperature, then a high temperature sensitivity is observed. The 

existence of a band gap in the band structure of semiconducting island gives them a 

unique advantage over metallic SET devices. An exclusive characteristic of a SET with 

semiconducting islands is the bias dependent temperature sensitivity of the device. 

7. In a SET with a semiconducting island larger than 3 nm, under smaller biases, Coulomb 

blockade steps can be observed in current-voltage characteristics. As the temperature 

increases, the threshold voltage decreases and steps become indiscernible. We have 

demonstrated that using a theoretical SET model with a smaller semiconducting island 

which has few energy levels available for tunneling, can preserve the Coulomb 

blockade steps from washing out entirely at higher temperatures.  

8. In a SET with a single island, the gate capacitance dictates the period of Coulomb 

blockade peaks in current versus gate-voltage characteristics [4]. In double-island 

SETs, the period between peaks depends on all capacitances that couple electrodes and 

islands and energy state of the system which results in often observing non-uniformed 

peaks and peak placements. The capability to simulate electron transport in a multi-

island SET device is an important and necessary tool to predict the non-uniform peaks 

observed in experimental research, which enables a predictive method to explore and 

understand experimental device behavior.  
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6.2 Future Work 

The algorithm developed in this study has opened numerous possibilities for future 

work. However, to increase the capability of the simulation tool, further work is needed. 

Some particular aspects of this tool which need improvement and potential applications of 

the introduced simulation tool is listed below:  

1. Code Optimization and Documentation 

Using numerical calculation to solve the tunneling rate integral dramatically increases 

the computational time of the new simulation tool compared to algorithms where the 

tunneling rate integral can be approximated in a closed form solution. Careful optimization 

of the simulation code should be done by taking advantage of best practices and utilization 

of optimized numerical integration methods. The simulation code also needs to be carefully 

documented with comments and references in order to be usable by future investigators in 

our group. This will make possible the simulation of devices with more islands or with 

more complex band structures and more accurate accounting of tunneling probabilities. 

2. Predicting IV characteristics of double-islands single-electron transistors with 

discrete energy levels  

The presented simulation tool can predict the IV characteristics of a SET with two 

semiconducting islands, where at least one of the islands has dimensions greater than ~3 

nm and the energy levels therefore can be modeled with a continuous band model for the 

density of states. As the size of semiconducting islands decreases to reach dimensions 

smaller than ~3 nm, the spacing between discrete energy levels of the islands increases to 

the point that they are comparable to the island’s charging energy, junction potential energy 

differences, and possibly the thermal energy. In this case, the discreteness of the energy 
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levels in the density of states cannot be ignored. Since for electron tunneling to happen, 

proper biases and charging energies are necessary to allow the alignment of discrete energy 

levels on both sides of the junction, predicting the capacitances and bias voltages that 

facilitates electron tunneling between islands with discrete levels with no severe 

approximations has not yet been developed. Finite-lifetime broadening of the discrete 

energy levels can be incorporated into the simulation code, however this has not yet been 

implemented. A modified or alternative simulation tool is required to predict electron 

tunneling in devices with these types of junctions.  

3. Predicting the IV characteristic of SET devices with more than 2 islands: 

The number of semiconducting islands in our simulations have so far been limited to 

only one or two islands on a one-dimensional array (single path between source and drain 

electrodes) primarily due to the computational costs of running the current simulation tool. 

One of the limitations of fabricating a SET is controlling the position and number of islands 

between electrodes. To analyze the behavior of experimentally fabricated SET devices and 

to predict electron transport in SET devices with more than two islands, even along a single 

path, an improved simulation tool is needed. 

4. Predicting the IV characteristic of a two-dimensional semiconducting SET devices: 

Following point 3, predicting the IV characteristics in a device comprised of coupled 

islands in a two-dimensional array- one in which there can be multiple tunneling paths 

between the source and drain, will require an improved or alternative algorithm. The 

capacitances between all of the coupled islands and electrodes can be calculated based on 

an assumed geometry following methods such as that of Banyai [12]. 
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5. Controlling the temperature sensitivity of a semiconducting SET device:  

One of the greatest opportunities based on this research is the thermal filtering of 

electron tunneling by exploring the geometry and energy scales which can facilities the 

occurrence of the Coulomb blockade at room temperature. The only few discrete energy 

levels of the island available in desired energy range for electron tunneling can be a 

practical way to block electrons in higher energy levels to participate in electron tunneling. 

We have demonstrated that using ultra small semiconducting islands with few energy 

levels participating in tunneling, can preserve the Coulomb blockade steps from becoming 

indiscernible. A condition in which the Coulomb blockade steps in current-voltage 

characteristic of a SET at room temperature is fully maintained, has not yet been achieved. 

Another example following work of Bhadrachalam et al. [13], is utilizing a quantum size 

semiconducting material with few available energy levels to filter the thermally excited 

electrons. The few energy levels available, only allow electrons with lower energy to tunnel 

to the island [13].  

6. Predicting electron transport across junctions with complicated properties 

Numerically calculating the tunneling rates in this algorithm makes the simulation tool 

valuable for researchers to predict electron tunneling between materials with complex band 

structures and across junctions with complicated properties such as energy dependent 

barrier heights and different materials across junctions. Asymmetric junctions and different 

density of states model across a junction lead to more complex tunneling rate integral. 

Using accurate approximations to solve the integral for a closed form solution is less likely 

in these cases. Numerically calculating the rates is necessary in such models to account for 

properties of the junctions accurately. 
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7. Simulation of photon-SET interaction-based devices:  

Photon assisted tunneling in single electron transistors can be predicted by modifying 

the developed algorithm. One example is “Photon-Pumped Current in an Asymmetric Si 

SET”, done by Fujiwara et al. [14]. In this experimental work it is observed that 

photoexcitation generates new high peaks in current-voltage characteristics; and electron-

hole recombination generates current drops [14]. Single photon detecting sensors [15] and 

photon-activated switches in the single-electron transistor [16] are other examples of 

existing experimental researches that may benefit from the developed simulation tool.  
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