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Abstract: A fluorescence resonance energy transfer (FRET)-based near-infrared fluorescent probe (B+)
for double-checked sensitive detection of intracellular pH changes has been synthesized by binding a
near-infrared rhodamine donor to a near-infrared cyanine acceptor through robust C-N bonds via a
nucleophilic substitution reaction. To demonstrate the double-checked advantages of probe B+, a
near-infrared probe (A) was also prepared by modification of a near-infrared rhodamine dye with
ethylenediamine to produce a closed spirolactam residue. Under basic conditions, probe B+ shows
only weak fluorescence from the cyanine acceptor while probe A displays nonfluorescence due to
retention of the closed spirolactam form of the rhodamine moiety. Upon decrease in solution pH
level, probe B+ exhibits a gradual fluorescence increase from rhodamine and cyanine constituents at
623 nm and 743 nm respectively, whereas probe A displays fluorescence increase at 623 nm on the
rhodamine moiety as acidic conditions leads to the rupture of the probe spirolactam rings. Probes A
and B+ have successfully been used to monitor intracellular pH alternations and possess pKa values
of 5.15 and 7.80, respectively.

Keywords: near-infrared imaging; fluorescent probes; FRET; rhodamine; cyanine dye

1. Introduction

Different cellular compartments regulate intracellular pH as precise control is essential for various
cell functions such as vesicle trafficking, cellular metabolism, cellular signaling, cell membrane polarity,
cell activation, proliferation growth, and apoptosis [1–4]. Intracellular pH values are quite different in
different organelles [1–4]. Lysosomes function best under acidic pH conditions between 4.5 to 5.5 to
break down a variety of biomolecules while mitochondria operate under slightly alkali pH conditions
around 8.0 [4–6]. Various diseases such as neurodegenerative disease, cancer, and Alzheimer’s
disease, are associated with significant deviations from normal functional intracellular pH values [1–4].
Therefore, monitoring intracellular pH levels is important in order to understand cellular functions.

Fluorescence imaging is frequently used for real-time pH monitoring in biological systems
due to its rapid response time, high sensitivity, non-destructive nature, operational simplicity, and
high-speed spatial capabilities [4]. Recently, near-infrared pH fluorescent probes were developed to
take advantage of near-infrared imaging unique features such as minimum photobleaching, deep
tissue penetration, suppressed photodamage to cells and tissues, and low biological luminescence
background [5–33]. Most of these near-infrared fluorescent probes that measure pH levels are based
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on fluorescence changes in a single near-infrared wavelength [5–28,30–33]. We have developed a
near-infrared fluorescent probe (B+), Scheme 1, with unique double-checked capability to accurately
detect intracellular pH alternations by monitoring deep-red and near-infrared fluorescence changes at
623 nm and 780 nm. The probe’s double-checked feature was achieved by connecting a near-infrared
rhodamine dye as a Forster resonance energy transfer (FRET) donor to a near-infrared cyanine dye
as a FRET acceptor tethered via an ethylene-diamino linkage with robust C-N bonds. Probe B+

possesses two pKa values of 4.0 and 7.4 corresponding to spirolactam ring opening of the rhodamine
donor, and protonation of the central nitrogen atom of the cyanine acceptor respectively under
rhodamine donor excitation at 450 nm. This advantageous characteristic with two different pKa

values in one system enables us to determine pH changes in a broad range with both fluorescence
increases of the rhodamine donor and cyanine acceptor. We also prepared a near-infrared fluorescent
probe (A), Scheme 1, through modification of a near-infrared rhodamine dye with ethylenediamine.
We demonstrate that there is slight overlap between the rhodamine donor emission and cyanine
acceptor absorption for energy transfer from the rhodamine donor to the cyanine acceptor presumably
through the short ethylenediamino linkage [34,35]. Probe A shows the expected fluorescence increase
responses to pH variance under pH stimulus from 7.4 to 3.0. Probe B+ exhibits weak fluorescence
from the cyanine acceptor under basic pH conditions with retention of the closed spirolactam
configuration. Gradual increase in acidity from pH 9.0 to 3.0 results in fluorescence increases with
the rhodamine and the cyanine moieties under rhodamine donor excitation. This allows for accurate
monitor of intracellular pH levels through two near-infrared channels. Probe B+ shows excellent
photostability, low cytotoxicity, good selectivity, and high sensitivity to pH near-infrared imaging
feature. These conclusions are also confirmed by theoretical studies.
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Scheme 1. Drawings of the probes and their protonated versions. 

2. Results 

2.1. Synthesis of Fluorescent Probes 

In order to bind a near-infrared rhodamine donor to a cyanine acceptor which contains a reactive 
chloro site for chemical substitution, we prepared rhodamine dye (3) by a condensation reaction of 
2-(4-(diethylamino)-2-hydroxybenzoyl) benzoic acid (1) and 6-amino-3,4-dihydro-1(2H)-
naphthalenone (2) in concentrated sulfuric acid under reflux conditions. The rhodamine dye bearing 
a closed spirolactam ring with amine residue (probe A) was prepared by reacting rhodamine dye (3) 
with a large excess amount of 1,2-diaminoethane (4) in the presence of benzotriazol-1-
yloxytris(dimethylamino)phosphonium hexafluorophosphate (BOP). Probe B+ was synthesized 
through a nucleophilic substitution reaction of the central chloro group in a rigid chlorocyclohexenyl 
ring of cyanine dye (IR-780) with the dangling -NH2 group on probe A under basic conditions 
(Scheme 2). All intermediates and probes were characterized by 1H and 13C NMR and mass 
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2. Results

2.1. Synthesis of Fluorescent Probes

In order to bind a near-infrared rhodamine donor to a cyanine acceptor which contains a reactive
chloro site for chemical substitution, we prepared rhodamine dye (3) by a condensation reaction of
2-(4-(diethylamino)-2-hydroxybenzoyl) benzoic acid (1) and 6-amino-3,4-dihydro-1(2H)-naphthalenone
(2) in concentrated sulfuric acid under reflux conditions. The rhodamine dye bearing a closed spirolactam
ring with amine residue (probe A) was prepared by reacting rhodamine dye (3) with a large excess
amount of 1,2-diaminoethane (4) in the presence of benzotriazol-1-yloxytris(dimethylamino)phosphonium
hexafluorophosphate (BOP). Probe B+ was synthesized through a nucleophilic substitution reaction of the
central chloro group in a rigid chlorocyclohexenyl ring of cyanine dye (IR-780) with the dangling -NH2

group on probe A under basic conditions (Scheme 2). All intermediates and probes were characterized
by 1H and 13C NMR and mass spectrometer as detailed in Supplementary Materials.
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Figure 1. Absorption (a) and fluorescence spectra (b) of probe A in different pH buffers under 
excitation at 550 nm. 
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Scheme 2. Synthetic route to probes A and B+.

2.2. Optical Responeses of Fluorescent Probes to pH Changes

The optical pH-responsive properties of probes A and B+ were investigated in different pH
buffers containing 1% DMSO. Probe A is an intensity-based rhodamine dye with a spirolactam ring
on/off switch, which can undergo ring opening/closing processes under pH stimulus. Probe A
has an absorption at 300 nm but no emission with a closed spirolactam ring configuration under
basic conditions (Figure 1). Upon gradual decrease in pH, both absorbances at 415 and 591 nm and
fluorescence intensity at 623 nm increase due to acid-activated opening of the spirolactam structure,
Figure 1. Therefore, probe A displays typical intensity-based fluorescence responses to pH changes,
and possesses a pKa value of 5.15 related to the spirolactam ring opening. Probe A shows a high
fluorescence quantum yield of 31.1% under acidic conditions (pH 4.0). The molar absorbtivity is
2.88 × 104 L·mol−1·cm−1 at 591 nm at pH 4.0.
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In order to monitor pH changes and the assumed double-checked feature, probe B+ was prepared
by introducing a rhodamine donor to a cyanine acceptor through a very short ethylene spacer to
achieve high efficiency of energy transfer from the donor to the acceptor. Probe B+ shows a weak
absorption peak at 664 nm and an extremely weak fluorescence peak at 743 nm, Figure 2. However,
gradual pH decreases from 10.8 to 2.4 causes corresponding increases in the absorption peak, and
results in a new absorption peak at 413 nm, and gradual increases of fluorescence peaks at 616 nm
and 743 nm under excitation at 450 nm, Figure 2. Additionally, under cyanine acceptor excitation at
645 nm, the fluorescence intensity of the cyanine moiety also increases upon pH decrease, indicating
that acidic pH results in protonation of the central amine atom of cyanine acceptor and increases in
fluorescence of probe B+ through the spirolactam ring opening.

Molecules 2018, 23, x FOR PEER REVIEW  4 of 15 

 

weak absorption peak at 664 nm and an extremely weak fluorescence peak at 743 nm, Figure 2. 
However, gradual pH decreases from 10.8 to 2.4 causes corresponding increases in the absorption 
peak, and results in a new absorption peak at 413 nm, and gradual increases of fluorescence peaks at 
616 nm and 743 nm under excitation at 450 nm, Figure 2. Additionally, under cyanine acceptor 
excitation at 645 nm, the fluorescence intensity of the cyanine moiety also increases upon pH 
decrease, indicating that acidic pH results in protonation of the central amine atom of cyanine 
acceptor and increases in fluorescence of probe B+ through the spirolactam ring opening.  

The introduction of a robust C-N bond to the cyanine moiety results in a blue shift of absorption 
of the cyanine acceptor with absorption around 650 nm which allows for efficient FRET processes as 
the absorption of the cyanine acceptor overlaps with the emission from the rhodamine donor [34,35]. 
Since there is significant overlap between the fluorescence of the rhodamine donor (probe A) and 
absorption of the cyanine acceptor (probe B+) (Figure 3, right), excitation at 450 nm allows for an 
effective FRET process from the rhodamine donor to the cyanine acceptor, resulting in both 
fluorescence increases of the rhodamine donor and the cyanine acceptor with decreases in pH (Figure 
2). It is also noteworthy that the intensity of the fluorescence from the cyanine acceptor has a much 
more significant increase than the intensity of the fluorescence from the rhodamine donor 
presumably due to the FRET process for probe B+, which in the case of the rhodamine moiety in 
isolated probe A (free of the cyanine moiety) was quite substantive. Probe B+ shows a quantum yield 
of 12.4% (pH 4.0) under 450 nm excitation using human dye as standard. The molar absorptivity is 
1.50 × 104 L·mol−1·cm−1 at 663 nm at pH 4.0. The rhodamine donor of probe B+ has a pKa value of 4.0 
due to spirolactam ring opening of the rhodamine donor while the probe cyanine acceptor has a 
higher pKa value of 7.4 arising from protonation of the central nitrogen atom of the cyanine acceptor 
under rhodamine donor excitation at 450 nm. This nice feature with two different pKa values in one 
system enables to determine pH changes in a broad range with both fluorescence increases of the 
rhodamine donor and cyanine acceptor. The efficiency of FRET from the rhodamine donor to the 
cyanine acceptor was calculated to be 23.5% in pH 3.2 buffer since the FRET efficiency depends on 
not only the distance, but also the overlap between donor’s emission and acceptor’s absorption 
spectra and orientation. 

300 400 500 600 700 800
0.00

0.02

0.04

0.06

0.08
 pH 2.4
 pH 3.2
 pH 4.0
 pH 4.8
 pH 5.6
 pH 6.0
 pH 6.8
 pH 7.6
 pH 8.2
 pH 8.8
 pH 9.5
 pH 10.3
 pH 10.8

A
bs

or
ba

nc
e

Wavelength (nm)

Probe B+

 

600 700 800
0

1x105

2x105

3x105 Probe B+

 pH 2.4
 pH 3.2
 pH 4.0
 pH 4.8
 pH 5.6
 pH 6.0
 pH 6.8
 pH 7.6
 pH 8.2
 pH 8.8
 pH 9.5
 pH 10.3
 pH 10.8

Fl
uo

re
sc

en
ce

 In
te

ns
ity

Wavelength (nm)  
(a) (b) 

Figure 2. Absorption (a) and fluorescence spectra (b) of probe B+ in different pH buffers under 
excitation at 450 nm. 
Figure 2. Absorption (a) and fluorescence spectra (b) of probe B+ in different pH buffers under
excitation at 450 nm.

The introduction of a robust C-N bond to the cyanine moiety results in a blue shift of absorption
of the cyanine acceptor with absorption around 650 nm which allows for efficient FRET processes as
the absorption of the cyanine acceptor overlaps with the emission from the rhodamine donor [34,35].
Since there is significant overlap between the fluorescence of the rhodamine donor (probe A) and
absorption of the cyanine acceptor (probe B+) (Figure 3, right), excitation at 450 nm allows for an
effective FRET process from the rhodamine donor to the cyanine acceptor, resulting in both fluorescence
increases of the rhodamine donor and the cyanine acceptor with decreases in pH (Figure 2). It is
also noteworthy that the intensity of the fluorescence from the cyanine acceptor has a much more
significant increase than the intensity of the fluorescence from the rhodamine donor presumably due to
the FRET process for probe B+, which in the case of the rhodamine moiety in isolated probe A (free of
the cyanine moiety) was quite substantive. Probe B+ shows a quantum yield of 12.4% (pH 4.0) under
450 nm excitation using human dye as standard. The molar absorptivity is 1.50 × 104 L·mol−1·cm−1

at 663 nm at pH 4.0. The rhodamine donor of probe B+ has a pKa value of 4.0 due to spirolactam
ring opening of the rhodamine donor while the probe cyanine acceptor has a higher pKa value of
7.4 arising from protonation of the central nitrogen atom of the cyanine acceptor under rhodamine
donor excitation at 450 nm. This nice feature with two different pKa values in one system enables
to determine pH changes in a broad range with both fluorescence increases of the rhodamine donor
and cyanine acceptor. The efficiency of FRET from the rhodamine donor to the cyanine acceptor was
calculated to be 23.5% in pH 3.2 buffer since the FRET efficiency depends on not only the distance, but
also the overlap between donor’s emission and acceptor’s absorption spectra and orientation.
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Figure 4. Fluorescence intensities of probes A (a) and B+ (b) in different pH conditions under 450 nm 
excitation for probe B+, and 550 nm excitation for probe A. 
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Figure 5. Fluorescence intensity of probes A (a) and B+ (b) under continual excitation of 450 nm for 
probe B+ and 550 nm for probe A. 

Figure 3. Fluorescence spectra of cyanine acceptor of probe B+ in different pH buffers (a), fluorescence
spectrum of probe A, and absorption spectrum of probe B+ at pH 4.8 (b).

Probe A reversibly responds to pH changes between 4.0 and 7.6, Figure 4. Probe B+ under 450 nm
excitation also shows excellent reversible fluorescence responses at 743 nm to pH changes between 4.0
and 10.8. The results indicate that probes A and B+ are stable and demonstrate reversibility to changes
in pH, Figure 4, as compared to the IR-780 dye, Figure 5.
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2.3. Selectivity the Probes to pH over Cations, Anions, and Amino Acids

We studied the responsiveness of probes A and B+ to pH to metal ions. Essential metal ions
including K+, Cu2+, Mg2+, Mn2+, Ni2+, Ag+, Fe3+, Fe2+, Al3+, and Co2+ ions were added to solutions
of probe A or B+ at pH 4.0, 7.6, or 11.3, and, only insignificant changes of fluorescence intensity
were detected, Figure 6. Further, common anions such as I−, Br−, NO2−, NO3−, SO4

2−, SO3
2−, S2−,

HCO3
−, and CO3

2− ions also display little influence on the fluorescence intensity of probe A or B+

under pH 4.0, 7.6 or 11.3, Figure 7. Finally, amino acids and nucleophilic biothiols such as leucine,
methionine, alanine, proline, arginine, threonine, glycine, cysteine, and glutathione have small effects
on fluorescence responses at pH levels of 4.0, 7.6 or 11.3, Figure 8.
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ES transition at 580 nm with 99.5% percent localization on the cyanine moiety. Protonation of probe 
B+ to produce probe BH2+ results in three ES transitions of suitable oscillator strength to be considered, 
see Table S8. The transition ES 2 at 585 nm has a 94.5% basis on π to π* orbitals localized on the 
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energy transition consisting of a lower energy π-delocalize (i.e., HOMO-3) orbital to the LUMO 
localized on the rhodamine section occurring at 398 nm (expt 413 nm) is also calculated. The results 
of this calculation do not reveal any transitions from the rhodamine to the cyanine moieties in probe 
BH2+. This adds credence to the likelihood of FRET transfer as an explanation of the aforementioned 
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2.4. Theoretical Results

The drawings and data in Figure 9 summarize pertinent results from theoretical calculations based
on density functional theory DFT-APFD [36], at the 6-311+G(2d, p) [37–39] level implemented using
Gaussian 16 [40]. We find reasonable agreement with the experimental and calculated transitions for
the probes as listed in Figure 9. The results suggest that the transition for probe A consists of electron
movement from the diethylamino moiety onto the spirolactam section of the molecule. With probe AH+

which does not contain the spirolactam ring, more even π-delocalization pertains, judging by the lack
of intense blue. The transition also emanates from the diethylamino moiety, namely ES 1, and occurs
at 513 nm. Probe B+ which contains the spirolactam ring revealed a ES transition at 580 nm with 99.5%
percent localization on the cyanine moiety. Protonation of probe B+ to produce probe BH2+ results in
three ES transitions of suitable oscillator strength to be considered, see Table S8. The transition ES 2 at
585 nm has a 94.5% basis on π to π* orbitals localized on the cyanine moiety with the rest (i.e., 4.8%)
from π to π* orbitals localized on the rhodamine moiety. This situation is reversed with the ES 3
transition with a 92.5% composition from the rhodamine sections and 4.7% from the cyanine. This is
clearly observable in the sections of probe BH2+ that are colored light blue in Figure 9. Clearly in an
experimentally obtained absorption spectrum, these contributions would overlap and result in a broad
transition at 550 nm (expt 664 nm), see Figure S28. A higher energy transition consisting of a lower
energy π-delocalize (i.e., HOMO-3) orbital to the LUMO localized on the rhodamine section occurring
at 398 nm (expt 413 nm) is also calculated. The results of this calculation do not reveal any transitions
from the rhodamine to the cyanine moieties in probe BH2+. This adds credence to the likelihood of
FRET transfer as an explanation of the aforementioned absorption and fluorescence data.
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effectively stain the cells. We also conducted a colocalizaton imaging experiment of probe B with 
Lysosensor Green in HeLa, and obtained a high Pearson collocalization coefficient of 0.93 between 
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2.5. Cellular Fluorescence Imaging

A confocal fluorescence microscope was used to conduct cellular fluorescence imaging of HeLa
incubated with probe B+. The cellular fluorescence intensity of probe B+ increases with probe
concentration from 1 µM to 10 µM as deep-red fluorescence from 600 nm to 650 nm, and near-infrared
fluorescence from 725 nm to 775 nm can be clearly observed under rhodamine excitation at 440 nm
with 10-µM concentration level of probe B+, Figure 10. Strong cellular near-infrared fluorescence can
be observed under cyanine acceptor excitation at 635 nm with 1 µM concentration of probe B+ due to
high fluorescence quantum yield under acidic pH condition. These results demonstrate that probe
B+ effectively stain the cells. We also conducted a colocalizaton imaging experiment of probe B with
Lysosensor Green in HeLa, and obtained a high Pearson collocalization coefficient of 0.93 between
probe B and Lysosensor Green, indicating that probe B is located in lysosomes in HeLa cells, Figure 11.
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collect window is from 425 to 475 nm.
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Figure 11. Live-cell fluorescence images of HeLa cells incubated with probe B+ for 2 h and then with
Lysosensor Green for 1 h with scale bars at 20 µm. The excitation of Lysosensor green is 405 nm and
the fluorescence collect window is from 500 to 550 nm.

Probe A as a weak base bearing an amine residue, should function as a lysosome-targeting
imaging agent to selectively stain lysosomes in live cells. In order to test this hypothesis, we
conducted colocalization experiments by using commercial Lysosensor Green to determine the
intracellular location of probe A. Intracelluar pH values were adjusted by incubating HeLa cells
in different pH buffers containing 10 µM nigericine, H+ ionphore, which is employed to promote
equilibration between intracellular and extracellular pH values [7,9,29,41,42]. Probe A responds
sensitively to intracellular pH decreases from 7.01 to 3.50 with gradual fluorescence enhancement
due to acid-activated spirolactam ring opening with significantly enhanced π-conjugation, Figure 12.
The respective Pearson’s colocalization coefficents between Lysosensor Green and probe A were higher
than 0.86 under acidic pH 3.50 or 4.03, Figure 13, indicating that probe A selectively stains lysosomes
in live cells with pH-sensitive responses while Lysosensor Green is insensitive to pH changes, see
Figure 12. The plot of the average fluorescence intensities of probe A in HeLa cells versus pH gave a
pKa value of 5.20.
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Figure 13. Enlarged confocal fluorescence images of HeLa cells incubated with probe A and Lysosensor
Green in pH 3.50 buffer containing 10 µM nigericine from Figure 12.

We also investigated whether probe B+ could be used to detect intracellular pH changes with
double-checked feature by incubating HeLa cells with probe B+ in different pH buffers containing
10 µM nigericine, Figure 14. Gradual decreases of intracellular pH values from 9.00 to 3.01 cause
increases of deep-red fluorescence in channel 1 and near-infrared fluorescence in channel 2 under
rhodamine donor excitation at 440 nm. In addition, intracellular near-infrared fluorescence in channel 3
under cyanine excitation at 635 nm also increases with the same gradual pH decreases, demonstrating
that probe B+ can sensitively monitor intracellular pH changes.
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3. Discussion

Fluorescence imaging with molecular fluorescent probes serves as an important tool in biological
and medical research. Near-infrared imaging provides many advantages with prolonged fluorescence
with less photobleaching problems, deep tissue penetration, and low interference from biological
fluorescence backgrounds. Fluorescent probe A was measured to have a high pKa value of 5.15
corresponding to spirolactam ring opening although only 1,2-diaminoethylene was used to modify
the deep-red rhodamine dye. Probe A effectively targets lysosomes in live cells and can detect pH
changes in lysosomes with a very suitable pKa value since lysosomes are membrane-encased organelles
with optimal pH from 4.5 to 5.0 for the enzyme activity in hydrolysis to degrade biological species,
Figure 12. Compared with probe A, a commercial lysosensor is insensitive to pH changes although it
can specifically target lysosomes in live cells. We further employed deep-red rhodamine as a FRET
donor and near-infrared cyanine as a FRET acceptor to detect intracellular pH changes in live cells with
a double-checked feature. Since the emission of the rhodamine donor has significant overlap with the
absorption of the cyanine acceptor, efficient energy transfer from the rhodamine donor to the cyanine
acceptor occurs through a very short ethylene spacer under acidic pH conditions. Probe B+ containing
the cyanine and rhodamine moieties, shows corresponding fluorescence increases with pH decreases to
achieve the double-checked capability. Finally, we have developed ratiometric near-infrared fluorescent
probes by introducing a spirolactam on/off switch to a cyanine acceptor which when activated results
in a deep-red rhodamine donor connected to a cyanine acceptor through an ester bond instead of a
spirolactam ring with an amide bond.

4. Materials and Methods

4.1. Synthesis of Probe A

After compound 3 [43] (439 mg, 1 mmol), ethylenediamine (180 mg, 3 mmol), BOP reagent
(530 mg, 1.2 mmol) and trimethylamine (1 mL) were added to dry dichloromethane (10 mL), the
mixture was stirred at room temperature for 16 h. The mixture was diluted with dichloromethane,
washed with water and brine, dried with anhydrous Na2SO4, and filtered, and the filtrant concentrated
under reduced pressure. The resulting residue was purified by using flash column chromatography
through gradient elution with methanol ratio to dichloromethane from 5% to 10%. Probe A was
obtained as blue solid. 1HNMR (300 MHz, CDCl3) δ: 7.78 (d, J = 7.2 Hz, 1H), 7.59 (d, J = 8.2 Hz, 1H),
7.38 (p, J = 7.2 Hz, 2H), 7.09 (d, J = 7.1 Hz, 1H), 6.55 (d, J = 8.2 Hz, 1H), 6.45–6.28 (m, 3H), 6.23 (d,
J = 8.7 Hz, 1H), 4.02 (s, 4H), 3.43–3.65 (m, 1H), 3.25–3.30 (m, 5H), 2.78–2.56 (m, 2H), 2.46–2.56 (m, 2H),
1.73–1.41 (m, 2H), 1.11 (t, J = 6.9 Hz, 6H); 13CNMR (75 MHz, CDCl3) δ: 169.61, 152.90, 151.57, 148.86,
147.50, 138.31, 132.71, 131.45, 128.55, 128.49, 123.71, 123.63, 123.03, 120.14, 114.21, 112.68, 108.95, 104.77,
100.44, 98.06, 67.20, 44.57, 42.05, 41.18, 28.52, 21.40, 12.93. LCMS (ESI): calculated for C30H32N4O2 [M]+

481.2, found 481.5.

4.2. Synthesis of Probe B+

Probe A (240 mg, 0.5 mmol), cyanine dye (IR-780) (400 mg, 0.6 mmol), N,N-diisopropylethylamine
(DIPEA) (129 mg, 1 mmol) were added to acetonitrile (10 mL). The mixture was refluxed for 2 h and
the reaction solution concentrated under reduced pressure. The resulting residue was purified by
using flash column chromatography through gradient elution with methanol ratio to dichloromethane
from 0% to 5%. Probe B+ was obtained as blue solid. 1HNMR (300 MHz, CDCl3) δ: 9.28 (s, 2H), 7.83
(d, J = 7.5 Hz, 2H), 7.65–7.47 (m, 5H), 7.18–7.31 (m, 5H), 7.06 (t, J = 7.5 Hz, 2H), 6.87 (d, J = 7.8 Hz,
2H), 6.60 (d, J = 8.2 Hz, 1H), 6.54 (s, 1H), 6.44–6.24 (m, 2H), 5.60 (d, J = 12.7 Hz, 2H), 3.95–4.19 (m,
4H), 3.84–3.69 (m, 4H), 3.65–3.51 (m, 2H), 3.50–3.40 (m, 2H), 3.34 (t, J = 7.4 Hz, 4H), 2.65–2.52 (m, 2H),
2.52–2.39 (m, 4H), 1.84–1.71 (m, 6H), 1.54 (d, J = 10.4 Hz, 10H), 1.14 (t, J = 7.0 Hz, 6H), 0.98 (t, J = 7.4 Hz,
6H); 13CNMR (75 MHz, CDCl3) δ: 170.89, 167.51, 153.27, 149.07, 148.07, 143.25, 140.17, 137.44, 133.54,
129.01, 128.38, 128.24, 124.11, 123.86, 123.01, 122.10, 119.26, 114.15, 112.83, 109.09, 108.97, 98.26, 94.64,
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68.13, 53.02, 47.84, 45.14, 44.71, 41.75, 28.92, 28.82, 26.46, 21.85, 21.43, 20.42, 13.00, 12.11. LCMS (ESI):
calculated for C66H75N6O2 [M]+ 983.5, found 983.5.

4.3. Theoretical Calculations

Chemdraw structures of probes A, AH+, B+ and BH2+ were optimized initially with the MM2
functionality in Chem3D and then further with Avogadro [44,45]. Calculations were then conducted
using density functional theory (DFT) with spherical atom dispersion terms, namely APFD [36],
with all electron basis sets at the 6-311+G(2d, p) [37–39] level implemented using the Gaussian16
suite of programs [40] for the full geometry optimization and frequency calculations of the probes.
Imaginary frequencies were not obtained in any of the frequency calculations. The first six excited
states (more if required) were assessed on the basis of TD-DFT optimizations [46] in a Polarizable
Continuum Model (PCM) of water [47]. Results were interpreted using GaussView [48] for all data
and figures. The diagrams and listings of atomic positions from the calculations, calculated IR and
NMR spectra in some cases, listings of excited states with drawings of referenced LCAOs are supplied
as supporting information.

4.4. Cell Culture and Cell Imaging Procedures

HeLa cells were cultured in modified Eagle’s medium (DMEM, Gibco, Carlsbad, CA, USA)
containing 10% fetal bovine serum (FBS, fisher Scientific, Hampton, NH, USA) at 37 ◦C in humidified
air with 5% CO2. HeLa cells were subcultured with 0.25% trypsin (w/v) every 2–3 day reached at
80% confluence.

For confocal live cell imaging, HeLa cells were seeded into the 35 nm glass-bottom culture dishes
(MatTek, Ashland, MA, USA) and allowed 1 day to reach 50% confluence. After 24 h of incubation,
the cell culture medium was replaced by freshly prepared FBS-free medium with 1, 5, and 10 µM of
probe B for 1 h 37 ◦C under 5% CO2 followed by using PBS buffer to rinse three times. For the live
cell fluorescence imaging at different pH, the HeLa cells were treated with 10 µM probe A or B 37 ◦C
under 5% CO2 for 1 h. The cells were rinsed with PBS buffer twice before they were treated with
10 µM nigericin in citric buffer with pH values at 3.50, 4.03, 4.54, 5.00, 5.52, 6.02, 6.51, 7.01 for probe A
and 3.01, 4.54, 6.02, 7.51, 9.00 for probe B, respectively, for 30 min to equilibrate the intracellular and
extracellular pH for 30 min. The cells were rinsed with PBS buffer twice again before imaging.

5. Conclusions

A new FRET-based near-infrared fluorescent probe (B+) for pH sensing with double-checked
feature was successfully prepared by conjugating a near-infrared rhodamine donor to a cyanine
acceptor via a robust C-N bond connection with a short ethylene tethered spacer. Probe A was
also prepared by introducing 1,2-diaminoethylene to rhodamine forming a closed spirolactam ring
structure. Probe B+ responds to pH decreases with fluorescence increases of both deep-red fluorescence
of rhodamine donors and near-infrared fluorescence of the cyanine acceptor under rhodamine donor
excitation at 450 nm.
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