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Abstract

The standard value for atmospheric refraction on the horizon of 34′, used in all pub-

licly available sunrise and sunset calculators, is found to be inadequate. The as-

sumptions behind atmospheric models that predict this value fail to account for real

meteorological conditions. The result is an uncertainty of one to five minutes in sun-

rise and sunset predictions at mid-latitudes (0◦ - 55◦ N/S). A sunrise/set calculator

that interchanges the refraction component by varying the refraction model was de-

veloped. Two atmospheric refraction models of increasing complexity were tested

along with the standard value. The predictions were compared with data sets of ob-

served rise/set times taken from Mount Wilson Observatory in California, University

of Alberta in Edmonton, Alberta, observations from various locations in Chile, and

on-board the SS James Fergus in the Atlantic Ocean. Increasing the complexity of

the model did not yield significantly better results. These observations make up the

entirety of documented sunrise and sunset times. A thorough investigation of the

problem requires a more substantial data set of observed rise/set times and corre-

sponding meteorological data from around the world. A mobile application, Sunrise

& Sunset Observer, was developed so that anyone can capture this astronomical and

meteorological data using their smartphone as part of a citizen science project. Data

analysis will lead to more complete models that will provide higher accuracy rise/set

predictions to benefit astronomers, navigators, and outdoorsmen everywhere.

xxv





Chapter 1

Introduction

1.1 Introduction

The periodicity of the heavenly bodies has been well understood for millennia, and

the time of their passage through a particular location in the sky was used to set

clocks until the advent of the atomic clock. Astronomers were the original time lords.

Accurate clocks solved the longitude problem: astronomers could easily determine

the time when a celestial body would be in a specific position; by comparing the time

and position of those celestial bodies at an observer’s location to those at a standard

location, such as Greenwich, the longitude of the observer could be calculated.[9]

Sunrise and sunset are defined as the moments when the upper limb of the solar

1



disk appears or disappears, respectively, on the horizon. Solar right ascension and

declination are reported to 0′′.001 and the solar semi-diameter has been measured to

0′′.2, which means calculating sunrise or sunset times to the nearest second should be

relatively simple.[10] [11] Why then does the Astronomical Almanac report sunrise

and sunset times only to the nearest minute and other solar phenomena, such as

eclipses, to the nearest 0.1 min (6 seconds)?[12]

The answer lies in the refraction of light as it travels through the atmosphere. As

discussed in Chapter 2, according to Snell’s law, light bends when it reaches a medium

with a different refractive index.This is the case when the Sun’s light meets the Earth’s

atmosphere, and the light continues to bend as the atmosphere’s density increases.

At near-zenith angles, refraction is negligible; however, at the horizon, when the light

is traveling through the most atmosphere, atmospheric conditions are fluid and can

change the refractive index significantly. Because the actual conditions cannot easily

be predicted, published almanacs and publicly available sunrise/set calculators use a

constant of 34′ for atmospheric refraction at the horizon, and do not account for any

seasonal variability based on geographic location. Thus, the atmosphere is assumed

to behave the same in Barrow, AK in January as it does in Honolulu, HI in July.

Predicting sunrise/set times to no better than the minute reflects the uncertainty in

time due to the poorly determined refraction component.
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Figure 1.1: Moment of Sunrise or Sunset The local horizon has an
altitude of 0◦ and a zenith distance of 90◦. R0 is the angular amount of
atmospheric refraction. The refracted Sun appears “flattened” because the
upper limb experiences less refraction than the lower limb. The geometric
Sun is the actual image of the Sun where s is its semi-diameter.[1]

1.2 Effects of Refraction on Horizon

Frequent changes in atmospheric conditions near the surface of the earth cause the

greatest differences in the refractive index. The atmospheric phenomena discussed
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below are fairly common, and knowledge of what meteorological conditions cause

them can help predict when they will occur.

Changes in atmospheric conditions cause both superior and inferior mirages: optical

phenomena due to refraction. Superior mirages occur when a mirage appears above

the erect image, and inferior mirages occur when a mirage appears below. Mirages

play an important role in navigation and understanding atmospheric refraction, es-

pecially at high latitudes where they are most common. In fact, a cold water mirage,

such as one of those described below, might have played a role in the tragedy of the

Titanic.[13]

1.2.1 Green Flash

Figure 1.2: Green Flash [2]

The green flash is generally a sunset related phe-

nomenon, but may be seen at sunrise, and is di-

rectly related to the wavelength of light being

scattered by the atmosphere. While lasting only

a few seconds, it adds uncertainty to determining

the moment of sunrise or sunset. The traditional

green flash can only be seen in the event of an

inferior mirage, which requires a warm air layer near the surface of the Earth and a

4



strong temperature gradient. The atmospheric conditions that are responsible for the

mirage magnify the refractive differences between red and green light. The strength

of the magnification determines the color of the flash. Sometimes they are closer to

yellow, and occasionally, if the air is very clear, they are blue. Even if conditions are

right, observers will only see the green flash if they are viewing the event from above

the warm air layer. In this case, if seen at sunset, the Etruscan Vase effect mentioned

below will usually precede the flash.

The green flash might also be visible in the presence of temperature inversion layers

in the form of a mock-mirage. The inversion layers increase the rate of change of the

refractive index of the air, refracting the light rays back towards the Earth with a

shallow elevation angle. If the curvature of the light’s new path is smaller than that

of the Earth, the light is trapped and the region in which it propagates is called a

duct. The duct causes the Sun to appear in slices on the horizon. Like its inferior

mirage counter-part, mock-mirage green flashes can only be observed from above the

inversion layer.[14] [8]

1.2.2 Etruscan Vase

An inferior mirage due to a warm air layer near the surface of the Earth causes what

is known as the Etruscan Vase effect. An inverted image of the Sun appears directly
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Figure 1.3: Etruscan Vase [3]

below the solar disk. This mirage joins the im-

age of the disk to form what Jules Verne called

an “Etruscan Vase.”[15] As the Sun sinks lower,

its shape shifts to appear more like an Ω. As the

inverted and erect images join, a green flash ap-

pears at the top of the image of the solar disk.[16]

The observer’s height above sea-level affects how

distinctly they will see the effect. The closer they

are to sea-level, the stronger the Ω-shape will be. An Etruscan Vase can also appear

at sunrise.

1.2.3 Fata Morgana

Figure 1.4: Fata Mor-
gana [4]

The Fata Morgana is named after Morgana Le Fay

from the Arthurian legends who is known for her mag-

ical powers of creating castles in the air.[17] It is aptly

named, as the images created by this mirage bear lit-

tle resemblance to the object that formed them.[18]

It occurs when a light duct is formed by calm lay-

ers of warm and cool air that cause combinations of

superior and inferior mirages.[19]
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1.2.4 Novaya Zemlya Effect

Figure 1.5: Novaya Zemlya Ef-
fect [5]

The Novaya Zemlya (NZ) effect is an optical

ducting phenomemon in the lower atmosphere,

and is traditionally thought of as an arctic mi-

rage. It is named after the island of Novaya

Zemlya (76◦12′N, 67◦33′E) where the first known

observation was made in 1597 by a member of

the Berentz expedition who witnessed a sunrise

two weeks early.[20] The Shackleton expedition

in 1915 also reported witnessing this phenomenon.[21] The effect is due to a cold sur-

face layer of air, and a strong temperature inversion layer in which the temperature

increase occurs in a narrow elevation range. A duct forms and can cause the image

of the Sun to be rectangular and split into multiple horizontal pieces.[22] According

to the data from Mount Wilson, this “arctic mirage” can be seen at mid-latitudes,

and can cause delays in sunset times by 100 seconds or more.
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1.3 Sunrise and Sunset Times

Before accounting for refraction, uncertainty in the solar diameter (0′′.2) is the limiting

factor for determining the uncertainty in sunrise and sunset time predictions. This

leads to an uncertainty in timing of about 0.013s/ cosψ, where ψ the angle between

the horizon and the Sun’s apparent motion. ψ is dependant on solar declination and

the latitude of the observer, and is discussed in further detail in Chapter 5. While the

Sun is crossing the horizon in non-Arctic regions, the rate of change in ψ is negligible.

Therefore, before accounting for refraction, predictions within 0.1s should be possible.

All sunrise and sunset calculators account for refraction in some way. However, all

known, published papers on estimating refraction near the horizon are based on mak-

ing observations down to a few degrees above the horizon and extrapolating down

to the horizon. It has been shown that this extrapolation method inadequately rep-

resents reality.[23] At best, the uncertainty in refraction is limited by anomalous

refraction, or the amount of refraction seen, but unaccounted for, in any atmospheric

refraction model.[24] The value for anomalous refraction is around 10′′, leading to an

uncertainty of about 0.7s/ cosψ, where ψ is as above.[24] Therefore, with sufficient

knowledge of the meteorological conditions and an accurate refraction model, sunrise

and sunset predictions to the nearest second should be possible, at least at central

latitudes.
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Almanacs give sunrise and sunset predictions to the nearest minute because their

underlying algorithms cannot adequately predict the meteorological conditions nor

the resulting refraction. The differences between observed and calculated sunrise

and sunset times with corresponding meteorological observations are a measure of

the accuracy of the refraction model used. The results of those comparisons should

identify the most influential factors and guide efforts to improve refraction modeling.

To explore the relative contributions of different factors satisfactorily, a robust set

of observations that span a wide range of meteorological conditions, locations, and

dates is necessary.

In order to compare observed times to calculated times, an accurate sunrise and sunset

prediction program, the Ultimate Rise/Set Algorithm (URSA), was developed that

is capable of incorporating externally computed values for atmospheric refraction.

Chapter 3 describes its development and verification along with guidance for its use.

Chapter 7 suggests modifications to this calculator which would expand its use to

other celestial objects, such as the moon, and increase its potential to contribute to

other atmospheric studies, such as illuminance.

For the initial comparisons, three refraction models were chosen that span a range

of complexity and expected accuracy: standard refraction, Hohenkerk and Sinclair’s

high accuracy model, and a lower accuracy formulation by Bennett.[25] [26] Chapter 2

describes each of these models and, in the case of standard refraction and Bennett’s
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model, documents their history and evolution, as this was not readily available. Ho-

henkerk and Sinclair’s algorithm has sufficient documentation. Chapter 3 describes

how the refraction models were implemented for use with the sunrise and sunset

prediction program. The hypothesis was that the increasing level of complexity of

the refraction models would result in an increased accuracy of the sunrise/set times.

However, more complex refraction models require a larger set of meteorological in-

puts, which limits their practicality for daily use. Chapter 4 also discusses this after

evaluating the effectiveness of each refraction model used.

The comparisons required a comprehensive set of sunrise and sunset observations

with their associated meteorological data. The observational data sets were available

in two flavors: those with matching meteorological conditions, and those without.

Observations with matching meteorological conditions consist of

• 250 sunset times from Mount Wilson Observatory near Los Angeles, CA taken

between 1987 and 1991 [27]

• 244 sunrise times and 125 sunset times taken from Edmonton, Alberta, Canada

between 1990 and 1992 [1]

• 1 sunrise and 4 sunset times acquired through the implementation of the citizen

science project described in Chapter 6

Observations without corresponding meteorological conditions consisted of
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• 116 sunset times from the paper by Schaefer and Liller taken in 1989 [28]

• 7 sunrise and 29 sunset times taken during the Smiley eclipse expeditions be-

tween 1946 and 1951 [29]

Chapter 4 analyzes these data sets. The results indicate that varying the refraction

models has little effect on improving the accuracy of sunrise and sunset times. Over an

ocean horizon at high elevations, refraction is, in general, much greater than predicted

by all three of the refraction models. Over a land horizon, the opposite is true, with

the refraction models over-estimating the amount of refraction on the horizon. One

must then conclude that current refraction models do not adequately represent the

atmosphere near the horizon.

These data sets, however, do not cover a wide range of meteorological conditions nor

locations. Therefore, Chapter 6 describes a citizen science project to collect a greater

range of observations. As mentioned earlier, Chapter 4 analyzes the observations

amassed so far though this program, which demonstrates feasibility of this collection

method and the potential value of the data.

11



1.4 Applications

This study looks at the effectiveness of atmospheric refraction models when used to

predict sunrise/set times. Accurate times of these phenomena can provide those using

celestial navigation with more accurate positioning, especially at high latitudes where

horizontal refraction effects are most common. Global Positioning System (GPS)

allows one to determine their location within 7.8 m.[30] However, sailors learn celestial

navigation for positioning when GPS is unavailable or suspected to be unreliable.

Under normal conditions, they should be able to determine their locations within a

nautical mile, or ≈ 1′ latitude. Due to the rotational speed of the Earth of 15′ per

min, timing errors of phenomenon of 1 minute can affect positioning calculations by

as much as 15 nautical miles.

Chapter 3 discusses broadening the use of this rise/set calculator to twilight times,

which would benefit astronomers who use twilight conditions to determine when ob-

servations should occur. A higher-accuracy prediction model would help them better

determine their observing window, especially for the automated telescopes, and per-

haps increase observing time: an additional few minutes per day would accumulate

to hours of observing time over the course of a year.

On a broader scale, understanding the conditions under which refraction models fall
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short can help with our understanding of the atmosphere, and determine how often

“standard” conditions actually occur. Complex refraction models such as that by

Hohenkerk and Sinclair use an atmospheric model to trace the path of the light-ray.

Limitations of the refraction algorithm, discussed in Section 2.1, also reflect how well

their atmospheric model describes the actual behavior of the atmosphere. Chapter 5

discusses how long it should take the Sun to cross the horizon, assuming atmospheric

conditions remain constant during the crossing. The atmospheric phenomena men-

tioned in Section 1.2 would increase the crossing times significantly. A study of

horizon-crossing times would also indicate limitations of refraction models.
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Chapter 2

Refraction and Dip

Understanding how light bends as it passes through any given substance is, in general,

as simple as knowing how the index of refraction changes in that material. Applying

Snell’s law

n1 sin z1 = n2 sin z2 (2.1)

where n1 is the initial index of refraction, z1 is the angle of incidence, n2 is the sec-

ond index of refraction, which then gives the angle, z2, of the refracted light as it

encounters the changes in the material. For the atmosphere, the refractive index is

proportional to the density of the air. The density depends on the meteorological

conditions of any given location, especially temperature and pressure, but also hu-

midity and lapse rate. Lapse rate, also known as the vertical temperature gradient,
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is the rate at which the temperature decreases with height above the surface of the

Earth. Refraction is also dependent on the wavelength of the light that reaches the

observer, and the zenith distance of the observed object.

Figure 2.1: Refraction in a Plane Path of a light ray through a planar
atmosphere.[6]

If we assume a planar model for the atmosphere, as that pictured in Fig. 2.1, this

becomes

n0 sin z0 = sin z

where z0 is the topocentric zenith distance, or the zenith distance as measured from

the observer’s location, of the source, and n is set to 1 since the uppermost layer is

outer space and assumed to be a vacuum. The angle of refraction, R is

R = z − z0
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and using small angle approximations, Eqn. 2.1 becomes

R = (n0 − 1) tan z0 = k tan z0 (2.2)

where k is known as the constant of mean refraction.[31] [6] k is empirically determined

by astronomical observations, and the value generally accepted is 58′′.2, for conditions

of 10◦C air temperature and 760 mm Hg (1013.25mb).[31] A humidity value is not

given.

If we assume a spherically symmetric atmosphere, Snell’s law becomes

nr sin z = n0r0 sin z0 (2.3)

for the path of the light ray, shown in Fig. 2.2, through the atmosphere to an observer

at O, a distance r0 from the center of the Earth.[31] From a general point P along

the path, the zenith angle is z, the radial distance is r, z0 is the value of z at the

observer, and n0 is the refractive index at the observer.

This chapter discusses four atmospheric refraction models, focusing on refraction at

the horizon where its effects are most noticeable.
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Figure 2.2: Refraction in the Atmosphere Path of a light ray through
the atmosphere from Hohenkerk & Sinclair.[7]

2.1 Atmospheric Refraction Models

2.1.1 Standard Refraction

At the horizon, the zenith angle, or the angle between the local zenith and the body’s

location, is the largest, and light passes through the densest part of the atmosphere

at a shallow angle. This means that the strongest effects of refraction happen to
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objects at the horizon. The accepted standard value for refraction of light at the

horizon is a constant 34′, meaning that light is bent such that an observer is able

to see 34′ beyond the horizon.[32] This value has been accepted as standard since

the 17th century and appears to have been determined by observations, though the

meteorological conditions and the location of the observations are unclear.[33] [34] A

text from 1733 by Halley includes a table of atmospheric refraction values at a range

of apparent altitudes.[35] While the author of the table is unnamed, indications are

that Newton is the origin of the 34′ value.(J. Hilton, private communication, 2018)

Texts as far back as 1865 cite it as the mean result of refraction at the horizon using

the standard conditions of 50◦F (10◦C) and 29.6in Hg (1002mb) for temperature and

pressure. Wavelength of light, lapse rate, and humidity appear to be lacking from

early calculations, but Newcomb cites a lapse rate of 6◦.5C per km in 1902 as a gen-

erally accepted standard and that an average spectral wavelength from astronomical

observations of 590 nm (yellow light) is used.[34] In all cases, the observer is assumed

to be at sea-level.

2.1.2 Garfinkel

An analytical model which became the standard used by the British and American

Nautical Almanac Offices until the 1980’s, was developed by Garfinkel in 1944, and

then later modified in 1966 when computers became available for calculations. The
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model was one of the first to use meteorological conditions for verification.[36] It is

based on a polytropic atmosphere, meaning that the atmosphere is in hydrostatic

equilibrium with a constant, nonzero lapse rate. The model takes input of zenith

distance, pressure, temperature, altitude above sea level, temperature gradient, and

some geophysical constants such as the refractive index.

Garfinkel’s algorithm at sea-level for conditions of 0◦C, 760mm Hg (1013.25mb), and

a temperature gradient of −0◦.005694C/m produces a refraction value of 2206′′.5

(36′.8) at the horizon. The model does not include humidity, so it is assumed to be

0%.[37] In a technical note published in 1985, Hohenkerk and Sinclair ran Garfinkel’s

algorithm using updated standard conditions of 1010mb and 10◦C, and produced

refraction value of 2068′′.28 (34′.5) for at the horizon, which is much closer to the

standard refraction value of 34′.[7]

Because of its computational complexity, Garfinkel’s model has been largely super-

seded by one derived by Sinclair. The derivation adopted the methods of Auer and

Standish, removing the asymptote at the horizon. It is discussed further in Sec-

tion 2.1.3. Garfinkel’s model, while worth mentioning, will not be considered further

in this analysis.
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2.1.3 Hohenkerk & Sinclair

As an alternative to Garfinkel, Hohenkerk and Sinclair (H&S) of Her Majesty’s Nau-

tical Almanac Office (HMNAO) developed an approach to computing refraction that

combined the numerical methods of Auer and Standish with an atmospheric model by

Sinclair, which was published in a technical note in 1985.[7] [38] [39]. This approach

considers local meteorological conditions (temperature, pressure, relative humidity,

and temperature lapse rate) as well as the location of the observer (height and lati-

tude). They also provided FORTRAN-77 code to implement their model. The details

of the computation can be found in the original technical note, but the general for-

mulae can be found here.[7] According to Snell’s law, the bending of the light ray

relative to a fixed direction as it passes through zone r + dr of Fig. 2.2, in which the

refractive index changes from n+ dn to dn is

ξ =

∫ n0

1

tan z

n
dn =

∫ r0

∞

tan z

n

dn

dr
dr =

∫ z0

0

tan z

n

dn

d(nr)

d(nr)

dz
dz (2.4)

where the refractive index outside the atmosphere is 1. Transforming Eqn. 2.4 so that

z is the independent variable prevents the integrand from becoming infinite at large

zenith angles. From Eqn. 2.3, nr is a function of z, so

d(nr)

dz
= −nr cot z
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and

dn

d(nr)
=
dn

dz

/d(nr)

dz
=

dn/dr

n+ rdn/dr

This leads to

ξ = −
∫ z0

0

rdn/dr

n+ rdn/dr
dz (2.5)

where dn/dr can be calculated solving Eqn. 2.3 for r.[7]

This atmospheric model used is that described in Sinclair (1982) and assumes [39]:

1. Up to the tropopause (11km), the lapse rate is constant. In the stratosphere,

the lapse rate is 0.

2. The atmosphere obeys the perfect gas law for dry air and water vapor separately,

as well as for the combined mixture of the two.

3. The atmosphere is in hydrostatic equilibrium.

4. The relative humidity is equal to its value at the observer throughout the tro-

posphere. In the stratosphere, it is assumed to be 0.

In 2008, H&S updated their previous technical note.[25] In particular, they modified

the values used for the acceleration due to gravity and other atmospheric constants

and implemented some bug fixes. The improved acceleration of gravity is the most

significant change and strongly affects objects near the horizon, as it affects the density

of the atmosphere near the surface of the Earth. Although HMNAO has not formally
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published the new version, this dissertation uses that version for computation and

analysis; a copy of the associated code is available in Appendix A.3. Under the

accepted standard conditions of 1010mb of pressure, temperature of 283◦.15K at the

ellipsoid (effectively the Earth’s surface), 0% humidity, lapse rate of −0◦.0065Km−1

and light at wavelength 0.50169µm, H&S produces a horizontal refraction value of

2041′′.04 (34′.0).

One limitation of this algorithm worth noting is in the range of lapse rate values which

can be used as input. The lapse rate is used to describe the temperature profile of

the atmosphere, which then defines how the light ray is bent. If the magnitude of

the lapse rate value is too high (on the order of 0◦.01Km−1, such as that reported in

by Sampson), the refraction value never converges, and the code outputs NaN (not a

number) as it exceeds the physically limited value of 9.8Kkm−1.[1]

2.1.4 Bennett

A simple low-accuracy formula for calculating refraction was developed by Bennett

in 1982 based on Snell’s law and modified empirically to fit the values produced by

Garfinkel, the standard at the time. To eliminate the domain error that would occur
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at large zenith angles, Bennett began with

R = k coth�

where R is the amount of atmospheric refraction, h� is the object’s observed altitude

(in degrees), and k is as above in Eqn. 2.2. Temperature and pressure are assumed

to be 10◦C and 1010mb respectively. If R is calculated in arcminutes, k is close to

unity.[26]

To get better agreement with the values produced by Garfinkel’s model, Bennett

modified the above equation empirically, resulting in

R = cot

(
h� +

7.31

h� + 4.4

)
(2.6)

for standard atmospheric conditions. This produces a horizontal refraction value of

34′.4.

For non-standard conditions, Bennett provides another, presumably empirically-

determined, formula

Rnew =
P − 80

930

(
1

1 + 8× 10−5(R + 39)(T − 10)

)
R

where R is as above in Eqn. 2.6 and P is pressure (mb), which agrees with Garfinkel
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within 0′.2 in the temperature range of −20 to 40◦C and a pressure range of 970 to

1050mb.[26] Rather than use this equation for non-standard conditions, this work uses

a modification of Eqn. 2.6 which applies the ideal gas law to allow for other pressure

and temperature values, and gives good agreement with the low-accuracy formulas

provided in the Explanatory Supplement to the Astronomical Almanac. From the

ideal gas law, ρ, the air density, is proportional to P
T

, so

ρnew
ρold

=
PnewTold
PoldTnew

If we add the values above, this gives us a pre-factor of

P (283K)

(1010mb)(T + 273)
=

0.28P

T + 273

and Bennett becomes

R =

(
0.28P

T + 273

)
cot

(
h� +

7.31

h� + 4.4

)

If k is converted to degrees, Bennett’s equation can be further modified to

R =

(
0.28P

T + 273

)
0◦.0167

tan(h� + 7.31/(h� + 4.4))
(2.7)

which appears as Eq. 7.90 in the Explanatory Supplement to the Astronomical

Almanac.[40] For standard conditions, this equation produces a horizontal refraction
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value of 34′.4. Starting with the 2004 edition, the The Nautical Almanac refraction

tables were generated using the H&S model with updated standard conditions of [7]

T = 10◦C
P = 1010mb
humidity = 80%
wavelength of light = 0.50169µm
latitude = 45◦.

For better agreement with the new refraction tables, Hohenkerk updated Eqn. 2.7

using these parameters to obtain

R =

(
0.28P

T + 273

)
0◦.0167

tan(h� + 7.32/(h� + 4.32))
(2.8)

which appears as Eq. 7.93 in the Explanatory Supplement, henceforth referred to as

Bennett-NA.[41] It produces a horizontal refraction value of 33′.8 and is used as the

first alternative to 34′ for the remainder of this document.

The Bennett-NA refraction algorithm does have limitations when determining refrac-

tion values below the horizontal both due to the nature of the tan−1 function, and

the singularity that would occur at an altitude of −4◦.32. This singularity would

only occur if the observer was around 17km above the local terrain while observing

sunrise or sunset, which is higher than most commercial planes fly, and can be ig-

nored. However, the nature of the tan−1 function requires some attention. Fig. 2.3

shows the refraction outputs for Bennett-NA, given altitude above the horizon, and
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a given set of temperature and pressure conditions. The temperature and pressure

conditions were chosen to represent standard conditions, and the average conditions

for the Edmonton and Mount Wilson data sets discussed in Chapter 4. As Fig. 2.3

shows, if the apparent altitude of the Sun is lower than 1◦.6 below the horizontal, the

Bennett-NA refraction outputs begin to decrease. This would occur if the observer

was about 2500m above local terrain while observing sunrise or sunset. While this

may not be a common occurance, this behavior does not represent real-world con-

ditions, and care should be taken when using the Bennett-NA algorithm when the

observer is high above the local terrain.

2.2 Dip

The distance an observer can see on the horizon is not only affected by refraction,

but also how high above the surface of the Earth they are. In Fig. 2.4, the observer’s

geocentric horizon corresponds to the horizontal dashed line through O, while the

geometric horizon lies an angle dg below that. This is called the geometric dip of the

horizon. The angle of geometric dip can be calculated using

cos dg =
R⊕

R⊕ + h
(2.9)
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Figure 2.3: Bennett-NA Refraction Atmospheric refraction at height
of celestial object. The top line indicates standard conditions, the middle
represents conditions in Edmonton, Canada, and the lower line those from
Mount Wilson, CA

where R⊕ is the radius of the Earth, and h is the observer’s height above the geometric

horizon.[8]

However, because refraction affects everything viewed through the atmosphere, there

is a difference between geometric dip and apparent dip, or the full distance an observer

can see due to their height and refraction. As can be seen from Fig. 2.5, and as we

have noted in Section 2.1.1, refraction allows an observer to see further than they

would be able to without it, due to the curvature of the Earth. In this case, apparent
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Figure 2.4: Geometric Dip The angle, dg between the geometric horizon
and the visible horizon, without accounting for refraction.[8]

dip can be calculated by

d = dg −R

where the refraction angle, R, is negative when compared to the geometric horizon.

Since the refraction associated with dip is not always known, Eqn. 2.10 has been

developed using the Standard Atmosphere.[8]

d(h) = 1′.75
√
h (2.10)

where h is in meters.[42]

Determining the angle of atmospheric refraction is no easy task as the meteorologi-

cal conditions in the atmosphere are inconstant. The models discussed here can not
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Figure 2.5: Apparent Dip The angle, d, between the geometric horizon
and the visible horizon H, accounting for refraction.[8]

account for non-standard phenomena such as inversion layers because of their under-

lying assumptions. The following chapters discuss the models’ implementation in a

sunrise/set calculator, and then analyze how well the predictions using these models

compare to actual observations.
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Chapter 3

The Ultimate Rise/Set Algorithm

To investigate the effects of refraction on times of sunrise or sunset thoroughly, a pre-

diction program is needed that outputs times to the nearest second, uses a rigorous

ephemeris and ∆T model1, has pole-to-pole coverage, and the ability to incorporate

meteorological data to account for atmospheric conditions. None of the current pub-

licly available tools is satisfactory for reasons that will be explained in greater detail in

Section 3.1. To meet the above requirements, the author developed a new calculator

using Python-2.7: “The Ultimate Rise/Set Algorithm (URSA).” Its design facilitates

switching atmospheric refraction modules to compare their performance with observa-

tions, which is necessary to begin understanding the discrepancies between predicted

and observed times. Three refraction models of increasing complexity for use with

1∆T = TT − UT1 where TT is Terrestrial Time and UT1 is Universal Time. ∆T is important for
accurate timing and will be discussed in further detail in Section 3.2.2
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the prediction program are discussed in Section 3.2.3. Their efficacy is evaluated in

Chapter 4.

3.1 Assessment of Existing Calculators

While many sources report sunrise and sunset times, only a few unique prediction

algorithms are in common use. A survey of 76 different on-line tools, discussed in

Section 3.1.2, revealed that there are three widely-used algorithms.[43] A total of

seven existing calculators were surveyed for their compliance with the requirements

outlined above: the three found in the survey, two previous U.S. Naval Observa-

tory (USNO) standards, National Aeronautics and Space Administration (NASA)

Jet Propulsion Laboratory’s (JPL) HORIZONS, and the Astropy library. They were

chosen either because of their popularity and widespread use, or their reputation as

an authoritative source. Below, each of them is discussed in detail.

3.1.1 Standards/Community Suggestions

U.S. Naval Observatory Standard Lunar-Solar Model (SLSM)

The USNO Standard Lunar-Solar Model (SLSM) is a set of sunrise, sunset, moonrise,

and moonset tables intended to serve as a standard that other developers could use to
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validate their prediction code.[44] The USNO Standard Lunar-Solar Model Algorithm

(SLSMA) generated these tables.2[44] Although parts of the original algorithm may

no longer be considered the best practices (J. Bangert, 2017, private communication),

the USNO still uses the SLSM as part of its verification procedures for any sunrise

and sunset prediction product. Written in FORTRAN-77, the SLSMA computes

the topocentric apparent horizon coordinates of the Sun every two minutes and uses

inverse interpolation to determine the time at which the Sun rose or set. It uses a

high-accuracy, but dated, ephemeris, NASA JPL’s Developmental Ephemeris (DE)

200 and interpolates ∆T from an annual list.[45][46] Updating the SLSMA would

require modifying its topocentric apparent place subroutines in accordance with the

1997 and 2000 International Astronomical Union (IAU) resolutions on astrometry,

switching its ephemeris to one of the current standards (e.g., DE405 or DE430 ), and

improving its ∆T processing.[47][48][10]

USNO Public Affairs Program 7.1

The USNO Public Affairs Program (PAP) is the latest version of a FORTRAN-77

program that began in the 1980s3.[49][50] An International Business Machine (IBM)

mainframe ran the original version to generate “certified” letter files, which could be

printed with a typewriter terminal connected to the mainframe by an RS-232 connec-

tion. Automating the calculation of sunrise and sunset times for court cases was the

2SLSMA is a more recent name for the Military Operations Analysis Rise Set Program (MOARSP),
which was colloquially called the “Mother of All Rise Set Programs.”

3or possibly earlier; the original developers did not produce any external documentation and the
details have faded in the memories of those who remain
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original goal of the program. At the time, the staff of old Nautical Almanac Office

were manually producing 1 or 2 of these documents per day. (G. Kaplan, private com-

munication, 2017) PAP formed the computational engine of the “Complete Sun and

Moon Data for One Day” data service until a new version based on the Solar-Lunar

Almanac Core 2.0 (SLAC 2.0, see below) was released in 2014 ; the current version has

a more sophisticated user interface, including an Application Programming Interface

(API).[51][52]

PAP uses an internal, analytic ephemeris and interpolates or extrapolates ∆T from a

list of measured values spaced five years a part. While the underlying algorithm is a

good starting point, both the coding language and the format of input variables make

updating it difficult. In addition, it does not natively support alternative refraction

models. This program served as a model for URSA4 and was used to validate the

output phenomena times.

USNO Solar-Lunar Almanac Core 2.0

The Solar-Lunar Almanac Core 2.0 (SLAC) is a library of C-language functions used

in creating the computational engine underlying the “Complete Sun and Moon Data

for One Day” data service.[51][52] SLAC steps through a given time period at intervals

of either 1 hour, most commonly, or 4 minutes, when conditions exist for the Sun

4The USNO does not release the source code for its on-line data services. However, the USNO
permitted the author to review this resource during her participation in the Naval Research Enter-
prise Internship Program (NREIP). The original developer, G. Kaplan (USNO ret.), also provided
personal notes and recollections relating to the development of PAP.
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or Moon to graze the horizon. SLAC is designed so that it can be used by an

observer moving on a platform with respect to the Earth’s surface. At each step,

SLAC updates the position of the observer taking into consideration any movements

during the interval. SLAC then computes the topocentric zenith distance of the

Sun or Moon including the contribution of the users preferred atmospheric refraction

model. Next, SLAC compares this zenith distance with the zenith distance of the

horizon, which may be depressed (i.e. the zenith distance is greater than 90◦). If

a rise or set occurs during the interval, SLAC uses inverse interpolation to obtain a

double precision Julian date, which gives time with micro-second precision. However,

the version publicly available as the “Complete Sun and Moon Data for One Day”

service truncates the time outputs to the nearest minute. (M. Chizek Frouard, private

communication, 2017)

To optimize the performance of its phenomena calculations on personal computers and

embedded systems, SLAC uses a mid-accuracy analytic ephemeris for the Sun.[53][54]

It also approximates ∆T using a polynomial fit to historical determinations and cur-

rent predictions; this model is updated approximately annually based on new deter-

minations and revised predictions. The SLAC library source code is restricted to

U.S. government agencies and their contractors.5 Unfortunately for the purposes of

this project, the “Complete Sun and Moon Data for One Day” service is restricted

to standard refraction. Although the API provides some flexibility in querying the

5The USNO does not restrict distribution of the output from programs using this library, such
as“Complete Sun and Moon Data for One Day”.
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service, a user cannot access the alternative refraction models. This service was also

used to validate the output times from URSA.

JPL HORIZONS

HORIZONS is a Solar System data and ephemeris computation service provided

by the Solar System Dynamics Group of NASA JPL.[55] HORIZONS does use a

high-accuracy ephemeris to calculate rise/set times, and their online service allows

for approximate variation in refraction based on the height of the observer due to

dip. They use a low level refraction model based on Bennett/Saemundsson and

assumes standard atmospheric conditions of “yellow-light observations at 10 deg C

sea-level with pressure of 1010 millibars.”[56][57] They state that the accuracy of

their predictions is less than or equal to twice the requested step-size indicated in the

search, which could be as short as 1 minute. This means that at best, rise/set times

are ±2 minutes. Furthermore, the interface is not user-friendly. The documentation

that explains how to get sunrise/set times is not easy to find, nor is it intuitive to

follow. HORIZONS is a powerful ephemeris tool, but it is not explicitly sunrise/set

calculator, which makes it a poor choice for those looking specifically for sunrise/set

times.
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AstroPy

The Astroplan package of the AstroPy library includes a sunrise and sunset

time calculator in the Observer class, Observer.sun rise time for sunrises and Ob-

server.sun set time for sunsets.[58] It uses the high-accuracy ephemeris DE430, and

the algorithm for times of rise and set described in Section 12.3.3 of the Explanatory

Supplement to the Astronomical Almanac. (E. Downey, private communication, 2018)

This formula is accurate between 60◦ North and South and does not allow for pole

to pole coverage.[59] It does allow the user to input the position of the body when

it reaches the horizon, but the default position is 0 indicating that refraction is not

considered.

3.1.2 Web Survey Findings

To understand what sunrise/set models are available to the general public, a survey

was conducted using the three most popular search engines (Bing, Yahoo, and Google)

which recovered 76 different websites reporting to predict sunrise/set times for any

location.[43] For each of these sites, the origin of the data or the method used to

calculate rise/set times was identified. The survey indicated that 75% of websites

predict their sunrise/set times using one of three sources: the USNO’s “Complete

Sun and Moon Data for One Day” API, an algorithm by J. Meeus taken from the

text Astronomical Applications, and an algorithm by P. Schlyter available as open
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source code and implemented in the standard PHP function library.[60][61] How the

other websites predicted rise/set times was undetermined.

Both Meeus’ and Schlyter’s algorithms use

cosHA =
sinh0 − sinφ sin δ

cosφ cos δ
(3.1)

to determine the time of the phenomenon in question, where HA is the solar hour

angle, h0 is the altitude of the solar center for the phenomenon in question, which

includes the standard 34′ for refraction, φ is the latitude of the observer, and δ is

the solar declination. This formula is accurate between 60◦ North and South and

does not allow for pole to pole coverage due to the domain issue that would occur

when φ = 90◦.[59] Meeus then determines the time of the phenomenon using α (solar

right ascension), and Θ0 (apparent sidereal time). He includes a correction factor

which is a function of δ, φ, LHA (local hour angle), h0, and h� (solar altitude).

Iterating with this correction can change the time of sunrise or sunset by as much as

15 minutes.[60] Schlyter’s general directions acknowledge that this algorithm is low

accuracy but suggest iterating over α and δ to decrease the error of HA.[61] Both

sources include a low-accuracy ephemeris to calculate α and δ.
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3.2 The Ultimate Rise/Set Algorithm

The following section discusses the algorithm used in URSA, including the history of

the algorithm, the geometry behind the model, and the refraction component.

3.2.1 Relationship to Antecedents

The USNO PAP program discussed in Section 3.1.1 was translated from its original

FORTRAN-77 to Python 2.7. Use of a more modern programming language makes

the underlying algorithm accessible to those not familiar with Fortran code. It also

allows the program flexibility when it comes to components like the ephemeris, ∆T ,

or refraction model, as the functions can be easily modified. Although the geometry

of the underlying model is still valid, several of the components were updated: the

ephemeris functions, the ∆T model, and the refraction-calling sequence.

In place of the internal analytic ephemeris used by PAP, the URSA computes α

and δ using the Naval Observatory Vector Astrometry Software Python Edition 3.1.1

(NOVAS Py 3.1.1), which accesses the full JPL DE405.[62][48]

∆T is the time difference between Terrestrial Time (TT) and UT1. TT is used as

the time reference for apparent geocentric ephemerides. It is a coordinate time scale
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that can only be determined after-the-fact.[32] UT1 is a conventional astronomical

timescale defined by the rotation of the Earth with respect to the Sun, and is nom-

inally equivalent to mean solar time from midnight on the Greenwich meridian.[32]

Coordinated Universal Time (UTC) provides the basis of civil time, and seconds of

UTC are SI seconds. To ensure that |UT1−UTC| < 0.9s, leap seconds adjustments

are occasionally made to UTC.[32]

PAP uses ∆T values taken from a list of measured values spaced once every five

years. URSA uses a text file of ∆T values provided monthly by the USNO’s Earth

Orientation Department (EOD) since 1973.[63] They currently provide quarterly pre-

dictions for ∆T from the present through 2024, which are updated annually. EOD

also provides historic ∆T values from 1657 to 1984.[64] ∆T currently increases about

1 second each year. The aim of this study is to attribute any error in sunrise/set

prediction times to variation in atmospheric refraction, so a more precise ∆T value

was used.

The biggest change in URSA is the ability for the program to incorporate values

for the refraction at the horizon calculated independently with the user’s algorithm

of choice. All other rise/set prediction tools considered here use the standard value

for refraction on the horizon (34’). This flexibility allows for a determination of the

accuracy of each atmospheric refraction model used. The accuracy of the refraction

models will be discussed in Chapter 4.
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3.2.2 Prediction Algorithm

The algorithm presented calculates the times of sunrise and sunset. Like Meeus’ and

Schlyter’s prediction algorithms, this model uses an iterative method based on an

initial guess of when the phenomenon occurs. The initial guess here is based on hours

from the Julian date of solar transit (∓6 hrs for rise and set respectively) which is

calculated separately. It takes α, δ, ∆T, and Greenwich Sidereal Time (GST) as

inputs, and approximates the rate of change of the solar hour angle (HA), α, and δ.

The apparent altitudes at which the phenomena occur are known and the program

uses these positions to iterate over computed times at which they may occur using a

Newton-Raphson method to determine the correct time.

The algorithm then obtains the altitude of the phenomenon (h�) using the equation[6]

sinh� = sinφ sin δ + cosφ cos δ cosHA (3.2)

where φ is the latitude, λ is the longitude, and where[59]

HA = (GST × 15.0 + λ−RA) mod 360.0. (3.3)

Eqn. 3.2 is a re-arrangment of Eqn. 3.1 that no longer encounters the domain issue

when φ is 90◦.
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3.2.3 Refraction

The altitude for sunrise or sunset must include the atmospheric refraction at the

horizon to achieve any level of accuracy in phenomena times. The above algorithm

calculates the position of the center of the Sun, which means at sunrise and sunset,

the refraction at the horizon must be added to the semi-diameter of the Sun to predict

accurately when the phenomenon will occur. URSA uses a fixed value of 0◦.266667 for

the solar semi-diameter. A brief discussion of some of the models used are presented

here.

Standard Refraction The most commonly accepted value for refraction at the

horizon is a constant of 34′. This is the default refraction value for URSA; that is,

unless the user provides another value, the code will apply 34′.

Bennett-NA The atmospheric refraction model developed by Bennett and modified

for the NA takes the height of the observed altitude of the object (deg), temperature

(◦C), and pressure (mb), as input.[26] [40] If conditions are unknown, the standard

temperature and pressure of 10◦C and 1010 mb are set as a default. The model has

been implemented in Python-2.7 and is provided in Appendix A.4. Refraction values

are output to a file which can then be used when running URSA.

Hohenkerk & Sinclair of HMNAO The more sophisticated atmospheric refraction
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model written in FORTRAN by Hohenkerk & Sinclair HMNAO takes the observed

zenith distance of the object (deg), the pressure (mb), temperature (K), and relative

humidity at the observer, the wavelength of light ray (µm), the lapse rate (Km−1),

the height of the observer above sea level (m), the latitude of the observer (deg), and

the precision required (′).[25] All inputs must be supplied by the user. Code for the

model is provided in Appendix A.3. Refraction values are output to a file which can

then be used when running URSA.

3.2.4 Using the Program

The program is written as a function that takes integers for the Gregorian year, month,

and day, and floating point real values for the time-zone, longitude (+ for East, - for

West), latitudes (+ for North, - for South), and refraction. The time-zone input

is optional; the program uses UT1 unless otherwise specified. The refraction value

is also optional; the program uses the standard 34′ unless otherwise specified. The

program requires that the latest version of the Python package NumPy be installed

(currently v1.136), as well as NOVAS Py 3.1.1. The program also requires a value for

∆T . Phenomena times are output as a Python dictionary with the Gregorian date

and time returned as a tuple: beginning of civil twilight, sunrise, solar transit, sunset,

end of civil twilight. Although civil twilight times are not required for the current

6URSA has only been tested with v1.13, but should run with all future versions. It is unknown
whether earlier version are compatible.
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analysis, they are computed for consistency and comparison with PAP and may be

useful for future studies of twilight conditions as discussed in Section 3.4.

To ensure the accuracy of the outputs are not affected by ∆T , the program requires a

text file of ∆T values. These values are the same as those mentioned in Section 3.2.1

available from the EOD. The current list of ∆T values is accurate from 1900 to the

present and should be updated once per year to maintain effectiveness. The program

interpolates between the two ∆T values closest to the date in question for use in the

sunrise/set calculator.

3.2.5 External Code Review

James Hilton (USNO) reviewed the program for scientific soundness. He recom-

mended using a more accurate date conversion and made notes in two places that

will further increase the precision of the calculation and generalize it for future use

(J. Hilton, private communication, 2017). Both of these suggestions will be discussed

in Section 3.4. Eric Barron (USNO) reviewed the program for compliance with good

Python programming practice and made some recommendations that would stream-

line some of the calculations. (E. Barron, private communications, 2017) All findings

were addressed to their satisfaction. (J. Hilton, private communication, 2017; E.
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Barron, private communication, 2017) Both gentlemen are members of the Nauti-

cal Almanac Office (NAO) within the Astronomical Applications Department, but

neither was extensively involved with the development of this program.

3.3 Calculator Comparisons

To ensure the accuracy of URSA, its outputs were validated against the USNO stan-

dards discussed in Section 3.1. The outputs were also compared to the sunrise/set

times produced with implementations of Meeus’ and Schlyter’s algorithms.

3.3.1 Comparison with Standards

The sunrise/set times from SLSM were available in tables for the year 1992 at 21

different latitudes from 90◦N to 90◦)S: 0◦, 30◦ N and S, and every 5◦ from 50◦ to

90◦ N and S. As can be seen in Fig. 3.1, except for a select number of days, URSA

produced values that were within a minute of the times predicted by SLSM. While

it did not produce times for rise or set at the poles, it did agree with SLSM on

which days the Sun was continuously above or below the horizon. In fact, in this

comparison, the dates on which there is a disagreement of greater than 5 min, SLSM

reported a phenomena and URSA did not. However, under the circumstances when
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two rises or sets are predicted to occur on the same day URSA did correctly produce

phenomenon times.

(a) URSA vs SLSM (Rise) (b) URSA vs SLSM (Set)

Figure 3.1: URSA vs SLSM These plots show the absolute time differ-
ences between the sunrise/set outputs of SLSM and URSA

URSA was validated against the original FORTRAN-77 PAP on which it was based.

Sunrise/set predictions at 17 locations between 80◦S and 89◦N for 8 days a year for 10

years between 2000 and 2024 were queried. Dates and locations are listed in Table 3.1.

The days were chosen to represent 2 days per season each year and included extreme

conditions, i.e., a set of dates at locations within the Arctic or Antarctic circles on

which only a sunrise or sunset was expected. Single phenomenon dates were chosen

using Multiyear Interactive Computer Almanac (MICA).[65] The mean difference in

outputs was 0.6 ± 1.4 sec for sunrises and 0.6 ± 0.9 sec for sunsets. The calculators

agreed within a minute of each other for all dates queried, and in fact agreed to the

second on all except two of the date-location combinations queried: one day at 89◦N
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on which they differed by 9 seconds, and the other at 80◦S on which they differed by

42 seconds. Given how high these latitudes are, these differences are insignificant.

(a) URSA vs PAP (Rise) (b) URSA vs PAP (Set)

Figure 3.2: URSA vs PAP These plots show the absolute time differences
between the sunrise/set outputs of PAP and URSA

URSA was tested against SLAC 2.0 as implemented by the “Complete Sun and Moon

Data for One Day” API. The API was queried using the same set of locations and

dates that was used to validate URSA against PAP. Code querying the USNO API

is provided in Appendix A.7. Again, as Fig. 3.3 shows, except for a select number of

sunrise times above the Arctic and Antarctic circles, the calculators agreed within a

minute of each other. In those select cases, the calculators agreed to within 2 minutes.
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Table 3.1
Locations and Dates used for URSA Validation All combinations

were tested

Locations Dates
80.0S, 0.0E 01/27/2000 02/25/2006 04/28/2010 05/26/2016 06/25/2022
75.0S, 0.0E 03/06/2000 04/05/2006 06/14/2010 07/13/2016 08/12/2022
60.0S, 0.0E 04/23/2000 05/23/2006 07/24/2010 08/31/2016 09/30/2022
45.0S, 0.0E 01/06/2000 07/01/2006 09/10/2010 10/09/2016 11/17/2022
30.0S, 0.0E 07/19/2000 08/18/2006 10/28/2010 11/26/2016 01/04/2023
15.0S, 0.0E 09/06/2000 10/05/2006 12/15/2010 01/10/2019 02/13/2023
5.0S, 0.0E 10/15/2000 11/23/2006 01/04/2014 03/01/2019 03/23/2023
0.0N, 0.0E 10/15/2000 01/07/2009 02/21/2014 04/18/2019 05/10/2023
10.0N, 0.0E 11/23/2000 02/24/2009 04/02/2014 06/05/2019 06/28/2023
20.0N, 0.0E 01/17/2003 04/04/2009 05/19/2014 07/24/2019 08/15/2023
40.0N, 0.0E 03/06/2003 05/13/2009 07/08/2014 09/10/2019 09/24/2023
50.0N, 0.0E 04/24/2003 06/30/2009 08/25/2014 10/29/2019 11/11/2023
66.0N, 0.0E 06/02/2003 08/18/2009 10/12/2014 12/07/2019
70.0N, 0.0E 07/19/2003 10/05/2009 11/30/2014 01/01/2022
75.0N, 0.0E 08/28/2003 11/23/2009 01/11/2016 02/18/2022
85.0N, 0.0E 10/06/2003 01/01/2010 02/29/2016 03/29/2022
89.0N, 0.0E 11/23/2003 02/18/2010 04/17/2016 05/16/2022

3.3.2 Comparison with Other Known Calculators

Using the findings of the survey discussed in Section 3.1.2, implementations of Meeus’

and Schlyter’s algorithms were selected. Schlyter’s algorithm has been implemented

in the standard PHP library using the date sunrise and date sunset functions. The

algorithm is used in several on-line calculators of which the sunrise-sunset.org site was

selected as representative because it is API-enabled. The website sunrise-sunset.org

API was queried using the same set of locations and dates that was used to query

the USNO API.[66]. Code querying this API is provided in Appendix A.5. As can be

48



(a) URSA vs USNO (Rise) (b) URSA vs USNO (Set)

Figure 3.3: URSA vs USNO These plots show the absolute time differ-
ences between the sunrise/set outputs of USNO and URSA

(a) URSA vs Schlyter (Rise) (b) URSA vs Schlyter (Set)

Figure 3.4: URSA vs Schlyter These plots show the absolute time dif-
ferences between the sunrise/set outputs of Schlyter and URSA

seen in Fig. 3.4, Schlyter’s algorithm produced more sunset times that were within

a minute of those from URSA than sunrise times, but began to diverge even at low

latitudes, around 30◦. In the case of days with a single phenomenon, the Schlyter

algorithm incorrectly predicted a rise when none of MICA, URSA, or the USNO API
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predicted one. The algorithm is also incapable of predicting phenomena at the poles

due to the domain error mentioned in Section 3.1.2. However, near the poles on days

when no sunrise or sunset occur, it did correctly make the distinction between the

Sun being continuously above or below the horizon: 00:00:01 for continuously above,

and 00:00:00 for continuously below.

Meeus’ algorithm has been implemented in a Python package, pvlib-python using

the transit sunrise sunset function in the spa library.[67] The same set of dates that

was used to query the USNO and Schlyter APIs was used for this function as well.

Code querying this package is provided in Appendix A.6. Meeus’ algorithm produced

(a) URSA vs Meeus (Rise) (b) URSA vs Meeus (Set)

Figure 3.5: URSA vs Meeus These plots show the absolute time differ-
ences between the sunrise/set outputs of Meeus and URSA

sunrise/set times that were closer to those predicted by URSA than Schlyter’s, even

at the high latitudes. However, for days on which a single phenomenon occurred,

it reported NaN, making no distinction between whether the Sun was continuously
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above or below the horizon. It also has the same domain problem that Schlyter’s

algorithm has when predicting phenomena at the poles.

3.3.3 Refraction Validation

Standard Refraction Computation of the sunrise and sunset tables for The Astro-

nomical Almanac uses a fixed refraction term of 34′.[12] Similar to The Astronomical

Almanac, PAP, “Complete Sun and Moon Data for One Day,” Meeus, and Schlyter

also use 34′ for refraction. Therefore, all of the model inter-comparisons discussed in

Section 3.1 and 3.2 use this value. The overall agreement among them indicates that

refraction is being implemented properly in URSA.

Bennett-NA Bennett-NA was selected for good agreement with the 2004 and later

editions of The Nautical Almanac, it was validated by comparison against the tables

on pages A2, A3, and A4 of the 2014 NA using apparent altitudes from 10◦ to 90◦

with the standard temperature and pressure conditions of 10◦C and 1010mb, and a

set of non-standard conditions with temperatures of −25◦C − 35◦C and pressure of

980 mb. [68] For the standard conditions, the differences between the tabulated values

reported in the NA and revised Bennett were within the accepted error of ±0′.1, as

can be seen in Table 3.2. (C. Hohenkerk, private communication, 2018) Refraction

values for non-standard conditions were systematically low for apparent altitudes
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above 8◦, but matched within −0′.1. For altitudes below that, refraction values varied

as much as 3′.7. These differences can be attributed to non-linear effects near the

horizon, as well as the fact that the values for non-standard conditions are reportedly

good within a “zone” or range of conditions.[69] Calculations show that each “zone”

contains conditions that give a range of refraction values within 0′.8. Without better

documentation of how the The Nautical Almanac non-standard condition table (A4)

values were calculated, the values reported this module are considered adequate.

Table 3.2
Comparison of NA and Bennett-NA Refraction Values Standard

Conditions

App NA Bennett-NA App NA Bennett-NA
Alt. reported calculated Alt. reported calculated
◦ ′ ′ ◦ ′ ′

0 00 33.8 33.8 5 50 8.7 8.7
0 03 33.2 33.2 5 55 8.6 8.6
0 06 32.6 32.7 6 00 8.5 8.5
0 09 32.0 32.0 6 10 8.3 8.3
0 12 31.5 31.5 6 20 8.1 8.1
0 15 30.9 31.0 6 30 7.9 7.9
0 18 30.4 30.4 6 40 7.7 7.8
0 21 29.8 29.9 6 50 7.6 7.6
0 24 29.3 29.4 7 00 7.4 7.4
0 27 28.8 28.9 7 10 7.2 7.3
0 30 28.3 28.4 7 20 7.1 7.2
0 33 27.9 27.9 7 30 6.9 7.0
0 36 27.4 27.5 7 40 6.8 6.9
0 39 26.9 27.0 7 50 6.7 6.7
0 42 26.5 26.6 8 00 6.6 6.6
0 45 26.1 26.1 8 10 6.4 6.5
0 48 25.7 25.7 8 20 6.3 6.4
0 51 25.3 25.3 8 30 6.2 6.3
0 54 24.9 24.9 8 40 6.1 6.2

Continued on next page
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Table 3.2 – continued from previous page
App NA Bennett-NA App NA Bennett-NA
Alt. reported calculated Alt. reported calculated
◦ ′ ′ ◦ ′ ′

0 57 24.5 24.5 8 50 6.0 6.0
1 00 24.1 24.1 9 00 5.9 6.0
1 03 23.7 23.8 9 10 5.8 5.9
1 06 23.4 23.4 9 20 5.7 5.8
1 09 23.0 23.0 9 30 5.6 5.7
1 12 22.7 22.7 9 40 5.5 5.6
1 15 22.3 22.4 9 50 5.4 5.5
1 18 22.0 22.0 10 00 5.3 5.4
1 21 21.7 21.7 10 05 5.3 5.3
1 24 21.4 21.4 10 15 5.2 5.3
1 27 21.1 21.1 10 25 5.1 5.2
1 30 20.8 20.8 10 45 5.0 5.0
1 35 20.3 20.3 10 55 4.9 5.0
1 40 19.9 19.8 11 05 4.8 4.9
1 45 19.4 19.4 11 25 4.7 4.8
1 50 19.0 19.0 11 35 4.6 4.7
1 55 18.6 18.5 11 55 4.5 4.6
2 00 18.2 18.1 12 15 4.4 4.4
2 05 17.8 17.8 12 25 4.3 4.4
2 10 17.4 17.4 12 45 4.2 4.3
2 15 17.1 17.0 13 05 4.1 4.2
2 20 16.7 16.7 13 25 4.0 4.1
2 25 16.4 16.4 13 45 3.9 4.0
2 30 16.1 16.0 14 05 3.8 3.9
2 35 15.8 15.7 14 25 3.7 3.8
2 40 15.4 15.4 14 45 3.6 3.7
2 45 15.2 15.1 15 15 3.5 3.6
2 50 14.9 14.8 15 45 3.4 3.5
2 55 14.6 14.6 16 15 3.3 3.4
3 00 14.3 14.3 16 45 3.2 3.3
3 05 14.1 14.1 17 15 3.1 3.2
3 10 13.8 13.8 17 45 3.0 3.1
3 15 13.6 13.6 18 25 2.9 2.9
3 20 13.4 13.3 18 55 2.8 2.9
3 25 13.1 13.1 19 35 2.7 2.7
3 30 12.9 12.9 20 25 2.6 2.6
3 35 12.7 12.7 21 05 2.5 2.6

Continued on next page
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Table 3.2 – continued from previous page
App NA Bennett-NA App NA Bennett-NA
Alt. reported calculated Alt. reported calculated
◦ ′ ′ ◦ ′ ′

3 40 12.5 12.5 21 55 2.4 2.4
3 45 12.3 12.3 22 55 2.3 2.3
3 50 12.1 12.1 23 45 2.2 2.2
3 55 11.9 11.9 24 45 2.1 2.1
4 00 11.7 11.7 25 55 2.0 2.0
4 05 11.5 11.5 26 55 1.9 1.9
4 10 11.4 11.4 28 15 1.8 1.8
4 15 11.2 11.2 29 35 1.7 1.7
4 20 11.0 11.0 31 15 1.6 1.6
4 25 10.9 10.9 32 55 1.5 1.5
4 30 10.7 10.7 34 45 1.4 1.4
4 35 10.6 10.6 36 35 1.3 1.3
4 40 10.4 10.4 37 55 1.2 1.3
4 45 10.3 10.3 41 25 1.1 1.1
4 50 10.1 10.1 43 15 1.0 1.0
4 55 10.0 10.0 46 25 0.9 0.9
5 00 9.8 9.9 50 35 0.8 0.8
5 05 9.7 9.7 54 15 0.7 0.7
5 10 9.6 9.6 58 15 0.6 0.6
5 15 9.5 9.5 62 45 0.5 0.5
5 20 9.3 9.4 67 35 0.4 0.4
5 25 9.2 9.3 73 05 0.3 0.3
5 30 9.1 9.1 78 25 0.2 0.2
5 35 9.0 9.0 84 05 0.1 0.1
5 40 8.9 8.9 88 35 0.0 0.0
5 45 8.8 8.8

Hohenkerk & Sinclair The transcription of the FORTRAN code for the H&S re-

fraction model was verified using tables provided in the technical note, which contain

47 values at zenith angles from 10◦ to 90◦ with two different sets of pressure, tem-

perature, relative humidity, wavelength of light, and lapse rates. Two of the values
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in Tables 3.3 and two in Table 3.4 have a 0.01 difference between the calculated and

reported times which can be attributed to rounding differences.

Table 3.3
Refraction Value Comparison 1 URSA and H&S

Pressure at observer : 1005 mb
Temperature at observer : 280◦K
Humidity at observer : 80%
Wavelength of ray : 0.574 µm
Lapse rate, α : 0◦.0065Km−1

Height of observer : sea level
Latitude of observer : 50◦

Observed H&S H&S
zenith angle reported calculated

◦ ′′ ′′

10 10.27 10.27
20 21.19 21.20
30 33.61 33.61
40 48.83 48.83
45 58.17 58.18
50 69.30 69.30
55 82.98 82.98
60 100.53 100.53
65 124.25 124.25
70 158.67 158.67
72 177.56 177.36
74 200.39 200.39
76 229.50 229.50
78 267.51 267.50
80 319.22 319.22
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Table 3.4
Refraction Value Comparison 2 URSA and H&S

Pressure at observer : 1010 mb
Temperature at observer : 283◦.15K
Humidity at observer : 0%
Wavelength of ray : 0.50169 µm
Lapse rate, α : see tabulation
Height of observer : sea level
Latitude of observer : 50◦

Observed H&S reported H&S calculated H&S reported H&S calculated
zenith angle α = 0.005694 α = 0.005694 α = 0.0065 α = 0.0065

◦ ′′ ′′ ′′ ′′

75 214.22 214.22 214.21 214.22
76 229.68 229.68 229.68 229.68
77 247.35 247.35 247.34 247.34
78 267.71 267.71 267.70 267.70
79 291.44 291.44 291.43 291.43
80 319.44 319.44 319.43 319.43
81 352.96 352.96 352.93 352.93
82 393.74 393.74 393.69 393.69
83 444.34 444.34 444.25 444.25
84 508.57 508.57 508.42 508.42
85 592.38 592.38 592.09 592.09
86 705.38 705.38 704.78 704.78
87 863.87 863.87 862.54 862.54
88 1097.02 1097.02 1093.79 1093.79
89 1460.42 1460.42 1451.88 1451.88
90 2068.97 2068.98 2044.24 2044.25

3.4 Conclusion & Future Work

Much of the legacy code in the astronomy community is written in older languages

such as FORTRAN, which is less commonly learned by the new generation of scien-

tists. To create a new standard, the code needed to be written in a more modern
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language such as Python. URSA is written in Python 2.7, and could easily be up-

graded to Python 3.0. The code relies on the latest version of NOVAS Py, which

currently uses the JPL ephemeris DE405. JPL released DE430 in 2014, but NOVAS

is not yet compatible. The upgrade in the ephemeris only changes the sun’s apparent

position by a small fraction of an arcsecond.[10] URSA will use DE430 when NOVAS

is compatible.

Astropy is commonly used in the astronomy community, but uses a low-level accuracy

formula for computing sunrise/set times. A detailed comparison between the two

calculators would help determine the level of accuracy of the Astropy sunrise/set

calculator. While many calculations may not require high-accuracy sunrise/set times,

if the need arises, such a comparison would help determine when to switch to a higher-

accuracy calculator such as URSA.

URSA currently computes the time of sunrise or set using a fixed value of 0◦.266667

for the solar radius. As mentioned in Chapter 5, the semi-diameter changes slightly

throughout the year because of the Earth’s elliptical orbit. From perihelion to aphe-

lion, the difference in the solar radius is 0′.5083, which would affect calculations by 2

seconds. Computing the semi-diameter for the day of the year would eliminate this

error.

URSA currently computes the beginning and end of civil twilight for consistency

with the original algorithm on which it is based. These values would be useful for
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future analyses of illuminance or other refraction studies, and could be supplemented

by times of nautical and astronomical twilights. Since URSA is a general rise/set

calculator, it could also be used to compute lunar events with some modification.

URSA is based on a former USNO standard algorithm. Common rise/set algorithms

such as that published in Astronomical Algorithms calculate an approximate time

that causes a domain error at the poles. URSA avoids this problem by estimating

the time of rise/set from transit for the first iteration. Unlike its predecessors, the

code also allows the user to change the value for atmospheric refraction to best fit the

conditions of the observations. With the improvements suggested here, URSA may

well be on its way to becoming a standard itself.
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Chapter 4

Analysis of Historical Sunrise and

Sunset Data

In this chapter, observed sunrise and sunset times from 30 different sets of longitude

and latitude coordinates are compared with predictions computed with URSA using

up to three refraction models. The observations were taken by L. Rarogiewicz, R.

Sampson, B. Schaefer, W. Liller, and C. Smiley.[27][1][28][29] Single observations were

taken at 21 of these locations: 14 from the middle of the Atlantic Ocean recorded,

and 7 from various beaches in Hawai’i. The data sets from Mount Wilson, CA and

Edmonton, Canada both contain 2 different locations within 10′′ of each other. Of

the remaining 4 locations, 3 are in Chile, with the final observing site in Providence,

RI. Observations from Edmonton and Rhode Island were made with land horizon;
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all other observations were made with a sea-level horizon. The availability of me-

teorological data for a particular site and date determined the number of refraction

models used when computing predicted sunrise or sunset times. Specific coordinates

are provided in Table 4.1. When height of eye is unknown, it is noted as 0m.

The main purpose of this analysis is to determine how well the refraction models

discussed in Chapter 2 predict sunrise and sunset times when compared to observa-

tions, and how differently they produce results when compared to each other. The

question of the importance of including dip will also be discussed. Ignoring dip, as is

done with those observations that did not include height information, may introduce

a systematic error in these results, especially for those with a water horizon. The first

few meters above the ground are important when calculating dip, which goes as the

square root of height, as stated in Eqn. 2.10.

4.1 Mount Wilson Observatory, CA

Sunset observations over the Pacific ocean, during which possible observations of

the Novaya Zemlya (NZ) effect were noted, were made available by the USNO in

an unpublished technical note.[27] Lucian Rarogiewicz 1 made a total of 250 sunset

1Rarogiewicz held several part-time positions on Mount Wilson, including (paid) weather observer,
postmaster, and observer on the Mark III Steller Interferometer (G. Kaplan, private communication,
2017).[70]
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Table 4.1
Observation Site Information Includes Geographic coordinates and

height of eye above the horizon

Observation Set Latitude Longitude Height (m)
Mount Wilson 34◦13′34′′.6 N 118◦03′56′′.2 W 1739

34◦13′37′′.0 N 118◦03′56′′.2 W 1725
Edmonton, Canada 53◦31′34′′ N 113◦29′14′′ W 22

53◦31′34′′ N 113◦29′14′′ W 39
53◦31′41′′ N 113◦31′10′′ W 50

Hawai’i 21◦16′40.8′′ N 157◦49′48′′.0 W 5
20◦55′55′′.2 N 156◦41′45′′.6 W 40
19◦37′40′′.8 N 155◦59′31′′.2 W 3
19◦33′46′′.8 N 155◦57′54′′.0 W 3
19◦25′4′′.8 N 155◦53′6′′.0 W 280
19◦56′9′′.6 N 155◦41′24′′.0 W 800
19◦49′22′′.8 N 155◦28′19′′.2 W 4205

Chile 32◦57′0′′.0 S 71◦33′0′′.0 W 200
29◦54′0′′.0 S 71◦18′0′′.0 W 300
30◦9′54′′.0 S 70◦48′54′′.0 W 2215

Atlantic 10◦32′36′′.0 N 58◦22′48′′.0 W 0
5◦4′42′′.0 N 44◦52′12′′.0 W 0

18◦26′36′′.0 S 38◦30′36′′.0 W 0
23◦43′12′′.0 S 43◦3′6′′.0 W 0
20◦48′18′′.0 S 39◦51′0′′.0 W 0
13◦4′6′′.0 S 36◦36′30′′.0 W 0
4◦33′24′′.0 S 35◦54′12′′.0 W 0
1◦52′12′′.0 S 35◦55′12′′.0 W 0
0◦30′24′′.0 S 42◦59′48′′.0 W 0

22◦29′18′′.0 N 65◦14′12′′.0 W 0
24◦49′48′′.0 N 66◦15′42′′.0 W 0
28◦56′12′′.0 N 68◦7′0′′.0 W 0
34◦52′0′′.0 N 70◦59′48′′.0 W 0
39◦8′30′′.0 N 73◦9′24′′.0 W 0

Rhode Island 41◦48′46′′.0 N 71◦41′11′′.0 W 0

observations from Mount Wilson, California between March 1987 and November 1991.

Along with the time of the observation, he noted the atmospheric temperature, dew

point, and pressure at the observation site. He took all the weather data within 5 min
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of 1550 PST (2350 UTC) at the National Weather Service station at Mount Wilson.

The earliest sunsets recorded were around 1650 PST in December and the latest were

around 1810 PST in March, making the time difference between weather observations

and sunset observations between 1 and 2.5 hours. He made observations from two

nearby locations, for which latitude, longitude, and height were given. The observer

made 246 observations with the use of binoculars, and 4 with the unaided eye. He

also categorized the observations, noting when the NZ effect was not present, when it

was possibly present, and when it was definitely present. Sunsets over the ocean are

ideal for this analysis because rise/set time prediction models do not account for an

elevated horizon. Due to Mount Wilson’s location in relation to the California coast,

sunsets over the ocean only happen during the Fall and Winter months, specifically

between September 1 and April 1.

Predicted time of sunset was calculated using refraction values from the three different

models discussed in Chapter 2: standard refraction, Bennett, and H&S. The H&S

model requires a lapse rate value, which was not included in the data, so the standard

constant 0.0065 K/m for the troposphere from the U.S. Standard Atmosphere, 1976

was substituted.[71] Observed and Computed times were then compared, maintaining

the NZ observation categories.

Fig. 4.1(a), shows the use of 34′ of refraction with dip, when calculating predicted

times. The difference between observed and computed times was 88.4 ± 78.4 sec
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(a) Observed - Computed (34′)

(b) Observed - Computed (Bennett)

(c) Observed - Computed (HS)

Figure 4.1: Mount Wilson Sunset Data Time differences between ob-
servations and computed predictions by day of year using 34′, Bennett-NA,
and H&S model for refraction. Dip is included in all scenarios.
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indicating that sunset was observed later than the computed time. This means that

refraction on the horizon was greater than 34′. Fig. 4.1(b) shows the use of the

Bennett-NA model, which incorporates temperature and pressure, while accounting

for dip. The difference between observed and computed times using this model is

51.5 ± 80.0 sec. The Bennett model produced, on average, times within a minute

of observed times, however, the standard deviation is just as large as that for 34′

of refraction. One thing to note with the use of Bennett-NA is that, as discussed

in Section 2.1.4 and shown in Fig. 2.2, if the apparent zenith distance of the Sun,

with dip, is greater than 91◦.6, the Bennett-NA refraction outputs begin to decrease.

The horizon is depressed by about 2◦.4 from Mount Wilson, which means at that

height refraction values calculated with Bennett will be systematically low. The H&S

algorithm shown in Fig. 4.1(c) yielded larger refraction values than the standard 34′,

but the differences between observed and computed times was 81.1±81.5 sec. Despite

the expected systematically low refraction values, Bennett-NA produced the largest

refraction values overall, creating smaller differences between observed and computed

times by almost a minute.

4.1.1 Population Discussion of Novaya Zemlya Effect

Distribution of the three different populations noted in Fig. 4.1 indicates that the

NZ effect did cause a time delay in the observed time of sunset. A two sample
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Kolmogorov-Smirnov (KS) test was performed on the populations to verify this. The

test determines whether two data sets come from the same distribution and would

indicate whether or not observations on days when the NZ effect was thought to be

present come from the same population as those on days it was not.[72] As Table 4.2

Table 4.2
KS Statistic Results Mount Wilson

Populations KS Statistic p-value
no-NZ, NZ 0.85 2.5e-10

no-NZ+possible-NZ, NZ 0.77 1.06e-8
no-NZ, NZ+possible-NZ 0.48 3.42e-11

no-NZ, possible-NZ 0.42 2.75e-7
possible-NZ, NZ 0.55 0.0006

shows, observations from days when the NZ effect was not present, and those when

it was present are two separate populations. The test revealed similar results when

adding the possible-NZ days to either population. The KS test was also performed to

determine whether the possible-NZ days were a part of either population. The results

in Table 4.2 show that possible-NZ days were part of neither population, indicating

that some other atmospheric phenomenon might have been occurring. Analysis of the

lower-limb measurements on those days may provide more insight. Table 4.3 breaks

down the differences between observed and computed times by population. While

the standard deviations remain in the minute range, the average difference in the

populations essentially doubles each time.
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Table 4.3
Mount Wilson Results Differences between Observed and Computed

times for Mount Wilson data separated by Population

Population Refraction Model Time Difference
no-NZ 34′ 63.8± 61.5 sec

Bennett 25.8± 61.5 sec
H&S 54.6± 61.8 sec

possible-NZ 34′ 128.9± 72.8 sec
Bennett 95.2± 74.7 sec

H&S + dip 127.0± 78.8 sec
NZ 34′ 222.5± 77.2 sec

Bennett 187.7± 76.7 sec
H&S 217.8± 76.7 sec

4.2 Edmonton, Alberta, Canada

As part of a Master’s thesis in which he calculated the astronomical refraction angle at

the horizon, Russell Sampson made a total of 244 sunrise and 125 sunset observations

between December 1990 and December 1993, in Edmonton, Alberta, Canada. He pub-

lished the observation times in an appendix to his thesis.[1] Temperature and pressure

data accompanied all of the observations. Relative humidity data were recorded with

the observations, but not published. However, Sampson provided a copy of the values

in a personal communication. (R. Sampson, private communication, 2018) They are

provided in Appendix B.1. Missing values were supplemented with historical values

obtained from Weather Underground recorded at a nearby airport.

Temperature gradient data were also provided for most of the observations; however,
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it was not used for this analysis. The values for vertical temperature gradient were

obtained using a radiosonde balloon at heights of 26-695 m, with most heights in

the 100-200 m range. They are, on average, an order of magnitude larger than

the standard lapse rate of 0.0065 K/m. The H&S algorithm traces the light ray

through the entire troposphere, assumes a constant lapse rate throughout, and, as

mentioned in Section 2.1.3, cannot handle large lapse rate values.[7] Additionally, the

provided values were all observed in the lowest 0.5km of the troposphere, and do not

adequately represent the entire troposphere, which spans about 10km. Therefore,

the standard lapse rate of 0.0065 K/m was used when calculating refraction with the

H&S algorithm.

Sampson took observations from two different multi-story buildings in Edmonton. In

one building, he used two different floors to make his observations depending on the

time of year, providing total elevation and height above the ground floor for one (687

± 1m or 22m above ground level), and total elevation for the other (704 ± 1m).[1]

Simple subtraction yields that the height of eye for the second site was 39m above

ground level. He provided total elevation (728 ± 1m) and geographic coordinates

for the second building.[1] A topography map of Edmonton provided an elevation of

678m near this building, and a quick calculation determined the height above the

ground to be 50m.[73] In all calculations, a flat horizon was assumed.
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The differences between observed and computed times were larger at sunrise, on av-

erage within 100 seconds, than at sunset, which was on average within 50 seconds.

Table 4.4 summarizes the results. When using 34′ with dip (approx. 13′), Fig. 4.2(a)

and Fig. 4.3(a) show that during the summer months, predictions for sunrises under-

estimated the amount of refraction causing an average 100 sec delay in sunrise time,

while for sunsets, refraction was overestimated, but predictions were only around 50

sec early. Fig. 4.2(a) has maximums in the spring and fall, both around 200 sec,

indicating refraction was overestimated by about 45′ for sunrises at those times of

the year. Fig. 4.3(a) has minimums at those same times of the year, but around 100

sec, indicating that refraction was overestimated by about 23′ then. When using the

Bennett-NA refraction model with dip, Fig. 4.2(b) shows that for sunrises, including

the daily temperature and pressure information to calculate refraction changed the

results in a negligible way. However, for sunsets, Fig. 4.3(b) shows that including the

temperature and pressure information shifted the maximum and minimum Observed-

Computed times by about 30 sec towards the 0-line. Fig. 4.2(c) and Fig. 4.3(c) show

that calculating refraction with the H&S algorithm and including dip give improved

predictions over those calculated with Bennett-NA, but only by about 30 seconds.

When including dip, sunrise predictions are consistently late, and sunset predictions

are consistently early. This means that in both cases, refraction is, in general, less

than what is assumed for predictions.
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Table 4.4
Edmonton Results Differences between Observed and Computed times

for Edmonton data

Phenomenon Refraction Model Time Difference
Rise 34′ −13.1± 114.5 sec

34′ + dip 71.8± 108.7 sec
Bennett −21.6± 118.1 sec

Bennett + dip 80.6± 111.0 sec
H&S 9.7± 119.2 sec

H&S + dip 94.5± 113.0 sec
Set 34′ 28.1± 76.7 sec

34′ + dip −59.9± 60.8 sec
Bennett 43.4± 71.0 sec

Bennett + dip −62.1± 51.7 sec
H&S 16.3± 64.7 sec

H&S + dip −71.6± 49.2 sec

Both for rise and set times, in excluding the dip portion of refraction, Fig. 4.2(d)-

4.2(f) and Fig. 4.3(d)- 4.3(f) exhibit a shift towards the 0-line when compared to their

counterparts, which include dip. This is due to the non-zero altitude of the horizon.

Sampson notes that, while the horizon is relatively flat where the observations were

made, they did have a non-zero affect on the rise/set observation times. He also

calculated the altitude of the horizon at three different points, giving an average

elevation of 0◦.15 with respect to the observer. In this work, dip was calculated to be

around 0◦.19 assuming a flat horizon. This means that the apparent horizon from the

elevated position is at a zenith distance of 90◦.04. This accounts for the shift around

the 0-line shown in Fig. 4.2(d)- 4.2(f) and Fig. 4.3(d)- 4.3(f), when dip is excluded.
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4.3 Hawai’i and Chile

Sunset observations during which observation of the green flash was noted are avail-

able from a paper by Schaefer and Liller (S&L), which discusses astronomical re-

fraction at the horizon. They made 110 sunset observations along with longitude,

latitude, and height above sea level. Observations were taken over an ocean horizon

between June 1987 and December 1989. Of the observations, eight were taken from

eight different locations in Hawai’i, 77 were taken in Viña del Mar, Chile, 4 were

taken in La Serena, Chile, and the remaining 21 were taken from Cerro Tololo, Chile.

During 45 of the observations, the green flash was noticeable. The time of the sun-

set was noted using a digital wristwatch with an error of about 2 seconds, and the

observations were made with the unaided eye (B. Schaefer, private communication,

2018).[28] Since meteorological data did not accompany the sunset timing observa-

tions, and NOAO does not keep records for those locations from that time (Heathcote

S., private communication, 2018) the standard 34′ was used for horizontal refraction.

As noted in Chapter 3, Bennett-NA with standard conditions produces 34′, so using

it to calculate predictions times here, with or without dip, would be redundant.

Fig. 4.4 shows the differences between observed and computed times when using 34′

and 34′+dip for refraction. Fig. 4.4(a) indicates that, except for three days, the

refraction at the time of sunset observations was greater than 34′, which is to be
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(a) Observed - Computed (34′) (b) Observed - Computed (34′ with dip)

Figure 4.4: Schaefer & Liller Sunset Data Time differences between
observations and predictions by day of year using 34′ and 34′+dip for refrac-
tion.

expected as many of the data points were taken from a very elevated position (≥200

m). The differences between observed and computed times without accounting for

dip is 198.6 ± 170.3 sec. Fig. 4.4(b) indicates that including dip is important to get

more accurate sunset times. The difference between observed and computed times is

here is −4.6± 51.8 sec. However, the large number of negative values indicates that

34′ is an over-estimation of the horizontal refraction at sea level for the locations in

question, which verifies Schaefer’s results. Similar to the Edmonton data, the trend of

larger differences existing in the summer months carries through both plots. A break-

down of the plot by location shows that the positive values in the summer months

all come from the Cerro Tololo, which has an elevation of 2215m. Unfortunately,

sunset times were only taken there during the summer months, so it is impossible

to definitively determine whether observed horizontal refraction was greater than 34′

primarily because of the elevation, or because of the time of year.
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According to Fig. 4.4, the green flash seems to have no bearing on the time difference

between observed and computed times. To verify that this is the case, observations

were separated into days when a green flash was observed, and days when they were

not. A two sample KS test was performed on the populations. It revealed a KS

statistic of 0.21 and a p-value of 0.16, which verifies the observations come from the

same population. This means that atmospheric conditions which cause obsevation of

a green flash do not affect the observation of sunset time more than those conditions

that do not.

4.4 Smiley

Smiley made a series of hand-written observations of sunrise and sunset times while on

expeditions between 1947 and 1952 to study the effects of low atmospheric refraction.

His papers are archived at Brown University in Providence, Rhode Island. J. Hilton

of the USNO acquired images of these papers and data files. Among his notes are 11

observations over an ocean horizon and 25 observations from a site 18 miles west of

Brown University, including 7 sunrises and 29 sunsets.[29] R. Edgar, A. Phlips, and

G. Bliss sifted through the images and transcribed the dates, times, and locations of

sunrise and sunset observations. They are recorded in Table 4.5 below. Times were

noted to be GCT, which Smiley did not define. It is assumed to mean Greenwich

Civil Time.(J. Hilton, private communication, 2016) Meteorological data did not
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Figure 4.5: Smiley Observations Time differences between observations
and predictions by day of year using 34′

accompany these observations, nor did height observations, so the standard 34′ was

used.

Fig. 4.5 shows that the difference between observed and computed sunset times was

−219.6±226.0, indicating less refraction on the horizon than 34′. The large majority

of the sunset observations, taken in RI, were made over land with no indication of what

was on the horizon. An elevated horizon could be the the reason for the early sets.

The sunrise observations were all taken over the ocean, and the difference between

observed and computed times was 43.6± 107.7, indicating less than 34′ of refraction

here as well. Including dip here would have caused an even grosser over-estimation

of refraction on the horizon. Further analysis of Smiley’s notes may shed some light
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Table 4.5
Smiley Data

Date Sunrise/Set Time GCT Latitude Longitude
03/16/1946 22:51:31 41◦48′46′′.0 N 71◦41′11′′.0 W
12/07/1946 21:14:17 41◦48′46′′.0 N 71◦41′11′′.0 W
12/26/1946 21:20:35 41◦48′46′′.0 N 71◦41′11′′.0 W
05/01/1947 09:35:38 10◦32′36′′.0 N 58◦22′48′′.0 W
05/04/1947 21:02:29 5◦4′42′′.0 N 44◦52′12′′.0 W
05/11/1947 20:06:13 18◦26′36′′.0 S 38◦30′36′′.0 W
05/13/1947 09:17:42 23◦43′12′′.0 S 43◦3′6′′.0 W
06/12/1947 20:04:32 20◦48′18′′.0 S 39◦51′0′′.0 W
06/14/1947 20:05:57 13◦4′6′′.0 S 36◦36′30′′.0 W
06/16/1947 20:20:02 4◦33′24′′.0 S 35◦54′12′′.0 W
06/17/1947 20:04:13 1◦52′12′′.0 S 35◦55′12′′.0 W
06/18/1947 08:50:13 0◦30′24′′.0 S 42◦59′48′′.0 W
06/26/1947 09:42:39 22◦29′18′′.0 N 65◦14′12′′.0 W
06/26/1947 23:16:00 24◦49′48′′.0 N 66◦15′42′′.0 W
06/27/1947 09:36:28 28◦56′12′′.0 N 68◦7′0′′.0 W
06/29/1947 09:33:39 34◦52′0′′.0 N 70◦59′48′′.0 W
06/30/1947 09:30:06 39◦8′30′′.0 N 73◦9′24′′.0 W
05/21/1949 00:01:46 41◦48′46′′.0 N 71◦41′11′′.0 W
06/02/1949 00:12:27 41◦48′46′′.0 N 71◦41′11′′.0 W
06/04/1949 00:13:13 41◦48′46′′.0 N 71◦41′11′′.0 W
06/15/1949 00:19:48 41◦48′46′′.0 N 71◦41′11′′.0 W
06/16/1949 00:20:18 41◦48′46′′.0 N 71◦41′11′′.0 W
06/24/1949 00:22:04 41◦48′46′′.0 N 71◦41′11′′.0 W
06/25/1949 00:22:04 41◦48′46′′.0 N 71◦41′11′′.0 W
06/30/1949 00:22:24 41◦48′46′′.0 N 71◦41′11′′.0 W
07/01/1949 00:22:26 41◦48′46′′.0 N 71◦41′11′′.0 W
07/02/1949 00:22:27 41◦48′46′′.0 N 71◦41′11′′.0 W
07/02/1949 00:21:52 41◦48′46′′.0 N 71◦41′11′′.0 W
07/05/1949 00:20:50 41◦48′46′′.0 N 71◦41′11′′.0 W
07/08/1949 00:20:17 41◦48′46′′.0 N 71◦41′11′′.0 W
05/22/1950 00:01:29 41◦48′46′′.0 N 71◦41′11′′.0 W
05/28/1950 00:04:00 41◦48′46′′.0 N 71◦41′11′′.0 W
06/09/1950 00:16:49 41◦48′46′′.0 N 71◦41′11′′.0 W
07/01/1950 22:28:30 41◦48′46′′.0 N 71◦41′11′′.0 W
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on conditions that would cause the effect seen here.

4.5 Discussion

While the data sets available are limited, comparing the outputs of sunrise or sunset

times computed with varying refraction models yields some interesting results. First,

increasing the complexity of the algorithm, and including more meteorological data,

does not appear to have a significant effect on decreasing the difference between ob-

served and computed times. Any changes in the models were on the order of 10 sec,

but their standard deviations were all on the order of 100 sec nullifying any improve-

ments. As currently implemented, the H&S algorithm consistently computes values

around 34′. With the meteorological data from Mount Wilson, it computed refraction

values between 32′ − 39′, and with the data from Edmonton, it returned refraction

values between 32′−44′, the highest values being at sunrise. This may be in large part

due to the problem of using a constant lapse rate in the troposphere, as discussed in

Chapter 2, as studies have shown that atmospheric models that use a constant lapse

rate produce values around 34′.[74] However, these findings also raise the question

of whether 34′ should continue to be considered the standard refraction value. The

analysis here suggests even with the inclusion of adjustments made for dip, especially

at sunset, and regardless of the presence of atmospheric phenomenon, it grossly un-

derestimates the amount of refraction on the horizon. The history of the value and
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the conditions under which it was determined need to be better understood if it is

going to continue to be considered the “standard” value of atmospheric refraction.

Second, if the Edmonton analysis can be considered representative of a real-world

“flat” horizon, even if the observer is at the top of an 8-story building, dip need

not be considered. Including dip, even with a slightly elevated horizon, causes a

systematic over-estimation of refraction. This causes the sunrise predictions to be

early and the sunset predictions to be late.

Third, for refraction values around 34′, it is clear from the two largest data sets

(Edmonton and Mount Wilson) that sunrise and sunset times cannot be predicted

to better than 2 min, at least for the cases of a land horizon or a highly elevated

observing site. The observations from Cerro Tololo confirm this as well. However,

the other observations from S&L all fall well within the minute mark. They were

also taken over a water horizon, but from a significantly lower elevation. The other

difference between this data set and the other two, is that these observations were

taken with the naked-eye as opposed to with binoculars or a welding mask like the

Mount Wilson or Edmonton observations. This implies that the eye sees the Sun

as having set before the last bit of it has actually left the horizon, perhaps due to

saturation, leading the observer to believe that refraction is less than it might be. In

this case, 34′ may be a good estimate when taking naked-eye observations, like those

navigators might take when doing positioning. Whether phenomenon times extracted

78



from videos taken with a camera are susceptible to the same systematic limitations

as naked-eye observations should also be explored as it may have a bearing on the

effectiveness of the citizen science project outlined in Chapter 6.
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Chapter 5

Observing Kepler’s Laws with the

Sunrise and Sunset

The changing location of sunrise and sunset and number of daylight hours readily

demonstrate the tilt of the Earth’s spin axis relative to its orbital plane, also known

as the obliquity of the ecliptic. However, visualizing the Earth obeying Kepler’s laws

is a bit more subtle. Observing the time the Sun takes to cross the horizon throughout

the year can reveal the first two laws quite well: the elliptical shape of the Earth’s

orbit with the Sun at one of the foci, and the consequent changes in the Earth’s

angular speed from perihelion—the point in orbit nearest the Sun—to aphelion—the

point in its orbit farthest away. The length of time the full disk of the Sun takes to

cross the horizon depends on the Sun’s ecliptic latitude and the observer’s geographic
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latitude.

The exercises outlined here best apply to latitudes that fall between the Arctic and

Antarctic Circles (65◦ N and S respectively). Beyond these latitudes, the Sun spends

much of the year either completely above or below the horizon due to the tilt of

the Earth. If no sunrise or sunset occurs, the time of crossing would not apply.

Large vertical temperature variations near the North and South Poles also affect

atmospheric refraction making approximations used here increasingly invalid.[74] The

time of horizon crossing should not be confused with the moment of sunrise or sunset.

The former refers to the time interval in which the disk of the Sun crosses the apparent

horizon. The latter two terms refer to the two moments of the day when the upper

limb of the solar disk touches the horizon.[75] This definition applies to both sunrise,

at which one would begin recording the crossing time in the morning, and sunset, at

which one would stop recording the crossing time in the evening.

5.1 Theory

The length of time the Sun takes to cross the horizon depends on several factors: the

most significant are the time of year and the observer’s latitude. The angular size

of the Sun on the horizon changes through the year because the Earth-Sun distance

varies due to the Earth’s elliptical orbit. Latitude affects the angle with which with
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the Sun crosses the horizon.

The radial distance to the Sun (R�) is approximately

R� =
a(1− e2)

1 + e cos(ωt)
(5.1)

where a is the semi-major axis of the Earth’s orbit, e is the eccentricity of Earth’s or-

bit, ω is the angular speed of the Earth’s orbital rotation, t is the number of days since

perihelion when the Earth-Sun distance is minimized. This equation treats the Earth

and Sun as point-objects.[60][76] In the Python program provided in Appendix A.2,

t appears as (tday − tperihelion) since perihelion currently never occurs on January 1.

The angular size of the Sun (d�) on a given day is

d� = 2 arctan
( D�

2R�

)
(5.2)

where D� is the diameter of the Sun.

The celestial poles and celestial equator of date correspond with Earth’s, so the

apparent tilt of the celestial sphere depends on the latitude of the observer on Earth.

Consequently, the angle between the horizon and the celestial pole of date is the

same as the observer’s latitude. The apparent motion of most celestial bodies is

approximately parallel to the celestial equator due to the Earth’s rotation. Due to
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the spherical geometry involved, the angle with which they cross the Earth’s horizon

depends on their declination, the celestial equivalent of latitude, and apparent rate

of motion with respect to the celestial background. For most celestial bodies, the

declination changes slowly, and can be considered essentially constant throughout

the year. However, the Earth is tilted 23◦.45 with respect to its orbit around the Sun,

so the Sun’s declination varies between ±23◦.45, passing through 0◦ on the equinoxes.

The angle, ψ, with which the Sun crosses the horizon with respect to the vertical is

sin(ψ) =
sin(φ)

cos(δ)
(5.3)

where φ is the observer’s latitude, and δ is the declination of the Sun.[77]

The time for the Sun to cross the horizon (T�) is

T� =
d�

v⊕ cos(ψ)
(5.4)

where v⊕ is the angular velocity of Earth. If the declination is not known, then ψ can

be approximated as φ. This causes errors from 0 sec at the equator up to 1,000 sec

at the solstices near the Arctic/Antarctic circles, as can be seen in Fig. 5.1.

The duration of a horizon-crossing is dependent on the angular size of the Sun, the

declination of the Sun, and the observer’s latitude. If declination is assumed to be

zero, the longest and shortest horizon-crossing times occur on perihelion and aphelion,
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(a) 0◦ − 60◦ lat (b) 61◦ − 66◦ lat

Figure 5.1: Variation of Crossing Time with Latitude These plots
show the minimum and maximum crossing times for the year with respect
to latitude. When δ is ignored the days fall on aphelion and perihelion and
on the days in question. The crossing time for all other days fall between
the extremes represented by the perihelion and aphelion lines.

respectively, and the difference between them can be as much as 8 sec. At perihelion,

the radial distance between the Earth and Sun is the shortest and the Sun’s angular

size is largest, causing a longer horizon-crossing time. At aphelion, the converse is

true. The crossing time for all other days fall between the extremes represented by

the perihelion and aphelion lines. Fig. 5.1 and 5.2 demonstrate these trends.

If declination is included, the days of the year with the longest and shortest horizon-

crossing times vary depending on the latitude. Days with the minimum horizon-

crossing times range from aphelion (around July 4), when the angular size of the Sun

is smallest, to the autumnal equinox (around September 21), when δ = 0. Days with

the maximum horizon-crossing times range from the winter solstice (around December

21), when δ = 23.45 (it’s maximum value), to perihelion (around January 4), when
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Figure 5.2: Variation of Crossing Time during the Year This plot
shows the deviation in crossing times for the latitudes of 0◦, 20◦, 40◦, and
60◦ when δ = 0◦. The deviation was calculated by subtracting the actual
crossing time per day from the mean value for the year. The annual mean
times were 127.99 sec, 136.21 sec, 167.08 sec, and 255.98 sec, respectively.

the Sun’s angular size is the largest. Fig. 5.3 shows the days of the year on which

extreme horizon-crossing times occur and the number of latitudes for which that day

is an extreme.

Fig. 5.4 demonstrates how including the declination can alter the crossing time

throughout the year. The solid line demonstrates how crossing times would behave

if the distance to the Sun, and therefore its angular size in the sky, was the only

thing affecting the crossing time. The dotted line includes the declination, following
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(a) Days with Minimum Crossing Times (b) Days with Maximum Crossing Times

Figure 5.3: Days of the Year with Maximum and Minimum
Horizon-Crossing Times These plots show days on which the minimum
and maximum crossing times for the year occur and the number of latitudes
for which that day is a minimum or maximum. In Fig. 5.3(b), perihelion is
represented as day 366.

a similar trend but with other characteristics as well. The peaks of the dashed line

represent the solstices when δ = 23◦.45. The troughs where the two lines intersect

represent days near the equinoxes when δ = 0◦. Interestingly, the crossing times of

the spring and fall equinoxes are not equal, which indicates that the distance between

the Earth and the Sun is shorter at the vernal equinox than it is at the autumnal

equinox. Calculations verify that this is indeed the case: the distance to the Sun on

20 March 2017 is 1.49×108 km, while on 22 September 2017, the distance is 1.50×108

km.[78]

The above calculations ignore the refraction of sunlight by the Earth’s atmosphere.

When the solar disk is above the horizon near sunrise or sunset, the gradient of the

atmosphere refracts light at the bottom of the disk more significantly than at the top,
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Figure 5.4: Variation of Crossing Time at 40◦ Latitude This plot
shows the crossing times throughout the year with and without including
declination in the calculations.

causing the Sun to appear “flattened”.[79] Because refraction reduces the observed

vertical diameter of the Sun, one might expect that the times for horizon crossing

would also decrease, but this is not the case.[80] As the Sun rises or sets, the observer

witnesses the part of the Sun above the horizon to be flattened. This is most apparent

when over half of the Sun is above the horizon. Less than that, and light from the top

and “bottom” of the Sun are passing through parts of the atmosphere with similar

refraction values, so the flattening becomes less apparent. As the Sun crosses the

horizon, say at sunset, the observer witnesses that the lower half of the Sun is more
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affected by refraction than the upper half. As the Sun sets, cords of the solar disk

that were less affected by refraction now become more so as they get closer to the

horizon, until eventually each cord of the solar disk passes through the section of

the sky with the greatest refraction. This means that the observer is witnessing the

entire solar disk cross the horizon, and not just the flattened image one observes when

the disk is above the horizon. As long as meteorological conditions on the horizon

remain constant, the magnitude of the refraction value at the horizon is constant.

Since the observer is only interested in what is happening at the horizon, the amount

of refraction remains unchanged, and the crossing time is unaffected.

5.2 Video Example

This section provides analysis of a YouTube video of a sunset.[81] The software Log-

gerPro was used to look at the video frame by frame to determine the latitude from

the angle of sunset.[82] LoggerPro allows the user to overlay a set of axes and track

the motion of objects in the video. In this case, putting the x-axis near the horizon

was convenient. After watching the video frame by frame and noting the Sun took

293.5 sec ±0.5 sec to cross the horizon, points were taken at the upper limb of the

Sun at intervals of ∼ 30 sec over a period of 10 min to track the motion of the Sun

through the sky. A linear fit to the resulting line using a least squares method gave

a slope (m) of −0.475± 0.003.
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Fig. 5.5 shows the points taken, as well as the resulting linear fit. The error reported

here indicates the precision of the linear fit and does not account for any system-

atic error due to changes in atmospheric refraction or random error due to manual

plotting. Some basic trigonometry reveals that ψ = arctan(1/m), also noted on the

figure. Without the declination, we could assume that ψ = φ, and conclude that the

observer’s latitude was 64◦±22◦. The uncertainty is calculated using a standard error

propagation method, and is large due to the error in the unknown declination. The

videographer noted that the video was taken in July 2013, when the average decli-

nation was 21◦ ± 1◦.[78] Using Eqn. 5.3, we can determine a more accurate latitude

of 57◦ ± 1◦ The videographer indicated that the video was taken on the beaches of

Kaliforien, Germany, on the Baltic Sea, which is at 54◦.43 ± 0◦.01 N latitude. The

discrepancy between the calculated and reported latitudes may be due to error in the

slope being underestimated, and does not affect the angular size and time calculations

that follow since the declination is known.

Together with the time duration of 293.5 sec, solving Eqn. 5.4 estimates the angular

size of the Sun to be 0◦.525 ± 0◦.003. The actual angular size of the Sun during

that time was 0◦.5246 ± 0◦.0003 [78], and falls within the calculated range. Using

this information, we can use Eqn. 5.2 and then 5.1 to determine that the video was

taken 167 ± 70 days after perihelion, which occurred on on January 2; the range of

calculated dates includes the month of July reported by the videographer.

90



Figure 5.5: LoggerPro Screenshot A screenshot of the analysis per-
formed using the LoggerPro software.

5.3 Discussion

Timing horizon crossings can be incorporated into a number of straightforward learn-

ing activities, some of which take only a few minutes. The simplest activity requires

a video of sunrise or sunset recorded by a camera steadied by a tripod for consistency

in the frames’ origin. The observer can hold a protractor up to the video screen and

make two measurements: one from a frame showing the Sun above the horizon, and

another from a frame showing the Sun at the horizon. One can now estimate the an-

gle of the setting Sun ψ. Assuming δ is near zero, as is true near an equinox, Eqn. 5.3

shows that this angle ψ is a measure of latitude φ. If the direction of the sunset is

available, one can convert the direction, which is equivalent to the solar azimuth, to
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δ by understanding that the Sun sets due west on the equinox when δ = 0◦, and

south of west on the December solstice, when δ = −23◦.5. Many smartphones have

compasses that can output this direction. Given the measured angle ψ, Eqn. 5.3 can

be used to measure latitude φ at any time of the year.

Additionally, one can estimate from the video time display when the Sun has its lower

limb, and then upper limb, just at the horizon. To accurately determine the Earth’s

distance from the Sun, and hence the time of the year, the crossing time should be

measured to within a second or better. Section 5.2 showed that a 0.5 sec error in tim-

ing can result in a 70 day error in date determination, due to error propagation. This

assumes knowledge of declination within 1◦. For a more precise exercise, LoggerPro,

or a similar software, can be used.[83] One can isolate and superpose video frames to

create a composite image that can be used to find the latitude in a few minutes. Error

in declination dominates these calculations, as Fig. 5.4 and Section 5.2 demonstrate.

Without it, pinpointing time of year can be nearly impossible.

To explore sunsets in even greater detail, students could use the code provided in

Appendix A.2 and reproduce the graphs in this paper at various latitudes and times

of year to see how different conditions affect the horizon-crossing time. They could

then provide a simple analysis of the graphs in the form of answering questions on

a worksheet or as a class discussion. Advanced college students could be directed to

create their own code to re-produce the results shown here.
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Most comprehensively, one could reproduce Fig. 5.2 by recording the crossing times

of sunrise or sunset with a stop-watch while keeping track of the date. Alternatively,

one could take videos of the sunrises or sunsets over the course of the several months

and collect crossing times from the videos.

Timing horizon crossings demonstrates a number of concepts including Kepler’s first

law concerning the elliptical shape of the Earth’s orbit, the latitude of the observer,

and the time of the year. It is accessible to people from a wide range of scientific

backgrounds, which allows for educational applications on a number of levels, from

high-school to college.
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Chapter 6

Sunrise & Sunset Observer Citizen

Science Project

Chapter 4 analyzed the extent of the sunrise and sunset observations currently avail-

able. While observations from Mount Wilson and Edmonton provided a sizable data

set, they only represent two locations, and the Mount Wilson data is limited to sun-

set observations. In fact, besides the 7 sunrises provided by the Smiley observations,

Edmonton is the only place from which sunrise observations were taken. While these

observations can help us begin understanding atmospheric refraction near the hori-

zon, the study would greatly benefit from a more extensive data set. Smartphones

have an immense potential for data-collection devices due to their built-in sensors

and camera, and their ability to transmit that information over a wireless internet
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connection. They allow the user to collect the data they need without requiring them

to operate equipment from the confines of an office, and also allow for a wider user

base, as almost everyone has one. They are ideal tools for citizen science projects that

need information from a wide area over an extended amount of time. The Sunrise

& Sunset Observer (SSO) citizen science project was developed to use smartphones’

potential to collect a larger data set of sunrise and sunset observations.

6.1 Smartphone Application

To collect a larger set of sunrise and sunset observations, the Sunrise & Sunset Ob-

server (SSO) mobile application for Android was published on the Google Play Store

in 2017. The app was written in JavaScript, and once data is collected, hosts it in a

SQLite database until it is uploaded to Structured Query Language (SQL) database

on the server. It gives the user a predicted sunrise and sunset time using the USNO’s

“Complete Sun and Moon Data for One Day” API for planning purposes based on

their location.[84][52]

At the time of the observation, the SSO app uses the smartphone’s GPS to record

latitude and longitude coordinates, and records temperature, pressure, and humidity

data using the OpenWeatherMap API.[85] The observer is asked to include their

height above the horizon so that the observation’s analysis can account for dip. The
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(a) Google Play Store Entry (b) Sample Page 1 (c) Sample Page 2

Figure 6.1: Sunrise & Sunset Observer App Example pages of what
an observer might expect when using the app

SSO app then links to the smartphone’s video camera and the observer can take record

the sunrise or sunset. After the observation is complete, the observer can submit the

observation any time they choose. This allows them to take observations where data-

coverage is poor, and then submit them when they have a wireless connection. Once

submitted, the time-stamped videos can be analyzed to collect the rise or set time.

6.2 Preliminary Analysis

To verify that the video analysis would yield acceptable observation results, video ob-

servations from water horizons were taken by the author, J. Bartlett, and J. Niehaus.
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A water horizon, clear of clouds at the moment of sunrise or sunset, is a rarer phe-

nomenon than anticipated at the chosen locations and season. Because of this, it was

determined that the observations recorded in Table 6.1 with corresponding weather

data would be sufficient for a preliminary analysis.

Computed times were obtained using URSA with the H&S refraction model as mete-

orological data was taken along with the observations. The observed time was noted

by the observer at the time of the observation to help validate the viability of citizen

science project. For 3 of the observations, time to nearest second was not available,

as the observer used a digital clock which only reported to the nearest minute. In

these cases, time to the nearest minute was used.

To determine the time of sunrise or sunset from the videos, they were analyzed frame

by frame around the time of crossing. The start time, and the date on which it

occured, is embedded in the video’s meta-data. When a crossing time is determined,

the time from the beginning of the video can then be added to the start time to

establish the time of sunrise or sunset. If the horizon was free from clouds, pixelating

of the horizon was minimal, and sunrise or sunset times were noted with a confidence

of ±2sec. Clouds reflect light from the sun, heavily pixelating the image on the

horizon, and made detecting the exact moment of sunrise or sunset from the video

difficult. However, working under the assumption that the Sun is only reflected in

the water while it is above the horizon, one can use the sun’s reflection to determine
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the moment of sunrise or sunset. On these days, the confidence in determining when

sunset happened was more like ±10 sec. For land observations, this problem will need

a different solution.

Of the observations in Table 6.1, 3 were within a minute of the predicted time, and

2 were within 2 minutes. They were also all within a minute of their observed times.

Compared to the historic data analyzed in Chapter 4, these observations are much

closer to the predicted time by almost a minute. However, they were taken during

the summer months, when the difference between observed and computed times was

closer to the minute mark in the historic data sets. More observations will be needed

to determine whether seasonal variation affects this analysis.

6.3 Conclusion & Future Work

Results from analyzing the videos collected using the SSO citizen science project indi-

cate that it is a viable source for data collection. Times collected using the videos are

with a minute of the observation time. This means that, rather than relying solely

on direct observations by a single observer, videos with appropriate accompanying

information could be used to study the affects of atmospheric refraction on the hori-

zon. Thanks to technological advances, especially in the smartphone industry, taking
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videos has never been easier, poviding the potential for a large number of observa-

tions from all around the world, and from all times of the year. The development

of an iPhone app would increase the project’s marketability and would then be able

to reach almost the entire smartphone population. Fixed sites with a camera and a

Raspberry Pi set up could also be created to submit observations to the database.

With a larger data set, questions such as the seasonal effect of atmospheric refraction

on the horizon could then be studied in more depth. The scope of the study could

also increase to include land horizons, allowing for comparisons between refraction

on land and sea horizons undergoing similar meteorological conditions. Refraction

values calculated using these times could then put better constraints on a value for

refraction at the horizon, whether by time of year, or by location, or both.
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Chapter 7

Conclusion

7.1 Conclusion

The work presented here evaluated the effectiveness current atmospheric refraction

models near the horizon by taking a practical approach of using the delay of sunrise

and sunset times. Chapter 1 established the need for such a study and presented sev-

eral atmospheric phenomena due to refraction that current refraction models do not

account for. Chapter 2 then discussed the history of the various refraction models of

varying complexity, from the constant value of 34′, which is considered the standard

value for refraction at the horizon and is used in all publicly available rise/set cal-

culators, to models that incorporate meteorological conditions. The latter still have
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their limitations due to assumptions about the behavior of the troposphere, and it

was noted that they generally produce values near 34′ at the horizon because of this.

To conduct the analysis, a rise/set calculator in the modern programming language of

Python 2.7 was developed. The calculator has the capacity to incorporate location-

specific refraction values, rather than the standard value, was established as compa-

rable to current standard calculators, and superior to those with less rigorous com-

putations. Chapter 3 discusses the algorithms behind the calculator.

Several sets of direct observations, with various levels of meteorological data, were

amassed from the literature, and then compared with computed times using increas-

ingly complex refraction models. Chapter 4 revealed that, regardless of the com-

plexity of the refraction model, predictions of sunrise and sunset times cannot be

known within 2 minutes. While there is still much to be understood about the lower

atmosphere, it is certain that knowledge of the observer’s height above the ground

plays a key role in establishing a more accurate rise/set time. As was seen in the

S&L data, just including dip yielded much better results. The analysis also yielded

that the summer months produce the largest difference in time between observed and

computed values, which makes sense as the view of the horizon is affected by the

large temperature difference. The S&L data also revealed that the Green Flash does

not affect the difference between observed and computed times. However, analysis

of the Mount Wilson data revealed that the NZ effect does affect sunset times by at
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least as much as 5 minutes. Chapter 6 discussed a method to increase the size of the

data-set of observations. The beginning of a citizen science project, Sunrise & Sunset

Observer, was established and preliminary results were successfully gathered.

7.2 Future Work & Recommendations

The analysis presented in this work far from exhausts the information that can be

gleaned from the data sets discussed here. Meteorological data, along with more

sunrise and sunset observations were discovered in the Smiley data while the notes

were being transcribed, after the work presented here was complete. Re-analysis of the

Smiley data-set using the methods performed on the Mount Wilson and Edmonton

data, as well as including estimates for dip, may shed some light on the reason behind

the large variance seen in the sunset data, and the low refraction values. The Mount

Wilson data set includes 109 observations of contact between the lower limb of the

Sun and the horizon, and 217 observations of contact between the center of the Sun

and the horizon. Chapter 4 mentions that the lapse rate may be a critical part of

understanding refraction near the horizon. A study of how the solar diameter is

affected by refraction could reveal something about the behavior of the lapse rate

near the surface of the Earth.
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URSA could be modified in a number of ways. The upgrades mentioned in Chap-

ter 3 such as using a calculated value for the solar diameter rather than the current

constant, might increase URSA’s precision. Additionally, the refraction value inputs

could be modified to take into account a non-level land horizon. This may increase

the accuracy of prediction values for such places as Edmonton, Canada. URSA’s

use could also be expanded to calculate the rise/set times of other celestial bodies,

including the Moon.

The currently available data sets only represent a small portion of locations on the

Earth. Further dissemination of the Sunrise & Sunset Observer app would increase

the data sets and lead to a better understanding of how to predict what will happen

on the horizon and when it will happen. This could lead to the use of different values

for refraction depending on the time of year or latitude of the observer.

Much about the refraction on the horizon is yet to be discovered, but the work

presented here suggests a few recommendations for now. First, sunrise and sunset

calculators should not advertise the accuracy of their predictions to better than two

minutes due to refraction. The Edmonton data in Section 4.2 revealed a seasonally-

affected variance; the Mount Wilson data in Section 4.1 showed that the NZ-effect,

and other currently unknown refraction phenomena, affected observed sunset times.

Second, when it comes to incorporating refraction models, if weather data is available,

using Bennett-NA may increase the accuracy of the refraction values. However, use of
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the H&S model may not be worth the computational complexity. This recommenda-

tion could change if the assumption of a constant lapse rate in the troposphere were

modified. Third, as the data from Chile and Hawai’i in Section 4.3 demonstrated,

existing calculators and other services (such as those used for celestial navigation)

should include dip, especially if the observations are made over a water horizon. In-

corporating these recommendations can mitigate some of the inaccuracy in refraction

values revealed in this work. Newton laid the foundation for much of Physics, but it

is time to stand on his shoulders and modify his 34′ for refraction. Just remember to

account for that extra bit of dip.
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Appendix A

Sample Code

Below are the sample codes of programs used for calculations in this thesis.

A.1 URSA

This program in Python 2.7 computes the time of the beginning of civil twilight,

sunrise, transit, sunset, and end of civil twilight for a given date. It uses several calls

to the USNO software NOVAS discussed in Chapter (3).

import math

import numpy as np

from novas.compat import Object

from novas.compat import app_planet
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from novas.compat import sidereal_time

from novas.compat import cal_date

from novas.compat import julian_date

#The C version of app_planet or sidereal_time needs the ←↩
ephemeris file opened

from novas.compat.eph_manager import ephem_open

#Path to ephemeris file hard -coded here. Eventually this←↩
should be set as a

#global variable

_ = ephem_open('JPLEPH ')

#Defining the Object "Sun" to input to NOVAS function "←↩
app_planet"

Sun = Object ()

Sun.type = 0

Sun.number = 10

Sun.name = "Sun"

#sidereal rate in degrees/day

sid_rate = 1.0027379 * 360.0

#Rate of change of solar right ascension in degrees/day

ra_dot = 0.985644

#Approximate rate of change of Sun's hour angle (ha) in ←↩
degrees/day

ha_dot = sid_rate - ra_dot

def DeclinationChange(ra):

'''

Calculates the approximate rate of change of solar ←↩
declination in degrees

per day using the right ascension (ra)

'''

return 0.403 * math.cos(math.radians(ra))
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def JD_noon(jul_day , time_zone):

'''

Calculates Julian Date of local clock noon given a ←↩
Julian Date of midnight

'''

return jul_day - time_zone /24.0 + 0.5

def Fractional_Year(jul_day):

'''

Input: Julian Date of phenomenon

Output: Fraction of year in relation to the winter ←↩
solstice 1999

Creates a zeroth -order approximation for time of ←↩
phenomenon in relation to

years from winter solstice 1999 (consistency with ←↩
USNO FORTRAN

PAP subroutine). It serves as a way to calculate the←↩
fraction of the year

(frac_year)

'''

years = (jul_day - 2451535.5) /365.25

frac_year = math.fmod(years , 1.0)

if frac_year < 0.0:

frac_year = frac_year + 1.0

return frac_year

def sunrise_sunset(year , month , day , time_zone = 0.0, ←↩
lon , lat):

'''

Python 2.7

Rise/Set Calculator
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This routine computes the times of sunrise and ←↩
sunset for one day

Input Arguments:

year: integer , year

month: integer , month

day: integer , day

time_zone: float , hours from UT (East +, West -), ←↩
Default = 0

lon: float , Longitude in degrees (East +, West -)

lat: float , Latitude in degrees (North +, South -)

Output Arguments:

Julian Dates of beginning of civil twilight , sunrise←↩
, transit , sunset ,

end of civil twilight

'''

#Convert Gregorian Date inputs to Julian Dates with ←↩
call to NOVAS

jul_day = julian_date(year , month , day , 0.0)

#Find the Julian Date of local clock noon

jd_noon = JD_noon(jul_day , time_zone)

#Find the correct Delta T value for the Julian Date ←↩
in question

find_delta_t = np.loadtxt('DeltaT_1970 -2026. txt', ←↩
usecols =[1, 2])

delta_t = np.interp(jd_noon , find_delta_t [:, 0],

find_delta_t [:, 1])

#Computes time (jd_phen) and altitude of transit (←↩
alt_tr) with a

#call to NOVAS
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jd_tr , alt_tr = sun_tr(jd_noon , delta_t , lon , lat , ←↩
Sun)

#Initiate the list of phenomena times

#Altitude of phenomena (alt_phen), computed using ←↩
refraction of Sun and

#horizon , semi -diameter of Sun , and horizontal ←↩
parallax of Sun

phen_times = []

labels = ["Begin civil twilight", "Sunrise", "Sun ←↩
Transit", "Sunset",

"End civil twilight"]

alt_phen = [-6.0, -0.833333 , -0.833333 , -0.833333 , ←↩
-6.0]

#guess time of phenomena , in number of hours from ←↩
transit

time_guess = [-6.5, -6.0, 0, 6.0, 6.5]

for i in xrange(0, len(alt_phen)):

#Transit time and altitude already computed ←↩
using sun_tr. Use those

#values to calculate rise/set/twilight values

if i == 2:

if alt_tr < alt_phen [2]:

jd_phen = -999.0

phen_times.insert(2, jd_phen)

else:

jd_phen = jd_tr

phen_times.insert(2, jd_phen)

continue

#starting iteration

n = 0
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#del_t is an approximate variable term in ←↩
sunrise/set times and is a

#function of latitude and time of year from ←↩
winter solstice

del_t = (lat /25.7)*math.cos (2.0* math.pi*←↩
Fractional_Year(jd_tr))

if i > 2:

del_t = -del_t

jd_phen = jd_tr + (time_guess[i] + del_t)/24.0

del_t = 0

n = n + 1

#iterate on algorithm using altitude and ←↩
derivative of altitude

while n < 20:

#Calculating right ascension (ra) and ←↩
declination (dec) with a call

#to NOVAS

ra , dec , distance = app_planet(EphemerisJD(←↩
jd_phen , delta_t), Sun)

del distance

#After 1st iteration , make sure phenomenon ←↩
occurs at all

if n >= 2:

alt_max = 90.0 - abs(lat) + (math.←↩
copysign (1.0, lat) * dec)

alt_min = -90.0 + abs(lat) + (math.←↩
copysign (1.0, lat) * dec)

if alt_max < alt_phen[i]:

#phenomenon doesn't happen , end program

jd_phen = -999.0

phen_times.insert(i, jd_phen)

break
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elif alt_min > alt_phen[i]:

#phenomenon doesn't happen , end program

jd_phen = 999.0

phen_times.insert(i, jd_phen)

break

dec_dot = DeclinationChange(ra)

#Compute Greenwich Sidereal Time (gst) with ←↩
call to NOVAS

gst = sidereal_time(int(jd_phen), jd_phen - ←↩
int(jd_phen), delta_t)

sin_lat = math.sin(math.radians(lat))

cos_lat = math.cos(math.radians(lat))

sin_dec = math.sin(math.radians(dec))

cos_dec = math.cos(math.radians(dec))

sin_ha = math.sin(math.radians(HourAngle(gst←↩
, ra, lon)))

cos_ha = math.cos(math.radians(HourAngle(gst←↩
, ra, lon)))

#Compute altitude and derivative of altitude←↩
wrt time

sin_alt = sin_dec * sin_lat + cos_dec*←↩
cos_lat * cos_ha

alt = math.degrees(math.asin(sin_alt))

cos_alt = math.sqrt (1.0 - sin_alt **2)

if cos_alt < 1.0e-4:

cos_alt = 1.0e-4

alt_dot = 1.0 / cos_alt * (sin_lat*cos_dec*←↩
dec_dot
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- cos_lat*cos_dec*←↩
sin_ha*ha_dot

- cos_lat*sin_dec*←↩
cos_ha*dec_dot)

#Compute residual altitude (del_alt) and ←↩
estimate

#time correction (del_t)

del_alt = alt_phen[i] - alt

del_t = del_alt/alt_dot

if abs(del_t) > 0.2:

del_t = math.copysign (0.2, del_t)

#correct time of phenomenon

jd_phen = jd_phen + del_t

#if del_t has converged , add times of ←↩
phenomena to list

if abs(del_t) <= 3.0e-5:

phen_times.insert(i, jd_phen)

break

n = n + 1

return phen_times

def Gregorian_Date(jul_day , time_zone = 0.0):

'''

Inputs

Julian Date: float , Julian date

time zone: (optional) float , in relation to UT

Outputs

Year: integer
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Month: integer

Day: integer

Hour: integer

Minute: integer

Second: float

Calculates the Gregorian date and time using a ←↩
Julian date (UT) input. This

function makes a call to the NOVAS cal_date function←↩
for the year , month ,

day , and hour. It then calculates the minute and ←↩
seconds using the fractional

hour provided by cal_date

'''

Year , Month , Day , frac_hour = cal_date(time + ←↩
time_zone /24.0)

#calculating the hour , minute , and second with the ←↩
fraction portion of hour

hour = int(frac_hour)

frac_min = (frac_hour - hour) * 60.0

minute = int(frac_min)

frac_sec = (frac_min - minute) * 60.0

second = int(frac_sec)

return (Year , Month , Day , hour , minute , second)

def sun_tr(jd_noon , delta_t , lon , lat , sun , time_prec = ←↩
3.0E-5):

'''

This subroutine computes the time of sun transit as ←↩
well as the sun's

altitude , horizontal parallax , and semi -diameter at ←↩
transit.

Inputs:

jd_noon Julian date of local clock noon
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delta_t Delta T value in seconds

lon Longitude (E +, W -)

lat Latitude (N +, S -)

Outputs:

JdTr Julian date of sun transit

AltTr Altitude of sun at transit , in degrees

Needs expl

'''

#compute transit time

jul_date = jd_noon

#start iteration and initialze the transit time ←↩
corection (del_t) value

n = 0

del_t = 1

while abs(del_t) > time_prec and n < 10:

#calculate solar right ascension (ra) and ←↩
declination (dec) using

#call to NOVAS

ra , dec , distance = app_planet(EphemerisJD(←↩
jul_date , delta_t), Sun)

del distance

#Compute Greenwich Sidereal Time (gst) with call←↩
to NOVAS

gst = sidereal_time(int(jul_date), jul_date -int(←↩
jul_date), delta_t)

#compute time correction for transit

del_t = -HourAngle(gst , ra) / 360.0

jul_date = jul_date + del_t

n = n + 1

jul_date_transit = jul_date

#compute transit altitude
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alt_transit = 90.0 + lat - dec

return jul_date_transit , alt_transit

def HoursToDegrees(Angle):

'''

Converts hours to degress given an angle in hours

'''

return Angle *15.0

def EphemerisJD(jul_date , delta_t):

'''

Calculates the ephemeris Julian Date using the ←↩
Julian date and delta T

'''

eph_jd = jul_date + (delta_t / 86400.0)

return eph_jd

def HourAngle(gst , ra, lon):

'''

Calculates the solar hour angle using Greenwich ←↩
Sidereal Time , solar

right ascension , and longitude

'''

ha = math.fmod(HoursToDegrees(gst) + lon - ←↩
HoursToDegrees(ra), 360.0)

if ha > 180.0:

ha = ha - 360.0

elif ha < -180:

ha = ha + 360.0

return ha
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A.2 Horizon Crossing

This program in Python 2.7 computes the amount of time it takes for the Sun to cross

the horizon on a given day of the year. It begins by computing the day of the year

from the date, then computes the radial distance to the Sun based on the eccentricity

of the orbit, the date the speed of revolution. It then determines the angular size of

the Sun and, finally, computes the time to cross the horizon. This final calculation

works under the assumption that the angle of crossing is equivalent to the latitude.

This means that it does not incorporate the declination of the sun on the day in

question. The error is discussed in Chapter 5.

'''

This Python program computes the amount of time it takes←↩
for the sun to cross the horizon on a given day of ←↩

the year. It begins by computing the day of the year ←↩
from the date , then computes the radial distance to ←↩
the sun based on the eccentricity of the orbit , the ←↩
date the speed of revolution. It then determines the ←↩
angular size of the sun and finally computes the time ←↩
to cross the horizon.

'''

import math

#Conversion from date to day of year from Astronomical ←↩
Algorithms by Meeus pg 65

month = raw_input("Month: ")

month = float(month)
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day = raw_input("Day: ")

day = float(day)

K = raw_input("Leap Year(1 for yes , 2 for no): ")

K = float(K)

latitude = raw_input("Latitude: ")

latitude = float(latitude)

latitude = math.radians(latitude)

t_start = raw_input("Day of Perihelion this year: ")

t_start = int(t_start)

def datetoday ():

N = int (275 * month /9) - K * int(( month + 9)/12) + day←↩
- 30

return N

#Radial distance to sun calculation

e = 0.0167 #eccentricity of earth's orbit

a = 149598023 #semi -major axis of earth's orbit (km)

w = (2 * math.pi)/365.25 #speed of earth 's rotation

t = datetoday () - t_start #day of year shifted so that ←↩
perihelion occurs on correct date

#the following loop ensures that t > 0, ensuring that ←↩
the date is never negative

if t < 0:

t = t + 365.25

def distance ():

theta = w * t #- math.pi

r = a * (1 - e**2) /(1 + e*math.cos(theta))

return r

#Angular diameter of the sun

D = 1.392 e6 #diameter of sun (km)

def angularsize ():
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d = 2 * math.atan(D/(2* distance ()))

d = d * (360/(2* math.pi)) #Conversion from radians to ←↩
degrees

return d

#Time to cross horizon (seconds)

h = (24 * 60 * 60) / 360 #rotational speed of earth

def crossing ():

sec = h *angularsize ()/math.cos(latitude)

return sec

print crossing (), "sec"

A.3 Hohenkerk & Sinclair Refraction

This program in Fortran-77 computes atmospheric refraction on the horizon using

the algorithm described by H&S in their 2008 technical note.[25] The algorithm is

discussed in Chapter 2, and is verified in Chapter 3.

SUBROUTINE hmnaoref(z0, h0 , t0 , p0, ups , wl, ph , ←↩
as , eps , ref)

IMPLICIT none

INTEGER i, j, k, in, is, istart

DOUBLE PRECISION z0 , h0 , t0, p0, ups , wl , ph , as, ←↩
eps , ref , refi

DOUBLE PRECISION r, hepsr , wlsq , z1, psat , a(10), ←↩
gb , z0r , t0c
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DOUBLE PRECISION pw0 , r0 , sk0 , f0, t0O , n0, dndr0 ,←↩
rt , nt, tt

DOUBLE PRECISION dndrt , zt , ft , dndrts , nts , zts , ←↩
fts , rs , ns

DOUBLE PRECISION dndrs , zs , fs , ref0 , refp , reft , ←↩
fb , h, step

DOUBLE PRECISION z, rg, t, tg, n, dndr , f, fe, fo ,←↩
ff , ex1 , ex2

DOUBLE PRECISION gcr , md , mw, gamma , z2, s, ht , hs←↩
, dgr

C-----Constants of the atmosphere.

PARAMETER (gcr = 8314.32 D0)

PARAMETER (md = 28.9644 D0)

PARAMETER (mw = 18.0152 D0)

PARAMETER (gamma = 18.36D0)

PARAMETER (z2 = 11.2684D-06)

C-----Equatorial radius of the Earth.

PARAMETER (s = 6378136.6 D0)

C-----Height of tropopause and extent of atmosphere in ←↩
metres.

PARAMETER (ht = 11000.0 D0)

PARAMETER (hs = 80000.0 D0)

C-----Degrees to radians.

PARAMETER (dgr = 1.745329251994329576923691D-2)

C-----Integration limits in radians.

hepsr = 0.5D0*eps*dgr /3600.0 D0

C-----Convert ZD to radians

z0r = z0*dgr
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C-----Set up parameters defined at the observer for the ←↩
atmosphere.

C Gravity:

gb = 9.806248 D0*(1.0D0 -0.0026442 D0*DCOS (2D0*ph*←↩
dgr))

gb = gb -3.086D-6*h0

C-----Factor for optical wavelengths.

wlsq = wl*wl

z1 = (287.6155 D0 +(1.62887 D0 +0.01360 D0/wlsq)/wlsq)

z1 = z1 *273.15D -6/1013.25 D0

a(1) = DABS (as)

a(2) = (gb*md)/gcr

a(3) = a(2)/a(1)

a(4) = gamma

C-----Wet air:

t0c = t0 -273.15 D0

ex1 = (0.7859 D0 +0.03477 D0*t0c)/(1.0D0 +0.00412 D0*←↩
t0c)

ex2 = (1.0D0+p0*(4.5D -6+6.0D-10* t0c*t0c))

psat = 10.0D0**( ex1*ex2)

pw0 = ups*psat /(1.0D0 -(1.10D0 -ups)*psat/p0)

a(5) = pw0 *(1.0D0 -mw/md)*a(3)/(a(4)-a(3))

a(6) = p0+a(5)

a(7) = z1*a(6)/t0

a(8) = (z1*a(5)+z2*pw0)/t0

a(9) = (a(3) -1.0D0)*a(1)*a(7)/t0

a(10) = (a(4) -1.0D0)*a(1)*a(8)/t0

C-----At the observer.

r0 = s+h0

CALL atmostro(r0, t0, a, r0, t0O , n0, dndr0)
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sk0 = n0*r0*DSIN (z0r)

f0 = refi(r0, n0, dndr0)

C-----At the Tropopause in the Troposphere.

rt = s+ht

CALL atmostro(r0, t0, a, rt, tt, nt, dndrt)

zt = DASIN (sk0/(rt*nt))

ft = refi(rt, nt, dndrt)

C-----At the Tropopause in the Stratosphere.

CALL atmosstr(rt, tt, nt , a(2), rt , nts , dndrts)

zts = DASIN (sk0/(rt*nts))

fts = refi(rt, nts , dndrts)

C-----At the stratosphere limit

rs = s+hs

CALL atmosstr(rt, tt, nt , a(2), rs , ns, dndrs)

zs = DASIN (sk0/(rs*ns))

fs = refi(rs, ns, dndrs)

C-----Integrate the refraction integral in the ←↩
troposphere and

C stratosphere. ie Ref=Ref troposphere + Ref ←↩
stratosphere.

C-----Initial step lengths etc.

ref0 = -999.999D0

is = 16

DO 400 k=1,2

istart = 0

fe = 0.0D0

fo = 0.0D0

IF (k .EQ. 1) THEN

h = (zt -z0r)/DBLE (is)
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fb = f0

ff = ft

ELSE IF (k .EQ. 2) THEN

h = (zs -zts)/DBLE (is)

fb = fts

ff = fs

END IF

in = is -1

is = is/2

step = h

100 CONTINUE

DO 300 i=1,in

IF (i .EQ. 1 .AND. k .EQ. 1) THEN

z = z0r+h

r = r0

ELSE IF (i .EQ. 1 .AND. k .EQ. 2) THEN

z = zts+h

r = rt

ELSE

z = z+step

END IF

C-----Given the zenith distance (z) find r.

rg = r

DO 200 j=1,4

IF (k .EQ. 1) THEN

CALL atmostro(r0, t0, a, rg, tg, n, ←↩
dndr)

ELSE IF (k .EQ. 2) THEN

CALL atmosstr(rt, tt, nt , a(2), rg, n,←↩
dndr)

END IF

rg = rg -((rg*n-sk0/DSIN (z))/(n+rg*dndr))

200 CONTINUE
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r = rg

C-----Find refractive index and integrand at r.

IF (k .EQ. 1) THEN

CALL atmostro(r0, t0, a, r, t, n, dndr)

ELSE IF (k .EQ. 2) THEN

CALL atmosstr(rt, tt, nt , a(2), r, n, ←↩
dndr)

END IF

f = refi(r, n, dndr)

IF (istart .EQ. 0 .AND. MOD (i, 2) .EQ. 0) ←↩
THEN

fe = fe+f

ELSE

fo = fo+f

END IF

300 CONTINUE

C-----Evaluate the integrand using Simpsons Rule.

refp = h*(fb+4.0D0*fo+2.0D0*fe+ff)/3.0D0

C-----Test for convergence.

IF (DABS (refp -ref0) .GT. hepsr) THEN

is = 2*is

in = is

step = h

h = h/2.0D0

fe = fe+fo

fo = 0.0D0

ref0 = refp

IF (istart .EQ. 0) istart =1

GOTO 100

END IF

IF (k .EQ. 1) reft=refp
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400 CONTINUE

C-----Refraction in the troposphere + stratosphere in ←↩
degrees.

ref = (reft+refp)/dgr

ref = ref *60.0D0

RETURN

END

*******************************************************

SUBROUTINE atmostro(r0, t0 , a, r, t, n, dndr)

IMPLICIT NONE

DOUBLE PRECISION r0 , t0 , a(10), r, t, n, dndr , tt0←↩
, tt01 , tt02

t = t0 -a(1)*(r-r0)

tt0 = t/t0

tt01 = tt0**(a(3) -2.0D0)

tt02 = tt0**(a(4) -2.0D0)

n = 1.0D0+(a(7)*tt01 -a(8)*tt02)*tt0

dndr = -1.0D0*a(9)*tt01+a(10)*tt02

RETURN

END

*******************************************************

SUBROUTINE atmosstr(rt, tt , nt , taw , r, n, dndr)

IMPLICIT NONE

DOUBLE PRECISION rt , tt , nt, taw , r, n, dndr , b
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b = taw/tt

n = 1.0D0+(nt -1.0D0)*DEXP (-b*(r-rt))

dndr = -1.0D0*b*(nt -1.0D0)*DEXP(-b*(r-rt))

RETURN

END

*******************************************************

DOUBLE PRECISION FUNCTION refi(r, n, dndr)

IMPLICIT none

DOUBLE PRECISION r, n, dndr

refi = r*dndr/(n+r*dndr)

RETURN

END

A.4 Bennett Refraction

This program in Python 2.7 computes atmospheric refraction on the horizon using

the algorithm described by Bennett and modified for the NA.[26][40] The user can

chose to include dip with the apparent dip and geometric dip functions.

import numpy as np

from numpy import arange

import matplotlib
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matplotlib.use('TkAgg ')

import matplotlib.pyplot as plt

def Bennett(H, T, P):

'''

This function calculates atmospheric refraction (←↩
degrees) using apparent

altitude (H, degrees), pressure (P, mb), and ←↩
temperature (T, degrees C).

This equation is found in the Explanatory Supplement←↩
for the Astronomical

Almanac EQ 7.93. It is a modification of Bennett←↩
(1982) by Hohenkerk to give

a better match for the values found in the Nautical ←↩
Almanac put out by the

USNO.

'''

f = 0.28*P / (T + 273)

R = 0.0167 / np.tan(np.radians(H + 7.32/(H + 4.32)))

return f*R

def arcmin_to_deg(arcmin):

'''

This function takes inputs of arcminute and converts←↩
to degrees. It is

primarily useful for refraction outputs that need to←↩
be converted to degrees

for use in the rise/set Calculator

'''

return arcmin /60.0

def geometric_dip(h):

'''
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This function calculates the geometric dip (degrees)←↩
required to find the

apparent dip of an object when combined with ←↩
refraction. It takes the height

of an observer (h, meters) above the geoid.

'''

R_earth = 6378136.8

dip = np.arccos(R_earth /( R_earth + h))

return np.degrees(dip)

def apparent_dip(h, ref):

'''

This function calculates the refraction of the ←↩
horizon (degrees) using

apparent dip. It takes the height of the observer (h←↩
, meters) above the

geoid and

'''

app_dip = geometric_dip(h)

app_height = 0.0 - app_dip

n = 0

ref_0 = 0.0

for n in xrange (20):

if abs(ref_0 - ref) < 0.004167:

break

ref_0 = ref

app_dip = app_dip + ref

print 'app dip = ', app_dip

app_height = 0.0 - app_dip

ref = Bennett(app_height , temp , pres)

return ref , app_height
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A.5 Schlyter API Request

This program in Python 2.7 computes sunrise and sunset times produced using the

Schlyter algorithm. It does so by querying the sunrise-sunset.org API.[66] The dates

and times included here are those used to produce the graphs in Section 3.3.2.

import requests

import json

import time

import calendar

import numpy as np
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dates = ("1/27/2000", "3/6/2000", "4/23/2000", "1/6/2000←↩
", "7/19/2000", "9/6/2000", "10/15/2000", "11/23/2000"←↩
, "1/17/2003", "3/6/2003", "4/24/2003", "6/2/2003", "←↩
7/19/2003", "8/28/2003", "10/6/2003", "11/23/2003", "←↩
2/25/2006", "4/5/2006", "5/23/2006", "7/1/2006", "←↩
8/18/2006", "10/5/2006", "11/23/2006", "1/7/2009", "←↩
2/24/2009", "4/4/2009", "5/13/2009", "6/30/2009", "←↩
8/18/2009", "10/5/2009", "11/23/2009", "1/1/2010", "←↩
2/18/2010", "4/28/2010", "6/14/2010", "7/24/2010", "←↩
9/10/2010", "10/28/2010", "12/15/2010", "1/4/2014", "←↩
2/21/2014", "4/2/2014", "5/19/2014", "7/8/2014", "←↩
8/25/2014", "10/12/2014", "11/30/2014", "1/11/2016", "←↩
2/29/2016", "4/17/2016", "5/26/2016", "7/13/2016", "←↩
8/31/2016", "10/9/2016", "11/26/2016", "1/10/2019", "←↩
3/1/2019", "4/18/2019", "6/5/2019", "7/24/2019", "←↩
9/10/2019", "10/29/2019", "12/7/2019", "1/1/2022", "←↩
2/18/2022", "3/29/2022", "5/16/2022", "6/25/2022", "←↩
8/12/2022", "9/30/2022", "11/17/2022", "1/4/2023", "←↩
2/13/2023", "3/23/2023", "5/10/2023", "6/28/2023", "←↩
8/15/2023", "9/24/2023", "11/11/2023")

latitudes = ("0.0", "10.0", "20.0", "40.0", "50.0", "←↩
-5.0", " -15.0", " -30.0", " -45.0", " -60.0", " -75.0", "←↩
66.0", "70.0", "75.0", " -80.0", "85.0", "89.0" )

lng = "0.0"

def SchylterRequest(dates , latitudes , longitudes):

'''

This program takes a list of dates and geographic ←↩
coordinates as input. We used 0N for longitude for←↩
all calculations. It requests rise/set times ←↩

using an API. The sunrise -sunset.org API returns ←↩
them in UNIX epoch time.
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'''

sunrise_times = []

sunset_times = []

for lat in latitudes:

for date in dates:

#make sure that the variable names match

payload = {

"date": date ,

"lat": lat ,

"lng": lng

}

#request the information in the API

response = requests.get("https :// api.sunrise←↩
-sunset.org/json", params = payload)

#load the data provided above

data = json.loads(response.content)

#parse the sting to be read as a date tuple

date = time.strptime(date , '%m/%d/%Y')

newsun = data["results"]

old_sunrise = newsun["sunrise"]

#parse the returned string to be read as a ←↩
time tuple

new_sunrise = time.strptime(old_sunrise , '%I←↩
:%M:%S %p')

#convert the date and time tuples to epoch ←↩
time

sunrise_epoch = calendar.timegm ((int(date←↩
[0]), int(date [1]), int(date [2]),

int(new_sunrise [3]), int(new_sunrise [4])←↩
, int(new_sunrise [5])))

sunrise_times.append(sunrise_epoch)
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old_sunset = newsun["sunset"]

#parse the returned string to be read as a ←↩
time tuple

new_sunset = time.strptime(old_sunset , '%I:%←↩
M:%S %p')

#convert the date and time tuples to epoch ←↩
time

sunset_epoch = calendar.timegm ((int(date [0])←↩
, int(date [1]), int(date [2]),

int(new_sunset [3]), int(new_sunset [4]), ←↩
int(new_sunset [5])))

sunset_times.append(sunset_epoch)

return sunrise_times , sunset_times

A.6 Meeus Request

This program in Python 2.7 computes sunrise and sunset times produced using the

Schlyter algorithm. It does so with the Python transit sunrise sunset() function of

the python package pvlib.[67] The dates and times included here are those used to

produce the graphs in Section 3.3.2.

import pvlib

from pvlib.spa import transit_sunrise_sunset

import numpy as np

import time
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'''

This program uses the Meeus algorithm for calculating ←↩
sunrise and sunset times. It takes an array of dates (←↩
in epoch format), latitude and longitude coordinates , ←↩
and outputs UNIX epoch times of sunrise and sunsets ←↩
for the dates and times in question. It returns the ←↩
times to a file.

'''

riseset = open("MEEUStimes.txt", "a")

date = np.array ([948931200 , 952300800 , 956448000 , ←↩
947116800 , 963964800 , 968198400 , 971568000 , 974937600 ,←↩
1042761600 , 1046908800 , 1051142400 , 1054512000 , ←↩

1058572800 , 1062028800 , 1065398400 , 1069545600 , ←↩
1140825600 , 1144195200 , 1148342400 , 1151712000 , ←↩
1155859200 , 1160006400 , 1164240000 , 1231286400 , ←↩
1235433600 , 1238803200 , 1242172800 , 1246320000 , ←↩
1250553600 , 1254700800 , 1258934400 , 1262304000 , ←↩
1266451200 , 1272412800 , 1276473600 , 1279929600 , ←↩
1284076800 , 1288224000 , 1292371200 , 1388793600 , ←↩
1392940800 , 1396396800 , 1400457600 , 1404777600 , ←↩
1408924800 , 1413072000 , 1417305600 , 1452470400 , ←↩
1456704000 , 1460851200 , 1464220800 , 1468368000 , ←↩
1472601600 , 1475971200 , 1480118400 , 1547078400 , ←↩
1551398400 , 1555545600 , 1559692800 , 1559692800 , ←↩
1563926400 , 1568073600 , 1572307200 , 1575676800 , ←↩
1640995200 , 1645142400 , 1648512000 , 1652659200 , ←↩
1652659200 , 1656115200 , 1660262400 , 1664496000 , ←↩
1668643200 , 1672790400 , 1676246400 , 1679529600 , ←↩
1683676800 , 1687910400 , 1692057600 , 1695513600 , ←↩
1699660800])
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latitude = [0.0 , 10.0, 20.0, 40.0, 50.0, -5.0, -15.0, ←↩
-30.0, -45.0, -60.0, -75.0, 66.0, 70.0, 75.0, -80.0, ←↩
85.0, 89.0]

lng = 0.0

for lat in latitude:

#the function takes dates , latitude , longitude , ←↩
delta t, and

data = transit_sunrise_sunset(date , lat , lng , ←↩
63.8285 , 3)

for sunrise in data [1]:

if not np.isnan(sunrise).any():

#account for dates in which sunrise does not←↩
occur

sunrise = time.strftime('%Y-%m-%d %H:%M:%S',←↩
time.gmtime(sunrise))

else:

sunrise = "00:00:00"

for sunset in data [2]:

#account for dates in which sunset does not ←↩
occur

if not np.isnan(sunset).any():

sunset = time.strftime('%Y-%m-%d %H:%M:%S', ←↩
time.gmtime(sunset))

else:

sunset = "00:00:00"

riseset.write('%s %s %s %s\n'%(lat , lng , sunrise , ←↩
sunset))

riseset.close()
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A.7 USNO API Request

This program in Python 2.7 computes sunrise and sunset times produced using the

USNO algorithm. It does so by querying the “Complete Sun and Moon Data for One

Day” API. The dates and times included here are those used to produce the graphs

in Section 3.3.2.

import requests

import json

import time

import calendar

import numpy as np

'''

This program uses the USNO algorithm for calculating ←↩
sunrise and sunset times. It requests rise/set times ←↩
by querying the USNO's "Complete Sun and Moon Data for←↩
One Day" API. It takes strings of dates , and latitude←↩

/longitude coordinates. This program then converts the←↩
output strings to values in UNIX epoch time to more ←↩

easily compare with outputs from other APIs.

'''
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dates = ("1/27/2000", "3/6/2000", "4/23/2000", "1/6/2000←↩
", "7/19/2000", "9/6/2000", "10/15/2000", "11/23/2000"←↩
, "1/17/2003", "3/6/2003", "4/24/2003", "6/2/2003", "←↩
7/19/2003", "8/28/2003", "10/6/2003", "11/23/2003", "←↩
2/25/2006", "4/5/2006", "5/23/2006", "7/1/2006", "←↩
8/18/2006", "10/5/2006", "11/23/2006", "1/7/2009", "←↩
2/24/2009", "4/4/2009", "5/13/2009", "6/30/2009", "←↩
8/18/2009", "10/5/2009", "11/23/2009", "1/1/2010", "←↩
2/18/2010", "4/28/2010", "6/14/2010", "7/24/2010", "←↩
9/10/2010", "10/28/2010", "12/15/2010", "1/4/2014", "←↩
2/21/2014", "4/2/2014", "5/19/2014", "7/8/2014", "←↩
8/25/2014", "10/12/2014", "11/30/2014", "1/11/2016", "←↩
2/29/2016", "4/17/2016", "5/26/2016", "7/13/2016", "←↩
8/31/2016", "10/9/2016", "11/26/2016", "1/10/2019", "←↩
3/1/2019", "4/18/2019", "6/5/2019", "7/24/2019", "←↩
9/10/2019", "10/29/2019", "12/7/2019", "1/1/2022", "←↩
2/18/2022", "3/29/2022", "5/16/2022", "6/25/2022", "←↩
8/12/2022", "9/30/2022", "11/17/2022", "1/4/2023", "←↩
2/13/2023", "3/23/2023", "5/10/2023", "6/28/2023", "←↩
8/15/2023", "9/24/2023", "11/11/2023")

location = ("0.0N, 0.0E", "10.0N, 0.0E", "20.0N, 0.0E", ←↩
"40.0N, 0.0E", "50.0N, 0.0E", "5.0S, 0.0E", "15.0S, ←↩
0.0E", "30.0S, 0.0E", "45.0S, 0.0E", "60.0S, 0.0E", "←↩
75.0S, 0.0E", "66.0N, 0.0E", "70.0N, 0.0E", "75.0N, ←↩
0.0E", "80.0S, 0.0E", "85.0N, 0.0E", "89.0N, 0.0E" )

tz = 0

riseset = open('USNOepochTimes.txt', 'w+')

riseset = open("USNOtimesNEW.txt", "w+")

riseset.write("#Lat Long \t Sunrise \t Sunset\n")

sunrise_times = []
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sunset_times = []

for coords in location:

for date in dates:

payload = {

"date": date ,

"coords": coords ,

"tz": tz

}

response = requests.get("http :// api.usno.navy.←↩
mil/rstt/oneday", params = payload)

#keep the content returned by the API

data = json.loads(response.content)

#Converts the date from a unicode value to a ←↩
time structure

date = time.strptime(date , '%m/%d/%Y')

#Look at the sun , ignore the moon

newsun = data["sundata"]

for phen in newsun:

try:

phen["phen"] == "R"

#record 00:00:00 when sunrise does not occur

except NameError:

sunrise = (0, 0, 0)

sunrise_epoch = calendar.timegm ((int(←↩
date [0]), int(date [1]), int(date [2]), ←↩
int(sunrise [0]), int(sunrise [1]), int(←↩
sunrise [2])))

#record the time when it does

else:

if phen["phen"] == "R":
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sunrise = phen["time"]

#converts the unicode values to time←↩
structures

sunrise = time.strptime(sunrise , '%H←↩
:%M')

#convert the time structure to unix ←↩
time

sunrise_epoch = calendar.timegm ((int←↩
(date [0]), int(date [1]), int(date←↩
[2]), int(sunrise [3]), int(sunrise←↩
[4]), int(sunrise [5])))

try:

phen["phen"] == "S"

#record 00:00:00 when sunset does not occur

except NameError:

sunset = (0, 0, 0)

sunset_epoch = calendar.timegm ((int(date←↩
[0]), int(date [1]), int(date [2]), int(←↩
sunset [0]), int(sunset [1]), int(sunset←↩
[2])))

#record when it does

else:

if phen["phen"] == "S":

sunset = phen["time"]

sunset = time.strptime(sunset , '%H:%←↩
M')

sunset_epoch = calendar.timegm ((int(←↩
date [0]), int(date [1]), int(date←↩
[2]), int(sunset [3]), int(sunset←↩
[4]), int(sunset [5])))

sunrise_times.append(sunrise_epoch)

sunset_times.append(sunset_epoch)
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for i in range(len(sunrise_times)):

riseset.write('{0} \t {1} \t {2} \t {3}\n'.format(←↩
location[i], sunrise_times[i], sunset_times[i]))

riseset.close()
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Appendix B

Tables

Below are tables of values that were used to conduct the analysis in this dissertation.

B.1 Sampson Humidity Values

Below are the relative humidity values recorded by Sampson at the time of sunrise

and sunset. The values were not included in his thesis, but were provided via private

communication. Missing values were supplemented using historical weather data

provided by Weather Underground from the nearby airport.[86]
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Table B.1
Sampson Humidity Data

Sunrise Date RH Sunset Date RH
12/29/1990 0.61 04/05/1991 0.49
01/02/1991 0.58 04/12/1991 0.40
01/03/1991 0.58 04/14/1991 0.26
01/04/1991 0.65 04/15/1991 0.40
01/06/1991 0.62 04/16/1991 0.49
01/08/1991 0.61 04/17/1991 0.34
01/09/1991 0.62 04/18/1991 0.31
01/10/1991 0.63 04/19/1991 0.28
01/11/1991 0.65 04/20/1991 0.27
01/12/1991 0.78 04/21/1991 0.27
01/14/1991 0.59 05/01/1991 0.26
01/20/1991 0.62 05/03/1991 0.36
01/22/1991 0.59 09/03/1991 0.51
02/01/1991 0.51 09/09/1991 0.66
02/04/1991 0.64 09/11/1991 0.45
02/06/1991 0.69 03/21/1992 0.60
02/09/1991 0.79 03/22/1992 0.40
02/11/1991 0.86 03/23/1992 0.38
02/25/1991 0.79 04/04/1992 0.31
03/01/1991 0.62 04/12/1992 0.48
03/05/1991 0.70 04/13/1992 0.39
03/09/1991 0.79 04/19/1992 0.87
03/11/1991 0.77 05/02/1992 0.30
03/13/1991 0.92 08/11/1992 0.46
03/14/1991 0.85 08/12/1992 0.31
03/19/1991 0.86 08/15/1992 0.32
03/20/1991 1.00 08/17/1992 0.29
03/26/1991 0.85 08/18/1992 0.40
03/29/1991 0.64 08/26/1992 0.42
03/30/1991 0.60 09/03/1992 0.54
03/31/1991 0.74 09/14/1992 0.65
04/01/1991 0.75 09/15/1992 0.33
04/02/1991 0.75 09/16/1992 0.49
04/04/1991 0.60 09/21/1992 0.53
04/05/1991 0.86 09/30/1992 0.23
04/08/1991 0.86 10/02/1992 0.38
04/09/1991 0.86 10/05/1992 0.32

Continued on next page
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Table B.1 – continued from previous page
Sunrise Date RH Sunset Date RH
04/12/1991 0.69 11/09/1992 0.77
04/13/1991 0.48 11/23/1992 0.73
04/14/1991 0.61 11/30/1992 0.56
04/15/1991 0.80 12/01/1992 0.87
04/16/1991 0.86 12/02/1992 0.59
04/17/1991 0.64 12/03/1992 0.80
04/18/1991 0.48 12/04/1992 0.63
04/19/1991 0.56 12/05/1992 0.52
04/21/1991 0.65 12/06/1992 0.64
04/22/1991 0.60 12/31/1992 0.58
04/23/1991 0.65 01/05/1993 0.65
04/24/1991 0.60 01/08/1993 0.83
04/30/1991 0.59 01/10/1993 0.63
05/01/1991 0.58 01/12/1993 0.67
05/02/1991 0.64 01/13/1993 0.71
05/04/1991 0.44 01/14/1993 0.70
05/07/1991 0.75 01/16/1993 0.59
05/08/1991 0.81 01/17/1993 0.79
05/11/1991 0.66 01/18/1993 0.73
05/12/1991 0.62 01/22/1993 0.74
05/16/1991 0.61 01/25/1993 0.68
05/17/1991 0.54 01/29/1993 0.73
05/20/1991 0.87 01/30/1993 0.49
05/27/1991 0.87 01/31/1993 0.50
05/29/1991 0.76 02/01/1993 0.61
05/30/1991 0.76 02/02/1993 0.49
05/31/1991 0.76 02/03/1993 0.70
06/05/1991 0.66 02/04/1993 0.70
07/29/1991 0.82 02/08/1993 0.65
07/31/1991 0.82 02/12/1993 0.67
08/07/1991 0.82 02/13/1993 0.68
08/09/1991 0.83 02/16/1993 0.66
08/10/1991 0.77 02/17/1993 0.61
08/13/1991 0.94 03/06/1993 0.49
08/14/1991 0.88 03/12/1993 0.54
08/21/1991 0.77 03/13/1993 0.68
08/26/1991 0.81 03/17/1993 0.48
08/30/1991 0.77 03/20/1993 0.56
09/03/1991 0.66 03/25/1993 0.39

Continued on next page
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Table B.1 – continued from previous page
Sunrise Date RH Sunset Date RH
09/07/1991 0.93 03/26/1993 0.52
09/10/1991 0.75 04/04/1993 0.71
09/11/1991 0.87 04/05/1993 0.71
09/17/1991 0.80 04/07/1993 0.80
09/19/1991 0.66 04/12/1993 0.87
09/22/1991 1.00 04/14/1993 0.61
09/24/1991 0.62 04/15/1993 0.61
09/26/1991 0.87 04/19/1993 0.81
09/27/1991 0.62 05/01/1993 0.31
09/28/1991 0.71 05/10/1993 0.31
10/02/1991 0.70 05/13/1993 0.38
10/03/1991 0.75 05/14/1993 0.39
10/04/1991 0.69 05/16/1993 0.31
10/08/1991 0.48 05/19/1993 0.58
10/09/1991 0.39 05/20/1993 0.47
10/10/1991 0.76 06/02/1993 0.41
10/11/1991 0.76 06/05/1993 0.39
10/18/1991 0.85 06/09/1993 0.36
10/19/1991 0.81 06/19/1993 0.82
10/23/1991 0.78 06/20/1993 0.48
10/28/1991 0.71 06/21/1993 0.49
10/29/1991 0.78 06/25/1993 0.82
10/30/1991 0.66 07/17/1993 0.94
11/02/1991 0.77 08/19/1993 0.64
11/06/1991 0.75 08/20/1993 0.53
11/07/1991 0.86 08/30/1993 0.63
11/09/1991 0.78 09/02/1993 0.77
11/14/1991 0.80 09/03/1993 0.60
11/15/1991 0.67 09/06/1993 0.48
11/18/1991 0.86 09/07/1993 0.59
11/19/1991 0.93 09/08/1993 0.52
12/10/1991 0.50 09/09/1993 0.55
12/11/1991 0.59 09/10/1993 0.55
12/13/1991 0.72 09/18/1993 0.44
12/14/1991 0.85 09/21/1993 0.53
12/16/1991 0.54 09/22/1993 0.50
12/17/1991 0.79 09/26/1993 0.50
12/20/1991 0.57 09/28/1993 0.47
01/05/1992 0.92 09/29/1993 0.38

Continued on next page
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Table B.1 – continued from previous page
Sunrise Date RH Sunset Date RH
01/07/1992 0.92 10/01/1993 0.53
01/09/1992 0.73 10/02/1993 0.66
01/12/1992 0.86 10/03/1993 0.46
01/14/1992 0.77 10/08/1993 0.65
01/16/1992 0.72 10/09/1993 0.58
01/22/1992 0.73 10/10/1993 0.38
01/27/1992 0.68 10/11/1993 0.54
01/29/1992 0.74 12/08/1993 0.58
02/03/1992 0.80 12/16/1993 0.92
02/04/1992 0.69 12/18/1993 0.80
02/05/1992 0.86
02/06/1992 0.85
02/07/1992 0.92
02/12/1992 0.78
02/23/1992 0.92
02/28/1992 0.65
02/29/1992 0.52
03/01/1992 0.64
03/02/1992 0.86
03/03/1992 0.93
03/05/1992 1.00
03/08/1992 0.79
03/09/1992 0.79
03/12/1992 0.70
03/13/1992 0.65
03/15/1992 0.75
03/16/1992 0.80
03/22/1992 0.74
03/24/1992 0.58
03/26/1992 0.69
03/27/1992 0.64
03/30/1992 0.63
04/01/1992 0.65
04/02/1992 0.65
04/03/1992 0.70
04/04/1992 0.59
04/10/1992 0.71
04/12/1992 0.73
04/13/1992 0.73
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Table B.1 – continued from previous page
Sunrise Date RH Sunset Date RH
04/15/1992 0.81
05/01/1992 0.45
05/02/1992 0.52
05/03/1992 0.49
05/25/1992 0.66
05/26/1992 0.61
05/28/1992 0.57
05/29/1992 0.81
06/10/1992 0.82
06/11/1992 0.76
06/12/1992 0.58
06/14/1992 0.72
06/17/1992 0.72
06/19/1992 0.72
06/21/1992 0.52
06/22/1992 0.44
06/24/1992 0.67
06/28/1992 0.76
06/29/1992 0.66
07/20/1992 0.87
07/21/1992 0.71
07/24/1992 0.82
07/27/1992 0.62
08/06/1992 0.88
08/11/1992 0.81
08/13/1992 0.67
08/14/1992 0.68
08/17/1992 0.66
08/25/1992 0.70
09/03/1992 0.87
09/14/1992 0.64
09/15/1992 0.69
09/16/1992 0.80
09/21/1992 0.75
09/24/1992 0.87
09/26/1992 0.86
09/27/1992 0.93
09/29/1992 0.75
10/01/1992 0.76

Continued on next page
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Table B.1 – continued from previous page
Sunrise Date RH Sunset Date RH
10/02/1992 0.71
10/03/1992 0.44
10/05/1992 0.56
10/07/1992 0.69
10/09/1992 0.48
10/11/1992 0.60
10/13/1992 0.80
10/14/1992 0.80
10/16/1992 0.85
10/22/1992 0.81
10/25/1992 0.69
11/09/1992 0.86
11/10/1992 0.74
11/12/1992 0.63
11/24/1992 0.73
11/26/1992 0.85
11/29/1992 0.63
12/01/1992 0.63
12/03/1992 0.72
12/04/1992 0.67
12/05/1992 0.68
12/06/1992 0.79
12/13/1992 0.72
12/18/1992 0.69
12/19/1992 0.77
12/30/1992 0.68
12/31/1992 0.61
01/02/1993 0.71
01/05/1993 0.62
01/09/1993 0.62
01/10/1993 0.58
01/14/1993 0.62
01/15/1993 0.66
01/17/1993 0.77
01/18/1993 0.66
01/20/1993 0.63
01/21/1993 0.80
01/22/1993 0.79
01/24/1993 0.61
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Table B.1 – continued from previous page
Sunrise Date RH Sunset Date RH
01/28/1993 0.70
01/29/1993 0.73
02/01/1993 0.60
02/02/1993 0.74
02/06/1993 0.93
02/07/1993 0.80
02/08/1993 0.86
02/12/1993 0.79
02/15/1993 0.71
02/16/1993 0.71
02/17/1993 0.71
02/23/1993 0.71
10/20/1993 0.69
10/23/1993 0.75
10/29/1993 0.56
11/05/1993 0.74
11/17/1993 0.74
11/24/1993 0.66
11/25/1993 0.78
11/26/1993 0.73
12/08/1993 0.79
12/17/1993 0.85
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Appendix C

Letters of Permission

Below is the letter of permission to reproduce the unpublished code for Hohenkerk &

Sinclair’s refraction model, which is provided in Appendix A.3.
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